WO2007135974A1 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2007135974A1
WO2007135974A1 PCT/JP2007/060201 JP2007060201W WO2007135974A1 WO 2007135974 A1 WO2007135974 A1 WO 2007135974A1 JP 2007060201 W JP2007060201 W JP 2007060201W WO 2007135974 A1 WO2007135974 A1 WO 2007135974A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
solvent
battery
fluorine
negative electrode
Prior art date
Application number
PCT/JP2007/060201
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Deguchi
Tooru Matsui
Hiroshi Yoshizawa
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/096,262 priority Critical patent/US8067119B2/en
Priority to CN2007800023514A priority patent/CN101371396B/en
Publication of WO2007135974A1 publication Critical patent/WO2007135974A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator and a non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery, particularly a non-aqueous electrolyte secondary battery.
  • lithium ion secondary batteries having high voltage and high energy density has been actively conducted for non-aqueous electrolyte secondary batteries.
  • lithium-containing transition metal oxides such as LiCoO are generally used as positive electrode active materials.
  • a carbon material is used as a negative electrode active material, and a porous film made of polyethylene or polypropylene is used as a separator.
  • a non-aqueous electrolyte generally includes a non-aqueous medium and a solute dissolved therein.
  • non-aqueous solvents include cyclic carbonates, chain carbonates, and cyclic carboxylates.
  • solutes include lithium hexafluorophosphate (LiPF) and lithium tetrafluoroborate (LiBF). It is used.
  • Patent Document 1 in order to further improve battery safety during short-circuiting or abnormal use, a porous fluororesin film such as polytetrafluoroethylene (PTFE), a polyethylene film, or a polypropylene film is used. It has been proposed to use separators with multiple layers. In Patent Document 1, since the separator includes a fluorine resin film having a high melting point, the separator can be prevented from melting during abnormal heat generation. For this reason, the safety of the battery can be further improved.
  • PTFE polytetrafluoroethylene
  • Patent Document 2 proposes to use a separator including two layers having different pore diameters in order to further improve the safety of a battery using metallic lithium as a negative electrode active material.
  • the layer with the smaller pore size suppresses dendritic growth of metallic lithium, thereby suppressing internal short circuit during charging and discharging and the accompanying ignition.
  • Patent Document 2 discloses a polytheto There is disclosed a separator in which a lafluoroethylene membrane and a membrane having a small pore diameter that also has polypropylene strength are laminated.
  • Patent Document 4 proposes to use monofluoroethylene carbonate as a nonaqueous solvent for a nonaqueous electrolyte.
  • a stable coating derived from monofluoroethylene carbonate is formed on the negative electrode, the cycle characteristics can be improved.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-205721
  • Patent Document 2 JP-A-5-258741
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-340026
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-063432
  • an object of the present invention is to provide a non-aqueous electrolyte secondary battery that can reduce a decrease in rate characteristics during storage, particularly when stored at high voltage and high temperature.
  • the nonaqueous electrolyte secondary battery of the present invention comprises an active material that absorbs and releases lithium ions.
  • the separator includes a material containing an electron-withdrawing substituent.
  • the non-aqueous electrolyte includes a non-aqueous solvent and a solute dissolved therein.
  • the non-aqueous solvent includes at least one first solvent selected from the group consisting of a fluorinated aromatic solvent, a fluorinated cyclic carbonate, and a fluorinated cyclic carboxylic acid ester.
  • the non-aqueous solvent preferably includes at least one selected from the group consisting of a fluorine-containing aromatic solvent and a fluorine-containing cyclic carbonate.
  • the material containing the electron-withdrawing substituent preferably contains a fluorine atom.
  • the material is preferably polytetrafluoroethylene.
  • the separator preferably further contains an inorganic filler.
  • a reduction-resistant film or a reduction-resistant layer containing an inorganic filler is provided between the separator and the negative electrode.
  • the amount of the first solvent is preferably 10% by volume or more of the non-aqueous solvent.
  • the active material contained in the positive electrode preferably contains Li [Ni Mn] 0.
  • the present invention also relates to a system including the nonaqueous electrolyte secondary battery and a charger for charging the nonaqueous electrolyte secondary battery, wherein a charge end voltage in the charger is set to 4.3 to 4.6V.
  • the material constituting the separator includes an electron-withdrawing substituent.
  • the non-aqueous solvent contains at least one solvent selected from the group consisting of a fluorine-containing aromatic solvent, a fluorine-containing cyclic carbonate, and a fluorine-containing cyclic carboxylate, a separator is used. It is possible to improve the wettability of the nonaqueous electrolyte. For this reason, the voltage is leveled over the entire electrode group, and it is possible to prevent acid / acid decomposition of the non-aqueous solvent.
  • One cause of the deterioration in the rate characteristics of the battery is from the positive electrode active material to other than lithium. It is considered that this metal atom is eluted as a cation into the non-aqueous electrolyte, and the metal is deposited on the negative electrode.
  • the separator is separated. Oxidative decomposition of non-aqueous solvent can be suppressed. Therefore, it is possible to suppress that electrons generated during oxidative decomposition move to metal atoms (other than lithium) contained in the positive electrode active material and the metal atoms become force thiones and dissolve in the nonaqueous electrolyte. . Therefore, even when the battery is stored at a high voltage and high temperature, it is possible to suppress a decrease in the rate characteristics of the battery.
  • FIG. 1 is a longitudinal sectional view schematically showing a cylindrical non-aqueous electrolyte secondary battery produced in an example.
  • FIG. 2 is a block diagram showing a configuration of a charger incorporating the nonaqueous electrolyte secondary battery of the present invention.
  • the non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode containing an active material that absorbs and releases lithium ions, a negative electrode that contains an active material that absorbs and releases lithium ions, and is interposed between the positive electrode and the negative electrode.
  • Ceno routers include materials that contain electron withdrawing substituents.
  • the nonaqueous electrolyte includes a nonaqueous solvent and a solute dissolved therein.
  • the non-aqueous solvent includes at least one first solvent selected from the group consisting of a fluorine-containing aromatic solvent, a fluorine-containing cyclic carbonate, and a fluorine-containing cyclic carboxylate.
  • a separator having polyethylene (PE) or polypropylene (PP) force is used.
  • PE polyethylene
  • PP polypropylene
  • polyethylene and polypropylene have low acid resistance
  • the separator is oxidatively decomposed.
  • electrons generated by the acid decomposition of the metallic nuclear separator other than lithium in the positive electrode active material are received and reduced.
  • the metal atoms that receive the electrons are eluted from the positive electrode active material as metal cations.
  • the low acid resistance of polyethylene and polypropylene is thought to be due to the fact that many hydrogen atoms are easily extracted in the molecule.
  • a material containing an electron-withdrawing substituent in the molecule such as polytetrafluoroethylene (PTFE) and polytetrafluoroethylene (PCTFE), is used. It is effective. Due to the strong electron withdrawing properties of halogen atoms, electrons are delocalized in PTFE and PCTFE, which constitute the separator, making it more difficult for the electrons to be pulled out and improving acid resistance.
  • PTFE polytetrafluoroethylene
  • PCTFE polytetrafluoroethylene
  • a separator including a material containing an electron-withdrawing substituent has a strong polarity and thus is difficult to wet with a non-aqueous electrolyte. If the separator has a portion that is not wetted by the nonaqueous electrolyte, the voltage (potential difference) between the positive electrode portion and the negative electrode portion that face each other across the portion is locally increased. When the voltage increases in this manner, the nonaqueous solvent undergoes oxidative decomposition under high temperature storage, and electrons generated by the oxidative decomposition move to metal atoms other than lithium contained in the positive electrode active material. This causes a new problem that the positive electrode active material force metal cations are eluted.
  • the non-aqueous solvent, the fluorinated aromatic solvent, the fluorinated cyclic carbonate, and the fluorinated cyclic carboxylic acid ester are used. It is very effective that the group power contains at least one selected first solvent and the separator contains a material containing an electron-withdrawing substituent. Since the first solvent contained in the non-aqueous solvent has an action of lowering the surface tension of the non-aqueous solvent, the wettability of the separator containing a material containing an electron-withdrawing substituent to the non-aqueous electrolyte is improved.
  • the separator used in the present invention has high acid resistance because the material constituting the separator contains an electron-withdrawing substituent. Therefore, even when the battery is stored at a high voltage and a high temperature, it is possible to suppress the decomposition of the acid in the separator.
  • Patent Documents 1 and 2 are also used as a membrane force separator having a PTFE force.
  • metal cations from the positive electrode active material are eluted by oxidative decomposition of the nonaqueous solvent. Therefore, the rate characteristics of the battery after storage Decreases.
  • the material constituting the separator includes an electron-withdrawing substituent.
  • electron-withdrawing substituents include F Cl CN SO CO COO CF
  • a polymer containing an electron-withdrawing substituent is preferred.
  • Separator is a material that has a substituent that contains fluorine such as 1F or 1CF in the molecule.
  • a fluoropolymer such as polytetrafluoroethylene (PTFE) is preferable.
  • PTFE polytetrafluoroethylene
  • Polytetrafluoroethylene contains four fluorine atoms with high electron-withdrawing properties in the repeating unit. Therefore, in polytetrafluoroethylene, electrons are delocalized on fluorine atoms. Therefore, the electrons are extracted from the polytetrafluoroethylene and the acid resistance is remarkably improved.
  • the separator is more preferably an insulating layer containing a material containing an electron-withdrawing substituent and an inorganic filler.
  • Such an insulating layer includes an inorganic filler and thus has high reduction resistance. Therefore, the reductive decomposition of the separator as described later can be prevented.
  • the separator is an insulating layer containing a material containing an electron-withdrawing substituent and an inorganic filler.
  • the material containing an electron-withdrawing substituent is not particularly limited, and among these, a polymer containing an acrylo-tolyl unit is preferable. In the polymer, it is preferable that the amount of atalonitrile unit is 20 mol% or more.
  • the polymer containing an acrylonitrile unit include polyacrylonitrile, polyacrylonitrile-modified rubber, alicyclic-tolyl monostyrene mono acrylate copolymer and the like.
  • the dispersibility between the material and the inorganic filler in the insulating layer can be improved, and reduction decomposition of the separator can be further suppressed.
  • the amount of the inorganic filler is preferably 80 to 99% by weight of the insulating layer. If the amount of the inorganic filler is less than 80% by weight, the voids inside the insulating layer may decrease and the lithium ion conductivity may decrease. If the amount of the inorganic filler exceeds 99% by weight, the strength of the insulating layer itself may be lowered.
  • inorganic fillers include alumina, titer, zircoure, magnesia, silica, and the like.
  • the separator may be composed of only the insulating layer.
  • the separator may include, in addition to the insulating layer, a porous film having a material strength known in the art.
  • the thickness of the separator is preferably 0.5 to 300 ⁇ m. This is the same even when the separator is composed of the insulating layer as described above.
  • the separator including the material containing an electron-withdrawing substituent is preferably arranged so as not to be in direct contact with the negative electrode. While the separator has high oxidation resistance, the reduction resistance tends to slightly decrease. For this reason, when the negative electrode potential is greatly reduced, the portion of the separator that contacts the negative electrode may be easily reduced.
  • a reduction-resistant film or a reduction-resistant layer containing an inorganic filler is disposed between the negative electrode and the separator. It is preferable.
  • Examples of the reduction-resistant film include a polyethylene film and a polypropylene film.
  • the reduction-resistant layer is, for example, a layer containing an inorganic filler and a predetermined polymer. And so on.
  • the reduction-resistant layer may be formed on the surface of the negative electrode facing the separator, or may be formed on the surface of the separator facing the negative electrode.
  • the inorganic filler the above materials can be used.
  • the type of polymer contained in the reduction resistant layer is not particularly limited. For example, when a separator made of a material containing an electron-withdrawing substituent such as a fluoropolymer is used, a reduction-resistant layer can be provided between the negative electrode and the separator. In this case, the insulating layer as described above can be used as the reduction-resistant layer.
  • the thickness of the reduction-resistant layer containing the reduction-resistant film and the inorganic filler is preferably 0.5 to 25 ⁇ m. If the thickness of the reduction-resistant film and the reduction-resistant layer is less than 0.5 m, for example, when the non-aqueous electrolyte secondary battery is a wound electrode group, the pressure at the time of winding is reduced. As a result, the reduction-resistant film or the reduction-resistant layer may be crushed and the separator and the negative electrode may come into contact with each other. Therefore, the effect of suppressing reduction of the separator may be insufficient. If the thickness of the reduction-resistant film and the reduction-resistant layer is greater than 25 m, the direct current resistance is too large and the output characteristics may be degraded.
  • a polymer containing an electron-withdrawing substituent is mixed with an organic solvent, the polymer is melted and kneaded, extruded, and then subjected to stretching, removal of the organic solvent, drying, and heat setting.
  • a separator can be obtained.
  • a separator can be obtained by the following method.
  • a polymer and a good solvent for the polymer are mixed to prepare a polymer solution.
  • the polymer solution as a raw material can be prepared, for example, by dissolving the polymer in a predetermined solvent by heating.
  • the solvent is not particularly limited as long as it can sufficiently dissolve the polymer. Examples thereof include aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, and liquid paraffin, or mineral oil fractions having boiling points similar to those of these hydrocarbons.
  • a non-volatile solvent such as liquid paraffin.
  • the dissolution by heating may be performed with stirring at a temperature at which the polymer is completely dissolved in the solvent. However, it may be carried out while uniformly mixing in an extruder.
  • the heating temperature varies depending on the polymer and solvent used, but is usually
  • the polymer When dissolving in the extruder, first, the polymer is supplied to the extruder and melted.
  • the melting temperature varies depending on the type of polymer used.
  • the melting point of the polymer is preferably 30 to 100 ° C.
  • a predetermined solvent is supplied to the molten polymer. In this way, a solution containing the molten polymer can be obtained.
  • this solution is extruded into a sheet form from a die of an extruder, and then cooled to obtain a gel-like composition.
  • the solution may be extruded through a die or the like from the extruder, or the solution is moved to another extruder and passed through the die or the like. You can push it out.
  • a gel-like molded product is formed. Cooling is accomplished by cooling the die or by cooling the gel sheet. The cooling is preferably performed at a rate of at least 50 ° CZ to 90 ° C or less, more preferably 80 to 30 ° C.
  • a method for cooling the gel sheet a method of directly contacting a cooling medium such as cold air or cooling water, a method of contacting a roll cooled by a refrigerant medium, or the like can be used. Of these, the method using a cooling roll is preferred.
  • the gel-like molded product is biaxially stretched to obtain a molded product. Stretching is performed at a predetermined magnification by heating the gel-like molded product and using a normal tenter method, roll method, rolling, or a combination of these methods. Biaxial stretching may be either longitudinal or transverse simultaneous stretching or sequential stretching, but simultaneous biaxial stretching is particularly preferable.
  • the molded product obtained above is washed with a cleaning agent to remove the remaining solvent.
  • Cleaning agents include volatile solvents such as hydrocarbons such as pentane, hexane, and heptane, chlorinated hydrocarbons such as salt methylene and tetrasalt carbon, and fluorides such as trifluoromethane. Ethers such as hydrocarbon, jetyl ether and dioxane can be used. These may be used alone or in combination of two or more. These cleaning agents are appropriately selected according to the solvent used for dissolving the polymer.
  • Examples of the method of cleaning the molded product include a method of immersing the molded product in a predetermined cleaning agent to extract the residual solvent, a method of showering the cleaning product on the molded product, or a method of combining these. Can be mentioned.
  • the molded product is preferably washed until the residual solvent in the molded product is less than 1% by weight.
  • the molded product is dried to remove the cleaning agent.
  • the drying can be performed using a method such as heat drying or air drying.
  • a high-strength microporous membrane separator can be obtained by heat-setting the molded product after drying at a temperature of 100 ° C or higher.
  • the first solvent includes at least one selected from the group consisting of a fluorine-containing aromatic solvent, a fluorine-containing cyclic carbonate, and a fluorine-containing cyclic carboxylate.
  • Fluorine-containing aromatic solvents include, for example, fluorobenzene, 1,2-difluorobenzene, 1,2,3 trifluorobenzene, 1,2,3,4-tetrafluorobenzene, pentafluorobenzene, hexafluoroolefin Benzene, 2-funoleorotolenene, and a 1, a 2, a trifluorotoluene. Of these, fluorobenzene and hexafluorobenzene are preferred.
  • fluorine-containing cyclic carbonate examples include fluoroethylene carbonate, difluoroethylene carbonate, trifluoroethylene carbonate, tetrafluoroethylene carbonate, and trifluoropropylene carbonate. Of these, fluoroethylene carbonate and trifluoropropylene carbonate are preferable.
  • fluorine-containing cyclic carboxylic acid ester examples include: a fluoro- ⁇ -butyrolatathone, e, —difunoleol ⁇ -butarate rataton, —funoleoro ⁇ -valerolataton, and ⁇ , a-difluoro- ⁇ -valerolataton.
  • the first solvent preferably contains at least one selected from the group force consisting of a fluorine-containing aromatic solvent and a fluorine-containing cyclic carbonate.
  • these solvents can greatly reduce the surface tension of the nonaqueous electrolyte. Accordingly, the wettability of the separator containing the material containing the electron-withdrawing substituent to the non-aqueous electrolyte is improved, the local voltage rise is suppressed, and the voltage is leveled. For this reason, even when the battery is stored at a high voltage and a high temperature, the oxidative decomposition of the nonaqueous solvent can be remarkably suppressed.
  • the first solvent it is more preferable to use at least one selected from the group consisting of fluorobenzene, hexafluorobenzene, fluoroethylene carbonate, and trifluoropropylene carbonate.
  • the amount of the first solvent is preferably 10% by volume or more of the non-aqueous solvent, more preferably 20% by volume or more.
  • the amount of the first solvent is less than 10% by volume, the effect of reducing the surface tension of the non-aqueous solvent is weakened. For this reason, the wettability of the separator containing a material containing an electron-withdrawing substituent to the non-aqueous electrolyte becomes non-uniform, and oxidative decomposition of the non-aqueous solvent may occur due to a local voltage increase.
  • the first solvent contains two or more kinds of the solvents, the total amount of them should be 10% by volume or more.
  • the amount of the first solvent is preferably 50% by volume or less of the nonaqueous solvent, more preferably 20% by volume or less.
  • these solvents are high dielectric constant solvents and have a high viscosity. Therefore, when these solvents exceed 50% by volume of the non-aqueous solvent, the lithium ion conductivity of the non-aqueous electrolyte is lowered, and as a result, the rate characteristics of the battery may be lowered.
  • Fluorine-containing aromatic solvents themselves are difficult to dissociate lithium salts such as LiPF. Therefore, fluorine-containing
  • the lithium salt may be precipitated.
  • the first solvent comprises a fluorinated cyclic carbonate or a fluorine-containing cyclic carboxylic acid ester
  • a fluorinated aromatic solvent the upper limit of the amount of first solvent to exceed 50 body product 0/0 Also good.
  • the non-aqueous solvent preferably contains a second solvent other than the first solvent.
  • the second solvent include cyclic carbonates, chain carbonates, and cyclic carboxylic acid esters.
  • the cyclic ester carbonate include propylene carbonate (PC) and ethylene carbonate (EC).
  • the chain carbonate include jetyl carbonate (DEC), ethinoremethinolecarbonate (EMC), and dimethenorecarbonate (DMC).
  • Examples of the cyclic carboxylic acid ester include ⁇ -petite rataton (GBL) and ⁇ -valerolatatone (GVL).
  • the amount of the second solvent is preferably 90% by volume or less of the nonaqueous solvent, more preferably 60% by volume or less.
  • a group strength comprising a separator containing polytetrafluoroethylene or a separator containing an electron-withdrawing substituent and a inorganic filler, a fluorine-containing aromatic solvent, and a fluorine-containing carbonate ester.
  • a combination with a non-aqueous electrolyte containing at least one non-aqueous solvent selected is preferred.
  • a separator containing a material containing an electron-withdrawing substituent and an inorganic filler, and a group consisting of a fluorine-containing aromatic solvent and a fluorine-containing carbonate is selected and contains at least one non-aqueous solvent.
  • a combination with a water electrolyte is more preferred.
  • a combination with a nonaqueous electrolyte containing a nonaqueous solvent is particularly preferred.
  • solute dissolved in the non-aqueous solvent a solute common in the field can be used.
  • a solute common in the field can be used.
  • chloroborane lithium such as LiI, Li B CI, bis (1,2-benzenediolate (2
  • Lithium borate bis (2, 3 Naphthalenediolate (2—) — O, 0,) Lithium borate, bis (2, 2, — Biphenyl-diolate (2—) — O , 0,) lithium borate, bis (5 fluoro-2-olate 1 benzenesulfonic acid-O, 0,) borate salts such as lithium borate, lithium bistetrafluoromethanesulfonate imido ((CF SO) NLi), tet
  • the nonaqueous electrolyte preferably contains a cyclic carbonate having at least one carbon-carbon unsaturated bond. This is because such a cyclic carbonate is decomposed on the negative electrode to form a film having high lithium ion conductivity, and therefore, the charge / discharge efficiency can be increased.
  • the amount of the cyclic carbonate having at least one carbon-carbon unsaturated bond is preferably 10% by volume or less of the nonaqueous solvent.
  • Examples of cyclic carbonates having at least one carbon-carbon unsaturated bond include vinylene carbonate, 4-methylbinylene carbonate, 4,5-dimethylvinylene force-bonate, 4-ethyl vinylene carbonate, 4, 5— Examples include jetyl vinylene carbonate, 4-propyl vinylene carbonate, 4,5-dipropyl vinylene carbonate, 4-phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl vinylene carbonate, and dibutylene ethylene carbonate. . These may be used alone or in combination of two or more. Among these, at least one selected from the group power of bilene carbonate, butyl ethylene carbonate, and dibule ethylene carbonate is preferable.
  • the non-aqueous electrolyte may contain a known benzene derivative that decomposes during overcharge to form a film on the electrode and inactivate the battery.
  • a known benzene derivative that decomposes during overcharge to form a film on the electrode and inactivate the battery.
  • the benzene derivative a compound having a phenyl group and a cyclic compound group adjacent to the phenyl group is preferable.
  • cyclic compound group a fluorine group, a cyclic ether group, a cyclic ester group, a cycloalkyl group, a phenoxy group and the like are preferable.
  • Specific examples of the benzene derivative include hexylbenzene, biphenyl, diphenyl ether and the like. These may be used alone or in combination of two or more. However, the content of the benzene derivative is preferably 10% by volume or less of the non-aqueous solvent.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode active material layer carried thereon.
  • the positive electrode active material layer includes a positive electrode active material capable of inserting and extracting lithium ions, a binder, a conductive agent, and the like.
  • Examples of the positive electrode active material include Li CoO, Li NiO, Li MnO, Li Co Ni O, Li x 2 x 2 x 2 x y 1-y 2 x
  • Li [Ni Mn] 0 is preferably used.
  • the negative electrode includes, for example, a negative electrode current collector and a negative electrode active material layer carried thereon.
  • the negative electrode active material layer includes a negative electrode active material capable of inserting and extracting lithium ions, a binder, and a conductive agent as necessary.
  • Examples of the negative electrode active material include graphite such as natural graphite (such as flake graphite) and artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, carbon Fibers, metal fibers, alloys, lithium metals, tin compounds, silicides, and nitrides can be used.
  • graphite such as natural graphite (such as flake graphite) and artificial graphite
  • carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • carbon Fibers metal fibers, alloys, lithium metals, tin compounds, silicides, and nitrides can be used.
  • binder used for the positive electrode and the negative electrode examples include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and tetrafluoroethylene monohexafluoropropylene.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • tetrafluoroethylene monohexafluoropropylene A polymer (FEP), a vinylidene fluoride hexafluoropropylene copolymer, or the like is used.
  • FEP polymer
  • the binder added to the positive electrode contains a fluorine atom.
  • the binder added to the negative electrode preferably does not contain a fluorine atom.
  • the conductive agent included in the electrode for example, carbon blacks such as graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, carbon fiber, and metal fiber are used. .
  • the positive electrode current collector for example, a powerful sheet such as stainless steel, aluminum, or titanium is used.
  • a sheet having strength such as stainless steel, nickel and copper is used.
  • the thickness of the positive electrode current collector and the negative electrode current collector is not particularly limited, but is generally 1 to 500 ⁇ m.
  • the end-of-charge voltage of the nonaqueous electrolyte secondary battery of the present invention is preferably set to 4.3 to 4.6V. That is, in a system (for example, a mobile phone or a personal computer) equipped with the nonaqueous electrolyte battery of the present invention and a charger for charging the battery, the end-of-charge voltage in the charger is 4.3 to 4.6 V. Preferably it is set.
  • FIG. 2 shows a block diagram of an exemplary configuration of a charger that controls the charging of the battery.
  • the charger shown in Fig. 2 is also equipped with a discharge control device.
  • the nonaqueous electrolyte secondary battery 30 of the present invention and the current detector 31 are connected in series.
  • a voltage detector 32 is connected in parallel to a circuit in which the battery 30 and the current detector 31 are connected in series.
  • the charger includes input terminals 36a and 36b for charging the battery 30, and output terminals 37a and 37b connected to the device.
  • the charger also includes a switching switch 35 connected in series with the battery 30. The switch 35 is switched to the charge control unit 33 side during charging, and is switched to the discharge control unit 34 side during discharging.
  • the end-of-charge voltage When the end-of-charge voltage is lower than 4.3 V, the positive electrode active material does not expand so much that the non-aqueous electrolyte does not enter the electrode so much that the charging reaction proceeds more on the electrode surface, causing a local voltage increase. Arise. For this reason, the nonaqueous solvent may be oxidatively decomposed, and metallic force thione may be eluted from the positive electrode active material.
  • the end-of-charge voltage is higher than 4.6 V, the local voltage rise can be suppressed, but the voltage is too high, so that oxidative decomposition of the non-aqueous solvent occurs and the metal cation may elute in the active material power. is there.
  • TriFB l, 2, 3—Trifluorobenzene
  • TeFB l, 2, 3, 4-tetrafluorobenzene
  • PFB Pentafluorobenzene
  • TFT , a, ⁇ trifluorotoluene
  • FEC Fluoroethylene carbonate
  • TriFEC trifluoroethylene carbonate
  • TeFEC Tetrafluoroethylene carbonate
  • DFGBL a, a Jifunoreoro ⁇ Buchirorataton
  • FGVL a—Funoleor ⁇ —Valerolataton
  • DFGVL a, a- Jifunoreoro one ⁇ - Barerorataton
  • a separator made of polytetrafluoroethylene (PTFE) (BSPO 105565-3 manufactured by Gore-Tex) was used.
  • the separator thickness is 54 m and its porosity is 61% o
  • FIG. 1 A cylindrical battery as shown in Fig. 1 was created.
  • a positive electrode plate 11, a negative electrode plate 12, and a separator 13 disposed between the positive electrode plate 11 and the negative electrode plate 12 were wound in a spiral shape to produce an electrode plate group.
  • the electrode plate group was housed in a nickel-plated iron battery case 18.
  • One end of the positive electrode lead 14 made of aluminum was connected to the positive electrode plate 11, and the other end of the positive electrode lead 14 was connected to the back surface of the sealing plate 19 that was conducted to the positive electrode terminal 20.
  • One end of the negative electrode lead 15 made of the gasket was connected to the negative electrode plate 12, and the other end of the negative electrode lead 15 was connected to the bottom of the battery case 18.
  • An upper insulating plate 16 is provided above the electrode plate group, and a lower insulating plate 17 is provided below the electrode plate group.
  • a predetermined amount of the non-aqueous electrolyte 1 (not shown) prepared as described above was poured into the battery case 18.
  • the opening end of the battery case 18 was caulked to the sealing plate 19 via the gasket 21, and the opening of the battery case 18 was sealed to complete the battery 1.
  • the design capacity of battery 1 was 1500 mAh. In the following examples, the battery design capacity was set to 1500 mAh.
  • Batteries 2 to 22 were obtained in the same manner as Battery 1, except that nonaqueous electrolytes 2 to 22 were used instead of nonaqueous electrolyte 1.
  • Non-aqueous electrolyte A in which LiPF was dissolved at a concentration of OmolZL.
  • Comparative battery 1 was obtained in the same manner as battery 1, except that a separator (a hypopore made by Asahi Kasei Chemicals Co., Ltd., thickness: 20 ⁇ m) that also has a styrene (PE) force was used.
  • a separator a hypopore made by Asahi Kasei Chemicals Co., Ltd., thickness: 20 ⁇ m
  • PE styrene
  • a comparative battery 2 was obtained in the same manner as the battery 1 except that.
  • Comparative battery 3 was obtained in the same manner as battery 9, except that a separator having high PE strength (Hypore made by Asahi Kasei Chemicals Corporation, thickness 20 ⁇ m) was used.
  • Comparative battery 4 was obtained in the same manner as battery 1 except that nonaqueous electrolyte A was used.
  • the batteries 1 to 22 and the comparative batteries 1 to 4 manufactured as described above were charged at a constant voltage of 4.3V.
  • the charged battery was stored at 85 ° C for 72 hours.
  • the central part of the negative electrode plate was cut into a size of 2 cm ⁇ 2 cm, and the obtained fragment was washed 3 times with ethyl methyl carbonate.
  • the amount of metal eluted from the positive electrode and deposited on the negative electrode was quantified.
  • the results are shown in Table 1.
  • the amount of deposited metal is converted to the amount per unit weight of the negative electrode.
  • each battery is charged at 20 ° C at a constant current of 1050 mA until the battery voltage reaches 4.3 V, and then charged at a constant voltage of 4.3 V for 2 hours and 30 minutes. 'Used for constant voltage charging.
  • the charged battery was discharged at a discharge current value of 1500 mA (1 C) until the battery voltage dropped to 3.0 V, and the discharge capacity before storage was determined.
  • the battery after storage was first discharged at 20 ° C with a current value of 1C, and then further discharged with a current value of 0.2C.
  • the discharged battery is charged as described above at a constant current of 1050 mA until the battery voltage reaches 4.3 V, and then charged at a constant voltage of 4.3 V for 2 hours and 30 minutes. did.
  • the charged battery was discharged at a current value of 1 C until the battery voltage dropped to 3. OV.
  • the discharge capacity at this time was defined as a recovery capacity after storage.
  • Table 1 also shows the types of separators used.
  • the non-aqueous solvent contains the first solvent, and the separator has a polytetrafluoroethylene force containing an electron-withdrawing substituent. It can be seen that the amount of deposited metal decreases and the capacity recovery rate after storage is good.
  • the oxidative decomposition of the separator itself is suppressed.
  • the non-aqueous solvent contains a fluorine-containing cyclic compound, the wettability of the separator to the non-aqueous electrolyte is improved, and the oxidative decomposition of the non-aqueous electrolyte can be suppressed. It is presumed that both of these effects suppressed the positive electrode force from leaching out metal cations, and the above results were obtained.
  • the non-aqueous solvent contains at least one selected from the group consisting of a fluorine-containing aromatic solvent and a fluorine-containing cyclic carbonate
  • storage characteristics were excellent.
  • the fluorine-containing aromatic solvent and the fluorine-containing cyclic carbonate can greatly reduce the surface tension of the nonaqueous electrolyte. For this reason, the wettability of the separator to the non-aqueous electrolyte is improved, the local voltage rise is suppressed, and the voltage is leveled in the electrode plate group. Therefore, it is considered that the oxidative decomposition of the non-aqueous solvent was remarkably suppressed even when the battery was stored at a high voltage and high temperature.
  • Batteries 23 to 39 were produced in the same manner as the battery 9 except that a separator having material strength as shown in Table 2 was used.
  • PCTFE Polychlorinated trifluoroethylene
  • FEP Tetrafluoroethylene monohexafluoropropylene copolymer
  • PET Polyethylene terephthalate
  • PBT Polybutylene terephthalate
  • ASA Acrylonitrile / Styrene / Atylate Copolymer
  • PAN-containing insulating layer Insulating layer that also works with polymer (PAN) containing acrylonitrile units and alumina
  • PVDF-containing insulating layer Insulating layer made of polyvinylidene fluoride (PVDF) and alumina
  • PES-containing insulating layer insulating layer comprising polyethersulfone (PES) and alumina [0089] These separators were prepared as described above.
  • the gel-like molded product was biaxially stretched at a predetermined magnification to obtain a molded product.
  • the resulting molded product was then washed with a detergent until the residual solvent was less than 1% by weight of the molded product.
  • the cleaning agent was appropriately changed depending on the type of solvent used. Thereafter, the molded product was dried to remove the cleaning agent.
  • the dried molded product was heat set at a temperature of 100 ° C or higher to obtain a separator.
  • These separators had a thickness of 54 ⁇ m and a porosity of 61%.
  • the PAN-containing insulating layer, the PVDF-containing insulating layer, and the PES-containing insulating layer were produced by the following procedure.
  • polyvinylidene fluoride solid content concentration 8 PVDF-containing insulating layer and PES-containing insulating layer were formed in the same manner as described above except that polyethersulfone (solid content concentration: 8% by weight) was used.
  • Batteries 37 to 39 each having an electron-withdrawing substituent-containing polymer and an inorganic filler insulating layer, also have a high capacity recovery rate with less metal deposition compared to other batteries. O This insulating layer has a high resistance to reduction because it contains many inorganic fillers. For this reason, it is considered that the reductive decomposition of the separator was suppressed.
  • the storage characteristics of the battery 37 having an insulating layer made of a polymer containing an acrylonitrile unit and an inorganic filler were particularly excellent. This is because when the polymer containing an acrylonitrile unit is contained in the insulating layer, the dispersibility of the polymer and the inorganic filler polymer in the insulating layer is excellent, and thus the effect of suppressing the reductive decomposition of the separator is enhanced. Escaped.
  • Battery 9 and Battery 37 are the same except that a reduction-resistant membrane (Hypore made by Asahi Kasei Chemicals Co., Ltd., thickness 20 m) with polyethylene (PE) force is placed between the separator and the negative electrode. Thus, batteries 40 and 42 were produced.
  • a reduction-resistant membrane (Celgard 2400, manufactured by Celgard Co., Ltd., thickness 25 m) with polypropylene (PP) force was placed between the separator and the negative electrode.
  • PP polypropylene
  • batteries 40 and 42 in which a PE-resistant reduction-resistant film is further arranged between the separator and the negative electrode and the PP-resistant reduction-resistant film between the separator and the negative electrode are shown.
  • batteries 41 and 43 with more membranes the amount of metal deposited on the negative electrode after storage was less than in batteries 9 and 37.
  • the capacity recovery rates of batteries 40 to 43 were better than those of batteries 9 and 37. This is because it is possible to prevent reduction of the PTFE and PAN-containing insulating layer separator placed on the positive electrode side by placing a film with high reduction resistance and PE strength on the negative electrode side or a film made of PP. It is thought that it was because of.
  • a battery 44 was produced in the same manner as the battery 9, except that a reduction-resistant layer was provided on the negative electrode.
  • the amount of metal deposited on the negative electrode after storage and the capacity recovery rate after storage were measured in the same manner as described above. The results are shown in Table 4. Table 4 also shows the results for battery 9.
  • the non-aqueous solvent contains a fluorine-containing cyclic carbonate and a separator such as PTFE is used, the voltage during charging (that is, the end-of-charge voltage) is 4.3 to 4.6 V.
  • the non-aqueous solvent contains a fluorine-containing aromatic solvent and Z or a fluorine-containing cyclic carboxylic acid ester instead of or in addition to the fluorine-containing carbonate ester, and the separator has an electron-withdrawing property other than PTFE. Even in the case of a material containing a substituent, the same tendency as above was shown.
  • Battery 45 is similar to Battery 9 except that Li [Ni Mn] 0 is used as the positive electrode active material.
  • a comparative battery 5 was produced.
  • a comparative battery 7 was produced.
  • the end-of-charge voltage in the above measurement was set to 4.9V.
  • the amount of Ni and Mn were quantified by ICP emission spectroscopy, and the total amount was defined as the amount of metal deposited on the negative electrode after storage.
  • the separator contains a material containing an electron-withdrawing substituent, the amount of metal deposited on the negative electrode after storage is reduced, and a good capacity recovery rate after storage can be obtained.
  • the nonaqueous electrolyte secondary battery of the present invention can suppress the deterioration of the rate characteristics even after being stored at a high voltage and a high temperature. For this reason, the nonaqueous electrolyte secondary battery of the present invention can be used, for example, as a power source for equipment that may be stored at high temperatures.

Abstract

Disclosed is a nonaqueous electrolyte secondary battery comprising a positive electrode containing an active material which adsorbs and desorbs lithium ions, a negative electrode containing an active material which adsorbs and desorbs lithium ions, a separator arranged between the positive electrode and the negative electrode, and a nonaqueous electrolyte. The separator contains a material having an electron-withdrawing substituent. The nonaqueous electrolyte contains a nonaqueous solvent and a solute dissolved therein, and the nonaqueous solvent contains at least one substance selected from the group consisting of fluorine-containing aromatic solvents, fluorine-containing cyclic carbonic acid esters and fluorine-containing cyclic carboxylic acid esters. By using the separator and the nonaqueous electrolyte in combination, lowering of the rate characteristics of the battery can be suppressed even when the battery is stored at high voltage and high temperature.

Description

明 細 書  Specification
非水電解質二次電池  Nonaqueous electrolyte secondary battery
技術分野  Technical field
[0001] 本発明は、非水電解質二次電池、特に非水電解質二次電池に用いられるセパレ 一タと非水電解質の改良に関する。  [0001] The present invention relates to a separator and a non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery, particularly a non-aqueous electrolyte secondary battery.
背景技術  Background art
[0002] 現在、非水電解質二次電池にお!、ては、高電圧、高工ネルギー密度を有するリチ ゥムイオン二次電池の研究が盛んに行われて 、る。リチウムイオン二次電池にお!、て は、一般的に、 LiCoOなどのリチウム含有遷移金属酸ィ匕物が正極活物質として用い  [0002] Currently, research on lithium ion secondary batteries having high voltage and high energy density has been actively conducted for non-aqueous electrolyte secondary batteries. For lithium ion secondary batteries, lithium-containing transition metal oxides such as LiCoO are generally used as positive electrode active materials.
2  2
られ、炭素材料が負極活物質として用いられ、ポリエチレンまたはポリプロピレンから なる多孔質膜がセパレータとして用いられている。非水電解質は、一般的に、非水溶 媒とそれに溶解した溶質とを含む。非水溶媒としては、環状炭酸エステル、鎖状炭酸 エステル、環状カルボン酸エステルなどが用いられ、溶質としては、六フッ化リン酸リ チウム(LiPF )、四フッ化ホウ酸リチウム(LiBF )などが用いられている。  A carbon material is used as a negative electrode active material, and a porous film made of polyethylene or polypropylene is used as a separator. A non-aqueous electrolyte generally includes a non-aqueous medium and a solute dissolved therein. Examples of non-aqueous solvents include cyclic carbonates, chain carbonates, and cyclic carboxylates. Examples of solutes include lithium hexafluorophosphate (LiPF) and lithium tetrafluoroborate (LiBF). It is used.
6 4  6 4
[0003] 従来より、電池特性を向上させる目的で、正極活物質、負極活物質、セパレータぉ よび非水電解質を改良することが試みられている。セパレータに関しては、例えば、 以下のような改良が行われて!/ヽる。  [0003] Conventionally, in order to improve battery characteristics, attempts have been made to improve the positive electrode active material, the negative electrode active material, the separator, and the nonaqueous electrolyte. For separators, for example, the following improvements have been made!
特許文献 1では、短絡時または異常使用時における電池の安全性をさらに向上さ せるために、ポリテトラフルォロエチレン (PTFE)などの多孔質フッ素榭脂膜と、ポリ エチレン膜またはポリプロピレン膜とを重ねたセパレータを用いることが提案されて ヽ る。特許文献 1においては、セパレータが融点の高いフッ素榭脂膜を含むことにより、 異常発熱時のセパレータの溶融を防ぐことができる。このため、電池の安全性をさら に向上させることができる。  In Patent Document 1, in order to further improve battery safety during short-circuiting or abnormal use, a porous fluororesin film such as polytetrafluoroethylene (PTFE), a polyethylene film, or a polypropylene film is used. It has been proposed to use separators with multiple layers. In Patent Document 1, since the separator includes a fluorine resin film having a high melting point, the separator can be prevented from melting during abnormal heat generation. For this reason, the safety of the battery can be further improved.
[0004] 特許文献 2では、金属リチウムを負極活物質とする電池の安全性をさらに向上させ るために、細孔径が異なる 2層を備えるセパレータを用いることが提案されている。細 孔径の小さい方の層が金属リチウムの樹枝状成長を抑え、それにより、充放電時の 内部短絡とそれに伴う発火を抑制することができる。なお、特許文献 2には、ポリテト ラフルォロエチレン膜と、ポリプロピレン力もなる細孔径の小さい膜とが積層されたセ パレータが開示されて!、る。 [0004] Patent Document 2 proposes to use a separator including two layers having different pore diameters in order to further improve the safety of a battery using metallic lithium as a negative electrode active material. The layer with the smaller pore size suppresses dendritic growth of metallic lithium, thereby suppressing internal short circuit during charging and discharging and the accompanying ignition. Patent Document 2 discloses a polytheto There is disclosed a separator in which a lafluoroethylene membrane and a membrane having a small pore diameter that also has polypropylene strength are laminated.
[0005] 一方で、非水電解質については、例えば、以下のような改良が行われている。  [0005] On the other hand, for nonaqueous electrolytes, for example, the following improvements have been made.
特許文献 3においては、フッ化ベンゼン類を非水電解質に添加することで、サイク ル特性を向上させている。  In Patent Document 3, the cycle characteristics are improved by adding fluorinated benzenes to the nonaqueous electrolyte.
[0006] 特許文献 4では、非水電解質の非水溶媒として、モノフルォロエチレンカーボネート を用いることが提案されている。特許文献 4においては、モノフルォロエチレンカーボ ネートに由来する安定な被膜が負極上に形成されるために、サイクル特性を向上さ せることができる。 [0006] Patent Document 4 proposes to use monofluoroethylene carbonate as a nonaqueous solvent for a nonaqueous electrolyte. In Patent Document 4, since a stable coating derived from monofluoroethylene carbonate is formed on the negative electrode, the cycle characteristics can be improved.
特許文献 1:特開平 5— 205721号公報  Patent Document 1: Japanese Patent Laid-Open No. 5-205721
特許文献 2:特開平 5 - 258741号公報  Patent Document 2: JP-A-5-258741
特許文献 3:特開 2005 - 340026号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-340026
特許文献 4:特開 2004— 063432号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2004-063432
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] リチウム含有遷移金属酸化物を、特に高電圧かつ高温下で保存するときには、そ れを構成する金属の溶出が激しく起こる。このため、リチウム含有遷移金属酸化物か ら溶出した金属原子が負極上に析出して、負極のインピーダンスが上昇したり、セパ レータが目詰まりを起こしたりする。よって、正極活物質としてリチウム含有遷移金属 酸化物を含む電池は、保存後のレート特性が低下する。  [0007] When the lithium-containing transition metal oxide is stored at a high voltage and a high temperature, elution of the metal constituting the lithium-containing transition metal oxide occurs severely. For this reason, metal atoms eluted from the lithium-containing transition metal oxide are deposited on the negative electrode, which increases the impedance of the negative electrode or causes the separator to be clogged. Therefore, a battery including a lithium-containing transition metal oxide as a positive electrode active material has a reduced rate characteristic after storage.
[0008] また、非水溶媒が、特許文献 3で提案されるフッ化ベンゼン類、または特許文献 4で 提案されるモノフルォロエチレンカーボネートを含む場合でも、前述のようなリチウム 含有遷移金属酸化物からの金属原子の溶出を抑制することはできな!ヽ。このため、 上記と同様に、保存後のレート特性が低下する。  [0008] Even when the non-aqueous solvent contains fluorinated benzenes proposed in Patent Document 3 or monofluoroethylene carbonate proposed in Patent Document 4, the above lithium-containing transition metal oxidation The elution of metal atoms from objects cannot be suppressed! For this reason, similarly to the above, the rate characteristic after storage is lowered.
[0009] そこで、本発明は、保存時、特に高電圧かつ高温下で保存したときのレート特性の 低下を低減できる非水電解質二次電池を提供することを目的とする。  Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that can reduce a decrease in rate characteristics during storage, particularly when stored at high voltage and high temperature.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の非水電解質二次電池は、リチウムイオンを吸蔵および放出する活物質を 含有する正極、リチウムイオンを吸蔵および放出する活物質を含有する負極、正極と 負極との間に配置されたセパレータ、および非水電解質を具備する。セパレータは、 電子吸引性の置換基を含む材料を含む。非水電解質は、非水溶媒およびそれに溶 解した溶質を含む。非水溶媒は、含フッ素芳香族系溶媒、含フッ素環状炭酸エステ ル、および含フッ素環状カルボン酸エステルよりなる群カゝら選択される少なくとも 1種 の第 1溶媒を含む。非水溶媒は、含フッ素芳香族系溶媒および含フッ素環状炭酸ェ ステルよりなる群力 選択された少なくとも 1種を含むことが好ましい。上記電子吸引 性の置換基を含む材料は、フッ素原子を含むことが好ましい。また、前記材料は、ポ リテトラフルォロエチレンであることが好ましい。セパレータは、無機フィラーをさらに 含むことが好ましい。 [0010] The nonaqueous electrolyte secondary battery of the present invention comprises an active material that absorbs and releases lithium ions. A positive electrode containing; a negative electrode containing an active material that occludes and releases lithium ions; a separator disposed between the positive electrode and the negative electrode; and a non-aqueous electrolyte. The separator includes a material containing an electron-withdrawing substituent. The non-aqueous electrolyte includes a non-aqueous solvent and a solute dissolved therein. The non-aqueous solvent includes at least one first solvent selected from the group consisting of a fluorinated aromatic solvent, a fluorinated cyclic carbonate, and a fluorinated cyclic carboxylic acid ester. The non-aqueous solvent preferably includes at least one selected from the group consisting of a fluorine-containing aromatic solvent and a fluorine-containing cyclic carbonate. The material containing the electron-withdrawing substituent preferably contains a fluorine atom. The material is preferably polytetrafluoroethylene. The separator preferably further contains an inorganic filler.
[0011] 上記セパレータと負極との間には、耐還元性の膜、または無機フィラーを含む耐還 元性の層が設けられて 、ることが好ま U、。  [0011] It is preferable that a reduction-resistant film or a reduction-resistant layer containing an inorganic filler is provided between the separator and the negative electrode.
[0012] 第 1溶媒の量は、非水溶媒の 10体積%以上であることが好ましい。 [0012] The amount of the first solvent is preferably 10% by volume or more of the non-aqueous solvent.
[0013] 前記正極に含まれる活物質は、 Li[Ni Mn ]0を含むことが好ましい。 [0013] The active material contained in the positive electrode preferably contains Li [Ni Mn] 0.
1/2 3/2 4  1/2 3/2 4
[0014] また、本発明は、上記非水電解質二次電池と、それを充電する充電器を具備し、充 電器における充電終止電圧が 4. 3〜4. 6Vに設定されているシステムに関する。 発明の効果  [0014] The present invention also relates to a system including the nonaqueous electrolyte secondary battery and a charger for charging the nonaqueous electrolyte secondary battery, wherein a charge end voltage in the charger is set to 4.3 to 4.6V. The invention's effect
[0015] 本発明においては、セパレータを構成する材料は、電子吸引性の置換基を含む。  [0015] In the present invention, the material constituting the separator includes an electron-withdrawing substituent.
このような材料においては、電子が非局在化するため、より電子が引き抜かれにくくな り、耐酸化性が向上する。よって、セパレータの酸ィ匕分解を抑制することができる。さ らに、非水溶媒が、含フッ素芳香族系溶媒、含フッ素環状炭酸エステル、および含フ ッ素環状カルボン酸エステルよりなる群力 選択される少なくとも 1種の溶媒を含むた めに、セパレータの非水電解質への濡れ性を向上させることができる。このため、極 板群全体にお ヽて電圧が平準化され、非水溶媒の酸ィ匕分解を防止することもできる 電池のレート特性の低下の 1つの原因は、正極活物質から、リチウム以外の金属原 子がカチオンとして非水電解質に溶出し、その金属が負極上に析出することであると 考えられる。本発明では、電池を高電圧かつ高温下で保存した場合でも、セパレー タゃ非水溶媒の酸化分解を抑制することができる。よって、酸化分解時に生じる電子 が正極活物質に含まれる(リチウム以外の)金属原子に移動して、その金属原子が力 チオンとなって、非水電解質に溶解することを、抑制することができる。よって、電池を 高電圧かつ高温下で保存した場合でも、電池のレート特性の低下を抑制することが 可能となる。 In such a material, since electrons are delocalized, electrons are more difficult to be extracted and oxidation resistance is improved. Therefore, it is possible to suppress the oxidation / decomposition of the separator. Furthermore, since the non-aqueous solvent contains at least one solvent selected from the group consisting of a fluorine-containing aromatic solvent, a fluorine-containing cyclic carbonate, and a fluorine-containing cyclic carboxylate, a separator is used. It is possible to improve the wettability of the nonaqueous electrolyte. For this reason, the voltage is leveled over the entire electrode group, and it is possible to prevent acid / acid decomposition of the non-aqueous solvent. One cause of the deterioration in the rate characteristics of the battery is from the positive electrode active material to other than lithium. It is considered that this metal atom is eluted as a cation into the non-aqueous electrolyte, and the metal is deposited on the negative electrode. In the present invention, even when the battery is stored at high voltage and high temperature, the separator is separated. Oxidative decomposition of non-aqueous solvent can be suppressed. Therefore, it is possible to suppress that electrons generated during oxidative decomposition move to metal atoms (other than lithium) contained in the positive electrode active material and the metal atoms become force thiones and dissolve in the nonaqueous electrolyte. . Therefore, even when the battery is stored at a high voltage and high temperature, it is possible to suppress a decrease in the rate characteristics of the battery.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]実施例で作製した円筒型非水電解質二次電池を概略的に示す縦断面図であ る。  FIG. 1 is a longitudinal sectional view schematically showing a cylindrical non-aqueous electrolyte secondary battery produced in an example.
[図 2]本発明の非水電解質二次電池を組み込んだ充電器の構成を示すブロック図で ある。  FIG. 2 is a block diagram showing a configuration of a charger incorporating the nonaqueous electrolyte secondary battery of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明を実施するための最良の形態について詳述する。 Hereinafter, the best mode for carrying out the present invention will be described in detail.
本発明の非水電解質二次電池は、リチウムイオンを吸蔵および放出する活物質を 含有する正極、リチウムイオンを吸蔵および放出する活物質を含有する負極、前記 正極と前記負極との間に介在させたセパレータ、および非水電解質を具備する。セ ノルータは、電子吸引性の置換基を含む材料を含む。非水電解質は、非水溶媒お よびそれに溶解した溶質を含む。非水溶媒は、含フッ素芳香族系溶媒、含フッ素環 状炭酸エステル、および含フッ素環状カルボン酸エステルよりなる群カゝら選択される 少なくとも 1種の第 1溶媒を含む。  The non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode containing an active material that absorbs and releases lithium ions, a negative electrode that contains an active material that absorbs and releases lithium ions, and is interposed between the positive electrode and the negative electrode. A separator and a non-aqueous electrolyte. Ceno routers include materials that contain electron withdrawing substituents. The nonaqueous electrolyte includes a nonaqueous solvent and a solute dissolved therein. The non-aqueous solvent includes at least one first solvent selected from the group consisting of a fluorine-containing aromatic solvent, a fluorine-containing cyclic carbonate, and a fluorine-containing cyclic carboxylate.
[0018] 一般的に、リチウムイオン二次電池においては、ポリエチレン (PE)またはポリプロピ レン(PP)力もなるセパレータが用いられている。し力し、ポリエチレンおよびポリプロ ピレンは、耐酸ィ匕性が低いため、このような材料力もなるセパレータを含む電池を高 電圧かつ高温下で保存した場合、セパレータが酸化分解する。その際、正極活物質 中のリチウム以外の金属原子力 セパレータの酸ィ匕分解によって生じた電子を受け 取って還元される。電子を受け取った金属原子は、正極活物質から、金属カチオンと して溶出してしまう。ポリエチレンおよびポリプロピレンの耐酸ィ匕性が低いのは、電子 力 S引き抜かれ易い水素原子が、その分子中に多く含まれることが一因として考えられ る。 [0019] セパレータの酸化分解を抑制するには、ポリテトラフルォロエチレン (PTFE)および ポリクロ口トリフルォロエチレン(PCTFE)のような、分子中に電子吸引性の置換基を 含む材料を用いることが効果的である。ハロゲン原子の強い電子吸引性によって、セ パレータを構成している PTFEや PCTFEにおいて、電子が非局在化するため、より 電子が引き抜かれにくくなり、耐酸ィ匕性が向上すると考えられる。 [0018] Generally, in a lithium ion secondary battery, a separator having polyethylene (PE) or polypropylene (PP) force is used. However, since polyethylene and polypropylene have low acid resistance, when a battery including a separator having such material strength is stored at high voltage and high temperature, the separator is oxidatively decomposed. At that time, electrons generated by the acid decomposition of the metallic nuclear separator other than lithium in the positive electrode active material are received and reduced. The metal atoms that receive the electrons are eluted from the positive electrode active material as metal cations. The low acid resistance of polyethylene and polypropylene is thought to be due to the fact that many hydrogen atoms are easily extracted in the molecule. [0019] In order to suppress the oxidative decomposition of the separator, a material containing an electron-withdrawing substituent in the molecule, such as polytetrafluoroethylene (PTFE) and polytetrafluoroethylene (PCTFE), is used. It is effective. Due to the strong electron withdrawing properties of halogen atoms, electrons are delocalized in PTFE and PCTFE, which constitute the separator, making it more difficult for the electrons to be pulled out and improving acid resistance.
[0020] しかし、電子吸引性の置換基を含む材料を含むセパレータは、極性が強いために 、非水電解質に対して濡れにくい。セパレータに非水電解質で濡れていない部分が あると、その部分を挟んで対向する正極部分および負極部分の電圧 (電位差)が局 所的に高くなる。このように電圧が高くなると、高温保存下において、非水溶媒が酸 化分解し、その酸化分解により生じた電子が、正極活物質に含まれるリチウム以外の 金属原子に移動する。これにより、正極活物質力 金属カチオンが溶出するという新 たな問題が生じる。  [0020] However, a separator including a material containing an electron-withdrawing substituent has a strong polarity and thus is difficult to wet with a non-aqueous electrolyte. If the separator has a portion that is not wetted by the nonaqueous electrolyte, the voltage (potential difference) between the positive electrode portion and the negative electrode portion that face each other across the portion is locally increased. When the voltage increases in this manner, the nonaqueous solvent undergoes oxidative decomposition under high temperature storage, and electrons generated by the oxidative decomposition move to metal atoms other than lithium contained in the positive electrode active material. This causes a new problem that the positive electrode active material force metal cations are eluted.
[0021] 以上のような、セパレータおよび非水溶媒の酸ィヒ分解を防止するには、非水溶媒 力 含フッ素芳香族系溶媒、含フッ素環状炭酸エステル、および含フッ素環状カルボ ン酸エステルよりなる群力 選択される少なくとも 1種の第 1溶媒を含み、かつ、セパレ ータが電子吸引性の置換基を含む材料を含むことが非常に有効となる。非水溶媒に 含まれる第 1溶媒は、非水溶媒の表面張力を下げる作用を有するため、電子吸引性 の置換基を含む材料を含むセパレータの、非水電解質への濡れ性が向上する。この ため、局所的な電圧上昇が抑えられて、極板群全体において電圧が平準化する。よ つて、電池を高電圧かつ高温下で保存した場合でも、非水溶媒の酸化分解を抑制 することができる。また、本発明で用いられるセパレータは、それを構成する材料が電 子吸引性の置換基を含むため、耐酸ィ匕性が高い。よって、電池を高電圧かつ高温下 で保存した場合でも、セパレータの酸ィ匕分解を抑制できる。  [0021] In order to prevent the acid-decomposition of the separator and the non-aqueous solvent as described above, the non-aqueous solvent, the fluorinated aromatic solvent, the fluorinated cyclic carbonate, and the fluorinated cyclic carboxylic acid ester are used. It is very effective that the group power contains at least one selected first solvent and the separator contains a material containing an electron-withdrawing substituent. Since the first solvent contained in the non-aqueous solvent has an action of lowering the surface tension of the non-aqueous solvent, the wettability of the separator containing a material containing an electron-withdrawing substituent to the non-aqueous electrolyte is improved. For this reason, a local voltage rise is suppressed and the voltage is leveled in the whole electrode plate group. Therefore, even when the battery is stored at a high voltage and a high temperature, the oxidative decomposition of the nonaqueous solvent can be suppressed. Further, the separator used in the present invention has high acid resistance because the material constituting the separator contains an electron-withdrawing substituent. Therefore, even when the battery is stored at a high voltage and a high temperature, it is possible to suppress the decomposition of the acid in the separator.
上記のような両方の効果によって、正極力 金属カチオンが溶出するのを防止し、 レート特性が低下するのを抑制することができる。  Both effects as described above can prevent the positive electrode force metal cation from eluting and suppress the deterioration of rate characteristics.
[0022] なお、特許文献 1および 2においても、 PTFE力もなる膜力 セパレータとして用いら れている。しかし、 PTFE力もなる膜を用いるだけでは、非水溶媒の酸化分解により、 正極活物質からの金属カチオンが溶出する。このため、保存後の電池のレート特性 が低下する。 [0022] Note that Patent Documents 1 and 2 are also used as a membrane force separator having a PTFE force. However, using only a membrane with PTFE strength, metal cations from the positive electrode active material are eluted by oxidative decomposition of the nonaqueous solvent. Therefore, the rate characteristics of the battery after storage Decreases.
[0023] 特許文献 3のように、非水電解質にフッ化ベンゼン類を含ませた場合、および特許 文献 4のように、非水電解質にモノフルォロエチレンカーボネートを含ませた場合でも 、セパレータの酸ィ匕分解による正極活物質力 の金属カチオンの溶出を抑制するこ とはできない。よって、この場合にも、保存後の電池のレート特性が低下する。  [0023] Even when the nonaqueous electrolyte contains a fluorinated benzene as in Patent Document 3, and when the nonaqueous electrolyte includes monofluoroethylene carbonate as in Patent Document 4, the separator is used. The elution of metal cations due to the positive electrode active material force due to the acid / acid decomposition of the metal cannot be suppressed. Therefore, also in this case, the rate characteristics of the battery after storage are deteriorated.
[0024] セパレータを構成する材料は、電子吸引性の置換基を含む。電子吸引性の置換基 としては、例えば、 F Cl CN SO CO COO CFなど  [0024] The material constituting the separator includes an electron-withdrawing substituent. Examples of electron-withdrawing substituents include F Cl CN SO CO COO CF
2 3 が挙げられる。  2 3
前記電子吸引性の置換基を含む材料としては、電子吸引性の置換基を含むポリマ 一が好ましぐ例えば、ポリテトラフルォロエチレン、ポリクロ口トリフルォロエチレン、テ トラフルォロエチレン パーフルォロアルキルビュルエーテル共重合体、テトラフル ォロエチレン一へキサフルォロプロピレン共重合体、ポリアミド、ポリイミド、ポリアミドィ ミド、ポリエーテルイミド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエ 一テルエーテルケトン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ァク リロ-トリル—スチレン—アタリレート共重合体、アクリロニトリル単位を含むポリマー等 が挙げられる。  As the material containing an electron-withdrawing substituent, a polymer containing an electron-withdrawing substituent is preferred. For example, polytetrafluoroethylene, polychloroethylene, tetrafluoroethylene perfluoro Fluoroalkyl butyl ether copolymer, tetrafluoroethylene monohexafluoropropylene copolymer, polyamide, polyimide, polyamideimide, polyetherimide, polyarylate, polysulfone, polyethersulfone, polyetheretherketone, polyethylene Examples thereof include terephthalate, polybutylene terephthalate, acrylo-tolyl-styrene-acrylate copolymer, and a polymer containing an acrylonitrile unit.
セパレータは、特に分子中に一 Fや一 CFなどのフッ素を含む置換基を有する材料  Separator is a material that has a substituent that contains fluorine such as 1F or 1CF in the molecule.
3  Three
を含むことが好ましい。フッ素原子は電子吸引性が高いため、セパレータの耐酸ィ匕性 がより高くなり、酸ィ匕分解をより抑制できる。  It is preferable to contain. Since fluorine atoms have a high electron withdrawing property, the acid resistance of the separator becomes higher and the acid decomposition can be further suppressed.
[0025] 上記材料の中でも、ポリテトラフルォロエチレン(PTFE)などのフッ素ポリマーが好 ましい。ポリテトラフルォロエチレンは、繰り返し単位中に、電子吸引性の高いフッ素 原子を 4つ含んでいる。よって、ポリテトラフルォロエチレンにおいては、電子がフッ素 原子上に非局在化する。従って、ポリテトラフルォロエチレンからは、電子が引き抜か れに《なり、耐酸ィ匕性が顕著に向上するからである。  [0025] Among the above materials, a fluoropolymer such as polytetrafluoroethylene (PTFE) is preferable. Polytetrafluoroethylene contains four fluorine atoms with high electron-withdrawing properties in the repeating unit. Therefore, in polytetrafluoroethylene, electrons are delocalized on fluorine atoms. Therefore, the electrons are extracted from the polytetrafluoroethylene and the acid resistance is remarkably improved.
[0026] セパレータは、電子吸引性の置換基を含む材料と無機フィラーとを含む絶縁層で あることがさらに好ましい。このような絶縁層は、無機フィラーを含むために耐還元性 が強い。よって、後述するようなセパレータの還元分解を防止することができる。  [0026] The separator is more preferably an insulating layer containing a material containing an electron-withdrawing substituent and an inorganic filler. Such an insulating layer includes an inorganic filler and thus has high reduction resistance. Therefore, the reductive decomposition of the separator as described later can be prevented.
[0027] セパレータが、電子吸引性の置換基を含む材料と無機フィラーとを含む絶縁層で ある場合、電子吸引性の置換基を含む材料は、特に限定されないが、なかでも、ァク リロ-トリル単位を含むポリマーであることが好ましい。前記ポリマーにおいて、アタリ ロニトリル単位の量は、 20モル%以上であることが好ましい。アクリロニトリル単位を含 むポリマーとしては、例えば、ポリアクリロニトリル、ポリアクリロニトリル変性ゴム、アタリ 口-トリル一スチレン一アタリレート共重合体などが挙げられる。 [0027] The separator is an insulating layer containing a material containing an electron-withdrawing substituent and an inorganic filler. In some cases, the material containing an electron-withdrawing substituent is not particularly limited, and among these, a polymer containing an acrylo-tolyl unit is preferable. In the polymer, it is preferable that the amount of atalonitrile unit is 20 mol% or more. Examples of the polymer containing an acrylonitrile unit include polyacrylonitrile, polyacrylonitrile-modified rubber, alicyclic-tolyl monostyrene mono acrylate copolymer and the like.
[0028] 前記材料としてアクリロニトリル単位を含むポリマーを用いることにより、絶縁層にお ける前記材料と無機フィラーとの分散性を向上させることができ、よりセパレータの還 元分解を抑制することができる。  [0028] By using a polymer containing an acrylonitrile unit as the material, the dispersibility between the material and the inorganic filler in the insulating layer can be improved, and reduction decomposition of the separator can be further suppressed.
[0029] 無機フィラーの量は、絶縁層の 80〜99重量%であることが好ましい。無機フィラー の量が 80重量%より少な 、と、絶縁層内部の空隙が減少してリチウムイオン伝導性 が低下することがある。無機フィラーの量が、 99重量%より多くなると、絶縁層自体の 強度が低くなることがある。  [0029] The amount of the inorganic filler is preferably 80 to 99% by weight of the insulating layer. If the amount of the inorganic filler is less than 80% by weight, the voids inside the insulating layer may decrease and the lithium ion conductivity may decrease. If the amount of the inorganic filler exceeds 99% by weight, the strength of the insulating layer itself may be lowered.
[0030] 無機フイラ一としては、アルミナ、チタ-ァ、ジルコユア、マグネシア、シリカなどが挙 げられる。  [0030] Examples of inorganic fillers include alumina, titer, zircoure, magnesia, silica, and the like.
[0031] なお、セパレータが前記絶縁層を含む場合、セパレータは前記絶縁層のみ力 構 成されてもよい。あるいは、セパレータは、前記絶縁層の他に、当該分野で公知の材 料力もなる多孔質膜を含んで 、てもよ 、。  [0031] When the separator includes the insulating layer, the separator may be composed of only the insulating layer. Alternatively, the separator may include, in addition to the insulating layer, a porous film having a material strength known in the art.
[0032] セパレータの厚さは、 0. 5〜300 μ mであることが好ましい。このことは、セパレータ が上記のような絶縁層から構成される場合でも同様である。  [0032] The thickness of the separator is preferably 0.5 to 300 μm. This is the same even when the separator is composed of the insulating layer as described above.
[0033] 電子吸引性の置換基を含む材料を含むセパレータは、負極と直接接しないよう〖こ 配置することが好ましい。前記セパレータは、耐酸化性が高くなる一方で、耐還元性 がやや低下する傾向がある。このため、負極電位が大きく低下すると、前記セパレー タの負極と接する部分が還元され易くなる可能性がある。  [0033] The separator including the material containing an electron-withdrawing substituent is preferably arranged so as not to be in direct contact with the negative electrode. While the separator has high oxidation resistance, the reduction resistance tends to slightly decrease. For this reason, when the negative electrode potential is greatly reduced, the portion of the separator that contacts the negative electrode may be easily reduced.
[0034] 電子吸引性の置換基を含む材料を含むセパレータの還元を防止するために、負極 とセパレータとの間には、耐還元性の膜または無機フィラーを含む耐還元性の層を 配置することが好ましい。  [0034] In order to prevent reduction of the separator containing the material containing an electron-withdrawing substituent, a reduction-resistant film or a reduction-resistant layer containing an inorganic filler is disposed between the negative electrode and the separator. It is preferable.
[0035] 耐還元性の膜としては、例えば、ポリエチレン膜またはポリプロピレン膜などが挙げ られる。耐還元性の層としては、例えば、無機フィラーと所定のポリマーとを含む層な どが挙げられる。耐還元性の層は、負極のセパレータと対向する面に形成してもよい し、セパレータの負極と対向する面に形成してもよい。無機フイラ一としては、上記の ような材料を用いることができる。耐還元性の層に含まれるポリマーの種類は、特に 限定されない。例えば、フッ素ポリマーなどの電子吸引性の置換基を含む材料から なるセパレータが用いられる場合、負極とセパレータとの間に、耐還元性の層を設け ることができる。この場合、耐還元性の層として、上記のような絶縁層を用いることがで きる。 [0035] Examples of the reduction-resistant film include a polyethylene film and a polypropylene film. The reduction-resistant layer is, for example, a layer containing an inorganic filler and a predetermined polymer. And so on. The reduction-resistant layer may be formed on the surface of the negative electrode facing the separator, or may be formed on the surface of the separator facing the negative electrode. As the inorganic filler, the above materials can be used. The type of polymer contained in the reduction resistant layer is not particularly limited. For example, when a separator made of a material containing an electron-withdrawing substituent such as a fluoropolymer is used, a reduction-resistant layer can be provided between the negative electrode and the separator. In this case, the insulating layer as described above can be used as the reduction-resistant layer.
[0036] 耐還元性の膜および無機フィラーを含む耐還元性の層の厚さは、 0. 5〜25 μ mで あることが好ましい。耐還元性の膜および耐還元性の層の厚さが 0. 5 m未満であ ると、例えば、非水電解質二次電池が捲回型の電極群である場合、捲回時の圧力に より、耐還元性の膜または耐還元性の層が押し潰されて、セパレータと負極とが接触 することがある。よって、セパレータの還元を抑制する効果が不十分となる可能性が ある。耐還元性の膜および耐還元性の層の厚さが 25 mより厚くなると、直流抵抗が 大きすぎて、出力特性が低下するおそれがある。  [0036] The thickness of the reduction-resistant layer containing the reduction-resistant film and the inorganic filler is preferably 0.5 to 25 µm. If the thickness of the reduction-resistant film and the reduction-resistant layer is less than 0.5 m, for example, when the non-aqueous electrolyte secondary battery is a wound electrode group, the pressure at the time of winding is reduced. As a result, the reduction-resistant film or the reduction-resistant layer may be crushed and the separator and the negative electrode may come into contact with each other. Therefore, the effect of suppressing reduction of the separator may be insufficient. If the thickness of the reduction-resistant film and the reduction-resistant layer is greater than 25 m, the direct current resistance is too large and the output characteristics may be degraded.
[0037] 以下に、セパレータの作製方法の一例を示す。  [0037] An example of a method for manufacturing a separator is described below.
例えば、電子吸引性の置換基を含むポリマーを、有機溶媒と混合し、ポリマーを溶 融および混練し、押出成形し、その後、延伸、有機溶媒の除去、乾燥、熱セットを施 すことにより、セパレータを得ることができる。  For example, a polymer containing an electron-withdrawing substituent is mixed with an organic solvent, the polymer is melted and kneaded, extruded, and then subjected to stretching, removal of the organic solvent, drying, and heat setting. A separator can be obtained.
例えば、以下のような方法でセパレータを得ることができる。  For example, a separator can be obtained by the following method.
まず、ポリマーと、そのポリマーの良溶媒とを混合して、ポリマーの溶液を調製する。 原料となるポリマーの溶液は、例えば、ポリマーを、所定の溶媒に、加熱溶解するこ とにより調製することができる。なお、溶媒としては、ポリマーを十分に溶解できるもの であれば特に限定されない。例えば、ノナン、デカン、ゥンデカン、ドデカン、流動パ ラフィンなどの脂肪族または環式の炭化水素、またはこれらの炭化水素の沸点と同程 度の沸点を有する鉱油留分などが挙げられる。押出成形後に得られるゲル状成形物 の安定性を向上させるためには、流動パラフィンのような不揮発性の溶媒を用いるこ とが好ましい。  First, a polymer and a good solvent for the polymer are mixed to prepare a polymer solution. The polymer solution as a raw material can be prepared, for example, by dissolving the polymer in a predetermined solvent by heating. The solvent is not particularly limited as long as it can sufficiently dissolve the polymer. Examples thereof include aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, and liquid paraffin, or mineral oil fractions having boiling points similar to those of these hydrocarbons. In order to improve the stability of the gel-like molded product obtained after extrusion molding, it is preferable to use a non-volatile solvent such as liquid paraffin.
[0038] 加熱溶解は、ポリマーを、溶媒中で完全に溶解する温度で撹拌しながら行ってもよ いし、押出機中で均一に混合しながら行ってもよい。ポリマーを溶媒中で撹拌しなが ら溶解する場合、加熱温度は、使用するポリマーおよび溶媒により異なるが、通常は[0038] The dissolution by heating may be performed with stirring at a temperature at which the polymer is completely dissolved in the solvent. However, it may be carried out while uniformly mixing in an extruder. When the polymer is dissolved while stirring in a solvent, the heating temperature varies depending on the polymer and solvent used, but is usually
140〜250。Cの範囲である。 140-250. C range.
[0039] 押出機中で溶解する場合は、まず、押出機に前記ポリマーを供給し、溶融する。溶 融温度は、使用するポリマーの種類によって異なる力 前記ポリマーの融点 + 30〜1 00°Cが好ましい。 [0039] When dissolving in the extruder, first, the polymer is supplied to the extruder and melted. The melting temperature varies depending on the type of polymer used. The melting point of the polymer is preferably 30 to 100 ° C.
次に、この溶融状態のポリマーに、所定の溶媒を供給する。このようにして、溶融し たポリマーを含む溶液を得ることができる。  Next, a predetermined solvent is supplied to the molten polymer. In this way, a solution containing the molten polymer can be obtained.
[0040] 次に、この溶液を押出機のダイよりシート状に押し出した後、冷却してゲル状組成 物を得る。なお、ポリマーの溶液を押出機中で調製した場合、その溶液は、その押出 機カゝらダイ等を介して押し出してもよいし、その溶液を別の押出機に移動させ、ダイ 等を介して押し出してもよ ヽ。 [0040] Next, this solution is extruded into a sheet form from a die of an extruder, and then cooled to obtain a gel-like composition. When a polymer solution is prepared in an extruder, the solution may be extruded through a die or the like from the extruder, or the solution is moved to another extruder and passed through the die or the like. You can push it out.
[0041] 次 、で、冷却することにより、ゲル状成形物が形成される。冷却は、ダイを冷却する 力 またはゲル状シートを冷却することにより行われる。冷却は、少なくとも 50°CZ分 の速度で 90°C以下まで行うことが好ましぐ 80〜30°Cまで行うことがさらに好ましい。 ゲル状シートの冷却方法としては、冷風、冷却水等の冷却媒体に直接接触させる方 法、冷媒媒体で冷却したロールに接触させる方法などを用いることができる。これらの なかでは、冷却ロールを用いる方法が好ま U、。  [0041] Next, by cooling, a gel-like molded product is formed. Cooling is accomplished by cooling the die or by cooling the gel sheet. The cooling is preferably performed at a rate of at least 50 ° CZ to 90 ° C or less, more preferably 80 to 30 ° C. As a method for cooling the gel sheet, a method of directly contacting a cooling medium such as cold air or cooling water, a method of contacting a roll cooled by a refrigerant medium, or the like can be used. Of these, the method using a cooling roll is preferred.
[0042] 次に、このゲル状成形物を、二軸延伸して、成形物を得る。延伸は、ゲル状成形物 を加熱し、通常のテンター法、ロール法、圧延、またはこれらの方法の組合せによつ て、所定の倍率で行う。二軸延伸は、縦横同時延伸または逐次延伸のいずれでもよ いが、特に同時二軸延伸が好ましい。  [0042] Next, the gel-like molded product is biaxially stretched to obtain a molded product. Stretching is performed at a predetermined magnification by heating the gel-like molded product and using a normal tenter method, roll method, rolling, or a combination of these methods. Biaxial stretching may be either longitudinal or transverse simultaneous stretching or sequential stretching, but simultaneous biaxial stretching is particularly preferable.
[0043] 上記で得られた成形物を、洗浄剤で洗浄し、残留する溶媒を除去する。洗浄剤とし ては、易揮発性の溶媒、例えば、ペンタン、へキサン、ヘプタンなどの炭化水素、塩 ィ匕メチレン、四塩ィ匕炭素などの塩素化炭化水素、三フッ化工タンなどのフッ化炭化水 素、ジェチルエーテル、ジォキサンなどのエーテル類等を用いることができる。これら は、単独で用いてもよいし、 2種以上を組み合わせても用いてもよい。なお、これらの 洗浄剤は、前記ポリマーの溶解に用いた溶媒に応じて、適宜選択される。 [0044] 成形物の洗浄方法には、例えば、成形体を所定の洗浄剤に浸漬して残留溶媒を 抽出する方法、洗浄剤を成形物にシャワーする方法、またはこれらの組合せによる方 法などが挙げられる。成形物の洗浄は、成形物中の残留溶媒が 1重量%未満になる まで行うことが好ましい。 [0043] The molded product obtained above is washed with a cleaning agent to remove the remaining solvent. Cleaning agents include volatile solvents such as hydrocarbons such as pentane, hexane, and heptane, chlorinated hydrocarbons such as salt methylene and tetrasalt carbon, and fluorides such as trifluoromethane. Ethers such as hydrocarbon, jetyl ether and dioxane can be used. These may be used alone or in combination of two or more. These cleaning agents are appropriately selected according to the solvent used for dissolving the polymer. [0044] Examples of the method of cleaning the molded product include a method of immersing the molded product in a predetermined cleaning agent to extract the residual solvent, a method of showering the cleaning product on the molded product, or a method of combining these. Can be mentioned. The molded product is preferably washed until the residual solvent in the molded product is less than 1% by weight.
[0045] その後、成形物を乾燥して、洗浄剤を除去する。その乾燥は、例えば、加熱乾燥、 風乾などの方法を用いて行うことができる。  [0045] Thereafter, the molded product is dried to remove the cleaning agent. The drying can be performed using a method such as heat drying or air drying.
[0046] 最後に、乾燥後の成形物に、 100°C以上の温度で、熱セットを行うことにより、高強 度の微多孔膜であるセパレータを得ることができる。  [0046] Finally, a high-strength microporous membrane separator can be obtained by heat-setting the molded product after drying at a temperature of 100 ° C or higher.
[0047] 第 1溶媒は、含フッ素芳香族系溶媒、含フッ素環状炭酸エステル、および含フッ素 環状カルボン酸エステルよりなる群カゝら選択される少なくとも 1種を含む。  [0047] The first solvent includes at least one selected from the group consisting of a fluorine-containing aromatic solvent, a fluorine-containing cyclic carbonate, and a fluorine-containing cyclic carboxylate.
含フッ素芳香族系溶媒としては、例えば、フルォロベンゼン、 1 , 2—ジフルォロベン ゼン、 1 , 2, 3 トリフルォロベンゼン、 1 , 2, 3, 4ーテトラフルォロベンゼン、ペンタフ ノレォロベンゼン、へキサフノレオ口ベンゼン、 2—フノレオロトノレェン、および a , a , a トリフルォロトルエンが挙げられる。なかでも、フルォロベンゼンおよびへキサフル ォロベンゼンが好まし 、。  Fluorine-containing aromatic solvents include, for example, fluorobenzene, 1,2-difluorobenzene, 1,2,3 trifluorobenzene, 1,2,3,4-tetrafluorobenzene, pentafluorobenzene, hexafluoroolefin Benzene, 2-funoleorotolenene, and a 1, a 2, a trifluorotoluene. Of these, fluorobenzene and hexafluorobenzene are preferred.
[0048] 含フッ素環状炭酸エステルとしては、例えば、フルォロエチレンカーボネート、ジフ ルォロエチレンカーボネート、トリフルォロエチレンカーボネート、テトラフルォロェチ レンカーボネート、トリフルォロプロピレンカーボネートが挙げられる。なかでも、フル ォロエチレンカーボネートおよびトリフルォロプロピレンカーボネートが好ましい。  [0048] Examples of the fluorine-containing cyclic carbonate include fluoroethylene carbonate, difluoroethylene carbonate, trifluoroethylene carbonate, tetrafluoroethylene carbonate, and trifluoropropylene carbonate. Of these, fluoroethylene carbonate and trifluoropropylene carbonate are preferable.
[0049] 含フッ素環状カルボン酸エステルとしては、例えば、 a フルオロー γ ブチロラタ トン、 e , —ジフノレオロー γ—ブチ口ラタトン、 —フノレオロー Ί—バレロラタトン、 および α , a—ジフルオロー γ—バレロラタトンが挙げられる。 [0049] Examples of the fluorine-containing cyclic carboxylic acid ester include: a fluoro-γ-butyrolatathone, e, —difunoleol γ-butarate rataton, —funoleoro Ί -valerolataton, and α, a-difluoro-γ-valerolataton.
[0050] 上記のうちでも、第 1溶媒は、含フッ素芳香族系溶媒および含フッ素環状炭酸エス テルよりなる群力 選択される少なくとも 1種を含むことが好ましい。これらの溶媒は、 非水電解質の表面張力を大きく低下させることができる。従って、電子吸引性の置換 基を含む材料を含むセパレータの非水電解質への濡れ性が向上し、局所的な電圧 の上昇が抑えられて、電圧が平準化する。このため、電池を高電圧かつ高温下で保 存した場合でも、非水溶媒の酸化分解を顕著に抑制することができる。 [0051] なかでも、第 1溶媒としては、フルォロベンゼン、へキサフルォロベンゼン、フルォロ エチレンカーボネート、およびトリフルォロプロピレンカーボネートよりなる群から選択 される少なくとも 1種を用いることがさらに好ましい。 [0050] Among the above, the first solvent preferably contains at least one selected from the group force consisting of a fluorine-containing aromatic solvent and a fluorine-containing cyclic carbonate. These solvents can greatly reduce the surface tension of the nonaqueous electrolyte. Accordingly, the wettability of the separator containing the material containing the electron-withdrawing substituent to the non-aqueous electrolyte is improved, the local voltage rise is suppressed, and the voltage is leveled. For this reason, even when the battery is stored at a high voltage and a high temperature, the oxidative decomposition of the nonaqueous solvent can be remarkably suppressed. [0051] Among these, as the first solvent, it is more preferable to use at least one selected from the group consisting of fluorobenzene, hexafluorobenzene, fluoroethylene carbonate, and trifluoropropylene carbonate.
[0052] 第 1溶媒の量は、非水溶媒の 10体積%以上であることが好ましぐ 20体積%以上 であることがさらに好ましい。第 1溶媒の量が 10体積%より少なくなると、非水溶媒の 表面張力を下げる作用が弱まる。このため、電子吸引性の置換基を含む材料を含む セパレータの非水電解質への濡れ性が不均一となり、局所的な電圧上昇による非水 溶媒の酸化分解が生じることがある。第 1溶媒が 2種以上の前記溶媒を含む場合、そ れらの合計量が 10体積%で以上であればょ 、。  [0052] The amount of the first solvent is preferably 10% by volume or more of the non-aqueous solvent, more preferably 20% by volume or more. When the amount of the first solvent is less than 10% by volume, the effect of reducing the surface tension of the non-aqueous solvent is weakened. For this reason, the wettability of the separator containing a material containing an electron-withdrawing substituent to the non-aqueous electrolyte becomes non-uniform, and oxidative decomposition of the non-aqueous solvent may occur due to a local voltage increase. When the first solvent contains two or more kinds of the solvents, the total amount of them should be 10% by volume or more.
[0053] 第 1溶媒の量は、非水溶媒の 50体積%以下であることが好ましぐ 20体積%以下 であることがさらに好ま 、。含フッ素環状炭酸エステルおよび含フッ素環状カルボン 酸エステルの場合、これらの溶媒は高誘電率溶媒で粘度が高い。よって、これらの溶 媒が非水溶媒の 50体積%を超えると、非水電解質のリチウムイオン伝導度が低下し 、その結果、電池のレート特性が低下することがある。含フッ素芳香族系溶媒は、そ れ自体では LiPF等のリチウム塩を解離させることが困難である。よって、含フッ素芳  [0053] The amount of the first solvent is preferably 50% by volume or less of the nonaqueous solvent, more preferably 20% by volume or less. In the case of a fluorine-containing cyclic carbonate and a fluorine-containing cyclic carboxylate, these solvents are high dielectric constant solvents and have a high viscosity. Therefore, when these solvents exceed 50% by volume of the non-aqueous solvent, the lithium ion conductivity of the non-aqueous electrolyte is lowered, and as a result, the rate characteristics of the battery may be lowered. Fluorine-containing aromatic solvents themselves are difficult to dissociate lithium salts such as LiPF. Therefore, fluorine-containing
6  6
香族系溶媒が非水溶媒の 50体積%を超えると、リチウム塩が析出してしまう可能性 がある。なお、第一溶媒が含フッ素環状炭酸エステルまたは含フッ素環状カルボン酸 エステルと、含フッ素芳香族系溶媒とを含む場合は、第 1溶媒の量の上限値は 50体 積0 /0を超えてもよい。 If the aromatic solvent exceeds 50% by volume of the non-aqueous solvent, the lithium salt may be precipitated. In the case where the first solvent comprises a fluorinated cyclic carbonate or a fluorine-containing cyclic carboxylic acid ester, a fluorinated aromatic solvent, the upper limit of the amount of first solvent to exceed 50 body product 0/0 Also good.
[0054] 非水溶媒は、上記第 1溶媒以外の第 2溶媒を含むことが好ましい。第 2溶媒としては 、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが挙 げられる。ここで、環状炭酸エステルとしては、プロピレンカーボネート(PC)、ェチレ ンカーボネート (EC)などが挙げられる。鎖状炭酸エステルとしては、ジェチルカーボ ネート(DEC)、ェチノレメチノレカーボネート (EMC)、ジメチノレカーボネート (DMC)な どが挙げられる。また、環状カルボン酸エステルとしては、 γ—プチ口ラタトン (GBL) 、 γ —バレロラタトン(GVL)などが挙げられる。  [0054] The non-aqueous solvent preferably contains a second solvent other than the first solvent. Examples of the second solvent include cyclic carbonates, chain carbonates, and cyclic carboxylic acid esters. Here, examples of the cyclic ester carbonate include propylene carbonate (PC) and ethylene carbonate (EC). Examples of the chain carbonate include jetyl carbonate (DEC), ethinoremethinolecarbonate (EMC), and dimethenorecarbonate (DMC). Examples of the cyclic carboxylic acid ester include γ-petite rataton (GBL) and γ-valerolatatone (GVL).
第 2溶媒の量は、非水溶媒の 90体積%以下であることが好ましぐ 60体積%以下 であることがさらに好ましい。 [0055] 本発明において、ポリテトラフルォロエチレンを含むセパレータまたは電子吸引性 の置換基を含む材料および無機フィラーを含むセパレータと、含フッ素芳香族系溶 媒および含フッ素炭酸エステルよりなる群力 選択される少なくとも 1種の非水溶媒を 含む非水電解質との組合せが好まし ヽ。 The amount of the second solvent is preferably 90% by volume or less of the nonaqueous solvent, more preferably 60% by volume or less. [0055] In the present invention, a group strength comprising a separator containing polytetrafluoroethylene or a separator containing an electron-withdrawing substituent and a inorganic filler, a fluorine-containing aromatic solvent, and a fluorine-containing carbonate ester. A combination with a non-aqueous electrolyte containing at least one non-aqueous solvent selected is preferred.
なかでも、電子吸引性の置換基を含む材料および無機フィラーを含むセパレータと 、含フッ素芳香族系溶媒および含フッ素炭酸エステルよりなる群力 選択される少な くとも 1種の非水溶媒を含む非水電解質との組合せがさらに好ましい。電子吸引性の 置換基を含む材料および無機フィラーを含むセパレータと、フルォロベンゼン、へキ サフルォロベンゼン、フルォロエチレンカーボネート、およびトリフルォロプロピレン力 ーボネートよりなる群力 選択される少なくとも 1種の非水溶媒を含む非水電解質との 組合せが特に好ましい。  Among them, a separator containing a material containing an electron-withdrawing substituent and an inorganic filler, and a group consisting of a fluorine-containing aromatic solvent and a fluorine-containing carbonate, is selected and contains at least one non-aqueous solvent. A combination with a water electrolyte is more preferred. A separator containing an electron-withdrawing substituent and an inorganic filler, and a group force consisting of fluorobenzene, hexafluorobenzene, fluoroethylene carbonate, and trifluoropropylene power-at least one selected A combination with a nonaqueous electrolyte containing a nonaqueous solvent is particularly preferred.
[0056] 非水溶媒に溶解する溶質としては、当該分野で一般的な溶質を用いることができる 。例えば、 LiPF、 LiCIO、 LiBF、 LiAlCl、 LiSbF、 LiSCN、 LiCF SO、 LiCF [0056] As the solute dissolved in the non-aqueous solvent, a solute common in the field can be used. For example, LiPF, LiCIO, LiBF, LiAlCl, LiSbF, LiSCN, LiCF SO, LiCF
6 4 4 4 6 3 3 3 6 4 4 4 6 3 3 3
CO、 Li(CF SO )、 LiAsF、 LiB CI 、低級脂肪族カルボン酸リチウム、 LiCl、 Li CO, Li (CFSO), LiAsF, LiBCI, lower aliphatic lithium carboxylate, LiCl, Li
2 3 2 2 6 10 10  2 3 2 2 6 10 10
Br、: LiI、Li B CI のようなクロロボランリチウム、ビス(1, 2—ベンゼンジォレート(2  Br ,: chloroborane lithium such as LiI, Li B CI, bis (1,2-benzenediolate (2
2 10 10  2 10 10
— )— O, 0,)ほう酸リチウム、ビス(2, 3 ナフタレンジォレート(2— )— O, 0,)ほう 酸リチウム、ビス(2, 2,—ビフエ-ルジォレート(2— )— O, 0,)ほう酸リチウム、ビス( 5 フルオロー 2—ォレート 1 ベンゼンスルホン酸—O, 0,)ほう酸リチウム等の ほう酸塩類、ビステトラフルォロメタンスルホン酸イミドリチウム((CF SO ) NLi)、テト  —) — O, 0,) Lithium borate, bis (2, 3 Naphthalenediolate (2—) — O, 0,) Lithium borate, bis (2, 2, — Biphenyl-diolate (2—) — O , 0,) lithium borate, bis (5 fluoro-2-olate 1 benzenesulfonic acid-O, 0,) borate salts such as lithium borate, lithium bistetrafluoromethanesulfonate imido ((CF SO) NLi), tet
3 2 2 ラフルォロメタンスルホン酸ノナフルォロブタンスルホン酸イミドリチウム(LiN (CF SO  3 2 2 Lifluoromethanesulfonic acid nonafluorobutane sulfonic acid imidolithium (LiN (CF SO
3 Three
) (C F SO ) )、ビスペンタフルォロエタンスルホン酸イミドリチウム((C F SO ) NLi) (C F SO)), lithium bispentafluoroethanesulfonate imide ((C F SO) NLi
2 4 9 2 2 5 2 22 4 9 2 2 5 2 2
)等のイミド塩類を用いることができる。これらは単独で用いてもよいし、 2種以上を組 み合わせて用いてもよい。 ) And other imide salts can be used. These may be used alone or in combination of two or more.
[0057] 非水電解質には、炭素 炭素不飽和結合を少なくとも 1つ有する環状炭酸エステ ルを含有させることが好ましい。このような環状炭酸エステルは、負極上で分解してリ チウムイオン伝導性の高い被膜を形成し、よって、充放電効率を高くできるからであ る。この炭素—炭素不飽和結合を少なくとも 1つ有する環状炭酸エステルの量は、非 水溶媒の 10体積%以下であることが好ましい。 [0058] 炭素 炭素不飽和結合を少なくとも 1つ有する環状炭酸エステルとしては、例えば 、ビニレンカーボネート、 4ーメチルビ二レンカーボネート、 4, 5—ジメチルビ二レン力 ーボネート、 4ーェチルビ二レンカーボネート、 4, 5—ジェチルビ二レンカーボネート 、 4 プロピルビニレンカーボネート、 4, 5—ジプロピルビニレンカーボネート、 4ーフ ェニルビ二レンカーボネート、 4, 5—ジフエ二ルビ二レンカーボネート、ビニノレエチレ ンカーボネート、およびジビュルエチレンカーボネートが挙げられる。これらは単独で 用いてもよいし、 2種以上を組み合わせて用いてもよい。これらのうちでは、ビ-レン カーボネート、ビュルエチレンカーボネート、およびジビュルエチレンカーボネートよ りなる群力も選ばれる少なくとも 1種が好ましい。 [0057] The nonaqueous electrolyte preferably contains a cyclic carbonate having at least one carbon-carbon unsaturated bond. This is because such a cyclic carbonate is decomposed on the negative electrode to form a film having high lithium ion conductivity, and therefore, the charge / discharge efficiency can be increased. The amount of the cyclic carbonate having at least one carbon-carbon unsaturated bond is preferably 10% by volume or less of the nonaqueous solvent. [0058] Examples of cyclic carbonates having at least one carbon-carbon unsaturated bond include vinylene carbonate, 4-methylbinylene carbonate, 4,5-dimethylvinylene force-bonate, 4-ethyl vinylene carbonate, 4, 5— Examples include jetyl vinylene carbonate, 4-propyl vinylene carbonate, 4,5-dipropyl vinylene carbonate, 4-phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl vinylene carbonate, and dibutylene ethylene carbonate. . These may be used alone or in combination of two or more. Among these, at least one selected from the group power of bilene carbonate, butyl ethylene carbonate, and dibule ethylene carbonate is preferable.
[0059] さらに、非水電解質は、過充電時に分解して電極上に被膜を形成し、電池を不活 性化する公知のベンゼン誘導体を含有してもよい。前記ベンゼン誘導体としては、フ ェニル基および前記フ ニル基に隣接する環状ィ匕合物基を有する化合物が好ましい [0059] Further, the non-aqueous electrolyte may contain a known benzene derivative that decomposes during overcharge to form a film on the electrode and inactivate the battery. As the benzene derivative, a compound having a phenyl group and a cyclic compound group adjacent to the phenyl group is preferable.
。前記環状化合物基としては、フ 二ル基、環状エーテル基、環状エステル基、シク 口アルキル基、フエノキシ基などが好ましい。ベンゼン誘導体の具体例としては、シク 口へキシルベンゼン、ビフエ-ル、ジフエ-ルエーテルなどが挙げられる。これらは単 独で用いてもよいし、 2種以上を組み合わせて用いてもよい。ただし、ベンゼン誘導 体の含有量は、非水溶媒の 10体積%以下であることが好ましい。 . As the cyclic compound group, a fluorine group, a cyclic ether group, a cyclic ester group, a cycloalkyl group, a phenoxy group and the like are preferable. Specific examples of the benzene derivative include hexylbenzene, biphenyl, diphenyl ether and the like. These may be used alone or in combination of two or more. However, the content of the benzene derivative is preferably 10% by volume or less of the non-aqueous solvent.
[0060] 正極は、例えば、正極集電体とその上に担持された正極活物質層を含む。正極活 物質層は、リチウムイオンを吸蔵および放出可能な正極活物質、結着剤、導電剤等 を含む。 [0060] The positive electrode includes, for example, a positive electrode current collector and a positive electrode active material layer carried thereon. The positive electrode active material layer includes a positive electrode active material capable of inserting and extracting lithium ions, a binder, a conductive agent, and the like.
正極活物質としては、例えば、 Li CoO、 Li NiO、 Li MnO , Li Co Ni O、 Li x 2 x 2 x 2 x y 1-y 2 x Examples of the positive electrode active material include Li CoO, Li NiO, Li MnO, Li Co Ni O, Li x 2 x 2 x 2 x y 1-y 2 x
Co M O、 Li Ni M O、 Li Mn O、および Li Mn M O (Mは、 Na、 Mg、 Scゝ y 1-y z x 1-y y z x 2 4 x 2-y y 4 Co M O, Li Ni M O, Li Mn O, and Li Mn M O (M is Na, Mg, Sc ゝ y 1-y z x 1-y y z x 2 4 x 2-y y 4
Y、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Al、 Cr、 Pb、 Sb、および Bよりなる群から選択される 少なくとも一種であり、 x = 0〜l. 2、y=0〜0. 9、z = 2. 0〜2. 3)を用!/、ること力 ^で きる。これらは、単独で用いてもよいし、 2種以上を組み合わせて用いてもよい。なお 、リチウムのモル比を示す X値は、活物質作製直後の値であり、充放電により増減す る。  It is at least one selected from the group consisting of Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, and x = 0 to l.2, y = 0 to 0. 9, z = 2. 0 to 2.3 3) can be used! These may be used alone or in combination of two or more. Note that the X value, which indicates the molar ratio of lithium, is a value immediately after the preparation of the active material, and increases or decreases due to charge / discharge.
[0061] なかでも、 5V程度の高電圧の電池が得られるため、正極活物質としては、 Li[Ni Mn ]0を用いることが好ましい。 [0061] In particular, since a battery having a high voltage of about 5V can be obtained, Li [Ni Mn] 0 is preferably used.
3/2 4  3/2 4
[0062] 負極は、例えば、負極集電体とその上に担持された負極活物質層を含む。負極活 物質層は、リチウムイオンを吸蔵および放出可能な負極活物質、結着剤、必要に応 じて導電剤等を含む。  [0062] The negative electrode includes, for example, a negative electrode current collector and a negative electrode active material layer carried thereon. The negative electrode active material layer includes a negative electrode active material capable of inserting and extracting lithium ions, a binder, and a conductive agent as necessary.
負極活物質には、例えば、天然黒鉛 (鱗片状黒鉛など)、人造黒鉛などの黒鉛類、 アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ラン プブラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維、合金、リ チウム金属、錫化合物、珪化物、および窒化物を用いることができる。  Examples of the negative electrode active material include graphite such as natural graphite (such as flake graphite) and artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, carbon Fibers, metal fibers, alloys, lithium metals, tin compounds, silicides, and nitrides can be used.
[0063] 正極および負極に用いられる結着剤には、例えば、ポリエチレン、ポリプロピレン、 ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リデン(PVDF)、テトラフルォロ エチレン一へキサフルォロプロピレン共重合体(FEP)、フッ化ビ-リデン一へキサフ ルォロプロピレン共重合体などが用いられる。ここで、正極に添加される結着剤は、フ ッ素原子を含むことが好ましぐ負極に添加される結着剤は、フッ素原子を含まないこ とが好ましい。  [0063] Examples of the binder used for the positive electrode and the negative electrode include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and tetrafluoroethylene monohexafluoropropylene. A polymer (FEP), a vinylidene fluoride hexafluoropropylene copolymer, or the like is used. Here, it is preferable that the binder added to the positive electrode contains a fluorine atom. The binder added to the negative electrode preferably does not contain a fluorine atom.
[0064] 電極に含ませる導電剤には、例えば、黒鉛類、アセチレンブラック、ケッチェンブラ ック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等の カーボンブラック類、炭素繊維、および金属繊維が用いられる。  [0064] As the conductive agent included in the electrode, for example, carbon blacks such as graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, carbon fiber, and metal fiber are used. .
[0065] 正極集電体には、例えば、ステンレス鋼、アルミニウム、チタンなど力 なるシートが 用いられる。また、負極集電体には、例えば、ステンレス鋼、ニッケル、銅など力もなる シートが用いられる。正極集電体および負極集電体の厚さは、特に限定されないが、 一般に 1〜500 μ mである。  [0065] For the positive electrode current collector, for example, a powerful sheet such as stainless steel, aluminum, or titanium is used. For the negative electrode current collector, for example, a sheet having strength such as stainless steel, nickel and copper is used. The thickness of the positive electrode current collector and the negative electrode current collector is not particularly limited, but is generally 1 to 500 μm.
[0066] 通常作動状態における、本発明の非水電解質二次電池の充電終止電圧は、 4. 3 〜4. 6Vに設定されていることが好ましい。つまり、本発明の非水電解質電池と、そ れを充電する充電器を具備するシステム (例えば、携帯電話やパーソナルコンビユー タ)において、充電器における充電終止電圧が 4. 3〜4. 6Vに設定されていることが 好ましい。  [0066] In the normal operation state, the end-of-charge voltage of the nonaqueous electrolyte secondary battery of the present invention is preferably set to 4.3 to 4.6V. That is, in a system (for example, a mobile phone or a personal computer) equipped with the nonaqueous electrolyte battery of the present invention and a charger for charging the battery, the end-of-charge voltage in the charger is 4.3 to 4.6 V. Preferably it is set.
[0067] 図 2に、電池の充電を制御する充電器の一例の構成のブロック図を示す。図 2に示 す充電器は、放電制御装置も備えている。 この充電器においては、本発明の非水電解質二次電池 30と電流検出部 31とが直 列に接続されている。電池 30と電流検出部 31とが直列に接続された回路に、電圧 検出部 32が並列に接続されている。 FIG. 2 shows a block diagram of an exemplary configuration of a charger that controls the charging of the battery. The charger shown in Fig. 2 is also equipped with a discharge control device. In this charger, the nonaqueous electrolyte secondary battery 30 of the present invention and the current detector 31 are connected in series. A voltage detector 32 is connected in parallel to a circuit in which the battery 30 and the current detector 31 are connected in series.
さらに、この充電器は、電池 30を充電するための入力端子 36aおよび 36bを備え、 機器に接続される出力端子 37aおよび 37bを備える。また、この充電器は、電池 30 に直列に接続された切換スィッチ 35を備える。スィッチ 35は、充電時には、充電制 御部 33側に切り換えられ、放電時には、放電制御部 34側に切り換えられる。  Further, the charger includes input terminals 36a and 36b for charging the battery 30, and output terminals 37a and 37b connected to the device. The charger also includes a switching switch 35 connected in series with the battery 30. The switch 35 is switched to the charge control unit 33 side during charging, and is switched to the discharge control unit 34 side during discharging.
[0068] LiCoOなどの正極活物質を用いる場合、充電終止電圧が高くなるほど、正極活物 [0068] When a positive electrode active material such as LiCoO is used, the higher the end-of-charge voltage, the higher the positive electrode active material
2  2
質の膨張が大きくなる。このため、非水電解質が電極内部に入り込み易くなり、正極 と非水電解質との接触性が向上する。よって、電極における局所的な電圧上昇が抑 えられて、電圧が平準化する。  Increased quality expansion. For this reason, the nonaqueous electrolyte easily enters the electrode, and the contact property between the positive electrode and the nonaqueous electrolyte is improved. Therefore, the local voltage rise at the electrode is suppressed and the voltage is leveled.
充電終止電圧が 4. 3Vより低いと、正極活物質の膨張が小さいため、非水電解質 が電極内部にあまり入り込めず、充電反応が、電極表面でより多く進行し、局所的な 電圧上昇が生じる。このため、非水溶媒が酸化分解されて、正極活物質から金属力 チオンが溶出することがある。充電終止電圧が 4. 6Vより高いと、局所的な電圧上昇 は抑えられるが、電圧があまりにも高すぎるため、非水溶媒の酸化分解が起こり、正 極活物質力も金属カチオンが溶出することがある。  When the end-of-charge voltage is lower than 4.3 V, the positive electrode active material does not expand so much that the non-aqueous electrolyte does not enter the electrode so much that the charging reaction proceeds more on the electrode surface, causing a local voltage increase. Arise. For this reason, the nonaqueous solvent may be oxidatively decomposed, and metallic force thione may be eluted from the positive electrode active material. When the end-of-charge voltage is higher than 4.6 V, the local voltage rise can be suppressed, but the voltage is too high, so that oxidative decomposition of the non-aqueous solvent occurs and the metal cation may elute in the active material power. is there.
実施例  Example
[0069] 《実施例 1》 [0069] Example 1
(電池 1〜22)  (Battery 1-22)
(i)非水電解液の調製  (i) Preparation of non-aqueous electrolyte
表 1に示される非水溶媒に、 LiPFを 1. OmolZLの濃度で溶解して、非水電解質  Dissolve LiPF at a concentration of 1. OmolZL in the non-aqueous solvent shown in Table 1 to obtain a non-aqueous electrolyte.
6  6
1〜22を調製した。ここで、表 1において、用いた第 1溶媒の略号は、以下の通りであ る。  1-22 were prepared. Here, in Table 1, the abbreviations of the first solvents used are as follows.
FB :フルォロベンゼン  FB: Fluorobenzene
DFB: 1, 2—ジフルォロベンゼン  DFB: 1, 2—Difluorobenzene
TriFB : l, 2, 3—トリフルォロベンゼン  TriFB: l, 2, 3—Trifluorobenzene
TeFB : l, 2, 3, 4ーテトラフルォロベンゼン PFB:ペンタフルォロベンゼン TeFB: l, 2, 3, 4-tetrafluorobenzene PFB: Pentafluorobenzene
HFB:へキサフルォロベンゼン  HFB: Hexafluorobenzene
FT: 2-フルォロトルエン  FT: 2-Fluorotoluene
TFT: , a , α トリフルォロトルエン  TFT:, a, α trifluorotoluene
FEC:フルォロエチレンカーボネート  FEC: Fluoroethylene carbonate
DFEC:ジフノレオ口エチレンカーボネート  DFEC: Diphnoreo mouth ethylene carbonate
TriFEC:トリフルォロエチレンカーボネート  TriFEC: trifluoroethylene carbonate
TeFEC:テトラフルォロエチレンカーボネート  TeFEC: Tetrafluoroethylene carbonate
TFPC:トリフルォロプロピレンカーボネート  TFPC: trifluoropropylene carbonate
FGBL : a—フノレオロー γ—ブチ口ラタトン  FGBL: a-Funoleor γ-Buchiguchi Rataton
DFGBL : a , aージフノレオロー Ί ブチロラタトン DFGBL: a, a Jifunoreoro Ί Buchirorataton
FGVL : a—フノレオロー γ—バレロラタトン  FGVL: a—Funoleor γ—Valerolataton
DFGVL : a , a—ジフノレォロ一 Ί—バレロラタトン DFGVL: a, a- Jifunoreoro one Ί - Barerorataton
[0070] 用いた第 2の溶媒の略号は、以下の通りである。 [0070] Abbreviations of the second solvent used are as follows.
EC:エチレンカーボネート  EC: ethylene carbonate
EMC:ェチルメチルカーボネート  EMC: Ethyl methyl carbonate
DMC:ジメチノレカーボネート  DMC: Dimethylol carbonate
DEC:ジェチノレカーボネート  DEC: Jetinorecarbonate
[0071] (ii)セパレータ [0071] (ii) Separator
ポリテトラフルォロエチレン(PTFE)からなるセパレータ(ゴァテックス社製の BSPO 105565— 3)を用いた。セパレータの厚さは 54 mであり、その多孔度は 61%であ つた o  A separator made of polytetrafluoroethylene (PTFE) (BSPO 105565-3 manufactured by Gore-Tex) was used. The separator thickness is 54 m and its porosity is 61% o
[0072] (iii)正極板の作製  [Iii] Production of positive electrode plate
コバルト酸リチウム粉末 85重量部と、導電剤であるアセチレンブラック 10重量部と、 結着剤であるポリフッ化ビ-リデン榭脂 5重量部とを混合した。この混合物を、脱水 N —メチル一 2—ピロリドンに分散させて、スラリー状の正極合剤を調製した。この正極 合剤を、アルミニウム箔カもなる正極集電体 (厚さ: 15 m)の両面に塗布し、乾燥し 、圧延して、正極板 (厚さ: 160 m)を得た。 [0073] (iv)負極板の作製 85 parts by weight of lithium cobaltate powder, 10 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of polyvinylidene fluoride resin as a binder were mixed. This mixture was dispersed in dehydrated N-methyl-2-pyrrolidone to prepare a slurry positive electrode mixture. This positive electrode mixture was applied to both surfaces of a positive electrode current collector (thickness: 15 m) that also became an aluminum foil, dried and rolled to obtain a positive electrode plate (thickness: 160 m). [0073] (iv) Production of negative electrode plate
人造黒鉛粉末 100重量部と、結着剤であるポリエチレン榭脂 1重量部と、増粘剤で あるカルボキシメチルセルロース 1重量部とを混合した。この混合物に、適量の水を 加えて混練して、スラリー状の負極合剤を調製した。この負極合剤を、銅箔からなる 負極集電体 (厚さ: 10 m)の両面に塗布し、乾燥し、圧延して、負極板 (厚さ: 160 μ m)を得 7こ。  100 parts by weight of artificial graphite powder, 1 part by weight of polyethylene rosin as a binder, and 1 part by weight of carboxymethyl cellulose as a thickener were mixed. An appropriate amount of water was added to this mixture and kneaded to prepare a slurry-like negative electrode mixture. This negative electrode mixture was applied to both sides of a negative electrode current collector (thickness: 10 m) made of copper foil, dried and rolled to obtain a negative electrode plate (thickness: 160 μm).
[0074] (V)円筒型電池の製造 [0074] (V) Manufacture of cylindrical batteries
図 1に示すような円筒型電池を^ aみ立てた。  A cylindrical battery as shown in Fig. 1 was created.
正極板 11、負極板 12、および正極板 11と負極板 12との間に配置されたセパレー タ 13を渦巻状に捲回して、極板群を作製した。極板群はニッケルメツキした鉄製電池 ケース 18内に収容した。アルミニウム製正極リード 14の一端を正極板 11に接続し、 正極リード 14の他端を、正極端子 20に導通した封口板 19の裏面に接続した。 -ッケ ル製負極リード 15の一端を負極板 12に接続し、負極リード 15の他端を、電池ケース 18の底部に接続した。極板群の上部には上部絶縁板 16を、下部には下部絶縁板 1 7をそれぞれ設けた。上記のようにして調製した所定量の非水電解質 1 (図示せず)を 、電池ケース 18内に注液した。電池ケース 18の開口端部を、ガスケット 21を介して 封口板 19にかしめつけて、電池ケース 18の開口部を密封して、電池 1を完成した。 電池 1の設計容量は、 1500mAhとした。なお、以下の実施例でも、電池の設計容量 は、 1500mAhとした。  A positive electrode plate 11, a negative electrode plate 12, and a separator 13 disposed between the positive electrode plate 11 and the negative electrode plate 12 were wound in a spiral shape to produce an electrode plate group. The electrode plate group was housed in a nickel-plated iron battery case 18. One end of the positive electrode lead 14 made of aluminum was connected to the positive electrode plate 11, and the other end of the positive electrode lead 14 was connected to the back surface of the sealing plate 19 that was conducted to the positive electrode terminal 20. -One end of the negative electrode lead 15 made of the gasket was connected to the negative electrode plate 12, and the other end of the negative electrode lead 15 was connected to the bottom of the battery case 18. An upper insulating plate 16 is provided above the electrode plate group, and a lower insulating plate 17 is provided below the electrode plate group. A predetermined amount of the non-aqueous electrolyte 1 (not shown) prepared as described above was poured into the battery case 18. The opening end of the battery case 18 was caulked to the sealing plate 19 via the gasket 21, and the opening of the battery case 18 was sealed to complete the battery 1. The design capacity of battery 1 was 1500 mAh. In the following examples, the battery design capacity was set to 1500 mAh.
[0075] 非水電解質 1の代わりに、非水電解質 2〜22を用いたこと以外、電池 1と同様にし て、電池 2〜22を得た。  [0075] Batteries 2 to 22 were obtained in the same manner as Battery 1, except that nonaqueous electrolytes 2 to 22 were used instead of nonaqueous electrolyte 1.
[0076] 《比較例 1》 [Comparative Example 1]
エチレンカーボネート (EC)とェチルメチルカーボネート (EMC)との混合溶媒(体 積比 1 :4)に、 1. OmolZLの濃度で LiPFを溶解させた非水電解質 Aを用い、ポリエ  Polyethylene was used in a mixed solvent of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) (volume ratio 1: 4) using 1. Non-aqueous electrolyte A in which LiPF was dissolved at a concentration of OmolZL.
6  6
チレン (PE)力もなるセパレータ (旭化成ケミカルズ (株)製のハイポア、厚さ 20 μ m) を用いたこと以外は、電池 1と同様にして、比較電池 1を得た。  Comparative battery 1 was obtained in the same manner as battery 1, except that a separator (a hypopore made by Asahi Kasei Chemicals Co., Ltd., thickness: 20 μm) that also has a styrene (PE) force was used.
[0077] 《比較例 2》 [0077] <Comparative Example 2>
PE力もなるセパレータ (旭化成ケミカルズ (株)製のハイポア、厚さ 20 μ m)を用い たこと以外は、電池 1と同様にして、比較電池 2を得た。 Separator with high PE strength (Hypore made by Asahi Kasei Chemicals Co., Ltd., thickness 20 μm) A comparative battery 2 was obtained in the same manner as the battery 1 except that.
[0078] 《比較例 3》 [0078] <Comparative Example 3>
PE力もなるセパレータ (旭化成ケミカルズ (株)製のハイポア、厚さ 20 μ m)を用い たこと以外は、電池 9と同様にして、比較電池 3を得た。  Comparative battery 3 was obtained in the same manner as battery 9, except that a separator having high PE strength (Hypore made by Asahi Kasei Chemicals Corporation, thickness 20 μm) was used.
[0079] 《比較例 4》 [0079] <Comparative Example 4>
ECと EMCとの混合溶媒 (体積比 1 :4)に、 1. OmolZLの濃度で LiPFを溶解させ  In a mixed solvent of EC and EMC (volume ratio 1: 4), 1. dissolve LiPF at a concentration of OmolZL.
6 た非水電解質 Aを用いたこと以外は、電池 1と同様にして、比較電池 4を得た。  6 Comparative battery 4 was obtained in the same manner as battery 1 except that nonaqueous electrolyte A was used.
[0080] [評価] [0080] [Evaluation]
(a)保存後に負極上に析出した金属量の測定  (a) Measurement of the amount of metal deposited on the negative electrode after storage
以上のようにして製造した電池 1〜22および比較電池 1〜4を、 4. 3Vの定電圧で 充電した。その充電後の電池を、 85°Cで 72時間保存した。  The batteries 1 to 22 and the comparative batteries 1 to 4 manufactured as described above were charged at a constant voltage of 4.3V. The charged battery was stored at 85 ° C for 72 hours.
その後、保存後の電池を分解して、負極板の中央部を 2cm X 2cmのサイズに切断 し、得られた断片をェチルメチルカーボネートで 3回洗浄した。  Thereafter, the battery after storage was disassembled, the central part of the negative electrode plate was cut into a size of 2 cm × 2 cm, and the obtained fragment was washed 3 times with ethyl methyl carbonate.
[0081] 次に、その断片に酸を添加し、加熱して、その断片を溶解させた。不溶分を濾別し た後、定容して測定試料とした。この測定試料を、 ICP発光分光分析装置 (VARIA[0081] Next, an acid was added to the fragment and heated to dissolve the fragment. The insoluble matter was filtered off, and the volume was determined to prepare a measurement sample. This measurement sample was measured using an ICP emission spectrometer (VARIA
N製の VISTA— RL)を用いて、正極から溶出し、負極上に析出した金属の量 (この 場合は Co量)を定量した。結果を表 1に示す。表 1において、析出した金属量 (金属 析出量)は、負極単位重量あたりの量に換算している。 Using N VISTA-RL, the amount of metal eluted from the positive electrode and deposited on the negative electrode (in this case, the amount of Co) was quantified. The results are shown in Table 1. In Table 1, the amount of deposited metal (metal deposition amount) is converted to the amount per unit weight of the negative electrode.
[0082] (b)容量回復率 [0082] (b) Capacity recovery rate
まず、各電池を、 20°Cで、 1050mAの定電流で、電池電圧が 4. 3Vとなるまで充 電し、この後、 4. 3Vの定電圧で、 2時間 30分間充電する、定電流 '定電圧充電に供 した。次に、充電後の電池を、放電電流値 1500mA (1C)で、電池電圧が 3. 0Vに 低下するまで放電し、保存前の放電容量を求めた。  First, each battery is charged at 20 ° C at a constant current of 1050 mA until the battery voltage reaches 4.3 V, and then charged at a constant voltage of 4.3 V for 2 hours and 30 minutes. 'Used for constant voltage charging. Next, the charged battery was discharged at a discharge current value of 1500 mA (1 C) until the battery voltage dropped to 3.0 V, and the discharge capacity before storage was determined.
[0083] 次に、放電後の電池を、上記のようにして、充電した。充電後の電池を、 85°Cで 72 時間保存した。 [0083] Next, the discharged battery was charged as described above. The charged battery was stored at 85 ° C for 72 hours.
保存後の電池を、 20°Cで、まず 1Cの電流値で放電し、その後、 0. 2Cの電流値で さらに放電した。次いで、放電後の電池を上述のようにして、 1050mAの定電流で、 電池電圧が 4. 3Vとなるまで充電し、この後、 4. 3Vの定電圧で、 2時間 30分間充電 した。この後、充電後の電池を、 1Cの電流値で、電池電圧が 3. OVに低下するまで 放電した。このときの放電容量を、保存後の回復容量とした。 The battery after storage was first discharged at 20 ° C with a current value of 1C, and then further discharged with a current value of 0.2C. Next, the discharged battery is charged as described above at a constant current of 1050 mA until the battery voltage reaches 4.3 V, and then charged at a constant voltage of 4.3 V for 2 hours and 30 minutes. did. After this, the charged battery was discharged at a current value of 1 C until the battery voltage dropped to 3. OV. The discharge capacity at this time was defined as a recovery capacity after storage.
保存前の放電容量に対する保存後の回復容量の割合を百分率値として求めた値 を、保存後の容量回復率とした。結果を表 1に示す。  The value obtained as a percentage value of the recovery capacity after storage with respect to the discharge capacity before storage was defined as the capacity recovery rate after storage. The results are shown in Table 1.
なお、表 1には、用いたセパレータの種類についても示す。  Table 1 also shows the types of separators used.
[0084] [表 1] [0084] [Table 1]
Figure imgf000021_0001
Figure imgf000021_0001
[0085] 電池 1〜22の結果より、非水溶媒が第 1溶媒を含み、かつ、セパレータが電子吸引 性の置換基を含むポリテトラフルォロエチレン力 構成されることにより、保存後に負 極上に析出する金属量が減少し、保存後の容量回復率が良好な値となることがわか る。分子中に電子吸引性の置換基を含む PTFEセパレータを用いることで、セパレー タ自体の酸化分解が抑制される。さらに、非水溶媒が含フッ素環状化合物を含むこと により、セパレータの非水電解質への濡れ性が向上し、非水電解質の酸化分解も抑 制できる。これら両方の効果によって、正極力も金属カチオンが溶出するのが抑制さ れ、上記のような結果が得られたと推察される。 [0085] From the results of batteries 1 to 22, the non-aqueous solvent contains the first solvent, and the separator has a polytetrafluoroethylene force containing an electron-withdrawing substituent. It can be seen that the amount of deposited metal decreases and the capacity recovery rate after storage is good. The By using a PTFE separator containing an electron-withdrawing substituent in the molecule, the oxidative decomposition of the separator itself is suppressed. Further, when the non-aqueous solvent contains a fluorine-containing cyclic compound, the wettability of the separator to the non-aqueous electrolyte is improved, and the oxidative decomposition of the non-aqueous electrolyte can be suppressed. It is presumed that both of these effects suppressed the positive electrode force from leaching out metal cations, and the above results were obtained.
[0086] 非水溶媒が、含フッ素芳香族系溶媒および含フッ素環状炭酸エステルよりなる群か ら選択される少なくとも 1種を含む場合に、保存特性 (容量回復率)が優れていた。含 フッ素芳香族系溶媒および含フッ素環状炭酸エステルは、非水電解質の表面張力 を大きく低下させることができる。このため、セパレータの非水電解質への濡れ性が 向上し、局所的な電圧上昇が抑えられて、極板群において電圧が平準化する。よつ て、電池を高電圧かつ高温下で保存した場合でも、非水溶媒の酸化分解が顕著に 抑制できたと考えられる。  [0086] When the non-aqueous solvent contains at least one selected from the group consisting of a fluorine-containing aromatic solvent and a fluorine-containing cyclic carbonate, storage characteristics (capacity recovery rate) were excellent. The fluorine-containing aromatic solvent and the fluorine-containing cyclic carbonate can greatly reduce the surface tension of the nonaqueous electrolyte. For this reason, the wettability of the separator to the non-aqueous electrolyte is improved, the local voltage rise is suppressed, and the voltage is leveled in the electrode plate group. Therefore, it is considered that the oxidative decomposition of the non-aqueous solvent was remarkably suppressed even when the battery was stored at a high voltage and high temperature.
[0087] 《実施例 2》  <Example 2>
(電池 23〜39)  (Battery 23-39)
表 2に示されるような材料力もなるセパレータを用いたこと以外は、電池 9と同様にし て、電池 23〜39を作製した。  Batteries 23 to 39 were produced in the same manner as the battery 9 except that a separator having material strength as shown in Table 2 was used.
これらの電池を用いて、上記と同様にして、保存後に負極上に析出した金属量、お よび保存後の容量回復率を測定した。なお、表 2には、電池 9の結果も示す。  Using these batteries, the amount of metal deposited on the negative electrode after storage and the capacity recovery rate after storage were measured in the same manner as described above. Table 2 also shows the results for battery 9.
[0088] 表 2において、セパレータの材料の略号は、以下の通りである。 [0088] In Table 2, the abbreviations for the material of the separator are as follows.
PCTFE:ポリクロ口トリフルォロエチレン  PCTFE: Polychlorinated trifluoroethylene
PFA:テトラフルォロエチレン パーフルォロアルキルビュルエーテル共重合体 PFA: Tetrafluoroethylene perfluoroalkyl butyl ether copolymer
FEP :テトラフルォロエチレン一へキサフルォロプロピレン共重合体 FEP: Tetrafluoroethylene monohexafluoropropylene copolymer
PA:ポリアミド  PA: Polyamide
PI :ポリイミド  PI: Polyimide
PAI :ポリアミドイミド  PAI: Polyamideimide
PEI :ポリエーテルイミド  PEI: Polyetherimide
PAR:ポリアリレート  PAR: Polyarylate
PSF:ポリスルホン PES:ポリエーテルスルホン PSF: Polysulfone PES: Polyethersulfone
PEEK:ポリエーテルエーテルケトン  PEEK: Polyetheretherketone
PET:ポリエチレンテレフタレート  PET: Polyethylene terephthalate
PBT:ポリブチレンテレフタレート  PBT: Polybutylene terephthalate
ASA:アクリロニトリル一スチレン一アタリレート共重合体  ASA: Acrylonitrile / Styrene / Atylate Copolymer
PAN含有絶縁層:アクリロニトリル単位を含むポリマー(PAN)とアルミナと力もなる 絶縁層  PAN-containing insulating layer: Insulating layer that also works with polymer (PAN) containing acrylonitrile units and alumina
PVDF含有絶縁層:ポリフッ化ビ-リデン (PVDF)とアルミナとからなる絶縁層 PVDF-containing insulating layer: Insulating layer made of polyvinylidene fluoride (PVDF) and alumina
PES含有絶縁層:ポリエーテルスルホン (PES)とアルミナとからなる絶縁層 [0089] これらのセパレータについては、上記のようにして作製した。 PES-containing insulating layer: insulating layer comprising polyethersulfone (PES) and alumina [0089] These separators were prepared as described above.
各種ポリマーを、所定の有機溶媒に溶解し、ポリマーの溶液を調製した。この溶液 を押出機のダイよりシート状に押し出した。次いで、押し出されたシートを、 50°CZ分 の冷却速度で、 90°C以下になるまで冷却して、ゲル状組成物を得た。  Various polymers were dissolved in a predetermined organic solvent to prepare polymer solutions. This solution was extruded into a sheet from the die of the extruder. Next, the extruded sheet was cooled at a cooling rate of 50 ° CZ to 90 ° C or lower to obtain a gel composition.
次に、ゲル状成形物を、所定の倍率で、二軸延伸し、成形物を得た。次いで、得ら れた成形物は、残留溶媒が、成形物の 1重量%未満となるまで洗浄剤で洗浄した。 洗浄剤は、用いた溶媒の種類により、適宜変更した。この後、成形物を乾燥して、洗 浄剤を除去した。  Next, the gel-like molded product was biaxially stretched at a predetermined magnification to obtain a molded product. The resulting molded product was then washed with a detergent until the residual solvent was less than 1% by weight of the molded product. The cleaning agent was appropriately changed depending on the type of solvent used. Thereafter, the molded product was dried to remove the cleaning agent.
最後に、乾燥後の成形物に、 100°C以上の温度で熱セットを行い、セパレータを得 た。  Finally, the dried molded product was heat set at a temperature of 100 ° C or higher to obtain a separator.
これらのセパレータの厚さは 54 μ mであり、多孔度は 61%であった。  These separators had a thickness of 54 μm and a porosity of 61%.
[0090] PAN含有絶縁層、 PVDF含有絶縁層、および PES含有絶縁層の作製は、以下の 手順で行った。 [0090] The PAN-containing insulating layer, the PVDF-containing insulating layer, and the PES-containing insulating layer were produced by the following procedure.
[0091] メディアン径 0. 3 μ mのアルミナ 970gと、ポリアクリロニトリル変性ゴム結着剤(日本 ゼオン (株)の BM— 720H (固形分濃度 8重量0 /0) ) 375gと、適量の N メチル 2 —ピロリドンとを、双腕式練合機にて撹拌して、ペーストを調製した。このペーストを、 両方の負極活物質層の上に、 20 /z mの厚さで塗布し、乾燥し、次いで、真空減圧下 、 120°Cで 10時間さらに乾燥して、 PAN含有絶縁層を形成した。 [0091] and alumina 970g median diameter 0. 3 μ m, polyacrylonitrile modified rubber binder (Nippon Zeon (Ltd.) BM- 720H (solid content concentration of 8 wt 0/0)) and 375 g, an appropriate amount of N-methyl 2-Pyrrolidone was stirred with a double arm kneader to prepare a paste. This paste was applied to both negative electrode active material layers at a thickness of 20 / zm, dried, and then further dried at 120 ° C for 10 hours under vacuum and reduced pressure to form a PAN-containing insulating layer. did.
[0092] ポリアクリロニトリル変性ゴム結着剤の代わりに、ポリフッ化ビ-リデン(固形分濃度 8 重量%)およびポリエーテルスルホン(固形分濃度 8重量%)を用いたこと以外、上記 と同様にして、それぞれ PVDF含有絶縁層および PES含有絶縁層を形成した。 [0092] Instead of polyacrylonitrile-modified rubber binder, polyvinylidene fluoride (solid content concentration 8 PVDF-containing insulating layer and PES-containing insulating layer were formed in the same manner as described above except that polyethersulfone (solid content concentration: 8% by weight) was used.
[0093] [表 2] [0093] [Table 2]
Figure imgf000024_0001
Figure imgf000024_0001
[0094] 表 2より、セパレータを構成する材料の種類を変化させた場合でも、その材料が電 子吸引性の置換基を含めば、保存後に負極上に析出する金属量が減少し、容量回 復率が良好な値となることがわかる。これは、上記と同様に、セパレータと非水溶媒の 両方の酸ィ匕分解が抑制され、正極力 金属カチオンが溶出するのを防止することが できたためと推察される。 [0094] From Table 2, even when the type of material constituting the separator is changed, if the material includes an electron-withdrawing substituent, the amount of metal deposited on the negative electrode after storage decreases, and It can be seen that the recovery rate is a good value. This is presumably because, as described above, the decomposition of both the separator and the non-aqueous solvent was suppressed, and it was possible to prevent the positive-force metal cations from eluting.
[0095] これらの中でも、組成中にフッ素原子を含む材料力 なるセパレータを含む電池 9 および 24〜25が、金属析出量が少なぐ容量回復率が向上していた。これは、フッ 素原子の強い電子吸引性により、セパレータの耐酸ィ匕性がより高くなり、酸化分解を より抑制できたためと考えられる。 [0095] Among these, a battery including a separator having a material strength including a fluorine atom in the composition 9 And 24 to 25, the capacity recovery rate with a small amount of metal deposition was improved. This is thought to be because the strong electron withdrawing property of the fluorine atoms increased the acid resistance of the separator and further suppressed oxidative decomposition.
[0096] また、表 2より、セパレータを構成する材料が PTFEである電池 9の場合に、保存特 性が特に優れていた。 PTFEは、繰り返し単位中にフッ素原子を 4つ含んでいるので 、フッ素原子の強い電子吸引性により、セパレータを構成しているポリマーにおいて、 電子が非局在化する。このため、電子が引き抜かれに《なって、セパレータの耐酸 化性が特に向上したためと考えられる。  [0096] From Table 2, the storage characteristics were particularly excellent in the case of the battery 9 in which the material constituting the separator was PTFE. Since PTFE contains four fluorine atoms in the repeating unit, electrons are delocalized in the polymer constituting the separator due to the strong electron withdrawing properties of the fluorine atoms. For this reason, it is thought that the electrons were pulled out and the oxidation resistance of the separator was particularly improved.
[0097] 電子吸引性の置換基を含むポリマーと無機フイラ一力 なる絶縁層を備える電池 3 7〜39も、他の電池と比較して、金属析出量が少なぐ容量回復率が高い値を示した oこの絶縁層は、無機フィラーを多く含むために、耐還元性が強い。このため、セパレ ータの還元分解が抑制されたと考えられる。  [0097] Batteries 37 to 39, each having an electron-withdrawing substituent-containing polymer and an inorganic filler insulating layer, also have a high capacity recovery rate with less metal deposition compared to other batteries. O This insulating layer has a high resistance to reduction because it contains many inorganic fillers. For this reason, it is considered that the reductive decomposition of the separator was suppressed.
なかでも、アクリロニトリル単位を含むポリマーと無機フィラーとからなる絶縁層を備 える電池 37の保存特性が特に優れていた。これは、アクリロニトリル単位を含むポリ マーが絶縁層に含まれる場合、絶縁層における前記ポリマーと無機フィラーポリマー の分散性が優れるため、セパレータの還元分解を抑制する効果が高まった力 であ ると考免られる。  In particular, the storage characteristics of the battery 37 having an insulating layer made of a polymer containing an acrylonitrile unit and an inorganic filler were particularly excellent. This is because when the polymer containing an acrylonitrile unit is contained in the insulating layer, the dispersibility of the polymer and the inorganic filler polymer in the insulating layer is excellent, and thus the effect of suppressing the reductive decomposition of the separator is enhanced. Escaped.
[0098] 《実施例 3》 <Example 3>
(電池 40〜43)  (Battery 40-43)
セパレータと負極との間に、ポリエチレン (PE)力もなる耐還元性の膜 (旭化成ケミカ ルズ (株)製のハイポア、厚さ 20 m)を配置したこと以外は、電池 9および電池 37と 同様にして、電池 40および 42を作製した。また、セパレータと負極との間に、ポリプロ ピレン(PP)力もなる耐還元性の膜 (セルガード (株)製の Celgard2400、厚さ 25 m )を配置したこと以外は、電池 9および 37と同様にして、電池 41および 43を作製した これらの電池について、上記と同様にして、保存後に負極上に析出した金属量およ び保存後の容量回復率を測定した。結果を表 3に示す。なお、表 3には、電池 9およ び電池 37の結果も示す。 [0099] [表 3] Battery 9 and Battery 37 are the same except that a reduction-resistant membrane (Hypore made by Asahi Kasei Chemicals Co., Ltd., thickness 20 m) with polyethylene (PE) force is placed between the separator and the negative electrode. Thus, batteries 40 and 42 were produced. In addition, the same as batteries 9 and 37, except that a reduction-resistant membrane (Celgard 2400, manufactured by Celgard Co., Ltd., thickness 25 m) with polypropylene (PP) force was placed between the separator and the negative electrode. Thus, for these batteries from which batteries 41 and 43 were produced, the amount of metal deposited on the negative electrode after storage and the capacity recovery rate after storage were measured in the same manner as described above. The results are shown in Table 3. Table 3 also shows the results for battery 9 and battery 37. [0099] [Table 3]
Figure imgf000026_0001
Figure imgf000026_0001
[0100] 表 3より、セパレータと負極との間に、 PE力 なる耐還元性の膜をさらに配置した電 池 40および 42を、およびセパレータと負極との間に、 PP力もなる耐還元性の膜をさ らに配置した電池 41および 43において、保存後に負極上に析出した金属量力 電 池 9および電池 37と比較して、少なくなつていた。また、電池 40〜43の容量回復率 は、電池 9および 37の容量回復率よりも良好な値を示した。これは、負極側に耐還元 性が高 、PE力もなる膜または PPからなる膜を配置することで、正極側に配置された PTFEおよび PAN含有絶縁層力 なるセパレータが還元されるのを防止できたため と考えられる。 [0100] From Table 3, the batteries 40 and 42 in which a PE-resistant reduction-resistant film is further arranged between the separator and the negative electrode and the PP-resistant reduction-resistant film between the separator and the negative electrode are shown. In batteries 41 and 43 with more membranes, the amount of metal deposited on the negative electrode after storage was less than in batteries 9 and 37. In addition, the capacity recovery rates of batteries 40 to 43 were better than those of batteries 9 and 37. This is because it is possible to prevent reduction of the PTFE and PAN-containing insulating layer separator placed on the positive electrode side by placing a film with high reduction resistance and PE strength on the negative electrode side or a film made of PP. It is thought that it was because of.
[0101] 《実施例 4》  [0101] Example 4
(電池 44)  (Battery 44)
負極上に耐還元性の層を設けた以外は、電池 9と同様にして、電池 44を作製した。 電池 44について、上記と同様にして、保存後に負極上に析出した金属量および保 存後の容量回復率を測定した。結果を表 4に示す。なお、表 4には、電池 9の結果も 示す。  A battery 44 was produced in the same manner as the battery 9, except that a reduction-resistant layer was provided on the negative electrode. For battery 44, the amount of metal deposited on the negative electrode after storage and the capacity recovery rate after storage were measured in the same manner as described above. The results are shown in Table 4. Table 4 also shows the results for battery 9.
[0102] [負極上への耐還元性の層の作製] メディアン径 0. 3 μ mのアルミナ 970gと、ポリアクリロニトリル変性ゴム結着剤 (日本 ゼオン (株)製の BM— 720H)を含む N メチル 2 ピロリドン(NMP)溶液(固形 分 8重量0 /0) 375gと、適量の NMPとを、双腕式練合機にて、攪拌して、ペーストを調 製した。このペーストを、負極の両方の負極活物質層の上に、塗布し、乾燥し、さらに 、 120°C真空減圧下、 120°Cで 10時間乾燥して、耐還元性の層を形成した。各負極 活物質層において、塗布したペーストの厚さは、 とした。 [0102] [Preparation of reduction-resistant layer on negative electrode] Alumina 970g median diameter 0. 3 μ m, polyacrylonitrile modified rubber binder (Nippon Zeon's BM- 720H) N-methyl-2-pyrrolidone containing methyl-2-pyrrolidone (NMP) solution (solid content 8 wt 0/0) A paste was prepared by stirring 375 g and an appropriate amount of NMP in a double-arm kneader. This paste was applied onto both negative electrode active material layers of the negative electrode, dried, and further dried at 120 ° C. for 10 hours under vacuum at 120 ° C. to form a reduction-resistant layer. In each negative electrode active material layer, the thickness of the applied paste was:
[0103] [表 4] [0103] [Table 4]
Figure imgf000027_0001
Figure imgf000027_0001
[0104] 表 4より、負極上にさらに耐還元性の層を設けた電池 44は、電池 9と比較して、保存 後に負極上に析出した金属量が少なくなつていた。また、電池 44の容量回復率は、 電池 9の容量回復率よりも良好な値を示した。これは、負極上に耐還元性の層を設け ることで、 PTFE力 なるセパレータが還元されるのを防止できたためと考えられる。 [0104] From Table 4, in the battery 44 in which a further layer of reduction resistance was provided on the negative electrode, the amount of metal deposited on the negative electrode after storage was less than that of the battery 9. In addition, the capacity recovery rate of the battery 44 was better than that of the battery 9. This is thought to be because the reduction of the PTFE-powered separator was prevented by providing a reduction-resistant layer on the negative electrode.
[0105] 《実施例 5》  [0105] <Example 5>
本実施例では、電池 9を用い、上記と同様にして、保存後に負極上に析出した金属 量と、容量回復率を測定した。これらの測定を行うときに、充電終止電圧を、 4. 2V、 4. 3V、 4. 4V、 4. 5V、 4. 6V、または 4. 7Vとした。結果を表 5に示す。  In this example, using the battery 9, the amount of metal deposited on the negative electrode after storage and the capacity recovery rate were measured in the same manner as described above. When performing these measurements, the end-of-charge voltage was 4.2V, 4.3V, 4.4V, 4.5V, 4.6V, or 4.7V. The results are shown in Table 5.
[0106] [表 5] 充電 保存後の 容量 [0106] [Table 5] Charge capacity after storage
終止電圧 金属析出量 回復率  Ending voltage Metal deposition amount Recovery rate
(V) ( /g) (%)  (V) (/ g) (%)
4.2 20 71.7  4.2 20 71.7
4.3 8.8 84.1  4.3 8.8 84.1
4.4 9.4 83.0  4.4 9.4 83.0
4.5 11 82.3  4.5 11 82.3
4.6 15 80.2  4.6 15 80.2
4.7 25 68.8  4.7 25 68.8
[0107] 表 5より、非水溶媒が含フッ素環状炭酸エステルを含み、かつ PTFEカゝらなるセパレ ータを用いた場合、充電時の電圧(つまり、充電終止電圧)を、 4.3〜4.6Vに設定 することにより、保存後に負極上に析出する金属量が顕著に減少し、また、容量回復 率も良好な値が得られることがわかる。なお、非水溶媒が、含フッ素炭酸エステルの 代わりにまたは含フッ素炭酸エステルのほかに含フッ素芳香族系溶媒および Zまた は含フッ素環状カルボン酸エステルを含み、セパレータが PTFE以外の電子吸引性 の置換基を含む材料カゝらなる場合でも、上記と同様の傾向を示した。 [0107] From Table 5, when the non-aqueous solvent contains a fluorine-containing cyclic carbonate and a separator such as PTFE is used, the voltage during charging (that is, the end-of-charge voltage) is 4.3 to 4.6 V. By setting to, the amount of metal deposited on the negative electrode after storage is remarkably reduced, and a good capacity recovery rate can be obtained. The non-aqueous solvent contains a fluorine-containing aromatic solvent and Z or a fluorine-containing cyclic carboxylic acid ester instead of or in addition to the fluorine-containing carbonate ester, and the separator has an electron-withdrawing property other than PTFE. Even in the case of a material containing a substituent, the same tendency as above was shown.
[0108] 《実施例 6》  <Example 6>
(電池 45)  (Battery 45)
正極活物質として Li[Ni Mn ]0を用いた以外は、電池 9と同様にして、電池 45  Battery 45 is similar to Battery 9 except that Li [Ni Mn] 0 is used as the positive electrode active material.
1/2 3/2 4  1/2 3/2 4
を作製した。  Was made.
[0109] 《比較例 5》  [0109] Comparative Example 5
正極活物質として Li[Ni Mn ]0を用いた以外は、比較電池 1と同様にして、比  Similar to Comparative Battery 1 except that Li [Ni Mn] 0 was used as the positive electrode active material, the ratio was
1/2 3/2 4  1/2 3/2 4
較電池 5を作製した。  A comparative battery 5 was produced.
[0110] 《比較例 6》 [0110] << Comparative Example 6 >>
正極活物質として Li[Ni Mn ]0を用いた以外は、比較電池 3と同様にして、比  Similar to Comparative Battery 3, except that Li [Ni Mn] 0 was used as the positive electrode active material, the ratio was
1/2 3/2 4  1/2 3/2 4
較電池 6を作製した。 [0111] 《比較例 7》 A comparative battery 6 was produced. [0111] Comparative Example 7
正極活物質として Li[Ni Mn ]0を用いた以外は、比較電池 4と同様にして、比  Similar to Comparative Battery 4, except that Li [Ni Mn] 0 was used as the positive electrode active material, the ratio was
1/2 3/2 4  1/2 3/2 4
較電池 7を作製した。  A comparative battery 7 was produced.
[0112] 電池 45および比較電池 5〜7について、上記と同様にして、保存後に負極上に析 出した金属量および保存後の容量回復率を測定した。なお、正極活物質である Li [ Ni Mn ]0は、放電電圧がリチウム金属に対して 4. 6V〜4. 8Vと高い。このため [0112] For battery 45 and comparative batteries 5 to 7, the amount of metal deposited on the negative electrode after storage and the capacity recovery rate after storage were measured in the same manner as described above. Note that Li [Ni Mn] 0, which is a positive electrode active material, has a high discharge voltage of 4.6 V to 4.8 V with respect to lithium metal. For this reason
1/2 3/2 4 1/2 3/2 4
、上記測定における充電終止電圧を、 4. 9Vに設定した。負極上に析出した金属量 の測定においては、 Ni量と Mn量を ICP発光分光分析法により定量し、その総量を、 保存後に負極上に析出した金属量とした。  The end-of-charge voltage in the above measurement was set to 4.9V. In measuring the amount of metal deposited on the negative electrode, the amount of Ni and Mn were quantified by ICP emission spectroscopy, and the total amount was defined as the amount of metal deposited on the negative electrode after storage.
結果を表 6に示す。  The results are shown in Table 6.
[0113] [表 6] [0113] [Table 6]
Figure imgf000029_0001
Figure imgf000029_0001
[0114] 表 6より、正極活物質として Li [Ni Mn ]0を用いた場合でも、非水溶媒が第 1 [0114] From Table 6, even when Li [Ni Mn] 0 was used as the positive electrode active material, the non-aqueous solvent was the first.
1/2 3/2 4  1/2 3/2 4
溶媒を含み、セパレータが電子吸引性の置換基を含む材料を含むことにより、保存 後の負極上に析出する金属量が減少し、保存後の容量回復率も良好な値が得られ ることがゎカゝる。  By including a solvent and the separator contains a material containing an electron-withdrawing substituent, the amount of metal deposited on the negative electrode after storage is reduced, and a good capacity recovery rate after storage can be obtained.ゎ
産業上の利用可能性  Industrial applicability
[0115] 本発明の非水電解質二次電池は、高電圧かつ高温下で保存したのちでも、レート 特性が低下するのを抑制することができる。このため、本発明の非水電解質二次電 池は、例えば、高温で保存されることのある機器用の電源として用いることができる。 [0115] The nonaqueous electrolyte secondary battery of the present invention can suppress the deterioration of the rate characteristics even after being stored at a high voltage and a high temperature. For this reason, the nonaqueous electrolyte secondary battery of the present invention can be used, for example, as a power source for equipment that may be stored at high temperatures.

Claims

請求の範囲 The scope of the claims
[1] リチウムイオンを吸蔵および放出する活物質を含有する正極、リチウムイオンを吸蔵 および放出する活物質を含有する負極、前記正極と前記負極との間に配置されたセ ノルータ、および非水電解質を具備し、  [1] A positive electrode containing an active material that occludes and releases lithium ions, a negative electrode containing an active material that occludes and releases lithium ions, a ceno-router disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte Comprising
前記セパレータは、電子吸引性の置換基を含む材料を含み、  The separator includes a material containing an electron-withdrawing substituent,
前記非水電解質が、非水溶媒および前記非水溶媒に溶解した溶質を含み、前記 非水溶媒が、含フッ素芳香族系溶媒、含フッ素環状炭酸エステル、および含フッ素 環状カルボン酸エステルよりなる群力 選択される少なくとも 1種の第 1溶媒を含む、 非水電解質二次電池。  The non-aqueous electrolyte includes a non-aqueous solvent and a solute dissolved in the non-aqueous solvent, and the non-aqueous solvent is composed of a fluorine-containing aromatic solvent, a fluorine-containing cyclic carbonate, and a fluorine-containing cyclic carboxylate. A non-aqueous electrolyte secondary battery comprising at least one selected first solvent.
[2] 前記非水溶媒が、含フッ素芳香族系溶媒および含フッ素環状炭酸エステルよりな る群力 選択された少なくとも 1種を含む、請求項 1記載の非水電解質二次電池。  [2] The nonaqueous electrolyte secondary battery according to [1], wherein the nonaqueous solvent includes at least one selected from a group power consisting of a fluorine-containing aromatic solvent and a fluorine-containing cyclic carbonate.
[3] 前記電子吸引性の置換基を含む材料が、フッ素原子を含む、請求項 1記載の非水 電解質二次電池。  [3] The nonaqueous electrolyte secondary battery according to [1], wherein the material containing an electron-withdrawing substituent contains a fluorine atom.
[4] 前記電子吸引性の置換基を含む材料が、ポリテトラフルォロエチレンである、請求 項 1記載の非水電解質二次電池。  4. The nonaqueous electrolyte secondary battery according to claim 1, wherein the material containing the electron-withdrawing substituent is polytetrafluoroethylene.
[5] 前記セパレータが、無機フィラーをさらに含む、請求項 1記載の非水電解質二次電 池。 [5] The nonaqueous electrolyte secondary battery according to claim 1, wherein the separator further contains an inorganic filler.
[6] 前記セパレータと前記負極との間に、耐還元性の膜または無機フィラーを含む耐還 元性の層が設けられている、請求項 1記載の非水電解質二次電池。  6. The nonaqueous electrolyte secondary battery according to claim 1, wherein a reduction resistant layer including a reduction resistant film or an inorganic filler is provided between the separator and the negative electrode.
[7] 前記第 1溶媒の量が、前記非水溶媒の 10体積%以上である、請求項 1記載の非水 電解質二次電池。  7. The nonaqueous electrolyte secondary battery according to claim 1, wherein the amount of the first solvent is 10% by volume or more of the nonaqueous solvent.
[8] 前記正極に含まれる活物質が、 Li[Ni Mn ]0を含む、請求項 1記載の非水電  [8] The non-aqueous battery according to claim 1, wherein the active material contained in the positive electrode contains Li [Ni Mn] 0.
1/2 3/2 4  1/2 3/2 4
解質二次電池。  Denatured secondary battery.
[9] 請求項 1記載の非水電解質二次電池と、前記非水電解質二次電池を充電する充 電器を具備し、前記充電器における充電終止電圧が 4. 3〜4. 6Vに設定されている システム。  [9] The non-aqueous electrolyte secondary battery according to claim 1 and a charger for charging the non-aqueous electrolyte secondary battery, wherein a charge end voltage in the charger is set to 4.3 to 4.6V. System.
PCT/JP2007/060201 2006-05-19 2007-05-18 Nonaqueous electrolyte secondary battery WO2007135974A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/096,262 US8067119B2 (en) 2006-05-19 2007-05-18 Non-aqueous electrolyte secondary battery
CN2007800023514A CN101371396B (en) 2006-05-19 2007-05-18 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-140011 2006-05-19
JP2006140011 2006-05-19

Publications (1)

Publication Number Publication Date
WO2007135974A1 true WO2007135974A1 (en) 2007-11-29

Family

ID=38723286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060201 WO2007135974A1 (en) 2006-05-19 2007-05-18 Nonaqueous electrolyte secondary battery

Country Status (4)

Country Link
US (1) US8067119B2 (en)
KR (1) KR20080080163A (en)
CN (1) CN101371396B (en)
WO (1) WO2007135974A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101911371A (en) * 2008-01-29 2010-12-08 大金工业株式会社 Solvent for nonaqueous electrolyte solution of lithium secondary battery
US8216726B2 (en) * 2008-01-09 2012-07-10 Sony Corporation Battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070154A1 (en) * 2010-11-26 2012-05-31 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN102479977A (en) * 2010-11-29 2012-05-30 张家港市国泰华荣化工新材料有限公司 Non-aqueous electrolyte solution and application thereof
JP6385824B2 (en) 2011-11-17 2018-09-05 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Method for producing polymer electrolyte separator and polymer electrolyte separator obtained thereby
US9083034B2 (en) 2013-03-15 2015-07-14 Ford Global Technologies, Llc Treated battery separator
KR102041586B1 (en) 2013-06-14 2019-11-06 삼성에스디아이 주식회사 Rechargeable lithium battery
US20160164057A1 (en) * 2014-12-05 2016-06-09 E I Du Pont De Nemours And Company Electrochemical cell with polyimide separator and high-voltage positive electrode
CN105720303B (en) * 2014-12-05 2020-06-12 浙江蓝天环保高科技股份有限公司 High-voltage lithium ion battery electrolyte containing fluorine substituted carboxylic ester
CN110176632A (en) 2018-02-20 2019-08-27 三星Sdi株式会社 Nonaqueous electrolyte for lithium secondary battery and the lithium secondary battery with it
CN110085914A (en) * 2019-06-04 2019-08-02 东莞维科电池有限公司 A kind of Soft Roll high-voltage lithium-ion battery electrolyte and a kind of lithium ion battery
CN110890592B (en) * 2019-11-28 2021-03-26 华中科技大学 Lithium metal battery electrolyte containing aromatic compound as diluent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071979A (en) * 2003-08-06 2005-03-17 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JP2005353584A (en) * 2004-05-14 2005-12-22 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and its manufacturing method
US20060099512A1 (en) * 2004-11-10 2006-05-11 Hideki Nakai Anode and battery
JP2006236981A (en) * 2005-01-26 2006-09-07 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2006294518A (en) * 2005-04-13 2006-10-26 Sony Corp Battery

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3048083B2 (en) 1992-01-28 2000-06-05 日本電信電話株式会社 Non-aqueous electrolyte secondary battery
JPH05258741A (en) 1992-03-11 1993-10-08 Matsushita Electric Ind Co Ltd Separator for nonaqueous electrolyte secondary cell
US5427872A (en) * 1993-11-17 1995-06-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Dendrite preventing separator for secondary lithium batteries
CA2267263A1 (en) * 1996-10-03 1998-04-09 National Research Council Of Canada Electrolyte comprising fluoro-ethylene carbonate and propylene carbonate, for alkali metal-ion secondary battery
JP4657403B2 (en) * 1999-07-02 2011-03-23 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4448275B2 (en) * 2001-05-11 2010-04-07 三星エスディアイ株式会社 ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
KR100441524B1 (en) 2002-01-24 2004-07-23 삼성에스디아이 주식회사 Positive active material slurry composition for rechargeable lithium battery
JP4197237B2 (en) * 2002-03-01 2008-12-17 パナソニック株式会社 Method for producing positive electrode active material
JP2004063432A (en) 2002-06-05 2004-02-26 Sony Corp Battery
EP1667252B1 (en) 2003-08-06 2011-06-22 Mitsubishi Chemical Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
US20050170254A1 (en) * 2004-02-04 2005-08-04 West Robert C. Electrochemical device having electrolyte including disiloxane
KR100603303B1 (en) * 2003-10-29 2006-07-20 삼성에스디아이 주식회사 Lithium battery having effective performance
KR20060129042A (en) 2004-02-02 2006-12-14 우베 고산 가부시키가이샤 Nonaqueous electrolyte solution and lithium secondary battery
EP1734607A4 (en) * 2004-04-07 2008-09-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100853593B1 (en) 2004-05-14 2008-08-21 마쯔시다덴기산교 가부시키가이샤 Lithium ion secondary battery and method for producing same
JP2005340026A (en) 2004-05-27 2005-12-08 Sony Corp Electrolyte liquid and battery using the same
US7879489B2 (en) 2005-01-26 2011-02-01 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2007207699A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071979A (en) * 2003-08-06 2005-03-17 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JP2005353584A (en) * 2004-05-14 2005-12-22 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and its manufacturing method
US20060099512A1 (en) * 2004-11-10 2006-05-11 Hideki Nakai Anode and battery
JP2006236981A (en) * 2005-01-26 2006-09-07 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2006294518A (en) * 2005-04-13 2006-10-26 Sony Corp Battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216726B2 (en) * 2008-01-09 2012-07-10 Sony Corporation Battery
CN101911371A (en) * 2008-01-29 2010-12-08 大金工业株式会社 Solvent for nonaqueous electrolyte solution of lithium secondary battery

Also Published As

Publication number Publication date
US20090246641A1 (en) 2009-10-01
CN101371396B (en) 2011-03-23
US8067119B2 (en) 2011-11-29
KR20080080163A (en) 2008-09-02
CN101371396A (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP5260889B2 (en) Nonaqueous electrolyte secondary battery
US10897040B2 (en) Anode having double-protection layer formed thereon for lithium secondary battery, and lithium secondary battery comprising same
US8067120B2 (en) Non-aqueous electrolyte secondary battery
WO2007135974A1 (en) Nonaqueous electrolyte secondary battery
EP3429014B1 (en) Lithium secondary battery having lithium metal formed on cathode and manufacturing method therefor
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
JP5394610B2 (en) Nonaqueous electrolyte secondary battery
US9484599B2 (en) Non-aqueous electrolyte secondary battery
US20050221185A1 (en) Nonaqueous secondary battery and electronic equipment using the same
CN102088109A (en) Nonaqueous electrolyte secondary battery and separator
KR100573109B1 (en) Organic electrolytic solution and lithium battery employing the same
KR102221799B1 (en) Lithium secondary battery
KR101122339B1 (en) Nonaqueous electrolyte secondary battery
US10096829B2 (en) Nonaqueous electrolyte secondary batteries
CN113994512A (en) Lithium secondary battery and method for manufacturing the same
JP2007335405A (en) Nonaqueous electrolyte secondary battery
JP2009176598A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2004139888A (en) Organic electrolyte solution secondary battery
JP6572565B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP7092096B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7065013B2 (en) Lithium ion secondary battery
JP2004039493A (en) Nonaqueous electrolyte battery
JP4002133B2 (en) Lithium ion secondary battery
CN116491010A (en) Secondary battery activation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12096262

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087016225

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780002351.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743636

Country of ref document: EP

Kind code of ref document: A1