WO2007136000A1 - Light emitting device and method for manufacturing same - Google Patents

Light emitting device and method for manufacturing same Download PDF

Info

Publication number
WO2007136000A1
WO2007136000A1 PCT/JP2007/060247 JP2007060247W WO2007136000A1 WO 2007136000 A1 WO2007136000 A1 WO 2007136000A1 JP 2007060247 W JP2007060247 W JP 2007060247W WO 2007136000 A1 WO2007136000 A1 WO 2007136000A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting element
semiconductor light
light emitting
semiconductor
Prior art date
Application number
PCT/JP2007/060247
Other languages
French (fr)
Japanese (ja)
Inventor
Masami Aihara
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Publication of WO2007136000A1 publication Critical patent/WO2007136000A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Definitions

  • the present invention relates to a light-emitting device such as a light-emitting diode in which a light-transmitting layer that covers the surface of a semiconductor light-emitting element is formed and the refractive index of the light-transmitting layer is set to decrease as the power of the semiconductor light-emitting element increases. And a manufacturing method thereof.
  • a light-emitting device known as a light-emitting diode is such that when a forward current flows through a compound semiconductor with a pn junction, free electrons and free holes recombine, and light of a predetermined wavelength is generated by the energy at that time.
  • To emit With the chemical semiconductor power SGa-N (gallium 'nitrogen), light emission in the wavelength range from green to ultraviolet can be obtained, and with Ga-As-P (gallium' arsenic 'phosphorus), the red power also extends to yellow. Light emission in a range of wavelengths can be obtained, and red light emission can be obtained with Ga—Al—As (gallium • aluminum arsenic).
  • the surface of the light-emitting element section is covered in multiple layers with a plurality of types of light-transmitting sealing materials each formed of a different material.
  • a stepwise refractive index gradient is provided between the light emitting element portion and the air.
  • the light emitting element portion is mainly composed of Ga-N, and is located on the light emitting side surface of the light emitting element portion! /, P-Ga- In the A1-N clad layer, the deposition amount ratio of Ga and A1 is changed in the film thickness direction, and the refractive index of the clad layer is gradually lowered in accordance with the direction of force on the active layer side.
  • Patent Document 1 JP 2001-203392
  • Patent Document 2 JP-A-9 116192
  • DLC diamond-like carbon
  • the present invention solves the above-described conventional problems, and reduces loss of light emitted from the semiconductor light emitting device by changing the refractive index within a single light transmission layer covering the semiconductor light emitting device.
  • the aim is to provide a light-emitting device that can be used!
  • Another object of the present invention is to provide a method for manufacturing a light-emitting device that can efficiently manufacture a light-transmitting layer whose refractive index changes inside! / Speak.
  • the first aspect of the present invention is a light emitting device comprising: a semiconductor light emitting element; an electrode for energizing the semiconductor light emitting element; and a light transmitting layer covering the light emitting side of the semiconductor light emitting element.
  • a semiconductor light emitting element comprising: a semiconductor light emitting element; an electrode for energizing the semiconductor light emitting element; and a light transmitting layer covering the light emitting side of the semiconductor light emitting element.
  • nitrogen (N), silicon (Si), and oxygen (O) included in the inner part of the light transmission layer, the oxygen concentration decreases toward the semiconductor light emitting element, and the semiconductor light emitting element The nitrogen concentration increases toward
  • the refractive index of the light transmission layer increases as it goes toward the semiconductor light emitting element. V.
  • the present invention provides a light emitting device including a semiconductor light emitting element, an electrode for energizing the semiconductor light emitting element, and a light transmissive layer covering a light emitting side of the semiconductor light emitting element.
  • Nitrogen (N) and silicon (Si) are included, and the relative concentration of nitrogen with respect to silicon decreases in the light transmission layer toward the semiconductor light emitting element, and the refractive index of the light transmission layer is As it goes to the semiconductor light emitting device, it becomes higher.
  • the present invention provides a light-emitting device comprising a semiconductor light-emitting element, an electrode that supplies current to the semiconductor light-emitting element, and a light-transmitting layer that covers a light-emitting side of the semiconductor light-emitting element.
  • Nitrogen (N), silicon (Si), and oxygen (O) are included, and in the inner portion of the light transmission layer, the oxygen concentration decreases toward the semiconductor light-emitting element and toward the semiconductor light-emitting element. As the concentration of nitrogen increases and the oxygen concentration decreases, the relative concentration of nitrogen with respect to silicon decreases toward the semiconductor light emitting device.
  • the refractive index of the light transmission layer increases as it goes toward the semiconductor light emitting element.
  • the relative concentration of nitrogen with respect to silicon decreases toward the semiconductor light emitting device after the oxygen concentration has decreased to approximately 1% or less.
  • the refractive index is changed in the light transmission layer covering the semiconductor light emitting element, it is possible to reduce the emission loss of light emitted from the semiconductor light emitting element.
  • a second aspect of the present invention is a light emitting device comprising: a semiconductor light emitting element; an electrode for energizing the semiconductor light emitting element; and a light transmitting layer covering the light emitting side of the semiconductor light emitting element.
  • a transparent synthetic resin in which particles having a refractive index higher than that of the synthetic resin and transparent and having an average particle size of lOOnm or less are mixed, and the relative amount of the particles in the synthetic resin is Increasing toward the semiconductor light emitting device,
  • the light transmission layer has a refractive index that increases toward the semiconductor light emitting element.
  • the particles are titanium oxide.
  • the refractive index gradient is realized in the light transmission layer formed on the surface of the semiconductor light emitting device, the internal structure of the semiconductor light emitting device can be freely designed. Can have a degree.
  • the refractive index in the light transmission layer can be set relatively freely, the present invention can be applied regardless of the refractive index of the semiconductor light emitting element.
  • the refractive index is continuously changed in the light transmission layer.
  • the refractive index may be changed stepwise within a single light transmission layer.
  • the semiconductor light emitting element is gallium nitride (Ga—N) or a gallium nitride containing another element.
  • the semiconductor light emitting element By using the semiconductor light emitting element, light having a wavelength ranging from green to blue, and further, light having a wavelength in the ultraviolet region can be emitted.
  • the semiconductor light emitting element is gallium nitride.
  • Ga—P that obtains yellow-green light emission Ga—As—P that can emit light in the wavelength range from yellow to red, red It is Ga—Al—As that can emit luminescence.
  • a third aspect of the present invention is a method for manufacturing a light emitting device, comprising: a semiconductor light emitting element; an electrode for energizing the semiconductor light emitting element; and a light transmission layer covering the light emitting side of the semiconductor light emitting element.
  • the amount of nitrogen is gradually reduced and the amount of oxygen is gradually increased.
  • the light-transmitting layer having a refractive index that decreases as the semiconductor element force increases is formed.
  • the present invention provides a method for manufacturing a light-emitting device, comprising: a semiconductor light-emitting element; an electrode that supplies current to the semiconductor light-emitting element; and a light-transmitting layer that covers a light-emitting side of the semiconductor light-emitting element. Forming the light transmission layer containing nitrogen (N) and silicon (Si) on the light emitting side of the semiconductor light emitting device;
  • the relative amount of nitrogen with respect to silicon is gradually increased,
  • the light-transmitting layer having a refractive index that decreases as the semiconductor element force increases is formed.
  • the present invention provides a method for manufacturing a light-emitting device, comprising: a semiconductor light-emitting element; an electrode that supplies current to the semiconductor light-emitting element; and a light-transmitting layer that covers a light-emitting side of the semiconductor light-emitting element.
  • the relative amount of nitrogen with respect to silicon is gradually increased, and then the amount of nitrogen is gradually decreased and the amount of oxygen is gradually increased.
  • the light-transmitting layer having a refractive index that decreases as the semiconductor element force increases is formed.
  • the light transmission layer is formed by chemical vapor deposition (CVD), and the supply amount of a source gas containing an element forming the light transmission layer is varied, so that the semiconductor element is separated.
  • the light transmission layer having a low refractive index can be formed.
  • the light transmission layer can be formed by a relatively easy process of depositing a film by the CVD method. Also,
  • the light transmission layer can be formed by using various methods such as a sputtering method and a laser ablation method and varying the amounts of nitrogen, silicon, and oxygen.
  • a fourth aspect of the present invention is a method for manufacturing a light emitting device, comprising: a semiconductor light emitting element; an electrode for energizing the semiconductor light emitting element; and a light transmission layer covering the light emitting side of the semiconductor light emitting element.
  • the synthetic resin is cured to form a light transmission layer whose refractive index gradually decreases as the distance from the semiconductor light emitting element is increased.
  • titanium oxide is used as the particles.
  • the fourth aspect of the present invention when a mixed fluid containing a synthetic resin is supplied to the surface of a semiconductor light emitting device that has been manufactured and cured, light transmission with a refractive index gradient can be achieved in a simple manner.
  • a layer can be formed.
  • the refractive index in the light transmission layer can be set relatively freely by selecting the amount of particles in the synthetic resin, and further selecting the particles (selecting the refractive index of the particles).
  • the present invention it is possible to suppress the light emission loss by providing one layer of the light transmission layer on the surface of the semiconductor light emitting element. Further, the sealing layer having a low refractive index is provided on the surface of the light transmission layer. May be formed.
  • the refractive index gradient is provided in the light transmission layer formed on the surface of the semiconductor light emitting element, the loss of light emission can be reduced with the structure of the semiconductor light emitting element optimized. Can be reduced.
  • the light emitting device manufacturing method of the present invention can form a light transmission layer having a refractive index gradient by supplying, for example, a CVD method or a resin material. It is possible to design.
  • FIG. 1 is an enlarged cross-sectional view showing a light emitting device 1 according to a first embodiment of the present invention.
  • the light-emitting device 1 is a light-emitting diode chip, and the light-emitting device 1 is used by being housed in a receptacle having a reflector and a lead terminal.
  • a plurality of chip-like light emitting devices 1 are simultaneously formed on a relatively large substrate, and then diced together with the substrate and separated into individual light emitting devices 1.
  • the structure of one light-emitting device 1 and its manufacturing method will be described with reference to one light-emitting device 1.
  • the semiconductor light emitting element 10 is formed on the surface of the sapphire substrate 2 by a thin film process.
  • This semiconductor light emitting device 10 has a Ga—N (gallium nitride) buffer layer (not shown) formed thinly on the surface of the sapphire substrate 2, and an n-type contact layer 11 is formed on the buffer layer.
  • the n-type contact layer 11 is a Ga—N layer doped with Si (silicon) and has a thickness of about 4 m.
  • an n-type cladding layer 12 is formed in close contact.
  • the n-type cladding layer 12 is made of Al—Ga—N, or is made of Al—Ga—N and Si-doped n-type Ga—N, and its thickness is 1. O / zm Degree.
  • An active layer 13 is formed in close contact with the surface of the n-type cladding layer 12.
  • the active layer 13 is formed of n-type In—Ga—N (indium / gallium / nitrogen) or a stacked film of Si-doped n-type In—Ga—N and In—Ga—N. The total film thickness is about 400 angstroms.
  • a p-type cladding layer 14 is formed in close contact with the surface of the active layer 13.
  • the p-type cladding layer 14 is made of Al—Ga—N (aluminum “gallium” nitrogen), or made of Al—Ga—N and Ga—N, and has a thickness of about 0.5 m. is there.
  • a contact layer 15 is formed on the surface of the p-type cladding layer 14.
  • the contact layer 15 is a p-type metal layer formed with a thin film thickness so as to transmit light, and is formed of, for example, a Ni'Au alloy (nickel 'gold alloy). Alternatively, the contact layer 15 is formed of ITO (indium tin oxide) which is a transparent electrode layer. This contact layer 15 is formed on the entire surface of the p-type cladding layer 14, and current is distributed from the contact layer 15 to a wide range of the semiconductor light emitting device 10.
  • the layers constituting the semiconductor light emitting device 10 are formed, the layers from the n-type cladding layer 12 to the contact layer 15 are removed, and a part of the n-type contact layer 11 is exposed. An n electrode 3 is formed on the surface of the exposed portion of the n-type contact layer 11.
  • the p-electrode 4 is formed on the surface of the contact layer 15 at a position avoiding the light emitting region.
  • the n electrode 3 and the p electrode 4 are made of NiZAu (a nickel / gold laminate).
  • NiZAu a nickel / gold laminate.
  • a light transmission layer 20 is formed in close contact with the light emitting side surface of the semiconductor light emitting element 10 with the n electrode 3 and the p electrode 4 partially covered with a resist layer. After 20 is formed, the resist layer is removed.
  • the light transmission layer 20 is a transparent layer containing nitrogen (N), silicon (Si), and oxygen (O), and is formed by a chemical vapor deposition method (plasma CVD method).
  • a plurality of light emitting devices 1 having the semiconductor light emitting element 10 and the electrodes 3 and 4 are formed on a relatively large substrate 2 and the substrate 2 is brazed. Installed in the reaction chamber of the Zuma CVD system. Then, hydrogen gas (H) is charged into the reaction chamber.
  • reaction gas silane gas (SiH), ammonia gas
  • Silane gas (SiH) is a source gas that supplies silicon (Si).
  • N nitrogen oxide gas
  • (o) is a raw material gas to be supplied.
  • a valve for supplying each source gas to the reaction chamber is adjusted to adjust the reaction chamber of each source gas. To control the flow rate to. Alternatively, the partial pressure of the material valve supplied to the reaction chamber is controlled. The variable control of the supply ratio of the raw material gas may be changed stepwise or continuously.
  • Table 1 shows an example in which the supply ratio of the raw material gas is changed stepwise in the order of steps a, b, c, d,.
  • the numbers in the table indicate the flow rate, and the unit is “sccm (standard cc / min)”.
  • the supply ratio of each raw material gas is expressed as a relative amount with silane gas (SiH) as “1”.
  • a light transmission layer 20 is formed on the surface of the semiconductor light emitting element 10 by changing the supply ratio of the source gas in order from step a to step. However, during steps a to c, silane gas (SiH 2) and ammonia gas (NH 2) are supplied without supplying nitrogen oxide gas (N 2 O).
  • steps a to d as the film formation of the light transmission layer 20 proceeds, silane gas Increase the amount of ammonia gas (NH 3) supplied to (SiH 2) step by step.
  • NH 3 ammonia gas
  • the light-transmitting layer 20 formed between step c and step c is a silicon nitride film (Si—N).
  • the light transmitting layer 20 formed when reaching step d is a force that is silicon oxynitride (Si—O—N).
  • the oxygen concentration at this point is 1% or less.
  • the relative concentration of N with respect to Si decreases toward the interface with the semiconductor light emitting device 10, and conversely with the semiconductor light emitting device 10.
  • the relative concentration of N with respect to Si increases as the interface force increases.
  • the concentration of each element in the light transmission layer 20 is a deviation of the amount of at%, the amount of mol, or the mass ratio.
  • the refractive index of the light transmission layer 20 formed between steps a and d is approximately 2.4 near the boundary surface with the semiconductor light emitting element 10, and the step d At this point, the refractive index is about 1.98.
  • the refractive index in this specification means an absolute refractive index when light having a wavelength of 680 nm is incident.
  • step d the film formation of the light transmission layer 20 is continuously continued.
  • steps d to i the supply amount of silane gas (SiH) is fixed and the film formation proceeds. Therefore
  • step i the supply amount of ammonia gas (NH 3) is set to zero at the completion of step i, that is, when the light transmission layer 20 is formed.
  • the internal structure of the light transmission layer 20 formed in steps d to h is substantially silicon oxynitride (Si—O—N).
  • Si—O—N silicon oxynitride
  • the concentration of oxygen (O) increases and the concentration of nitrogen (N) decreases.
  • the oxygen (O) concentration decreases and the nitrogen (N) concentration increases toward the semiconductor light emitting element 10.
  • the surface of the light transmission layer 20 has a configuration close to silicon oxide (SiO or SiO 2).
  • the light transmission layer 20 formed by the above plasma CVD method has a refractive index of approximately 2.4 at the interface with the semiconductor light emitting device 10, and the p-type cladding layer 14 of the semiconductor light emitting device 10 or Can have a refractive index very close to that of the contact layer 15 (these refractive indices are approximately 2.5), or the refractive index difference can be almost eliminated. Further, the refractive index of the surface of the light transmission layer 20 can be set to approximately 1.53.
  • the refractive index of the contact layer 15 is approximately 2.0, and the refractive index of the light transmission layer 20 is 2.4 at the contact interface with ITO.
  • the refractive index of the contact layer 15 is approximately 2.0, and the refractive index of the light transmission layer 20 is 2.4 at the contact interface with ITO.
  • the chip-like light emitting device 1 shown in FIG. 1 is housed in a package that also serves as a reflector, and is provided in one of the packages provided in the knocker.
  • the lead terminal and the n electrode 3 are connected by wire bonding, and the other lead terminal and the p electrode 4 are connected by wire bonding.
  • a sealing layer is formed on the surface of the chip-like light emitting device 1, and the light emitting device 1 is sealed so that it does not touch the outside air inside the socket.
  • the sealing layer is formed of a transparent synthetic resin material, for example, epoxy resin. Since the refractive index of the epoxy resin is about 1.5, the difference in refractive index at the interface between the epoxy resin sealing layer and the surface of the light transmitting layer 20 can be almost eliminated.
  • the sealing layer may be formed of PAA (polyallylamine).
  • PAA polyallylamine
  • This resin material is not easily discolored by light energy or heat.
  • the refractive index is about 1.48. Therefore, even when PAA is used for the sealing layer, the difference in refractive index at the interface between the sealing layer and the light transmission layer 20 is reduced.
  • a positive potential is applied to the p electrode 4, and a forward current is applied to the pn junction semiconductor light emitting element 10.
  • Free electrons which are negative charges in the n-type cladding layer, and free holes in the p-type cladding layer 14 recombine in the active layer 13 and emit light with the energy at that time.
  • the wavelength of light emitted from the semiconductor light-emitting element 10 mainly composed of Ga-N is 530 nm or less, and can emit light up to the green power, the blue band and the ultraviolet band.
  • the contact layer 15 is made of ITO
  • the refractive index is low!
  • the ITO force is also high. Since light is incident on the fluorescent transmission layer 20, total reflection at the interface between the semiconductor light emitting element 10 and the light transmission layer 20 can be reduced, and light loss can be suppressed. Furthermore, since there is almost no difference in refractive index between the light transmission layer 20 and the sealing layer, it is possible to reduce the total light reflection and reduce the loss of light emission.
  • the light emitting device 1 is housed in the package, and a sample in which an epoxy resin sealing layer is provided on the surface of the light transmission layer 20 is manufactured.
  • a sample in which only the epoxy resin sealing layer was provided without the overlayer 20 was produced.
  • the source gas is changed stepwise from step a to step i shown in Table 1 by the plasma CVD method (source gas supply rate is sccm), and the plasma excitation frequency is set to 13.
  • the substrate temperature was set to 56 MHz and the substrate temperature was set to 200 ° C.
  • the contact layer 15 is made of ITO.
  • Table 2 shows the result of measuring the luminous flux of the emitted light when each sample was caused to emit light.
  • the sample numbers are indicated as “LED A”, “LED B”, “LED C”.
  • Each numbered sample uses the same light emitting device 1, but the supply current value (mA) between the electrodes 3 and 4 is different.
  • Table 2 shows the measurement results of the luminous flux (lm: lumen) when the light transmission layer 20 and the sealing layer are formed on each sample and the measurement results of the luminous flux (lm: lumen) when only the sealing layer is used. Show me!
  • the steps a to 1 shown in Table 1 are performed when the light transmission layer 20 is formed on the surface thereof.
  • the process c may be deleted, and the film formation process may be performed in the process starting with the process power of d. That is, using hydrogen gas (H) as a carrier gas in the reaction chamber of the plasma CVD apparatus,
  • Silane gas SiH 3
  • ammonia gas NH 2
  • nitrogen oxide gas N 2 O
  • the light-transmitting layer 21 is substantially silicon oxynitride (Si-0-N), and the light-transmitting layer 21 becomes oxygen (O as the interface force with the contact layer 15 that is ITO increases. ) Concentration increases and nitrogen (N) concentration decreases.
  • the light transmissive layer 21 has a refractive index of approximately 1.98 at the interface with the contact layer 15, and the refractive index difference between the light transmitting layer 21 and the contact layer 15 formed of ITO having a refractive index of approximately 2.0 is small or different. Almost disappears.
  • the surface of the light transmission layer 21 has a structure close to silicon oxide (SiO or SiO 2), and its refractive index is approximately 1.53.
  • the light transmission layer 20 is formed in the processes indicated by a to c shown in Table 1, and the film formation is completed in the process c.
  • film formation may be performed in steps a to d and film formation may be completed in step d.
  • the light-transmitting layer 20 formed in steps a to c is substantially a silicon nitride film (Si—N), has a refractive index of 2.4 at the interface with the semiconductor light emitting device 10, and has a refractive index on the light emitting side surface. Is 2.1.
  • the light-transmitting layer 10 formed in steps a to d is substantially a silicon nitride film (Si—N).
  • the light transmitting layer 20 formed in steps a to d has a refractive index of 2.4 at the interface with the semiconductor light emitting element 10 and a refractive index of 1.98 on the light emitting side surface.
  • the semiconductor light emitting device As described above, even when the light-transmitting layer 20 is formed on the surface of the semiconductor light-emitting element 10 in the steps a to c or the light-transmitting layer 20 is formed in the steps a to d, the semiconductor light emitting device The difference in refractive index at the interface between the element 10 and the light transmission layer 20 can be reduced, and the refractive index of the light transmission side surface of the light transmission layer 20 can be as low as 2.1 or 1.98.
  • FIG. 2 is an enlarged sectional view showing a light emitting device 31 according to the second embodiment of the present invention.
  • the same components as those of the light emitting device 1 of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
  • the light-emitting device 31 has a chip shape and is housed in a package that also serves as a reflector.
  • the basic structure of the light emitting device 31 is the same as that of the first embodiment, and the semiconductor light emitting element 10 is provided on the sapphire substrate 2. However, the light emitting device 31 is used in the upside down direction with respect to the light emitting device 1 of the first embodiment, the sapphire substrate 2 is directed to the light emitting side, and the contact layer 15 is directed to the package substrate 32. Yes.
  • a lead layer 33 is provided on the surface of the package substrate 32, and a p-electrode 4 is connected to the lead layer 33. The n-electrode 3 is connected to another lead layer on the surface of the knock substrate 32 by wire bonding.
  • a light transmission layer 20 is formed on the surface of the sapphire substrate 2 facing the light emitting side.
  • This light transmission layer 20 is formed by the plasma CVD method as in the first embodiment shown in FIG. 1. From the sapphire substrate 2 side, light transmission is performed in steps a to i shown in Table 1. Layer 20 is deposited.
  • This light transmission layer 20 has a refractive index of 2.4 at the interface with the sapphire substrate 3 and a refractive index of the light emitting side surface of 1.53.
  • the refractive index of the sapphire substrate 2 is about 1.8, and the light emitted from the semiconductor light emitting element 10 enters the light transmission layer 20 having a high refractive index from the sapphire substrate 2 having a low refractive index. Therefore, Snell's law As a result, the total reflection angle at the interface between the sapphire substrate 2 and the light transmission layer 20 does not occur, and it is possible to suppress a decrease in light incident efficiency at this interface. Further, the refractive index on the light emitting side surface of the light transmission layer 20 can be lowered to 1.53.
  • the steps a to c shown in Table 1 are omitted, and the process force of d is also started.
  • the film formation may be completed in step i.
  • the process force of e may start the film formation, or the process force of f may start the film formation and complete the film formation in the process i.
  • the interface with the sapphire substrate 3 [Koo! /
  • the refractive index of the light transmitting layer 20 is 1. 98 or ⁇ or 1. 89! / ⁇ ⁇ or 1. 81 [can be used to suppress total reflection at the interface with the safing substrate 2 become.
  • the substrate is not limited to the sapphire substrate, but may be made of other materials as long as it can transmit light.
  • FIG. 3 is a cross-sectional view showing a light emitting device 101 according to the third embodiment of the present invention.
  • the light-emitting device 101 is a device in which a light-emitting device 1 a having the same structure as the chip-shaped light-emitting device 1 shown in FIG. 1 is housed, sealed, and packaged. However, the light emitting device having the structure shown in FIG. 2 may be housed and sealed.
  • the chip-like light emitting device la housed in the light emitting device 101 is obtained by removing the light transmission layer 20 from the light emitting device 1 shown in FIG. 1, and other configurations are shown in FIG. It is the same as the one.
  • the contact layer 15 is made of ITO.
  • a heat radiating member 103 is provided on the surface of the knock substrate 102.
  • the heat radiating member 103 is made of a material having high thermal conductivity such as aluminum or copper.
  • the chip-shaped light emitting device la is installed and bonded to the surface of the heat radiating member 103.
  • the heat radiating member 103 and the light emitting device la are covered with a package material 104.
  • the package material 104 has high heat resistance and is an electrically insulating material, and is made of, for example, aluminum nitride (Al—N).
  • Al—N aluminum nitride
  • a pair of lead electrodes 105 and 106 are formed inside the package material 104.
  • One lead electrode 105 and n electrode 3 of light emitting device la are connected by wire bonding 107, and the other lead electrode 106 and p electrode 4 of light emitting device la are connected by wire bonding 108.
  • the anode / cage material 104 also serves as a reflector, and its surface is a reflecting surface 104a.
  • the reflecting surface 104a is formed so that its opening area gradually increases in the light emitting direction. Yes.
  • a light transmission layer 120 covering the semiconductor light emitting element 10 of the light emitting device la is formed on the reflection surface 104a.
  • the light transmission layer 120 is formed by mixing particles in a transparent synthetic resin material.
  • polyallylamine (PAA) is used as the synthetic resin material. It is preferable to use a material that has heat resistance and is not easily discolored by light energy and heat. The refractive index of PAA when cured is about 1.48.
  • epoxy resin can also be used as a synthetic resin material.
  • the particles mixed into the PAA are transparent and have a higher refractive index than the synthetic resin material, and the average particle diameter is smaller than the wavelength of light emitted from the semiconductor light emitting device 10, and the average
  • the particle size is preferably 1 OO nm or less, more preferably the average particle size is 30 nm or less and 5 nm or more.
  • titanium oxide (TiO 2) having an average particle diameter of 20 nm is used as the particles.
  • the refractive index of titanium oxide is 2.5-2.
  • the particles are not limited to titanium oxide, and other materials can be used as long as they have a transparent and high refractive index with a small average particle diameter.
  • aluminum sapphire can also be used.
  • the relative amount of titanium oxide particles with respect to PAA which is a synthetic resin material, gradually decreases as the distance from the semiconductor light emitting element 10 increases.
  • the relative amount means the ratio of wt% between the synthetic resin material and the particles.
  • the relative amount of particles in the synthetic resin material may continuously decrease as the distance from the semiconductor light emitting element 10 increases, and the relative amount changes so as to decrease stepwise. Moyo.
  • the light transmission layer 120 is formed by the following steps.
  • a supply device 200 shown in FIG. 4 is used.
  • a mixed fluid in which titanium oxide is mixed with PAA is stored.
  • titanium oxide particles account for 55 wt%, and the rest is PAA before hardening (100% overall).
  • the second material layer 202 contains 100% pre-cured PAA that does not contain titanium oxide particles!
  • the flow rate of the mixed fluid in the first material layer 201 is controlled by the first valve 203 and mixed.
  • the flow rate of the PAA in the second material layer 202 supplied to the compound machine 205 is controlled by the second valve 204 and supplied to the mixer 205.
  • the mixer 205 has an extrusion screw inside, and the mixed fluid and PAA are mixed and supplied to the surface of the semiconductor light emitting device 10.
  • the opening degree of the first valve 203 and the opening degree of the second valve 204 are controlled to change stepwise.
  • the opening degree is controlled in the order of process, mouth, throat,.
  • the opening force of the first valve 203 is 100% and the opening of the second valve 204 is 0%.
  • the opening degree of the first valve 203 is gradually reduced and the opening degree of the second valve 204 is gradually increased.
  • at least one of the opening degree of the first knob 203 and the opening degree of the second valve 204 may be adjusted so as to continuously change.
  • the light-transmitting layer 120 after curing is an interface in close contact with the semiconductor light-emitting element 10 of the light-emitting device la, and the titanium oxide particles occupy approximately 55 wt%.
  • the refractive index of layer 120 is approximately 2.5.
  • the amount of titanium oxide decreases as the distance from the semiconductor light emitting element 10 increases.
  • the refractive index gradually decreases as the distance from the semiconductor light emitting element 10 increases.
  • PAA is formed at approximately 100 wt%, and the refractive index at the surface is approximately 1.48.
  • FIG. 5 shows the relationship between the refractive index and the ratio (wt%) of titanium oxide in the light-transmitting layer 120 formed by the process or step.
  • Table 4 shows the evaluation results of the light emitting device 101 having the structure shown in FIG.
  • the sample number of the light emitting device 101 is indicated by “LED F”, “LED G”, “LED H”.
  • Each of these samples is a light emitting device having the same structure having the light transmission layer 120 formed in the process of Table 3.
  • the supply current value (mA) is changed for each sample using 101 and the light-transmitting layer 120 instead of the light-transmitting layer 120 and the surface of the semiconductor light-emitting element 10 provided with an epoxy resin sealing layer The evaluation results are shown.
  • Table 4 shows the luminous flux (lm: lumen) when the light transmission layer 120 is formed on each sample, and the case where an epoxy resin sealing layer is provided on the surface of the semiconductor light emitting device 10 instead of the light transmission layer 120.
  • the measurement results of the luminous flux (lm: lumen) are shown.
  • the light transmission layer 120 may be formed on the substrate.
  • FIG. 1 shows a first embodiment of the present invention, and is an enlarged cross-sectional view showing a chip-like light emitting device
  • FIG. 2 shows a second embodiment of the present invention, and is an enlarged sectional view showing a chip-like light emitting device
  • FIG. 3 is an enlarged cross-sectional view showing a third embodiment of the present invention, showing a light emitting device that has been subjected to observation / cage;
  • FIG. 4 is an explanatory view showing a fluid supply device for forming a light transmission layer of the light emitting device of the third embodiment
  • FIG. 5 is a diagram showing the relationship between the amount of titanium oxide and the refractive index of the light transmission layer provided in the light emitting device of the third embodiment

Abstract

[PROBLEMS] To reduce loss of a light emitting quantity due to total reflection, by arranging a light transmitting layer having refraction index inclination on the surface of a semiconductor light emitting element in a light emitting device such as a light emitting diode or the like. [MEANS FOR SOLVING PROBLEMS] A semiconductor light emitting element (10) and electrodes (3, 4) mainly composed of Ga-N are arranged on a sapphire substrate (2). On the surface of the semiconductor light emitting element (10), a light transmitting layer (20) is arranged. The light emitting layer (20) is formed by a CVD method. Inside the light transmitting layer (20), oxygen concentration reduces and nitrogen concentration increases toward the semiconductor light emitting element (10). Therefore, the light transmitting layer (20) has a refraction index which becomes smaller as it separates from the semiconductor element (10).

Description

明 細 書  Specification
発光装置およびその製造方法  Light emitting device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、半導体発光素子の表面を覆う光透過層を形成し、この光透過層の屈折 率を、半導体発光素子力 離れるにしたがって低くなるように設定した発光ダイォー ドなどの発光装置およびその製造方法に関する。  The present invention relates to a light-emitting device such as a light-emitting diode in which a light-transmitting layer that covers the surface of a semiconductor light-emitting element is formed and the refractive index of the light-transmitting layer is set to decrease as the power of the semiconductor light-emitting element increases. And a manufacturing method thereof.
背景技術  Background art
[0002] 発光ダイオードとして知られている発光装置は、 pn接合の化合物半導体に順電流 を流したときに、自由電子と自由正孔とが再結合し、そのときのエネルギーによって 所定の波長の光を発する。前記化学物半導体力 SGa— N (ガリウム '窒素)であると、 緑色から紫外色にわたる範囲の波長の発光が得られ、 Ga— As— P (ガリウム 'ヒ素 'リ ン)では、赤色力も黄色にわたる範囲の波長の発光が得られ、 Ga— Al— As (ガリウム •アルミニウム ·ヒ素)では赤色の発光が得られる。  [0002] A light-emitting device known as a light-emitting diode is such that when a forward current flows through a compound semiconductor with a pn junction, free electrons and free holes recombine, and light of a predetermined wavelength is generated by the energy at that time. To emit. With the chemical semiconductor power SGa-N (gallium 'nitrogen), light emission in the wavelength range from green to ultraviolet can be obtained, and with Ga-As-P (gallium' arsenic 'phosphorus), the red power also extends to yellow. Light emission in a range of wavelengths can be obtained, and red light emission can be obtained with Ga—Al—As (gallium • aluminum arsenic).
[0003] この種の発光装置では、化合物半導体の屈折率が高ぐ空気の屈折率との間に大 きな差があるため、化合物半導体内で発せられた光が、化合物半導体と空気との境 界面において全反射する確率が高くなつて、発光量が低下する。例えば、 Ga— Nは 屈折率が 2. 5程度であり、空気との間にほぼ 1. 5の屈折率差があるため、全反射に よる発光損失が多くなる。  [0003] In this type of light emitting device, there is a large difference between the refractive index of air in which the refractive index of the compound semiconductor is high, and thus light emitted in the compound semiconductor is caused to flow between the compound semiconductor and air. As the probability of total reflection at the interface increases, the amount of light emission decreases. For example, Ga-N has a refractive index of about 2.5, and there is a refractive index difference of about 1.5 with air, so that the emission loss due to total reflection increases.
[0004] そこで、以下の特許文献 1に記載の発光ダイオードでは、発光素子部の表面が、そ れぞれ異なる材料で形成された複数種の光透過性の封止材料で多重に覆われてい る。封止材料の屈折率を発光素子部側から空気側に向けて段階的に低くすることに より、発光素子部と空気との間に、段階的な屈折率傾斜を設けている。  Therefore, in the light-emitting diode described in Patent Document 1 below, the surface of the light-emitting element section is covered in multiple layers with a plurality of types of light-transmitting sealing materials each formed of a different material. The By gradually lowering the refractive index of the sealing material from the light emitting element portion side toward the air side, a stepwise refractive index gradient is provided between the light emitting element portion and the air.
[0005] また、特許文献 2に記載の発光ダイオードは、発光素子部が Ga— Nを主体として構 成されており、発光素子部の発光側表面に位置して!/、る p— Ga— A1— Nクラッド層 において、 Gaと A1の堆積量比を膜厚方向に変化させて、前記クラッド層の屈折率を 、活性層側力も空気側に向力 にしたがって徐々に低くしている。  [0005] Further, in the light emitting diode described in Patent Document 2, the light emitting element portion is mainly composed of Ga-N, and is located on the light emitting side surface of the light emitting element portion! /, P-Ga- In the A1-N clad layer, the deposition amount ratio of Ga and A1 is changed in the film thickness direction, and the refractive index of the clad layer is gradually lowered in accordance with the direction of force on the active layer side.
特許文献 1:特開 2001— 203392号公報 特許文献 2:特開平 9 116192号公報 Patent Document 1: JP 2001-203392 A Patent Document 2: JP-A-9 116192
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 前記特許文献 1に記載の発光ダイオードでは、発光素子部の表面に、屈折率が互 Vヽに相違する複数の封止材料を設けて 、るため、多重の封止材料を重ねて形成す る工程が必要になり、製造コストが高くなる。また、異なる封止材料間の境界面で、屈 折率の段差が発生するため、発光量の損失が生じるのを避けることができない。  [0006] In the light emitting diode described in Patent Document 1, since a plurality of sealing materials having different refractive indexes are provided on the surface of the light emitting element portion, multiple sealing materials are stacked. A forming process is required, and the manufacturing cost increases. In addition, since a difference in refractive index occurs at the interface between different sealing materials, it is inevitable that a loss of light emission occurs.
[0007] さらに、特許文献 1に記載の発光ダイオードでは、発光素子部に密着している高屈 折率材料として DLC (ダイヤモンドライクカーボン)を使用して ヽるため、封止材料を 形成する際のコストが高くなる。  [0007] Further, in the light emitting diode described in Patent Document 1, DLC (diamond-like carbon) is used as a high refractive index material in close contact with the light emitting element portion. The cost of
[0008] 前記特許文献 2に記載の発光ダイオードでは、発光素子部の p— Ga— A1— Nクラ ッド層において、 Gaと A1の比を変えて、クラッド層の内部屈折率を傾斜させている。し かし、発光素子部の内部構造である P クラッド層は、結晶比を高くしておくことが必 要であり、また p クラッド層はバンドギャップにも影響を与える。そのため、 p クラッ ド層の内部において A1 (アルミニウム)の量を連続して変化させることは、半導体の pn 接合を利用した発光素子部の構造として好ましくない。  [0008] In the light-emitting diode described in Patent Document 2, in the p-Ga-A1-N cladding layer of the light-emitting element portion, the ratio of Ga to A1 is changed to incline the internal refractive index of the cladding layer. Yes. However, the P-cladding layer, which is the internal structure of the light-emitting element, must have a high crystal ratio, and the p-cladding layer also affects the band gap. Therefore, continuously changing the amount of A1 (aluminum) inside the p-cladding layer is not preferable for the structure of the light-emitting element portion using a semiconductor pn junction.
[0009] 本発明は上記従来の課題を解決するものであり、半導体発光素子を覆う単一の光 透過層内で屈折率を変化させることにより、半導体発光素子から発せられる光の損 失を低減できる発光装置を提供することを目的として!ヽる。  [0009] The present invention solves the above-described conventional problems, and reduces loss of light emitted from the semiconductor light emitting device by changing the refractive index within a single light transmission layer covering the semiconductor light emitting device. The aim is to provide a light-emitting device that can be used!
[0010] また、本発明は、内部で屈折率が変化する光透過層を、能率よく製造できる発光装 置の製造方法を提供することを目的として!/ヽる。  [0010] Another object of the present invention is to provide a method for manufacturing a light-emitting device that can efficiently manufacture a light-transmitting layer whose refractive index changes inside! / Speak.
課題を解決するための手段  Means for solving the problem
[0011] 第 1の本発明は、半導体発光素子と、前記半導体発光素子に通電する電極と、前 記半導体発光素子の発光側を覆う光透過層と、を有する発光装置において、 前記光透過層は、窒素 (N)と、珪素(Si)と、酸素(O)とを含み、前記光透過層の内 部では、前記半導体発光素子に向かうにしたがって酸素濃度が低くなり且つ前記半 導体発光素子に向かうにしたがって窒素の濃度が高くなり、  [0011] The first aspect of the present invention is a light emitting device comprising: a semiconductor light emitting element; an electrode for energizing the semiconductor light emitting element; and a light transmitting layer covering the light emitting side of the semiconductor light emitting element. Includes nitrogen (N), silicon (Si), and oxygen (O), and in the inner part of the light transmission layer, the oxygen concentration decreases toward the semiconductor light emitting element, and the semiconductor light emitting element The nitrogen concentration increases toward
前記光透過層の屈折率が、前記半導体発光素子に向かうにしたがって高くなつて V、ることを特徴とするものである。 The refractive index of the light transmission layer increases as it goes toward the semiconductor light emitting element. V.
[0012] または、本発明は、半導体発光素子と、前記半導体発光素子に通電する電極と、 前記半導体発光素子の発光側を覆う光透過層と、を有する発光装置において、 前記光透過層は、窒素 (N)と、珪素(Si)とを含み、前記光透過層の内部では、前 記半導体発光素子に向かうにしたがって、珪素に対する窒素の相対濃度が低くなり 前記光透過層の屈折率が、前記半導体発光素子に向かうにしたがって高くなつて [0012] Alternatively, the present invention provides a light emitting device including a semiconductor light emitting element, an electrode for energizing the semiconductor light emitting element, and a light transmissive layer covering a light emitting side of the semiconductor light emitting element. Nitrogen (N) and silicon (Si) are included, and the relative concentration of nitrogen with respect to silicon decreases in the light transmission layer toward the semiconductor light emitting element, and the refractive index of the light transmission layer is As it goes to the semiconductor light emitting device, it becomes higher.
V、ることを特徴とするものである。 V.
[0013] あるいは、本発明は、半導体発光素子と、前記半導体発光素子に通電する電極と 、前記半導体発光素子の発光側を覆う光透過層と、を有する発光装置において、 前記光透過層は、窒素 (N)と、珪素(Si)と、酸素(O)とを含み、前記光透過層の内 部では、前記半導体発光素子に向かうにしたがって酸素濃度が低くなり且つ前記半 導体発光素子に向かうにしたがって窒素の濃度が高くなり、酸素濃度が低下した後 に、前記半導体発光素子に向かうにしたがって、珪素に対する窒素の相対濃度が低 くなり、  [0013] Alternatively, the present invention provides a light-emitting device comprising a semiconductor light-emitting element, an electrode that supplies current to the semiconductor light-emitting element, and a light-transmitting layer that covers a light-emitting side of the semiconductor light-emitting element. Nitrogen (N), silicon (Si), and oxygen (O) are included, and in the inner portion of the light transmission layer, the oxygen concentration decreases toward the semiconductor light-emitting element and toward the semiconductor light-emitting element. As the concentration of nitrogen increases and the oxygen concentration decreases, the relative concentration of nitrogen with respect to silicon decreases toward the semiconductor light emitting device.
前記光透過層の屈折率が、前記半導体発光素子に向かうにしたがって高くなつて The refractive index of the light transmission layer increases as it goes toward the semiconductor light emitting element.
V、ることを特徴とするものである。 V.
[0014] 上記発明では、酸素濃度がほぼ 1%以下まで低下した後に、前記半導体発光素子 に向かうにしたがって、珪素に対する窒素の相対濃度が低くなることが好ましい。  [0014] In the above invention, it is preferable that the relative concentration of nitrogen with respect to silicon decreases toward the semiconductor light emitting device after the oxygen concentration has decreased to approximately 1% or less.
[0015] 上記第 1の本発明では、半導体発光素子を覆う光透過層内で屈折率を変化させて いるため、半導体発光素子力 発せられる光の出射損失を低減できる。  In the first aspect of the present invention, since the refractive index is changed in the light transmission layer covering the semiconductor light emitting element, it is possible to reduce the emission loss of light emitted from the semiconductor light emitting element.
[0016] 第 2の本発明は、半導体発光素子と、前記半導体発光素子に通電する電極と、前 記半導体発光素子の発光側を覆う光透過層と、を有する発光装置において、 前記光透過層は、透明な合成樹脂内に、前記合成樹脂よりも屈折率が高く且つ透 明で平均粒径が lOOnm以下の粒子が混入されたものであり、合成樹脂内での前記 粒子の相対量が前記半導体発光素子に向かうにしたがって多くなり、  [0016] A second aspect of the present invention is a light emitting device comprising: a semiconductor light emitting element; an electrode for energizing the semiconductor light emitting element; and a light transmitting layer covering the light emitting side of the semiconductor light emitting element. Is a transparent synthetic resin in which particles having a refractive index higher than that of the synthetic resin and transparent and having an average particle size of lOOnm or less are mixed, and the relative amount of the particles in the synthetic resin is Increasing toward the semiconductor light emitting device,
前記光透過層の屈折率が、前記半導体発光素子に向かうにしたがって高くなつて いることを特徴とするものである。例えば、前記粒子が酸化チタンである。 [0017] 上記第 2の本発明では、半導体発光素子の表面に形成した榭脂製の光透過層内 で屈折率を変化させ、半導体発光素子力 発せられる光の出射損失を低減できる。 The light transmission layer has a refractive index that increases toward the semiconductor light emitting element. For example, the particles are titanium oxide. [0017] In the second aspect of the present invention, it is possible to change the refractive index in the light-transmitting layer made of resin formed on the surface of the semiconductor light emitting device, and to reduce the emission loss of the light emitted from the semiconductor light emitting device.
[0018] 第 1の本発明と第 2の本発明では、共に半導体発光素子の表面に形成した光透過 層内で屈折率傾斜を実現しているため、半導体発光素子の内部構造の設計に自由 度を持たせることができる。また、光透過層内の屈折率を比較的自由に設定できるた め、半導体発光素子の屈折率がどの大きさであっても適用することが可能である。  [0018] In both the first and second aspects of the present invention, since the refractive index gradient is realized in the light transmission layer formed on the surface of the semiconductor light emitting device, the internal structure of the semiconductor light emitting device can be freely designed. Can have a degree. In addition, since the refractive index in the light transmission layer can be set relatively freely, the present invention can be applied regardless of the refractive index of the semiconductor light emitting element.
[0019] また、第 1の本発明と第 2の本発明では、前記光透過層内で、屈折率が連続的に 変化していることが好ましい。ただし、本発明では、単一の光透過層内で屈折率が段 階的に変化して 、るものであってもよ 、。  In the first invention and the second invention, it is preferable that the refractive index is continuously changed in the light transmission layer. However, in the present invention, the refractive index may be changed stepwise within a single light transmission layer.
[0020] 本発明では、例えば、前記半導体発光素子は、窒化ガリウム (Ga— N)またはこの 窒化ガリウムに他の元素が含まれたものである。  In the present invention, for example, the semiconductor light emitting element is gallium nitride (Ga—N) or a gallium nitride containing another element.
[0021] 前記半導体発光素子を使用することにより、緑色から青色にわたる波長の光、さら には紫外線領域の波長の光を発光できる。ただし、本発明は、半導体発光素子が、 窒化ガリウムであるものに限られず、例えば、黄緑の発光を得る Ga— P、黄色から赤 の波長範囲の発光が可能な Ga— As— P、赤色の発光を得る Ga—Al—Asであって ちょい。  [0021] By using the semiconductor light emitting element, light having a wavelength ranging from green to blue, and further, light having a wavelength in the ultraviolet region can be emitted. However, the present invention is not limited to the case where the semiconductor light emitting element is gallium nitride. For example, Ga—P that obtains yellow-green light emission, Ga—As—P that can emit light in the wavelength range from yellow to red, red It is Ga—Al—As that can emit luminescence.
[0022] 第 3の本発明は、半導体発光素子と、前記半導体発光素子に通電する電極と、前 記半導体発光素子の発光側を覆う光透過層と、を有する発光装置の製造方法にお いて、  [0022] A third aspect of the present invention is a method for manufacturing a light emitting device, comprising: a semiconductor light emitting element; an electrode for energizing the semiconductor light emitting element; and a light transmission layer covering the light emitting side of the semiconductor light emitting element. ,
前記半導体発光素子の発光側に、窒素 (N)と、珪素 (Si)と、酸素 (O)とを含む前 記光透過層を形成し、  Forming the light transmitting layer containing nitrogen (N), silicon (Si), and oxygen (O) on the light emitting side of the semiconductor light emitting device;
前記半導体発光素子側から前記光透過層が堆積されていくのにしたがって、窒素 の量を徐々に減らし、且つ酸素の量を徐々に増やし、  As the light transmission layer is deposited from the semiconductor light emitting element side, the amount of nitrogen is gradually reduced and the amount of oxygen is gradually increased.
前記半導体素子力 離れるにしたがって屈折率が低くなる前記光透過層を形成す ることを特徴とするちのである。  The light-transmitting layer having a refractive index that decreases as the semiconductor element force increases is formed.
[0023] または、本発明は、半導体発光素子と、前記半導体発光素子に通電する電極と、 前記半導体発光素子の発光側を覆う光透過層と、を有する発光装置の製造方法に おいて、 前記半導体発光素子の発光側に、窒素 (N)と、珪素(Si)とを含む前記光透過層を 形成し、 [0023] Alternatively, the present invention provides a method for manufacturing a light-emitting device, comprising: a semiconductor light-emitting element; an electrode that supplies current to the semiconductor light-emitting element; and a light-transmitting layer that covers a light-emitting side of the semiconductor light-emitting element. Forming the light transmission layer containing nitrogen (N) and silicon (Si) on the light emitting side of the semiconductor light emitting device;
前記半導体発光素子側から前記光透過層が堆積されていくのにしたがって、珪素 に対する窒素の相対量を徐々に増やし、  As the light transmission layer is deposited from the semiconductor light emitting element side, the relative amount of nitrogen with respect to silicon is gradually increased,
前記半導体素子力 離れるにしたがって屈折率が低くなる前記光透過層を形成す ることを特徴とするちのである。  The light-transmitting layer having a refractive index that decreases as the semiconductor element force increases is formed.
[0024] あるいは、本発明は、半導体発光素子と、前記半導体発光素子に通電する電極と 、前記半導体発光素子の発光側を覆う光透過層と、を有する発光装置の製造方法 において、 Alternatively, the present invention provides a method for manufacturing a light-emitting device, comprising: a semiconductor light-emitting element; an electrode that supplies current to the semiconductor light-emitting element; and a light-transmitting layer that covers a light-emitting side of the semiconductor light-emitting element.
前記半導体発光素子の発光側に、窒素 (N)と、珪素 (Si)と、酸素 (O)とを含む前 記光透過層を形成し、  Forming the light transmitting layer containing nitrogen (N), silicon (Si), and oxygen (O) on the light emitting side of the semiconductor light emitting device;
前記半導体発光素子側から前記光透過層が堆積されていくのにしたがって、珪素 に対する窒素の相対量を徐々に増やし、その後、窒素の量を徐々に減らし且つ酸素 の量を徐々に増やし、  As the light transmission layer is deposited from the semiconductor light emitting element side, the relative amount of nitrogen with respect to silicon is gradually increased, and then the amount of nitrogen is gradually decreased and the amount of oxygen is gradually increased.
前記半導体素子力 離れるにしたがって屈折率が低くなる前記光透過層を形成す ることを特徴とするちのである。  The light-transmitting layer having a refractive index that decreases as the semiconductor element force increases is formed.
[0025] 例えば、前記光透過層を化学気相成長法 (CVD)で形成し、前記光透過層を形成 する元素を含む原料ガスの供給量を可変することで、前記半導体素子から離れるに したがって屈折率が低くなる前記光透過層を形成することができる。  [0025] For example, the light transmission layer is formed by chemical vapor deposition (CVD), and the supply amount of a source gas containing an element forming the light transmission layer is varied, so that the semiconductor element is separated. The light transmission layer having a low refractive index can be formed.
[0026] 上記第 3の本発明では、半導体発光素子を製造した後に、その発光側に、例えば In the third aspect of the present invention, after the semiconductor light emitting device is manufactured,
CVD法で膜を堆積させるという比較的容易な工程で、光透過層を形成できる。また、The light transmission layer can be formed by a relatively easy process of depositing a film by the CVD method. Also,
CVD法の場合には、原料ガスの供給量を変えることにより、光透過層の屈折率を任 意に設定することが可能である。ただし、上記第 3の本発明では、スパッタリング法、 レーザーアブレーシヨン法などの種々の方法を用い、窒素、珪素、酸素の量を可変 することで、前記光透過層を形成することができる。 In the case of the CVD method, it is possible to arbitrarily set the refractive index of the light transmission layer by changing the supply amount of the source gas. However, in the third aspect of the present invention, the light transmission layer can be formed by using various methods such as a sputtering method and a laser ablation method and varying the amounts of nitrogen, silicon, and oxygen.
[0027] 第 4の本発明は、半導体発光素子と、前記半導体発光素子に通電する電極と、前 記半導体発光素子の発光側を覆う光透過層と、を有する発光装置の製造方法にお いて、 透明な合成樹脂と、この合成樹脂よりも屈折率が高く且つ透明で平均粒径が ΙΟΟη m以下の粒子とが混合された混合流体を、前記半導体発光素子の発光側に供給し 、このとき、合成樹脂内での前記粒子の相対量を前記半導体発光素子から離れるに したがって徐々に減らし、 [0027] A fourth aspect of the present invention is a method for manufacturing a light emitting device, comprising: a semiconductor light emitting element; an electrode for energizing the semiconductor light emitting element; and a light transmission layer covering the light emitting side of the semiconductor light emitting element. , A mixed fluid in which a transparent synthetic resin and a transparent particle having a higher refractive index than that of the synthetic resin and a transparent average particle diameter of ΙΟΟη m or less are supplied to the light emitting side of the semiconductor light emitting element, The relative amount of the particles in the synthetic resin is gradually reduced as the distance from the semiconductor light emitting element increases.
前記合成樹脂を硬化させて、前記半導体発光素子カゝら離れるにしたがって屈折率 が徐々に低くなる光透過層を形成することを特徴とするものである。  The synthetic resin is cured to form a light transmission layer whose refractive index gradually decreases as the distance from the semiconductor light emitting element is increased.
例えば、前記粒子として、酸ィ匕チタンを使用するものである。  For example, titanium oxide is used as the particles.
[0028] 第 4の本発明では、製造が完了している半導体発光素子の表面に合成樹脂を含む 混合流体を供給して硬化させると!ヽぅ簡単な方法で、屈折率傾斜を有する光透過層 を形成することができる。また合成樹脂内の粒子の量、さらには粒子を選択する (粒 子の屈折率を選択する)ことによって、光透過層内の屈折率を比較的自由に設定す ることが可能である。 [0028] In the fourth aspect of the present invention, when a mixed fluid containing a synthetic resin is supplied to the surface of a semiconductor light emitting device that has been manufactured and cured, light transmission with a refractive index gradient can be achieved in a simple manner. A layer can be formed. In addition, the refractive index in the light transmission layer can be set relatively freely by selecting the amount of particles in the synthetic resin, and further selecting the particles (selecting the refractive index of the particles).
[0029] なお、本発明では、半導体発光素子の表面に前記光透過層を一層設けることによ り、発光損失を抑制できるが、さらに、光透過層の表面に、低屈折率の封止層を形成 してちよい。  In the present invention, it is possible to suppress the light emission loss by providing one layer of the light transmission layer on the surface of the semiconductor light emitting element. Further, the sealing layer having a low refractive index is provided on the surface of the light transmission layer. May be formed.
発明の効果  The invention's effect
[0030] 本発明の発光装置は、半導体発光素子の表面に形成した光透過層内に屈折率傾 斜を設けているため、半導体発光素子の構造を最適化した状態で、発光量の損失を 低減できる。  In the light emitting device of the present invention, since the refractive index gradient is provided in the light transmission layer formed on the surface of the semiconductor light emitting element, the loss of light emission can be reduced with the structure of the semiconductor light emitting element optimized. Can be reduced.
[0031] また本発明の発光装置の製造方法は、例えば CVD法または榭脂材料を供給する ことで、屈折率傾斜を有する光透過層を形成でき、しカゝもその屈折率を自由度をもつ て設計することが可能である。  [0031] The light emitting device manufacturing method of the present invention can form a light transmission layer having a refractive index gradient by supplying, for example, a CVD method or a resin material. It is possible to design.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 図 1は本発明の第 1の実施の形態の発光装置 1を示す拡大断面図である。 FIG. 1 is an enlarged cross-sectional view showing a light emitting device 1 according to a first embodiment of the present invention.
この発光装置 1は、発光ダイオードのチップであり、この発光装置 1は、リフレクタや リード端子を有するノ ッケージ内に収納されて使用される。  The light-emitting device 1 is a light-emitting diode chip, and the light-emitting device 1 is used by being housed in a receptacle having a reflector and a lead terminal.
[0033] チップ状の発光装置 1は、比較的大きな基板上に複数個が同時に形成され、その 後に基板と共にダイシングされて、個々の発光装置 1に分離される。ただし、以下で は、 1つの発光装置 1の構造を説明し、その製造方法も 1つの発光装置 1を基準とし て説明する。 A plurality of chip-like light emitting devices 1 are simultaneously formed on a relatively large substrate, and then diced together with the substrate and separated into individual light emitting devices 1. However, in Describes the structure of one light-emitting device 1 and its manufacturing method will be described with reference to one light-emitting device 1.
[0034] 発光装置 1は、サファイア基板 2の表面に半導体発光素子 10が薄膜プロセスで形 成されている。この半導体発光素子 10は、サファイア基板 2の表面に薄く形成された Ga—N (窒化ガリウム)のバッファ一層(図示せず)を有し、このバッファ一層の上に、 n型コンタクト層 11が形成されている。 n型コンタクト層 11は、 Si (珪素)がドープされ た Ga—N層であり、その厚さは 4 m程度である。 n型コンタクト層 11の上には、 n型 クラッド層 12が密着して形成されている。 n型クラッド層 12は、 Al— Ga—Nで形成さ れ、または、 Al— Ga—Nと Siをドープした n型 Ga—Nとで形成されており、その厚さ は 1. O /z m程度である。  In the light emitting device 1, the semiconductor light emitting element 10 is formed on the surface of the sapphire substrate 2 by a thin film process. This semiconductor light emitting device 10 has a Ga—N (gallium nitride) buffer layer (not shown) formed thinly on the surface of the sapphire substrate 2, and an n-type contact layer 11 is formed on the buffer layer. Has been. The n-type contact layer 11 is a Ga—N layer doped with Si (silicon) and has a thickness of about 4 m. On the n-type contact layer 11, an n-type cladding layer 12 is formed in close contact. The n-type cladding layer 12 is made of Al—Ga—N, or is made of Al—Ga—N and Si-doped n-type Ga—N, and its thickness is 1. O / zm Degree.
[0035] n型クラッド層 12の表面には活性層 13が密着して形成されている。この活性層 13 は、 n型 In— Ga—N (インジウム ·ガリウム ·窒素)で形成され、または、 Siをドープした n型 In— Ga—Nと In— Ga—Nとの積層膜で形成され、全体の膜厚は、 400オングス トローム程度である。活性層 13の表面には p型クラッド層 14が密着して形成されて ヽ る。 p型クラッド層 14は、 Al— Ga—N (アルミニウム 'ガリウム '窒素)で形成され、また は Al— Ga—Nと Ga—Nとで形成されており、その厚みは 0. 5 m程度である。さら に、 p型クラッド層 14の表面には、コンタクト層 15が形成される。  An active layer 13 is formed in close contact with the surface of the n-type cladding layer 12. The active layer 13 is formed of n-type In—Ga—N (indium / gallium / nitrogen) or a stacked film of Si-doped n-type In—Ga—N and In—Ga—N. The total film thickness is about 400 angstroms. A p-type cladding layer 14 is formed in close contact with the surface of the active layer 13. The p-type cladding layer 14 is made of Al—Ga—N (aluminum “gallium” nitrogen), or made of Al—Ga—N and Ga—N, and has a thickness of about 0.5 m. is there. Furthermore, a contact layer 15 is formed on the surface of the p-type cladding layer 14.
[0036] コンタクト層 15は、光を透過できるように薄い膜厚で形成された p型金属層であり、 例えば Ni'Au合金(ニッケル '金合金)で形成される。あるいは、コンタクト層 15が、 透明電極層である ITO (酸化インジウム錫)で形成される。このコンタクト層 15は p型ク ラッド層 14の表面の全面に形成され、コンタクト層 15から半導体発光素子 10の広 ヽ 範囲に電流が分散される。  [0036] The contact layer 15 is a p-type metal layer formed with a thin film thickness so as to transmit light, and is formed of, for example, a Ni'Au alloy (nickel 'gold alloy). Alternatively, the contact layer 15 is formed of ITO (indium tin oxide) which is a transparent electrode layer. This contact layer 15 is formed on the entire surface of the p-type cladding layer 14, and current is distributed from the contact layer 15 to a wide range of the semiconductor light emitting device 10.
[0037] 半導体発光素子 10を構成する前記各層が形成された後に、 n型クラッド層 12から コンタクト層 15までの各層が除去されて、 n型コンタクト層 11の一部が露出される。前 記 n型コンタクト層 11の露出部の表面に、 n電極 3が形成されて 、る。  [0037] After the layers constituting the semiconductor light emitting device 10 are formed, the layers from the n-type cladding layer 12 to the contact layer 15 are removed, and a part of the n-type contact layer 11 is exposed. An n electrode 3 is formed on the surface of the exposed portion of the n-type contact layer 11.
[0038] また、コンタクト層 15の表面には、発光領域を避けた位置に、 p電極 4が形成されて いる。 n電極 3と p電極 4は、 NiZAu (ニッケルと金の積層体)により形成される。また は、前記 p電極 4を設けず、 ITOのコンタクト層 15のみを設けておくことにより、発光領 域を広くできる。 Further, the p-electrode 4 is formed on the surface of the contact layer 15 at a position avoiding the light emitting region. The n electrode 3 and the p electrode 4 are made of NiZAu (a nickel / gold laminate). Alternatively, by providing only the ITO contact layer 15 without providing the p-electrode 4, the light emission region is obtained. Can widen the area.
[0039] そして、前記 n電極 3と p電極 4を、レジスト層で部分的に覆った状態で、半導体発 光素子 10の発光側表面に密着する光透過層 20が形成され、この光透過層 20が形 成された後に、前記レジスト層が除去される。  [0039] Then, a light transmission layer 20 is formed in close contact with the light emitting side surface of the semiconductor light emitting element 10 with the n electrode 3 and the p electrode 4 partially covered with a resist layer. After 20 is formed, the resist layer is removed.
[0040] 前記光透過層 20は、窒素 (N)と、珪素(Si)と、酸素 (O)を含む透明層であり、化学 気相成長法 (プラズマ CVD法)により形成される。  The light transmission layer 20 is a transparent layer containing nitrogen (N), silicon (Si), and oxygen (O), and is formed by a chemical vapor deposition method (plasma CVD method).
[0041] プラズマ CVD法では、比較的大きな基板 2の上に、前記半導体発光素子 10およ び各電極 3, 4を有する複数個の発光装置 1が形成された状態で、この基板 2がブラ ズマ CVD装置の反応室内に設置される。そして、反応室内に、水素ガス (H )をキヤ  [0041] In the plasma CVD method, a plurality of light emitting devices 1 having the semiconductor light emitting element 10 and the electrodes 3 and 4 are formed on a relatively large substrate 2 and the substrate 2 is brazed. Installed in the reaction chamber of the Zuma CVD system. Then, hydrogen gas (H) is charged into the reaction chamber.
2 リアガスとして用い、原料ガス(反応ガス)であるシランガス(SiH )、アンモニアガス(  2 Used as rear gas, source gas (reaction gas) silane gas (SiH), ammonia gas (
4  Four
NH )、酸化窒素ガス (N O)が供給されて、半導体発光素子 10の表面に光透過層 NH) and nitrogen oxide gas (N 2 O) are supplied, and a light transmission layer is formed on the surface of the semiconductor light emitting device 10.
3 2 3 2
20が成膜される。シランガス (SiH )は、珪素(Si)を供給する原料ガスであり、アンモ  20 is deposited. Silane gas (SiH) is a source gas that supplies silicon (Si).
4  Four
ニァガス (NH )は窒素 (N)を供給する原料ガスであり、酸化窒素ガス (N O)は酸素  Near gas (NH) is a source gas that supplies nitrogen (N), and nitrogen oxide gas (N 2 O) is oxygen.
3 2  3 2
(o)を供給する原料ガスである。  (o) is a raw material gas to be supplied.
[0042] プラズマ CVD法により、半導体発光素子 10の表面に光透過層 20を堆積して成膜 する過程で、各原料ガスを反応室に供給するバルブを調整して、各原料ガスの反応 室への流量を制御する。あるいは、反応室内へ供給する原料バルブの分圧を制御 する。この原料ガスの供給比の可変制御は、段階的に変化させてもよいし連続的に 変化させてもよい。 [0042] In the process of depositing the light-transmitting layer 20 on the surface of the semiconductor light emitting element 10 by plasma CVD, a valve for supplying each source gas to the reaction chamber is adjusted to adjust the reaction chamber of each source gas. To control the flow rate to. Alternatively, the partial pressure of the material valve supplied to the reaction chamber is controlled. The variable control of the supply ratio of the raw material gas may be changed stepwise or continuously.
[0043] 以下の表 1では、原料ガスの供給比を工程 a, b, c, d, · · ·の順に段階的に変化さ せた例を示している。表 1に示す製造例では、表内の数字が流量を意味し、その単 位は「sccm (standard cc/min)」である。ただし、表 1では、各原料ガスの供給比を、 シランガス(SiH )を「1」として、その相対量で表していると理解することもできる。  [0043] Table 1 below shows an example in which the supply ratio of the raw material gas is changed stepwise in the order of steps a, b, c, d,. In the manufacturing examples shown in Table 1, the numbers in the table indicate the flow rate, and the unit is “sccm (standard cc / min)”. However, in Table 1, it can also be understood that the supply ratio of each raw material gas is expressed as a relative amount with silane gas (SiH) as “1”.
4  Four
[0044] 半導体発光素子 10の表面に、工程 aから工程ほで順に、原料ガスの供給比を変化 させて、光透過層 20を成膜する。ただし、工程 aから工程 cの間は、酸化窒素ガス (N O)を供給せずに、シランガス(SiH )とアンモニアガス (NH )を供給し、工程 d以後 A light transmission layer 20 is formed on the surface of the semiconductor light emitting element 10 by changing the supply ratio of the source gas in order from step a to step. However, during steps a to c, silane gas (SiH 2) and ammonia gas (NH 2) are supplied without supplying nitrogen oxide gas (N 2 O).
2 4 3 2 4 3
に酸化窒素ガス (N O)の供給を開始する。  Start supplying nitrogen oxide gas (N 2 O).
2  2
[0045] 工程 aから工程 dでは、光透過層 20の成膜が進行していくにしたがって、シランガス (SiH )に対するアンモニアガス (NH )の供給量を段階的に増やしていく。工程 aか[0045] In steps a to d, as the film formation of the light transmission layer 20 proceeds, silane gas Increase the amount of ammonia gas (NH 3) supplied to (SiH 2) step by step. Process a
4 3 4 3
ら工程 cまでの間に成膜される光透過層 20は、窒化珪素膜 (Si— N)である。工程 d に至ったときに成膜される光透過層 20は酸窒化珪素(Si— O—N)である力 この時 点での酸素濃度は 1%以下である。工程 aから工程 dにおいて成膜される光透過層 2 0は、半導体発光素子 10との境界面に向力うにしたがって、 Siに対する Nの相対濃 度が低くなり、逆に半導体発光素子 10との境界面力も離れるにしたがって Siに対す る Nの相対濃度が高くなる。  The light-transmitting layer 20 formed between step c and step c is a silicon nitride film (Si—N). The light transmitting layer 20 formed when reaching step d is a force that is silicon oxynitride (Si—O—N). The oxygen concentration at this point is 1% or less. In the light transmission layer 20 formed in steps a to d, the relative concentration of N with respect to Si decreases toward the interface with the semiconductor light emitting device 10, and conversely with the semiconductor light emitting device 10. The relative concentration of N with respect to Si increases as the interface force increases.
[0046] ここで、光透過層 20内での各元素の濃度とは、 at%の量の大小、 mol量の大小、あ るいは質量比の大小の 、ずれかである。  [0046] Here, the concentration of each element in the light transmission layer 20 is a deviation of the amount of at%, the amount of mol, or the mass ratio.
[0047] 表 1に示すように、工程 aから工程 dまでの間に形成された光透過層 20の屈折率は 、半導体発光素子 10との境界面付近でほぼ 2. 4であり、工程 dの時点で屈折率がほ ぼ 1. 98である。なお、本明細書での屈折率とは、波長が 680nmの光が入射したとき の絶対屈折率を意味して 、る。  [0047] As shown in Table 1, the refractive index of the light transmission layer 20 formed between steps a and d is approximately 2.4 near the boundary surface with the semiconductor light emitting element 10, and the step d At this point, the refractive index is about 1.98. The refractive index in this specification means an absolute refractive index when light having a wavelength of 680 nm is incident.
[0048] 前記工程 dの後も引き続き光透過層 20の成膜が連続して継続されるが、工程 dから 工程 iでは、シランガス(SiH )の供給量を固定し、成膜が進行するにしたがって、ァ  [0048] After the step d, the film formation of the light transmission layer 20 is continuously continued. In steps d to i, the supply amount of silane gas (SiH) is fixed and the film formation proceeds. Therefore
4  Four
ンモユアガス (NH )の供給量を徐々に減らし、且つ酸化窒素ガス (N O)の供給量を  Reduce the supply amount of nitrogen gas (NH) gradually and reduce the supply amount of nitrogen oxide gas (N 2 O).
3 2  3 2
徐々に多くしていく。そして、工程 iすなわち光透過層 20の成膜完了時には、アンモ ユアガス(NH )の供給量をゼロにする。  Gradually increase. Then, the supply amount of ammonia gas (NH 3) is set to zero at the completion of step i, that is, when the light transmission layer 20 is formed.
3  Three
[0049] 工程 dから工程 hで形成される光透過層 20の内部構造は、ほぼ酸窒化珪素(Si— O— N)であり、この工程の間に形成される光透過層 20の内部では、半導体発光素 子 10から離れるにしたがって、酸素 (O)の濃度が高くなり、且つ窒素 (N)の濃度が 低くなる。逆に、半導体発光素子 10に向かうにしたがって酸素 (O)の濃度が低くなり 、且つ窒素 (N)の濃度が高くなる。そして、工程 iで示す成膜完了時では、光透過層 20の表面は、酸ィ匕珪素(SiOまたは SiO )に近い構成となる。  [0049] The internal structure of the light transmission layer 20 formed in steps d to h is substantially silicon oxynitride (Si—O—N). In the light transmission layer 20 formed during this step, As the distance from the semiconductor light emitting element 10 increases, the concentration of oxygen (O) increases and the concentration of nitrogen (N) decreases. Conversely, the oxygen (O) concentration decreases and the nitrogen (N) concentration increases toward the semiconductor light emitting element 10. When the film formation shown in step i is completed, the surface of the light transmission layer 20 has a configuration close to silicon oxide (SiO or SiO 2).
2  2
[0050] 表 1に示すように、工程 dから工程 iでは、酸窒化珪素(Si— 0— N)において、半導 体発光素子 10から離れるにしたがって、窒素 (N)が酸素(O)に置換されていく構成 である。そのため、光透過層 20の表面に向力 にしたがって内部屈折率が徐々に小 さくなり、光透過層 20の表面では、屈折率がほぼ 1. 53となる。 [0051] 上記のプラズマ CVD法で成膜された光透過層 20は、半導体発光素子 10との境界 面において、屈折率がほぼ 2. 4であり、半導体発光素子 10の p型クラッド層 14また はコンタクト層 15 (これらの屈折率はほぼ 2. 5)にきわめて近い屈折率を持たせること ができ、あるいは屈折率差をほとんど無くすことができる。また、光透過層 20の表面 の屈折率をほぼ 1. 53に設定することができる。 [0050] As shown in Table 1, in steps d to i, in silicon oxynitride (Si-0-N), nitrogen (N) changes to oxygen (O) as the distance from semiconductor light-emitting element 10 increases. It is a configuration that will be replaced. Therefore, the internal refractive index gradually decreases according to the directional force on the surface of the light transmission layer 20, and the refractive index is approximately 1.53 on the surface of the light transmission layer 20. [0051] The light transmission layer 20 formed by the above plasma CVD method has a refractive index of approximately 2.4 at the interface with the semiconductor light emitting device 10, and the p-type cladding layer 14 of the semiconductor light emitting device 10 or Can have a refractive index very close to that of the contact layer 15 (these refractive indices are approximately 2.5), or the refractive index difference can be almost eliminated. Further, the refractive index of the surface of the light transmission layer 20 can be set to approximately 1.53.
[0052] また、コンタクト層 15が ITOで形成されている場合、コンタクト層 15の屈折率がほぼ 2. 0であり、光透過層 20の屈折率は、 ITOとの接触界面で 2. 4となる。この場合、屈 折率がほぼ 2. 5である p型クラッド層 14を通過した光は、 ITOを通過して光透過層 2 0に入射される。このとき、光は屈折率の低い ITOから屈折率の高い光透過層 20に 入射されることになるため、スネルの法則により、 ITOと光透過層 20との界面での全 反射角が発生せず、前記界面での出射光の損失はわずかである。  [0052] When the contact layer 15 is made of ITO, the refractive index of the contact layer 15 is approximately 2.0, and the refractive index of the light transmission layer 20 is 2.4 at the contact interface with ITO. Become. In this case, light that has passed through the p-type cladding layer 14 having a refractive index of approximately 2.5 passes through ITO and is incident on the light transmission layer 20. At this time, light is incident on the light transmissive layer 20 having a high refractive index from ITO having a low refractive index, and therefore, the total reflection angle at the interface between the ITO and the light transmissive layer 20 is generated according to Snell's law. However, the loss of the emitted light at the interface is slight.
[0053] 図 3に示されている第 3の実施の形態と同様に、図 1に示すチップ状の発光装置 1 は、リフレクタを兼ねたパッケージ内に収納され、ノ ッケージに設けられた一方のリー ド端子と前記 n電極 3とがワイヤボンディングで接続され、他方のリード端子と p電極 4 とがワイヤボンディングで接続される。さらに、チップ状の発光装置 1の表面に封止層 が形成され、ノ ッケージ内にぉ 、て発光装置 1が外気に触れな!/、ように封止される。 封止層は透明な合成樹脂材料で形成され、例えばエポキシ榭脂で形成される。この エポキシ榭脂の屈折率は 1. 5程度であるため、エポキシ榭脂の封止層と、前記光透 過層 20の表面との境界面における屈折率の差をほとんど無くすることができる。  Similar to the third embodiment shown in FIG. 3, the chip-like light emitting device 1 shown in FIG. 1 is housed in a package that also serves as a reflector, and is provided in one of the packages provided in the knocker. The lead terminal and the n electrode 3 are connected by wire bonding, and the other lead terminal and the p electrode 4 are connected by wire bonding. Further, a sealing layer is formed on the surface of the chip-like light emitting device 1, and the light emitting device 1 is sealed so that it does not touch the outside air inside the socket. The sealing layer is formed of a transparent synthetic resin material, for example, epoxy resin. Since the refractive index of the epoxy resin is about 1.5, the difference in refractive index at the interface between the epoxy resin sealing layer and the surface of the light transmitting layer 20 can be almost eliminated.
[0054] あるいは、封止層を PAA (ポリアリルァミン)で形成してもよい。この榭脂材料は、光 エネルギーや熱によって変色しにくい。また屈折率は 1. 48程度である。よって封止 層に PAAを使用する場合にも、封止層と光透過層 20との境界面での屈性率差を小 さくでさる。  [0054] Alternatively, the sealing layer may be formed of PAA (polyallylamine). This resin material is not easily discolored by light energy or heat. The refractive index is about 1.48. Therefore, even when PAA is used for the sealing layer, the difference in refractive index at the interface between the sealing layer and the light transmission layer 20 is reduced.
[0055] この発光装置 1では、 p電極 4に正の電位が与えられ、 pn接合の半導体発光素子 1 0に順電流が与えられる。 n型クラッド層のマイナスの電荷である自由電子と、 p型クラ ッド層 14の自由正孔とが活性層 13において再結合し、そのときのエネルギーで発光 する。 Ga—Nを主体とする半導体発光素子 10から発せられる光の波長は 530nm以 下であり、緑色力 青色の帯域さらには紫外線の帯域までの光を発することができる [0056] 半導体発光素子 10と光透過層 20との境界面での屈折率差がほとんどなぐまた、 コンタクト層 15を ITOで形成した場合には、屈折率の低!、ITO力も屈折率の高 ヽ光 透過層 20に光が入射するために、半導体発光素子 10と光透過層 20との界面での 全反射を低減でき、光の損失を抑制できる。さらに、光透過層 20と封止層との屈折 率差がほとんどないため、光の全反射を少なくして、発光量の損失を低減することが 可能である。 In the light emitting device 1, a positive potential is applied to the p electrode 4, and a forward current is applied to the pn junction semiconductor light emitting element 10. Free electrons, which are negative charges in the n-type cladding layer, and free holes in the p-type cladding layer 14 recombine in the active layer 13 and emit light with the energy at that time. The wavelength of light emitted from the semiconductor light-emitting element 10 mainly composed of Ga-N is 530 nm or less, and can emit light up to the green power, the blue band and the ultraviolet band. [0056] There is almost no difference in refractive index at the interface between the semiconductor light emitting element 10 and the light transmission layer 20. Also, when the contact layer 15 is made of ITO, the refractive index is low! The ITO force is also high. Since light is incident on the fluorescent transmission layer 20, total reflection at the interface between the semiconductor light emitting element 10 and the light transmission layer 20 can be reduced, and light loss can be suppressed. Furthermore, since there is almost no difference in refractive index between the light transmission layer 20 and the sealing layer, it is possible to reduce the total light reflection and reduce the loss of light emission.
[0057] 次に、発光装置 1を前記パッケージに収納し、光透過層 20の表面にエポキシ榭脂 の封止層を設けたサンプルを製造し、また、前記半導体発光素子 10の表面に光透 過層 20を設けずに、エポキシ榭脂の封止層のみを設けたサンプルを製造した。光透 過層 20の成膜では、プラズマ CVD法により原料ガスを表 1に示す a工程から i工程ま で段階的に変化させ (原料ガスの供給量は sccm)、プラズマの励起周波数を 13. 56 MHzとし、基板温度を 200°Cとした。また、コンタクト層 15は ITOで形成した。  [0057] Next, the light emitting device 1 is housed in the package, and a sample in which an epoxy resin sealing layer is provided on the surface of the light transmission layer 20 is manufactured. A sample in which only the epoxy resin sealing layer was provided without the overlayer 20 was produced. In forming the light transmissive layer 20, the source gas is changed stepwise from step a to step i shown in Table 1 by the plasma CVD method (source gas supply rate is sccm), and the plasma excitation frequency is set to 13. The substrate temperature was set to 56 MHz and the substrate temperature was set to 200 ° C. The contact layer 15 is made of ITO.
[0058] 表 2は、各サンプルを発光させたときの、出射光の光束を測定した結果を示してい る。表 2では、サンプル番号を「LED A」「LED B」「LED C」 · · ·で示している。各 番号のサンプルは、同じ発光装置 1を使用しているが、電極 3, 4間への供給電流値 (mA)は相違させている。表 2では、それぞれのサンプルに光透過層 20と封止層を 形成したときの光束 (lm:ルーメン)の測定結果と、封止層のみとしたときの光束 (lm: ルーメン)の測定結果を示して!/、る。  [0058] Table 2 shows the result of measuring the luminous flux of the emitted light when each sample was caused to emit light. In Table 2, the sample numbers are indicated as “LED A”, “LED B”, “LED C”. Each numbered sample uses the same light emitting device 1, but the supply current value (mA) between the electrodes 3 and 4 is different. Table 2 shows the measurement results of the luminous flux (lm: lumen) when the light transmission layer 20 and the sealing layer are formed on each sample and the measurement results of the luminous flux (lm: lumen) when only the sealing layer is used. Show me!
[0059] [表 1] 表 1  [0059] [Table 1] Table 1
Figure imgf000013_0001
Figure imgf000013_0001
[0060] [表 2] 表 2 [0060] [Table 2] Table 2
Figure imgf000014_0001
Figure imgf000014_0001
[0061] 次に、図 1に示す発光装置 1において、コンタクト層 15が ITOで形成されている場 合には、その表面に光透過層 20を形成する際に、表 1に示す工程 aないし工程 cを 削除し、 dの工程力ゝら成膜を開始して工程ほで成膜工程を行ってもよい。すなわち、 プラズマ CVD装置の反応室内に、水素ガス (H )をキャリアガスとして用い、原料ガス Next, in the light emitting device 1 shown in FIG. 1, when the contact layer 15 is made of ITO, the steps a to 1 shown in Table 1 are performed when the light transmission layer 20 is formed on the surface thereof. The process c may be deleted, and the film formation process may be performed in the process starting with the process power of d. That is, using hydrogen gas (H) as a carrier gas in the reaction chamber of the plasma CVD apparatus,
2  2
(反応ガス)であるシランガス(SiH )、アンモニアガス(NH )、酸化窒素ガス(N O)  Silane gas (SiH 3), ammonia gas (NH 2), and nitrogen oxide gas (N 2 O) as reaction gases
4 3 2 を供給する。そして、シランガス (SiH )の供給量を固定し、成膜が進行するにしたが  Supply 4 3 2 Then, the amount of silane gas (SiH) was fixed and the film formation progressed.
4  Four
つて、酸化窒素ガス(N O)の供給量を増やしていき、且つアンモニアガス(NH )の  Therefore, increase the supply amount of nitrogen oxide gas (N 2 O) and increase the amount of ammonia gas (NH 2).
2 3 供給量を減らしていく。  2 3 Reduce supply.
[0062] その結果、光透過層 21は、ほぼ酸窒化珪素(Si— 0—N)となり、光透過層 21は、 I TOであるコンタクト層 15との境界面力も離れるにしたがって、酸素(O)の濃度が高く なり、且つ窒素 (N)の濃度が低くなる。光透過層 21は、コンタクト層 15との境界面で 屈折率がほぼ 1. 98となり、屈折率がほぼ 2. 0の ITOで形成されたコンタクト層 15と の屈折率の差が少なぐあるいは差がほとんどなくなる。また、光透過層 21の表面は 、酸ィ匕珪素(SiOまたは SiO )に近い構成となり、その屈折率はほぼ 1. 53である。  As a result, the light-transmitting layer 21 is substantially silicon oxynitride (Si-0-N), and the light-transmitting layer 21 becomes oxygen (O as the interface force with the contact layer 15 that is ITO increases. ) Concentration increases and nitrogen (N) concentration decreases. The light transmissive layer 21 has a refractive index of approximately 1.98 at the interface with the contact layer 15, and the refractive index difference between the light transmitting layer 21 and the contact layer 15 formed of ITO having a refractive index of approximately 2.0 is small or different. Almost disappears. Further, the surface of the light transmission layer 21 has a structure close to silicon oxide (SiO or SiO 2), and its refractive index is approximately 1.53.
2  2
[0063] また、図 1に示す発光装置 1のさらに他の変形例として、光透過層 20を、表 1に示 す aから cで示す工程で成膜して工程 cで成膜を完了し、ある 、は aから dまでの工程 で成膜して工程 dで成膜を完了してもよい。工程 aから工程 cで形成された光透過層 2 0はほぼ窒化珪素膜 (Si— N)であり、半導体発光素子 10との界面での屈折率が 2. 4で、発光側表面の屈折率が 2. 1である。工程 aから工程 dで形成された光透過層 10 は、ほぼ窒化珪素膜 (Si— N)である力 工程 dで形成される表面のみが酸窒化珪素 (Si—O— N)となり、この表面での酸素濃度は 1%以下である。工程 aから工程 dにお いて成膜される光透過層 20は、半導体発光素子 10との界面の屈折率が 2. 4であり 、発光側表面での屈折率が 1. 98である。 [0063] As still another modification of the light-emitting device 1 shown in FIG. 1, the light transmission layer 20 is formed in the processes indicated by a to c shown in Table 1, and the film formation is completed in the process c. Alternatively, film formation may be performed in steps a to d and film formation may be completed in step d. The light-transmitting layer 20 formed in steps a to c is substantially a silicon nitride film (Si—N), has a refractive index of 2.4 at the interface with the semiconductor light emitting device 10, and has a refractive index on the light emitting side surface. Is 2.1. The light-transmitting layer 10 formed in steps a to d is substantially a silicon nitride film (Si—N). Only the surface formed in step d is silicon oxynitride. (Si-O-N), and the oxygen concentration on this surface is less than 1%. The light transmitting layer 20 formed in steps a to d has a refractive index of 2.4 at the interface with the semiconductor light emitting element 10 and a refractive index of 1.98 on the light emitting side surface.
[0064] 上記のように、半導体発光素子 10の表面に、工程 aないし工程 cで光透過層 20を 形成し、または工程 aないし工程 dで光透過層 20を形成した場合にも、半導体発光 素子 10と光透過層 20との界面での屈折率差を少なくでき、さらに光透過層 20の発 光側表面の屈折率を、 2. 1または 1. 98と低いものにできる。  [0064] As described above, even when the light-transmitting layer 20 is formed on the surface of the semiconductor light-emitting element 10 in the steps a to c or the light-transmitting layer 20 is formed in the steps a to d, the semiconductor light emitting device The difference in refractive index at the interface between the element 10 and the light transmission layer 20 can be reduced, and the refractive index of the light transmission side surface of the light transmission layer 20 can be as low as 2.1 or 1.98.
[0065] 図 2は本発明の第 2の実施の形態の発光装置 31を示す拡大断面図である。図 2に 示す第 2の実施の形態において、前記第 1の実施の形態の発光装置 1と同じ構成要 素には第 1の実施の形態と同じ符号を付して詳しい説明を省略する。  FIG. 2 is an enlarged sectional view showing a light emitting device 31 according to the second embodiment of the present invention. In the second embodiment shown in FIG. 2, the same components as those of the light emitting device 1 of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
[0066] この発光装置 31は、第 1の実施の形態と同様に、チップ状であり、リフレクタを兼ね たパッケージ内に収納されて使用される。  [0066] As in the first embodiment, the light-emitting device 31 has a chip shape and is housed in a package that also serves as a reflector.
[0067] 発光装置 31の基本的構造は、第 1の実施の形態と同じであり、サファイア基板 2の 上に半導体発光素子 10が設けられている。ただし、発光装置 31は、使用する向きが 第 1の実施の形態の発光装置 1と上下逆向きであり、サファイア基板 2が発光側に向 けられ、コンタクト層 15がパッケージ基板 32に向けられている。パッケージ基板 32の 表面にはリード層 33が設けられ、このリード層 33に p電極 4が接続されている。また、 n電極 3はワイヤボンディングにより、ノ ッケージ基板 32の表面の他のリード層に接続 されている。  The basic structure of the light emitting device 31 is the same as that of the first embodiment, and the semiconductor light emitting element 10 is provided on the sapphire substrate 2. However, the light emitting device 31 is used in the upside down direction with respect to the light emitting device 1 of the first embodiment, the sapphire substrate 2 is directed to the light emitting side, and the contact layer 15 is directed to the package substrate 32. Yes. A lead layer 33 is provided on the surface of the package substrate 32, and a p-electrode 4 is connected to the lead layer 33. The n-electrode 3 is connected to another lead layer on the surface of the knock substrate 32 by wire bonding.
[0068] そして、発光側に向けられているサファイア基板 2の表面に光透過層 20が形成され ている。この光透過層 20は、図 1に示す第 1の実施の形態と同様に、プラズマ CVD 法により形成されたものであり、サファイア基板 2側から、表 1に示す aないし iの工程 で光透過層 20が成膜される。この光透過層 20は、サファイア基板 3との界面での屈 折率が 2. 4であり、発光側表面の屈折率が 1. 53である。  [0068] A light transmission layer 20 is formed on the surface of the sapphire substrate 2 facing the light emitting side. This light transmission layer 20 is formed by the plasma CVD method as in the first embodiment shown in FIG. 1. From the sapphire substrate 2 side, light transmission is performed in steps a to i shown in Table 1. Layer 20 is deposited. This light transmission layer 20 has a refractive index of 2.4 at the interface with the sapphire substrate 3 and a refractive index of the light emitting side surface of 1.53.
[0069] 半導体発光素子 10から発せられる光は、サファイア基板 2を透過し、光透過層 20 を通過して、さらにその表面に設けられる封止層に入射する。サファイア基板 2の屈 折率は 1. 8程度であり、半導体発光素子 10で発せられた光は、屈折率の低いサファ ィァ基板 2から屈折率の高い光透過層 20に入射する。そのために、スネルの法則に より、サファイア基板 2と光透過層 20との界面での全反射角が発生せず、この界面で の光の入射効率が低下するのを抑制できる。さらに、光透過層 20の発光側表面での 屈折率を 1. 53と低くできる。 [0069] Light emitted from the semiconductor light emitting element 10 passes through the sapphire substrate 2, passes through the light transmission layer 20, and then enters a sealing layer provided on the surface thereof. The refractive index of the sapphire substrate 2 is about 1.8, and the light emitted from the semiconductor light emitting element 10 enters the light transmission layer 20 having a high refractive index from the sapphire substrate 2 having a low refractive index. Therefore, Snell's law As a result, the total reflection angle at the interface between the sapphire substrate 2 and the light transmission layer 20 does not occur, and it is possible to suppress a decrease in light incident efficiency at this interface. Further, the refractive index on the light emitting side surface of the light transmission layer 20 can be lowered to 1.53.
[0070] なお、図 2に示すようにサファイア基板 2の表面に光透過層 20を形成する場合に、 表 1に示す aないし cの工程を省略して、 dの工程力も成膜を開始して iの工程で成膜 を完了してもよい。または eの工程力も成膜を開始してもよぐあるいは fの工程力も成 膜を開始して iの工程で成膜を完了してもよい。この場合、サファイア基板 3との界面 【こお!/、て光透過層 20の屈折率を、 1. 98また ίま 1. 89ある!/ヽ ίま 1. 81【こでき、サファ ィァ基板 2との界面での全反射を抑制できるようになる。なお、基板はサファイア基板 に限られるものではなぐ光を透過できるものであれば他の材質のものであってもよい As shown in FIG. 2, when the light transmission layer 20 is formed on the surface of the sapphire substrate 2, the steps a to c shown in Table 1 are omitted, and the process force of d is also started. The film formation may be completed in step i. Alternatively, the process force of e may start the film formation, or the process force of f may start the film formation and complete the film formation in the process i. In this case, the interface with the sapphire substrate 3 [Koo! / The refractive index of the light transmitting layer 20 is 1. 98 or ί or 1. 89! / ヽ ί or 1. 81 [can be used to suppress total reflection at the interface with the safing substrate 2 become. The substrate is not limited to the sapphire substrate, but may be made of other materials as long as it can transmit light.
[0071] 図 3は本発明の第 3の実施の形態の発光装置 101を示す断面図である。 FIG. 3 is a cross-sectional view showing a light emitting device 101 according to the third embodiment of the present invention.
この発光装置 101は、図 1に示すチップ状の発光装置 1と同じ構造の発光装置 1 a が収納され、封止されてパッケージィ匕されたものである。ただし、図 2に示す構造の発 光装置が収納され封止されてもよ ヽ。  The light-emitting device 101 is a device in which a light-emitting device 1 a having the same structure as the chip-shaped light-emitting device 1 shown in FIG. 1 is housed, sealed, and packaged. However, the light emitting device having the structure shown in FIG. 2 may be housed and sealed.
[0072] 発光装置 101に収納されているチップ状の発光装置 laは、図 1に示す発光装置 1 において、光透過層 20が除去されているものであり、その他の構成は、図 1に示すも のと同じである。なお、コンタクト層 15は ITOで形成されている。 [0072] The chip-like light emitting device la housed in the light emitting device 101 is obtained by removing the light transmission layer 20 from the light emitting device 1 shown in FIG. 1, and other configurations are shown in FIG. It is the same as the one. The contact layer 15 is made of ITO.
[0073] 図 3に示す発光装置 101は、ノ ッケージ基板 102の表面に放熱部材 103が設けら れている。この放熱部材 103は、アルミニウムや銅などの熱伝導率の高い材料で形 成されている。チップ状の前記発光装置 laは、この放熱部材 103の表面に設置され 接着されている。 In the light emitting device 101 shown in FIG. 3, a heat radiating member 103 is provided on the surface of the knock substrate 102. The heat radiating member 103 is made of a material having high thermal conductivity such as aluminum or copper. The chip-shaped light emitting device la is installed and bonded to the surface of the heat radiating member 103.
[0074] 放熱部材 103および発光装置 laは、パッケージ材 104で覆われている。このパッケ ージ材 104は、耐熱性が高く且つ電気的に絶縁材料であり、例えば窒化アルミ-ゥ ム(Al— N)などで形成されている。パッケージ基板 102の表面力もパッケージ材 104 の内部には一対のリード電極 105と 106が形成されている。一方のリード電極 105と 、発光装置 laの n電極 3とがワイヤボンディング 107で接続され、他方のリード電極 1 06と、発光装置 laの p電極 4とがワイヤボンディング 108で接続されている。 [0075] ノ¾ /ケージ材 104はリフレクタを兼用しており、その表面は反射面 104aとされ、この 反射面 104aは、発光方向に向かってその開口面積が徐々に広くなるように形成され ている。 The heat radiating member 103 and the light emitting device la are covered with a package material 104. The package material 104 has high heat resistance and is an electrically insulating material, and is made of, for example, aluminum nitride (Al—N). As for the surface force of the package substrate 102, a pair of lead electrodes 105 and 106 are formed inside the package material 104. One lead electrode 105 and n electrode 3 of light emitting device la are connected by wire bonding 107, and the other lead electrode 106 and p electrode 4 of light emitting device la are connected by wire bonding 108. [0075] The anode / cage material 104 also serves as a reflector, and its surface is a reflecting surface 104a. The reflecting surface 104a is formed so that its opening area gradually increases in the light emitting direction. Yes.
[0076] そして、前記反射面 104a上に、発光装置 laの半導体発光素子 10を覆う光透過層 120が形成されている。この光透過層 120は、透明な合成樹脂材料に、粒子が混入 されて形成されている。合成樹脂材料は、耐熱性があり、光エネルギーおよび熱によ り変色しにくいものを使用することが好ましぐこの実施の形態ではポリアリルアミン (P AA)が使用されている。 PAAの硬化時の屈折率は 1. 48程度である。ただし、合成 榭脂材料としてエポキシ榭脂などを使用することも可能である。  Then, a light transmission layer 120 covering the semiconductor light emitting element 10 of the light emitting device la is formed on the reflection surface 104a. The light transmission layer 120 is formed by mixing particles in a transparent synthetic resin material. In this embodiment, polyallylamine (PAA) is used as the synthetic resin material. It is preferable to use a material that has heat resistance and is not easily discolored by light energy and heat. The refractive index of PAA when cured is about 1.48. However, epoxy resin can also be used as a synthetic resin material.
[0077] PAAに混入されて ヽる粒子は、透明で合成樹脂材料よりも屈折率が高 ヽもので、 さらに平均粒径が半導体発光素子 10から発光する光の波長より小さいものであり、 平均粒径が 1 OOnm以下であることが好ましく、さらに好ましくは平均粒径が 30nm以 下で 5nm以上である。第 3の実施の形態では、前記粒子として、平均粒径が 20nm の酸ィ匕チタン (TiO )が使用されている。酸ィ匕チタンの屈折率は 2. 5〜2. 7である。  [0077] The particles mixed into the PAA are transparent and have a higher refractive index than the synthetic resin material, and the average particle diameter is smaller than the wavelength of light emitted from the semiconductor light emitting device 10, and the average The particle size is preferably 1 OO nm or less, more preferably the average particle size is 30 nm or less and 5 nm or more. In the third embodiment, titanium oxide (TiO 2) having an average particle diameter of 20 nm is used as the particles. The refractive index of titanium oxide is 2.5-2.
2  2
ただし、粒子は酸ィ匕チタンに限られず、平均粒径が小さぐ透明で高屈折率であれ ば他の材料を使用でき、例えばアルミサファイアなどを使用することも可能である。  However, the particles are not limited to titanium oxide, and other materials can be used as long as they have a transparent and high refractive index with a small average particle diameter. For example, aluminum sapphire can also be used.
[0078] 光透過層 120では、合成樹脂材料である PAAに対する、酸化チタン粒子の相対 量力 半導体発光素子 10から離れるにしたがって徐々に少なくなつている。ここで、 相対量とは、合成樹脂材料と粒子との wt%の比を意味している。また、合成樹脂材 料内での粒子の相対量は、半導体発光素子 10から離れるにしたがって連続的に少 なくなってもよ 、し、段階的に少なくなるようにその相対量が変化して 、てもよ 、。  In the light transmission layer 120, the relative amount of titanium oxide particles with respect to PAA, which is a synthetic resin material, gradually decreases as the distance from the semiconductor light emitting element 10 increases. Here, the relative amount means the ratio of wt% between the synthetic resin material and the particles. Further, the relative amount of particles in the synthetic resin material may continuously decrease as the distance from the semiconductor light emitting element 10 increases, and the relative amount changes so as to decrease stepwise. Moyo.
[0079] 前記光透過層 120は、次の工程によって形成される。  [0079] The light transmission layer 120 is formed by the following steps.
光透過層 120を形成する際には、図 4に示す供給装置 200が使用される。この供 給装置 200の第 1の材料層 201内には、 PAAに酸ィ匕チタンが混合された混合流体 が収納されている。この混合流体は、酸ィ匕チタンの粒子が 55wt%を占め、残りが硬 化前の PAAである(全体で 100%)。第 2の材料層 202内には、酸ィ匕チタンの粒子を 含まない 100%の硬化前の PAAが収納されて!、る。  When forming the light transmission layer 120, a supply device 200 shown in FIG. 4 is used. In the first material layer 201 of the supply device 200, a mixed fluid in which titanium oxide is mixed with PAA is stored. In this mixed fluid, titanium oxide particles account for 55 wt%, and the rest is PAA before hardening (100% overall). The second material layer 202 contains 100% pre-cured PAA that does not contain titanium oxide particles!
[0080] 第 1の材料層 201内の混合流体は第 1のバルブ 203によって流量が制御されて混 合機 205に与えられ、第 2の材料層 202内の PAAは、第 2のバルブ 204によって流 量が制御され、混合機 205に供給される。混合機 205は内部に押し出しスクリューを 有しており、前記混合流体と PAAとが混合されて、半導体発光素子 10の表面に供 給される。 [0080] The flow rate of the mixed fluid in the first material layer 201 is controlled by the first valve 203 and mixed. The flow rate of the PAA in the second material layer 202 supplied to the compound machine 205 is controlled by the second valve 204 and supplied to the mixer 205. The mixer 205 has an extrusion screw inside, and the mixed fluid and PAA are mixed and supplied to the surface of the semiconductor light emitting device 10.
[0081] 以下の表 3に示す例では、第 1のバルブ 203の開度と第 2のバルブ 204の開度を、 段階的に変化するように制御している。その開度の制御は工程ィ、口、ノ、、 · · ·の順に 行われる。光透過層 120を形成し始めるときの工程ィでは、第 1のノ レブ 203の開度 力 100%であり、第 2のバルブ 204の開度が 0%である。その後、半導体発光素子 10 の上に混合流体が供給されていくにしたがって、第 1のバルブ 203の開度が段階的 に狭められ、且つ第 2のバルブ 204の開度が段階的に広げられる。なお、第 1のノ レ ブ 203の開度と第 2のバルブ 204の開度の少なくとも一方を、連続して変化するよう に調整してもよい。  In the example shown in Table 3 below, the opening degree of the first valve 203 and the opening degree of the second valve 204 are controlled to change stepwise. The opening degree is controlled in the order of process, mouth, throat,. In the process of starting to form the light transmission layer 120, the opening force of the first valve 203 is 100% and the opening of the second valve 204 is 0%. Thereafter, as the mixed fluid is supplied onto the semiconductor light emitting element 10, the opening degree of the first valve 203 is gradually reduced and the opening degree of the second valve 204 is gradually increased. Note that at least one of the opening degree of the first knob 203 and the opening degree of the second valve 204 may be adjusted so as to continuously change.
[0082] 表 3に示す、バルブの開度調整により、半導体発光素子 10の表面に流体が供給さ れていくにしたがって、 PAAに対する酸化チタンの粒子の相対的な供給量が徐々に 減っていく。表 1の工程ィないしホの順に流体を供した後に、ァニール工程によって 熱硬化性の合成樹脂材料である PAAを硬化させて、光透過層 120の形成が完了す る。  [0082] By adjusting the valve opening degree shown in Table 3, as the fluid is supplied to the surface of the semiconductor light emitting device 10, the relative supply amount of titanium oxide particles to PAA gradually decreases. . After supplying the fluids in the order of steps 1 to 5 in Table 1, PAA, which is a thermosetting synthetic resin material, is cured by the annealing process, and the formation of the light transmission layer 120 is completed.
[0083] 硬化後の光透過層 120は、発光装置 laの半導体発光素子 10と密着している境界 面で、酸ィ匕チタンの粒子がほぼ 55wt%を占め、この境界面付近での光透過層 120 の屈折率はほぼ 2. 5である。光透過層 120内では、半導体発光素子 10から離れる にしたがって酸ィ匕チタンの量が減っていき、その結果、半導体発光素子 10から離れ るにしたがって屈折率が徐々に低くなる。光透過層 120の表面付近は、 PAAがほぼ 100wt%で形成され、表面での屈折率がほぼ 1. 48である。なお、図 5は、工程ィな いしホで形成された光透過層 120内での酸ィ匕チタンの占める率 (wt%)と、屈折率と の関係を示している。  [0083] The light-transmitting layer 120 after curing is an interface in close contact with the semiconductor light-emitting element 10 of the light-emitting device la, and the titanium oxide particles occupy approximately 55 wt%. The refractive index of layer 120 is approximately 2.5. In the light transmission layer 120, the amount of titanium oxide decreases as the distance from the semiconductor light emitting element 10 increases. As a result, the refractive index gradually decreases as the distance from the semiconductor light emitting element 10 increases. Near the surface of the light transmission layer 120, PAA is formed at approximately 100 wt%, and the refractive index at the surface is approximately 1.48. FIG. 5 shows the relationship between the refractive index and the ratio (wt%) of titanium oxide in the light-transmitting layer 120 formed by the process or step.
[0084] 表 4は、図 3に示す構造の発光装置 101の評価結果を示している。表 4では、発光 装置 101のサンプル番号を「LED F」「LED G」「LED H」 · · ·で示している。この 各サンプルは、表 3の工程で形成された光透過層 120を有する同じ構造の発光装置 101と、光透過層 120の代わりに半導体発光素子 10の表面にエポキシ榭脂の封止 層を設けたものとを使用し、それぞれのサンプルにお ヽて供給電流値 (mA)を変え た場合の評価結果を示している。表 4では、それぞれのサンプルに光透過層 120を 形成したときの光束 (lm:ルーメン)と、光透過層 120の代わりに半導体発光素子 10 の表面にエポキシ榭脂の封止層を設けたときの光束 (lm:ルーメン)の測定結果を示 している。 Table 4 shows the evaluation results of the light emitting device 101 having the structure shown in FIG. In Table 4, the sample number of the light emitting device 101 is indicated by “LED F”, “LED G”, “LED H”. Each of these samples is a light emitting device having the same structure having the light transmission layer 120 formed in the process of Table 3. When the supply current value (mA) is changed for each sample using 101 and the light-transmitting layer 120 instead of the light-transmitting layer 120 and the surface of the semiconductor light-emitting element 10 provided with an epoxy resin sealing layer The evaluation results are shown. Table 4 shows the luminous flux (lm: lumen) when the light transmission layer 120 is formed on each sample, and the case where an epoxy resin sealing layer is provided on the surface of the semiconductor light emitting device 10 instead of the light transmission layer 120. The measurement results of the luminous flux (lm: lumen) are shown.
[0085] [表 3] 表 3 [0085] [Table 3] Table 3
Figure imgf000019_0001
Figure imgf000019_0001
[0086] [表 4] 表 4 [0086] [Table 4] Table 4
Figure imgf000019_0002
なお、本発明では、図 1と図 2に示す実施の形態での光透過層 20または光透過層 21と、図 3に示す光透過層 120とを併用し、光透過層 20または 21の上に光透過層 1 20を形成してもよい。
Figure imgf000019_0002
In the present invention, the light transmission layer 20 or 21 in the embodiment shown in FIG. 1 and FIG. 2 and the light transmission layer 120 shown in FIG. The light transmission layer 120 may be formed on the substrate.
図面の簡単な説明 [0087] [図 1]本発明の第 1の実施の形態を示すものであり、チップ状の発光装置を示す拡大 断面図、 Brief Description of Drawings FIG. 1 shows a first embodiment of the present invention, and is an enlarged cross-sectional view showing a chip-like light emitting device;
[図 2]本発明の第 2の実施の形態を示すものであり、チップ状の発光装置を示す拡大 断面図、  FIG. 2 shows a second embodiment of the present invention, and is an enlarged sectional view showing a chip-like light emitting device;
[図 3]本発明の第 3の実施の形態を示すものであり、ノ¾ /ケージされた発光装置を示 す拡大断面図、  FIG. 3 is an enlarged cross-sectional view showing a third embodiment of the present invention, showing a light emitting device that has been subjected to observation / cage;
[図 4]第 3の実施の形態の発光装置の光透過層を形成するための流体の供給装置を 示す説明図、  FIG. 4 is an explanatory view showing a fluid supply device for forming a light transmission layer of the light emitting device of the third embodiment;
[図 5]第 3の実施の形態の発光装置に設けられた光透過層の、酸化チタンの量と屈 折率との関係を示す線図、  FIG. 5 is a diagram showing the relationship between the amount of titanium oxide and the refractive index of the light transmission layer provided in the light emitting device of the third embodiment;
符号の説明  Explanation of symbols
[0088] 1, 31 発光装置 [0088] 1, 31 light emitting device
2 サファイア基板  2 Sapphire substrate
3, 4 電極  3, 4 electrodes
10 半導体発光素子  10 Semiconductor light emitting devices
11 n型コンタクト層  11 n-type contact layer
12 n型クラッド、層  12 n-type cladding, layer
13 活性層  13 Active layer
14 p型クラッド層  14 p-type cladding layer
15 コンタクト層  15 Contact layer
20 光透過層  20 Light transmission layer
101 発光装置  101 light emitting device
102 パッケージ基板  102 Package substrate
103 放熱部材  103 Heat dissipation member
104 パッケージ材  104 Package material
105, 106 リード電極  105, 106 Lead electrode
120 光透過層  120 Light transmission layer
200 供給装置  200 feeder

Claims

請求の範囲 The scope of the claims
[1] 半導体発光素子と、前記半導体発光素子に通電する電極と、前記半導体発光素 子の発光側を覆う光透過層と、を有する発光装置において、  [1] In a light-emitting device having a semiconductor light-emitting element, an electrode for energizing the semiconductor light-emitting element, and a light transmission layer covering a light-emitting side of the semiconductor light-emitting element,
前記光透過層は、窒素 (N)と、珪素(Si)と、酸素(O)とを含み、前記光透過層の内 部では、前記半導体発光素子に向かうにしたがって酸素濃度が低くなり且つ前記半 導体発光素子に向かうにしたがって窒素の濃度が高くなり、  The light transmissive layer includes nitrogen (N), silicon (Si), and oxygen (O), and the oxygen concentration decreases toward the semiconductor light emitting element inside the light transmissive layer. Nitrogen concentration increases toward the semiconductor light emitting device,
前記光透過層の屈折率が、前記半導体発光素子に向かうにしたがって高くなつて Vヽることを特徴とする発光装置。  The light-emitting device, wherein a refractive index of the light-transmitting layer increases as it goes toward the semiconductor light-emitting element.
[2] 半導体発光素子と、前記半導体発光素子に通電する電極と、前記半導体発光素 子の発光側を覆う光透過層と、を有する発光装置において、 [2] In a light-emitting device having a semiconductor light-emitting element, an electrode for energizing the semiconductor light-emitting element, and a light transmission layer covering a light-emitting side of the semiconductor light-emitting element,
前記光透過層は、窒素 (N)と、珪素(Si)とを含み、前記光透過層の内部では、前 記半導体発光素子に向かうにしたがって、珪素に対する窒素の相対濃度が低くなり 前記光透過層の屈折率が、前記半導体発光素子に向かうにしたがって高くなつて Vヽることを特徴とする発光装置。  The light transmission layer includes nitrogen (N) and silicon (Si), and a relative concentration of nitrogen with respect to silicon decreases in the light transmission layer toward the semiconductor light emitting element. A light emitting device characterized in that the refractive index of the layer increases as it goes toward the semiconductor light emitting element.
[3] 半導体発光素子と、前記半導体発光素子に通電する電極と、前記半導体発光素 子の発光側を覆う光透過層と、を有する発光装置において、 [3] In a light-emitting device having a semiconductor light-emitting element, an electrode for energizing the semiconductor light-emitting element, and a light transmission layer covering a light-emitting side of the semiconductor light-emitting element,
前記光透過層は、窒素 (N)と、珪素(Si)と、酸素(O)とを含み、前記光透過層の内 部では、前記半導体発光素子に向かうにしたがって酸素濃度が低くなり且つ前記半 導体発光素子に向かうにしたがって窒素の濃度が高くなり、酸素濃度が低下した後 に、前記半導体発光素子に向かうにしたがって、珪素に対する窒素の相対濃度が低 くなり、  The light transmissive layer includes nitrogen (N), silicon (Si), and oxygen (O), and the oxygen concentration decreases toward the semiconductor light emitting element inside the light transmissive layer. The concentration of nitrogen increases toward the semiconductor light emitting element, and after the oxygen concentration decreases, the relative concentration of nitrogen to silicon decreases toward the semiconductor light emitting element.
前記光透過層の屈折率が、前記半導体発光素子に向かうにしたがって高くなつて Vヽることを特徴とする発光装置。  The light-emitting device, wherein a refractive index of the light-transmitting layer increases as it goes toward the semiconductor light-emitting element.
[4] 半導体発光素子と、前記半導体発光素子に通電する電極と、前記半導体発光素 子の発光側を覆う光透過層と、を有する発光装置において、 [4] In a light-emitting device having a semiconductor light-emitting element, an electrode for energizing the semiconductor light-emitting element, and a light transmission layer covering the light-emitting side of the semiconductor light-emitting element.
前記光透過層は、透明な合成樹脂内に、前記合成樹脂よりも屈折率が高く且つ透 明で平均粒径が lOOnm以下の粒子が混入されたものであり、合成樹脂内での前記 粒子の相対量が前記半導体発光素子に向かうにしたがって多くなり、 前記光透過層の屈折率が、前記半導体発光素子に向かうにしたがって高くなつて Vヽることを特徴とする発光装置。 The light transmission layer is a transparent synthetic resin in which particles having a refractive index higher than that of the synthetic resin and transparent and having an average particle size of lOOnm or less are mixed. A light emitting device characterized in that a relative amount of particles increases toward the semiconductor light emitting element, and a refractive index of the light transmission layer increases toward the semiconductor light emitting element.
[5] 前記粒子が酸化チタンである請求項 4記載の発光装置。 5. The light emitting device according to claim 4, wherein the particles are titanium oxide.
[6] 前記光透過層内では、屈折率が連続的に変化している請求項 1に記載の発光装 置。  6. The light emitting device according to claim 1, wherein the refractive index continuously changes in the light transmission layer.
[7] 前記半導体発光素子は、窒化ガリウム (Ga— N)またはこの窒化ガリウムに他の元 素が含まれたものである請求項 1に記載の発光装置。  7. The light-emitting device according to claim 1, wherein the semiconductor light-emitting element is gallium nitride (Ga—N) or another element contained in the gallium nitride.
[8] 半導体発光素子と、前記半導体発光素子に通電する電極と、前記半導体発光素 子の発光側を覆う光透過層と、を有する発光装置の製造方法において、 [8] In a method for manufacturing a light-emitting device, comprising: a semiconductor light-emitting element; an electrode that supplies current to the semiconductor light-emitting element; and a light-transmitting layer that covers a light-emitting side of the semiconductor light-emitting element.
前記半導体発光素子の発光側に、窒素 (N)と、珪素 (Si)と、酸素 (O)とを含む前 記光透過層を形成し、  Forming the light transmitting layer containing nitrogen (N), silicon (Si), and oxygen (O) on the light emitting side of the semiconductor light emitting device;
前記半導体発光素子側から前記光透過層が堆積されていくのにしたがって、窒素 の量を徐々に減らし、且つ酸素の量を徐々に増やし、  As the light transmission layer is deposited from the semiconductor light emitting element side, the amount of nitrogen is gradually reduced and the amount of oxygen is gradually increased.
前記半導体素子力 離れるにしたがって屈折率が低くなる前記光透過層を形成す ることを特徴とする発光装置の製造方法。  The method of manufacturing a light emitting device, comprising forming the light transmission layer having a refractive index that decreases as the semiconductor element force increases.
[9] 半導体発光素子と、前記半導体発光素子に通電する電極と、前記半導体発光素 子の発光側を覆う光透過層と、を有する発光装置の製造方法において、 [9] In a method for manufacturing a light-emitting device, comprising: a semiconductor light-emitting element; an electrode that supplies current to the semiconductor light-emitting element; and a light-transmitting layer that covers a light-emitting side of the semiconductor light-emitting element.
前記半導体発光素子の発光側に、窒素 (N)と、珪素(Si)とを含む前記光透過層を 形成し、  Forming the light transmission layer containing nitrogen (N) and silicon (Si) on the light emitting side of the semiconductor light emitting device;
前記半導体発光素子側から前記光透過層が堆積されていくのにしたがって、珪素 に対する窒素の相対量を徐々に増やし、  As the light transmission layer is deposited from the semiconductor light emitting element side, the relative amount of nitrogen with respect to silicon is gradually increased,
前記半導体素子力 離れるにしたがって屈折率が低くなる前記光透過層を形成す ることを特徴とする発光装置の製造方法。  The method of manufacturing a light emitting device, comprising forming the light transmission layer having a refractive index that decreases as the semiconductor element force increases.
[10] 半導体発光素子と、前記半導体発光素子に通電する電極と、前記半導体発光素 子の発光側を覆う光透過層と、を有する発光装置の製造方法において、 [10] In a method for manufacturing a light-emitting device, comprising: a semiconductor light-emitting element; an electrode that supplies current to the semiconductor light-emitting element; and a light-transmitting layer that covers a light-emitting side of the semiconductor light-emitting element.
前記半導体発光素子の発光側に、窒素 (N)と、珪素 (Si)と、酸素 (O)とを含む前 記光透過層を形成し、 前記半導体発光素子側から前記光透過層が堆積されていくのにしたがって、珪素 に対する窒素の相対量を徐々に増やし、その後、窒素の量を徐々に減らし且つ酸素 の量を徐々に増やし、 Forming the light transmitting layer containing nitrogen (N), silicon (Si), and oxygen (O) on the light emitting side of the semiconductor light emitting device; As the light transmission layer is deposited from the semiconductor light emitting element side, the relative amount of nitrogen with respect to silicon is gradually increased, and then the amount of nitrogen is gradually decreased and the amount of oxygen is gradually increased.
前記半導体素子力 離れるにしたがって屈折率が低くなる前記光透過層を形成す ることを特徴とする発光装置の製造方法。  The method of manufacturing a light emitting device, comprising forming the light transmission layer having a refractive index that decreases as the semiconductor element force increases.
[11] 前記光透過層を化学気相成長法 (CVD)で形成し、前記光透過層を形成する元素 を含む原料ガスの供給量を可変することで、前記半導体素子から離れるにしたがつ て屈折率が低くなる前記光透過層を形成する請求項 8に記載の発光装置の製造方 法。 [11] The light transmissive layer is formed by chemical vapor deposition (CVD), and the supply amount of a source gas containing an element that forms the light transmissive layer is varied, so that it is separated from the semiconductor element. 9. The method for manufacturing a light emitting device according to claim 8, wherein the light transmission layer having a low refractive index is formed.
[12] 半導体発光素子と、前記半導体発光素子に通電する電極と、前記半導体発光素 子の発光側を覆う光透過層と、を有する発光装置の製造方法において、  [12] In a method for manufacturing a light-emitting device, comprising: a semiconductor light-emitting element; an electrode that supplies current to the semiconductor light-emitting element; and a light-transmitting layer that covers a light-emitting side of the semiconductor light-emitting element.
透明な合成樹脂と、この合成樹脂よりも屈折率が高く且つ透明で平均粒径が ΙΟΟη m以下の粒子とが混合された混合流体を、前記半導体発光素子の発光側に供給し 、このとき、合成樹脂内での前記粒子の相対量を前記半導体発光素子から離れるに したがって徐々に減らし、  A mixed fluid in which a transparent synthetic resin and a transparent particle having a refractive index higher than that of the synthetic resin and transparent and having an average particle diameter of mηm or less are supplied to the light emitting side of the semiconductor light emitting element. The relative amount of the particles in the synthetic resin is gradually reduced according to the distance from the semiconductor light emitting element,
前記合成樹脂を硬化させて、前記半導体発光素子カゝら離れるにしたがって屈折率 が徐々に低くなる光透過層を形成することを特徴とする発光装置の製造方法。  A method of manufacturing a light emitting device, comprising: curing the synthetic resin to form a light transmission layer having a refractive index that gradually decreases as the distance from the semiconductor light emitting element is increased.
[13] 前記粒子として、酸化チタンを使用する請求項 12記載の発光装置の製造方法。 13. The method for manufacturing a light emitting device according to claim 12, wherein titanium oxide is used as the particles.
PCT/JP2007/060247 2006-05-22 2007-05-18 Light emitting device and method for manufacturing same WO2007136000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006141974A JP2009193975A (en) 2006-05-22 2006-05-22 Light emitting device, and method for manufacturing the same
JP2006-141974 2006-05-22

Publications (1)

Publication Number Publication Date
WO2007136000A1 true WO2007136000A1 (en) 2007-11-29

Family

ID=38723311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060247 WO2007136000A1 (en) 2006-05-22 2007-05-18 Light emitting device and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP2009193975A (en)
TW (1) TW200802990A (en)
WO (1) WO2007136000A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035439A (en) * 2013-08-07 2015-02-19 ルネサスエレクトロニクス株式会社 Optical coupling device and method for manufacturing optical coupling device
EP2973752A4 (en) * 2013-03-15 2016-11-09 Glo Ab High index dielectric film to increase extraction efficiency of nanowire leds

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211121B2 (en) 2010-08-06 2013-06-12 株式会社東芝 Manufacturing method of semiconductor light emitting device
WO2014018122A1 (en) * 2012-03-21 2014-01-30 Dow Corning Corporation Method of forming a light emitting diode module
US9972750B2 (en) 2013-12-13 2018-05-15 Glo Ab Use of dielectric film to reduce resistivity of transparent conductive oxide in nanowire LEDs
JP6668608B2 (en) * 2015-04-27 2020-03-18 日亜化学工業株式会社 Light emitting device manufacturing method
JP7011195B2 (en) * 2020-02-27 2022-01-26 日亜化学工業株式会社 Luminescent device
CN112789737B (en) * 2020-08-13 2022-09-13 厦门三安光电有限公司 Semiconductor light-emitting element and light-emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363884A (en) * 1976-11-18 1978-06-07 Seiko Epson Corp Light emitting diode display element
JPH0748673A (en) * 1993-04-22 1995-02-21 Gold Star Co Ltd Method and device for producing nonhomogeneous thin film by plasma chemical vapor phase growing process
JPH0756002A (en) * 1993-08-09 1995-03-03 Shincron:Kk Hard coat layer and its production
JPH07235684A (en) * 1994-02-23 1995-09-05 Hitachi Cable Ltd Solar cell
JP2001192821A (en) * 2000-01-07 2001-07-17 Nippon Sheet Glass Co Ltd Method for depositing film on substrate, and article obtained by the method
JP2001203392A (en) * 2000-01-19 2001-07-27 Matsushita Electric Works Ltd Light-emitting diode
JP2005277181A (en) * 2004-03-25 2005-10-06 Sharp Corp Method for manufacturing semiconductor device
JP2006018233A (en) * 2004-05-31 2006-01-19 Fuji Photo Film Co Ltd Optical film, polarizing plate, and image display device using them

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363884A (en) * 1976-11-18 1978-06-07 Seiko Epson Corp Light emitting diode display element
JPH0748673A (en) * 1993-04-22 1995-02-21 Gold Star Co Ltd Method and device for producing nonhomogeneous thin film by plasma chemical vapor phase growing process
JPH0756002A (en) * 1993-08-09 1995-03-03 Shincron:Kk Hard coat layer and its production
JPH07235684A (en) * 1994-02-23 1995-09-05 Hitachi Cable Ltd Solar cell
JP2001192821A (en) * 2000-01-07 2001-07-17 Nippon Sheet Glass Co Ltd Method for depositing film on substrate, and article obtained by the method
JP2001203392A (en) * 2000-01-19 2001-07-27 Matsushita Electric Works Ltd Light-emitting diode
JP2005277181A (en) * 2004-03-25 2005-10-06 Sharp Corp Method for manufacturing semiconductor device
JP2006018233A (en) * 2004-05-31 2006-01-19 Fuji Photo Film Co Ltd Optical film, polarizing plate, and image display device using them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2973752A4 (en) * 2013-03-15 2016-11-09 Glo Ab High index dielectric film to increase extraction efficiency of nanowire leds
US10079331B2 (en) 2013-03-15 2018-09-18 Glo Ab High index dielectric film to increase extraction efficiency of nanowire LEDs
JP2015035439A (en) * 2013-08-07 2015-02-19 ルネサスエレクトロニクス株式会社 Optical coupling device and method for manufacturing optical coupling device

Also Published As

Publication number Publication date
TW200802990A (en) 2008-01-01
JP2009193975A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
US8373188B2 (en) Light emitting diode having distributed Bragg reflector
WO2007136000A1 (en) Light emitting device and method for manufacturing same
US7087936B2 (en) Methods of forming light-emitting devices having an antireflective layer that has a graded index of refraction
CN105593999B (en) Method for producing an optoelectronic component having a light-emitting diode
JP6106120B2 (en) Semiconductor light emitting device
US10700249B2 (en) Light emitting device and method of fabricating the same
JP5227252B2 (en) Sealing method for white light-emitting diode converted by phosphor
US8314440B2 (en) Light emitting diode chip and method of fabricating the same
WO2012157150A1 (en) Semicondutor light emitting diode
US8174027B2 (en) Semiconductor light emitting device and method for manufacturing same
WO2008030703A2 (en) Coating process
US11398579B2 (en) Method for producing optoelectronic devices comprising light-emitting diodes
US9343628B2 (en) Semiconductor light emitting device
JP6462029B2 (en) Method for bonding a substrate to a semiconductor light emitting device
US20160035939A1 (en) Semiconductor light emitting element, light emitting device, and method for manufacturing semiconductor light emitting element
JP2011258657A (en) Semiconductor light-emitting device and method for producing the same
WO2011143919A1 (en) Light emitting diode and manufacturing method thereof
KR101221643B1 (en) Flip chip Light-emitting device and Method of manufacturing the same
US11367810B2 (en) Light-altering particle arrangements for light-emitting devices
US20230260972A1 (en) Arrangements of multiple-chip light-emitting diode packages
KR20070035186A (en) Flip chip Light-emitting device and Method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP