WO2007136612A2 - Systems and methods for stabilization of bone structures - Google Patents
Systems and methods for stabilization of bone structures Download PDFInfo
- Publication number
- WO2007136612A2 WO2007136612A2 PCT/US2007/011573 US2007011573W WO2007136612A2 WO 2007136612 A2 WO2007136612 A2 WO 2007136612A2 US 2007011573 W US2007011573 W US 2007011573W WO 2007136612 A2 WO2007136612 A2 WO 2007136612A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- segment
- proximal
- distal
- rod
- bone
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7032—Screws or hooks with U-shaped head or back through which longitudinal rods pass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7004—Longitudinal elements, e.g. rods with a cross-section which varies along its length
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7004—Longitudinal elements, e.g. rods with a cross-section which varies along its length
- A61B17/7005—Parts of the longitudinal elements, e.g. their ends, being specially adapted to fit in the screw or hook heads
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7023—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a pivot joint
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7026—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7031—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other made wholly or partly of flexible material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7035—Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
- A61B17/7037—Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other wherein pivoting is blocked when the rod is clamped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7026—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form
- A61B17/7028—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form the flexible part being a coil spring
Definitions
- Patent Application Serial No. 11/436,407 filed May 17, 2006, which is a continuation-in-part of U.S. Non-Provisional Patent Application Serial No. 11/033,452 filed January 10, 2005, which is a continuation-in-part of U.S. Non- Provisional Patent Application Serial No. 11/006,495 filed December 6, 2004, which is a continuation-in-part of U.S. Non-Provisional Patent Application Serial No. 10/970,366, filed on October 20, 2004; this application is also a continuation- in-part of prior-filed U.S. Non-Provisional Patent Application Serial No. 11/362,366, filed February 23, 2006, which is a continuation-in-part of U.S. Provisional Patent Application Serial No. 60/701,660, filed July 22, 2005, all of which are incorporated herein by reference in their entirety and are assigned to the assignee of the present invention.
- the present invention is directed towards the treatment of spinal disorders and pain. More particularly, the present invention is directed to systems and methods of treating the spine, which eliminate pain and enable spinal motion, which effectively mimic that of a normally functioning spine.
- Figs. IA and IB illustrate a portion of the human spine having a superior vertebra 2 and an inferior vertebra 4, with an intervertebral disc 6 located in between the two vertebral bodies.
- the superior vertebra 2 has superior facet joints 8a and 8b, inferior facet joints 10a and 10b, posterior arch 16 and spinous process 18.
- Pedicles 3a and 3b interconnect the respective superior facet joints 8a, 8b to the vertebral body 2. Extending laterally from superior facet joints 8a, 8b are transverse processes 7a and 7b, respectively. Extending between each inferior facet joint 10a and 10b and the spinous process 18 are lamina 5a and 5b, respectively.
- inferior vertebra 4 has superior facet joints 12a and 12b, superior Atty. Docket: VFLX-OO 1CIP4 pedicles 9a and 9b, transverse processes 11a and lib, inferior facet joints 14a and 14b, lamina 15a and 15b, posterior arch 20, spinous process 22.
- Each spinal motion segment enables motion along three orthogonal axes, both in rotation and in translation.
- the various spinal motions are illustrated in Figs. 2A-2C.
- Fig. 2A illustrates flexion and extension motions and axial loading
- Fig. 2B illustrates lateral bending motion and translation
- Fig. 2C illustrates axial rotational motion.
- a normally functioning spinal motion segment provides physiological limits and stiffness in each rotational and translational direction to create a stable and strong column structure to support physiological loads.
- the specific location or source of spinal pain is most often an affected intervertebral disc or facet joint, and in particular the nerves in and around the intervertebral disc or facet joint.
- a disorder in one location or spinal component can lead to eventual deterioration or disorder, and ultimately, pain in another.
- Spine fusion is a procedure in which two or more adjacent vertebral bodies are fused together once the natural height of the degenerated disc has been restored. It is one of the most common approaches to alleviating various types of spinal pain, particularly pain associated with one or more affected intervertebral discs. However, fusion is only as good as the ability to restore disc height to relieve the pain by taking pressure off the nerves, nerve roots, and / or articulating surfaces — i.e., facet joints and end plates of the vertebral bodies. While spine fusion generally helps to eliminate certain types of pain, it has been shown to decrease function by limiting the range of motion for patients in flexion, extension, rotation and lateral bending.
- fusion creates increased stresses on adjacent non-fused motion segments and accelerated degeneration of the motion segments. Additionally, pseudarthrosis (resulting from an incomplete or ineffective fusion) may not provide stability of the degenerative spine or the expected pain- Atty. Docket: VFLX-OO 1 CIP4 relief for the patient. Also, the device(s) used for fusion, whether artificial or biological, may migrate out of the fusion site creating significant new problems for the patient. In addition, fusion of the spine causes the increased transfer of stresses to the anatomical structures above and below the site of fusion.
- the additional stresses may cause the accelerated degeneration of anatomical structures above and below the original site of fixation, thus necessitating further surgical intervention in order to arrest the degeneration of these levels, to restore stability of the degenerated spine, and to relieve the pain associated with this process.
- Dynamic posterior stabilization surgical-based technologies, referred to as “dynamic posterior stabilization,” have been developed to address spinal pain resulting from more than one disorder, when more than one structure of the spine have been compromised.
- An objective of such technologies is to provide the support of fusion-based implants while restoring the natural biomechanics of the spine. This approach helps reduce the amount of stress transmitted or shifted to the level above or below that which is being treated to reduce the acceleration of the degenerative process typically seen in rigid devices used to fuse the spine.
- Dynamic posterior stabilization systems typically fall into one of three general categories: (1) interspinous spacers (2) posterior pedicle screw-based systems and (3) facet arthroplasty systems.
- the spacers which are made of either a hard or compliant material, are placed between adjacent spinous processes. Because the interspinous spacers involve attachment to the spinous processes, use of these types of systems is limited to applications where the spinous processes are uncompromised and healthy. Atty. Docket: VFLX-OO 1CIP4
- pedicle screw-based systems employ articulating joints between the vertebral bodies which are intended to replace the facet joints, and are anchored to the veterbral bodies via the pedicle screws.
- the current invention provides an enhanced dynamic rod system that may be disposed between two pedicle screws, two crossbars, a combination of a pedicle screw and a crossbar, or two other spinal devices, that can provide a patient with spinal support and freedom of movement that is very close to that of a normally- functioning healthy spine.
- the dynamic nature allows controlled flexiblity, motion, and movement, between two vertebral segments being stabilized. A high degree of the natural biomechanics and motion are preserved. In addition, pain is reduced Atty. Docket: VFLX-OO) CIP4 and long-term complications are reduced.
- the system also avoids unnecessary stresses placed on neighboring vertebral segments, as are seen in standard fusion techniques, which cause accelerated degeneration of vertebral structures and associated pain.
- Embodiments of the system may include two rod segments that are joined by a dynamic element.
- the dynamic element may include flexible materials, flexible assemblies such as threaded sections joined by springs, elastomeric materials, and other such components as are described below.
- the current invention is applicable to patients with degenerative disc disease, spinal stenosis, severe spondylolisthesis at L5-S1, spinal deformities, fractures, pseudarthrosis, tumors, failed prior fusions, or other similar vertebral segment traumas and diseases.
- the current invention allows convenient installation and removal in a patient.
- the ease of installation and removal in turn allows embodiments to be removed if further degeneration occurs, to be replaced with a fixed rod installed into the bone screws already installed in the pedicles. This allows the surgeon a revision strategy for the patient between the different systems.
- Advantages of the invention may include one or more of the following.
- a semi-rigid rod system is provided which mimics the natural biomechanics of the spinal segment. Motion and movement are allowed, e.g., 1.0 mm extension, 5o angular flexion, and 15o torsional deflection. Embodiments of the system allow for offset and offloading of affected anatomical structures undergoing degenerative changes.
- the spring design may bias the spine back to a neutral position.
- Figs. 1(A) and 1(B) illustrate perspective views of a portion of the human spine having two vertebral segments, where the spinous process and the lamina of the superior vertebra have been resected in Fig. l(B).
- Figs. 2(A)-(C) illustrate left side, dorsal and top views, respectively, of the spinal segments of Fig. 1(A) under going various motions.
- Fig. 1(A) and 1(B) illustrate perspective views of a portion of the human spine having two vertebral segments, where the spinous process and the lamina of the superior vertebra have been resected in Fig. l(B).
- Figs. 2(A)-(C) illustrate left side, dorsal and top views, respectively, of the spinal segments of Fig. 1(A) under going various motions.
- Fig. 1(A) and 1(B) illustrate perspective views of a portion of the human spine having two vertebral segments, where the spinous process and the
- FIG. 3(A)-(B) illustrate exploded, combined, and rotated perspective views of a pedicle screw and dynamic rod combination, where the dynamic rod can be rotated to assume a variety of angles relative to the pedicle screw.
- Fig.4(A)-(C) illustrate exploded, combined, and locked views of a pedicle screw and dynamic rod combination, which the dynamic rod can be locked in place with a cap.
- Fig. 5(A)-(F) illustrate exploded, combined, side, perspective transparent, and side transparent views of a dynamic rod system according to an embodiment of the current invention.
- Fig. 6(A) and 6(B) illustrate side sectional views of a dynamic rod system according to another embodiment of the current invention.
- FIG. 7 illustrates a side sectional view of a dynamic rod system according to a further embodiment of the current invention.
- Fig. 8(A)-(D) illustrate side and top sectional views of a dynamic rod system according to yet another embodiment of the current invention.
- Fig. 9(A) and 9(B) illustrate a perspective sectional view of a dynamic rod system according to yet another embodiment of the current invention; as well as a depiction of an exemplary range of motion.
- Fig. 10(A)-(C) illustrate perspective and sectional views of a dynamic rod system according to yet another embodiment of the current invention.
- Fig. 10(A)-(C) illustrate perspective and sectional views of a dynamic rod system according to yet another embodiment of the current invention.
- Fig. 10(A)-(C) illustrate perspective and sectional views of a dynamic rod system according to yet another embodiment of the current invention.
- FIG. 11(A)-(D) illustrate perspective and sectional views of a dynamic rod system according to yet another embodiment of the current invention.
- Fig. 12(A)-(D) illustrate side, sectional, perspective, and top views of a dynamic rod system according to yet another embodiment of the current invention.
- Fig. 13(A)-(E) illustrate side, top, sectional, and perspective views of a dynamic rod system according to yet another embodiment of the current invention.
- Fig. 14(A)-(E) illustrate various views of a dynamic rod system according to yet another embodiment of the current invention.
- Fig. 15(A)-(H) illustrate various views of a dynamic rod system according to yet another embodiment of the current invention.
- Fig. 16(A)-(C) illustrate views of a dynamic rod system according to an embodiment of the current invention in use as installed in a set of vertebral segments.
- Fig. 17(A) and 17(B) illustrate views of a multi-level dynamic rod system according to an embodiment of the current invention in use as installed in a set of vertebral segments.
- system when referring to a system of the present invention, most typically refers to a set of components which includes multiple bone stabilization components such as a superior, cephalad or rostral (towards the head) component configured for implantation into a superior vertebra of a vertebral motion segment and an inferior or caudal (towards the feet) component configured for implantation into an inferior vertebra of a vertebral Atty. Docket: VFLX-OOl CIP4 motion segment.
- a pair of such component sets may include one set of components configured for implantation into and stabilization of the left side of a vertebral segment and another set configured for the implantation into and stabilization of the right side of a vertebral segment.
- system may refer to two or more pairs of component sets, i.e., two or more left sets and/or two or more right sets of components.
- Such a multilevel system involves stacking of component sets in which each set includes a superior component, an inferior component, and one or more medial components therebetween.
- the superior and inferior components when operatively implanted, may be engaged or interface with each other in a manner that enables the treated spinal motion segment to mimic the function and movement of a healthy segment, or may simply fuse the segments such as to eliminate pain and/or promote or enhance healing.
- the interconnecting or interface means include one or more structures or members that enables, limits and/or otherwise selectively controls spinal or other body motion.
- the structures may perform such functions by exerting various forces on the system components, and thus on the target vertebrae.
- the manner of coupling, interfacing, engagement or interconnection between the subject system components may involve compression, distraction, rotation or torsion, or a combination thereof. In certain embodiments, .the extent or degree of these forces or motions between the components may be intraoperatively selected and/or adjusted to address the condition being treated, to accommodate the particular spinal anatomy into which the system is implanted, and to achieve the desired therapeutic result.
- the multiple components are mechanically coupled to each other by one or more interconnecting or interfacing means.
- components interface in an engaging manner, which does not necessary mechanically couple or fix the components together, but rather constrains their relative movement and enables the treated segment to mimic the function and movement of a healthy segment.
- spinal interconnecting means is a dorsally positioned component, i.e., positioned posteriorly of the superior and inferior components, or may be a laterally positioned component, i.e., positioned to the outer side of the posterior and inferior Atty. Docket: VFLX-OO 1CIP4 components.
- the structures may involve one or more struts and/or joints that provide for stabilized spinal motion.
- a bone stabilization device according to an embodiment of the invention.
- the device includes a dynamic rod 30, a seat 40, and a bone screw 50. Certain aspects of the bone screw and seat are described here; however, a more complete description of these components may be found in the applications incorporated by reference above.
- the dynamic rod may be employed with any such bone screw systems, or indeed with components coupled to bone screw systems through intervening or intermediary devices.
- the dynamic rod 30 includes a sleeve cap 34.
- the sleeve cap 34 is generally cylindrical or conical in shape, although other shapes can also be accommodated.
- the dynamic rod has a distal shaft 32 which is defined to be distal of the sleeve cap 34 relative to a pivot point on the opposite side of the rod.
- the dynamic rod 30 also has a proximal shaft 36 which terminates in a ball end 38 having a flat portion on which is mounted a pin 42. Pin 42 has a'matching pin (not shown) on the opposite side of the ball end 38.
- the dynamic rod has a cannula 44 disposed centrally therethrough.
- a bone anchoring portion includes a seat 40 and a bone screw 50.
- the cannula 44 may pass through dynamic rod 30 and through the bone anchoring portion such that the assembly may be passed, in the orientation shown in the figure, into a patient through a installation cannula (not shown) and over a previously-placed guidewire, such as a "K-wire" commonly used in bone and joint procedures.
- a previously-placed guidewire such as a "K-wire" commonly used in bone and joint procedures.
- K-wire commonly used in bone and joint procedures.
- no such cannula, lumen, or guidewire is necessary for placement.
- dynamic rod 30 At one end of dynamic rod 30 is ball end 38, which is rotationally received and captured by a coupler 29.
- "U"-shaped grooves 52 are provided which mate with the corresponding pins 42 on dynamic rod 30 to allow the dynamic rod 30 to be pivoted in a perpendicular (or other Atty. Docket: VFLX-OO 1CIP4 angular) fashion relative to the rest of the system.
- the coupler 29 may be attached to the seat 40 via a retaining ring having lugs which cooperatively and securedly engage corresponding slots in the coupler 29 (and may also engage slots in the seat 40).
- the retaining ring may be secured to the seat 40 via a groove formed in the cylindrical interior of the seat.
- the retaining ring and the coupler are press fit together into the seat.
- the coupler and seat have a keyway (not shown) such that they are aligned with one another. In this way, the coupler is prevented from being misaligned with the seat.
- the "U"-shaped grooves may be replaced with a "closed" saddle having receivers.
- the pins on the dynamic rod push on ramps until the pins drop into holes. Once the pins drop they are captured and generally require a tool for removal. In this way, the end of the dynamic rod cannot be displaced when the opposite end of the dynamic rod is being captured by a receiving assembly.
- the dynamic rod is not attached to the coupler prior to installation. Because of this, the bone screw can be driven directly through a hole in the coupler, and no tangential rotation arrangement is necessary.
- the coupler mates with the ball end in a snap-fit ball-and-socket arrangement.
- the screw - ball end- coupler system sits within the seat and is at least partially secured therein because coupler lip 51 rests on seat lip 56.
- the screw - ball end - coupler system may be further secured using retaining ring 35 on top of lip 51 and press fit into seat lip 56.
- the dynamic rod can be inserted into the saddle of the coupler, which is assembled to the seat, by an operator, or may be provided in a pre-attached state.
- the dynamic rod can be removable from the coupler, which is assembled to the seat, or may be permanently, though rotatably, attached, whether provided in a "to- be-assembled" or a pre-assembled state.
- the ball and socket design of Figs. 3(A) and 3(B) allows multi-directional rotation of the dynamic rod 30. Alternative designs may allow a single degree of freedom, or may allow more sophisticated trajectories of travel for the dynamic rod 30.
- the dynamic rod After the dynamic rod has been pivoted to a position for use in a patient, the dynamic rod may be held in that position by use of the closure element or cap 66 and a set screw 67.
- the closure element 66 may be snap-fitted into the seat 40 by Atty. Docket: VFLX-001CIP4 interaction and engagement of closure element tabs 31 and seat grooves 33. Instead of grooves and tabs, lugs may also be employed. Lugs have the benefit of preventing the seat 40 splaying and releasing the rod.
- the same may also be dropped in and captured with set screws or other capture devices.
- One particular other such capture device includes an integral locking nut/plug combination, which eliminates the need for a plug and set screw set.
- a closure element slot 37 may be disposed in the closure element 66 so that the same may be further tightened along the groove 33 if the groove 33 is provided with a ramp system.
- various other techniques may also be used to keep closure element 66 within seat 40.
- the set screw 67 may then be tightened to secure the dynamic rod 30 against movement.
- the screw 50, the coupler 29, the seat 40, the rod 30, and the corresponding intermediate elements are assembled prior to implantation in the patient.
- the device is inserted over the guidewire.
- the screw is then driven into the desired bone by use of a driver (not shown).
- the screw 50, the coupler 29, the seat 40, and the corresponding intermediate elements are assembled prior to implantation in the patient.
- the screw is driven into the desired bone by use of a driver which cooperatively engages with a mating recess in the screw.
- the dynamic rod is inserted, captured, and then may be pivoted and the closure element 66 and set screw 67 applied.
- FIG. 4(A)-(C) show the system where the dynamic rod is pivoted, and the closure element is about to be disposed within the seat (4(A)). Similar reference numerals and parts refer to similar numerals and parts in Fig. 3(A)-3(B). After pivoting, the closure element is disposed within the seat (4(B)). Finally, the closure element is tightened along with the set screw (4(C)).
- a first embodiment of a dynamic rod system is shown.
- the ball end 38 having pins 42 is shown at one end of a proximal rod segment 36, which terminates at its opposite end in a flange 78.
- a distal rod segment 32 is shown which terminates at one end in flange 82.
- Flanges 82 and 78 each have one or more radially extending arc sections 83 and 85, respectively, which matingly engage one or more corresponding radially retracted Atty. Docket: VFLX-001 CIP4 arc sections 86 and 88, respectively, in a sleeve cap 34.
- a press-fit retaining end cap 84 can further be used to seal the sleeve cap 34.
- the end cap 84 may be made slightly oval in shape. In this way, it may control the direction in which flexion can occur. To ensure that the surgeon can distinguish this slight oval character, i.e., this marker, a line 91 may be etched on the assembly, here shown on the end cap, so that the surgeon is made aware of which direction preferred flexion will occur.
- the sleeve cap and the end cap may be welded together to contain the system but may also still employ a slight gap between the end cap and the flange 82 to allow for an extension motion.
- the sleeve cap 34 is shown with a frusto-conical shape in order to accommodate and limit angular flexion of the dynamic rod from end-to-end. Besides welding, the two may be press-fit, employ another type of mating snap feature or be attached with an adhesive.
- the sleeve cap and the end cap may each have an opening in which to sHdingly receive their corresponding proximal or distal segments
- proximal threaded section 72 is provided at a distal end of proximal rod segment 36
- distal threaded section 74 is provided at a proximal end of distal rod segment 32.
- the proximal and distal threaded sections are complementary in that they are disposed as shown to together form most of a complete and continuous thread; however, in most embodiments, they do not form the complete thread. Two, three, or more grooves may form this thread on each segment. In any case, rather than forming a complete 36Oo thread, they form a thread with one or more gaps of, e.g., 15o each.
- Each of the proximal and distal end sections may be further optionally supported by a cylindrical core, one of which is shown in Fig. 5(A) as cylindrical core 87.
- the cylindrical cores provide strength to the threaded sections, and further provide a convenient guide or marker to be used during manufacturing, i.e., to indicate a preset position prior to conjunction with a spring.
- the distal rod segment 32 may be provided with a cylindrical core 87 and the proximal rod segment 36 is provided with a smaller cylindrical core, i.e., one that provides a degree of support or strength, but otherwise the remaining interior of proximal threaded section 72 is left as void 89 (see also Fig. 5(C)).
- the void 89 may be cylindrical in shape but is Atty. Docket: VFLX-OO 1CIP4 generally frusto-conical to allow for, and limit, angular flexion of the cylindrical core 87 within the void 89.
- the size of the cylindrical cores defines the maximum amount of compression afforded by the device, and the size of the housing defines the maximum amount of extension afforded by the device.
- the housing may be filled or partially filled with a resilient material, such as. a silicone elastomer, to dampen motion and/or limit travel.
- proximal and distal threaded sections are held together by a spring 76, which helically engages each of the proximal and distal threaded sections.
- the sleeve cap 34 covers the spring 76 and the proximal and distal threaded sections, in part to prevent blood and tissue in the spinal area from deleteriously affecting the dynamic mechanism.
- the spring may be configured to bias the system back to the neutral position.
- the spring controls rotation, flexion, and extension, and biases the system to a neutral or equilibrium position.
- the pitch of the spring may be greater or less than that of the proximal and distal threaded sections. In this way, the spring may be biased to push the two components together.
- the pitch may be the same but the diameter of the wire of the spring may be smaller than the corresponding helical groove in which it sits to allow for torsion.
- a small gap may still be provided, e.g., 1.0 mm, to allow the components to extend.
- Fig. 5(D) and 5(E) show perspective and side transparent combined views of the dynamic rod of Figs. 5(A)-(C).
- Fig. 6 shows an alternate embodiment of a dynamic rod system 30' according to the current invention.
- the dynamic rod system includes a dynamic element 90, a proximal rod segment 92, and a distal rod segment 94.
- Many of the features of the dynamic rod system 30' can be similar to corresponding elements in the dynamic rod system 30 of Fig. 5.
- the dynamic rod system 30' employs hinge pins 96 which matingly engage elements such as the "U"-shaped grooves of Fig. 3.
- the proximal segment has a distal end 104 and the distal segment has a proximal end 102.
- the distal end 104 and the proximal end 102 are joined by a Atty. Docket: VFLX-OOl CIP4 spring 106.
- Flanges 112 and 114 serves similar purposes to the corresponding flanges in the embodiment of Fig. 5, to wit, sealing the housing and preventing removal of the elements of the dynamic rod system from the housing 98.
- Radioactive seeds 116 may be employed to assist in the prevention of undesired bone fusion.
- a set screw 108 may be provided to control the degree of angular flexion achievable by the dynamic rod system 30'.
- a set screw 110 may be provided to adjust the limits of extension and compression, and such set screws may be adjusted pre-, during, or post-implantation.
- the housing 98 may be optionally filled with a material, such as an elastomer, to control the overall degree of dynamic response of the dynamic rod system 30'.
- the elastomeric filling may be employed to improve the restoring force of the dynamic rod system.
- the same may be employed to provide a dampening force.
- the filling prevents contamination from entering the housing and also keeps debris from wear within the housing.
- proximal and distal rod segments of dynamic rod system 30" are not collinear. Rather, they are configured such that in an equilibrium position they mimic the curvature of the spine. In other words, they are not collinear but meet at an angle that is substantially the same as the curve the spinal axis takes in the local setting of the affected vertebral segments. This angle may be, e.g., 5 degrees. Other values may be employed according to the dictates of the patient.
- FIG. 7 a further embodiment of a dynamic rod system 30" ' is shown.
- the system 30'" has essentially similar elements to the embodiment of Fig. 6(A), and thus individual reference numerals are omitted.
- the system 30'" employs two dynamic elements 91 and 100.
- Elements 91 and 100 may be the same or dissimilar.
- the elements may be equidistantly arranged on the rod or may be arbitrarily placed to accommodate particular types of motion.
- FIG. 8(A) a further embodiment of a dynamic rod system 130 is shown. Many components are similar to the embodiment of Fig. 6(A).
- a Atty. Docket: VFLX-OOl CIP4 proximal segment 122 is coupled to a distal segment 124 via a spring 126.
- the housing 118 has flared walls to accommodate, and limit, additional flexion.
- a spring end 128 maybe fixed into one of the segments, here shown as the distal segment 124, via welding, adhesives, etc..
- a round spring 132 may be employed, in which case all azimuthal angles may be provided with the same degree of flexion.
- an oval spring 134 may be employed, in which case certain azimuthal angles are preferred in terms of how much flexion they are allowed.
- FIG. 9 a further embodiment of a dynamic rod system 130' is shown. Many components are similar to the embodiment of Fig. 6(A).
- a proximal segment 136 is coupled to a distal segment 156 via a spring 158.
- a ball end 146 and pins 148 allows coupling of the proximal segment 136 to an assembly such as a hinged assembly coupled to a bone anchor system.
- the proximal segment has a threaded section 152 and the distal segment has a threaded section 154.
- a collet 162 may be employed to maintain the dynamic rod 130' in a neutral state.
- An elastomeric sleeve 164 may then be employed to ensure deleterious material does not clog or otherwise inhibit the action of the collet 162.
- the elastomeric sleeve may also be employed to keep debris from wear of the device, if any, out of the spinal space.
- a housing 166 may then be used to seal the dynamic element.
- Fig. 9(B) shows exemplary ranges of motion provided by this embodiment.
- a proximal segment 168 is coupled to a distal segment 174.
- the proximal segment 168 has a flange 172 on which is mounted male nub 173.
- the distal segment 174 is provided with a female receiver 178 affixed to the distal segment at a proximal end 176.
- a cage spring 184 may be slid over the distal segment 174 and may securedly engage the female receiver 178 such that when the female receiver 178 receives the male nub 173, the spring 184 (and in particular a proximal end 186) holds the female receiver 178 and the male nub 173 in a secure fashion.
- a separate spring portion 188 may be provided to further enhance the dynamic response.
- An elastomeric sleeve 192 such as a silicone washer, may then be employed to ensure deleterious material does not clog or otherwise inhibit the Atty. Docket: VFLX-OOl CIP4 action of the spring 184.
- a housing 194 with top cap 196 may then be used to seal the dynamic element, e.g., by being welded to the flange 172.
- Fig. 10(B) shows exemplary ranges of motion provided by this embodiment
- Fig. 10(C) shows a side sectional view of the system of Fig. 10(A).
- Figs. 11(A)-(D) show an embodiment related to that of Fig. 10. Similar elements perform similar functions, such as the proximal segment 168, flange 172, and male nub 173, and thus no additional description is provided here. However, additional elements include a female rod segment 175 which mates with the male nub 173, a spring 177 which provides extension, torsion, and centering, a rod sleeve 179, and a locking collar 198.
- An elastomeric sleeve 181 may be employed to performs functions similar to the same component in Fig. 10. As shown in Fig. H(D), the locking collar may be inserted in various degrees - if fully inserted, a significant amount of motion, or all motion, may be prevented. Lesser insertions result in additional motion allowed.
- a system 230 is shown in which a proximal segment 202 is coupled to a distal segment 204 by a spring 206 that is attached to each.
- the spring 206 acts as both to allow torsion and to allow extension. If the spring 206 is sufficiently stiff, it may be the only component that couples the rods.
- one of the proximal or distal segment may be provided with a ball end 216 which is received by a socket 224 which is coupled to the opposite segment.
- the proximal segment is coupled to the ball end and the distal segment carries the socket.
- a small gap 222 may be provided in the proximal segment such that the ball end may be partially enclosed by the proximal segment, in particular the distal tip thereof.
- the amount of bending capable of this dynamic rod system 230 is at least in part determined by the size of the socket.
- the socket may, in some embodiments, be replaced by fingers (not shown) similar to the way in which a gemstone is held onto a ring setting.
- Fig. 12(C) shows exemplary ranges of motion provided by this embodiment.
- Fig. 12(D) shows an end view of the system 230.
- four fingers 215, 217, 219, and 221 are employed to hold the ball end.
- a portion of the spring (or another Atty. Docket: VFLX-001CIP4 detent if desired, not shown) may contact one of the fingers at minimum and maximum points of torsion, providing a maximum angle ⁇ of torsion.
- a proximal segment 232 is coupled to a distal segment 234.
- the proximal and distal segments are each made of a rigid material, e.g., titanium, but a plurality of holes 236 are provided that are filled with a flexible material such as an elastomeric material.
- the elastomeric material also forms a hinge portion 236'.
- Fig. 13(B) shows an end sectional view of the system
- Fig. 13(C) shows a side view.
- the system is shown with an optional outer sleeve 244 which may be employed to limit the amount of angular flexion afforded by the system.
- a dynamic rod system 430 is shown with three component sleeves 248, 252, and 254. Disposed throughout the center of the sleeves is an elastomeric material 246.
- the pedicle screws are allowed to hingedly rotate to provide a dynamic spinal support system.
- An additional benefit is that pedicle screws 256 and 256' may be dynamically joined even where the installation of the pedicle screws 256 and 256' has resulted in their screw heads being misaligned.
- a plurality of holes 247 may be provided to enhance flexibility.
- a feature may be provided to limit the amount of bending allowed by the system.
- a sleeve extension 258 may be mated with a frusto-conical member 262 at the intersection of two adjoining sleeves, e.g., sleeves 248 and 252. In this way, sleeves 248 and 252 may be bent at an angle at most equal to the angle of the frusto-conical section.
- a motion-limiting collar such as described above may also be employed for similar purposes.
- Figs. 15(A)-(H) show views of another embodiment of a dynamic rod system 530.
- a proximal segment 264 is joined to a distal segment 266 by a dynamic element 268.
- the dynamic element is formed by a series of semi-rigid serpentine filaments which distribute support for the spinal components, to which the segments are affixed, in a known fashion.
- the serpentine filaments may be formed of various materials, including titanium and associated alloys, stainless steel and associated alloys, polymers such as PEEK and other biocompatible materials.
- FIG. 15(C)-(E) show views of the serpentine filaments from various angles, while Figs. 15(F)-(H) show exemplary ranges of motion provided by this embodiment.
- the serpentine filaments may differ amongst themselves in mechanical properties, resulting in preferred directions of motion. The same may result from different densities of filaments.
- the volume between the proximal and distal segments may include a flexible material such as an elastomer.
- Figs. 16(A)-(C) show views of embodiments of the dynamic rods in use, i.e., dynamic rods 300 and 310 span pedicle screw systems 304/308 and 302/306.
- various MIS systems may include dynamic rods according to the present invention.
- a dynamic rod system may be installed on each side of a vertebral segment.
- the rod systems may be alike or may differ in mechanical properties, such as maximum amounts of extension or compression, angular flexion, and rotation or torsion. They may also be alike or differ in their respective restoring forces.
- the dynamic rod embodiments may be employed in a multi-level system, such as may span three vertebral segments 312, 314, and 316, with three screw systems on each side of the spinous processes.
- the non-primed components are disposed on the right side of the spinous process and primed components are disposed on the left side.
- a long rod may be employed that spans all three segments, and that has a segment 326 with no dynamic element between first and second screws 328 and 322 but which incorporates a dynamic element 332 on a segment 328 between the second and third screws 322 and 324.
- the description for the primed components is analogous.
- a chosen vertebral segment and thus set of pedicles is skipped, but a dynamic rod spans the vertebral segments above and below the chosen vertebral segments.
- This embodiment may be called Atty. Docket: VFLX-001CIP4 for when the chosen vertebral segment is too damaged to install pedicle screws, e.g., was damaged by a gunshot or other acute localized injury.
- pedicle screws are installed in the vertebral segments above and below the chosen vertebral segment, and a dynamic rod is installed that is typically longer than the dynamic rods disclosed above. Either the rod may be made longer or the dynamic component may be made longer or both.
- the dynamic nature is especially important as the motion of three vertebral segments is being tied together, and much freedom of motion may be sacrif ⁇ ed without a dynamic element.
- the above-described dynamic rod is substituted for the rigid rods described in the applications incorporated by reference above.
- the same pedicle screws may still be employed.
- a rigid rod is removed and a dynamic rod according to the invention is inserted in its place.
- a dynamic rod is removed and a rigid rod in inserted in its place.
- the dynamic rods of the above description may be inserted in pre-existing pedicle screws, no matter the placement or the type.
- various properties of the dynamic rod are adjusted before, during, or after implantation. These properties include: adjusting the limit of travel, such as via set screws; adjusting the amount of restoring force, again such as via set screws or other means; adjusting travel such as via a tapered collet that slides over the rod and that employs a thread that when tightened securedly engages the taper.
- the dynamic rod may be placed adjacent to a vertebral segment that has a fixed or rigid rod in place. In this way, the dynamic rod acts as a prophylactic to prevent degradation of adjacent segments. In such a procedure, the dynamic rod may be placed on one or both sides, to distribute stress more evenly in a reduced or ramped fashion.
- the components of the devices of the present invention are preferably configured for percutaneous placement, each device sized for placement through a percutaneous cannula.
- Each device preferably includes a lumen or sidecar through Atty. Docket: VFLX-OO 1CIP4 which a guidewire can be placed, or allowing placement alongside a percutaneously placed guidewire.
- the dynamic rod of the present invention can preferably be rotated or pivoted out of the cannula toward the receiving pedicle screw assembly, such as with the inclusion of a slot allowing the guidewire to exit a lumen, while a guidewire is in place.
- the dynamic rod and attached components are preferably configured such that the dynamic rod can be secured, such as with insertion of multiple set screws, also with a guidewire in place.
- Other components may include slot exits from guidewire lumens such as to allow over-the-wire delivery and subsequent escape of the guidewire while leaving the guidewire in place.
- the devices and methods of the present invention are configured to be inserted without resection of tissue, however procedures including or requiring resection are also supported.
- the bone anchors i.e., pedicle screws
- the bone anchors may have exemplary lengths ranging from 25 to 80 mm, and may, e.g., be available within that range in 5 mm increments.
- the diameters of the same may be, e.g., 5.5 mm, 6.0 mm, 6.5 mm, etc. They may be made of metal, such as a titanium alloy, e.g., Ti-6A1-4V, ELI, etc. They may also be made of stainless steel, e.g., 316LSS or 22- 13-5SS.
- the holes into which the same are inserted may be pre-tapped, or alternatively the pedicle screws may be self-tapping.
- the bone anchors may further have either fixed or polyaxial heads. Their threads may be standard, may be cutting threads, may incorporate flutes at their distal end, or may be any other type of thread.
- the bone anchors need not be purely of a screw-type. Rather they may also be soft-tissue-type anchors, such as a cylindrical body with a Nitinol barb. Atty. Docket: VFLX-OOl CIP4
- the dynamic rods shown may have exemplary lengths ranging from 30 to
- the diameters of the same may be, e.g., 5.5 mm, etc. They may be made of metal, such as CP Titanium Grade 2, stainless steel, etc..
- the ranges of motion accommodated by the system may be as follows: the extension allowed may be zero up to 1 mm, the angular flexion may be zero up to 5 degrees, the torsional deflection zero may be up to 15 degrees.
- the system may provide for a restoring force back to a neutral or equilibrium position or state.
- the distal end of the distal segment may be fitted with a feature to assist in the engagement of the distal segment with the second bone anchor or other such receiving assembly.
- the ends of the dynamic rod need not connect directly into bone screw assemblies. The same may connect to couplers or to other components as well.
- the dynamic rod may be contoured prior to insertion.
- a curve or other contour may be designed into the rod prior to insertion.
- a physician may bend the rod or put another such contour into the rod, either manually or with the aid of a device, prior to insertion.
- the rod may be contoured after insertion or partial insertion, such as after a measurement procedure is performed to determine the optimal contour angles for that particular patient.
- systems according to the disclosed embodiments may be disposed not only on multiple levels of the vertebrae but also on different sides of the spinous process. In other words, two systems may be disposed in a single segment, one on each pedicle.
- the use of the disclosed pedicle-screw-based systems may be employed in combination with various spacer systems, such as are disclosed in US Non-Provisional Patent Application Serial No. 11/314,712, filed 12/20/05, assigned to the assignee of the present invention and herein incorporated by reference in its entirety.
- the sleeve caps or housings may incorporate radiolucent or radiotransparent materials so that the installing surgeon or other physician may view the dynamic elements within under fluoroscopy or other such Atty. Docket: VFLX-OO 1CIP4 techniques. Changes in material density, such as "notches", may be employed to indicate the state of various components, e.g., via use of X-rays.
- the sleeve caps or housings may be made flexible to provide a small amount of dynamic motions per se. Additionally or alternatively, other types of markers may be used to enable viewing of the dynamic elements such as visible markers, ultrasonic markers, magnetic markers or other markers.
- kits may include multiple springs from which the surgeon can choose to select desired properties.
- kits may provide multiple housings among which a housing may be chosen for similar reasons.
- Markers may be employed to indicate the status of the dynamic rod.
- the markers may indicate the amount of extension or compression, rotation, or angular flexion.
- Such markers may also indicate the amount of stress the dynamic rod is subjected to.
- Such markers may be visible, radioopaque, ultrasonic, magnetic, or a combination of these.
- the markers may also be integrated onto the dynamic coupler, sleeve cap, or housing.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Neurology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2007254366A AU2007254366A1 (en) | 2006-05-17 | 2007-05-15 | Systems and methods for stabilization of bone structures |
CA002652134A CA2652134A1 (en) | 2006-05-17 | 2007-05-15 | Systems and methods for stabilization of bone structures |
EP07794859A EP2018124A4 (en) | 2006-05-17 | 2007-05-15 | Systems and methods for stabilization of bone structures |
IL195277A IL195277A0 (en) | 2006-05-17 | 2008-11-13 | Systems and methods for stabilization of bone structures |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/436,407 | 2006-05-17 | ||
US11/436,407 US8025680B2 (en) | 2004-10-20 | 2006-05-17 | Systems and methods for posterior dynamic stabilization of the spine |
US11/427,738 US7935134B2 (en) | 2004-10-20 | 2006-06-29 | Systems and methods for stabilization of bone structures |
US11/427,738 | 2006-06-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007136612A2 true WO2007136612A2 (en) | 2007-11-29 |
WO2007136612A3 WO2007136612A3 (en) | 2008-06-26 |
Family
ID=38723794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/011573 WO2007136612A2 (en) | 2006-05-17 | 2007-05-15 | Systems and methods for stabilization of bone structures |
Country Status (6)
Country | Link |
---|---|
US (2) | US7935134B2 (en) |
EP (1) | EP2018124A4 (en) |
AU (1) | AU2007254366A1 (en) |
CA (1) | CA2652134A1 (en) |
IL (1) | IL195277A0 (en) |
WO (1) | WO2007136612A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2303159A1 (en) * | 2008-05-13 | 2011-04-06 | Stryker Spine | Composite spinal rod |
US7935134B2 (en) | 2004-10-20 | 2011-05-03 | Exactech, Inc. | Systems and methods for stabilization of bone structures |
US7998175B2 (en) | 2004-10-20 | 2011-08-16 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8025680B2 (en) | 2004-10-20 | 2011-09-27 | Exactech, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8096996B2 (en) | 2007-03-20 | 2012-01-17 | Exactech, Inc. | Rod reducer |
US8226690B2 (en) | 2005-07-22 | 2012-07-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilization of bone structures |
US8267969B2 (en) | 2004-10-20 | 2012-09-18 | Exactech, Inc. | Screw systems and methods for use in stabilization of bone structures |
US8523865B2 (en) | 2005-07-22 | 2013-09-03 | Exactech, Inc. | Tissue splitter |
CN108652728A (en) * | 2018-05-16 | 2018-10-16 | 许敏 | A kind of orthopaedics support plate for leg disability patient |
US11583318B2 (en) | 2018-12-21 | 2023-02-21 | Paradigm Spine, Llc | Modular spine stabilization system and associated instruments |
Families Citing this family (196)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2812185B1 (en) | 2000-07-25 | 2003-02-28 | Spine Next Sa | SEMI-RIGID CONNECTION PIECE FOR RACHIS STABILIZATION |
US7833250B2 (en) | 2004-11-10 | 2010-11-16 | Jackson Roger P | Polyaxial bone screw with helically wound capture connection |
US7862587B2 (en) | 2004-02-27 | 2011-01-04 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
US8353932B2 (en) | 2005-09-30 | 2013-01-15 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US20160242816A9 (en) | 2001-05-09 | 2016-08-25 | Roger P. Jackson | Dynamic spinal stabilization assembly with elastic bumpers and locking limited travel closure mechanisms |
US10729469B2 (en) | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
US10258382B2 (en) * | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
US8876868B2 (en) | 2002-09-06 | 2014-11-04 | Roger P. Jackson | Helical guide and advancement flange with radially loaded lip |
US8523913B2 (en) | 2002-09-06 | 2013-09-03 | Roger P. Jackson | Helical guide and advancement flange with break-off extensions |
US7621918B2 (en) | 2004-11-23 | 2009-11-24 | Jackson Roger P | Spinal fixation tool set and method |
US6716214B1 (en) | 2003-06-18 | 2004-04-06 | Roger P. Jackson | Polyaxial bone screw with spline capture connection |
US7377923B2 (en) | 2003-05-22 | 2008-05-27 | Alphatec Spine, Inc. | Variable angle spinal screw assembly |
US7766915B2 (en) | 2004-02-27 | 2010-08-03 | Jackson Roger P | Dynamic fixation assemblies with inner core and outer coil-like member |
US7776067B2 (en) | 2005-05-27 | 2010-08-17 | Jackson Roger P | Polyaxial bone screw with shank articulation pressure insert and method |
US7967850B2 (en) | 2003-06-18 | 2011-06-28 | Jackson Roger P | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
US8377102B2 (en) | 2003-06-18 | 2013-02-19 | Roger P. Jackson | Polyaxial bone anchor with spline capture connection and lower pressure insert |
US8926670B2 (en) | 2003-06-18 | 2015-01-06 | Roger P. Jackson | Polyaxial bone screw assembly |
US8137386B2 (en) | 2003-08-28 | 2012-03-20 | Jackson Roger P | Polyaxial bone screw apparatus |
US8398682B2 (en) | 2003-06-18 | 2013-03-19 | Roger P. Jackson | Polyaxial bone screw assembly |
US8092500B2 (en) | 2007-05-01 | 2012-01-10 | Jackson Roger P | Dynamic stabilization connecting member with floating core, compression spacer and over-mold |
US8257398B2 (en) | 2003-06-18 | 2012-09-04 | Jackson Roger P | Polyaxial bone screw with cam capture |
US7527638B2 (en) | 2003-12-16 | 2009-05-05 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US7179261B2 (en) | 2003-12-16 | 2007-02-20 | Depuy Spine, Inc. | Percutaneous access devices and bone anchor assemblies |
US11419642B2 (en) | 2003-12-16 | 2022-08-23 | Medos International Sarl | Percutaneous access devices and bone anchor assemblies |
US11241261B2 (en) | 2005-09-30 | 2022-02-08 | Roger P Jackson | Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure |
CA2555868C (en) | 2004-02-27 | 2011-09-06 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
US9050148B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Spinal fixation tool attachment structure |
US7160300B2 (en) | 2004-02-27 | 2007-01-09 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US8114158B2 (en) | 2004-08-03 | 2012-02-14 | Kspine, Inc. | Facet device and method |
US7651502B2 (en) | 2004-09-24 | 2010-01-26 | Jackson Roger P | Spinal fixation tool set and method for rod reduction and fastener insertion |
US20080262554A1 (en) * | 2004-10-20 | 2008-10-23 | Stanley Kyle Hayes | Dyanamic rod |
US7662172B2 (en) | 2004-10-25 | 2010-02-16 | X-Spine Systems, Inc. | Pedicle screw systems and methods of assembling/installing the same |
US7604655B2 (en) | 2004-10-25 | 2009-10-20 | X-Spine Systems, Inc. | Bone fixation system and method for using the same |
US8926672B2 (en) | 2004-11-10 | 2015-01-06 | Roger P. Jackson | Splay control closure for open bone anchor |
US8308782B2 (en) | 2004-11-23 | 2012-11-13 | Jackson Roger P | Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation |
US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
US9168069B2 (en) | 2009-06-15 | 2015-10-27 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer |
US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
US9980753B2 (en) | 2009-06-15 | 2018-05-29 | Roger P Jackson | pivotal anchor with snap-in-place insert having rotation blocking extensions |
US9918745B2 (en) | 2009-06-15 | 2018-03-20 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet |
US7875065B2 (en) | 2004-11-23 | 2011-01-25 | Jackson Roger P | Polyaxial bone screw with multi-part shank retainer and pressure insert |
EP1814474B1 (en) | 2004-11-24 | 2011-09-14 | Samy Abdou | Devices for inter-vertebral orthopedic device placement |
US10076361B2 (en) | 2005-02-22 | 2018-09-18 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression and alignment and retention structures |
US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
US8696707B2 (en) | 2005-03-08 | 2014-04-15 | Zyga Technology, Inc. | Facet joint stabilization |
US7717943B2 (en) | 2005-07-29 | 2010-05-18 | X-Spine Systems, Inc. | Capless multiaxial screw and spinal fixation assembly and method |
WO2007038429A1 (en) | 2005-09-27 | 2007-04-05 | Endius, Inc. | Methods and apparatuses for stabilizing the spine through an access device |
US8105368B2 (en) | 2005-09-30 | 2012-01-31 | Jackson Roger P | Dynamic stabilization connecting member with slitted core and outer sleeve |
US7686835B2 (en) | 2005-10-04 | 2010-03-30 | X-Spine Systems, Inc. | Pedicle screw system with provisional locking aspects |
ES2309646T3 (en) * | 2005-12-23 | 2008-12-16 | Biedermann Motech Gmbh | FLEXIBLE STABILIZING DEVICE FOR THE DYNAMIC STABILIZATION OF BONES OR VERTEBRAS. |
US7578849B2 (en) * | 2006-01-27 | 2009-08-25 | Warsaw Orthopedic, Inc. | Intervertebral implants and methods of use |
US7722652B2 (en) | 2006-01-27 | 2010-05-25 | Warsaw Orthopedic, Inc. | Pivoting joints for spinal implants including designed resistance to motion and methods of use |
US8057519B2 (en) * | 2006-01-27 | 2011-11-15 | Warsaw Orthopedic, Inc. | Multi-axial screw assembly |
US7682376B2 (en) | 2006-01-27 | 2010-03-23 | Warsaw Orthopedic, Inc. | Interspinous devices and methods of use |
US7833252B2 (en) | 2006-01-27 | 2010-11-16 | Warsaw Orthopedic, Inc. | Pivoting joints for spinal implants including designed resistance to motion and methods of use |
US7815663B2 (en) * | 2006-01-27 | 2010-10-19 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
EP1815812B1 (en) * | 2006-02-03 | 2009-07-29 | Spinelab AG | Spinal implant |
US8560047B2 (en) | 2006-06-16 | 2013-10-15 | Board Of Regents Of The University Of Nebraska | Method and apparatus for computer aided surgery |
US7666211B2 (en) * | 2006-12-28 | 2010-02-23 | Mi4Spine, Llc | Vertebral disc annular fibrosis tensioning and lengthening device |
US7947045B2 (en) * | 2006-10-06 | 2011-05-24 | Zimmer Spine, Inc. | Spinal stabilization system with flexible guides |
CA2670988C (en) | 2006-12-08 | 2014-03-25 | Roger P. Jackson | Tool system for dynamic spinal implants |
US11224463B2 (en) | 2007-01-18 | 2022-01-18 | Roger P. Jackson | Dynamic stabilization connecting member with pre-tensioned flexible core member |
US8475498B2 (en) | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
US8366745B2 (en) * | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
US10792074B2 (en) | 2007-01-22 | 2020-10-06 | Roger P. Jackson | Pivotal bone anchor assemly with twist-in-place friction fit insert |
US8372121B2 (en) * | 2007-02-08 | 2013-02-12 | Warsaw Orthopedic, Inc. | Adjustable coupling systems for spinal stabilization members |
US9414861B2 (en) | 2007-02-09 | 2016-08-16 | Transcendental Spine, Llc | Dynamic stabilization device |
US8012177B2 (en) | 2007-02-12 | 2011-09-06 | Jackson Roger P | Dynamic stabilization assembly with frusto-conical connection |
EP2162079B1 (en) * | 2007-02-14 | 2016-07-06 | Flex Technology Inc. | Flexible spine components |
US8057516B2 (en) * | 2007-03-21 | 2011-11-15 | Zimmer Spine, Inc. | Spinal stabilization system with rigid and flexible elements |
WO2008119006A1 (en) | 2007-03-27 | 2008-10-02 | Alpinespine Llc | Pedicle screw system configured to receive a straight or a curved rod |
US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
US7611540B2 (en) | 2007-05-01 | 2009-11-03 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing systems and implantation method |
US8979904B2 (en) | 2007-05-01 | 2015-03-17 | Roger P Jackson | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
EP2160158A4 (en) | 2007-05-31 | 2013-06-26 | Roger P Jackson | Dynamic stabilization connecting member with pre-tensioned solid core |
US8292925B2 (en) | 2007-06-19 | 2012-10-23 | Zimmer Spine, Inc. | Flexible member with variable flexibility for providing dynamic stability to a spine |
US8043343B2 (en) | 2007-06-28 | 2011-10-25 | Zimmer Spine, Inc. | Stabilization system and method |
EP2803327A1 (en) * | 2007-07-13 | 2014-11-19 | George Frey | Systems for spinal stabilization |
US10758283B2 (en) | 2016-08-11 | 2020-09-01 | Mighty Oak Medical, Inc. | Fixation devices having fenestrations and methods for using the same |
US8343189B2 (en) * | 2007-09-25 | 2013-01-01 | Zyga Technology, Inc. | Method and apparatus for facet joint stabilization |
US20090093846A1 (en) * | 2007-10-04 | 2009-04-09 | Zimmer Spine Inc. | Pre-Curved Flexible Member For Providing Dynamic Stability To A Spine |
US8911477B2 (en) * | 2007-10-23 | 2014-12-16 | Roger P. Jackson | Dynamic stabilization member with end plate support and cable core extension |
US20090105756A1 (en) | 2007-10-23 | 2009-04-23 | Marc Richelsoph | Spinal implant |
US20100318130A1 (en) * | 2007-12-15 | 2010-12-16 | Parlato Brian D | Flexible rod assembly for spinal fixation |
USD620109S1 (en) | 2008-02-05 | 2010-07-20 | Zimmer Spine, Inc. | Surgical installation tool |
CA2714096A1 (en) * | 2008-02-06 | 2009-08-13 | Vertiflex, Inc. | Dynamic rod |
DE102008010358A1 (en) * | 2008-02-16 | 2009-08-20 | Jenker, Holger, Dipl.-Ing. (FH) | Dynamic stabilization device |
US20090240284A1 (en) * | 2008-03-24 | 2009-09-24 | David Scott Randol | Stabilization rods |
US20090248077A1 (en) * | 2008-03-31 | 2009-10-01 | Derrick William Johns | Hybrid dynamic stabilization |
US9504494B2 (en) * | 2008-04-28 | 2016-11-29 | DePuy Synthes Products, Inc. | Implants for securing spinal fixation elements |
US20100004693A1 (en) * | 2008-07-01 | 2010-01-07 | Peter Thomas Miller | Cam locking spine stabilization system and method |
US8118837B2 (en) * | 2008-07-03 | 2012-02-21 | Zimmer Spine, Inc. | Tapered-lock spinal rod connectors and methods for use |
US8197512B1 (en) * | 2008-07-16 | 2012-06-12 | Zimmer Spine, Inc. | System and method for spine stabilization using resilient inserts |
US8167914B1 (en) | 2008-07-16 | 2012-05-01 | Zimmer Spine, Inc. | Locking insert for spine stabilization and method of use |
EP2442739A1 (en) | 2008-08-01 | 2012-04-25 | Jackson, Roger P. | Longitudinal connecting member with sleeved tensioned cords |
AU2014277810B2 (en) * | 2008-08-12 | 2016-09-29 | Blackstone Medical, Inc. | Apparatus for stabilizing vertebral bodies |
US8287571B2 (en) * | 2008-08-12 | 2012-10-16 | Blackstone Medical, Inc. | Apparatus for stabilizing vertebral bodies |
EP2320815A2 (en) * | 2008-08-14 | 2011-05-18 | Exactech Inc. | Dynamic rod |
US9603629B2 (en) | 2008-09-09 | 2017-03-28 | Intelligent Implant Systems Llc | Polyaxial screw assembly |
US20100087858A1 (en) * | 2008-09-18 | 2010-04-08 | Abdou M Samy | Dynamic connector for spinal stabilization and method of use |
ES2392362T3 (en) * | 2008-10-08 | 2012-12-10 | Biedermann Technologies Gmbh & Co. Kg | Bone anchoring device and stabilization device for bone parts or vertebrae |
US8828058B2 (en) | 2008-11-11 | 2014-09-09 | Kspine, Inc. | Growth directed vertebral fixation system with distractible connector(s) and apical control |
US20100137908A1 (en) * | 2008-12-01 | 2010-06-03 | Zimmer Spine, Inc. | Dynamic Stabilization System Components Including Readily Visualized Polymeric Compositions |
US9055979B2 (en) * | 2008-12-03 | 2015-06-16 | Zimmer Gmbh | Cord for vertebral fixation having multiple stiffness phases |
US8137355B2 (en) | 2008-12-12 | 2012-03-20 | Zimmer Spine, Inc. | Spinal stabilization installation instrumentation and methods |
US8137356B2 (en) * | 2008-12-29 | 2012-03-20 | Zimmer Spine, Inc. | Flexible guide for insertion of a vertebral stabilization system |
US8118840B2 (en) | 2009-02-27 | 2012-02-21 | Warsaw Orthopedic, Inc. | Vertebral rod and related method of manufacture |
US8357183B2 (en) | 2009-03-26 | 2013-01-22 | Kspine, Inc. | Semi-constrained anchoring system |
US8425562B2 (en) * | 2009-04-13 | 2013-04-23 | Warsaw Orthopedic, Inc. | Systems and devices for dynamic stabilization of the spine |
US8206419B2 (en) | 2009-04-13 | 2012-06-26 | Warsaw Orthopedic, Inc. | Systems and devices for dynamic stabilization of the spine |
US8372116B2 (en) | 2009-04-13 | 2013-02-12 | Warsaw Orthopedic, Inc. | Systems and devices for dynamic stabilization of the spine |
US11229457B2 (en) | 2009-06-15 | 2022-01-25 | Roger P. Jackson | Pivotal bone anchor assembly with insert tool deployment |
US8998959B2 (en) | 2009-06-15 | 2015-04-07 | Roger P Jackson | Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert |
US9668771B2 (en) | 2009-06-15 | 2017-06-06 | Roger P Jackson | Soft stabilization assemblies with off-set connector |
US8876867B2 (en) | 2009-06-24 | 2014-11-04 | Zimmer Spine, Inc. | Spinal correction tensioning system |
US20110009906A1 (en) * | 2009-07-13 | 2011-01-13 | Zimmer Spine, Inc. | Vertebral stabilization transition connector |
US8394125B2 (en) | 2009-07-24 | 2013-03-12 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
US8657856B2 (en) | 2009-08-28 | 2014-02-25 | Pioneer Surgical Technology, Inc. | Size transition spinal rod |
US9168071B2 (en) | 2009-09-15 | 2015-10-27 | K2M, Inc. | Growth modulation system |
US9011494B2 (en) * | 2009-09-24 | 2015-04-21 | Warsaw Orthopedic, Inc. | Composite vertebral rod system and methods of use |
WO2011043805A1 (en) | 2009-10-05 | 2011-04-14 | Roger Jackson P | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
US8328849B2 (en) * | 2009-12-01 | 2012-12-11 | Zimmer Gmbh | Cord for vertebral stabilization system |
US8764806B2 (en) | 2009-12-07 | 2014-07-01 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US8740945B2 (en) | 2010-04-07 | 2014-06-03 | Zimmer Spine, Inc. | Dynamic stabilization system using polyaxial screws |
GB201006798D0 (en) * | 2010-04-23 | 2010-06-09 | Orthofitz Implants Ltd | Spinal implants and spinal fixings |
US9233006B2 (en) | 2010-06-15 | 2016-01-12 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
US8663293B2 (en) | 2010-06-15 | 2014-03-04 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
US8382803B2 (en) | 2010-08-30 | 2013-02-26 | Zimmer Gmbh | Vertebral stabilization transition connector |
EP2613719A1 (en) | 2010-09-08 | 2013-07-17 | Roger P. Jackson | Dynamic stabilization members with elastic and inelastic sections |
DE102010041264A1 (en) * | 2010-09-23 | 2012-03-29 | Aces Gmbh | Dynamic stabilization device for the spine |
EP2635212A4 (en) | 2010-11-02 | 2013-11-20 | Jackson Roger P | Polyaxial bone anchor with pop-on shank and pivotable retainer |
US8337530B2 (en) * | 2011-03-09 | 2012-12-25 | Zimmer Spine, Inc. | Polyaxial pedicle screw with increased angulation |
US8790375B2 (en) | 2011-03-18 | 2014-07-29 | Raed M. Ali, M.D., Inc. | Transpedicular access to intervertebral spaces and related spinal fusion systems and methods |
US9265620B2 (en) | 2011-03-18 | 2016-02-23 | Raed M. Ali, M.D., Inc. | Devices and methods for transpedicular stabilization of the spine |
WO2012128825A1 (en) | 2011-03-24 | 2012-09-27 | Jackson Roger P | Polyaxial bone anchor with compound articulation and pop-on shank |
AU2012261983B2 (en) | 2011-06-03 | 2015-10-08 | K2M, Inc. | Spinal correction system actuators |
CN106913366B (en) | 2011-06-27 | 2021-02-26 | 内布拉斯加大学评议会 | On-tool tracking system and computer-assisted surgery method |
US9498231B2 (en) | 2011-06-27 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US11911117B2 (en) | 2011-06-27 | 2024-02-27 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US8845728B1 (en) | 2011-09-23 | 2014-09-30 | Samy Abdou | Spinal fixation devices and methods of use |
DE102011055079A1 (en) * | 2011-11-05 | 2013-05-08 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz Körperschaft des öffentlichen Rechts | Dynamic stabilization device for bones |
WO2014172632A2 (en) | 2011-11-16 | 2014-10-23 | Kspine, Inc. | Spinal correction and secondary stabilization |
US8920472B2 (en) | 2011-11-16 | 2014-12-30 | Kspine, Inc. | Spinal correction and secondary stabilization |
US9451987B2 (en) | 2011-11-16 | 2016-09-27 | K2M, Inc. | System and method for spinal correction |
US9468469B2 (en) | 2011-11-16 | 2016-10-18 | K2M, Inc. | Transverse coupler adjuster spinal correction systems and methods |
US9468468B2 (en) | 2011-11-16 | 2016-10-18 | K2M, Inc. | Transverse connector for spinal stabilization system |
US8911479B2 (en) | 2012-01-10 | 2014-12-16 | Roger P. Jackson | Multi-start closures for open implants |
US20130226240A1 (en) | 2012-02-22 | 2013-08-29 | Samy Abdou | Spinous process fixation devices and methods of use |
US9271759B2 (en) | 2012-03-09 | 2016-03-01 | Institute Of Musculoskeletal Science And Education, Ltd. | Pedicle screw assembly with locking cap |
US9198767B2 (en) | 2012-08-28 | 2015-12-01 | Samy Abdou | Devices and methods for spinal stabilization and instrumentation |
US9339306B2 (en) | 2012-08-29 | 2016-05-17 | K2M, Inc. | Adjustable axial spinal rod connector |
US9931140B2 (en) | 2012-08-30 | 2018-04-03 | K2M, Inc. | Multi-planar axial spinal rod connector |
US9320617B2 (en) | 2012-10-22 | 2016-04-26 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
US9339300B2 (en) * | 2012-11-05 | 2016-05-17 | University of Medical Center of Johannes Guten University Mainz | Dynamic stabilizing device for bones |
EP2919717A1 (en) | 2012-11-15 | 2015-09-23 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
US8911478B2 (en) | 2012-11-21 | 2014-12-16 | Roger P. Jackson | Splay control closure for open bone anchor |
US10058354B2 (en) | 2013-01-28 | 2018-08-28 | Roger P. Jackson | Pivotal bone anchor assembly with frictional shank head seating surfaces |
US8852239B2 (en) | 2013-02-15 | 2014-10-07 | Roger P Jackson | Sagittal angle screw with integral shank and receiver |
EP2967909A4 (en) | 2013-03-14 | 2016-10-05 | Raed M Ali M D Inc | Lateral interbody fusion devices, systems and methods |
US10687962B2 (en) | 2013-03-14 | 2020-06-23 | Raed M. Ali, M.D., Inc. | Interbody fusion devices, systems and methods |
US10105149B2 (en) | 2013-03-15 | 2018-10-23 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
WO2014150786A1 (en) * | 2013-03-15 | 2014-09-25 | Moximed, Inc. | Implantation approach and instrumentality for an energy absorbing system |
US20150012042A1 (en) * | 2013-07-04 | 2015-01-08 | Institute for Musculoskeletal Science and Education, Ltd. | Orthopedic implantation device |
US9468471B2 (en) | 2013-09-17 | 2016-10-18 | K2M, Inc. | Transverse coupler adjuster spinal correction systems and methods |
US20150094769A1 (en) | 2013-10-01 | 2015-04-02 | Hamid Abbasi | System and method for lengthening an existing spinal support structure |
US9044273B2 (en) | 2013-10-07 | 2015-06-02 | Intelligent Implant Systems, Llc | Polyaxial plate rod system and surgical procedure |
US9566092B2 (en) | 2013-10-29 | 2017-02-14 | Roger P. Jackson | Cervical bone anchor with collet retainer and outer locking sleeve |
US9717533B2 (en) | 2013-12-12 | 2017-08-01 | Roger P. Jackson | Bone anchor closure pivot-splay control flange form guide and advancement structure |
US9451993B2 (en) | 2014-01-09 | 2016-09-27 | Roger P. Jackson | Bi-radial pop-on cervical bone anchor |
US10064658B2 (en) | 2014-06-04 | 2018-09-04 | Roger P. Jackson | Polyaxial bone anchor with insert guides |
CN103961169A (en) * | 2014-06-04 | 2014-08-06 | 池永龙 | Percutaneous dynamical articular process internal fixation device with location function |
US9597119B2 (en) | 2014-06-04 | 2017-03-21 | Roger P. Jackson | Polyaxial bone anchor with polymer sleeve |
US9526533B1 (en) * | 2014-09-12 | 2016-12-27 | Roberto J. Aranibar | Spinal repair implants and related methods |
US9924972B2 (en) * | 2015-02-04 | 2018-03-27 | James J. Yue | System and method for spinal fusion |
US11547450B2 (en) * | 2015-04-17 | 2023-01-10 | Apifix Ltd. | Expandable polyaxial spinal system |
US9707100B2 (en) | 2015-06-25 | 2017-07-18 | Institute for Musculoskeletal Science and Education, Ltd. | Interbody fusion device and system for implantation |
US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
US10743890B2 (en) | 2016-08-11 | 2020-08-18 | Mighty Oak Medical, Inc. | Drill apparatus and surgical fixation devices and methods for using the same |
US12016573B2 (en) | 2016-08-11 | 2024-06-25 | Mighty Oak Medical, Inc. | Drill apparatus and surgical fixation devices and methods for using the same |
US10258483B2 (en) | 2016-08-19 | 2019-04-16 | Degen Medical, Inc. | Laminate implantable medical devices |
US10835384B2 (en) * | 2016-09-13 | 2020-11-17 | Mayo Foundation For Medical Education And Research | Facet joint replacement devices |
US10307265B2 (en) | 2016-10-18 | 2019-06-04 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with deployable blades |
US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10405992B2 (en) | 2016-10-25 | 2019-09-10 | Institute for Musculoskeletal Science and Education, Ltd. | Spinal fusion implant |
US11801144B2 (en) | 2017-09-14 | 2023-10-31 | Degen Medical, Inc. | Methods of making medical devices |
US11737793B2 (en) | 2017-10-20 | 2023-08-29 | Mayo Foundation For Medical Education And Research | Facet joint replacement devices |
WO2019245869A1 (en) | 2018-06-19 | 2019-12-26 | Tornier, Inc. | Closed-loop tool control for orthopedic surgical procedures |
US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
US11123198B2 (en) | 2018-11-13 | 2021-09-21 | Degen Medical, Inc. | Expandable spacers |
US11234829B2 (en) | 2019-01-21 | 2022-02-01 | Degen Medical, Inc. | Expandable intervertebral spacers |
US11547575B2 (en) | 2019-09-27 | 2023-01-10 | Degen Medical, Inc. | Expandable intervertebral spacers |
US11723691B2 (en) * | 2019-12-25 | 2023-08-15 | Apifix Ltd | Biasing device for spinal device |
US20220287740A1 (en) * | 2020-04-03 | 2022-09-15 | Xieping DONG | Pedicle screw-rod system capable of gradually changing from rigid fixation to non-rigid fixation |
Family Cites Families (278)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US602580A (en) * | 1898-04-19 | Vania | ||
US802844A (en) | 1900-01-24 | 1905-10-24 | Lidgerwood Mfg Co | Reversible driving device. |
GB1405091A (en) * | 1971-08-19 | 1975-09-03 | Nat Res Dev | Orthopaedic fracutre fixing device |
US4611582A (en) * | 1983-12-27 | 1986-09-16 | Wisconsin Alumni Research Foundation | Vertebral clamp |
US4743260A (en) | 1985-06-10 | 1988-05-10 | Burton Charles V | Method for a flexible stabilization system for a vertebral column |
US5015247A (en) | 1988-06-13 | 1991-05-14 | Michelson Gary K | Threaded spinal implant |
US7452359B1 (en) | 1988-06-13 | 2008-11-18 | Warsaw Orthopedic, Inc. | Apparatus for inserting spinal implants |
US5484437A (en) | 1988-06-13 | 1996-01-16 | Michelson; Gary K. | Apparatus and method of inserting spinal implants |
AU7139994A (en) | 1988-06-13 | 1995-01-03 | Karlin Technology, Inc. | Apparatus and method of inserting spinal implants |
FR2642645B1 (en) | 1989-02-03 | 1992-08-14 | Breard Francis | FLEXIBLE INTERVERTEBRAL STABILIZER AND METHOD AND APPARATUS FOR CONTROLLING ITS VOLTAGE BEFORE PLACEMENT ON THE RACHIS |
FR2642643B1 (en) * | 1989-02-09 | 1991-05-10 | Vignaud Jean Louis | SPINAL INSTRUMENTATION FOR UNIVERSAL PEDICULAR FIXATION WITH MICROMETRIC ADJUSTMENT DIAPASON SCREW |
US5458638A (en) | 1989-07-06 | 1995-10-17 | Spine-Tech, Inc. | Non-threaded spinal implant |
JP3158405B2 (en) | 1989-07-21 | 2001-04-23 | ブラザー工業株式会社 | Communication management information processing device for facsimile machine |
US5360431A (en) | 1990-04-26 | 1994-11-01 | Cross Medical Products | Transpedicular screw system and method of use |
FR2666981B1 (en) | 1990-09-21 | 1993-06-25 | Commarmond Jacques | SYNTHETIC LIGAMENT VERTEBRAL. |
FR2676911B1 (en) | 1991-05-30 | 1998-03-06 | Psi Ste Civile Particuliere | INTERVERTEBRAL STABILIZATION DEVICE WITH SHOCK ABSORBERS. |
FR2681776A1 (en) | 1991-09-30 | 1993-04-02 | Fixano Sa | VERTEBRAL OSTEOSYNTHESIS DEVICE. |
US5171279A (en) * | 1992-03-17 | 1992-12-15 | Danek Medical | Method for subcutaneous suprafascial pedicular internal fixation |
FR2692952B1 (en) | 1992-06-25 | 1996-04-05 | Psi | IMPROVED SHOCK ABSORBER WITH MOVEMENT LIMIT. |
AU5600294A (en) * | 1992-11-12 | 1994-06-08 | Neville Alleyne | Cardiac protection device |
US5387212A (en) * | 1993-01-26 | 1995-02-07 | Yuan; Hansen A. | Vertebral locking and retrieving system with central locking rod |
FR2701650B1 (en) | 1993-02-17 | 1995-05-24 | Psi | Double shock absorber for intervertebral stabilization. |
DE4307576C1 (en) * | 1993-03-10 | 1994-04-21 | Biedermann Motech Gmbh | Bone screw esp. for spinal column correction - has U=shaped holder section for receiving straight or bent rod |
US5415661A (en) | 1993-03-24 | 1995-05-16 | University Of Miami | Implantable spinal assist device |
US5437669A (en) * | 1993-08-12 | 1995-08-01 | Amei Technologies Inc. | Spinal fixation systems with bifurcated connectors |
FR2709246B1 (en) * | 1993-08-27 | 1995-09-29 | Martin Jean Raymond | Dynamic implanted spinal orthosis. |
US5522843A (en) * | 1994-02-23 | 1996-06-04 | Orthopaedic Biosystems Limited, Inc. | Apparatus for attaching soft tissue to bone |
CA2191089C (en) | 1994-05-23 | 2003-05-06 | Douglas W. Kohrs | Intervertebral fusion implant |
FR2721501B1 (en) | 1994-06-24 | 1996-08-23 | Fairant Paulette | Prostheses of the vertebral articular facets. |
US5616142A (en) | 1994-07-20 | 1997-04-01 | Yuan; Hansen A. | Vertebral auxiliary fixation device |
FR2722980B1 (en) | 1994-07-26 | 1996-09-27 | Samani Jacques | INTERTEPINOUS VERTEBRAL IMPLANT |
US5527312A (en) | 1994-08-19 | 1996-06-18 | Salut, Ltd. | Facet screw anchor |
FR2728454B1 (en) | 1994-12-21 | 1997-06-13 | Razian Hassan | IMPLANTABLE INTERVERTEBRAL CONNECTION DEVICE AND DISTRACTION ANCILLARY FOR IMPLANTATION OF SUCH A DEVICE |
US5620443A (en) | 1995-01-25 | 1997-04-15 | Danek Medical, Inc. | Anterior screw-rod connector |
US5571191A (en) | 1995-03-16 | 1996-11-05 | Fitz; William R. | Artificial facet joint |
NZ272994A (en) | 1995-09-12 | 2001-06-29 | C G Surgical Ltd | Spinal prosthesis device which stabilises lamina after laminoplasty |
US6273914B1 (en) | 1995-09-28 | 2001-08-14 | Sparta, Inc. | Spinal implant |
US6835207B2 (en) | 1996-07-22 | 2004-12-28 | Fred Zacouto | Skeletal implant |
FR2755844B1 (en) * | 1996-11-15 | 1999-01-29 | Stryker France Sa | OSTEOSYNTHESIS SYSTEM WITH ELASTIC DEFORMATION FOR SPINE |
US5720751A (en) | 1996-11-27 | 1998-02-24 | Jackson; Roger P. | Tools for use in seating spinal rods in open ended implants |
US5776135A (en) * | 1996-12-23 | 1998-07-07 | Third Millennium Engineering, Llc | Side mounted polyaxial pedicle screw |
US6695842B2 (en) | 1997-10-27 | 2004-02-24 | St. Francis Medical Technologies, Inc. | Interspinous process distraction system and method with positionable wing and method |
US6287764B1 (en) | 1997-02-11 | 2001-09-11 | William H. Hildebrand | Class I sequence based typing of HLA-A, -B, and -C alleles by direct DNA sequencing |
IES77331B2 (en) | 1997-06-03 | 1997-12-03 | Tecos Holdings Inc | Pluridirectional and modulable vertebral osteosynthesis device of small overall size |
US5964761A (en) | 1997-07-15 | 1999-10-12 | Kambin; Parviz | Method and instruments for percutaneous arthroscopic disc removal, bone biopsy and fixation of vertebrae |
FR2771280B1 (en) | 1997-11-26 | 2001-01-26 | Albert P Alby | RESILIENT VERTEBRAL CONNECTION DEVICE |
FR2775183B1 (en) | 1998-02-20 | 2000-08-04 | Jean Taylor | INTER-SPINOUS PROSTHESIS |
US6014588A (en) | 1998-04-07 | 2000-01-11 | Fitz; William R. | Facet joint pain relief method and apparatus |
US6187000B1 (en) | 1998-08-20 | 2001-02-13 | Endius Incorporated | Cannula for receiving surgical instruments |
US6669697B1 (en) | 1998-09-25 | 2003-12-30 | Perumala Corporation | Self-retaining bolt for internal spinal stabilizers |
JP2003524452A (en) * | 1998-12-23 | 2003-08-19 | ヌバシブ, インコーポレイテッド | Nerve monitoring cannula system |
FR2789886B1 (en) * | 1999-02-18 | 2001-07-06 | Dimso Sa | DISTRACTION / CONTRACTION DEVICE FOR A SPINAL OSTEOSYNTHESIS SYSTEM |
US6478805B1 (en) * | 1999-04-16 | 2002-11-12 | Nuvasive, Inc. | System for removing cut tissue from the inner bore of a surgical instrument |
US6805697B1 (en) | 1999-05-07 | 2004-10-19 | University Of Virginia Patent Foundation | Method and system for fusing a spinal region |
FR2796828B1 (en) | 1999-07-27 | 2001-10-19 | Dev Sed Soc Et | IMPLANTABLE INTERVERTEBRAL CONNECTION DEVICE |
US6200322B1 (en) | 1999-08-13 | 2001-03-13 | Sdgi Holdings, Inc. | Minimal exposure posterior spinal interbody instrumentation and technique |
FR2799640B1 (en) | 1999-10-15 | 2002-01-25 | Spine Next Sa | IMPLANT INTERVETEBRAL |
US6530929B1 (en) | 1999-10-20 | 2003-03-11 | Sdgi Holdings, Inc. | Instruments for stabilization of bony structures |
US6811567B2 (en) * | 1999-10-22 | 2004-11-02 | Archus Orthopedics Inc. | Facet arthroplasty devices and methods |
US7691145B2 (en) | 1999-10-22 | 2010-04-06 | Facet Solutions, Inc. | Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces |
US20050027361A1 (en) | 1999-10-22 | 2005-02-03 | Reiley Mark A. | Facet arthroplasty devices and methods |
US6974478B2 (en) * | 1999-10-22 | 2005-12-13 | Archus Orthopedics, Inc. | Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces |
ATE467400T1 (en) | 1999-10-22 | 2010-05-15 | Fsi Acquisition Sub Llc | FACET ARTHROPLASTY DEVICES |
US8187303B2 (en) | 2004-04-22 | 2012-05-29 | Gmedelaware 2 Llc | Anti-rotation fixation element for spinal prostheses |
US7674293B2 (en) * | 2004-04-22 | 2010-03-09 | Facet Solutions, Inc. | Crossbar spinal prosthesis having a modular design and related implantation methods |
US6249088B1 (en) | 1999-11-01 | 2001-06-19 | Philips Electronics North America Corporation | Three-dimensional lattice structure based led array for illumination |
US6287313B1 (en) * | 1999-11-23 | 2001-09-11 | Sdgi Holdings, Inc. | Screw delivery system and method |
WO2001039678A1 (en) | 1999-12-01 | 2001-06-07 | Henry Graf | Intervertebral stabilising device |
US6485518B1 (en) | 1999-12-10 | 2002-11-26 | Nuvasive | Facet screw and bone allograft intervertebral support and fusion system |
US7066957B2 (en) | 1999-12-29 | 2006-06-27 | Sdgi Holdings, Inc. | Device and assembly for intervertebral stabilization |
US6558390B2 (en) * | 2000-02-16 | 2003-05-06 | Axiamed, Inc. | Methods and apparatus for performing therapeutic procedures in the spine |
US6899716B2 (en) * | 2000-02-16 | 2005-05-31 | Trans1, Inc. | Method and apparatus for spinal augmentation |
US20020133155A1 (en) | 2000-02-25 | 2002-09-19 | Ferree Bret A. | Cross-coupled vertebral stabilizers incorporating spinal motion restriction |
US6562038B1 (en) * | 2000-03-15 | 2003-05-13 | Sdgi Holdings, Inc. | Spinal implant connection assembly |
FR2806616B1 (en) | 2000-03-21 | 2003-04-11 | Cousin Biotech | INTERPINEUSE SHIM AND FASTENING DEVICE ON THE SACRUM |
US6402750B1 (en) * | 2000-04-04 | 2002-06-11 | Spinlabs, Llc | Devices and methods for the treatment of spinal disorders |
US6645207B2 (en) | 2000-05-08 | 2003-11-11 | Robert A. Dixon | Method and apparatus for dynamized spinal stabilization |
US6899713B2 (en) | 2000-06-23 | 2005-05-31 | Vertelink Corporation | Formable orthopedic fixation system |
US6749614B2 (en) * | 2000-06-23 | 2004-06-15 | Vertelink Corporation | Formable orthopedic fixation system with cross linking |
US6964667B2 (en) | 2000-06-23 | 2005-11-15 | Sdgi Holdings, Inc. | Formed in place fixation system with thermal acceleration |
AU2001225881A1 (en) | 2000-06-23 | 2002-01-08 | University Of Southern California | Percutaneous vertebral fusion system |
US6875212B2 (en) * | 2000-06-23 | 2005-04-05 | Vertelink Corporation | Curable media for implantable medical device |
EP1294297B1 (en) | 2000-06-30 | 2010-08-11 | Warsaw Orthopedic, Inc. | Intervertebral linking device |
FR2811543B1 (en) | 2000-07-12 | 2003-07-04 | Spine Next Sa | INTERSOMATIC IMPLANT |
SE0002672L (en) | 2000-07-14 | 2002-01-15 | Alcostop Ab | Method and apparatus for preventing a person from using a drug |
FR2812186B1 (en) | 2000-07-25 | 2003-02-28 | Spine Next Sa | FLEXIBLE CONNECTION PIECE FOR SPINAL STABILIZATION |
FR2812185B1 (en) * | 2000-07-25 | 2003-02-28 | Spine Next Sa | SEMI-RIGID CONNECTION PIECE FOR RACHIS STABILIZATION |
US7056321B2 (en) * | 2000-08-01 | 2006-06-06 | Endius, Incorporated | Method of securing vertebrae |
US6626905B1 (en) | 2000-08-02 | 2003-09-30 | Sulzer Spine-Tech Inc. | Posterior oblique lumbar arthrodesis |
US6669698B1 (en) * | 2000-10-24 | 2003-12-30 | Sdgi Holdings, Inc. | Vertebrae fastener placement guide |
FR2816195B1 (en) | 2000-11-07 | 2003-01-03 | Medicrea | VERTEBRAL ARTHRODESIS MATERIAL |
FR2816196B1 (en) | 2000-11-07 | 2003-01-03 | Medicrea | VERTEBRAL ARTHRODESIS MATERIAL |
US6579319B2 (en) * | 2000-11-29 | 2003-06-17 | Medicinelodge, Inc. | Facet joint replacement |
US20050080486A1 (en) | 2000-11-29 | 2005-04-14 | Fallin T. Wade | Facet joint replacement |
FR2817461B1 (en) * | 2000-12-01 | 2003-08-15 | Henry Graf | INTERVERTEBRAL STABILIZATION DEVICE |
US6419703B1 (en) | 2001-03-01 | 2002-07-16 | T. Wade Fallin | Prosthesis for the replacement of a posterior element of a vertebra |
US6565605B2 (en) * | 2000-12-13 | 2003-05-20 | Medicinelodge, Inc. | Multiple facet joint replacement |
WO2002065954A1 (en) | 2001-02-16 | 2002-08-29 | Queen's University At Kingston | Method and device for treating scoliosis |
US7229441B2 (en) | 2001-02-28 | 2007-06-12 | Warsaw Orthopedic, Inc. | Flexible systems for spinal stabilization and fixation |
US7090698B2 (en) | 2001-03-02 | 2006-08-15 | Facet Solutions | Method and apparatus for spine joint replacement |
US6802844B2 (en) | 2001-03-26 | 2004-10-12 | Nuvasive, Inc | Spinal alignment apparatus and methods |
GB0114783D0 (en) | 2001-06-16 | 2001-08-08 | Sengupta Dilip K | A assembly for the stabilisation of vertebral bodies of the spine |
FR2827498B1 (en) * | 2001-07-18 | 2004-05-14 | Frederic Fortin | FLEXIBLE VERTEBRAL CONNECTION DEVICE CONSISTING OF PALLIANT ELEMENTS OF THE RACHIS |
JP2003038507A (en) | 2001-08-01 | 2003-02-12 | Showa Ika Kohgyo Co Ltd | Implant for bone joining implement |
US6547795B2 (en) * | 2001-08-13 | 2003-04-15 | Depuy Acromed, Inc. | Surgical guide system for stabilization of the spine |
ATE398431T1 (en) | 2001-08-24 | 2008-07-15 | Zimmer Gmbh | ARTIFICIAL DISC |
AU2002327801B2 (en) * | 2001-09-28 | 2008-03-06 | Stephen Ritland | Connection rod for screw or hook polyaxial system and method of use |
US6783527B2 (en) | 2001-10-30 | 2004-08-31 | Sdgi Holdings, Inc. | Flexible spinal stabilization system and method |
US7824410B2 (en) * | 2001-10-30 | 2010-11-02 | Depuy Spine, Inc. | Instruments and methods for minimally invasive spine surgery |
WO2003047441A1 (en) * | 2001-12-07 | 2003-06-12 | Mathys Medizinaltechnik Ag | Damping element |
US6669729B2 (en) * | 2002-03-08 | 2003-12-30 | Kingsley Richard Chin | Apparatus and method for the replacement of posterior vertebral elements |
US6966910B2 (en) | 2002-04-05 | 2005-11-22 | Stephen Ritland | Dynamic fixation device and method of use |
US20050261682A1 (en) | 2002-04-13 | 2005-11-24 | Ferree Bret A | Vertebral shock absorbers |
US20030208202A1 (en) | 2002-05-04 | 2003-11-06 | Falahee Mark H. | Percutaneous screw fixation system |
US7572276B2 (en) | 2002-05-06 | 2009-08-11 | Warsaw Orthopedic, Inc. | Minimally invasive instruments and methods for inserting implants |
CA2484923C (en) * | 2002-05-08 | 2011-02-22 | Stephen Ritland | Dynamic fixation device and method of use |
DE50300788D1 (en) | 2002-05-21 | 2005-08-25 | Spinelab Gmbh Wabern | Elastic stabilization system for spinal columns |
US20030220643A1 (en) * | 2002-05-24 | 2003-11-27 | Ferree Bret A. | Devices to prevent spinal extension |
US7070598B2 (en) | 2002-06-25 | 2006-07-04 | Sdgi Holdings, Inc. | Minimally invasive expanding spacer and method |
US7087055B2 (en) | 2002-06-25 | 2006-08-08 | Sdgi Holdings, Inc. | Minimally invasive expanding spacer and method |
US7329268B2 (en) | 2002-07-02 | 2008-02-12 | Warsaw Orthopedic, Inc. | Expandable percutaneous sheath |
US7052497B2 (en) * | 2002-08-14 | 2006-05-30 | Sdgi Holdings, Inc. | Techniques for spinal surgery and attaching constructs to vertebral elements |
US7306603B2 (en) | 2002-08-21 | 2007-12-11 | Innovative Spinal Technologies | Device and method for percutaneous placement of lumbar pedicle screws and connecting rods |
US20040087947A1 (en) | 2002-08-28 | 2004-05-06 | Roy Lim | Minimally invasive expanding spacer and method |
FR2845587B1 (en) | 2002-10-14 | 2005-01-21 | Scient X | DYNAMIC DEVICE FOR INTERVERTEBRAL CONNECTION WITH MULTIDIRECTIONALLY CONTROLLED DEBATMENT |
US7083649B2 (en) * | 2002-10-29 | 2006-08-01 | St. Francis Medical Technologies, Inc. | Artificial vertebral disk replacement implant with translating pivot point |
US7497859B2 (en) * | 2002-10-29 | 2009-03-03 | Kyphon Sarl | Tools for implanting an artificial vertebral disk |
WO2004041100A1 (en) | 2002-10-30 | 2004-05-21 | Spinal Concepts, Inc. | Spinal stabilization system insertion and methods |
US20040147928A1 (en) | 2002-10-30 | 2004-07-29 | Landry Michael E. | Spinal stabilization system using flexible members |
US7014608B2 (en) | 2002-12-13 | 2006-03-21 | Synthes Spine Company, Lp | Guided retractor and methods of use |
US7101398B2 (en) | 2002-12-31 | 2006-09-05 | Depuy Acromed, Inc. | Prosthetic facet joint ligament |
US20050055096A1 (en) | 2002-12-31 | 2005-03-10 | Depuy Spine, Inc. | Functional spinal unit prosthetic |
EP1596738A4 (en) | 2003-02-25 | 2010-01-20 | Stephen Ritland | Adjustable rod and connector device and method of use |
US7473267B2 (en) | 2003-04-25 | 2009-01-06 | Warsaw Orthopedic, Inc. | System and method for minimally invasive posterior fixation |
US20050177164A1 (en) | 2003-05-02 | 2005-08-11 | Carmen Walters | Pedicle screw devices, systems and methods having a preloaded set screw |
US7713287B2 (en) | 2003-05-02 | 2010-05-11 | Applied Spine Technologies, Inc. | Dynamic spine stabilizer |
US7029475B2 (en) | 2003-05-02 | 2006-04-18 | Yale University | Spinal stabilization method |
US20050182401A1 (en) | 2003-05-02 | 2005-08-18 | Timm Jens P. | Systems and methods for spine stabilization including a dynamic junction |
US20050171543A1 (en) | 2003-05-02 | 2005-08-04 | Timm Jens P. | Spine stabilization systems and associated devices, assemblies and methods |
US8652175B2 (en) | 2003-05-02 | 2014-02-18 | Rachiotek, Llc | Surgical implant devices and systems including a sheath member |
US7615068B2 (en) | 2003-05-02 | 2009-11-10 | Applied Spine Technologies, Inc. | Mounting mechanisms for pedicle screws and related assemblies |
US20050182400A1 (en) | 2003-05-02 | 2005-08-18 | Jeffrey White | Spine stabilization systems, devices and methods |
DE10320417A1 (en) | 2003-05-07 | 2004-12-02 | Biedermann Motech Gmbh | Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device |
US20040230304A1 (en) | 2003-05-14 | 2004-11-18 | Archus Orthopedics Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
US20040230201A1 (en) | 2003-05-14 | 2004-11-18 | Archus Orthopedics Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
US6986771B2 (en) * | 2003-05-23 | 2006-01-17 | Globus Medical, Inc. | Spine stabilization system |
DE10327358A1 (en) | 2003-06-16 | 2005-01-05 | Ulrich Gmbh & Co. Kg | Implant for correction and stabilization of the spine |
KR100608051B1 (en) | 2003-07-07 | 2006-08-02 | 삼성전자주식회사 | Information storage medium for multi angle data, and recording method and reproducing apparatus thereof |
US6945974B2 (en) | 2003-07-07 | 2005-09-20 | Aesculap Inc. | Spinal stabilization implant and method of application |
US7074238B2 (en) * | 2003-07-08 | 2006-07-11 | Archus Orthopedics, Inc. | Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces |
IL157787A (en) | 2003-09-07 | 2010-12-30 | Mosaid Technologies Inc | Modular outlet for data communications network |
US9615061B2 (en) | 2003-07-11 | 2017-04-04 | Tvworks, Llc | System and method for creating and presenting composite video-on-demand content |
WO2005009302A2 (en) | 2003-07-17 | 2005-02-03 | Lee Casey K | Facet joint prosthesis |
DE112004001370B8 (en) | 2003-07-25 | 2010-06-10 | Impliant Ltd. | Elastomeric nucleus replacement |
US7799082B2 (en) | 2003-08-05 | 2010-09-21 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US7204853B2 (en) | 2003-08-05 | 2007-04-17 | Flexuspine, Inc. | Artificial functional spinal unit assemblies |
US7377942B2 (en) * | 2003-08-06 | 2008-05-27 | Warsaw Orthopedic, Inc. | Posterior elements motion restoring device |
US7794476B2 (en) | 2003-08-08 | 2010-09-14 | Warsaw Orthopedic, Inc. | Implants formed of shape memory polymeric material for spinal fixation |
US7468064B2 (en) * | 2003-08-21 | 2008-12-23 | Warsaw Orthopedic, Inc. | Systems and methods for positioning implants relative to bone anchors in surgical approaches to the spine |
US9254137B2 (en) | 2003-08-29 | 2016-02-09 | Lanterna Medical Technologies Ltd | Facet implant |
US7252673B2 (en) * | 2003-09-10 | 2007-08-07 | Warsaw Orthopedic, Inc. | Devices and methods for inserting spinal implants |
US20050203513A1 (en) | 2003-09-24 | 2005-09-15 | Tae-Ahn Jahng | Spinal stabilization device |
US7815665B2 (en) | 2003-09-24 | 2010-10-19 | N Spine, Inc. | Adjustable spinal stabilization system |
US20050065516A1 (en) | 2003-09-24 | 2005-03-24 | Tae-Ahn Jahng | Method and apparatus for flexible fixation of a spine |
US7955355B2 (en) | 2003-09-24 | 2011-06-07 | Stryker Spine | Methods and devices for improving percutaneous access in minimally invasive surgeries |
US8002798B2 (en) | 2003-09-24 | 2011-08-23 | Stryker Spine | System and method for spinal implant placement |
US7763052B2 (en) | 2003-12-05 | 2010-07-27 | N Spine, Inc. | Method and apparatus for flexible fixation of a spine |
US7455685B2 (en) | 2003-09-29 | 2008-11-25 | Warsaw Orthopedic, Inc. | Instruments and methods for securing a connecting element along a bony segment |
EP1667592A1 (en) | 2003-09-29 | 2006-06-14 | Synthes GmbH | Damping element |
ATE434983T1 (en) | 2003-09-29 | 2009-07-15 | Synthes Gmbh | DEVICE FOR THE ELASTIC STABILIZATION OF VERTEBRATE BODY |
DE10348329B3 (en) | 2003-10-17 | 2005-02-17 | Biedermann Motech Gmbh | Rod-shaped element used in spinal column and accident surgery for connecting two bone-anchoring elements comprises a rigid section and an elastic section that are made in one piece |
WO2005037149A1 (en) * | 2003-10-20 | 2005-04-28 | Impliant Ltd. | Facet prosthesis |
US7967826B2 (en) * | 2003-10-21 | 2011-06-28 | Theken Spine, Llc | Connector transfer tool for internal structure stabilization systems |
US7905907B2 (en) * | 2003-10-21 | 2011-03-15 | Theken Spine, Llc | Internal structure stabilization system for spanning three or more structures |
US7588588B2 (en) | 2003-10-21 | 2009-09-15 | Innovative Spinal Technologies | System and method for stabilizing of internal structures |
CN1897884B (en) * | 2003-11-07 | 2010-05-05 | 比德曼莫泰赫有限公司 | Bone fixing element and stabilising device comprising one such bone fixing element |
US8632570B2 (en) * | 2003-11-07 | 2014-01-21 | Biedermann Technologies Gmbh & Co. Kg | Stabilization device for bones comprising a spring element and manufacturing method for said spring element |
ATE363250T1 (en) * | 2003-11-07 | 2007-06-15 | Impliant Ltd | SPINAL PROSTHESIS |
US7083622B2 (en) * | 2003-11-10 | 2006-08-01 | Simonson Peter M | Artificial facet joint and method |
US20050101953A1 (en) * | 2003-11-10 | 2005-05-12 | Simonson Peter M. | Artificial facet joint and method |
US7341587B2 (en) * | 2003-11-20 | 2008-03-11 | Warsaw Orthopedic, Inc. | Methods and devices for inserting and engaging vertebral implants in minimally invasive procedures |
US7862586B2 (en) | 2003-11-25 | 2011-01-04 | Life Spine, Inc. | Spinal stabilization systems |
US20050125066A1 (en) * | 2003-12-08 | 2005-06-09 | Innovative Spinal Technologies | Nucleus replacement securing device and method |
US7553320B2 (en) | 2003-12-10 | 2009-06-30 | Warsaw Orthopedic, Inc. | Method and apparatus for replacing the function of facet joints |
US7753937B2 (en) | 2003-12-10 | 2010-07-13 | Facet Solutions Inc. | Linked bilateral spinal facet implants and methods of use |
US20050131406A1 (en) | 2003-12-15 | 2005-06-16 | Archus Orthopedics, Inc. | Polyaxial adjustment of facet joint prostheses |
US20050131407A1 (en) | 2003-12-16 | 2005-06-16 | Sicvol Christopher W. | Flexible spinal fixation elements |
US7179261B2 (en) | 2003-12-16 | 2007-02-20 | Depuy Spine, Inc. | Percutaneous access devices and bone anchor assemblies |
US7666188B2 (en) | 2003-12-16 | 2010-02-23 | Depuy Spine, Inc. | Methods and devices for spinal fixation element placement |
US20050148262A1 (en) | 2003-12-30 | 2005-07-07 | Varona Eugenio G. | Wet wipe with low liquid add-on |
US7806914B2 (en) | 2003-12-31 | 2010-10-05 | Spine Wave, Inc. | Dynamic spinal stabilization system |
US20050143737A1 (en) | 2003-12-31 | 2005-06-30 | John Pafford | Dynamic spinal stabilization system |
US20050154467A1 (en) | 2004-01-09 | 2005-07-14 | Sdgi Holdings, Inc. | Interconnected spinal device and method |
US7771479B2 (en) * | 2004-01-09 | 2010-08-10 | Warsaw Orthopedic, Inc. | Dual articulating spinal device and method |
US7875077B2 (en) | 2004-01-09 | 2011-01-25 | Warsaw Orthopedic, Inc. | Support structure device and method |
US7550010B2 (en) | 2004-01-09 | 2009-06-23 | Warsaw Orthopedic, Inc. | Spinal arthroplasty device and method |
US7556651B2 (en) | 2004-01-09 | 2009-07-07 | Warsaw Orthopedic, Inc. | Posterior spinal device and method |
US20050171610A1 (en) | 2004-01-09 | 2005-08-04 | Sdgi Holdings, Inc. | Mobile bearing spinal device and method |
US7901459B2 (en) | 2004-01-09 | 2011-03-08 | Warsaw Orthopedic, Inc. | Split spinal device and method |
US7678137B2 (en) * | 2004-01-13 | 2010-03-16 | Life Spine, Inc. | Pedicle screw constructs for spine fixation systems |
US7815664B2 (en) * | 2005-01-04 | 2010-10-19 | Warsaw Orthopedic, Inc. | Systems and methods for spinal stabilization with flexible elements |
US7846183B2 (en) * | 2004-02-06 | 2010-12-07 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
EP1761177B1 (en) | 2004-02-10 | 2019-05-15 | Spinal Elements, Inc. | System for protecting neurovascular structures |
WO2005079711A1 (en) | 2004-02-18 | 2005-09-01 | Boehm Frank H Jr | Facet joint prosthesis and method of replacing a facet joint |
FR2867057B1 (en) | 2004-03-02 | 2007-06-01 | Spinevision | DYNAMIC BONDING ELEMENT FOR A SPINAL FIXING SYSTEM AND FIXING SYSTEM COMPRISING SUCH A CONNECTING MEMBER |
US20050203511A1 (en) | 2004-03-02 | 2005-09-15 | Wilson-Macdonald James | Orthopaedics device and system |
US20050209593A1 (en) | 2004-03-06 | 2005-09-22 | Depuy Spine, Inc. | Flexible anterior cervical plate |
WO2005084590A1 (en) | 2004-03-08 | 2005-09-15 | Impliant Ltd. | Spinal prosthesis |
US20050209694A1 (en) | 2004-03-12 | 2005-09-22 | Loeb Marvin P | Artificial spinal joints and method of use |
US7547318B2 (en) | 2004-03-19 | 2009-06-16 | Depuy Spine, Inc. | Spinal fixation element and methods |
US7214227B2 (en) | 2004-03-22 | 2007-05-08 | Innovative Spinal Technologies | Closure member for a medical implant device |
FR2868285B1 (en) | 2004-03-30 | 2006-11-24 | Scient X Sa | INTERVERTEBRAL CONNECTION DEVICE WITH CONTROLLED MULTIDIRECTIONAL MOVEMENTS |
US7282065B2 (en) | 2004-04-09 | 2007-10-16 | X-Spine Systems, Inc. | Disk augmentation system and method |
US7051451B2 (en) | 2004-04-22 | 2006-05-30 | Archus Orthopedics, Inc. | Facet joint prosthesis measurement and implant tools |
US7406775B2 (en) * | 2004-04-22 | 2008-08-05 | Archus Orthopedics, Inc. | Implantable orthopedic device component selection instrument and methods |
US7776051B2 (en) | 2004-05-03 | 2010-08-17 | Theken Spine, Llc | System and method for displacement of bony structures |
US20050277921A1 (en) | 2004-05-28 | 2005-12-15 | Sdgi Holdings, Inc. | Prosthetic joint and nucleus supplement |
US7588578B2 (en) * | 2004-06-02 | 2009-09-15 | Facet Solutions, Inc | Surgical measurement systems and methods |
US8764801B2 (en) | 2005-03-28 | 2014-07-01 | Gmedelaware 2 Llc | Facet joint implant crosslinking apparatus and method |
US8858599B2 (en) | 2004-06-09 | 2014-10-14 | Warsaw Orthopedic, Inc. | Systems and methods for flexible spinal stabilization |
ZA200700451B (en) | 2004-06-23 | 2008-10-29 | Applied Spine Technologies Inc | Systems and methods for spine stabilization |
US7854752B2 (en) | 2004-08-09 | 2010-12-21 | Theken Spine, Llc | System and method for dynamic skeletal stabilization |
WO2006020530A2 (en) | 2004-08-09 | 2006-02-23 | Innovative Spinal Technologies | System and method for dynamic skeletal stabilization |
US7465306B2 (en) * | 2004-08-13 | 2008-12-16 | Warsaw Orthopedic, Inc. | System and method for positioning a connecting member adjacent the spinal column in minimally invasive procedures |
JP2008510518A (en) * | 2004-08-18 | 2008-04-10 | アーカス・オーソペディクス・インコーポレーテッド | Adjoint level articulating device, spinal stabilization system and method |
US20060084976A1 (en) | 2004-09-30 | 2006-04-20 | Depuy Spine, Inc. | Posterior stabilization systems and methods |
DE102004048938B4 (en) * | 2004-10-07 | 2015-04-02 | Synthes Gmbh | Device for the dynamic stabilization of vertebral bodies |
US20070239159A1 (en) | 2005-07-22 | 2007-10-11 | Vertiflex, Inc. | Systems and methods for stabilization of bone structures |
US20080262554A1 (en) | 2004-10-20 | 2008-10-23 | Stanley Kyle Hayes | Dyanamic rod |
WO2009042489A2 (en) | 2004-10-20 | 2009-04-02 | Vertiflex, Inc. | Dynamic rod |
US8226690B2 (en) * | 2005-07-22 | 2012-07-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilization of bone structures |
US8162985B2 (en) | 2004-10-20 | 2012-04-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8025680B2 (en) | 2004-10-20 | 2011-09-27 | Exactech, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US20090228045A1 (en) | 2004-10-20 | 2009-09-10 | Stanley Kyle Hayes | Dynamic rod |
US7935134B2 (en) | 2004-10-20 | 2011-05-03 | Exactech, Inc. | Systems and methods for stabilization of bone structures |
US20090030465A1 (en) | 2004-10-20 | 2009-01-29 | Moti Altarac | Dynamic rod |
US20060265074A1 (en) | 2004-10-21 | 2006-11-23 | Manoj Krishna | Posterior spinal arthroplasty-development of a new posteriorly inserted artificial disc, a new anteriorly inserted artifical disc and an artificial facet joint |
US7569061B2 (en) * | 2004-11-16 | 2009-08-04 | Innovative Spinal Technologies, Inc. | Off-axis anchor guidance system |
US7857832B2 (en) * | 2004-12-08 | 2010-12-28 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
US20070016218A1 (en) * | 2005-05-10 | 2007-01-18 | Winslow Charles J | Inter-cervical facet implant with implantation tool |
US7776090B2 (en) * | 2004-12-13 | 2010-08-17 | Warsaw Orthopedic, Inc. | Inter-cervical facet implant and method |
US8100944B2 (en) * | 2004-12-13 | 2012-01-24 | Kyphon Sarl | Inter-cervical facet implant and method for preserving the tissues surrounding the facet joint |
US8128660B2 (en) | 2004-12-13 | 2012-03-06 | Kyphon Sarl | Inter-cervical facet joint implant with locking screw system |
US8066749B2 (en) | 2004-12-13 | 2011-11-29 | Warsaw Orthopedic, Inc. | Implant for stabilizing a bone graft during spinal fusion |
US8029540B2 (en) * | 2005-05-10 | 2011-10-04 | Kyphon Sarl | Inter-cervical facet implant with implantation tool |
US8172877B2 (en) | 2004-12-13 | 2012-05-08 | Kyphon Sarl | Inter-cervical facet implant with surface enhancements |
US7491238B2 (en) * | 2004-12-23 | 2009-02-17 | Impliant Ltd. | Adjustable spinal prosthesis |
US7942908B2 (en) | 2005-02-02 | 2011-05-17 | Depuy Spine, Inc. | Adjustable length implant |
US7785353B2 (en) * | 2005-02-02 | 2010-08-31 | Syberspine Limited | Integral, articulated, pedicle screw and longitudinal member for spinal osteosynthesis |
US7294129B2 (en) | 2005-02-18 | 2007-11-13 | Ebi, L.P. | Spinal fixation device and associated method |
US7361196B2 (en) | 2005-02-22 | 2008-04-22 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
WO2006102268A2 (en) | 2005-03-24 | 2006-09-28 | Accelerated Innovation, Llc | Method and apparatus for bone stabilization |
US20060276801A1 (en) | 2005-04-04 | 2006-12-07 | Yerby Scott A | Inter-cervical facet implant distraction tool |
RU2400186C2 (en) | 2005-04-11 | 2010-09-27 | Имплиант Лтд. | Introduction of anterior and posterior spinal prostheses |
US7828828B2 (en) | 2005-04-14 | 2010-11-09 | Warsaw Orthopedic, Inc | Intervertebral joint |
US20060235388A1 (en) | 2005-04-15 | 2006-10-19 | Sdgi Holdings, Inc. | Pedicular tunneling for decompression and support |
US20060241758A1 (en) | 2005-04-20 | 2006-10-26 | Sdgi Holdings, Inc. | Facet spacers |
US7182783B2 (en) * | 2005-04-25 | 2007-02-27 | Sdgi Holdings, Inc. | Selectively expandable composite structures for spinal arthroplasty |
US20060241759A1 (en) | 2005-04-25 | 2006-10-26 | Sdgi Holdings, Inc. | Oriented polymeric spinal implants |
US20060247769A1 (en) | 2005-04-28 | 2006-11-02 | Sdgi Holdings, Inc. | Polycrystalline diamond compact surfaces on facet arthroplasty devices |
US20060247773A1 (en) | 2005-04-29 | 2006-11-02 | Sdgi Holdings, Inc. | Instrumented implant for diagnostics |
US20060247623A1 (en) | 2005-04-29 | 2006-11-02 | Sdgi Holdings, Inc. | Local delivery of an active agent from an orthopedic implant |
US7828830B2 (en) | 2005-05-12 | 2010-11-09 | Lanx, Inc. | Dynamic spinal stabilization |
US8177817B2 (en) | 2005-05-18 | 2012-05-15 | Stryker Spine | System and method for orthopedic implant configuration |
US20060282080A1 (en) | 2005-06-08 | 2006-12-14 | Accin Corporation | Vertebral facet stabilizer |
US7763051B2 (en) | 2005-06-10 | 2010-07-27 | Depuy Spine, Inc. | Posterior dynamic stabilization systems and methods |
US7828825B2 (en) | 2005-06-20 | 2010-11-09 | Warsaw Orthopedic, Inc. | Multi-level multi-functional spinal stabilization systems and methods |
US7799060B2 (en) | 2005-06-20 | 2010-09-21 | Warsaw Orthopedic, Inc. | Multi-directional spinal stabilization systems and methods |
US20070055257A1 (en) * | 2005-06-30 | 2007-03-08 | Alex Vaccaro | Cannulated screw access system |
US7625394B2 (en) * | 2005-08-05 | 2009-12-01 | Warsaw Orthopedic, Inc. | Coupling assemblies for spinal implants |
US7695475B2 (en) * | 2005-08-26 | 2010-04-13 | Warsaw Orthopedic, Inc. | Instruments for minimally invasive stabilization of bony structures |
US7879074B2 (en) * | 2005-09-27 | 2011-02-01 | Depuy Spine, Inc. | Posterior dynamic stabilization systems and methods |
WO2007061960A2 (en) | 2005-11-18 | 2007-05-31 | Life Spine, Inc. | Dynamic spinal stabilization devices and systems |
US7517359B2 (en) | 2005-12-20 | 2009-04-14 | Sdgi Holdings, Inc. | Vertebral rod assemblies and methods |
DE102006003374A1 (en) | 2006-01-24 | 2007-07-26 | Biedermann Motech Gmbh | Connecting rod with outer flexible element |
US7806913B2 (en) | 2006-08-16 | 2010-10-05 | Depuy Spine, Inc. | Modular multi-level spine stabilization system and method |
CA2714096A1 (en) | 2008-02-06 | 2009-08-13 | Vertiflex, Inc. | Dynamic rod |
EP2320815A2 (en) | 2008-08-14 | 2011-05-18 | Exactech Inc. | Dynamic rod |
-
2006
- 2006-06-29 US US11/427,738 patent/US7935134B2/en not_active Expired - Fee Related
-
2007
- 2007-05-15 AU AU2007254366A patent/AU2007254366A1/en not_active Abandoned
- 2007-05-15 EP EP07794859A patent/EP2018124A4/en not_active Withdrawn
- 2007-05-15 WO PCT/US2007/011573 patent/WO2007136612A2/en active Application Filing
- 2007-05-15 CA CA002652134A patent/CA2652134A1/en not_active Abandoned
-
2008
- 2008-11-13 IL IL195277A patent/IL195277A0/en unknown
-
2011
- 2011-05-02 US US13/099,156 patent/US20110307016A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of EP2018124A4 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8267969B2 (en) | 2004-10-20 | 2012-09-18 | Exactech, Inc. | Screw systems and methods for use in stabilization of bone structures |
US8075595B2 (en) | 2004-10-20 | 2011-12-13 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8551142B2 (en) | 2004-10-20 | 2013-10-08 | Exactech, Inc. | Methods for stabilization of bone structures |
US8025680B2 (en) | 2004-10-20 | 2011-09-27 | Exactech, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US7935134B2 (en) | 2004-10-20 | 2011-05-03 | Exactech, Inc. | Systems and methods for stabilization of bone structures |
US8162985B2 (en) | 2004-10-20 | 2012-04-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US7998175B2 (en) | 2004-10-20 | 2011-08-16 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8226690B2 (en) | 2005-07-22 | 2012-07-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilization of bone structures |
US8523865B2 (en) | 2005-07-22 | 2013-09-03 | Exactech, Inc. | Tissue splitter |
US8096996B2 (en) | 2007-03-20 | 2012-01-17 | Exactech, Inc. | Rod reducer |
EP2303159A4 (en) * | 2008-05-13 | 2013-01-30 | Stryker Spine | Composite spinal rod |
EP2303159A1 (en) * | 2008-05-13 | 2011-04-06 | Stryker Spine | Composite spinal rod |
US9017384B2 (en) | 2008-05-13 | 2015-04-28 | Stryker Spine | Composite spinal rod |
CN108652728A (en) * | 2018-05-16 | 2018-10-16 | 许敏 | A kind of orthopaedics support plate for leg disability patient |
CN108652728B (en) * | 2018-05-16 | 2020-10-09 | 义乌飞思科技有限公司 | Orthopedic support plate for leg disabled patient |
US11583318B2 (en) | 2018-12-21 | 2023-02-21 | Paradigm Spine, Llc | Modular spine stabilization system and associated instruments |
US12114895B2 (en) | 2018-12-21 | 2024-10-15 | Xtant Medical Holdings, Inc. | Modular spine stabilization system and associated instruments |
Also Published As
Publication number | Publication date |
---|---|
AU2007254366A1 (en) | 2007-11-29 |
IL195277A0 (en) | 2009-08-03 |
EP2018124A4 (en) | 2012-04-25 |
US20070100341A1 (en) | 2007-05-03 |
CA2652134A1 (en) | 2007-11-29 |
WO2007136612A3 (en) | 2008-06-26 |
EP2018124A2 (en) | 2009-01-28 |
US20110307016A1 (en) | 2011-12-15 |
US7935134B2 (en) | 2011-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7935134B2 (en) | Systems and methods for stabilization of bone structures | |
US8012181B2 (en) | Modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine | |
US8025680B2 (en) | Systems and methods for posterior dynamic stabilization of the spine | |
US8226690B2 (en) | Systems and methods for stabilization of bone structures | |
US8162985B2 (en) | Systems and methods for posterior dynamic stabilization of the spine | |
US8137384B2 (en) | Modular pedicle screw system | |
EP1830753B1 (en) | Facet joint replacement | |
US9517089B1 (en) | Bone anchor with offset rod connector | |
US8882817B2 (en) | Spinal fixation system | |
US20080147195A1 (en) | Facet joint prosthesis | |
US20110144701A1 (en) | Methods for stabilization of bone structures | |
CA2680065A1 (en) | Multi-level minimally invasive spinal stabilization system | |
WO2010036949A2 (en) | A modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine | |
WO2020005971A1 (en) | Length adjustable modular screw system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07794859 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2652134 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007254366 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007794859 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2007254366 Country of ref document: AU Date of ref document: 20070515 Kind code of ref document: A |