WO2007135919A1 - 伝送装置、伝送方法、システムlsi、及びプログラム - Google Patents

伝送装置、伝送方法、システムlsi、及びプログラム Download PDF

Info

Publication number
WO2007135919A1
WO2007135919A1 PCT/JP2007/060053 JP2007060053W WO2007135919A1 WO 2007135919 A1 WO2007135919 A1 WO 2007135919A1 JP 2007060053 W JP2007060053 W JP 2007060053W WO 2007135919 A1 WO2007135919 A1 WO 2007135919A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
transmission
value
phy
unit
Prior art date
Application number
PCT/JP2007/060053
Other languages
English (en)
French (fr)
Inventor
Hironori Nakae
Yasuo Hamamoto
Yosuke Ukita
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2008516626A priority Critical patent/JP4741659B2/ja
Priority to EP07743488.4A priority patent/EP2023575B1/en
Priority to US12/301,328 priority patent/US7936727B2/en
Priority to CN200780018292XA priority patent/CN101449558B/zh
Publication of WO2007135919A1 publication Critical patent/WO2007135919A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate

Definitions

  • the present invention relates to a technique for determining a PHY rate when transmitting data.
  • a transmission apparatus for example, a wireless communication apparatus
  • determines a PHY rate at the time of transmitting a packet using the received power value of the packet is known.
  • the transmission device receives the wireless network power packet via the antenna
  • the transmission device detects the received power value of the received packet, stores it in advance, and based on the correspondence table that associates the received power value with the PHY rate.
  • the detected received power value also determines the PHY rate and transmits / receives data at the determined PHY rate (see, for example, Patent Document 1).
  • the communication rate at the time of data transmission can be optimized, and the efficiency of data transmission / reception can be improved.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-186027
  • the packet error rate may be different even if the received power value is the same. For example, when there is an obstacle between transmission devices but the distance between the transmission devices is short, and when there is no obstacle between transmission devices but the distance is long, the received power value of the packet Even if they are the same, the direct wave is stronger in the latter case because it is not affected by frequency interference. If the direct wave is strong, the packet error rate is small, and as a result, the effective rate is high. On the other hand, since the former case is affected by frequency interference, the direct wave is weaker than the latter case. If the direct wave is weak, the packet error rate increases and, as a result, the effective rate decreases.
  • An object of the present invention is to provide a transmission device that can improve the efficiency of data transmission / reception regardless of the environment.
  • the present invention comprises control means for selecting one PHY rate from a plurality of PHY rates, and communication means for performing transmission between physical layers in the protocol stack at the selected PHY rate.
  • selecting a rate the effective value of the transmission rate in the upper layer of the protocol stack is compared when transmission between the physical layers is performed at each of at least one PHY rate among the plurality of PHY rates.
  • the effective value of each transmission rate is a value obtained based on the retransmission ratio between the physical layers corresponding to the received power value on the receiving side and the ideal value of each transmission rate.
  • the transmission apparatus does not immediately select the PHY rate, but instead selects the PHY rate.
  • the transmission apparatus supports the reception power value on the reception side. The effective value of the transmission rate obtained based on the retransmission ratio between the physical layers and the ideal value of each transmission rate is compared.
  • the PHY rate is selected after comparing the effective value of the transmission rate.
  • the optimal PHY rate can be selected. Transmission at the optimal PHY rate can improve the efficiency of data transmission / reception. For example, when a transmission device transmits content such as video and audio, the video and audio are disturbed. The content can be transmitted in a shorter time than before.
  • control unit uses any two of the plurality of PHY rates for transmission between the physical layers, a transmission rate in an upper layer of the protocol stack. Is calculated for each of the two PHY rates, and the effective values of the calculated transmission rates are compared with each other. You can select the appropriate PHY rate.
  • the control means assumes that one of the plurality of PHY rates is used for transmission between the physical layers, the effective value of the transmission rate in the upper layer of the protocol stack is determined. And the effective value of the calculated transmission rate is compared with a pre-stored threshold value. If it is larger than the threshold value, the PH rate corresponding to the effective value is selected, and the value less than the threshold value is selected. In this case, if any PHY rate other than the one PHY rate is used, calculate the force that makes the effective value of the transmission rate in the upper layer of the protocol stack, and calculate the effective value of the calculated transmission rate. It may be compared with the threshold value stored in advance.
  • control means calculates, for each PHY rate, how much the effective value of the transmission rate in the upper layer of the protocol stack is when each PHY rate is used for transmission between the physical layers. Then, the calculated effective values of the transmission rates may be sequentially compared, and the PHY rate corresponding to the maximum effective value among the calculated effective values of the transmission rates may be selected.
  • the PHY rate corresponding to the maximum effective rate can be determined. Since data is transmitted at the PHY rate corresponding to the maximum effective rate, the efficiency of data transmission / reception can be improved.
  • a method of determining the PHY rate based on the actually measured packet error rate is also considered. Measurement of the packet error rate requires a reception or transmission history for a certain period. Therefore, the packet error rate cannot be measured instantaneously, and the PHY rate cannot be determined quickly according to changes in the propagation state.
  • the transmission apparatus includes first information indicating a plurality of values that can be taken by received power and packet error rates for each value that can be taken by the received power, and a plurality of values that can be taken by the packet error rate.
  • Storage means for storing, for each PHY rate, second information indicating the value of the packet and the retransmission ratio for each value that the packet error rate can take, and the control means includes the first information and the second information It is desirable to provide retransmission ratio acquisition means for acquiring the retransmission ratio between the physical layers for each PHY rate from the received power value on the receiving side based on the information.
  • the retransmission ratio is acquired based on the information stored in advance, the optimum PHY rate can be quickly selected. Also, since the received power value does not depend on the PHY rate and the received power value of a packet that has been successfully received is stable, a history of received power values of about several tens is sufficient. Therefore, since the retransmission ratio is acquired from the received power value using the first information and the second information, it is possible to quickly select the PHY rate that follows the propagation state and to efficiently use the radio band.
  • transmission by the communication unit is performed in units of packets, and the control unit further uses the number of retransmissions for each packet in the transmitted packet and the number of packets that have been transmitted,
  • a correction unit that corrects the first information when there is a deviation greater than or equal to a predetermined value may be provided.
  • the transmission apparatus further includes storage means for acquiring the received power value at the receiving side as needed, and storing the acquired received power value, and the correcting means includes the calculated packet error rate. Based on the packet error rate based on the first information and the accumulated received power value, a corrected first indicating a plurality of values that the received power can take and a packet error rate for each value that the received power can take are associated with each other.
  • a generating means for generating information and a changing means for changing the stored first information to the generated corrected first information may be provided.
  • transmission by the communication unit is performed in units of packets, and the control unit further includes the number of retransmissions for each packet in the transmitted packet and the number of packets for which transmission has been completed.
  • a packet error rate calculating means for calculating a predetermined number of packet error rates using the number, a standard deviation of the predetermined number of packet error rates calculated by the packet error rate calculating means, and the predetermined number of packet errors. Comparing means for comparing the rate and the standard deviation based on the third information, and a correcting means for correcting the third information when there is a deviation of a predetermined value or more as a result of the comparison may be provided.
  • the transmission device further includes storage means for acquiring the received power value at the receiving side as needed and storing the acquired received power value, and the correction means includes a plurality of packet error rates. Of the predetermined number of packet error rates and the standard error based on the predetermined number of packet error rates and the third information and a plurality of possible packet error rates and packet error rates. Generating means for generating corrected third information indicating the standard deviation in association with each other, and a changing means for changing the stored third information to the generated corrected third information. .
  • the storage means further stores third information indicating a plurality of values that the packet error rate can take and standard deviations for each value that the packet error rate can take, and the control means Further, based on the first information and the third information, a standard deviation of the packet error rate in the received power value on the receiving side is acquired, and a value obtained by multiplying the acquired standard deviation by N (N: positive number) is obtained.
  • a standard deviation acquisition means for adding to the packet error rate, and a bandwidth calculation means for calculating a bandwidth required for transmission using the value after addition and the packet rate of the packet to be transmitted, and transmission by the communication means May be performed in the calculated bandwidth.
  • the maximum packet error rate can be calculated by adding the standard deviation multiplied by N (N: positive number) to the packet error rate, and the required bandwidth is calculated using the calculated maximum packet error rate. Therefore, stable transmission can be realized.
  • the bandwidth calculating means further compares the calculated bandwidth with the allocatable bandwidth, and when the calculated bandwidth is larger than the allocatable bandwidth, the packet rate changing means for changing the packet rate. Calculate the bandwidth to be secured based on the changed packet rate Secured bandwidth calculation means may be provided.
  • the standard deviation acquisition unit calculates a ratio value of a packet error rate existing within the standard deviation among a plurality of packet error rates used for the standard deviation.
  • a calculating means and a determining means for determining a multiplication value N of the standard deviation based on whether or not the calculated ratio value exceeds a preset threshold value may be provided.
  • transmission by the communication means is performed in units of packets, and the control means, as needed, receives power value acquisition means for acquiring a received power value, the number of retransmissions for each packet in the transmitted packet, and transmission is performed.
  • the packet error rate calculation means for calculating a predetermined number of packet error rates using the number of completed packets, and the interval between adjacent packet error rates for each of the calculated packet error rates is more than a certain distance.
  • the variation determination means for determining whether or not the power is present corresponds to a plurality of values that the received power can take and a packet error rate for each value that the received power can take based on the packet error rate and the received power value. It is good also as a production
  • the control means further includes a standard deviation calculating means for calculating a standard deviation of the predetermined number of packet error rates, and a plurality of values that the packet error rate can take based on the packet error rate and the standard deviation.
  • Generation means for generating third information indicating the standard deviation for each possible value of the packet error rate in association with each other may be provided.
  • the transmission apparatus may further include a measurement unit that measures a reception power value on the reception side.
  • the reception power value is measured at the reception side, and the reception power value is notified to the transmission side. Is no longer necessary.
  • the storage means may be a nonvolatile memory.
  • FIG. 1 is a system diagram.
  • FIG. 2 is a functional block diagram of transmitter 10 in the first embodiment of the present invention.
  • FIG. 3 is a functional block diagram of receiver 100 according to Embodiment 1 of the present invention.
  • FIG. 4 is a functional block diagram of a packet error rate estimation unit 15.
  • FIG. 5 is a diagram showing a functional expression of received power value and PER.
  • FIG. 6 is a functional block diagram of the correction information creation unit 18.
  • FIG. 7 is a diagram showing a functional expression of PER and standard deviation of PER.
  • FIG. 8 is a diagram showing a specific example of the effective rate of each PHY rate calculated by the PHY rate determining unit 16.
  • FIG. 9 shows a flowchart of PHY rate setting.
  • FIG. 10 is a flowchart related to correction processing.
  • FIG. 11 is a diagram showing a method of correcting the relational expression.
  • FIG. 12 is a functional block diagram of a transmitter 20 according to the second embodiment of the present invention.
  • FIG. 13 is a functional block diagram of standard deviation estimation unit 21.
  • FIG. 14 is a diagram showing a functional expression of PER and standard deviation of PER.
  • FIG. 15 is a functional block diagram of the correction information creation unit 25.
  • FIG. 16 is a diagram showing a flowchart for setting PHY rate and bandwidth reservation at the start of data transmission.
  • FIG. 17 is a diagram showing a flowchart for setting PHY rate and bandwidth reservation during data transmission.
  • FIG. 18 is a diagram showing a flowchart regarding correction processing.
  • FIG. 19 is a diagram showing a method of correcting the relational expression.
  • FIG. 20 is a functional block diagram of the transmitter 30 according to the third embodiment of the present invention.
  • FIG. 21 is a functional block diagram of necessary bandwidth determination unit 32.
  • FIG. 22 is a flowchart of PHY rate determination, bandwidth allocation, and content rate setting processing at the start of data transmission.
  • FIG. 23 is a diagram showing a flowchart of PHY rate determination, band allocation, and content rate setting processing during data transmission.
  • FIG. 24 is a functional block diagram of the transmitter 40 according to the fourth embodiment of the present invention.
  • FIG. 25 is a functional block diagram of the correction information creation unit 41.
  • FIG. 26 is a functional block diagram of the standard deviation estimation unit 42.
  • FIG. 27 is a functional block diagram of a transmitter according to a fifth embodiment of the present invention.
  • FIG. 28 is a functional block diagram of a packet error rate estimation unit 51.
  • FIG. 30 is a flowchart of a relational expression generation process.
  • FIG. 31 is a functional block diagram of the transmitter 60 according to the sixth embodiment of the present invention.
  • ⁇ 32 It is a functional block diagram of receiver 200 according to the seventh embodiment of the present invention.
  • FIG. 33 is a diagram showing a flowchart for setting PHY rate and bandwidth reservation during data transmission.
  • FIG. 34 is a diagram showing a flowchart of PHY rate determination, band allocation, and content rate setting processing during data transmission. Explanation of symbols
  • the transmission apparatus according to the present invention is used in a system as shown in FIG.
  • the system shown in FIG. 1 includes a server device 1 and a client device 2, and the server device 1 and the client device 2 are connected by radio (for example, IEEE802.11a).
  • IEEE802.11a defines a slower PHY rate of 48 Mb Zs, 36 MbZs, 24 MbZs, 18 Mb / s, 12 Mb / s, 9 Mb / s, and 6 MbZs in addition to a maximum PHY rate of 54 Mb / s (Megabit Z seconds) To do.
  • Server device 1 and client device 2 are connected to transmission devices 10 and 100 by Ethernet (registered trademark), respectively.
  • the transmission device 10 transmits a packet for measuring the received power value to the transmission device 100.
  • the effective rate is calculated for each PHY rate based on the reception power value, and the PHY rate corresponding to the maximum effective rate is determined.
  • the content supplied from the server device 1 is transmitted to the transmission device 100 in packet units.
  • transmission apparatus 100 measures the received power value of the packet and transmits the measured received power value to transmission apparatus 10.
  • the transmission device 100 supplies the received content to the client device 2.
  • the transmission apparatus 10 calculates the effective rate based on the received power value, and determines the PHY rate corresponding to the maximum effective rate. By transmitting content at the determined PHY rate, data transmission efficiency can be improved regardless of the environment.
  • FIG. 2 is a functional block diagram of transmission device 10 (hereinafter referred to as “transmitter 10” t) on the data transmission side in Embodiment 1 of the present invention.
  • the transmitter 10 is a computer system composed of an antenna, a microprocessor, a ROM, a RAM, and the like.
  • a computer program is stored in the ROM.
  • the microprocessor 10 achieves its function by operating according to the computer program.
  • the transmitter 10 includes a wireless transmission / reception unit 11, a packet identification unit 12, a received power value notification packet analysis unit 13, a received power value management unit 14, a packet error rate estimation unit 15, a PHY rate determination unit 16, and a packet error rate measurement unit 17 And a correction information creation unit 18.
  • the wireless transmission / reception unit 11 is configured to include a transmission / reception circuit including a modulation circuit, a demodulation circuit, and the like. Receives and demodulates, and identifies the demodulated packet as a packet identification unit 1
  • the wireless transmission / reception unit 11 modulates the packet output to the wireless network, and transmits the modulated packet via the antenna or the like.
  • the wireless transmission / reception unit 11 sets the instructed PHY rate and transmits a packet.
  • the packet identification unit 12 identifies a packet input from the wireless transmission / reception unit 11. If the received packet is a received power value notification packet as a result of identification, the received packet is received. Transmit to the power value notification packet analysis unit 13.
  • the received power value notification packet analysis unit 13 analyzes the received power value notification packet input from the packet identification unit 12. Specifically, the received power value notification packet analysis unit 13 extracts the received power value from the received power value notification packet, and transmits the extracted received power value to the received power value management unit 14.
  • the received power value management unit 14 is configured to include a memory such as a RAM, accumulates the received power value input from the received power value notification packet analysis unit 13, and sets the received power value to a packet error.
  • the data is transmitted to the rate estimating unit 15 and the correction information creating unit 18.
  • the packet error rate estimator 15 estimates the packet error rate (hereinafter referred to as “PER”) in the radio section from the received power value input from the received power value manager 14. The method for estimating PER will be described in ⁇ Configuration of packet error rate estimator 15>.
  • the packet error rate estimation unit 15 transmits the estimated PER at each PHY rate to the PHY rate determination unit 16.
  • the PHY rate determination unit 16 includes a memory such as a Flash ROM, and determines a PHY rate that maximizes the effective rate from the PER value at each PHY rate input from the packet error rate estimation unit 15. .
  • the PHY rate determination unit 16 determines the PHY rate
  • the PHY rate determination unit 16 instructs the wireless transmission / reception unit 11 to transmit data at the determined PHY rate.
  • the packet error rate measuring unit 17 is configured to include a memory such as a RAM, and measures the number of retransmissions for each packet and the number of packets that have been transmitted, stores them in the memory, and is set in advance. When transmission of a certain number of packets is completed, the total number of retransmissions, the number of packets for which transmission has been completed, and the value of the PHY rate used for transmission are transmitted to the correction information creation unit 18.
  • a memory such as a RAM
  • the correction information creation unit 18 also calculates the packet error rate estimation unit 15 based on the total number of retransmissions and the number of packets input from the packet error rate measurement unit 17 and the received power value input from the reception power value management unit 14. This information is used to correct the relational expression stored in the memory.
  • FIG. 3 shows a data receiving-side transmission apparatus 100 (hereinafter referred to as “reception” in Embodiment 1 of the present invention). It is a functional block diagram of machine 100 ”t).
  • the receiver 100 is a computer system including an antenna, a microprocessor, a ROM, a RAM, and the like.
  • a computer program is stored in the ROM.
  • Microprocessor power The receiver achieves its functions by operating according to the computer program.
  • the receiver 100 includes a wireless transmission / reception unit 110, a packet identification unit 120, a reception power measurement unit 130, and a reception power value notification packet creation unit 140.
  • the wireless transmission / reception unit 110 is specifically configured to include a transmission / reception circuit including a modulation circuit, a demodulation circuit, and the like, and a packet transmitted from the transmitter 10 via an antenna or the like that transmits and receives a wireless signal. Are received and demodulated, and the demodulated packet is transmitted to the packet identification unit 120.
  • the wireless transmission / reception unit 110 modulates the received power value notification packet input from the received power value notification packet creation unit 140, and transmits the modulated received power value notification packet to the transmitter 10 via the antenna or the like. Send to.
  • the packet identification unit 120 identifies a packet input from the wireless transmission / reception unit 110.
  • Received power measurement section 130 is configured to include an RSSI (Received Signal Strength Indicator) measurement circuit, measures the received power value of the packet transmitted from transmitter 10, and uses the measured received power value as a received power value notification packet creation section. Send to 140.
  • RSSI Received Signal Strength Indicator
  • Received power value notification packet creation section 140 creates a received power value notification packet including the received power value of the packet input from received power measurement section 130, and transmits the created packet to radio transmission / reception section 110.
  • FIG. 4 is a functional block diagram of the packet error rate estimator 15.
  • the packet error rate estimation unit 15 includes a packet error rate request unit 15A, a relational expression management unit 15B, a read processing unit 15C, a relational expression change determination unit 15D, a relational expression generation unit 15E, and a write processing unit 15F. It is comprised including.
  • the relational expression management unit 15B is configured to include a memory such as a Flash ROM, and the received power value and the PE The function expression with R is managed for each PHY rate.
  • Figure 5 shows the solid line derived from the relational expression.
  • the relational expression management unit 15B manages relational expressions capable of obtaining a solid line as shown in FIG. 5 in advance for each PHY rate.
  • FIG. 5 shows the result of content transmission (approximately 300,000 packets) for 5 minutes at an IEEE802.11a PHY rate of 36 Mbps, and an approximate expression obtained from this result.
  • the horizontal axis shows the average received power value of packets successfully received in 5 minutes, and the vertical axis shows the PER calculated from the number of retransmissions of packets sent in 5 minutes.
  • the result of eight times of content transmission with different transmission power black circle in the figure
  • the packet error rate request unit 15A can use this approximate expression as a relational expression V, and can also obtain the received power value PER.
  • the packet error rate request unit 15A receives the received power value input from the received power value management unit 14
  • the relational expression managed in advance by the relational expression management unit 15B is read for each PHY rate via the read processing unit 15C. Read in order.
  • the PER at each PHY rate is obtained from the read relational expression and the received received power value, and the calculated PER is transmitted to the PHY rate determination unit 16 as the estimated PER.
  • the read processing unit 15C reads the relational expression managed by the relational expression management unit 15B.
  • the relational expression change determination unit 15D includes a memory such as a RAM, and determines whether there is a change in the relational expression managed by the relational expression management unit 15B.
  • the relational expression generation unit 15E generates a relational expression between the received power value and the PER value using the relational expression managed by the relational expression management unit 15B and the information from the relational expression change determination unit 15D.
  • the write processing unit 15F writes the relational expression generated by the relational expression generation unit 15E into the relational expression management unit 15B.
  • relational expression change determination unit 15D Details of the relational expression change determination unit 15D, the relational expression generation unit 15E, and the writing processing unit 15F will be described in ⁇ Operation relating to correction method>.
  • FIG. 6 is a functional block diagram of the correction information creation unit 18.
  • the correction information creation unit 18 includes a packet error rate calculation unit 18A and a relational expression generation information creation unit 18B.
  • the packet error rate calculation unit 18A also obtains PER from the information power received from the packet error rate measurement unit 17. More specifically, PER is obtained using the total number of retransmissions received from the packet error rate measurement unit 17 and the number of packets that have been transmitted, and the relationship between the obtained PER and the value of the PHY rate used for content transmission is related. It is transmitted to the formula generation information creation unit 18B.
  • the relational expression generation information creation unit 18B receives the PER and the PHY rate value from the packet error calculation unit 18A. Also, a plurality of received power values stored by the received power value management unit 14 are acquired, and an average value of the received power values is calculated. The calculated average value, PER value, and PHY rate value are transmitted to the packet error rate estimator 15.
  • the PHY rate determining unit 16 calculates the effective rate of each PHY rate using (Equation 1) stored in advance, and determines the PHY rate corresponding to the maximum effective rate. To do.
  • the effective rate is the unit amount of data that takes PER into account.
  • Equation 1 is a relational expression that determines the number S of redundant packets considering retransmission when 100 packets are transmitted.
  • Figure 7 shows the results of calculating the number of redundant packets S using (Equation 1) to reduce the packet loss rate to 1.0E-8 or less at each PER.
  • the horizontal axis is PER
  • the vertical axis is retransmission. It represents the ratio ((ioo + s) Zioo).
  • the black circles in the figure are the values obtained using (Equation 1).
  • the packet loss rate is the highest for the expected data! When viewing a video of about 2 hours at 28Mbps of BS digital broadcasting full TS transmission (the number of packets to be transmitted is about 1.65E + 7) It is fixed at 1.0E-8 so that no single packet is lost.
  • the PHY rate determination unit 16 substitutes the value of PER received from the packet error rate estimation unit 15 into p in (Equation 1), and performs redundancy so that the packet loss rate P is 1. OE—8 or less. Number of packets S
  • the propagation state means a state in which the effective rate changes according to the change in the received power value.
  • the PHY rate determination unit 16 compares the obtained effective rates, determines a PHY rate value corresponding to the maximum effective rate, and transmits the value to the radio transmission / reception unit 11.
  • Figure 8 shows the ideal rate, PER, retransmission ratio, and effective rate at each PHY rate (here, 24 Mbps, 36 Mbps, and 48 Mbps) when the received power value is 30.
  • the PHY rate determination unit 16 selects the PHY rate (36 Mbps) corresponding to the maximum effective rate (17.48 Mbps) among the calculated effective rates (17.36 Mbps, 17.48 Mbps, 0.02 Mbps).
  • the determined PHY rate value (36 Mbps) is transmitted to the wireless transceiver 11.
  • FIG. 9 is a flowchart of PHY rate setting in Embodiment 1 of the present invention.
  • n is a variable indicating one PHY rate.
  • the wireless transmission / reception unit 11 modulates a packet to be transmitted to the receiver 100, and outputs the modulated packet to the wireless network via the antenna (step Sl).
  • the wireless transmission / reception unit 110 and the reception power measurement unit 130 in the receiver 100 also receive the packet of the wireless network power via the antenna (step S1001).
  • the received power measurement unit 1 30 measures the received power value and transmits it to the received power value notification packet creation unit 32 (step S 1002).
  • Received power value notification packet creation section 140 creates a received power value notification packet including the received power value of the packet, and wireless transmission / reception section 110 modulates the created received power value notification packet and wirelessly transmits it via the antenna. Output the modulated packet to the network (step S 1003).
  • the wireless transmission / reception unit 11 of the transmitter 10 receives the wireless network power received power value notification packet via the antenna (step S2).
  • the received power value notification packet analyzer 13 extracts the received power value from the received received power value notification packet, and the packet error rate estimator 15 also determines the PER at each PHY rate for the extracted received power value (step S3). ).
  • the PHY rate determination unit 16 determines the PHY rate that maximizes the effective rate among the PHY rates. Specifically, first, n is initialized (step S4), and the effective rate of the PHY rate corresponding to n is calculated (step S5). Then, it is determined whether or not there is a force that has an effective rate that is already stored and V (step S6).
  • step S6 If the effective rate is not stored (NO in step S6), the calculated effective rate is stored (step S7), and it is determined whether n is the final force (step S8). If n is not the last (NO in step S8), n is counted by 1 (step S9), and the process proceeds to step S5. If the effective rate is already stored (YES in step S6), it is determined whether or not the calculated effective rate is greater than the stored effective rate (step S10). If the calculated effective rate is larger than the stored effective rate (YES in step S10), the calculated effective rate is stored (overwritten) (step S7).
  • step S10 If the calculated effective rate is less than or equal to the stored effective rate (YES in step S10), it is determined whether n is the last (step S8), and if n is the last (step S8 YES), and select the PHY rate that corresponds to the effective rate stored (step S9).
  • the wireless transmission / reception unit 11 performs setting to transmit subsequent data at the selected PHY rate.
  • i is a variable indicating one packet to be transmitted
  • n is a preset number indicating the number of packets to be transmitted
  • j is a PER and correction information creation unit 18 for which the relational expression force is also obtained.
  • Is a variable that indicates the number of differences greater than or equal to a predetermined value when compared with the PER value received from m.
  • M indicates the preset allowable number of differences greater than or equal to a predetermined value.
  • the relational expression change determination unit 15D initializes the number j (step S20), and the packet error rate measurement unit 17 initializes the packet i (step S21).
  • the packet error rate measurement unit 17 determines whether or not the transmission of the packet i by the wireless transmission / reception unit 11 is complete (step S22), and if it determines that the transmission is complete (YES in step S22), the packet error rate measurement unit 17 Is memorized (step S23).
  • the packet error rate measurement unit 17 determines whether or not the number of transmitted packets has reached n (step S 24), and if it has reached! / ⁇ (NO in step S 24), the packet i 1 is counted (step S25), and the process proceeds to step S22. If it is determined that the packet has been reached (YES in step S24), the packet error rate calculation unit 18A calculates PER using the total number of retransmissions and the number of packets that have been transmitted (step S26).
  • the relational expression generation information creation unit 18B acquires a plurality of reception power values stored by the reception power value management unit 14, and calculates an average value of the reception power values (step S27).
  • the relational expression change determination unit 15D reads the relational expression corresponding to the PHY rate used for the packet error rate measurement via the reading processing part 15C, and uses the calculated average value of the received power values to determine the relational expression.
  • the power is also determined as PER, and the determined PER is compared with the PER calculated by the packet error rate calculation unit 18A (step S29).
  • step S30 it is determined whether there is a force with a difference greater than or equal to a predetermined value. If it is determined that there is no difference greater than a predetermined value (NO in step S30) Move on to step S21. If it is determined that there is a difference greater than or equal to the predetermined value (YES in step S30), the relational expression change determination unit 15D counts the number of times j by 1 (step S31), and the number of times j has reached the allowable number of times m. It is determined whether or not there is power (step S32). If it is determined that it has not been reached (NO in step S32), the process proceeds to step S21.
  • the relational expression change determination unit 15D determines that the relational expression needs to be corrected. [0056] Then, the relational expression generation unit 15E determines a value necessary for correcting the relational expression according to the procedures of FIGS. 11 (a) and 11 (b). First, the relational expression generation unit 15E reads the relational expression corresponding to the PHY rate used for the packet error rate measurement via the read processing part 15C, and the relational expression management part 15B also reads the relational expression. Each time, the value of the relational expression is obtained and sampling (the value of the black triangle in FIG. 11) is performed (step S33).
  • the relational expression generating unit 15E sets the value of the relational expression (the triangular value in FIG. 11) within the range of the value (the black circle value in FIG. 11) force received from the correction information creation unit 18 in advance. ) Is excluded from sampling, and the values of black circles and black triangles in Fig. 11 (b) are determined as values used to generate the relational expression (step S34). Then, the relational expression generating unit 15E generates a relational expression using the determined value (step S35).
  • the relational expression to be generated is an approximate expression of a quadratic function generated using the least square method V.
  • the relational expression generation unit 15E displays the relational expression corresponding to the corresponding PHY rate, which is held in advance by the relational expression management unit 15B via the write processing unit 15F, as shown in FIG. Change to the relational expression shown in (Step S36).
  • the write processing unit 15F sends a read stop instruction to the relational expression management unit 15B to the read processing part 15C before performing the write process to the relational expression management part 15B, and then performs the write process. After the completion, a cancel command for the read stop command is sent to the read processing unit 15C.
  • the relational expression stored in the packet error rate estimation unit 15 is corrected by the above procedure.
  • the transmitter 10 estimates the PER of each PHY rate from the received power value, and calculates the effective rate of each PHY rate using the estimated PER.
  • data transmission at the PHY rate corresponding to the maximum effective rate becomes possible. Therefore, the radio band can always be used efficiently.
  • PER is estimated based on the received power value, and the received power value depends on the PHY rate. Since the received power value of a packet that has not been successfully received is stable, several tens of histories are sufficient. [0060] Therefore, in the present embodiment in which the PHY rate setting is performed using the estimated PER of the received power value power, the setting that quickly follows the propagation state can be made, and the radio band can be used efficiently.
  • relational expression management unit 15B holds the once corrected relational expression in the Flash ROM, and performs estimation using the relational expression held in the Flash ROM for subsequent use. Therefore, even if the power is turned off, the corrected relational expression remains stored.When the power is turned on again, the corrected relational expression can be used, and the PH Y rate setting suitable for the propagation environment can be set. It becomes possible.
  • the first embodiment is configured to determine the PHY rate at which the effective rate is maximized. However, this embodiment further implements a case where a transmitter secures a band necessary for data transmission according to the propagation state. It is a form.
  • FIG. 12 is a functional block diagram of transmitter 20 according to the second embodiment of the present invention.
  • the same components as those in FIG. 12 are identical to FIG. 12, the same components as those in FIG. 12, the same components as those in FIG. 12, the same components as those in FIG. 12, the same components as those in FIG. 12, the same components as those in FIG. 12, the same components as those in FIG. 12, the same components as those in FIG. 12, the same components as those in FIG. 12, the same components as those in FIG.
  • the transmitter 20 includes a standard deviation estimation unit 21, a necessary bandwidth determination unit 22, an application unit 23, and a test packet creation unit 24 in addition to the components of the transmitter 10 of the first embodiment. Consists of including. Also, the transmitter 20 is a correction information creation unit in the transmitter 10.
  • a correction information creation unit 25 is provided.
  • the standard deviation estimating unit 21 transmits the determined MAXPER to the necessary band determining unit 22.
  • the necessary bandwidth determining unit 22 includes a memory such as a Flash ROM, and obtains a bandwidth necessary for MAXPER value data transmission transmitted from the standard deviation estimating unit 21.
  • the necessary band determination unit 22 instructs the radio transmission / reception unit 11 to perform data transmission in the obtained band.
  • the application unit 23 receives a data transmission request from the user and instructs the test packet creation unit 24 to create a test packet. Also, the content rate is received by user input and transmitted to the necessary bandwidth determination unit 22.
  • the test packet creation unit 24 creates a test packet for measuring the propagation state in response to an instruction from the application unit 23, and transmits the created test packet to the wireless transmission / reception unit 11.
  • the correction information generation unit 25 has a function of generating information that is stored in the standard deviation estimation unit 21 and used for correcting the relational expression. Note that the receiver in the present embodiment is the same as the receiver 100 in the first embodiment.
  • the standard deviation estimation unit 21 includes a standard deviation request unit 21A, a relational expression management unit 21B, a read processing unit 21C, a relational expression change determination unit 21D, a relational expression generation unit 21E, and a write processing unit 21F. Consists of.
  • the relational expression management unit 21B is configured to include a memory such as Flash ROM, and manages a functional expression of PER and the standard deviation of PER.
  • Figure 14 shows a solid line derived from the relational expression.
  • the relational expression management unit 21B manages relational expressions that can obtain a solid line as shown in FIG. 14 in advance for each P HY rate.
  • FIG. 14 will be described in further detail.
  • Figure 14 shows the result of performing content transmission (approximately 300,000 packets) for 5 minutes at an IEE E802.11a PHY rate of 36 Mbps, and the approximate expression obtained from this result.
  • the horizontal axis shows the number of retransmissions of packets sent in 5 minutes.
  • the vertical axis shows the calculated PER value, and the vertical axis shows the value calculated for every 1000 packets.
  • the calculated multiple PER forces also represent the standard deviation of the calculated PER.
  • the result of performing content transmission eight times with different transmission power black circles in the figure
  • the standard deviation request unit 21A can obtain the standard deviation of PER from PER using this approximate expression as a function expression.
  • the standard deviation requesting unit 21A uses the P HY rate determining unit. 16 may receive PER at each PHY rate. After each PER is received, the relational expressions of each PHY rate are read in order, and the standard deviation at each PHY rate is obtained from the read relational expressions and PER at each PHY rate. MAXPER may be obtained, and each obtained MAXPER may be transmitted to the necessary bandwidth determining unit 22.
  • the read processing unit 21C reads a relational expression managed by the relational expression management unit 21B.
  • the relational expression change determination unit 21D includes a memory such as a RAM, and determines whether the relational expression managed by the relational expression management unit 21B has been changed.
  • the relational expression generation unit 21E uses the relational expression managed by the relational expression management part 21B and the information from the relational expression change determination part 21 1D to generate a relational expression between the standard deviation values of PER and PER.
  • the write processing unit 21F writes the relational expression generated by the relational expression generation unit 21E into the relational expression management unit 21B.
  • the correction information creation unit 25 further includes a packet error rate management unit 25C, a standard deviation calculation unit 25D, and a relational expression generation information generation unit 25E.
  • the packet error rate management unit 25C includes a memory such as a RAM, receives the PER value and the PHY rate value used for transmission from the packet error rate calculation unit 18A.
  • the packet error rate management unit 25C stores and presets the number of PERs. When the number of PERs is reached, it stores and calculates the standard deviation of the multiple PER values and the received PHY rate values. Send to Part 25D.
  • the standard deviation calculation unit 25D calculates the standard deviation of the PER using the PER to which the packet error rate management unit 25C is also input, and calculates the standard deviation value and the plurality of PERs used to calculate the standard deviation. And the PHY rate value are transmitted to the relational expression generation information creation unit 25E.
  • the relational expression generation information creation unit 25E obtains the average of the plurality of PER values input from the standard deviation calculation unit 25D, and calculates the average PER and the standard deviation calculation unit 25D force of the standard deviation value and the PHY rate input. The value is transmitted to the standard deviation estimation unit 21.
  • FIG. 16 is a flowchart for setting the PHY rate and bandwidth reservation at the start of data transmission in Embodiment 2 of the present invention.
  • the application unit 23 determines whether or not there is a request for data transmission from the user (step S41). If it is determined that there is a data transmission request (YES in step S41), the address of the receiver 100 is transmitted to the test packet creation unit 24.
  • the test packet creation unit 24 receives an address from the application unit 23, the test packet creation unit 24 creates a test packet to be transmitted to the receiver 100 of the address (step S42), and transmits the created packet to the wireless transmission / reception unit 11.
  • the wireless transmission / reception unit 11 modulates the received test packet and outputs the modulated packet to the wireless network via the antenna (step S43).
  • transmitter 20 and receiver 100 from when transmitter 20 transmits a test packet to when PHY rate determination unit 16 of transmitter 20 determines the PHY rate are the same as those in the first embodiment. Since the operation is equivalent, the description is omitted.
  • the PHY rate determination unit 16 determines the PHY rate value at which the effective rate is the highest (step S46)
  • the PHY rate determination unit 16 transmits the determined PHY rate value to the wireless transmission / reception unit 11 and the standard deviation estimation unit 21 determines the PHY rate value.
  • the necessary bandwidth determination unit 22 Upon receiving the MAXPER value and the PHY rate value determined by the PHY rate determination unit 16 from the standard deviation estimation unit 21, the necessary bandwidth determination unit 22 receives the content rate value of the corresponding content from the application unit 23.
  • the determination unit 22 sends an instruction to the wireless transmission / reception unit 11 to ensure the calculated necessary bandwidth, and notifies the application unit 23 of a response to the content transmission request.
  • application unit 23 When receiving a response to the content transmission request, application unit 23 inputs the content to wireless transmission / reception unit 11.
  • the wireless transmission / reception unit 11 When the wireless transmission / reception unit 11 receives a bandwidth reservation instruction from the required bandwidth determination unit 22, the wireless transmission / reception unit 11 secures the bandwidth of the wireless network.
  • the wireless transmission / reception unit 11 packetizes the content (hereinafter referred to as “content packet”) and transmits it at the PHY rate determined by the PHY rate determination unit 16. Further, the wireless transmission / reception unit 11 transmits the content packet in the band secured by the instruction from the necessary band determination unit 22.
  • steps S51 to S55 in this figure are the same as steps S44 to S48 in FIG.
  • the required bandwidth determination unit 22 compares the bandwidth currently allocated to the content (hereinafter referred to as “current bandwidth allocation”) with the calculated required bandwidth (step S56). ratio If it is determined that the required bandwidth is smaller than the current bandwidth allocation (NO in step S56), the wireless transceiver 11 is instructed to change the current bandwidth allocation to the required bandwidth size (step S57). ). When the wireless transmission / reception unit 11 receives a band change instruction from the necessary band determination unit 22, it changes the band of the wireless network.
  • the necessary bandwidth determining unit 22 compares the allocatable bandwidth with the necessary bandwidth (step S58). As a result of the comparison, if it is determined that the required bandwidth is smaller than the assignable bandwidth (YES in step S58), the wireless transceiver 11 is instructed to change the current bandwidth allocation to the required bandwidth size ( Step S57). If it is determined that the required bandwidth is larger than the allocatable bandwidth (NO in step S58), the radio transceiver unit 11 is instructed to ensure only the allocatable bandwidth (step S59).
  • i is a variable indicating the first packet to be transmitted
  • n is a preset number indicating the number of packets to be transmitted
  • j is the standard deviation and standard deviation of PER for which the relational force is also obtained.
  • This is a variable indicating the number of differences greater than or equal to a predetermined value when compared with the standard deviation of PER calculated by the calculation unit 25D
  • m indicates a preset allowable number of differences greater than or equal to a predetermined value.
  • the packet error rate management unit 25C stores, and stores the number of PERs when the number of PERs is set in advance. ! / Sends the PER value and the corresponding PHY rate value used for transmission to the standard deviation calculator 25D.
  • the standard deviation calculation unit 25D calculates the standard deviation of the PER using the plurality of PERs also received by the packet error rate management unit 25C (step S77), and uses the calculated standard deviation value and the standard deviation. Create relational expression information between the PER value and the PHY rate value Send to part 25E.
  • the relational expression generation information creation unit 25E obtains an average of a plurality of PER values received from the standard deviation calculation unit 25D, and calculates the average PER and the standard deviation calculation unit 25D and also receives the standard deviation value received by the PHY.
  • the rate value and the standard deviation estimation unit 21 are transmitted.
  • the relational expression change determination unit 21D When the relational expression change determination unit 21D receives the PER, standard deviation, and PH Y rate values from the relational expression generation information creation part 25E, it supports the PHY rate from the relational expression management part 21B via the read processing part 21C.
  • the standard deviation is calculated from the relational expression using the received PER value, and the calculated standard deviation is compared with the standard deviation calculated by the standard deviation calculating unit 25D (step S79).
  • step S80 it is determined whether there is a force with a difference greater than or equal to a predetermined value. If it is determined that there is no difference greater than the predetermined value (NO in step S80), the process proceeds to step S71. Transition. If it is determined that there is a difference greater than the predetermined value (YES in step S80), the relational expression change determination unit 21D counts the number of times j by 1 (step S81), and then the number of times j reaches the allowable number of times m. It is determined whether or not (step S82). If it is determined that it has been reached (NO in step S82), the process proceeds to step S71. If it is determined that it has been reached (YES in step S82), the relational expression change determination unit 21D determines that correction of the relational expression is necessary.
  • the relational expression change determination unit 21D transmits the PER, standard deviation, and PHY rate value received from the correction information creation part 25 to the relational expression generation unit 21E.
  • the relational expression generation unit 21E When the relational expression generation unit 21E receives the relational expression change determination part 21D force PER and the value of the standard deviation, the relational expression generation unit 21E determines a value necessary for correcting the relational expression according to the procedure of FIGS. 19 (a) and 19 (b). First, the relational expression generation unit 21E reads the relational expression corresponding to the PHY rate used for content transmission from the relational expression management unit 21B via the read processing unit 21C, and the relational expression is generated for each preset interval. A value is obtained and sampling (the value of the black triangle in FIG. 19) is performed (step S83).
  • the relational expression generation unit 21E determines the value of the relational expression (the triangular value in FIG. 19) within a preset range from the value received from the correction information creation part 25 (the black circle value in FIG. 19). ) Is excluded from the sampling, and the black circle and black triangle values in Fig. 19 (b) are determined as the values used to generate the relational expression (step S84).
  • the relational expression generating unit 21E generates a relational expression using the determined value (step S85). Living The relational expression to be formed is an approximate expression of a quadratic function generated using the least square method.
  • relational expression generation unit 21E changes the relational expression of the corresponding PHY rate to the relational expression shown in FIG. 19 (c) via the write processing unit 21F (step S86).
  • the write processing unit 21F sends a read stop instruction to the relational expression management unit 21B to the read processing part 21C before performing the write process to the relational expression management part 21B, and then performs the write process. After the completion, a cancel command for the read stop command is sent to the read processing unit 21C.
  • the PER of each received power value PHY rate is estimated, and the standard deviation of PER is estimated from the estimated PER. Then, PER, standard deviation, and MAXPER (PER + standard deviation X 2) are calculated, and the calculated MAXPER is used to secure the necessary bandwidth for content transmission at the PHY rate that maximizes the effective rate. Therefore, stable content transmission can be performed.
  • the actual measurement of PER requires a certain number (at least 100 or more) of packet retransmissions and error history. Furthermore, since it is necessary to measure PER for each PHY rate, it takes time on the order of seconds. In this embodiment, PERR is estimated based on the received power value, and the received power value is calculated based on the PHY rate. Since the received power value of a packet that is not dependent and has been successfully received is stable, several tens of histories are sufficient.
  • the setting according to the propagation state can be performed quickly, and the waiting time of the user is reduced. Is obtained.
  • the standard deviation is estimated from the estimated PER of the received power value. Since MAXPER is obtained, it is possible to quickly determine the PHY rate and set the bandwidth following the change in the propagation environment.
  • MAXPER average PER + PER standard deviation value X 2
  • MAXPER average PER + PER standard deviation value X 2
  • Bandwidth can be secured, and stable content transmission can be realized.
  • by correcting the relational expressions stored in the bucket error rate estimator 15 and the standard deviation estimator 21 during content transmission it becomes possible to set the PHY rate and bandwidth more suitable for the actual environment.
  • relational expression management unit 21B holds the corrected relational expression in the Flash ROM, and performs estimation using the relational expression held in the Flash ROM for subsequent use. Therefore, even if the power is turned off, the corrected relational expression remains stored, so when the power is turned on again, the corrected relational expression can be used, and the PH Y rate setting suitable for the propagation environment and Bandwidth setting is possible.
  • the content is allocated according to the allocatable bandwidth. It is embodiment which changes a rate.
  • FIG. 20 is a functional block diagram of transmitter 30 according to the third embodiment of the present invention.
  • the same components as those in FIGS. 1 and 12 are denoted by the same reference numerals, and description thereof is omitted.
  • the transmitter 30 includes a content rate changing unit 31 in addition to the configuration of the transmitter 20 in the second embodiment.
  • the transmitter 30 includes a necessary band determining unit 32 instead of the necessary band determining unit 22 in the transmitter 20.
  • the content rate changing unit 31 changes the content rate according to the instruction of the necessary bandwidth determining unit 32.
  • the necessary band determining unit 32 has a function of determining the rate of content to be transmitted according to the band that can be allocated, in addition to the function of the necessary band determining unit 22.
  • the required bandwidth determination unit 32 includes a required bandwidth calculation unit 32A, a reserved bandwidth determination unit 32B, an allocatable bandwidth information acquisition unit 32C, a content rate calculation unit 32D, and a content rate change instruction unit. 32E and a transmission content rate storage unit 32F.
  • the required bandwidth calculation unit 32A calculates a bandwidth necessary for content transmission at the PHY rate determined by the PHY rate determination unit 16.
  • the required bandwidth calculation unit 32A transmits the calculated bandwidth to the reserved bandwidth determination unit 32B.
  • the reserved bandwidth determination unit 32B determines a bandwidth to be secured based on the required bandwidth input from the required bandwidth calculation unit 32A and the allocatable bandwidth input from the allocatable bandwidth information acquisition unit 32C.
  • the allocatable bandwidth information acquisition unit 32C acquires the information on the allocatable bandwidth, and transmits the acquired information to the reserved bandwidth determination unit 32B.
  • the content rate calculation unit 32D determines the rate of the content to be transmitted, and transmits the determined content rate to the content rate change instruction unit 32E and the transmission content rate storage unit 32F.
  • Content rate change instructing section 32E instructs content rate changing section 31 to transmit at the content rate input from content rate calculating section 32D.
  • the transmission content rate storage unit 32F includes a memory such as a RAM, and stores the value of the content rate input from the content rate calculation unit 32D.
  • FIG. 22 is a flowchart showing processing relating to PHY rate determination, bandwidth reservation, and content rate setting at the start of data transmission according to Embodiment 3 of the present invention.
  • Steps S91 to 97 in this figure are the same as steps S41 to 47 in FIG.
  • the necessary bandwidth calculation unit 32 A calculates the content rate of the corresponding content from the application unit 23. get. Then, (Equation 1), the received MAXPER value and force, determine the bandwidth required for transmission of the relevant content, and obtain the required bandwidth and the retransmission ratio calculated from (Equation 1) to the secured bandwidth determination unit 32B. Send P98).
  • the band securing determination unit 32B Upon receiving the band necessary for content transmission and the retransmission ratio, the band securing determination unit 32B acquires and acquires information on the band that can be allocated by the allocatable band information acquisition unit 32C. The allocated allocatable bandwidth is compared with the necessary bandwidth (step S99). If the required bandwidth is smaller than the allocatable bandwidth (YES in S99), the bandwidth reservation determination unit 32B notifies the wireless transmission / reception unit 11 of an instruction to secure the required bandwidth and the response to the content transmission request to the application unit 23 (step S100).
  • bandwidth securing determining unit 32B transmits the allocatable bandwidth and the retransmission ratio to content rate calculating unit 32D.
  • the content rate calculation unit 32D receives the allocatable bandwidth and the retransmission ratio value from the bandwidth securing determination unit 32B, it calculates the content rate that can be transmitted in the allocatable bandwidth using (Equation 3).
  • the content that can be transmitted is about 7 Mbps (10 X (10/14)).
  • the content rate calculation unit 32D transmits the calculated transmittable content rate value to the content rate change instruction unit 32E and the transmission content storage unit 32F, and requests the secured bandwidth determination unit 32B to secure the allocatable bandwidth. To do.
  • Content rate change instruction unit 32E sends a content rate change instruction to content rate changer 31 so that content rate calculation unit 32D also changes the content rate to the input value.
  • the content rate changing unit 31 When the content rate changing unit 31 receives an instruction to change the content rate from the necessary bandwidth determining unit 32, the content rate changing unit 31 sets the rate of the corresponding content to the specified rate value
  • the secure bandwidth determining unit 32B responds to the content transmission request to the radio transmission / reception unit 11 and the application unit 23 in response to the content transmission request. Notify the response.
  • application unit 23 Upon receiving the response to the content transmission request, application unit 23 inputs the content to content rate changing unit 31.
  • the content rate changing unit 31 inputs the input content to the wireless transmission / reception unit 11.
  • the wireless transmission / reception unit 11 packetizes the content and transmits it at the PHY rate determined by the PHY rate determination unit 16.
  • the wireless transmission / reception unit 11 transmits the content packet in the band secured by the instruction from the necessary band determination unit 41.
  • FIG. 23 is a flowchart showing processing related to PHY rate determination, bandwidth reservation, and content rate setting during data transmission. This figure differs from FIG. 17 of the second embodiment in that the process of changing the content rate is performed in step S119 in the figure when the necessary band is larger than the allocatable band. Note that steps Sl 111 to 114 in this figure are the same as steps S 51 to 54 in FIG.
  • step S 114 When standard deviation estimating unit 21 calculates MAXPER of the PHY rate that maximizes the effective rate (step S 114), it transmits the calculated MAXPER to necessary band determining unit 32.
  • the necessary bandwidth calculation unit 32A receives the MAXPER of the PHY rate with the maximum effective rate from the standard deviation estimation unit 21, it acquires the content rate stored in the transmission content rate storage unit 32F and receives (Equation 1)
  • the retransmission ratio is calculated from the calculated MAXPER value, and the band necessary for transmission of the corresponding content is calculated from the calculated retransmission ratio and the acquired content rate (step S115). Then, the obtained necessary bandwidth and retransmission ratio are transmitted to the reserved bandwidth determination unit 32B.
  • the reserved bandwidth determination unit 32B compares the bandwidth allocated to the current content (hereinafter referred to as “current bandwidth allocation”) with the necessary bandwidth (step S 116).
  • the content rate It is determined whether or not has already been changed (lowering force) (step SI 17). If it has not been changed (NO in step S117), the reserved bandwidth determination unit 32B sends an instruction to the wireless transmission / reception unit 11 to change the current bandwidth allocation to the required bandwidth size (step S118). If yes (YES in step S117), the current bandwidth allocation and retransmission margin are transmitted to the content rate calculation unit 41D.
  • the content rate calculation unit 41D uses (Equation 3) to obtain the rate of content that can be transmitted using the current bandwidth allocation as an allocatable bandwidth, and changes the content rate thus obtained to the content rate change instruction unit 41E and the transmission content rate.
  • a request for securing an allocatable bandwidth is transmitted to the storage unit 1F and transmitted to the secured bandwidth determination unit 41B.
  • the content rate change instruction unit 41E sends an instruction to change the content rate to the content rate changer 31 so that the content rate calculation unit 32D also changes the content rate to the input value.
  • the content rate change unit 31 Send an instruction to cancel the rate change.
  • the content rate changing unit 31 When the content rate changing unit 31 receives an instruction to change the content rate or cancel the rate change from the content rate change instructing unit 32E, the content rate changing unit 31 sets the change or cancellation of the rate of the content being transmitted based on the instruction. Perform (step S119).
  • the transmission content rate storage unit 32F stores the rate value of the content that can be transmitted, which is also received by the content rate calculation unit 32D, and stores the value of the original rate when the rate value is larger than the original rate of the content To do.
  • the reserved bandwidth determination unit 32B when the content rate calculation unit 32D also receives a request for securing the allocatable bandwidth, sends an instruction to secure the allocatable bandwidth to the radio transmission / reception unit 11.
  • the wireless transmission / reception unit 11 secures the bandwidth of the wireless network (step S120).
  • the reserved bandwidth determination unit 32B acquires the allocatable bandwidth from the allocatable bandwidth information acquisition unit 32C and acquires the allocated allocation. The possible bandwidth is compared with the necessary bandwidth (step S121).
  • the reserved bandwidth determination unit 32B sends an instruction to change the current bandwidth allocation to the required bandwidth size to the wireless transmission / reception unit 11 (step S 118).
  • the reserved bandwidth determining unit 32B transmits the allocatable bandwidth and the retransmission ratio value to the content rate calculating unit 32D.
  • the content rate calculating unit 32D uses (Equation 3) to obtain the content rate that can be transmitted in the allocatable bandwidth. Then, the determined value of the transmittable content rate is transmitted to the content rate change instructing unit 32E and the transmission content rate storage unit 32F, and a request for securing the allocatable bandwidth is sent to the secured bandwidth determining unit 32B.
  • the content rate change instruction unit 32E sends a content rate change instruction to the content rate changer 31 so that the content rate calculation unit 32D also changes the content rate to the input value.
  • the content rate changing unit 31 When the content rate changing unit 31 receives an instruction to change the content rate from the content rate changing instruction unit 32E, the content rate changing unit 31 sets a change in the rate of the content being transmitted based on the instruction (step S122).
  • the reserved bandwidth determining unit 32B sends an instruction to secure the allocatable bandwidth to the radio transmission / reception unit 11.
  • the wireless transmission / reception unit 11 Upon receiving the instruction for securing the bandwidth of the content rate calculation unit 32D, the wireless transmission / reception unit 11 secures the bandwidth of the wireless network (step S123).
  • the content rate is changed to a rate that can be transmitted in the allocatable band. Therefore, stable content transmission can be realized.
  • MAXPER was set to (PER + standard deviation X 2)
  • the value of MAX PER was changed according to the occurrence distribution of multiple PERs used to calculate the standard deviation. This is an embodiment.
  • FIG. 24 is a functional block diagram of transmitter 40 according to Embodiment 4 of the present invention.
  • the same components as those in FIG. 24 are identical to FIG. 24.
  • the transmitter 40 obtains a standard deviation in addition to the function of the correction information creation unit 18 instead of the correction information creation unit 18 and the standard deviation estimation unit 21 in the transmitter 20 of the second embodiment.
  • the function to change the MAX PER value according to the state of the standard deviation And a standard deviation estimating unit 42.
  • Other components are the same as those of the transmitter 20 of the second embodiment.
  • the receiver 100 of the first embodiment uses the receiver 100 of the first embodiment.
  • correction information creation unit 41 The function of the correction information creation unit 41 will be described in more detail with reference to FIG. In FIG. 25, the same components as those in FIG. 15 are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 25, the correction information creation unit 41 is obtained by the standard deviation calculation unit 25D in addition to the function of the relational expression generation information creation unit 25E instead of the relational expression generation information creation unit 25E of the second embodiment. In addition, a relational expression generation information creation unit 41E having a function of obtaining a ratio within a standard deviation of a plurality of PERs used for the standard deviation is configured. Other components are the same as those of the correction information creation unit 25 of the second embodiment.
  • Relational expression generation information creation unit 41E obtains the average of multiple PER values input from standard deviation calculation unit 25D, and calculates the distribution (percentage) of multiple PERs within the range of average PER standard deviation Ask. The relational expression generation information creation unit 41E transmits the obtained distribution value and average PER value to the standard deviation estimation unit 42. ⁇ Functions of standard deviation estimation unit 42>
  • the standard deviation estimation unit 42 includes a maximum packet error rate changing unit 42G in addition to the configuration of the standard deviation estimation unit 21 of the second embodiment.
  • the ratio of the standard deviation of PER used to obtain the standard deviation during content transmission is obtained and the standard deviation is multiplied to obtain MAXPER. Since the value N is determined, the bandwidth allocated to the content can be minimized.
  • Embodiments 1 to 4 the force used to estimate the standard deviation of PER and PER in advance was stored beforehand.
  • the relationship used to estimate the standard deviation of PER and PER is It is embodiment which produces
  • the PHY rate and transmission power value set by the wireless transceiver 11 when the power is turned on are the maximum settable values.
  • FIG. 27 is a functional block diagram of the transmitter according to the fifth embodiment of the present invention.
  • the same components as those of FIG. 27 are identical.
  • the transmitter 60 in FIG. 27 uses correction information instead of the packet error rate estimation unit 15, the standard deviation estimation unit 21, the PHY rate determination unit 16, and the test packet creation unit 24 of the transmitter of the second embodiment.
  • Packet error rate estimator 51 that generates a relational expression between the received power value and the PER value from the information input from the information generator 25, and the information power PER input from the correction information generator 25 and the standard deviation of PER
  • the propagation state is determined by an instruction from the standard deviation estimation unit 52 that generates the relational expression, the PHY rate change unit 53 that instructs the wireless transceiver 11 to change the PHY rate of the packet output to the wireless network, and the parameter determination unit 55.
  • a test packet creating unit 56 for creating a test packet for measurement is provided, and a transmission power changing unit 54 and a parameter determining unit 55 are further included.
  • the transmission power changing unit 54 When the transmission power changing unit 54 receives the transmission power value input from the parameter determining unit 55, the transmission power changing unit 54 instructs the wireless transmission / reception unit 11 to change the transmission power value of the packet output to the wireless network.
  • the parameter determination unit 55 acquires the address of the device connected to the own device via the wireless network (here, the receiver 100), and The address of the receiver 100 is transmitted to the test packet creation unit 56 in order to measure the propagation state between them.
  • the parameter determination unit 55 determines and determines the PHY rate and transmission power value of the packet output to the information power wireless network input from the packet error rate estimation unit 51 and the standard deviation estimation unit 52.
  • the PHY rate is transmitted to the PHY rate changing unit 53, and the determined transmission power value is transmitted to the signal power changing unit 54.
  • test packet creation unit 56 When receiving an address from the parameter determination unit 55, the test packet creation unit 56 creates a test packet to be transmitted to the receiver 100 and transmits the test packet to the wireless transmission / reception unit 11. Note that the test packet generation unit 66 generates test packets continuously until an instruction is received from the meter determination unit 55 or if the number of packets stored in the transmission buffer is within a preset threshold, and the radio transmission / reception unit Send to 11.
  • the packet error rate estimation unit 51 generates a relational expression managed by the relational expression management unit 15B instead of the packet error requesting part 15A and the relational expression change determination part 15D.
  • the relational expression generation information management unit 51A that manages the information used for the information, the correction information generation part 25, the information input from the received power value managed by the relational expression generation information management part 51A and the value of PER
  • a relational expression generating unit 51E that generates a relational expression between the received power value and the PER value.
  • the relational expression generating unit 51E receives the received power value, the PER value, and the PHY rate value from the correction information generating unit 25, the received power of the packet transmitted at the same PHY rate as the received PHY rate.
  • a plurality of values and PER values are acquired from the relational expression generation information management unit 51A, and a relational expression is generated using the acquired value, the received power value received from the correction information generation unit 25, and PER.
  • the relational expression to be generated is an approximate expression of a quadratic function generated using the least square method. Then, the relational expression generation unit 51E writes the generated relational expression in the relational expression management unit 15B via the write processing unit 15F.
  • relational expression generation unit 51E transmits the received power value and PER input from the correction information creation part 25 to the relational expression generation information management unit 51A as needed.
  • the relational expression generation information management unit 51A includes a memory such as a RAM, and stores the received power value and the PER value input from the relational expression generation unit 51E.
  • the relational expression generation information management unit 51 A determines whether or not the number of stored PERs has reached a preset threshold, and if it determines that it has reached, the stored value of each PER is stored. Determine the degree of variation. Specifically, it is determined whether or not adjacent PER values are separated by a predetermined interval or more, and success / failure information indicating the determination result is sent to the parameter determination unit 55.
  • success / failure information indicating “No” is transmitted, and all two adjacent PERs are separated by a certain interval or more. If successful, send success / failure information indicating “success”.
  • the standard deviation estimation unit 52 is managed by the relational expression management unit 21B instead of the standard deviation requesting part 21A and the relational expression generation part 21E, and is used to generate the relational expression.
  • Input from the relational expression generation information management unit 52A and the correction information creation unit 25 A relational expression generation unit 52E that generates a relational expression of PER and standard deviation from the received information and the PER and PER standard deviation managed by the relational expression generation information management unit 52A. .
  • the relational expression generating unit 52E When the relational expression generating unit 52E receives from the correction information generating unit 25 a plurality of PERs used for calculating the PER standard deviation and the standard deviation, and the PHY rate value, the relational expression generating unit 52E has the same PHY rate as the received PHY rate. Obtains multiple PER and PER standard deviation values of packets transmitted at the rate from the relational expression generation information management unit 52A, and acquires the acquired values and the PER standard deviation values input from the correction information creation unit 18 A relational expression is generated using PER. The relational expression to be generated is an approximate expression of a quadratic function generated using the method of least squares. Then, the relational expression generation unit 52E writes the generated relational expression in the relational expression management unit 21B via the write processing unit 21F.
  • relational expression generation unit 52E transmits the PER and the standard deviation value of PER input from the correction information creation part 25 to the relational expression generation information management unit 52A as needed.
  • the relational expression generation information management unit 52A includes a memory such as a RAM, and stores the PER and the standard deviation value of PER to which the relational expression generation unit 52E is also input.
  • the relational expression generation information management unit 52A determines whether or not the number of stored PERs has reached a preset threshold value. If it is determined that the number of stored PERs has reached, the degree of variation of each stored PER value is determined. Is determined. Specifically, it is determined whether or not adjacent PER values are not less than a predetermined interval, and success / failure information indicating the determination result is sent to the parameter determination unit 55. (Explanation of relational expression generation process)
  • FIG. 30 is a flowchart showing the relational expression generation process.
  • the PHY rate changing unit 53 sets the PHY rate to the maximum value
  • the transmission power changing unit 54 sets the transmission power to the maximum value (step S142).
  • the wireless transmission / reception unit 11 transmits the test packet created by the test packet creation unit 56 to the receiver 100 (step S143).
  • Radio transceiver 11 receives the received power notification packet from receiver 100 (YES in step S144).
  • the packet error rate measurement unit 17 calculates PER (step S145).
  • the relational expression generation unit 51E stores PER in the relational expression generation information management part 51A, and the relational expression generation information management part 51A determines whether or not the number of stored PERs has reached the threshold (step S 146). [0132] If it is determined that the threshold value has been reached (NO in step S146), the relational expression generation information management unit 51A uses a parameter to instruct the wireless transmission / reception unit 11 to lower the transmission power by one step. The data determination unit 55 is requested. When the transmission power changing unit 54 receives a request for changing the transmission power from the parameter determining unit 55, the transmission power changing unit 54 instructs the wireless transmission / reception unit 11 to reduce the transmission power by one level (step S147), and proceeds to step S143.
  • the wireless transmission / reception unit 11 Upon receiving the transmission power value change instruction from the transmission power changing unit 54, the wireless transmission / reception unit 11 sets the change of the transmission power value for transmitting the test packet. Send.
  • the relational expression generation information management unit 51A and the relational expression generation information management part 52A determine the degree of variation of each PER, and determine the determination result as a parameter.
  • the data is transmitted to section 55 (step S 148).
  • the relational expression generating unit 51E generates a relational expression from the received power value and PER and stores it (step S149).
  • the relational expression generation unit 52E generates and stores a relational expression from PER and the standard deviation of PER (step S150).
  • Parameter determining unit 55 determines success / failure information of the relational expression input from packet error rate estimating unit 51 and standard deviation estimating unit 52. If at least one success / failure information indicates “NO” (NO in step S 151), a request to lower the transmission power value by one step is sent to the transmission power changing unit 54, and the process proceeds to step S 147.
  • step S151 If both success / failure information indicates “success” (YES in step S151), the parameter determination unit 55 determines whether or not the generation of the relational expressions at all configurable PHY rates has been completed. (Step S152).
  • parameter determination unit 55 requests PHY rate changing unit 53 to lower the PHY rate by one level, and transmission power changing unit 54 sets the transmission power to the maximum that can be set. Send a request to
  • the PHY rate changing unit 53 When the PHY rate changing unit 53 receives a request for changing the PHY rate from the parameter determining unit 55, the PHY rate changing unit 53 instructs the radio transmitting / receiving unit 11 to change to the requested PHY rate.
  • the wireless transmission / reception unit 11 Upon receiving the PHY rate information from the PHY rate change unit 53, the wireless transmission / reception unit 11 sets the change of the PHY rate at which the test packet is transmitted. To send.
  • parameter determination unit 55 instructs test packet creation unit 56 to stop test packet creation (step S154).
  • receiver of the present embodiment is the same as the receiver 100 of the first embodiment.
  • the parameter determination unit 55 adjusts the transmission power value and the PHY rate at the time of power activation, and is managed by the relational expression management unit 15B and the relational expression management unit 21B. Generate an expression. Therefore, it is not necessary to store the relational expression in advance.
  • the receiver measures the received power value of the packet, but in this embodiment, the transmitter measures the received power value of the packet and estimates the measured received power value PER. It is a form.
  • FIG. 31 is a functional block diagram of transmitter 60 according to Embodiment 6 of the present invention.
  • the same components as those of FIG. 12 are denoted by the same reference numerals, and description thereof is omitted.
  • the received power value measuring unit that measures the received power value of the packet input to the wireless network power
  • Consists of 61 Other components in transmitter 60 are the same as transmitter 20 in the second embodiment.
  • the radio transmission / reception unit 11 demodulates the Ack of the test packet input via the antenna via the antenna, and transmits the demodulated Ack to the packet identification unit 12.
  • the packet identification unit 12 When receiving the Ack of the test packet, the packet identification unit 12 sends an Ac to the received power value measurement unit 61. Notify receipt of k.
  • the received power measuring unit 61 measures the received power value of the Ack of the packet and transmits the measured received power value to the received power value managing unit 14
  • Reception power value management section 14 stores the reception power value and passes it to packet error rate estimation section 15.
  • transmitter 60 can measure the Ack received power value of the test packet and estimate the PER using the measured received power value.
  • the receiver side does not need to measure the received power and notify the transmitter of the received power value.
  • the receiver calculates PER more than just measuring the received power value of the packet. Also, the measured received power value is estimated by PER, and the PHY rate and necessary bandwidth are determined based on the estimated PER, and information used for correction is created from the calculated PER. The relational expression held by the deviation estimation unit 210 is corrected.
  • FIG. 32 is a functional block diagram of receiver 200 according to Embodiment 7 of the present invention.
  • Receiver 200 includes reception power value management section 260 instead of reception power value notification packet creation section 140 in receiver 100, and further includes packet error rate estimation section 150, PHY rate determination section 160, standard deviation estimation section 210. , Required bandwidth determination unit 220, correction information creation unit 250, packet error rate measurement It is configured to include a fixed unit 260 and a content rate measuring unit 270 that measures an ideal rate of input content of packets.
  • the packet error rate measurement unit 260 has a function of measuring the number of retransmissions of a received packet.
  • Other components in the receiver 200 in FIG. 32 have functions equivalent to those in the transmitter 60 in the sixth embodiment.
  • Radio transmitting / receiving section 110 of receiver 200 demodulates the input content packet, and transmits the demodulated packet to packet identifying section 120 and content rate measuring section 270.
  • the packet identification unit 120 identifies the input packet, and when the packet is an Ack of the test packet as a result of the identification, notifies the reception power value measurement unit 130 of the packet.
  • the received power value measuring unit 130 measures the received power value of the input packet and transmits the measured received power value to the received power value management unit 260.
  • Reception power value management section 260 stores the reception power value input from reception power measurement section 130 and transmits the reception power value to packet error rate estimation section 150.
  • the content rate measuring unit 270 stores the input time, obtains the ideal rate for each set fixed time, and stores the obtained ideal rate.
  • the necessary bandwidth determination unit 220 Upon receiving the MAXPER value of each PHY rate and the PHY rate value determined by the PHY rate determination unit 160 from the standard deviation estimation unit 210, the necessary bandwidth determination unit 220 receives the corresponding content from the content rate measurement unit 270.
  • the retransmission rate is calculated from (Equation 1) and the MAX PER value, and the bandwidth required for transmission of the corresponding content is also calculated using the calculated retransmission rate and the acquired content rate and power. Then, the wireless transmission / reception unit 110 is instructed to secure the required bandwidth.
  • the radio transmission / reception unit 110 Upon receiving an instruction for securing a band from the necessary band determination unit 220, the radio transmission / reception unit 110 receives no request. Secure the bandwidth of the line network.
  • the packet error rate measurement unit 260 stores, for each content packet, the number of retransmissions due to a content packet reception error (for example, error detection by CRC). When reception of a preset number of packets is completed, the total number of retransmissions, the number of packets that have been received, and the value of the PHY rate used for transmission are transmitted to correction information creation section 250.
  • Correction information creation section 250 obtains a packet error rate from the total number of retransmissions input from packet error rate measurement section 260 and the number of received packets.
  • the measured received power value PER is estimated, the PHY rate and necessary bandwidth are determined based on the estimated PER, and the packet from the reception error of the content packet is determined.
  • the error rate By obtaining the error rate, the relational expressions held by the packet error rate estimation unit 150 and the standard deviation estimation unit 210 are corrected. Therefore, the optimum PHY rate and necessary bandwidth for content transmission can be determined only by processing on the receiver side, and processing on the transmitter side is not necessary.
  • the power for calculating the effective rate for all PHY rates and determining the PHY rate corresponding to the maximum effective rate is not limited to this.
  • the force that makes the effective rate is calculated, and the calculated effective rate is compared with a pre-stored threshold (for example, 20 Mbps).
  • a pre-stored threshold for example, 20 Mbps.
  • a PHY rate corresponding to the effective rate may be selected without calculating an effective rate at another PHY rate.
  • the actual value above the threshold The effective rate is guaranteed, and the load for calculating the effective rate can be reduced.
  • the number of packets is calculated as 100, but it may be changed according to the size of the transmission buffer of the transmitter 10 or the reception buffer of the receiver 100.
  • the PHY rate determination unit 16 calculates the retransmission ratio using (Equation 1), but the approximate expression of the quadratic function obtained using the black circle value in FIG. 7 (Equation 2) May be stored, and the retransmission ratio may be determined using an approximate expression, or the values obtained using (Equation 1) or (Equation 2) may be managed as a table.
  • the following (Equation 2) is a quadratic function showing the solid line in Fig. 7.
  • calculation processing based on mathematical formulas, such as calculating the retransmission ratio using (Equation 1) or calculating the effective rate by multiplying the ideal rate by the reciprocal of the retransmission ratio, is performed.
  • equation 1 calculating the retransmission ratio using (Equation 1)
  • Equation 2 calculating the effective rate by multiplying the ideal rate by the reciprocal of the retransmission ratio
  • a system call (API) or library function may be created that accepts an operand as an argument, executes a predetermined operation, and returns the operation result as a return value.
  • the above formula does not mean a mathematical concept, but it means a numerical operation executed on a computer, so of course, the necessary modifications to be realized by a computer are added. Needless to say. For example, it goes without saying that a saturation operation or a positive value ⁇ operation may be applied to handle a numerical value in an integer type or a floating point type.
  • multiplication with a constant can be realized by a ROM multiplier using a constant ROM.
  • the constant ROM the product value of the multiplicand and the constant is calculated and stored in advance. For example, if the multiplicand is 16 bits long, the multiplicand is divided into four every 4 bits, and the product of this 4-bit part and a constant, that is, a multiple of 0 to 15 of the constant is the above constant ROM. Stored in!
  • the “arithmetic processing” in this specification is stored in a recording medium such as a ROM, which does not mean only pure arithmetic operations. It also includes reading of the recording medium in which the calculation result is read according to the value of the operand.
  • the function for calculating the effective rate depends on the implementation.
  • the effective rate may be calculated by a function of the ideal rate and the packet error rate, or may be another function.
  • the wireless transmission / reception unit 11 upon receiving the value of the PHY rate from the PHY rate determination unit 16, sets the PHY rate so as to transmit subsequent data at the PHY rate. Sometimes, the same operation is repeated, and the PHY rate may be set in units of packets, or may be set at regular intervals. [0160] In the above embodiment, the transmission data is not limited to video or audio content.
  • the reception power value notification packet creation unit 140 of the receiver 100 creates a reception power value notification packet for each bucket, but the reception power value notification packet creation unit 140 includes a memory such as a RAM.
  • the received power value is stored in the memory and compared with the previous received power value stored when the received power value of the next packet is measured.
  • a reception power value notification packet may be created.
  • Received power value notification packet creation section 140 obtains an average of the stored received power values when the stored received power values reach a preset number, and a received power value notification packet including the obtained values.
  • the average received power value obtained may be stored, and when the next average received power value is calculated, it is compared with the previous average received power value stored in advance. If it is equal to or greater than the set value, a received power value notification packet including the obtained average received power value may be created.
  • the packet error rate measurement unit 17 transmits information to the correction information creation unit 18 when the number of stored packets reaches a preset number. Even if you send information.
  • the packet error estimation information changing unit 15D stores the number of times that a difference greater than or equal to the predetermined value exists, but is stored in the transmission buffer during the transmission period of the packet used to obtain the PER.
  • the maximum number of packets may be stored, and the number of times that the maximum number of packets is less than or equal to a preset value may be stored.
  • the relational expression management unit 15B and the relational expression management part 21B preliminarily manage the relational expression.
  • the value obtained for the relational expression force may be managed in advance as a table, or a function. Manage with a combination of formulas and tables.
  • relational expression management unit 15B and the relational expression management part 21B may store a plurality of function expressions that store one function expression for each PHY rate.
  • relational expression A may be used when PER is 5% or more
  • functional expression B may be used when PER is less than 5%.
  • relational expression management unit 15B and the relational expression management unit 21B fix the wireless RF module characteristics.
  • different relational expressions may be managed for each receiver, or may be managed for each packet length to be transmitted. Further, different relational expressions may be managed for each of the long distance and the short distance, and the user may select them.
  • relational expression management unit 15B and the relational expression management part 21B manage the relational expressions using quadratic functions, they may be managed using other approximate expressions such as linear functions and exponential functions.
  • the relational expression generated by the relational expression generation unit 15E and the relational expression generation unit 21E is an approximate expression of a quadratic function generated using the least square method.
  • it may be an approximate expression of a linear function or may be generated using Lagrange interpolation.
  • relational expression generation unit 15E and the relational expression generation part 21E are not limited to the force obtained by correcting the relational expression in the procedure shown in FIGS.
  • a value obtained by adding a random number to the sampled value may be used.
  • the size of the random number may be determined by using the difference between the value input from the correction information creation units 18 and 25 and the value obtained from the relational expression.
  • the above embodiment is not limited to the power described using the wireless LAN standard IEEE802.11a.
  • IEEE802.ib or IEEE802.lg may be used.
  • a plurality of wireless LAN standards may be provided, and a PHY rate that maximizes the effective rate may be selected from the plurality of wireless LAN standards.
  • the receiver 100 measures the received power value of the data packet transmitted from the transmitter 10.
  • the received power of other packets transmitted from the transmitter 10 is not limited to this.
  • the value may be measured.
  • the transmitter 10 is a wireless master device (access point) that manages the bandwidth of the wireless network
  • a beacon (synchronization signal) received intermittently from the transmitter 10 may be used.
  • a test packet may be transmitted during data transmission, or another packet (for example, a content packet) may be transmitted.
  • the transmitter 10 includes the packet error rate estimator 15.
  • the receiver 100 includes the packet error rate estimator 15.
  • the receiver 100 transmits each PHY rate to the transmitter 10. You may want to be notified of the value of PERR.
  • the medium for transmitting data is wireless.
  • the present invention is not limited to this, and any medium can be used for selecting and transmitting data from a plurality of PHY rates. It is possible to adapt to the deviation. For example, it is possible to adapt to control of power line communication by detecting home appliance noise.
  • the power for controlling the PHY rate and bandwidth allocation for transmitting packets according to the propagation state is not limited to this.
  • Embodiment 1 only the relational expression corresponding to the PHY rate used for the packet error rate measurement is corrected, but other relational expressions may also be corrected.
  • the magnitude of deviation between the relational expression after correction and the relational expression before correction may be obtained, and the relational expression for other PHY rates may be corrected by the amount of the obtained deviation.
  • the application unit 23 receives a content transmission request from the user.
  • the user passes through a wired network (not shown) of the transmitter 20 or the receiver 100.
  • a content transmission request may be made from a connected external device via a wired network. It is also possible to make a request from the application section of receiver 100 (V, not shown).
  • the transmitter 20 is configured to notify the user of the value of the content rate.
  • the output of the content bucket is performed. It is also possible to set the bandwidth by obtaining the content rate for the interval equality.
  • the transmitter 20 determines the content rate of the input content packet interval and sets the bandwidth. Good thing.
  • the relational expression change determination unit 15D receives the preset power value used for the determination, the received power value received from the correction information creation unit 18, the relational expression management unit 15B, and the relation It may be the MAXPER value calculated from the relational expression managed by the expression management unit 21B. For example, if the measured PER is less than the MAXPER value, the relational expression can be corrected once, and if it is greater than the MAXPER value, the relational expression can be corrected if it continues for 5 consecutive times!
  • the relational expression change determination unit 15D stores a force PER that stores the number of times of a difference greater than or equal to a predetermined value when the PER obtained from the relational expression force is compared with the PER value received from the correction information creation unit 18. It is also possible to store the maximum number of buckets accumulated in the transmission buffer during the transmission period of the packet used to determine the number of times, and store the number of times that the maximum number of packets falls below a preset value.
  • the relational expression change determination unit 21D stores the number of times that the difference between the standard deviation obtained from the relational expression and the standard deviation value received from the correction information creation unit 18 is preset, and the stored number of times is stored. When the number of preset times is reached, it is determined that the relational expression needs to be corrected and the PER, standard deviation, and PHY rate values received from the correction information creation section 18 are sent to the relational expression generation section 21E.
  • the correction information creation unit 18 obtains a plurality of PER values for calculating the standard deviation, calculates the ratio of the PER within the standard deviation of the PER, and generates a relational expression if the calculated ratio is equal to or greater than a preset value. It is also possible to send the value of PER, standard deviation, and PH rate received by the correction information generation unit 18 to the unit 21E.
  • the transmitter 20 includes the standard deviation estimation unit 21.
  • the receiver 100 includes the standard deviation estimation unit 21, and the receiver 100 transmits the MAXPE R of each PHY rate to the transmitter 20. You may be notified of the value of.
  • the radio transmission / reception unit 11 may negotiate with other devices to secure a band necessary for content transmission.
  • the transmitter 20 and the receiver 100, the wireless master unit (access point) that manages the bandwidth of the wireless network, and the HCCA function of power EEE802.1 le the transmitter 20 is a wireless slave unit that belongs to the wireless master unit ( In the case of a station), an ADD TS request of a radio management frame that is a request for bandwidth allocation may be transmitted to the radio base unit. If the transmitter 20 is a wireless master device, a transmission request for an ADD TS request is transmitted to the receiver 100 which is a wireless slave device, and the receiver 100 transmits an ADD TS request to the transmitter 20 (wireless master device). ).
  • the content data rate for the TSPEC parameter Mean Data Rate of the ADD TS reque st, the required bandwidth determined by the required bandwidth determination unit 22 for Surplus Bandwidth Allowance, and the PHY rate determined by the PH Y rate determination unit 16 for the Minimum PHY Rate Information may be included.
  • FIG. 33 is a flowchart showing the PHY rate determination and necessary bandwidth calculation processing during data transmission in that case. Steps S161 and 162 are the same as steps S51 and 52 in FIG. In this flowchart, after step S162, the standard deviation request unit 21A, which does not determine the PHY rate with the maximum effective rate, also receives the PHY rate, PER value, and current PHY rate.
  • the necessary bandwidth determination unit 22 uses the content rate value acquired from the application unit 23 and the transmission of the corresponding content.
  • the bandwidth required for content transmission is determined from the MAXPER value corresponding to the current PHY rate (step S164). Steps S165 to S167 are the same as steps S56 to S58 in FIG.
  • the required bandwidth determination unit 22 determines whether the current PHY rate is the PHY rate with the highest effective rate (Ste S168).
  • step S168 If the current PHY rate has the highest effective rate (YES in step S168), an allocatable bandwidth is secured (step S172), and if the effective rate is high and a PHY rate exists (step S168). NO), change to the PHY rate corresponding to the maximum effective rate (step S169), and calculate the required bandwidth at the changed PHY rate (step S170).
  • the necessary bandwidth determining unit 22 compares the allocatable bandwidth with the necessary bandwidth (step S171). As a result of the comparison, if it is determined that the required bandwidth is smaller than the allocatable bandwidth (YES in step S171), the wireless transmission / reception unit 11 is instructed to change the current bandwidth allocation to the required bandwidth size (step S171). S166). If it is determined that the necessary bandwidth is larger than the allocatable bandwidth (NO in step S171), the radio transmission / reception unit 11 is instructed to secure only the allocatable bandwidth (step S172). [0178] Note that the relational expression managed by the relational expression management unit 15B and the relational expression management unit 21B may be a relational expression generated only with a PER value that needs to be reserved in advance.
  • relational expression change determination unit 15D and the relational expression change determination part 15D are PER values obtained from the correction information creation unit 18 that are preset values of PER that need to be secured. If the force is different from the calculated value, it may be determined that a change is necessary.
  • the test packet creation unit 24 in the above embodiment may make the packet length of the test packet the same as the packet length of the content.
  • the standard deviation estimation unit 21 sets MAXPER to (PER + standard deviation X 2), but is not limited to this.
  • MAXPER may be (PER + standard deviation X 3) or (PER + standard deviation X 2.5).
  • the standard deviation of the packet error rate is obtained.
  • the necessary bandwidth determining unit 32 if the allocatable bandwidth is increased during content transmission, for example, when content transmission of another user is terminated!]
  • the content rate or the current bandwidth allocation may be changed.
  • the necessary bandwidth is determined.
  • Unit 32 can also assign the AC (access category) power of the corresponding content.
  • the ideal rate within the band is obtained, and if the ideal rate is smaller than the content rate, the content rate changing unit 31 sets the content rate to the ideal rate value. Send instructions to change.
  • the content rate changing unit 31 is installed in the transmitter 30.
  • the transmitter 30 For example, when content is input to the transmitter 30 via a wired network (not shown), On the network between the external device that outputs the content and the transmitter 30
  • the installation location is not limited.
  • FIG. 34 is a flowchart showing PHY rate determination, bandwidth allocation, and content rate setting processing during data transmission in that case.
  • step S182 the necessary bandwidth for transmitting content at the currently used PHY rate is allocated in step S186, rather than determining the PHY rate that maximizes the effective rate. If it is determined that the bandwidth is larger than the possible bandwidth, it is determined whether or not the PHY rate currently used for content transmission is the PHY rate with the highest effective rate (step S188).
  • the reserved bandwidth determination unit 32B transmits the allocatable bandwidth and the retransmission ratio to the content rate calculation unit 32D. Then, the content rate calculation unit 32D obtains a content rate that can be transmitted in an allocatable band (step S192).
  • the reserved bandwidth determination unit 32B sets the PHY rate corresponding to the maximum effective rate.
  • An instruction is sent to the wireless transmission / reception unit 11 to switch (step S189).
  • the required bandwidth calculation unit 32A calculates the required bandwidth at the changed PHY rate (step S190). The other steps are described in Figs. 23 and 33, so they are omitted here.
  • the multiplication value N is determined in order to obtain MAXPER according to the ratio of the PERR used to obtain the standard deviation during content transmission in the standard deviation.
  • the deviation estimation unit 42 associates the value of PER input from the packet error rate estimation unit 51 with the multiplication value N in advance, and when the value of PER is input from the packet error rate estimation unit 51, it corresponds to the PER. You can calculate MAXPER using the multiplication value N.
  • the packet error rate estimator 51 and the standard deviation estimator 52 generate The relational expressions are managed in advance, but a plurality of different relational expressions are held in advance at each PHY rate, the closest relational expression is selected from the measurement results, and the selected relational expression is connected to the relational expression management unit 15B and the relational expression management unit. You can manage it with 21 B ⁇ .
  • the relational expression generated in the fifth embodiment is a force that is an approximate expression of a quadratic function generated using the least square method, but is not limited to this.
  • an approximate expression of a linear function may be used. It can be generated using Lagrange completion.
  • the force for generating the relational expression at the time of power-on is not limited to this.
  • it may be performed by a user instruction or during a period when data is not transmitted.
  • radio transmission / reception section 110 may negotiate with other devices in order to ensure the bandwidth necessary for content transmission.
  • a receiver 200, a wireless master device (access point) that manages the bandwidth of the wireless network, and a transmitter that transmits content have an IEEE802.l HCCA function, and the receiver 200 belongs to the wireless master device.
  • an ADD TS request of a wireless management frame that is a request for bandwidth allocation may be transmitted to the wireless base station.
  • the ADD TS request TSPEC parameter Mean Data Rate is the content rate
  • Surplus Bandwidth Allowance is the required bandwidth determined by the required bandwidth determination unit 220
  • the Minimum PHY Rate is the PHY rate information determined by the PH Y rate determination unit 160. May be included.
  • the packet error rate measurement unit 260 transmits information to the correction information creation unit 250 when the accumulated number of packets reaches a preset number. You may send information when it is time to speak.
  • the present invention may be a method including the steps shown in the flowchart and a program including a program code for causing a computer to execute the steps shown in the flowchart. It can be a recording medium that stores the program!
  • each of the above-described embodiments may be typically realized by an LSI (Large Scale Integration) that is an integrated circuit. These may be individually integrated into one chip, or may be integrated into one chip to include all or part of the configuration. Integrated circuits are sometimes called ICs, system LSIs, super LSIs, ultra LSIs, etc., depending on the degree of integration. Further, the integrated circuit method may be realized by using a dedicated circuit or a general-purpose processor, not limited to the LSI. You can also use FPGAs (Field Programmable Gate Arrays) and reconfigurable processors that can reconfigure the connection and settings of circuit cells inside the LSI.
  • FPGAs Field Programmable Gate Arrays
  • integrated circuit technology that replaces current semiconductor technology appears due to advancement of semiconductor technology or other derived technology, naturally, even if functional block integration is performed using that technology, Good. For example, biotechnology can be applied. Further, it may be built in the server device 1 or the client device 2, or may be built in a mobile terminal.
  • the function of the seventh embodiment may be combined with another embodiment, and the function of the seventh embodiment may be switched to when the test packet is not received from the transmitter.
  • the function may be switched to the function of the first embodiment.
  • the present invention is useful when the packet error rate changes, such as when an obstacle exists between transmission apparatuses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

 伝送装置は、複数のPHYレートから1つのPHYレートを選択する制御手段と、選択されたPHYレートで、プロトコルスタックにおける物理層間の伝送を行う通信手段とを備え、複数のPHYレートから1つのPHYレートを選択するにあたって、前記複数のPHYレートのうち少なくとも1以上のPHYレートのそれぞれで前記物理層間の伝送を行ったとした場合の前記プロトコルスタックの上位層における伝送レートの実効値の比較を行う。各伝送レートの実効値は、受信側における受信電力値に対応する前記物理層間の再送比率と前記各伝送レートの理想値とに基づき得られる値である。

Description

明 細 書
伝送装置、伝送方法、システム LSI、及びプログラム
技術分野
[0001] 本発明はデータを伝送する際の PHYレートを決定する技術に関する。
背景技術
[0002] 従来、パケットの受信電力値を用いて、パケットを伝送する際の PHYレートを決定 する伝送装置 (例えば、無線通信装置)が知られている。伝送装置は、アンテナを介 して、無線ネットワーク力 パケットを受信すると、受信したパケットの受信電力値を検 出して、予め記憶して 、る受信電力値と PHYレートとを関連付けた対応テーブルに 基づき、検出した受信電力値力も PHYレートを決定し、決定した PHYレートでデー タの送受信を行う(例えば、特許文献 1参照)。これにより、データの伝送を行う際の 通信レートを最適化でき、データの送受信の効率を向上させることができる。
特許文献 1 :特開 2002— 186027号公報
発明の開示
発明が解決しょうとする課題
[0003] ところで、伝送装置の設置環境により、受信電力値は同一であってもパケット誤り率 が異なる場合がある。例えば、伝送装置間に障害物が存在するが、伝送装置間の距 離は近い場合と、伝送装置間に障害物は存在しないが、距離が遠い場合とでは、た とえパケットの受信電力値が同一であったとしても、後者の場合の方が周波数干渉の 影響を受けないので直接波は強い。直接波が強いと、パケットの誤り率は小さくなり、 その結果実効レートは高くなる。他方、前者の場合には周波数干渉の影響を受ける ため、後者の場合と比較すると直接波は弱くなる。直接波が弱いと、パケットの誤り率 は大きくなり、その結果実効レートは低くなる。
[0004] このように、環境によってパケット誤り率が変化するため、前記対応テーブルに基づ き決定された PHYレートであっても、必ずしもデータの送受信の効率を向上させるわ けではないという問題がある。そのため、例えば、伝送装置が映像や音声などのコン テンッを伝送する場合を考えると、決定された PHYレートであっても、期待した実効 レートが得られず、コンテンツの伝送に長時間を要したり、さらに、実効レートがコンテ ンッレートを下回ると、映像や音声に乱れが生じたりする。
[0005] 本発明の目的は、環境によらず、データの送受信の効率を向上させることができる 伝送装置を提供することである。
課題を解決するための手段
[0006] 本発明は複数の PHYレートから 1つの PHYレートを選択する制御手段と、選択さ れた PHYレートで、プロトコルスタックにおける物理層間の伝送を行う通信手段とを 備え、前記制御手段は PHYレートを選択するにあたって、前記複数の PHYレートの うち少なくとも 1以上の PHYレートのそれぞれで前記物理層間の伝送を行ったとした 場合の前記プロトコルスタックの上位層における伝送レートの実効値の比較を行 、、 各伝送レートの実効値は、受信側における受信電力値に対応する前記物理層間の 再送比率と前記各伝送レートの理想値とに基づき得られる値であることを特徴とする 伝送装置である。
発明の効果
[0007] 本発明は上記の構成を備えることにより、伝送装置は受信側における受信電力値 力 直ちに PHYレートを選択するのではなぐ PHYレートを選択するにあたって、前 記受信側における受信電力値に対応する前記物理層間の再送比率と各伝送レート の理想値とに基づき得られる伝送レートの実効値の比較を行う。
したがって、障害物等の影響により直接波の強さが変化した結果、パケット誤り率が 変化する場合であっても、伝送レートの実効値の比較を行ったうえで、 PHYレートを 選択するので、最適な PHYレートを選択することができる。最適な PHYレートで伝送 を行うことにより、データの送受信の効率を向上させることができ、例えば、伝送装置 が映像や音声などのコンテンツを伝送する場合には、映像や音声に乱れを生じさせ ることなぐ従来よりも短時間にコンテンツを伝送することができる。
[0008] ここで、前記制御手段は、前記物理層間の伝送に、前記複数の PHYレートのうち、 何れ力 2つの PHYレートが使用されたとした場合に、プロトコルスタックの上位層にお ける伝送レートの実効値がどれだけになるかを、前記 2つの PHYレートのそれぞれに ついて算出し、算出した伝送レートの実効値同士を比較し、大きい方の実効値に対 応する PHYレートを選択するとしても良 、。
[0009] これにより、何れ力 2つの PHYレートのうち、伝送レートの実効値が大きい PHYレー トを選択することができる。
ここで、前記制御手段は、前記物理層間の伝送に、前記複数の PHYレートのうち、 一の PHYレートが使用されたとした場合に、プロトコルスタックの上位層における伝 送レートの実効値がどれだけになるかを算出し、算出した伝送レートの実効値を予め 記憶されている閾値と比較し、前記閾値より大きい場合には、該実効値に対応する P HYレートを選択し、前記閾値以下の場合には、前記一の PHYレート以外の何れか の PHYレートが使用されたとすると、プロトコルスタックの上位層における伝送レート の実効値がどれだけになる力を算出し、算出した伝送レートの実効値を予め記憶さ れて 、る閾値と比較するとしても良 、。
[0010] これにより、前記一の PHYレートが使用されたとした場合に、プロトコルスタックの上 位層における伝送レートの実効値が予め設定されている閾値より大きい場合には、 その他の PHYレートについて、伝送レートの実効値を算出する必要はないので、前 記制御手段における処理を軽減することができる。
ここで、前記制御手段は、前記物理層間の伝送に、各 PHYレートがそれぞれ使用 されたとした場合に、プロトコルスタックの上位層における伝送レートの実効値がどれ だけになる力を PHYレート毎に算出し、算出した伝送レートの実効値同士を順次比 較していき、算出した伝送レートの実効値のうち、最大の実効値に対応する PHYレ ートを選択するとしても良い。
[0011] これにより、各 PHYレートにおける実効レートを算出するので、最大の実効レートに 対応する PHYレートを決定することができる。最大の実効レートに対応する PHYレ ートでデータを伝送するので、データの送受信の効率を向上させることができる。 ところで、データの送受信の効率を向上させるために、実測したパケット誤り率に基 づき PHYレートを決定する方法も考えられる力 パケット誤り率の測定には、一定期 間の受信または送信履歴を必要とするので、パケット誤り率を瞬時に測定することは できず、伝搬状態の変動に応じて、迅速に PHYレートを決定することはできない。例 えば、 SD (最低コンテンツレート 2Mbps)のコンテンツなら 100個のパケット(パケット 長約 1500バイト)を送信するのに最低約 1秒必要になり、 msオーダーの制御が必要 になるコンテンツ伝送においては、それは映像や音声の乱れの原因となる。
[0012] そこで、前記伝送装置は、受信電力がとり得る複数の値と前記受信電力がとり得る 値毎のパケット誤り率とを対応付けて示す第一情報と、前記パケット誤り率がとり得る 複数の値とパケット誤り率がとり得る値毎の再送比率とを対応付けて示す第二情報と を PHYレート毎に記憶している記憶手段を備え、前記制御手段は、前記第一情報 及び第二情報に基づいて、前記受信側における受信電力値から前記物理層間の再 送比率を PHYレート毎に取得する再送比率取得手段を備えるとするのが望ましい。
[0013] これにより、予め記憶されている情報に基づき再送比率を取得するので、迅速に最 適な PHYレートを選択することができる。また、受信電力値は PHYレートに依存せず 、かつ、受信に成功したパケットの受信電力値は安定しているので、受信電力値の履 歴は数十個程度で十分である。よって、第一情報及び第二情報を用いて、受信電力 値から再送比率を取得するので、迅速に、伝搬状態に追従した PHYレートの選択が でき、無線帯域を効率的に利用できる。
[0014] ここで、前記通信手段による伝送はパケット単位で行われ、前記制御手段は、さら に、伝送されたパケットにおけるパケット毎の再送回数と、伝送が完了したパケットの 個数とを用いて、パケット誤り率を算出するパケット誤り率算出手段と、前記パケット誤 り率算出手段により算出されたパケット誤り率と、前記第一情報に基づくパケット誤り 率とを比較する比較手段と、比較した結果、所定値以上のずれがある場合に、前記 第一情報の補正を行う補正手段とを備えるとしても良い。
[0015] 前記伝送装置は、さらに、随時、前記受信側における受信電力値を取得し、取得し た受信電力値を蓄積する蓄積手段を備え、前記補正手段は、算出されたパケット誤 り率と前記第一情報に基づくパケット誤り率と蓄積された受信電力値とから、受信電 力がとり得る複数の値と前記受信電力がとり得る値毎のパケット誤り率とを対応付け て示す補正第一情報を生成する生成手段と、記憶されている第一情報を、生成され た補正第一情報に変更する変更手段とを備えるとしても良い。
[0016] また、前記通信手段による伝送はパケット単位で行われ、前記制御手段は、さらに 、伝送されたパケットにおけるパケット毎の再送回数と、伝送が完了したパケットの個 数とを用いて、所定数のパケット誤り率を算出するパケット誤り率算出手段と、前記パ ケット誤り率算出手段により算出された所定数のパケット誤り率の標準偏差と、前記所 定数のパケット誤り率及び前記第三情報に基づく標準偏差とを比較する比較手段と 、比較した結果、所定値以上のずれがある場合に、前記第三情報の補正を行う補正 手段とを備えるとしても良い。
[0017] 前記伝送装置は、さらに、随時、前記受信側における受信電力値を取得し、取得し た受信電力値を蓄積する蓄積手段を備え、前記補正手段は、前記パケット誤り率が とり得る複数の値と、前記所定数のパケット誤り率の標準偏差と、前記所定数のパケ ット誤り率及び前記第三情報に基づく標準偏差とから、パケット誤り率がとり得る複数 の値とパケット誤り率毎の標準偏差とを対応付けて示す補正第三情報を生成する生 成手段と、記憶されている第三情報を、生成された補正第三情報に変更する変更手 段とを備えるとしても良い。
[0018] これにより、予め記憶されている情報と実測値とに隔たりが生じると、実測値を用い て、予め記憶されている情報を補正するので、実環境に適応した PHYレートを選択 することができる。
ここで、前記記憶手段は、さらに、パケット誤り率がとり得る複数の値とパケット誤り率 がとり得る値毎の標準偏差とを対応付けて示す第三情報を記憶しており、前記制御 手段は、さらに、前記第一情報及び第三情報に基づいて、前記受信側における受信 電力値におけるパケット誤り率の標準偏差を取得し、取得した標準偏差を N (N:正の 数)倍した値を前記パケット誤り率に加算する標準偏差取得手段と、加算後の値と伝 送すべきパケットのパケットレートを用いて、伝送に必要な帯域を算出する帯域算出 手段とを備え、前記通信手段による伝送は算出された帯域で行われるとしても良い。
[0019] 標準偏差を N (N:正の数)倍した値を前記パケット誤り率に加算することにより、最 大パケット誤り率を算出でき、算出した最大パケット誤り率を用いて必要帯域を算出 するので、安定した伝送を実現できる。
ここで、前記帯域算出手段は、さらに、算出した帯域と割当可能帯域とを比較し、前 記算出した帯域の方が割当可能帯域より大きい場合に、パケットレートを変更するパ ケットレート変更手段と、変更後のパケットレートに基づき、確保する帯域を算出する 確保帯域算出手段とを備えるとしても良い。
[0020] これにより、前記算出した帯域が割当可能帯域内より大きい場合であっても、バケツ トレートを割当可能な帯域で伝送可能なレートに変更するので、安定したコンテンツ 伝送が実現できる。
ここで、前記標準偏差取得手段は、前記標準偏差を取得した後、前記標準偏差に 用いられた複数のパケット誤り率のうち、前記標準偏差内に存在するパケット誤り率 の割合値を算出する割合算出手段と、算出された割合値が予め設定されている閾値 を上回ったか否かに基づき、前記標準偏差の乗算値 Nを決定する決定手段とを備え るとしても良い。
[0021] これにより、複数のパケット誤り率のうち、標準偏差内に存在するパケット誤り率の割 合を求め、乗算値 Nを決定するので、コンテンツに害 ιΓ当てる帯域を最 /J、限に抑えるこ とがでさる。
ここで、前記通信手段による伝送はパケット単位で行われ、前記制御手段は、随時 、受信電力値を取得する受信電力値取得手段と、伝送されたパケットにおけるバケツ ト毎の再送回数と、伝送が完了したパケットの個数とを用いて、所定数のパケット誤り 率を算出するパケット誤り率算出手段と、算出されたパケット誤り率のそれぞれにつ いて、隣接するパケット誤り率の間隔が一定以上離れている力否かを判定するばら つき判定手段と、前記パケット誤り率と前記受信電力値とに基づき、受信電力がとり 得る複数の値と前記受信電力がとり得る値毎のパケット誤り率とを対応付けて示す第 一情報を生成する生成手段とを備えるとしても良い。
[0022] 前記制御手段は、さらに、前記所定数のパケット誤り率の標準偏差を算出する標準 偏差算出手段と、前記パケット誤り率と標準偏差とに基づき、パケット誤り率がとり得る 複数の値とパケット誤り率がとり得る値毎の標準偏差とを対応付けて示す第三情報を 生成する生成手段とを備えるとしても良い。
これにより、予め関係式を記憶させる作業が不要となる。
[0023] ここで、前記伝送装置は、さらに、前記受信側における受信電力値を測定する測定 手段を備えるとしても良い。
これにより、受信側で受信電力値を測定し、送信側に受信電力値を通知する作業 が不要となる。
ここで、前記記憶手段は不揮発性メモリであるとしても良 、。
[0024] これにより、電源をオフにしても関係式は記憶されたままであるので、再度電源を起 動したときには記憶されている関係式を用いることができ、伝搬環境に適した PHYレ ート設定が可能になる。
図面の簡単な説明
[0025] [図 1]システム図である。
[図 2]本発明の実施の形態 1における送信機 10の機能ブロック図である。
[図 3]本発明の実施の形態 1における受信機 100の機能ブロック図である。
[図 4]パケット誤り率推定部 15の機能ブロック図である。
[図 5]受信電力値と PERとの関数式を示す図である。
[図 6]補正情報作成部 18の機能ブロック図である。
[図 7]PERと PERの標準偏差との関数式を示す図である。
[図 8]PHYレート決定部 16により算出された各 PHYレートの実効レートの具体例を 示す図である。
[図 9]PHYレート設定のフローチャートを示す図である。
[図 10]補正処理に関するフローチャートを示す図である。
[図 11]関係式の補正の方法を示す図である。
[図 12]本発明の実施の形態 2の送信機 20の機能ブロック図である。
[図 13]標準偏差推定部 21の機能ブロック図である。
[図 14]PERと PERの標準偏差との関数式を示す図である。
[図 15]補正情報作成部 25の機能ブロック図である。
[図 16]データ伝送開始時の PHYレート及び帯域確保の設定のフローチャートを示す 図である。
[図 17]データ伝送中の PHYレート及び帯域確保の設定のフローチャートを示す図で ある。
[図 18]補正処理に関するフローチャートを示す図である。
[図 19]関係式の補正の方法を示す図である。 圆 20]本発明の実施の形態 3の送信機 30の機能ブロック図である。
[図 21]必要帯域決定部 32の機能ブロック図である。
[図 22]データ伝送開始時の PHYレート決定、帯域割当、及びコンテンツレート設定 処理のフローチャートを示す図である。
[図 23]データ伝送中の PHYレート決定、帯域割当、及びコンテンツレート設定処理 のフローチャートを示す図である。
圆 24]本発明の実施の形態 4の送信機 40の機能ブロック図である。
圆 25]補正情報作成部 41の機能ブロック図である。
圆 26]標準偏差推定部 42の機能ブロック図である。
圆 27]本発明の実施の形態 5の送信機の機能ブロック図である。
[図 28]パケット誤り率推定部 51の機能ブロック図である。
圆 29]標準偏差推定部 52の機能ブロック図である。
[図 30]関係式生成処理のフローチャートである。
圆 31]本発明の実施の形態 6の送信機 60の機能ブロック図である。
圆 32]本発明の実施の形態 7の受信機 200の機能ブロック図である。
[図 33]データ伝送中の PHYレート及び帯域確保の設定のフローチャートを示す図で ある。
[図 34]データ伝送中の PHYレート決定、帯域割当、及びコンテンツレート設定処理 のフローチャートを示す図である。 符号の説明
1 サーバ装置
2 クライアント装置
10 送信機 (無線伝送装置)
100 受信機 (無線伝送装置)
11、 110 無線送受信部
12、 120 パケット識別部
13 受信電力値通知パケット解析部
14、 260 受信電力値管理部 、 51、 150 パケット誤り率推定部A パケット誤り率要求部
B 関係式管理部
C 読込み処理部
D 関係式変更判定部
E、 5 IE 関係式生成部
F 書込み処理部
、 160 PHYレート決定部 、 260 パケット誤り率測定部 、 25、 41、 250 補正情報作成部A パケット誤り率算出部
B 関係式生成情報作成部C パケット誤り率管理部
D 標準偏差算出部
E、41E 関係式生成情報作成部 、 42、 52、 210 標準偏差推定部A、 52A 標準偏差要求部B 関係式管理部
C 読込み処理部
D 関係式変更判定部
E、 52E 関係式生成部
F 書込み処理部
G 最大パケット誤り率変更部 、 32、 220 必要帯域決定部A 必要帯域算出部
B 確保帯域決定部
C 割当可能帯域取得部
D コンテンツレート算出部 32E コンテンツレート変更指示部
32F 伝送コンテンツレート記憶部
23 アプリケーション部
24、 56 テストパケット作成部
31 コンテンツレート変更部
53 PHYレート変更部
54 送信電力変更部
55 パラメータ決定部
61、 130 受信電力値測定部
140 受信電力値通知パケット作成部
270 コンテンツレート測定部
発明を実施するための最良の形態
[0027] (実施の形態 1)
<概要 >
先ず始めに、本発明に係る伝送装置 10、 100の概要について説明する。 本発明に係る伝送装置は図 1に示すようなシステムで用いられる。図 1に示すシス テムはサーバ装置 1とクライアント装置 2とからなり、サーバ装置 1とクライアント装置 2 とは無線(例えば、 IEEE802. 11a)により接続されている。 IEEE802. 11aは、 54 Mb/s (メガビット Z秒)の最大 PHYレートに加え、より遅い PHYレートである 48Mb Zs、 36MbZs、 24MbZs、 18Mb/s, 12Mb/s, 9Mb/s,及び 6MbZsを定義 する。
[0028] また、サーバ装置 1とクライアント装置 2とはそれぞれ、伝送装置 10、 100と Ethern et (登録商標)により接続されている。
伝送装置 10は受信電力値を測定させるためのパケットを伝送装置 100に送信する 。伝送装置 100から送信される受信電力値を受信すると、該受信電力値に基づき、 P HYレート毎に実効レートを算出し、最大の実効レートに対応する PHYレートを決定 する。 PHYレートを決定すると、サーバ装置 1より供給されるコンテンツをパケット単 位で伝送装置 100に送信する。 [0029] 伝送装置 100は受信電力値を測定させるためのパケットを受信すると、該パケット の受信電力値を測定し、測定した受信電力値を伝送装置 10に送信する。伝送装置 100はコンテンッを受信すると、受信したコンテンッをクライアント装置 2に供給する。 このように、伝送装置 10は受信電力値に基づき実効レートを算出し、最大の実効レ ートに対応する PHYレートを決定する。決定した PHYレートでコンテンツの送信を行 うことにより、環境によらず、データの送信効率を向上させることができる。
[0030] 本発明に係る伝送装置 10、 100について図面を参照しながらさらに詳細に説明す る。
<送信機 10の構成 >
図 2は本発明の実施の形態 1におけるデータ送信側の伝送装置 10 (以下、「送信 機 10」 t 、う)の機能ブロック図である。
[0031] 送信機 10は、具体的には、アンテナ、マイクロプロセッサ、 ROM、 RAMなど力 構 成されるコンピュータシステムである。前記 ROMには、コンピュータプログラムが記憶 されている。前記マイクロプロセッサ力 前記コンピュータプログラムにしたがって動作 することにより、送信機 10はその機能を達成する。
送信機 10は無線送受信部 11、パケット識別部 12、受信電力値通知パケット解析 部 13、受信電力値管理部 14、パケット誤り率推定部 15、 PHYレート決定部 16、パ ケット誤り率測定部 17、及び補正情報作成部 18を含んで構成される。
[0032] 無線送受信部 11は具体的には変調回路や復調回路等を含む送受信回路を含ん で構成され、無線信号の送信及び受信を行うアンテナ等を介して、無線ネットワーク 力も入力されるパケットの受信及び復調を行い、復調したパケットをパケット識別部 1
2に送信する。
また、無線送受信部 11は無線ネットワークに出力するパケットに対して変調を行い 、前記アンテナ等を介して、変調したパケットを送信する。無線送受信部 11は PHY レート決定部 16から PHYレート設定の指示を受けると、指示された PHYレートに設 定し、パケットの送信を行う。
[0033] パケット識別部 12は無線送受信部 11から入力されるパケットを識別する。識別した 結果、受信したパケットが受信電力値通知パケットである場合には、該パケットを受信 電力値通知パケット解析部 13に送信する。
受信電力値通知パケット解析部 13はパケット識別部 12から入力された受信電力値 通知パケットを解析する。具体的には、受信電力値通知パケット解析部 13は受信電 力値通知パケットから受信電力値を抽出し、抽出した受信電力値を受信電力値管理 部 14に送信する。
[0034] 受信電力値管理部 14は RAM等のメモリを含んで構成され、受信電力値通知パケ ット解析部 13から入力された受信電力値を蓄積するとともに、該受信電力値をバケツ ト誤り率推定部 15及び補正情報作成部 18に送信する。
パケット誤り率推定部 15は受信電力値管理部 14から入力された受信電力値から 無線区間のパケット誤り率 (以下、「PER」という)を推定する。 PERを推定する方法に ついては、くパケット誤り率推定部 15の構成〉で説明する。パケット誤り率推定部 15 は PHYレート決定部 16に各 PHYレートにおける推定した PERを送信する。
[0035] PHYレート決定部 16は Flash ROM等のメモリを含んで構成され、パケット誤り率 推定部 15から入力された各 PHYレートにおける PERの値から、実効レートが最大に なる PHYレートを決定する。 PHYレート決定部 16は PHYレートを決定すると、決定 した PHYレートでデータの送信を行うよう、無線送受信部 11に指示する。
なお、受信した PERの値力 実効レートが最大になる PHYレートをどのように決定 するかについては、く PHYレート決定部 16による処理〉で説明する。
[0036] パケット誤り率測定部 17は RAM等のメモリを含んで構成され、パケット毎の再送回 数と、送信が完了したパケットの個数とを測定し、メモリに記憶するとともに、予め設定 されている個数のパケットの送信が完了した場合には、再送回数の合計と送信が完 了したパケットの個数と伝送に用いられた PHYレートの値とを補正情報作成部 18に 送信する。
[0037] 補正情報作成部 18はパケット誤り率測定部 17から入力された再送回数の合計とパ ケットの個数、及び受信電力値管理部 14から入力された受信電力値力もパケット誤り 率推定部 15に記憶されて 、る関係式の補正に用 、る情報を作成する。
<受信機 100の構成 >
図 3は本発明の実施の形態 1におけるデータ受信側の伝送装置 100 (以下、「受信 機 100」 t 、う)の機能ブロック図である。
[0038] 受信機 100は、具体的には、アンテナ、マイクロプロセッサ、 ROM、 RAMなどから 構成されるコンピュータシステムである。前記 ROMには、コンピュータプログラムが記 憶されている。前記マイクロプロセッサ力 前記コンピュータプログラムにしたがって動 作することにより、受信機はその機能を達成する。
受信機 100は無線送受信部 110、パケット識別部 120、受信電力測定部 130、及 び受信電力値通知パケット作成部 140を含んで構成される。
[0039] 無線送受信部 110は具体的には変調回路や復調回路等を含む送受信回路を含 んで構成され、無線信号の送信及び受信を行うアンテナ等を介して、送信機 10から 送信されるパケットの受信及び復調を行い、復調したパケットをパケット識別部 120に 送信する。
また、無線送受信部 110は受信電力値通知パケット作成部 140から入力された受 信電力値通知パケットに対して変調を行い、前記アンテナ等を介して、変調した受信 電力値通知パケットを送信機 10に送信する。
[0040] パケット識別部 120は無線送受信部 110から入力されるパケットを識別する。
受信電力測定部 130は RSSI(Received Signal Strength Indicator)測定回路を含んで 構成され、送信機 10から送信されたパケットの受信電力値を測定し、測定した受信 電力値を受信電力値通知パケット作成部 140に送信する。
受信電力値通知パケット作成部 140は受信電力測定部 130から入力されるパケット の受信電力値を含む受信電力値通知パケットを作成し、作成したパケットを無線送 受信部 110に送信する。
<パケット誤り率推定部 15の機能 >
続いて、送信機 10におけるパケット誤り率推定部 15の機能について、図 4を用いて 更に詳しく説明する。図 4はパケット誤り率推定部 15の機能ブロック図である。図 4に 示すようにパケット誤り率推定部 15はパケット誤り率要求部 15A、関係式管理部 15B 、読込み処理部 15C、関係式変更判定部 15D、関係式生成部 15E、及び書込み処 理部 15Fを含んで構成される。
[0041] 関係式管理部 15Bは Flash ROM等のメモリを含んで構成され、受信電力値と PE Rとの関数式を PHYレート毎に管理している。図 5は関係式より導出される実線を示 す図である。関係式管理部 15Bは予め図 5に示すような実線を求めることができる関 係式を PHYレート毎に管理して 、る。
図 5について、さらに詳細に説明する。図 5は IEEE802. 11aの PHYレート 36Mb psで五分間のコンテンツ伝送 (パケット約 30万個)を行った結果と、この結果から求 めた近似式を示す図である。横軸は五分間で受信に成功したパケットの平均受信電 力値を示し、縦軸は五分間に送信されたパケットの再送回数カゝら算出された PERを 示す。本図では、送信電力を変えてコンテンツ伝送を 8回行った結果(図中の黒丸) 力 近似式を求めている。パケット誤り率要求部 15Aはこの近似式を関係式として用 V、て受信電力値力も PERを求めることができる。
[0042] なお、平均電力の単位は、 dBmの値に 100を足した値である(受信電力 lmw=Od Bmとする)。
パケット誤り率要求部 15Aは受信電力値管理部 14から入力される受信電力値を受 信すると、読込み処理部 15Cを介して、関係式管理部 15Bにより予め管理されてい る関係式を PHYレート毎に順に読み込む。読み込んだ関係式と受信した受信電力 値とから各 PHYレートにおける PERを求め、求めた各 PERを推定した PERとして、 P HYレート決定部 16に送信する。
[0043] 読込み処理部 15Cは関係式管理部 15Bが管理する関係式を読み込む。
関係式変更判定部 15Dは RAM等のメモリを含んで構成され、関係式管理部 15B が管理する関係式の変更の有無を判定する。
関係式生成部 15Eは関係式管理部 15Bが管理する関係式と関係式変更判定部 1 5Dからの情報とを用いて、受信電力値と PERの値との関係式を生成する。
[0044] 書込み処理部 15Fは関係式生成部 15Eにより生成された関係式を関係式管理部 15Bに書き込む。
関係式変更判定部 15D、関係式生成部 15E、及び書込み処理部 15Fの詳細につ いては、く補正方法に関する動作〉で説明する。
<補正情報作成部 18の機能 >
続、て、送信機 10における補正情報作成部 18の機能について図 6を用いて更に 詳しく説明する。図 6は補正情報作成部 18の機能ブロック図である。図 6に示すよう に補正情報作成部 18はパケット誤り率算出部 18A、及び関係式生成情報作成部 18 Bを含んで構成される。
[0045] パケット誤り率算出部 18Aは、パケット誤り率測定部 17から受けた情報力も PERを 求める。より詳細には、パケット誤り率測定部 17から受けた再送回数の合計と送信が 完了したパケットの個数とを用いて PERを求め、求めた PERとコンテンツ伝送に用い られた PHYレートの値を関係式生成情報作成部 18Bに送信する。
関係式生成情報作成部 18Bはパケット誤り算出部 18Aから PERと PHYレートの値 とを受信する。また、受信電力値管理部 14により記憶されている複数の受信電力値 を取得し、受信電力値の平均値を算出する。算出した平均値と PERの値と PHYレー トの値とをパケット誤り率推定部 15に送信する。
< PHYレート決定部 16による処理 >
続 、て、 PHYレート決定部 16がどのように PHYレートを決定するかにっ 、て説明 する。 PHYレート決定部 16は各 PHYレートにおける PERを受信すると、予め記憶し ている(数 1)を用いて、各 PHYレートの実効レートを算出し、最大の実効レートに対 応する PHYレートを決定する。ここで、実効レートとは、 PERを考慮したデータの単 位 送量をいう。
[0046] [数 1] p = · · ·【数 1】
Figure imgf000017_0001
以下に (数 1)及び (数 1)を用いた実効レートの求め方を説明する。
(数 1)は 100個のパケットを伝送する場合に、再送を考慮した冗長パケット数 Sを決 定する関係式である。
pは PERを示し、 P は 100個のパケットを 100 + Sのパケット間で送信できなかつ drop
たパケットの割合を表すパケット損失率である。
図 7に、(数 1)を用いて、各 PERにおいてパケット損失率を 1. 0E— 8以下にするた めの冗長パケット数 Sを求めた結果を示す。本図における横軸は PER、縦軸は再送 比率((ioo+s)Zioo)を表している。図中の黒丸が、(数 1)を用いて求めた値であ る。
なお、パケット損失率は想定されるデータで最もレートが高!、BSデジタル放送フル TS伝送の 28Mbpsで二時間程度の映像 (伝送するパケットの個数は約 1. 65E + 7 個)を視聴するときに一個もパケットを損失しないように、 1. 0E— 8に固定する。
[0048] PHYレート決定部 16は、パケット誤り率推定部 15から受信した PERの値を (数 1) の pに代入して、パケット損失率 P が 1. OE— 8以下になるように冗長パケット数 Sを
drop
求める。 Sを求めると、予め記憶している各 PHYレートの理想レート(PER=0%のと きのデータの単位伝送量)の値と各 PHYレートの再送比率とから、各 PHYレートに おける伝搬状態に適応した実効レートを求める。例えば、 PHYレート 36Mbps (理想 レートは 26. 4Mbps)で再送比率が 1. 51ならば、伝搬状態に適応した実効レートは 26. 4Mbps X (100/151) = 17. 48Mbps (/J、数点、第三位以下で四捨五人)とな る。ここで伝搬状態とは、受信電力値の変化に応じて、実効レートが変化する状態を いう。
[0049] PHYレート決定部 16は求めた実効レートをそれぞれ比較し、最大の実効レートに 対応する PHYレートの値を決定し、無線送受信部 11に送信する。
図 8は受信電力値が 30であった場合の各 PHYレート(ここでは 24Mbps、 36Mbp s、 48Mbpsとする)における理想レート、 PER、再送比率、及び実効レートを示して いる。この場合には、 PHYレート決定部 16は求めた実効レート(17. 36Mbps, 17. 48Mbps, 0. 02Mbps)のうち、最大の実効レー卜(17. 48Mbps)に対応する PHY レート(36Mbps)を決定し、決定した PHYレートの値(36Mbps)を無線送受信部 11 に送信する。
< PHYレート設定処理のフローチャート >
続いて、 PHYレート設定処理について説明する。図 9は、本発明の実施の形態 1に おける PHYレート設定のフローチャートである。本フローチャートにおいて、 nは一の PHYレートを示す変数である。まず、無線送受信部 11は受信機 100に送信すべき パケットを変調し、アンテナを介して、変調したパケットを無線ネットワークに出力する (ステップ Sl)。 [0050] 受信機 100における無線送受信部 110及び受信電力測定部 130は、アンテナを 介して無線ネットワーク力もパケットを受信する (ステップ S1001)。受信電力測定部 1 30は受信電力値を測定し、受信電力値通知パケット作成部 32に送信する (ステップ S 1002)。受信電力値通知パケット作成部 140はパケットの受信電力値を含む受信 電力値通知パケットを作成し、無線送受信部 110は作成された受信電力値通知パケ ットを変調し、アンテナを介して、無線ネットワークに変調したパケットを出力する (ステ ップ S 1003)。
[0051] 送信機 10の無線送受信部 11は、アンテナを介して無線ネットワーク力 受信電力 値通知パケットを受信する (ステップ S2)。受信電力値通知パケット解析部 13は受信 された受信電力値通知パケットから受信電力値を抽出し、パケット誤り率推定部 15は 抽出された受信電力値力も各 PHYレートにおける PERを決定する (ステップ S3)。 P ERを決定した後、 PHYレート決定部 16は各 PHYレートのうち、実効レートが最大と なる PHYレートを決定する。具体的には、まず、 nを初期化し (ステップ S4)、 nに対 応する PHYレートの実効レートを算出する (ステップ S5)。そして、すでに記憶されて V、る実効レートが存在する力否かを判定する (ステップ S6)。
[0052] 実効レートが記憶されていない場合には (ステップ S6で NO)、算出した実効レート を記憶し (ステップ S 7)、 nが最後力否かを判定する (ステップ S8)。 nが最後でない場 合には (ステップ S8で NO)、 nを 1計数し (ステップ S9)、ステップ S5に移行する。 すでに実効レートが記憶されている場合には (ステップ S6で YES)、算出した実効 レートが記憶されている実効レートよりも大きいか否かを判定する (ステップ S10)。算 出した実効レートの方が記憶されている実効レートより大きい場合には (ステップ S10 で YES)、算出した実効レートを記憶 (上書き)する (ステップ S7)。算出した実効レー トが記憶されている実効レート以下の場合には (ステップ S 10で YES)、 nが最後か否 かを判定し (ステップ S8)、 nが最後である場合には (ステップ S8で YES)、記憶され て 、る実効レートに対応する PHYレートを選択する (ステップ S9)。無線送受信部 11 は選択された PHYレートで以降のデータを送信する設定を行う。
<補正方法に関する動作 >
次に、図 10のフローチャートを用いてパケット誤り率推定部 15が管理している関係 式(図 5の近似式)の補正方法について説明する。本フローチャートにおいて、 iは送 信すべき一のパケットを示す変数であり、 nは予め設定されて 、る送信すべきパケット の個数を示し、 jは関係式力も求めた PERと補正情報作成部 18から受信した PERの 値とを比較した場合における所定値以上の差の回数を示す変数であり、 mは予め設 定されている、所定値以上の差の許容回数を示す。
[0053] まず、関係式変更判定部 15Dは回数 jを初期化し (ステップ S20)、パケット誤り率測 定部 17はパケット iを初期化する (ステップ S21)。パケット誤り率測定部 17は無線送 受信部 11によるパケット iの送信が完了した力否かを判定し (ステップ S22)、送信が 完了したと判定すると (ステップ S22で YES)、パケット iの再送回数を記憶する (ステ ップ S23)。パケット誤り率測定部 17は送信したパケット数が nに達した力否かを判定 し (ステップ S 24)、達して!/ヽな 、と判定した場合には(ステップ S24で NO)、パケット i を 1計数し (ステップ S25)、ステップ S22に移行する。達していると判定した場合には (ステップ S24で YES)、パケット誤り率算出部 18Aは再送回数の合計と送信が完了 したパケットの個数とを用いて PERを算出する (ステップ S26)。
[0054] 次に、関係式生成情報作成部 18Bは受信電力値管理部 14により記憶されている 複数の受信電力値を取得し、受信電力値の平均値を算出する (ステップ S27)。関係 式変更判定部 15Dは、読込み処理部 15Cを介して、パケット誤り率の測定に用いら れた PHYレートに対応する関係式を読込み、算出された受信電力値の平均値を用 いて関係式力も PERを求め、求めた PERとパケット誤り率算出部 18Aにより算出され た PERとを比較する(ステップ S29)。
[0055] 比較した結果、予め設定されている所定値以上の差がある力否かを判定し (ステツ プ S30)、所定値以上の差はないと判定した場合には (ステップ S30で NO)、ステツ プ S21に移行する。所定値以上の差があると判定した場合には (ステップ S30で YE S)、関係式変更判定部 15Dは回数 jを 1計数した後 (ステップ S31)、回数 jが許容回 数 mに達した力否かを判定する (ステップ S32)。達して 、な 、と判定した場合には( ステップ S32で NO)、ステップ S21に移行する。達していると判定した場合には (ステ ップ S32で YES)、関係式変更判定部 15Dは関係式の補正が必要であると判断する [0056] そうすると、関係式生成部 15Eは図 11 (a)、 (b)の手順で関係式の補正に必要な 値を決定する。まず、関係式生成部 15Eは、読込み処理部 15Cを介して、関係式管 理部 15B力もパケット誤り率の測定に用いられた PHYレートに対応する関係式を読 込み、予め設定されている間隔ごとに関係式の値を求め、サンプリング(図 11の黒三 角の値)を行う(ステップ S33)。次に、関係式生成部 15Eは、補正情報作成部 18か ら受信した値(図 11の黒丸の値)力 予め設定されて 、る範囲内にある関係式の値( 図 11の三角の値)をサンプリングから除き、図 11 (b)の黒丸と黒三角の値とを関係式 の生成に用いる値に決定する (ステップ S34)。そして、関係式生成部 15Eは決定し た値を用いて関係式を生成する (ステップ S35)。生成する関係式は最小二乗法を用 V、て生成した二次関数の近似式とする。
[0057] 最後に、関係式生成部 15Eは、書込み処理部 15Fを介して、関係式管理部 15Bに より予め保持されている、該当する PHYレートに対応する関係式を、図 11 (c)に示さ れる関係式に変更する (ステップ S36)。
なお、書込み処理部 15Fは、関係式管理部 15Bに書込み処理を行う前に、読込み 処理部 15Cに対して関係式管理部 15Bに対する読込みの停止命令を送ってから書 込み処理を行い、書込み処理終了後に、読込み処理部 15Cに読込みの停止命令に 対する解除命令を送る。
[0058] 以上の手順で、パケット誤り率推定部 15に記憶されている関係式の補正を行う。
以上説明したように、本実施の形態によれば、送信機 10は受信電力値から各 PHY レートの PERを推定し、推定した PERを用いて各 PHYレートの実効レートを算出す るので、迅速に、最大の実効レートに対応する PHYレートでのデータ伝送が可能に なる。よって、無線帯域を常に効率的に利用できる。
[0059] また、 PERを実際に測定するには、ある程度 (少なくとも 100個以上)のパケットの 再送回数やエラーの履歴が必要になる。さらに PHYレートごとに PERを測定する必 要があるので、秒オーダーの時間が必要になる力 本実施の形態では、受信電力値 に基づき PERを推定しており、受信電力値は PHYレートに依存せず、かつ、受信に 成功したパケットの受信電力値は安定して 、るので、数十個程度の履歴で十分であ る。 [0060] したがって、受信電力値力 推定した PERを用いて PHYレート設定を行う本実施 の形態は、迅速に伝搬状態に追従した設定ができ、無線帯域を効率的に利用できる 。特に、映像や音声データなどの遅延許容時間が数十 msオーダーのリアルタイムの データ伝送では、実効レートの低下が秒オーダー継続すると、遅延が発生し、映像 や音声に途切れや乱れが発生するため、本発明が有効である。
[0061] また、データ伝送中に伝搬状態が変化し、受信電力値が変化した場合であっても、 受信電力値から PERを推定し、迅速に、伝搬状態の変化に追従した PHYレートを決 定することが可能になる。
また、データ伝送中にパケット誤り率推定部 15により保持されている関係式を補正 することにより、実環境に適応した PHYレートを決定することが可能になる。
[0062] また、関係式管理部 15Bは、一度補正した関係式を Flash ROMに保持しておき 、以後の使用時には Flash ROMに保持されている関係式によって推定を行う。し たがって、電源をオフにしても、補正した関係式は記憶されたままであるので、再度 電源を起動したときには、補正した関係式を用いることができ、伝搬環境に適した PH Yレート設定が可能になる。
[0063]
(実施の形態 2)
実施の形態 1は実効レートが最大となる PHYレートを決定する構成であつたが、本 実施の形態はさらに、伝搬状態に応じて、データ伝送に必要な帯域を送信機で確保 すると 、う実施の形態である。
[0064] 図 12は、本発明の実施の形態 2の送信機 20の機能ブロック図である。図 12におい て、図 2と同じ構成要素については同じ符号を用い、説明を省略する。
図 12に示すように送信機 20は、実施の形態 1の送信機 10の構成要素に加え、標 準偏差推定部 21、必要帯域決定部 22、アプリケーション部 23、及びテストパケット作 成部 24を含んで構成される。また、送信機 20は送信機 10における補正情報作成部
18の代わりに、補正情報作成部 25を備える。
[0065] 標準偏差推定部 21は PHYレート決定部 16から入力される、決定された PHYレー トに対応する PERの値カゝら PERの標準偏差を推定し、 MAXPER ( = PER+標準偏 差 X 2)を求める。標準偏差の推定方法については後述する。標準偏差推定部 21は 求めた MAXPERを必要帯域決定部 22に送信する。
必要帯域決定部 22は Flash ROM等のメモリを含んで構成され、標準偏差推定 部 21から送信された MAXPERの値力 データ伝送に必要な帯域を求める。必要帯 域決定部 22は求めた帯域でデータ送信を行うよう、無線送受信部 11に指示する。
[0066] アプリケーション部 23はユーザからのデータの伝送要求を受け付け、テストパケット 作成部 24にテストパケットの作成を指示する。また、ユーザ入力によりコンテンツレー トを受け付け、必要帯域決定部 22に送信する。
テストパケット作成部 24はアプリケーション部 23からの指示で伝搬状態を測定する ためのテストパケットを作成し、作成したテストパケットを無線送受信部 11に送信する
[0067] 補正情報作成部 25は実施の形態 1の補正情報作成部 18の機能に加え、標準偏 差推定部 21に記憶されて 、る関係式の補正に用 、る情報を作成する機能を有する なお、本実施の形態における受信機は実施の形態 1における受信機 100と同様で ある。
<標準偏差推定部 21の構成 >
標準偏差推定部 21の内部の機能構成について図 13を用いて更に詳しく説明する 。図 13に示すように標準偏差推定部 21は標準偏差要求部 21A、関係式管理部 21 B、読込み処理部 21C、関係式変更判定部 21D、関係式生成部 21E、及び書込み 処理部 21Fを含んで構成される。
[0068] 関係式管理部 21Bは Flash ROM等のメモリを含んで構成され、 PERと PERの標 準偏差との関数式を管理している。図 14は関係式より導出される実線を示す図であ る。関係式管理部 21Bは予め図 14に示すような実線を求めることができる関係式を P HYレート毎に管理している。図 14について、さらに詳細に説明する。図 14は、 IEE E802. 11aの PHYレート 36Mbpsで五分間のコンテンツ伝送(パケット約 30万個) を行った結果と、この結果力 求めた近似式である。横軸は五分間に送信されたパケ ットの再送回数力 算出された PERの値を示し、縦軸はパケット 1000個ごとに算出さ れた複数の PER力も算出された PERの標準偏差を表している。図 14では、送信電 力を変えてコンテンッ伝送を 8回行った結果(図中の黒丸)力も近似式を求めて 、る。 標準偏差要求部 21Aはこの近似式を関数式として用いて PERから PERの標準偏差 を求めることができる。
[0069] 標準偏差要求部 21Aは PHYレート決定部 16から決定された PHYレートと該 PHY レートに対応する PERの値を受信すると、読込み処理部 21Cを介して、関係式管理 部 21Bから該 PHYレートに対応する関係式を読み込む。読み込んだ関係式と受信 した PERの値とから標準偏差を求め、求めた標準偏差を推定した標準偏差として、 MAXPER ( = PER +標準偏差 X 2)を求める。そして、求めた MAXPERと PHYレ ート決定部 16により決定された PHYレートの値とを必要帯域決定部 22に送信する。
[0070] なお、以上の説明はコンテンツの送信前に必要帯域を決定する場合についてであ るが、コンテンツ送信中に必要帯域を変更する場合には、標準偏差要求部 21Aは P HYレート決定部 16から各 PHYレートにおける PERを受信するとしてもよい。そして 各 PERを受信した後に、各 PHYレートの関係式を順に読み込み、読み込んだ各関 係式と各 PHYレートにおける PERとから、各 PHYレートにおける標準偏差を求め、 求めた各標準偏差カゝら MAXPERを求め、求めた各 MAXPERを必要帯域決定部 2 2に送信するとしてもよい。
[0071] 読込み処理部 21Cは関係式管理部 21Bが管理する関係式を読み込む。
関係式変更判定部 21Dは RAM等のメモリを含んで構成され、関係式管理部 21B が管理する関係式の変更の有無を判定する。
関係式生成部 21Eは関係式管理部 21Bが管理する関係式と関係式変更判定部 2 1Dからの情報を用いて、 PERと PERの標準偏差の値との関係式を生成する。
[0072] 書込み処理部 21Fは関係式生成部 21Eにより生成された関係式を関係式管理部 21Bに書き込む。
関係式変更判定部 21D、関係式生成部 21E、及び書込み処理部 21Fの詳細につ いてはく補正方法に関する動作〉で説明する。
<補正情報作成部 25の機能 >
続いて、補正情報作成部 25の機能について図 15を用いて更に詳しく説明する。図 15は補正情報作成部 25の機能ブロック図である。補正情報作成部 25は補正情報 作成部 18の構成に加え、さらに、パケット誤り率管理部 25C、標準偏差算出部 25D 、及び関係式生成情報作成部 25Eを含んで構成される。
[0073] パケット誤り率管理部 25Cは RAM等のメモリを含んで構成され、パケット誤り率算 出部 18Aから PERの値と伝送に使用されている PHYレートの値とを受信し、 PERの 値を記憶する。パケット誤り率管理部 25Cは記憶して 、る PERの個数が予め設定さ れて 、る個数になれば、記憶して 、る複数の PERの値と受信した PHYレートの値と を標準偏差算出部 25Dに送信する。
[0074] 標準偏差算出部 25Dはパケット誤り率管理部 25C力も入力される PERを用いて、 P ERの標準偏差を求め、求めた標準偏差の値と標準偏差の算出に用いられた複数の PERの値と PHYレートの値とを関係式生成情報作成部 25Eに送信する。
関係式生成情報作成部 25Eは標準偏差算出部 25Dから入力された複数の PER の値の平均を求め、求めた平均の PERと標準偏差算出部 25D力も入力された標準 偏差の値と PHYレートの値とを標準偏差推定部 21に送信する。
<データ伝送開始時の PHYレート及び帯域確保の設定 >
続、て、データ伝送開始時の PHYレート及び帯域確保の設定処理につ 、て説明 する。図 16は本発明の実施の形態 2におけるデータ伝送開始時の PHYレート及び 帯域確保の設定のフローチャートである。まず、アプリケーション部 23はユーザから のデータの伝送要求がある力否かを判定する(ステップ S41)。データの伝送要求が あると判定すると (ステップ S41で YES)、受信機 100のアドレスをテストパケット作成 部 24に送信する。テストパケット作成部 24はアプリケーション部 23からアドレスを受 けると、そのアドレスの受信機 100に対して送信するテストパケットを作成し (ステップ S42)、作成したパケットを無線送受信部 11に送信する。無線送受信部 11はテストパ ケット作成部 24から送信されたパケットを受信すると、受信したテストパケットを変調し 、アンテナを介して、変調したパケットを無線ネットワークに出力する (ステップ S43)。
[0075] なお、送信機 20がテストパケットを送信してから、送信機 20の PHYレート決定部 1 6が PHYレートを決定するまでの送信機 20及び受信機 100の動作は実施の形態 1 と同等の動作なので、説明を省略する。 PHYレート決定部 16は実効レートが最も高くなる PHYレートの値を決定すると (ス テツプ S46)、決定した PHYレートの値を無線送受信部 11に送信するとともに、標準 偏差推定部 21に決定した PHYレートと対応する PERの値とを送信する。標準偏差 推定部 21は関係式管理部 21Bに管理されている関係式と受信した PERの値とから 標準偏差を求め、求めた標準偏差を推定した標準偏差として、 MAXPER( = PER +標準偏差 X 2)を算出する (ステップ S47)。
[0076] 必要帯域決定部 22は標準偏差推定部 21から MAXPERの値と PHYレート決定部 16により決定された PHYレートの値とを受けると、アプリケーション部 23から該当す るコンテンツのコンテンツレートの値を取得し、(数 1)と MAXPERの値とから再送比 率を算出し、算出した再送比率と取得したコンテンツレートとから該当コンテンツの伝 送に必要な帯域を算出する(S48)。例えば MAXPER= 1. 0%、コンテンツレートが 10Mbpsならば必要帯域は 11. 1Mbpsとなる(P = 1. 0E— 8に設定)。必要帯域
drop
決定部 22は算出した必要帯域を確保するよう、無線送受信部 11に指示を送るととも に、アプリケーション部 23にコンテンツ伝送要求に対する応答を通知する。
[0077] アプリケーション部 23はコンテンツ伝送要求に対する応答を受けると、コンテンツを 無線送受信部 11に入力する。
無線送受信部 11は必要帯域決定部 22から帯域の確保の指示を受けると、無線ネ ットワークの帯域の確保を行う。
無線送受信部 11はコンテンツが入力されると、コンテンツをパケット化(以後、「コン テンッパケット」という)して、 PHYレート決定部 16で決定された PHYレートで伝送す る。また、無線送受信部 11は必要帯域決定部 22からの指示で確保した帯域でコン テンッパケットを伝送する。
くコンテンツ伝送中に PHYレートと帯域割当とを変更 >
次に、図 17のフローチャートを用いてデータ伝送中の PHYレートと帯域設定の方 法について説明する。なお、本図におけるステップ S51から S55までは、図 16のステ ップ S44から S48までと同様であるので、説明を省略する。
[0078] 必要帯域決定部 22は必要帯域を算出すると、現在、コンテンツに割当てている帯 域 (以後、「現帯域割当」という)と算出した必要帯域とを比較する (ステップ S56)。比 較した結果、必要帯域が現帯域割当より小さいと判定した場合には (ステップ S56で NO)、現帯域割当を必要帯域の大きさに変更するよう、無線送受信部 11に指示す る (ステップ S57)。無線送受信部 11は必要帯域決定部 22から帯域の変更の指示を 受けると、無線ネットワークの帯域の変更を行う。
[0079] 必要帯域が現帯域割当より大きいと判定した場合には (ステップ S56で YES)、必 要帯域決定部 22は割当可能な帯域と必要帯域とを比較する (ステップ S58)。比較し た結果、必要帯域が割当可能な帯域より小さいと判定した場合には (ステップ S58で YES)、現帯域割当を必要帯域の大きさに変更するよう、無線送受信部 11に指示す る (ステップ S57)。必要帯域が割当可能な帯域より大きいと判定した場合には (ステ ップ S58で NO)、割当可能な帯域だけを確保するよう、無線送受信部 11に指示する (ステップ S 59)。
[0080] 以上の方法でコンテンツ伝送中に、 PHYレートと帯域設定の変更を行う。
<標準偏差の補正 >
次に、図 18のフローチャートを用いて標準偏差推定部 21が管理する関係式 (図 14 の近似式)の補正方法について説明する。本フローチャートにおいて、 iは送信すベ き一のパケットを示す変数であり、 nは予め設定されて 、る送信すべきパケットの個数 を示し、 jは関係式力も求めた PERの標準偏差と標準偏差算出部 25Dにより算出さ れた PERの標準偏差とを比較した場合における所定値以上の差の回数を示す変数 であり、 mは予め設定されている、所定値以上の差の許容回数を示す。本図のステツ プ S70から S75までは図 10のステップ S20から S25までと同様であるので、説明を省 略する。
[0081] パケット誤り率算出部 18Aが PERを算出した後 (ステップ S76)、パケット誤り率管理 部 25Cは記憶して 、る PERの個数が予め設定されて 、る個数になれば、記憶して!/ヽ る PERの値と対応する伝送に用いられている PHYレートの値とを標準偏差算出部 2 5Dに送信する。
標準偏差算出部 25Dはパケット誤り率管理部 25C力も受信した複数の PERを用い て、 PERの標準偏差を算出し (ステップ S77)、算出した標準偏差の値と標準偏差を 求めるのに用いた複数の PERの値と前記 PHYレートの値とを関係式生成情報作成 部 25Eに送信する。
[0082] 関係式生成情報作成部 25Eは標準偏差算出部 25Dから受信した複数の PERの 値の平均を求め、求めた平均の PERと標準偏差算出部 25D力も受信した標準偏差 の値と前記 PHYレートの値とを標準偏差推定部 21に送信する。
関係式変更判定部 21Dは関係式生成情報作成部 25Eから PERと標準偏差と PH Yレートの値とを受信すると、読込み処理部 21Cを介して、関係式管理部 21Bから前 記 PHYレートに対応する関係式を読込み、受信した PERの値を用いて関係式から 標準偏差を求め、求めた標準偏差と標準偏差算出部 25Dにより算出された標準偏 差とを比較する (ステップ S 79)。
[0083] 比較した結果、所定値以上の差がある力否かを判定し (ステップ S80)、所定値以 上の差はな 、と判定した場合には (ステップ S80で NO)、ステップ S71に移行する。 所定値以上の差があると判定した場合には (ステップ S80で YES)、関係式変更判 定部 21Dは回数 jを 1計数した後 (ステップ S81)、回数 jが許容回数 mに達した力否 かを判定する(ステップ S82)。達して ヽな 、と判定した場合には (ステップ S82で NO )、ステップ S71に移行する。達していると判定した場合には (ステップ S82で YES)、 関係式変更判定部 21Dは関係式の補正が必要であると判断する。
[0084] そうすると、関係式変更判定部 21Dは関係式生成部 21Eに補正情報作成部 25か ら受けた PERと標準偏差と PHYレートの値とを送信する。
関係式生成部 21Eは、関係式変更判定部 21D力 PERと標準偏差の値とを受け ると、図 19 (a)、(b)の手順で関係式の補正に必要な値を決定する。まず、関係式生 成部 21Eは、読込み処理部 21Cを介して、関係式管理部 21Bからコンテンツ伝送に 用いた PHYレートに対応する関係式を読込み、予め設定されている間隔ごとに関係 式の値を求め、サンプリング(図 19の黒三角の値)を行う(ステップ S83)。
[0085] 次に、関係式生成部 21Eは、補正情報作成部 25から受信した値(図 19の黒丸の 値)から予め設定されている範囲内における関係式の値(図 19の三角の値)をサンプ リングから除き、図 19 (b)の黒丸と黒三角の値とを関係式の生成に用いる値に決定 する(ステップ S 84)。
関係式生成部 21Eは、決定した値を用いて関係式を生成する (ステップ S85)。生 成する関係式は、最小二乗法を用いて生成した二次関数の近似式とする。
[0086] 最後に、関係式生成部 21Eは、書込み処理部 21Fを介して、該当する PHYレート の関係式を、図 19 (c)に示される関係式に変更する (ステップ S86)。
なお、書込み処理部 21Fは、関係式管理部 21Bに書込み処理を行う前に、読込み 処理部 21Cに対して関係式管理部 21Bに対する読込みの停止命令を送ってから書 込み処理を行い、書込み処理終了後に、読込み処理部 21Cに読込みの停止命令に 対する解除命令を送る。
[0087] 以上の手順で、標準偏差推定部 21の関係式の補正を行う。
以上説明したように、本実施の形態によれば、受信電力値力 各 PHYレートの PE Rを推定し、推定した PERから PERの標準偏差を推定する。そして、 PERと標準偏 差とカゝら MAXPER(PER+標準偏差 X 2)を算出し、算出した MAXPER用いて、 実効レートが最大になる PHYレートでコンテンツ伝送する際に必要な帯域を確保す るので、安定したコンテンツ伝送を行うことが可能になる。
[0088] また、 PERの実測には、ある程度 (少なくとも 100個以上)のパケットの再送回数や エラーの履歴が必要になる。さらに PHYレートごとに PERを測定する必要があるので の秒オーダーの時間が必要になるが、本実施の形態では、受信電力値に基づき PE Rを推定しており、受信電力値は PHYレートに依存されず、かつ、受信に成功したパ ケットの受信電力の値は安定して 、るので、数十個程度の履歴で十分である。
[0089] したがって、受信電力値に基づき算出される MAXPERを用いて必要帯域の設定 を行う本実施の形態では、迅速に伝搬状態に応じた設定ができ、ユーザの待ち時間 が軽減すると ヽぅ効果が得られる。
また、コンテンツ伝送中に、障害物の設置などにより伝搬環境に定常的な変化が発 生し、受信電力値が変化した場合であっても、受信電力値力 推定される PERから 標準偏差を推定し、 MAXPERを求めるので、迅速に、伝搬環境の変化に追従した PHYレート決定及び帯域設定を行うことが可能になる。
[0090] また、 MAXPER (平均 PER + PERの標準偏差の値 X 2)でコンテンツ伝送に必要 な帯域を確保するので、発生予測が可能な誤りの 9割以上に対応でき、 PERの変動 を考慮した帯域確保が可能になり、安定したコンテンツ伝送が実現できる。 また、コンテンッ伝送中にバケツト誤り率推定部 15及び標準偏差推定部 21に記憶 されている関係式を補正することにより、より実環境に適応した PHYレートと帯域設 定が可能になる。
[0091] また、関係式管理部 21Bは、一度補正した関係式を Flash ROMに保持しておき 、以後の使用時には Flash ROMに保持されている関係式によって推定を行う。し たがって、電源をオフにしても、補正した関係式は記憶されたままであるので、再度 電源を起動したときには、補正した関係式を用いることができ、伝搬環境に適した PH Yレート設定及び帯域設定が可能になる。
[0092]
(実施の形態 3)
実施の形態 2は割当可能な帯域が必要帯域に満たな 、場合に、割当可能な帯域 だけを確保する構成であつたが、本実施の形態は、割当可能な帯域に応じて、コン テンッのレートを変更する実施の形態である。
[0093] 図 20は、本発明の実施の形態 3の送信機 30の機能ブロック図である。図 20におい て、図 1及び図 12と同じ構成要素については同じ符号を用い、説明を省略する。 図 20に示すように送信機 30は実施の形態 2における送信機 20の構成に加え、さら に、コンテンツレート変更部 31を含んで構成される。
また、送信機 30は送信機 20における必要帯域決定部 22の代わりに、必要帯域決 定部 32を備える。
[0094] コンテンツレート変更部 31は必要帯域決定部 32の指示に従い、コンテンツのレート を変更する。
必要帯域決定部 32は必要帯域決定部 22の機能に加え、割当可能な帯域に応じ て、伝送するコンテンツのレートを決定する機能を有する。
なお、本実施の形態の受信機は実施の形態 1の受信機 100と同様である。 <必要帯域決定部 32の機能 >
必要帯域決定部 32の機能について図 21を用いて更に詳しく説明する。図 21に示 すように必要帯域決定部 32は必要帯域算出部 32A、確保帯域決定部 32B、割当可 能帯域情報取得部 32C、コンテンツレート算出部 32D、コンテンツレート変更指示部 32E、及び伝送コンテンツレート記憶部 32Fを含んで構成される。
[0095] 必要帯域算出部 32Aは PHYレート決定部 16より決定された PHYレートでコンテン ッ伝送する場合に必要となる帯域を算出する。必要帯域算出部 32Aは算出した帯 域を確保帯域決定部 32Bに送信する。
確保帯域決定部 32Bは必要帯域算出部 32Aから入力された必要帯域と割当可能 帯域情報取得部 32Cから入力された割当可能な帯域とに基づき、確保する帯域を 決定する。
[0096] 割当可能帯域情報取得部 32Cは割当可能な帯域の情報を取得し、取得した情報 を確保帯域決定部 32Bに送信する。
コンテンツレート算出部 32Dは伝送するコンテンツのレートを決定し、決定したコン テンッレートをコンテンツレート変更指示部 32Eと伝送コンテンツレート記憶部 32Fと に送信する。
[0097] コンテンツレート変更指示部 32Eはコンテンツレート算出部 32Dより入力されたコン テンッレートで送信するよう、コンテンツレート変更部 31に指示する。
伝送コンテンツレート記憶部 32Fは RAM等のメモリを含んで構成され、コンテンツ レート算出部 32Dより入力されたコンテンツレートの値を記憶する。
くコンテンツの伝送開始時の PHYレート、帯域割当、コンテンツレート設定 > 続いて、コンテンツの伝送開始時の PHYレート決定、帯域確保、及びコンテンツレ ートの設定について説明する。図 22は、本発明の実施の形態 3におけるデータ伝送 開始時の PHYレート決定と帯域確保とコンテンツレート設定とに関する処理を示すフ ローチャートである。
[0098] 本図におけるステップ S91〜97までは、実施の形態 2の図 16におけるステップ S4 1〜47と同様なので、説明を省略する。
必要帯域算出部 32Aは、標準偏差推定部 21から PHYレート決定部 16により決定 された PHYレートの値とそれに対応する MAXPERの値とを受信すると、アプリケー シヨン部 23から該当するコンテンツのコンテンツレートを取得する。そして、(数 1)と受 信した MAXPERの値と力 該当コンテンツの伝送に必要な帯域を求め、求めた必 要帯域と (数 1)から算出される再送比率とを確保帯域決定部 32Bに送信する (ステツ プ S98)。
[0099] 帯域確保決定部 32Bは、コンテンツの伝送に必要な帯域と再送比率とを受信する と、割当可能帯域情報取得部 32C力 現在の無線ネットワークの割当可能な帯域の 情報を取得し、取得した割当可能帯域と必要帯域とを比較する (ステップ S99)。 必要帯域が割当可能帯域より小さいならば (S99で YES)、帯域確保決定部 32B は必要帯域を確保する指示を無線送受信部 11に、コンテンツ伝送要求に対する応 答をアプリケーション部 23に通知する(ステップ S100)。
[0100] 必要帯域が割当可能帯域より大きいならば (S99で NO)、帯域確保決定部 32Bは 割当可能帯域と再送比率とをコンテンツレート算出部 32Dに送信する。
コンテンツレート算出部 32Dは帯域確保決定部 32Bから割当可能帯域と再送比率 の値とを受信すると、(数 3)を用いて、割当可能な帯域で伝送可能なコンテンツレー トを算出する。
[0101] 伝送可能コンテンツレート =割当可能帯域 Z再送比率 · · ·(数 3)
例えば、割当可能帯域が 10Mbps、再送比率が 1. 4の場合、伝送可能なコンテン ッレートは約 7Mbpsとなる (10 X (10/14))。
次に、コンテンツレート算出部 32Dはコンテンツレート変更指示部 32Eと伝送コンテ ンッレート記憶部 32Fとに算出した伝送可能なコンテンツレートの値を送信し、確保 帯域決定部 32Bに割当可能帯域の確保を要求する。
[0102] コンテンツレート変更指示部 32Eはコンテンツレート算出部 32D力も入力された値 にコンテンツレートを変更するよう、コンテンツレート変更咅 31に対してコンテンツのレ ート変更の指示を送る。
コンテンツレート変更部 31は、必要帯域決定部 32からコンテンツのレート変更の指 示を受けると、該当コンテンツのレートを指示されたレートの値に変更する設定を行う
(ステップ S 101)。
[0103] 確保帯域決定部 32Bは、コンテンツレート算出部 32D力も割当可能帯域の確保要 求を受けると、割当可能帯域を確保する指示を無線送受信部 11に、アプリケーショ ン部 23にコンテンッ伝送要求に対する応答を通知する。
無線送受信部 11は、必要帯域決定部 32から帯域の確保の指示を受けると、無線 ネットワークの帯域の確保を行う(ステップ S 102)。
[0104] アプリケーション部 23は、コンテンツ伝送要求に対する応答を受けると、コンテンツ をコンテンツレート変更部 31に入力する。
コンテンツレート変更部 31は、入力されたコンテンツを無線送受信部 11に入力す る。
無線送受信部 11は、コンテンツが入力されるとコンテンツをパケットィ匕して、 PHYレ ート決定部 16で決定した PHYレートで伝送する。
[0105] また、無線送受信部 11は、必要帯域決定部 41からの指示で確保していた帯域で コンテンツのパケットを伝送する。
くコンテンツ伝送中の PHYレート決定、帯域割当、コンテンツレート設定〉 次に、図 23のフローチャートを用いてデータ伝送中の PHYレート決定、帯域割当、 及びコンテンツレートの設定の方法について説明する。
[0106] 図 23は、データ伝送中の PHYレート決定と帯域確保とコンテンツレート設定とに関 する処理を示すフローチャートである。必要帯域が割当可能帯域より大きい場合に、 本図におけるステップ S119でコンテンツレートを変更する処理を行う点で、本図と実 施の形態 2の図 17とは異なる。なお、本図のステップ Sl l l〜114までは図 17におけ るステップ S 51〜 54と同様であるので、説明を省略する。
[0107] 標準偏差推定部 21は実効レートが最大となる PHYレートの MAXPERを算出する と (ステップ S 114)、算出した MAXPERを必要帯域決定部 32に送信する。
必要帯域算出部 32Aは標準偏差推定部 21から実効レートが最大となる PHYレー トの MAXPERを受信すると、伝送コンテンツレート記憶部 32Fに記憶されているコン テンッレートを取得し、(数 1)と受信した MAXPERの値とから再送比率を算出し、算 出した再送比率と取得したコンテンツレートとから該当コンテンツの伝送に必要な帯 域を算出する (ステップ S 115)。そして、求めた必要帯域と再送比率とを確保帯域決 定部 32Bに送信する。
[0108] 確保帯域決定部 32Bは、現在コンテンツに割当てている帯域 (以後、「現帯域割当 」という)と必要帯域とを比較する (ステップ S 116)。
必要帯域が現帯域割当より小さいならば (ステップ S116で NO)、コンテンツレート がすでに変更されて 、るか(下げられて 、る力 )否かを判定する (ステップ SI 17)。変 更されていない場合には (ステップ S 117で NO)、確保帯域決定部 32Bは現帯域割 当を必要帯域の大きさに変更する指示を無線送受信部 11に送り(ステップ S118)、 変更されている場合には (ステップ S 117で YES)、現帯域割当と再送余裕とをコンテ ンッレート算出部 41Dに送信する。
[0109] コンテンツレート算出部 41Dは (数 3)を用いて現帯域割当を割当可能帯域として伝 送可會なコンテンツのレートを求め、求めたコンテンツレートをコンテンツレート変更 指示部 41Eと伝送コンテンツレート記憶部 1Fに、割当可能帯域の確保要求を確保 帯域決定部 41 Bに送信する。
コンテンツレート変更指示部 41Eは、コンテンツレート算出部 32D力も入力された 値にコンテンツレートを変更するよう、コンテンツレート変更咅 31に対してコンテンツ のレート変更の指示を送る。
[0110] なお、コンテンツレート算出部 32D力も入力された伝送可能なコンテンツレートの値 力 Sコンテンツのオリジナルレート(アプリケーション部 23から取得したコンテンツレート の値)より大きい場合は、コンテンツレート変更部 31にレート変更の解除の指示を送 る。
コンテンツレート変更部 31は、コンテンツレート変更指示部 32Eからコンテンツのレ ート変更またはレート変更の解除の指示を受けると、指示に基づき、該当する伝送中 のコンテンツのレートの変更または解除の設定を行う(ステップ S119)。
[0111] 伝送コンテンツレート記憶部 32Fは、コンテンツレート算出部 32D力も受けた伝送 可能なコンテンツのレート値を記憶する力 該レート値がコンテンツのオリジナルレー トより大きい場合は、オリジナルレートの値を記憶する。
確保帯域決定部 32Bは、コンテンツレート算出部 32D力も割当可能帯域の確保要 求を受けると、割当可能帯域を確保する指示を無線送受信部 11に送る。
[0112] 無線送受信部 11は、コンテンツレート算出部 32D力も帯域の確保の指示を受ける と、無線ネットワークの帯域の確保を行う(ステップ S 120)。
必要帯域が現帯域割当より大きいならば (ステップ S116で YES)、確保帯域決定 部 32Bは割当可能帯域情報取得部 32Cから割当可能帯域を取得し、取得した割当 可能帯域と必要帯域とを比較する (ステップ S121)。
[0113] 必要帯域が割当可能帯域より小さいならば (ステップ S121で YES)、確保帯域決 定部 32Bは現帯域割当を必要帯域の大きさに変更する指示を無線送受信部 11に 送る(ステップ S 118)。
必要帯域が割当可能帯域より大きいならば (ステップ S121で NO)、確保帯域決定 部 32Bは割当可能帯域と再送比率の値とをコンテンツレート算出部 32Dに送信する
[0114] コンテンツレート算出部 32Dは帯域確保決定部 32Bから割当可能帯域と再送比率 の値とを受けとると、(数 3)を用いて、割当可能な帯域で伝送可能なコンテンツレート を求める。そして、コンテンツレート変更指示部 32Eと伝送コンテンツレート記憶部 32 Fとに決定した伝送可能なコンテンツレートの値を送信し、確保帯域決定部 32Bに割 当可能帯域の確保の要求を送る。
[0115] コンテンツレート変更指示部 32Eはコンテンツレート算出部 32D力も入力された値 にコンテンツレートを変更するよう、コンテンツレート変更咅 31に対してコンテンツのレ ート変更の指示を送る。
コンテンツレート変更部 31は、コンテンツレート変更指示部 32Eからコンテンツのレ ート変更の指示を受けると、指示に基づき、該当する伝送中のコンテンツのレートの 変更の設定を行う(ステップ S 122)。
[0116] 確保帯域決定部 32Bは、コンテンツレート算出部 32D力も割当可能帯域の確保要 求を受けると、割当可能帯域を確保する指示を無線送受信部 11に送る。
無線送受信部 11は、コンテンツレート算出部 32D力も帯域の確保の指示を受ける と、無線ネットワークの帯域の確保を行う(ステップ S 123)。
以上の方法でコンテンツ伝送中に、 PHYレートと帯域設定の変更を行う。
[0117] 以上説明したように、本実施の形態によれば、割当可能帯域内がコンテンツ伝送に 必要な帯域より小さい場合には、コンテンツのレートを割当可能な帯域で伝送可能な レートに変更するので、安定したコンテンツ伝送が実現できる。
(実施の形態 4) (必要帯域の変更:標準偏差許容値の Nの変更)
実施の形態 2、 3では、 MAXPERを (PER+標準偏差 X 2)としていた力 本実施 の形態では、標準偏差を求めるのに用いた複数の PERの発生分布に応じて、 MAX PERの値を変更する実施の形態である。
[0118] 図 24は、本発明の実施の形態 4の送信機 40の機能ブロック図である。図 24におい て、図 12と同じ構成要素については同じ符号を用い、説明を省略する。
図 24に示されるように送信機 40は、実施の形態 2の送信機 20における補正情報 作成部 18及び標準偏差推定部 21の代わりに、補正情報作成部 18の機能に加え、 標準偏差を求めるのに用いた複数の PERの発生分布を求める機能を有する補正情 報作成部 41と、標準偏差推定部 21の機能に加え、標準偏差の状態に応じて MAX PERの値を変更する機能を有する標準偏差推定部 42とを含んで構成される。他の 構成要素は、実施の形態 2の送信機 20と同様である。
[0119] なお、本実施の形態の受信機は実施の形態 1の受信機 100を用いる。
以下、コンテンツ伝送中の MAXPERの変更処理について説明する。
なお、コンテンツ伝送開始時の MAXPERの値は、(PER+標準偏差 X 2)として必 要帯域が求められ、確保されたとする。
<補正情報作成部 41の機能 >
補正情報作成部 41の機能について図 25を用いて更に詳しく説明する。図 25にお いて、図 15と同じ構成要素については同じ符号を用い、説明を省略する。図 25に示 すように補正情報作成部 41は、実施の形態 2の関係式生成情報作成部 25Eの代わ りに、関係式生成情報作成部 25Eの機能に加え、標準偏差算出部 25Dで求めた標 準偏差に用いた複数の PERの標準偏差内の割合を求める機能を有する関係式生 成情報作成部 41Eを含んで構成される。他の構成要素は、実施の形態 2の補正情 報作成部 25と同様である。
[0120] 関係式生成情報作成部 41Eは標準偏差算出部 25Dから入力される複数の PERの 値の平均を求め、平均の PER士標準偏差の範囲にある複数の PERの分布 (占める 割合)を求める。関係式生成情報作成部 41Eは求めた分布の値と平均の PERの値と を標準偏差推定部 42に送信する。 <標準偏差推定部 42の機能 >
続いて、標準偏差推定部 42の機能について図 26を用いて更に詳しく説明する。図 26において、図 13と同じ構成要素については同じ符号を用い、説明を省略する。図 26に示すように標準偏差推定部 42は実施の形態 2の標準偏差推定部 21の構成に 加え、さらに、最大パケット誤り率変更部 42Gを含んで構成される。
[0121] 最大パケット誤り率変更部 42Gは、補正情報作成部 41から分布の値と平均の PER とを受信すると、分布の値に基づき、 MAXPERを求めるための標準偏差の乗算値 N を (MAXPER=PER+標準偏差 X N)変更し、変更後の MAXPERを必要帯域決 定部 22に送信する。例えば、分布の値が予め設定されている値を上回った場合、以 降に標準偏差要求部 21Aから入力される MAXPERの値を、 MAXPER ( = PER+ 標準偏差 X I)に変更する。
[0122] 以上説明したように、本実施の形態によれば、コンテンツ伝送中に標準偏差を求め るのに使用した PERの標準偏差内に占める割合を求め、 MAXPERを求めるための 標準偏差の乗算値 Nを決定するので、コンテンツに割当てる帯域を最小限に抑える ことができる。
(実施の形態 5)
(推定部の関係式生成方法電源起動時に)
実施の形態 1〜4では、 PER及び PERの標準偏差の推定に用いる関係式を予め 記憶していた力 本実施の形態では、 PER及び PERの標準偏差の推定に用いる関 係式を電源起動時に生成する実施の形態である。
[0123] 以下、電源起動時の関係式の生成処理について説明する。
なお、電源起動時の無線送受信部 11で設定される PHYレート及び送信電力値は 設定可能な最大値とする。
図 27は、本発明の実施の形態 5の送信機の機能ブロック図である。図 27において 、図 12と同じ構成要素については同じ符号を用い、説明を省略する。
[0124] 図 27の送信機 60は、実施の形態 2の送信機のパケット誤り率推定部 15、標準偏差 推定部 21、 PHYレート決定部 16、及びテストパケット作成部 24の代わりに、補正情 報作成部 25から入力される情報から受信電力値と PERの値との関係式を生成する パケット誤り率推定部 51、補正情報作成部 25から入力される情報力 PERと PERの 標準偏差との関係式を生成する標準偏差推定部 52、無線送受信部 11に無線ネット ワークに出力するパケットの PHYレートの変更を指示する PHYレート変更部 53、及 びパラメータ決定部 55からの指示により伝搬状態を測定するためのテストパケットを 作成するテストパケット作成部 56を備え、さらに、送信電力変更部 54及びパラメータ 決定部 55を含んで構成される。
[0125] 送信電力変更部 54はパラメータ決定部 55から入力される送信電力値を受信すると 、無線ネットワークに出力するパケットの送信電力値を変更するよう、無線送受信部 1 1に指示する。
パラメータ決定部 55は電源が起動されると、自機と無線ネットワークを介して接続さ れている装置 (ここでは、受信機 100とする)のアドレスを取得し、自機と受信機 100と の間の伝搬状態を測定するために、受信機 100のアドレスをテストパケット作成部 56 に送信する。
[0126] また、パラメータ決定部 55はパケット誤り率推定部 51と標準偏差推定部 52とから入 力された情報力 無線ネットワークに出力するパケットの PHYレートと送信電力値と を決定し、決定した PHYレートを PHYレート変更部 53に、決定した送信電力値を信 電力変更部 54に送信する。
テストパケット作成部 56は、パラメータ決定部 55からアドレスを受け取ると、受信機 100に送信するテストパケットを作成し、無線送受信部 11に送信する。なお、テストパ ケット生成部 66は、ノ メータ決定部 55から指示があるまで、あるいは送信バッファ の蓄積パケット数が予め設定されている閾値以内ならば、テストパケットを連続で生 成し、無線送受信部 11に送信する。
(パケット誤り率推定部 51の機能)
続いて、パケット誤り率推定部 51の機能について図 28を用いて更に詳しく説明す る。図 28において、図 4と同じ構成要素については同じ符号を用い、説明を省略する 。図 28に示すようにパケット誤り率推定部 51は、パケット誤り要求部 15A及び関係式 変更判定部 15Dの代わりに、関係式管理部 15Bにより管理されて 、る関係式の生成 に用いられた情報を管理する関係式生成情報管理部 51A、及び補正情報作成部 2 5から入力される情報と関係式生成情報管理部 51Aにより管理される受信電力値と P ERの値とから、受信電力値と PERの値との関係式を生成する関係式生成部 51Eを 含んで構成される。
[0127] 関係式生成部 51Eは、補正情報作成部 25から受信電力値と PERの値と PHYレー トの値とを受信すると、受信した PHYレートと同じ PHYレートで伝送したパケットの受 信電力値と PERの値とを関係式生成情報管理部 51Aから複数取得し、取得した値と 補正情報作成部 25から受信した受信電力値と PERとを用いて関係式を生成する。 生成する関係式は、最小二乗法を用いて生成した二次関数の近似式とする。そして 、関係式生成部 51Eは書込み処理部 15Fを介して、生成した関係式を関係式管理 部 15Bに書き込む。
[0128] また、関係式生成部 51Eは、随時、補正情報作成部 25から入力される受信電力値 と PERとを関係式生成情報管理部 51Aに送信する。
関係式生成情報管理部 51Aは、 RAM等のメモリを含んで構成され、関係式生成 部 51Eから入力される受信電力値と PERの値とを記憶する。関係式生成情報管理 部 51 Aは記憶済みの PERの数が予め設定されている閾値に達している力否かを判 定し、達していると判定すると、記憶している各 PERの値のばらつき具合を判定する 。具体的には、隣接する PERの値が予め設定されている一定間隔以上を隔てている か否かを判定し、判定結果を示す成否情報をパラメータ決定部 55に送る。例えば、 各 PERの値のうち、ある隣接する 2つの PERが一定間隔未満しか離れていない場合 には、「否」を示す成否情報を送信し、隣接する 2つの PERの全てが一定間隔以上 離れて ヽる場合には、「成功」を示す成否情報を送信する。
(標準偏差推定部 52の機能)
続いて、標準偏差推定部 52の機能について図 29を用いて更に詳しく説明する。図 29において、図 13と同じ構成要素については同じ符号を用い、説明を省略する。
[0129] 図 29に示すように標準偏差推定部 52は、標準偏差要求部 21A及び関係式生成 部 21Eの代わりに、関係式管理部 21Bにより管理されて 、る関係式の生成に用いら れた情報を管理する関係式生成情報管理部 52A、及び補正情報作成部 25から入 力された情報と関係式生成情報管理部 52Aにより管理されている PERと PERの標 準偏差とから、 PERと標準偏差との関係式を生成する関係式生成部 52Eを含んで構 成される。
[0130] 関係式生成部 52Eは、補正情報作成部 25から PERの標準偏差と標準偏差の算出 に用いられた複数の PERと PHYレートの値とを受信すると、受信した PHYレートと同 じ PHYレートで伝送したパケットの PERと PERの標準偏差の値とを関係式生成情報 管理部 52Aから複数取得し、取得した値と補正情報作成部 18から入力された PER の標準偏差の値と複数の PERとを用いて関係式を生成する。生成する関係式は、最 小二乗法を用いて生成した二次関数の近似式とする。そして、関係式生成部 52Eは 書込み処理部 21Fを介して、関係式管理部 21Bに生成した関係式を書き込む。
[0131] また、関係式生成部 52Eは、随時、補正情報作成部 25から入力される PERと PER の標準偏差の値とを関係式生成情報管理部 52Aに送信する。
関係式生成情報管理部 52Aは、 RAM等のメモリを含んで構成され、関係式生成 部 52E力も入力される PERと PERの標準偏差の値とを記憶する。関係式生成情報 管理部 52Aは記憶済みの PERの数が予め設定されている閾値に達している力否か を判定し、達していると判定すると、記憶している各 PERの値のばらつき具合を判定 する。具体的には、隣接する PERの値が予め設定されている一定間隔以上を隔てて いる力否かを判定し、判定結果を示す成否情報をパラメータ決定部 55に送る。 (関係式生成処理の説明)
図 30は関係式生成処理を示すフローチャートである。電源が起動されると (ステツ プ S141で YES)、 PHYレート変更部 53は PHYレートを最大値に設定し、送信電力 変更部 54は送信電力を最大値に設定する (ステップ S142)。それぞれが最大値に 設定されると、無線送受信部 11はテストパケット作成部 56により作成されたテストパ ケットを受信機 100に送信する (ステップ S143)。そして、無線送受信部 11が受信機 100から受信電力通知パケットを受信する (ステップ S 144で YES)。パケット誤り率測 定部 17は PERを算出する (ステップ S145)。関係式生成部 51Eにより PERは関係 式生成情報管理部 51Aに記憶され、関係式生成情報管理部 51Aは記憶済みの PE Rの数が閾値に達して 、るか否かを判定する (ステップ S 146)。 [0132] 閾値に達して 、な 、と判定した場合には (ステップ S 146で NO)、関係式生成情報 管理部 51Aは無線送受信部 11に送信電力を 1段階下げる指示を行うよう、パラメ一 タ決定部 55に要求する。送信電力変更部 54はパラメータ決定部 55から送信電力の 変更の要求を受けると、送信電力を 1段階下げるよう、無線送受信部 11に指示し (ス テツプ S 147)、ステップ S 143に移行する。
[0133] 無線送受信部 11は、送信電力変更部 54から送信電力値の変更指示を受信すると 、テストパケットを送信する送信電力値の変更の設定を行い、設定以後、設定した送 信電力値で送信する。
閾値に達していると判定した場合には (ステップ S 146で YES)、関係式生成情報 管理部 51A及び関係式生成情報管理部 52Aはそれぞれ各 PERのばらつき具合を 判定し、判定結果をパラメータ決定部 55に送信する (ステップ S 148)。関係式生成 部 51Eは受信電力値と PERとから関係式を生成し、記憶する (ステップ S 149)。関係 式生成部 52Eは PERと PERの標準偏差とから関係式を生成し、記憶する (ステップ S 150)。
[0134] パラメータ決定部 55は、パケット誤り率推定部 51と標準偏差推定部 52とから入力さ れる関係式の成否情報を判定する。少なくとも一方の成否情報が「否」を示している なら (ステップ S 151で NO)、送信電力変更部 54に送信電力値を一段階下げる要求 を送り、ステップ S 147に移行する。
両方の成否情報が「成功」を示して 、るなら (ステップ S 151で YES)、パラメータ決 定部 55は設定可能な全ての PHYレートでの関係式の生成が完了した力否かを判定 する(ステップ S 152)。
[0135] 完了していないならば (ステップ S152で NO)、パラメータ決定部 55は PHYレート 変更部 53に PHYレートを一段階下げる要求を、送信電力変更部 54に送信電力を 設定可能な最大にする要求を送る。
PHYレート変更部 53は、パラメータ決定部 55から PHYレート変更の要求を受ける と、要求された PHYレートに変更するよう、無線送受信部 11に指示する。
[0136] 無線送受信部 11は、 PHYレート変更部 53から PHYレートの情報を受けると、テス トパケットを送信する PHYレートの変更の設定を行い、設定以後、設定した PHYレ ートで送信する。
完了したならば (ステップ S152で YES)、パラメータ決定部 55はテストパケット作成 部 56にテストパケットの作成の停止を指示する (ステップ S 154)。
[0137] なお、本実施の形態の受信機は実施の形態 1の受信機 100と同様である。
以上説明したように、本実施の形態によれば、電源起動時に、パラメータ決定部 55 は、送信電力値と PHYレートとを調整し、関係式管理部 15Bと関係式管理部 21Bで 管理する関係式を生成する。したがって、予め関係式を記憶させる作業が不要となる
(実施の形態 6)
(送信機で受信電力測定)
上記の実施の形態では、受信機がパケットの受信電力値を測定したが、本実施の 形態では、送信機がパケットの受信電力値を測定し、測定した受信電力値力 PER の推定を行う実施の形態である。
[0138] 図 31は、本発明の実施の形態 6の送信機 60の機能ブロック図である。図 31におい て、図 12と同じ構成要素については同じ符号を用い、説明を省略する。送信機 60は
、実施の形態 2における送信機 20の受信電力値通知パケット解析部 13の代わりに、 無線ネットワーク力 入力されるパケットの受信電力値を測定する受信電力値測定部
61を含んで構成される。送信機 60における他の構成要素は、実施の形態 2における 送信機 20と同等の構成である。
[0139] なお、パケット誤り率推定部 15と標準偏差推定部 21とに保持されている関係式 (図
5、図 14の近似式)のデータ伝送中における補正方法については、実施の形態 1及 び 2と同じであるため、説明を省略する。
無線送受信部 11がテストパケットを受信機 100に送信するまでの処理は実施の形 態 2と同様である。
[0140] 無線送受信部 11は、アンテナを介して、無線ネットワーク力 入力されるテストパケ ットの Ackを復調して、パケット識別部 12に送信する。
パケット識別部 12は、テストパケットの Ackを受けると、受信電力値測定部 61に Ac kの受信を通知する。
受信電力測定部 61は、テストパケットの Ackの受信通知を受けると、パケットの Ack の受信電力値を測定して、測定した受信電力値を受信電力値管理部 14に送信する
[0141] 受信電力値管理部 14は、受信電力値を記憶し、パケット誤り率推定部 15に渡す。
以上説明したように、本実施の形態によれば、送信機 60はテストパケットの Ackの 受信電力値を測定し、測定した受信電力値を用いて PERを推定することが可能であ る。
また、コンテンツ伝送中は、コンテンツパケットの Ackの受信電力値を測定し、パケ ット誤り率推定部 15で PERを推定することが可能になる。
[0142] したがって、受信機側で、受信電力を測定し、送信機に受信電力値を通知する作 業が不要となる。
なお、本実施の形態と他の実施の形態を組み合わせ、受信機側から受信電力値 通知パケットを受信しない場合に本実施の形態にて説明した機能に切り替わるとして ちょい。
(実施の形態 7)
(受信機で PERを測定)
本実施の形態では、受信機はパケットの受信電力値を測定するだけでなぐさらに PERを算出する。また、測定した受信電力値力も PERの推定を行い、推定した PER に基づき PHYレートや必要帯域を決定するとともに、算出した PERから補正に用い られる情報を作成し、パケット誤り率推定部 150と標準偏差推定部 210とが保持して いる関係式の補正を行う。
[0143] 図 32は、本発明の実施の形態 7の受信機 200の機能ブロック図である。図 32にお いて、図 3と同じ構成要素については同じ符号を用い、説明を省略する。受信機 200 は受信機 100における受信電力値通知パケット作成部 140の代わりに、受信電力値 管理部 260を含み、さらに、パケット誤り率推定部 150、 PHYレート決定部 160、標 準偏差推定部 210、必要帯域決定部 220、補正情報作成部 250、パケット誤り率測 定部 260、及びパケットの入力時間力 コンテンツの理想レートを測定するコンテンツ レート測定部 270を含んで構成される。
[0144] パケット誤り率測定部 260は、受信したパケットの再送回数を測定する機能を有す る。図 32の受信機 200における他の構成要素は実施の形態 6における送信機 60に おける構成要素と同等の機能を有する。
以上のように構成された受信機 200につ 、て、その動作を述べる。
なお、パケット誤り率推定部 150と標準偏差推定部 210とが保持している関係式( 図 5、図 14の近似式)のデータ伝送中における補正方法については、実施の形態 1 及び 2と同じであるため、説明を省略する。
[0145] 受信機 200の無線送受信部 110は入力されたコンテンツパケットを復調し、復調し たパケットをパケット識別部 120とコンテンツレート測定部 270とに送信する。
パケット識別部 120は、入力されたパケットを識別し、識別した結果、該パケットがテ ストパケットの Ackである場合には、受信電力値測定部 130に通知する。
受信電力値測定部 130は、パケット識別部 120から受信通知を受けると、入力され たパケットの受信電力値を測定して、測定した受信電力値を受信電力値管理部 260 に送信する。
[0146] 受信電力値管理部 260は、受信電力測定部 130から入力された受信電力値を記 憶するとともに、該受信電力値をパケット誤り率推定部 150に送信する。
コンテンツレート測定部 270は、無線送受信部 110からコンテンツパケットが入力さ れると、入力された時間を記憶し、設定した一定時間ごとに理想レートを求め、求め た理想レートを記憶する。
[0147] 必要帯域決定部 220は、標準偏差推定部 210から各 PHYレートの MAXPERの 値と PHYレート決定部 160により決定された PHYレートの値を受けると、コンテンツ レート測定部 270から該当するコンテンツの理想レートの値を取得し、(数 1)と MAX PERの値とから再送比率を算出し、算出した再送比率と取得したコンテンツレートと 力も該当コンテンツの伝送に必要な帯域を算出する。そして、無線送受信部 110に 求めた必要帯域を確保する指示を送る。
[0148] 無線送受信部 110は、必要帯域決定部 220から帯域の確保の指示を受けると、無 線ネットワークの帯域の確保を行う。
パケット誤り率測定部 260はコンテンツパケット毎に、コンテンツパケットの受信誤り( 例えば、 CRCによる誤り検出)による再送回数を記憶する。そして、予め設定されて いる個数のパケットの受信が完了すると、再送回数の合計と受信が完了したパケット の個数と伝送に用いた PHYレートの値とを補正情報作成部 250に送信する。
[0149] 補正情報作成部 250は、パケット誤り率測定部 260から入力された再送回数の合 計と受信したパケット数とからパケット誤り率を求める。
なお、他の構成については、実施の形態 6と同様である。
以上説明したように、本実施の形態によれば、測定した受信電力値力 PERの推 定を行い、推定した PERに基づき PHYレートや必要帯域を決定し、また、コンテンツ パケットの受信誤りからパケット誤り率を求めることにより、パケット誤り率推定部 150と 標準偏差推定部 210とがそれぞれ保持している関係式の補正を行う。したがって、受 信機側の処理のみで、コンテンツ伝送に最適な PHYレートと必要帯域とが決定でき 、送信機側での処理が不要となる。
[0150]
(補足)
以上、本発明に係る伝送装置について、実施の形態に基づいて説明した力 本発 明は上記の実施の形態に限られないことは勿論である。
上記実施の形態では、図 9に示されるように、実効レートを算出した結果、実効レー トが同じ場合には PHYレートが高い方が選択されるが、実効レートが同じ場合には 低!、PHYレートの方が PERが小さく安定して!/、るので、 PHYレートが低!、方が選択 されるとしてちよい。
[0151] 上記実施の形態では、全ての PHYレートにおける実効レートを算出し、最大の実 効レートに対応する PHYレートを決定した力 これに限らない。例えば、一の PHYレ ートが使用されたとすると、実効レートがどれだけになる力を算出し、算出した実効レ ートを予め記憶されている閾値 (例えば、 20Mbps)と比較し、比較した結果、前記閾 値より大きい場合には、他の PHYレートにおける実効レートを算出することなぐ前記 実効レートに対応する PHYレートを選択するとしてもよい。これにより、閾値以上の実 効レートは保証されるとともに、実効レートの算出処理の負荷を軽減することができる
[0152] 上記 (数 1)ではパケット数を 100個として計算したが、送信機 10の送信バッファや 受信機 100の受信バッファの大きさに応じて変更してもよい。
上記実施の形態 1では、 PHYレート決定部 16は (数 1)を用いて再送比率を算出し たが、図 7中の黒丸の値を用いて求めた二次関数の近似式 (数 2)を記憶しておき、 近似式を用いて再送比率を決定するとしてもよ 、し、(数 1)か (数 2)を用いて求めた 値をテーブルとして管理してもよい。以下に示される(数 2)は図 7の実線を示す二次 関数である。
[0153] y= - 14. 023χ2+4. 3821χ+ 1. 0566…(数 2)
χは PER、 yは再送比率である。二次関数の近似式 (数 2)の計算は、(数 1)に比べ 、処理が軽減される。
上記実施の形態では、(数 1)のパケット損失率 P 1. 0E
dropは — 8としたが、これに限 定されるものではない。
[0154] 上記実施の形態では、(数 1)を用いて再送比率を算出したり、理想レートに再送比 率の逆数を乗算することにより実効レートを算出したりと、数式に基づく演算処理を開 示したが、このような演算処理は、ソフトウェア又はハードウェアとしてコンピュータ上 に実装することができる。
ソフトウェア的に実装する場合、被演算子を引き数として受け付けて、所定の演算 処理を実行し、演算結果を戻り値として返すようなシステムコール (API)、ライブラリイ 関数を作成すればよい。
[0155] ハードウ ア的に実装する場合、被演算子を入力として受け付けて、所定の演算処 理を実行し、演算結果を出力するような一個の演算回路を作成すればよい。
上述したような数式は、これらの演算処理をソフトウェア的又はハードウェア的に実 装するにあたって、入力となる数値と、出力となる数値との因果関係を定めたものに 過ぎないので、数式に対する入力、つまり被演算子に対して、何等かの演算を施し、 上述したような因果関係と同等の変化をもたらすことができるのであれば、改変された 数式を用いて、演算処理を実行してょ 、ことは 、うまでもな!/、。 [0156] このように"改変をカ卩えた数式"には、数式における演算子のうち、割算の演算子" Z"や引き算の演算子" - "を、何等力の単調減少関数に置き換えた数式や、乗算の 演算子" X "や足し算の演算子" + "を何等力の単調増加関数に置き換えた数式、定 数を増減した数式、一部の演算を省いた数式、何等かの重付け演算を採用した数式 等が該当する。
また、上記数式は、数学的な概念を意味するのではなぐあくまでも、コンピュータ 上で実行される数値演算を意味するものなので、当然のことながら、コンピュータに 実現させるための、必要な改変が加えられることはいうまでもない。例えば、数値を、 整数型、浮動小数点型で扱うための飽和演算や正値ィ匕演算が施されてよいことはい うまでもない。
[0157] 更に、各実施の形態に示した、数式に基づく演算処理のうち、定数との乗算は、定 数 ROMを用いた ROM乗算器で実現することができる。定数 ROMには、被乗数と定数 との積の値は予め計算されて格納されている。例えば、被乗数が 16ビット長である場 合、この被乗数は、 4ビット毎に四つに区切られ、この 4ビット部分と定数との積、つまり 、定数の 0〜15の倍数が上記の定数 ROMに格納されて!、る。
[0158] 上記の一区切りの 4ビットと定数 16ビットとの積は 20ビット長であり、上記の四つの定 数が同一のアドレスに格納されるので、 20 X 4=80ビット長が一語のビット長となる。 以上述べたように、 ROM乗算器での実現が可能であるので、本明細書でいうところ の"演算処理"は、純粋な算術演算のみを意味するのではなぐ ROM等の記録媒体 に格納された演算結果を、被演算子の値に応じて読み出すという、記録媒体の読み 出しをも包含する。
[0159] なお、実効レートを算出するための関数は実装に依存され、例えば、実効レートは 理想レートとパケット誤り率との関数により算出されるとしてもよいし、他の関数でもよ い。
上記実施の形態では、無線送受信部 11は PHYレート決定部 16から PHYレートの 値を受けると、前記 PHYレートで以降のデータを送信するよう、 PHYレートの設定を 行うとした力 次のパケット送信時に、同じ動作を繰り返し、パケット単位で PHYレート を設定するとしてもよいし、一定期間ごとに設定するとしてもよい。 [0160] 上記実施の形態では、伝送するデータは映像や音声のコンテンツとした力 それに 限定されるものではない。
上記実施の形態では、受信機 100の受信電力値通知パケット作成部 140はバケツ トごとに受信電力値通知パケットを作成したが、受信電力値通知パケット作成部 140 は RAM等のメモリを備え、メモリに受信電力値を記憶しておき、次のパケットの受信 電力値の測定時に、記憶しておいた前回の受信電力値と比較し、予め設定した値以 上ならば、測定した受信電力値を含む受信電力値通知パケットを作成するとしてもよ い。
[0161] また、受信電力値通知パケット作成部 140は記憶した受信電力値が予め設定した 個数になったときに、記憶した受信電力値の平均を求め、求めた値を含む受信電力 値通知パケットを作成するとしてもよいし、求めた平均の受信電力値を記憶しておき、 次に受信電力値の平均を求めた時に、記憶しておいた前回の平均の受信電力値と 比較し、予め設定した値以上ならば、求めた平均受信電力値を含む受信電力値通 知パケットを作成するとしてもよい。
[0162] 上記実施の形態では、パケット誤り率測定部 17は記憶したパケットが予め設定した 個数に達した場合に、補正情報作成部 18に情報を送信していたが、予め設定した 時間になれば情報を送信するとしてもよ 、。
上記実施の形態では、パケット誤り推定情報変更部 15Dは所定値以上の差が存在 する回数を記憶したが、 PERを求めるのに使用したパケットの送信期間中にお 、て、 送信バッファに蓄積された最大パケット数を記憶し、最大パケット数が予め設定した 値以下になる回数を記憶してもよい。
[0163] 上記実施の形態では、関係式管理部 15B及び関係式管理部 21Bは予め関係式を 管理しているとした力 関係式力も求めた値を予めテーブルとして管理してもよいし、 関数式とテーブルの組み合わせで管理して 、てもよ 、。
また、関係式管理部 15B及び関係式管理部 21Bは PHYレート毎に 1つの関数式 を記憶していた力 複数の関数式を記憶していてもよい。例えば、 PERが 5%以上な ら関係式 A、 5%未満なら関数式 Bを用いるとしてもよい。
[0164] また、関係式管理部 15B及び関係式管理部 21Bは無線の RFモジュール特性の固 体差を補うため、受信機毎に異なる関係式を管理するとしてもよいし、伝送するパケ ット長ごとに管理してもよい。また、遠距離用と近距離用ごとに異なる関係式を管理し 、ユーザに選択させるとしてもよい。
また、関係式管理部 15B及び関係式管理部 21Bは二次関数で関係式を管理して いるとしたが、一次関数や指数関数など他の近似式で管理してもよい。
[0165] 上記実施の形態では、関係式生成部 15E及び関係式生成部 21Eにより生成され る関係式は、最小二乗法を用いて生成される二次関数の近似式としたが、これに限 定されるものではない、例えば、一次関数の近似式でもよいし、 Lagrange補完を用 いて生成してもよい。
また、関係式生成部 15E及び関係式生成部 21Eは図 11、 19に示す手順で関係 式の補正を行った力 これに限定されるものではない。例えば、サンプリングした値に 乱数を加えた値を用いてもよい。この場合、補正情報作成部 18、 25から入力される 値と関係式により求まる値との差を用いて、乱数の大きさを決定してもよい。
[0166] 上記実施の形態では、無線 LAN規格の IEEE802. 11aを用いて説明した力 こ れに限定されるものではない。例えば、 IEEE802. l ibや IEEE802. l lgを用いて もよい。また、複数の無線 LAN規格を備え、複数の無線 LAN規格の中から実効レ ートが最大になる PHYレートを選択してもよい。
上記実施の形態 1では、受信機 100は送信機 10から送信されたデータパケットの 受信電力値を測定したが、これに限定されるものではなぐ送信機 10から送信される 他のパケットの受信電力値を測定してもよい。例えば、送信機 10が無線ネットワーク の帯域を管理する無線親機 (アクセスポイント)ならば、送信機 10から間欠受信する ビーコン(同期信号)を用いてもよい。また、データ伝送中に、テストパケットを送信し てもよいし、それ以外のパケット (例えば、コンテンツパケット)を送信してもよい。
[0167] 上記実施の形態 1では、送信機 10がパケット誤り率推定部 15を備えたが、受信機 1 00がパケット誤り率推定部 15を備え、受信機 100は送信機 10に各 PHYレートの PE Rの値を通知するとしてもよ 、。
上記実施の形態では、データを伝送する媒体を無線としたが、これに限定されるも のではない、複数の PHYレートから 1つを選択し、データの送受信を行う媒体ならい ずれにも適応可能である。例えば、家電ノイズを検出することにより、電力線通信の 制御に適応することも可能である。
[0168] 上記実施の形態 2では、伝搬状態に応じてパケットを伝送する PHYレートと帯域割 当を制御した力 これに限定されるものではない、例えば、伝搬状態に応じてパケット の最大再送回数を制御してもよ 、。
上記実施の形態 1では、パケット誤り率の測定に用いられた PHYレートに対応する 関係式のみ補正したが、他の関係式も補正してもよい。例えば、補正後の関係式と 補正前の関係式のズレの大きさを求め、求めたズレの大きさ分だけ他の PHYレート の関係式を補正してもよい。
[0169] 上記実施の形態 2では、アプリケーション部 23はユーザからのコンテンツ伝送要求 を受けるとしたが、ユーザは送信機 20または受信機 100の有線ネットワーク(図示さ れて 、な 、)を介して接続された外部機器から、有線ネットワークを介してコンテンツ 伝送要求を行うとしてもよい。また、受信機 100のアプリケーション部(図示されていな V、)から要求を行うとしてもよ 、。
[0170] 上記実施の形態 2では、送信機 20はユーザにコンテンツレートの値を通知してもら う構成であつたが、未帯域設定のコンテンツの送信が開始されると、コンテンツバケツ トの出力間隔等力もコンテンツレートを求め、帯域設定を行うとしてもよい。また、送信 機 20は図示されていない有線ネットワークを介して受信機 100宛の未帯域設定のコ ンテンッパケットが入力されたら、入力されたコンテンツパケットの間隔力もコンテンツ レートを求め、帯域設定を行うものとしてよい。
[0171] 上記実施の形態 2では、関係式変更判定部 15Dは、判定に用いられる予め設定さ れている値を、補正情報作成部 18から受けた受信電力値と関係式管理部 15B及び 関係式管理部 21Bにより管理されている関係式とから算出される MAXPERの値とし てもよい。例えば、測定した PERが MAXPERの値以下なら、 1回で関係式を補正し 、 MAXPERの値以上なら 5回連続続 ヽた場合に関係式を補正するなどとしてもよ!ヽ
[0172] 関係式変更判定部 15Dは、関係式力も求めた PERと補正情報作成部 18から受信 した PERの値とを比較した場合における所定値以上の差の回数を記憶した力 PER を求めるのに使用したパケットの送信期間中の送信バッファに蓄積された最大バケツ ト数を記憶し、最大パケット数が予め設定されている値以下になる回数を記憶しても よい。
関係式変更判定部 21Dは、関係式から求めた標準偏差と補正情報作成部 18から 受けた標準偏差の値の差が予め設定されて 、る値になった回数を記憶し、記憶した 回数が予め設定されている回数になった場合に、関係式の補正が必要と判断し、関 係式生成部 21Eに補正情報作成部 18から受けた PERと標準偏差と PHYレートの値 を送信したが、補正情報作成部 18から標準偏差の算出に用 、た複数の PERの値を 取得し、 PERの標準偏差内に占める割合を求め、求めた割合が予め設定されている 値以上なら関係式生成部 21Eに補正情報作成部 18力 受けた PERと標準偏差と P HYレートの値を送信するとしてもよ 、。
[0173] 上記実施の形態 2では、送信機 20が標準偏差推定部 21を備えたが、受信機 100 が標準偏差推定部 21を備え、受信機 100は送信機 20に各 PHYレートの MAXPE Rの値を通知するとしてもよ 、。
また、無線送受信部 11はコンテンッ伝送に必要な帯域確保のために他の装置に ネゴシエーションを行ってもよい。例えば、送信機 20と受信機 100と無線ネットワーク の帯域を管理する無線親機(アクセスポイント)と力 EEE802. 1 leの HCCAの機能 を備え、送信機 20が無線親機に属する無線子機 (ステーション)の場合には、帯域 割当の要求である無線マネジメントフレームの ADD TS requestを無線親機に送 信してもよい。また、送信機 20が無線親機の場合は、無線子機である受信機 100に 対して ADD TS requestの送信要求を送信し、受信機 100が ADD TS reques tを送信機 20 (無線親機)に対して送信してもよい。これらの場合、 ADD TS reque stの TSPECパラメータの Mean Data Rateにコンテンツレート、 Surplus Bandwidth Allowanceに必要帯域決定部 22で求めた必要帯域、 Minimum PHY Rateに PH Yレート決定部 16で決定した PHYレートの情報を含めてもよい。
[0174] 上記実施の形態 2では、データ伝送中の PHYレート決定と帯域設定の方法におい て、まず、最大の実効レートに対応する PHYレートを決定した力 コンテンツ伝送中 の PHYレートにおける実効レートが最大でなくても、必要帯域を確保できる場合なら 、 PHYレートを変更することなぐ現帯域割当を必要帯域の大きさに変更してもよい。 図 33は、その場合におけるデータ伝送中の PHYレート決定及び必要帯域算出処理 を示すフローチャートである。ステップ S161、 162は図 17のステップ S51、 52と同様 であるので説明を省略する。本フローチャートでは、ステップ S162の後、実効レート が最大となる PHYレートを決定するのではなぐ標準偏差要求部 21Aは PHYレート 決定部 16力も各 PHYレートと PERの値と現在の PHYレートとを受信し、読込み処理 部 21Cを介して、関係式管理部 21Bにより予め保持されている関係式を読み込み、 各 PHYレートにおける PERの標準偏差を求める。求めた標準偏差を推定した標準 偏差として、さらに MAXPER( = PER+標準偏差 X 2)をそれぞれ求め、必要帯域 決定部 22に送信する (ステップ S163)。
[0175] 必要帯域決定部 22は、標準偏差推定部 21から現在の PHYレートと各 MAXPER の値とを受けると、アプリケーション部 23から取得したコンテンツレートの値と、該当コ ンテンッの伝送に用いている現在の PHYレートに対応する MAXPERの値とから、コ ンテンッの伝送に必要な帯域を求める(ステップ S164)。ステップ S165から 167は 図 17のステップ S56から 58と同様であるので説明を省略する。
[0176] 必要帯域決定部 22は、必要帯域が割当可能帯域より大きいと判定した場合には( ステップ S167で NO)、現在の PHYレートが最も実効レートが高い PHYレートか否 かを判定する(ステップ S 168)。
現在の PHYレートが最も実効レートが高いのであれば (ステップ S168で YES)、割 当可能帯域を確保し (ステップ S 172)、他に実効レートが高 、PHYレートが存在す るなら (ステップ S168で NO)、最大の実効レートに対応する PHYレートに変更し (ス テツプ S169)、変更後の PHYレートにおける必要帯域を算出する (ステップ S170)。
[0177] そして、必要帯域決定部 22は割当可能な帯域と必要帯域とを比較する (ステップ S 171)。比較した結果、必要帯域が割当可能な帯域より小さいと判定した場合には( ステップ S171で YES)、現帯域割当を必要帯域の大きさに変更するよう、無線送受 信部 11に指示する (ステップ S166)。必要帯域が割当可能な帯域より大きいと判定 した場合には (ステップ S171で NO)、割当可能な帯域だけを確保するよう、無線送 受信部 11に指示する (ステップ S 172)。 [0178] なお、関係式管理部 15B及び関係式管理部 21Bにより管理されている関係式は、 予め帯域確保を行う必要のある PERの値のみで生成された関係式であるとしてもよ い。
また、関係式変更判定部 15Dと関係式変更判定部 15Dは、補正情報作成部 18か ら取得した PERの値力 予め設定されている、帯域確保を行う必要のある PERの値 で、関係式力も求めた値と異なる場合に変更が必要と判定してもよ 、。
[0179] 上記実施の形態におけるテストパケット作成部 24は、テストパケットのパケット長をコ ンテンッのパケット長と同じ長さにするとしてもよい。
上記実施の形態 2では、標準偏差推定部 21は MAXPERを (PER+標準偏差 X 2 )としたが、これに限定されるものではない。例えば、 MAXPERを (PER+標準偏差 X 3)や (PER +標準偏差 X 2. 5)としてもよい。
[0180] 上記実施の形態 2では、パケット誤り率の標準偏差を求めたが、例えば、受信電力 値の標準偏差を求めて MAX受信電力値( =平均受信電力 + (標準偏差 X 2) )を算 出し、これを用いて PERを推定してもよい。また、他の実施の形態と組み合わせても よい。例えば、 MAXPERで帯域を確保するのではなぐパケット誤り率推定部 15で 推定した PERの値を用いて必要帯域を求めてもょ 、。
[0181] 上記実施の形態 3において、必要帯域決定部 32は、例えば、他のユーザのコンテ ンッ伝送の終了等、コンテンツ伝送中に割当可能帯域が増力!]した場合は、必要に応 じてコンテンツのレートまたは現帯域割当の大きさを変更してもよい。
上記実施の形態 3において、送信機 30と受信機 100と無線ネットワークの帯域を管 理する無線親機(アクセスポイント)とが IEEE802. 1 leの EDCAの機能を備える場 合には、必要帯域決定部 32は該当コンテンツの AC (アクセスカテゴリ)力も割当可能 帯域内での理想レートを求め、理想レートがコンテンツのレートより小さい場合には、 コンテンツレート変更部 31にコンテンツのレートを理想レートの値に変更する指示を 送るとしてちよい。
[0182] 上記実施の形態 3では、コンテンツレート変更部 31は送信機 30の内部に設置され たが、例えば、コンテンツが非図示の有線ネットワークを介して送信機 30に入力され る場合には、コンテンツを出力する外部機器と送信機 30との間のネットワーク上なら 設置箇所を限定しない。
上記実施の形態 3では、データ伝送中の PHYレート決定、帯域割当及びコンテン ッレート設定の方法において、まず、最大の実効レートに対応する PHYレートを決定 したが、コンテンツ伝送中の PHYレートにおける実効レートが最大でなくても、必要 帯域を確保できる場合なら、 PHYレートを変更することなぐ現帯域割当を必要帯域 の大きさに変更してもよい。図 34は、その場合におけるデータ伝送中の PHYレート 決定、帯域割当及びコンテンツレート設定処理を示すフローチャートである。
[0183] 本フローチャートでは、ステップ S182の後、実効レートが最大となる PHYレートを 決定するのではなぐステップ S186にて、現在使用されている PHYレートでコンテン ッを伝送する際の必要帯域が割当可能帯域より大きいと判定された場合に、現在コ ンテンッ伝送に使用している PHYレートが最も実効レートが高い PHYレートか否か を判定する (ステップ S 188)。
[0184] 確保帯域決定部 32Bは現在の PHYレートが最も実効レートが高 ヽ PHYレートであ る場合には (ステップ S188で YES)、割当可能帯域と再送比率とをコンテンツレート 算出部 32Dに送信し、コンテンツレート算出部 32Dは割当可能な帯域で伝送可能な コンテンツレートを求める(ステップ S192)。
最大の実効レートに対応する PHYレートが現在コンテンツ伝送に用いて ヽる PHY レート以外である場合には (ステップ S 188で NO)、確保帯域決定部 32Bは最大の 実効レートに対応する PHYレートに切り替えるよう、無線送受信部 11に指示を送る( ステップ S189)。必要帯域算出部 32Aは変更後の PHYレートにおける必要帯域を 算出する(ステップ S 190)。他のステップの処理は図 23、 33で説明しているので、こ こでは省略する。
[0185] 上記実施の形態 4では、コンテンツ伝送中に標準偏差を求めるのに用いられた PE Rの標準偏差内に占める割合に応じて MAXPERを求めるために乗算値 Nを決定し たが、標準偏差推定部 42は予めパケット誤り率推定部 51から入力される PERの値と 乗算値 Nとを関連付けておき、パケット誤り率推定部 51から PERの値が入力されると 、該 PERに対応する乗算値 Nを用いて MAXPERを算出してもよ ヽ。
[0186] 上記実施の形態 5では、パケット誤り率推定部 51及び標準偏差推定部 52は生成し た関係式を管理したが、予め各 PHYレートで複数の異なる関係式を保持しておき、 測定結果から最も近い関係式を選択し、選択した関係式を関係式管理部 15Bと関係 式管理部 21 Bで管理してもよ ヽ。
上記実施の形態 5にて生成した関係式は、最小二乗法を用いて生成された二次関 数の近似式とした力 これに限定されるものではない、例えば、一次関数の近似式で もよいし、 Lagrange補完を用いて生成してもよい。
[0187] また、電源起動時に関係式の生成を行った力 これに限定されるものではない。例 えば、ユーザ力もの指示で行ってもよいし、データを伝送していない期間に行っても よい。
上記実施の形態 7にお 、て、無線送受信部 110はコンテンツ伝送に必要な帯域確 保のために他の装置にネゴシエーションを行ってもよい。例えば、受信機 200と無線 ネットワークの帯域を管理する無線親機 (アクセスポイント)とコンテンツを送信する送 信機が IEEE802. l ieの HCCAの機能を備え、受信機 200が無線親機に属する無 線子機 (ステーション)の場合は、帯域割当の要求である無線マネジメントフレームの ADD TS requestを無線親機に送信してもよい。この場合、 ADD TS request の TSPECパラメータの Mean Data Rateにコンテンツレート、 Surplus Bandwidth Al lowanceに必要帯域決定部 220で求めた必要帯域、 Minimum PHY Rateに PH Yレート決定部 160で決定した PHYレートの情報を含めてもよい。
[0188] 上記実施の形態 7では、パケット誤り率測定部 260は、蓄積したパケットが予め設定 されている個数に達した場合に補正情報作成部 250に情報を送信していたが、予め 設定されて ヽる時間になれば情報を送信するとしてもよ ヽ。
上記の実施形態では、伝送装置について説明した力 本発明は上記フローチヤ一 トで示したステップを含む方法、及び上記フローチャートで示したステップをコンビュ ータに実行させるプログラムコードを含むプログラムであってもよいし、そのプログラム を記憶して 、る記録媒体であるとしてもよ!/、。
[0189] また、上述の各実施の形態の構成は、典型的には集積回路である LSI (Large Sc ale Integration)で実現されているものとしてもよい。これらは、個別に 1チップ化さ れて 、てもよ 、し、全ての構成又は一部の構成を含むように 1チップ化されてもよ 、。 集積回路は、集積度の違いにより、 IC、システム LSI、スーパー LSI、ウルトラ LSI等 と呼称されることもある。また、集積回路の手法は、 LSIに限定されるものではなぐ専 用回路又は汎用プロセッサを用いて実現してもよい。更に、 FPGA(Field Progra mmable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成することが できるリコンフィギュアラブル ·プロセッサを利用してもょ 、。
[0190] さらに、半導体技術の進歩により、又は派生する別技術により現在の半導体技術に 置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロック の集積ィ匕を行ってもよい。例えば、バイオ技術の適用等が考えられる。また、サーバ 装置 1やクライアント装置 2に内蔵されるとしてもよいし、携帯端末に内蔵されるとして ちょい。
上記実施の形態及び上記補足をそれぞれ組み合わせるとしてもよい。例えば、上 記実施の形態 7と他の実施の形態を組み合わせ、送信機からテストパケットを受信し ない場合に実施の形態 7の機能に切り替わるとしてもよい。また、テストパケット以外 に送信機が実施の形態 1の機能をサポートしていることを示す情報を予め送信しない 場合も、実施の形態の機能に切り替わるとしてもよい。
[0191] また、上記実施の形態 5と他の実施の形態とを組み合わせ、データ伝送開始時の P HYレート決定と帯域設定には、実施の形態 5で作成した関係式を用いて PERを推 定するとしてちょい。
産業上の利用可能性
[0192] 本発明は、伝送装置間に障害物が存在する場合等、パケット誤り率が変化する場 合において有用である。

Claims

請求の範囲
[1] 伝送装置であって、
複数の PHYレートから 1つの PHYレートを選択する制御手段と、
選択された PHYレートで、プロトコルスタックにおける物理層間の伝送を行う通信手 段とを備え、
前記制御手段は PHYレートを選択するにあたって、
前記複数の PHYレートのうち少なくとも 1以上の PHYレートのそれぞれで前記物理 層間の伝送を行ったとした場合の前記プロトコルスタックの上位層における伝送レー トの実効値の比較を行い、
各伝送レートの実効値は、
受信側における受信電力値に対応する前記物理層間の再送比率と前記各伝送レ ートの理想値とに基づき得られる値である
ことを特徴とする伝送装置。
[2] 前記制御手段は、
前記物理層間の伝送に、前記複数の PHYレートのうち、何れ力 2つの PHYレート が使用されたとした場合に、プロトコルスタックの上位層における伝送レートの実効値 がどれだけになるかを、前記 2つの PHYレートのそれぞれについて算出し、算出した 伝送レートの実効値同士を比較し、大き!、方の実効値に対応する PHYレートを選択 する
請求項 1記載の伝送装置。
[3] 前記制御手段は、
前記物理層間の伝送に、前記複数の PHYレートのうち、一の PHYレートが使用さ れたとした場合に、プロトコルスタックの上位層における伝送レートの実効値がどれだ けになるかを算出し、算出した伝送レートの実効値を予め記憶されている閾値と比較 し、前記閾値より大きい場合には、該実効値に対応する PHYレートを選択し、 前記閾値以下の場合には、前記一の PHYレート以外の何れかの PHYレートが使 用されたとすると、プロトコルスタックの上位層における伝送レートの実効値がどれだ けになるかを算出し、算出した伝送レートの実効値を予め記憶されている閾値と比較 する
請求項 1記載の伝送装置。
[4] 前記制御手段は、
前記物理層間の伝送に、各 PHYレートがそれぞれ使用されたとした場合に、プロト コルスタックの上位層における伝送レートの実効値がどれだけになるかを PHYレート 毎に算出し、算出した伝送レートの実効値同士を順次比較していき、算出した伝送レ ートの実効値のうち、最大の実効値に対応する PHYレートを選択する
請求項 1記載の伝送装置。
[5] 前記伝送装置は、
受信電力がとり得る複数の値と前記受信電力がとり得る値毎のパケット誤り率とを対 応付けて示す第一情報と、前記パケット誤り率がとり得る複数の値とパケット誤り率が とり得る値毎の再送比率とを対応付けて示す第二情報とを PHYレート毎に記憶して いる記憶手段を備え、
前記制御手段は、
前記第一情報及び第二情報に基づいて、前記受信側における受信電力値から前 記物理層間の再送比率を PHYレート毎に取得する再送比率取得手段を備える 請求項 1記載の伝送装置。
[6] 前記通信手段による伝送はパケット単位で行われ、
前記制御手段は、さらに、
伝送されたパケットにおけるパケット毎の再送回数と、伝送が完了したパケットの個 数とを用いて、パケット誤り率を算出するパケット誤り率算出手段と、
前記パケット誤り率算出手段により算出されたパケット誤り率と、前記第一情報に基 づくパケット誤り率とを比較する比較手段と、
比較した結果、所定値以上のずれがある場合に、前記第一情報の補正を行う補正 手段と
を備える請求項 5記載の伝送装置。
[7] 前記伝送装置は、さらに、
随時、前記受信側における受信電力値を取得し、取得した受信電力値を蓄積する 蓄積手段を備え、
前記補正手段は、
算出されたパケット誤り率と前記第一情報に基づくパケット誤り率と蓄積された受信 電力値とから、受信電力がとり得る複数の値と前記受信電力がとり得る値毎のバケツ ト誤り率とを対応付けて示す補正第一情報を生成する生成手段と、
記憶されている第一情報を、生成された補正第一情報に変更する変更手段と を備える請求項 6記載の伝送装置。
[8] 前記記憶手段は、さらに、
パケット誤り率がとり得る複数の値とパケット誤り率がとり得る値毎の標準偏差とを対 応付けて示す第三情報を記憶しており、
前記制御手段は、さらに、
前記第一情報及び第三情報に基づいて、前記受信側における受信電力値におけ るパケット誤り率の標準偏差を取得し、取得した標準偏差を N (N:正の数)倍した値 を前記パケット誤り率に加算する標準偏差取得手段と、
加算後の値と伝送すべきパケットのパケットレートを用いて、伝送に必要な帯域を算 出する帯域算出手段とを備え、
前記通信手段による伝送は算出された帯域で行われる
請求項 5記載の伝送装置。
[9] 前記通信手段による伝送はパケット単位で行われ、
前記制御手段は、さらに、
伝送されたパケットにおけるパケット毎の再送回数と、伝送が完了したパケットの個 数とを用いて、所定数のパケット誤り率を算出するパケット誤り率算出手段と、 前記パケット誤り率算出手段により算出された所定数のパケット誤り率の標準偏差と 、前記所定数のパケット誤り率及び前記第三情報に基づく標準偏差とを比較する比 較手段と、
比較した結果、所定値以上のずれがある場合に、前記第三情報の補正を行う補正 手段と
を備える請求項 8記載の伝送装置。
[10] 前記伝送装置は、さらに、
随時、前記受信側における受信電力値を取得し、取得した受信電力値を蓄積する 蓄積手段を備え、
前記補正手段は、
前記パケット誤り率がとり得る複数の値と、前記所定数のパケット誤り率の標準偏差 と、前記所定数のパケット誤り率及び前記第三情報に基づく標準偏差とから、バケツ ト誤り率がとり得る複数の値とパケット誤り率毎の標準偏差とを対応付けて示す補正 第三情報を生成する生成手段と、
記憶されている第三情報を、生成された補正第三情報に変更する変更手段と を備える請求項 9記載の伝送装置。
[11] 前記帯域算出手段は、さらに、
算出した帯域と割当可能帯域とを比較し、前記算出した帯域の方が割当可能帯域 より大きい場合に、パケットレートを変更するパケットレート変更手段と、
変更後のパケットレートに基づき、確保する帯域を算出する確保帯域算出手段と を備える請求項 8記載の伝送装置。
[12] 前記標準偏差取得手段は、
前記標準偏差を取得した後、前記標準偏差に用いられた複数のパケット誤り率のう ち、前記標準偏差内に存在するパケット誤り率の割合値を算出する割合算出手段と 算出された割合値が予め設定されている閾値を上回った力否かに基づき、前記標 準偏差の乗算値 Nを決定する決定手段と
を備える請求項 8記載の伝送装置。
[13] 前記通信手段による伝送はパケット単位で行われ、
前記制御手段は、
随時、受信電力値を取得する受信電力値取得手段と、
伝送されたパケットにおけるパケット毎の再送回数と、伝送が完了したパケットの個 数とを用いて、所定数のパケット誤り率を算出するパケット誤り率算出手段と、 算出されたパケット誤り率のそれぞれについて、隣接するパケット誤り率の間隔が一 定以上離れて!/ヽるか否かを判定するばらつき判定手段と、
前記パケット誤り率と前記受信電力値とに基づき、受信電力がとり得る複数の値と 前記受信電力がとり得る値毎のパケット誤り率とを対応付けて示す第一情報を生成 する生成手段とを備える
請求項 1記載の伝送装置。
[14] 前記制御手段は、さらに、
前記所定数のパケット誤り率の標準偏差を算出する標準偏差算出手段と、 前記パケット誤り率と標準偏差とに基づき、パケット誤り率がとり得る複数の値とパケ ット誤り率がとり得る値毎の標準偏差とを対応付けて示す第三情報を生成する生成 手段とを備える
請求項 13記載の伝送装置。
[15] 前記伝送装置は、さらに、
前記受信側における受信電力値を測定する測定手段を備える
請求項 1記載の伝送装置。
[16] 前記再送比率は、所定数のパケットが伝送された場合に、前記所定数のパケットに おけるパケット誤りが発生する確率、正常に伝送される確率、及びパケット誤りのパタ ーンの組み合わせに基づき算出される
請求項 1記載の伝送装置。
[17] 前記記憶手段は不揮発性メモリである
請求項 5記載の伝送装置。
[18] 伝送方法であって、
複数の PHYレートから 1つの PHYレートを選択する制御ステップと、
選択された PHYレートで、プロトコルスタックにおける物理層間の伝送を行う通信ス テツプとを含み、
前記制御ステップは PHYレートを選択するにあたって、
前記複数の PHYレートのうち少なくとも 1以上の PHYレートのそれぞれで前記物理 層間の伝送を行ったとした場合の前記プロトコルスタックの上位層における伝送レー トの実効値の比較を行い、 各伝送レートの実効値は、
受信側における受信電力値に対応する前記物理層間の再送比率と前記各伝送レ ートの理想値とに基づき得られる値である
ことを特徴とする伝送方法。
[19] 伝送装置に設けられるシステム集積回路であって、
複数の PHYレートから 1つの PHYレートを選択する制御手段と、
選択された PHYレートで、プロトコルスタックにおける物理層間の伝送を行う通信手 段とを備え、
前記制御手段は PHYレートを選択するにあたって、
前記複数の PHYレートのうち少なくとも 1以上の PHYレートのそれぞれで前記物理 層間の伝送を行ったとした場合の前記プロトコルスタックの上位層における伝送レー トの実効値の比較を行い、
各伝送レートの実効値は、
受信側における受信電力値に対応する前記物理層間の再送比率と前記各伝送レ ートの理想値とに基づき得られる値である
ことを特徴とするシステム集積回路。
[20] 伝送処理をコンピュータに行わせるコンピュータ読み取り可能なプログラムであって 複数の PHYレートから 1つの PHYレートを選択する制御手順と、
選択された PHYレートで、プロトコルスタックにおける物理層間の伝送を行う通信手 順とを含み、
前記制御手順は PHYレートを選択するにあたって、
前記複数の PHYレートのうち少なくとも 1以上の PHYレートのそれぞれで前記物理 層間の伝送を行ったとした場合の前記プロトコルスタックの上位層における伝送レー トの実効値の比較を行い、
各伝送レートの実効値は、
受信側における受信電力値に対応する前記物理層間の再送比率と前記各伝送レ ートの理想値とに基づき得られる値である ことを特徴とするプログラム。
PCT/JP2007/060053 2006-05-19 2007-05-16 伝送装置、伝送方法、システムlsi、及びプログラム WO2007135919A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008516626A JP4741659B2 (ja) 2006-05-19 2007-05-16 伝送装置、伝送方法、システムlsi、及びプログラム
EP07743488.4A EP2023575B1 (en) 2006-05-19 2007-05-16 Transmission device, transmission method, system lsi, and computer program product for selecting a transmission rate with the highest effective value
US12/301,328 US7936727B2 (en) 2006-05-19 2007-05-16 Transmission device, transmission method, system LSI, and program
CN200780018292XA CN101449558B (zh) 2006-05-19 2007-05-16 传送装置、传送方法及系统大规模集成电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-139923 2006-05-19
JP2006139923 2006-05-19

Publications (1)

Publication Number Publication Date
WO2007135919A1 true WO2007135919A1 (ja) 2007-11-29

Family

ID=38723234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060053 WO2007135919A1 (ja) 2006-05-19 2007-05-16 伝送装置、伝送方法、システムlsi、及びプログラム

Country Status (5)

Country Link
US (1) US7936727B2 (ja)
EP (1) EP2023575B1 (ja)
JP (1) JP4741659B2 (ja)
CN (1) CN101449558B (ja)
WO (1) WO2007135919A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009127734A1 (en) * 2008-04-18 2009-10-22 Thomson Licensing Network apparatus and controlling method therefore

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10861343B2 (en) 2006-09-11 2020-12-08 Houghton Mifflin Harcourt Publishing Company Polling for tracking online test taker status
US9111455B2 (en) * 2006-09-11 2015-08-18 Houghton Mifflin Harcourt Publishing Company Dynamic online test content generation
US9230445B2 (en) 2006-09-11 2016-01-05 Houghton Mifflin Harcourt Publishing Company Systems and methods of a test taker virtual waiting room
US9892650B2 (en) 2006-09-11 2018-02-13 Houghton Mifflin Harcourt Publishing Company Recovery of polled data after an online test platform failure
US9142136B2 (en) 2006-09-11 2015-09-22 Houghton Mifflin Harcourt Publishing Company Systems and methods for a logging and printing function of an online proctoring interface
US9390629B2 (en) 2006-09-11 2016-07-12 Houghton Mifflin Harcourt Publishing Company Systems and methods of data visualization in an online proctoring interface
US20080102432A1 (en) * 2006-09-11 2008-05-01 Rogers Timothy A Dynamic content and polling for online test taker accomodations
US9111456B2 (en) 2006-09-11 2015-08-18 Houghton Mifflin Harcourt Publishing Company Dynamically presenting practice screens to determine student preparedness for online testing
EP3252977B1 (en) * 2016-06-01 2021-02-03 Huawei Technologies Co., Ltd. Systems and methods for adapting a wireless transmission rate
CN110022601B (zh) * 2019-04-12 2022-07-22 海能达通信股份有限公司 一种信号功率的控制方法、装置、存储介质及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186027A (ja) 2000-12-11 2002-06-28 Canon Inc 無線通信装置及びその通信方法、並びに記憶媒体
JP2004328319A (ja) * 2003-04-24 2004-11-18 Sharp Corp 通信装置、並びに、そのプログラムおよび記録媒体
JP2005086409A (ja) * 2003-09-08 2005-03-31 Kddi R & D Laboratories Inc 適応変調装置およびその変調方式切換タイミング決定方法。
JP2005210618A (ja) * 2004-01-26 2005-08-04 Toshiba Corp 無線通信装置、無線通信方法及び無線通信プログラム
JP2005244598A (ja) * 2004-02-26 2005-09-08 Nec Corp 無線通信装置及びその方法
JP2006129277A (ja) * 2004-10-29 2006-05-18 Sharp Corp 通信装置、通信方法、通信プログラム、通信プログラムを記録した記録媒体、および通信システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164649B2 (en) * 2001-11-02 2007-01-16 Qualcomm, Incorporated Adaptive rate control for OFDM communication system
US7346018B2 (en) * 2003-01-16 2008-03-18 Qualcomm, Incorporated Margin control in a data communication system
US7321614B2 (en) * 2003-08-08 2008-01-22 Intel Corporation Apparatus and methods for communicating using symbol-modulated subcarriers
FI20040389A0 (fi) * 2004-03-11 2004-03-11 Nokia Corp Menetelmä ja laite datajoukkojen lähettämisen kontrolloimiseksi
US8085733B2 (en) * 2005-02-23 2011-12-27 Interdigital Technology Corporation Wireless communication method and apparatus for dynamically adapting packet transmission rates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186027A (ja) 2000-12-11 2002-06-28 Canon Inc 無線通信装置及びその通信方法、並びに記憶媒体
JP2004328319A (ja) * 2003-04-24 2004-11-18 Sharp Corp 通信装置、並びに、そのプログラムおよび記録媒体
JP2005086409A (ja) * 2003-09-08 2005-03-31 Kddi R & D Laboratories Inc 適応変調装置およびその変調方式切換タイミング決定方法。
JP2005210618A (ja) * 2004-01-26 2005-08-04 Toshiba Corp 無線通信装置、無線通信方法及び無線通信プログラム
JP2005244598A (ja) * 2004-02-26 2005-09-08 Nec Corp 無線通信装置及びその方法
JP2006129277A (ja) * 2004-10-29 2006-05-18 Sharp Corp 通信装置、通信方法、通信プログラム、通信プログラムを記録した記録媒体、および通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2023575A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009127734A1 (en) * 2008-04-18 2009-10-22 Thomson Licensing Network apparatus and controlling method therefore

Also Published As

Publication number Publication date
EP2023575A1 (en) 2009-02-11
CN101449558A (zh) 2009-06-03
EP2023575B1 (en) 2014-12-17
JPWO2007135919A1 (ja) 2009-10-01
US20100157819A1 (en) 2010-06-24
EP2023575A4 (en) 2013-11-27
JP4741659B2 (ja) 2011-08-03
CN101449558B (zh) 2013-03-20
US7936727B2 (en) 2011-05-03

Similar Documents

Publication Publication Date Title
WO2007135919A1 (ja) 伝送装置、伝送方法、システムlsi、及びプログラム
US9332559B2 (en) Method and channel selector for selecting an operation channel, and wireless network connecting apparatus including the channel selector
CN101217785B (zh) 通信架构中的无线网络、接入点和客户端设备
CN101217784B (zh) 一种通信架构中的无线网络、通信设备和接入点
EP2012480A1 (en) Method and System for Determining Communication Mode in a Communication System
JP6140464B2 (ja) 無線通信システムにおけるデータ送信方法及び装置
KR101983210B1 (ko) 송신 전력 결정 방법 및 장치
US20240235764A1 (en) Method and apparatus for transmitting reference signal, and related device
CN108462596A (zh) Sla分解方法、设备以及系统
CN103945409A (zh) 一种无线链路质量的检测方法及装置
EP3286950A1 (en) Methods and systems to estimate virtual client health for improved access point selection in a wireless network
TWI761733B (zh) 網路路徑選擇方法及應用其之網路節點裝置
JP5430390B2 (ja) 無線基地局及び無線基地局の周波数帯域選択方法
KR100808335B1 (ko) 이동 통신 시스템 및 그의 과부하 방지 방법
CN105704210B (zh) 充电桩信息更新方法和系统
CN112020131B (zh) 一种发射功率确定方法、信息传输方法及通信设备
US20170339672A1 (en) Communication control apparatus, mobile communication system, and communication control method
US10104571B1 (en) System for distributing data using a designated device
CN113796050B (zh) 网关选择方法
CN111835468B (zh) 一种信息发送、接收方法、终端及控制节点
CN110475332A (zh) 调整功率的方法、装置、存储介质以及终端
JP2014060785A (ja) 無線基地局及び無線基地局の周波数帯域選択方法
CN107005853B (zh) 一种上报参考信息的方法、装置和终端
JP7450939B2 (ja) 無線通信システム、無線通信装置、通信制御方法およびプログラム
US10158440B1 (en) System for configuring distributed audio output using an access point

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018292.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008516626

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12301328

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007743488

Country of ref document: EP