WO2007135826A1 - Method of application of target substance and chemical microchip - Google Patents

Method of application of target substance and chemical microchip Download PDF

Info

Publication number
WO2007135826A1
WO2007135826A1 PCT/JP2007/058485 JP2007058485W WO2007135826A1 WO 2007135826 A1 WO2007135826 A1 WO 2007135826A1 JP 2007058485 W JP2007058485 W JP 2007058485W WO 2007135826 A1 WO2007135826 A1 WO 2007135826A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
target substance
channel
flow path
substance
Prior art date
Application number
PCT/JP2007/058485
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Yamada
Naoto Kakuta
Taisuke Hirono
Original Assignee
The University Of Electro-Communications
Kowa Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Electro-Communications, Kowa Company, Ltd. filed Critical The University Of Electro-Communications
Publication of WO2007135826A1 publication Critical patent/WO2007135826A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502776Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4905Determining clotting time of blood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/163Biocompatibility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • G01N2035/00544Mixing by a special element, e.g. stirrer using fluid flow

Definitions

  • the present invention relates to a coating method and a microchemical chip for applying a target substance to a minute area of an inner wall of a flow channel having a minute cross section.
  • a microchemical chip that has a strong cross section is formed with a channel having a small cross section.
  • a specific substance required for a chemical reaction (referred to as “target substance” in this specification) is an inner wall of the channel. You may want to apply to
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-215140
  • An object of the present invention is to provide an application method for applying a target substance to a minute area of an inner wall of a flow path, and a micro-mouth chemical chip.
  • the present invention comprises a step of applying an affinity substance to a first region on the inner wall of the flow path along a direction intersecting the longitudinal direction of the flow path;
  • the first solution and the second solution not containing the target substance are caused to flow through the flow path in a laminar flow state.
  • the target substance is an aggregation inducer for aggregating platelets in blood
  • the affinity substance is a bioaffinity substance capable of adsorbing the aggregation-inducing agent.
  • the present invention also includes a first flow path through which a first solution containing a target substance flows,
  • the present invention relates to a microchemical chip comprising: a third channel through which the first solution and the second solution are flowed in layers by being connected to the downstream side of the first and second channels.
  • the present invention is configured to adjust a laminar flow width of the first solution in the third flow path based on controlling a supply amount of the first solution to the first flow path.
  • First solution supply means
  • a second solution supply means configured to adjust a laminar flow width of the second solution in the third channel based on controlling an amount of the second solution supplied to the second channel; It is characterized by having.
  • the target substance can be applied to a predetermined area of the inner wall of the flow channel with high accuracy.
  • FIG. 1 (a) is a perspective view showing a process of applying an affinity substance to the inner wall surface of a flow path
  • FIG. 1 (b) shows a layer of a first solution containing a target substance
  • FIG. 5 is a perspective view showing a step of attaching a target substance to a region coated with an affinity substance by flowing in a flowing state.
  • FIG. 2 is a plan view showing the structure of a microchemical chip to which a target substance is applied.
  • FIG. 3 is an enlarged view showing a detailed structure of the microchemical chip of FIG.
  • FIG. 4 is an enlarged view of a portion H in FIG. 2 for explaining an example of a method of using the microchemical chip.
  • FIG. 5 is a plan view showing an example of the configuration of an apparatus for applying a target substance to a microchemical chip.
  • FIG. 6 is a plan view showing an example of the configuration of an apparatus for applying a target substance to a microchemical chip.
  • FIG. 1 (a) is a perspective view showing a process of applying an affinity substance to the inner wall of the flow path
  • FIG. 1 (b) shows that the first solution containing the target substance flows in a laminar flow state
  • FIG. 2 is a perspective view showing a process of attaching a target substance to a region where an affinity substance is applied
  • FIG. 2 is a plan view showing the structure of a microchemical chip to which the target substance is applied
  • FIG. 3 is an enlarged view showing a detailed structure of the microphone mouth chemical chip of FIG.
  • FIG. 4 is a cross-sectional view for explaining an example of a method of using the microchemical chip.
  • the present invention relates to a coating method for applying a target substance to a flow passage having a minute cross section (specifically, a minute region of an inner wall surface thereof), and a microchemical chip to which the target substance is applied. Is.
  • the present invention also relates to a coating method for applying the target substance by utilizing the characteristics of a fluid flowing in a flow path having a minute cross section, and a microchemical chip to which the target substance is applied.
  • FIG. 1 A method for applying a target substance according to the present invention is illustrated in FIG.
  • Affinity substance is applied to the first region on the inner wall of channel B (the hatched region indicated by symbol M and the region along the direction ⁇ , K, and K that intersects the longitudinal direction J of channel B) Process,
  • the second solution D that does not contain a target substance may be flown into the channel B together with the first solution D.
  • the target substance may include an aggregation inducer for aggregating platelets in blood
  • the affinity substance may include a biocompatible substance capable of adsorbing the aggregation inducer. Can do.
  • the laminar flow width W of the first solution D is 50 zm.
  • the flow path B in Fig. 1 is a force S with a rectangular cross section.
  • the force of applying the affinity substance to the upper wall and both side walls is not limited to this.
  • the target substance As a microchemical chip to which the target substance is applied, the first channel B through which the first solution D containing the target substance flows, as illustrated by reference A in FIGS. 2 and 3, the target substance
  • the first solution D and the second solution D have a third flow path B through which the first solution D and the second solution D flow in layers.
  • the first solution supply means P is connected to the first channel B, and the first channel is connected.
  • a second solution supply means P is connected to the second flow path B so that the second flow
  • the supply amount of the second solution D to the path B can be controlled, and by the control,
  • the laminar flow width W of the second solution D in the third flow path B can be adjusted.
  • the target substance can be applied to an area with an appropriate width.
  • Fig. 5 the downstream side of the third channel B is connected to the fourth channel B arranged on the side where the first solution D flows.
  • the second solution D branches to the fifth channel B arranged on the flow side, and the first solution B
  • a first suction pump (second solution supply means) P may be arranged through 1 5 1. like this
  • Solution D ⁇ extends from the first solution D in the third channel B to the second solution D in the second channel B
  • the second flow path B has an extrusion bonnet as a second solution supply means.
  • the second channel as the first solution supply means is placed in the fourth channel B.
  • a suction pump (not shown) may be arranged. Further, as shown in FIG. 6, an extrusion pump P as a first solution supply means is disposed in the first flow path B, and a valve V is disposed in the second flow path B.
  • the 5th channel B is connected to the 5th channel B via the sealed container L as a second solution supply means.
  • First channel B, third channel B, fourth channel B, and fifth channel B are filled with first solution D.
  • second solution D is second flow path B force third flow path Is supplied to B and flows in a laminar flow state, and then discharged from the fifth flow path B into the container L.
  • the width W can be changed. Or, with the suction pumps P and P,
  • the channel width of the buffer D flowing through the third channel B and the fourth channel B may be adjusted.
  • the main body portion of the above-described microchemical chip A is preferably formed of glass or resin.
  • aggregation inducer G is in contact with buffer D only, and blood D
  • the unaggregated state of platelets and the state of aggregation can be observed, and detailed analysis (for example, analysis of how the size, area, and volume of aggregates change with time) )It can be performed.
  • detailed analysis for example, analysis of how the size, area, and volume of aggregates change with time
  • the present invention is useful for applications in which a target substance is applied to a minute area on the inner wall of a flow passage having a minute cross section. Can be used.

Abstract

A target substance is made applicable to a microfine area in the surface of the inner wall of a channel having a microfine section. A substance having an affinity is first applied to a first region (M1) in the inner wall of a channel (B3) (a region extending along directions (K1), (K2), and (K3) each intersecting the lengthwise direction (J) for the channel (B3)). A first solution (D1) containing a target substance and a second solution (D2) not containing the target substance are then caused to flow in a laminar-flow state through the channel (B3). Thus, the target substance adheres, with satisfactory precision, to that second region (M2) of the first region (M1) which is in contact with the first solution (D1).

Description

明 細 書  Specification
目的物質の塗布方法、及びマイクロ化学チップ  Application method of target substance and microchemical chip
技術分野  Technical field
[0001] 本発明は、微小断面の流路の内壁の微小エリアに目的物質を塗布するための塗 布方法及びマイクロ化学チップに関する。  The present invention relates to a coating method and a microchemical chip for applying a target substance to a minute area of an inner wall of a flow channel having a minute cross section.
背景技術  Background art
[0002] 従来、化学反応を微小空間で実現させるためのマイクロ化学チップが、種々の分野 で利用されている (例えば、特許文献 1参照)。  Conventionally, microchemical chips for realizing a chemical reaction in a minute space have been used in various fields (for example, see Patent Document 1).
[0003] 力かるマイクロ化学チップには、微小断面の流路が形成されているが、化学反応に 必要な特定の物質 (本明細書においては"目的物質"とする)を該流路の内壁に塗布 したい場合がある。 [0003] A microchemical chip that has a strong cross section is formed with a channel having a small cross section. A specific substance required for a chemical reaction (referred to as "target substance" in this specification) is an inner wall of the channel. You may want to apply to
特許文献 1 :特開 2003— 215140公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-215140
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力 ながら、極めて微小なエリアに目的物質を塗布するための有効な塗布方法は 未だ提案されていない。 [0004] However, an effective application method for applying the target substance to an extremely small area has not been proposed yet.
[0005] 本発明は、流路内壁の微小エリアに目的物質を塗布するための塗布方法、及びマ イク口化学チップを提供することを目的とするものである。 [0005] An object of the present invention is to provide an application method for applying a target substance to a minute area of an inner wall of a flow path, and a micro-mouth chemical chip.
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、流路の内壁における、該流路の長手方向と交差する方向に沿った第 1 領域に親和性物質を塗布する工程と、 [0006] The present invention comprises a step of applying an affinity substance to a first region on the inner wall of the flow path along a direction intersecting the longitudinal direction of the flow path;
目的物質を含む第 1溶液を層流状態で前記流路に流すことによって、前記親和性 物質が塗布された領域のうち、前記第 1溶液と接触する第 2領域に前記目的物質を 付着させる工程と、を備えたことを特徴とする目的物質の塗布方法に関する。  A step of attaching the target substance to a second region in contact with the first solution in a region where the affinity substance is applied by flowing a first solution containing the target substance in a laminar flow through the channel. And a method for applying a target substance.
[0007] また、前記流路には、前記第 1溶液、及び前記目的物質を含まない第 2溶液を層流 状態で流すことを特徴とする。 [0007] Further, the first solution and the second solution not containing the target substance are caused to flow through the flow path in a laminar flow state.
[0008] さらに、前記目的物質は、血液中の血小板を凝集させるための凝集惹起剤であり、 前記親和性物質は、該凝集惹起剤を吸着することのできる生体親和性物質である ことを特徴とする。 [0008] Further, the target substance is an aggregation inducer for aggregating platelets in blood, The affinity substance is a bioaffinity substance capable of adsorbing the aggregation-inducing agent.
[0009] また本発明は、 目的物質を含む第 1溶液が流れる第 1流路と、  [0009] The present invention also includes a first flow path through which a first solution containing a target substance flows,
目的物質をほとんど含まない第 2溶液が流れる第 2流路と、  A second flow path through which a second solution containing almost no target substance flows,
これら第 1及び第 2流路の下流側に接続されることにより前記第 1溶液及び前記第 2 溶液が層状に流される第 3流路と、を備えたマイクロ化学チップに関する。  The present invention relates to a microchemical chip comprising: a third channel through which the first solution and the second solution are flowed in layers by being connected to the downstream side of the first and second channels.
[0010] さらに本発明は、前記第 1流路への前記第 1溶液の供給量を制御することに基づき 前記第 3流路中における前記第 1溶液の層流幅を調整するように構成された第 1溶 液供給手段と、 [0010] Further, the present invention is configured to adjust a laminar flow width of the first solution in the third flow path based on controlling a supply amount of the first solution to the first flow path. First solution supply means,
前記第 2流路への前記第 2溶液の供給量を制御することに基づき前記第 3流路中 における前記第 2溶液の層流幅を調整するように構成された第 2溶液供給手段と、を 備えたことを特徴とする。  A second solution supply means configured to adjust a laminar flow width of the second solution in the third channel based on controlling an amount of the second solution supplied to the second channel; It is characterized by having.
発明の効果  The invention's effect
[0011] 本発明によれば、流路内壁の所定エリアに精度良く目的物質を塗布することができ る。  [0011] According to the present invention, the target substance can be applied to a predetermined area of the inner wall of the flow channel with high accuracy.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1(a)は、流路の内壁面に親和性物質を塗布する工程を示す斜視図であり、 図 1(b)は、 目的物質を含む第 1溶液を層流状態で流すことにより、親和性物質が塗 布された領域に目的物質を付着させる工程を示す斜視図である。  [0012] FIG. 1 (a) is a perspective view showing a process of applying an affinity substance to the inner wall surface of a flow path, and FIG. 1 (b) shows a layer of a first solution containing a target substance. FIG. 5 is a perspective view showing a step of attaching a target substance to a region coated with an affinity substance by flowing in a flowing state.
[図 2]図 2は、 目的物質が塗布されるマイクロ化学チップの構造を示す平面図である。  FIG. 2 is a plan view showing the structure of a microchemical chip to which a target substance is applied.
[図 3]図 3は、図 2のマイクロ化学チップの詳細構造を示す拡大図である。  FIG. 3 is an enlarged view showing a detailed structure of the microchemical chip of FIG.
[図 4]図 4は、マイクロ化学チップの利用方法の一例を説明するための、図 2の H部分 の拡大図である。  [FIG. 4] FIG. 4 is an enlarged view of a portion H in FIG. 2 for explaining an example of a method of using the microchemical chip.
[図 5]図 5は、マイクロ化学チップに目的物質を塗布する装置の構成の一例を示す平 面図である。  FIG. 5 is a plan view showing an example of the configuration of an apparatus for applying a target substance to a microchemical chip.
[図 6]図 6は、マイクロ化学チップに目的物質を塗布する装置の構成の一例を示す平 面図である。  FIG. 6 is a plan view showing an example of the configuration of an apparatus for applying a target substance to a microchemical chip.
符号の説明 マイクロ化学チップ Explanation of symbols Micro chemical chip
> B 第 1流路  > B 1st channel
B 第 2流路  B Second flow path
B 第 3流路  B 3rd flow path
D 第 1溶液  D First solution
D 第 2溶液  D Second solution
J 流路の長手方向  J Longitudinal direction of flow path
M 第 1領域  M 1st area
M 第 2領域  M 2nd area
P 第 1溶液供給手段  P First solution supply means
P 第 2溶液供給手段  P Second solution supply means
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、図 1乃至図 4に沿って、本発明を実施するための最良の形態について説明 する。ここで、図 1(a)は、流路内壁に親和性物質を塗布する工程を示す斜視図であ り、図 1(b)は、 目的物質を含む第 1溶液を層流状態で流すことにより、親和性物質が 塗布された領域に目的物質を付着させる工程を示す斜視図であり、図 2は、 目的物 質が塗布されるマイクロ化学チップの構造を示す平面図であり、図 3は、図 2のマイク 口化学チップの詳細構造を示す拡大図である。また、図 4は、該マイクロ化学チップ の利用方法の一例を説明するための断面図である。  Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS. 1 to 4. Here, FIG. 1 (a) is a perspective view showing a process of applying an affinity substance to the inner wall of the flow path, and FIG. 1 (b) shows that the first solution containing the target substance flows in a laminar flow state. FIG. 2 is a perspective view showing a process of attaching a target substance to a region where an affinity substance is applied, FIG. 2 is a plan view showing the structure of a microchemical chip to which the target substance is applied, and FIG. FIG. 3 is an enlarged view showing a detailed structure of the microphone mouth chemical chip of FIG. FIG. 4 is a cross-sectional view for explaining an example of a method of using the microchemical chip.
[0015] 本発明は、微小断面の流路(具体的には、その内壁面の微小領域)に目的物質を 塗布するための塗布方法、及び該目的物質が塗布されるマイクロ化学チップについ てのものである。また、本発明は、微小断面の流路中を流れる流体の特性を利用して 前記目的物質を塗布するための塗布方法、及び目的物質が塗布されるマイクロ化学 チップについてのものである。  [0015] The present invention relates to a coating method for applying a target substance to a flow passage having a minute cross section (specifically, a minute region of an inner wall surface thereof), and a microchemical chip to which the target substance is applied. Is. The present invention also relates to a coating method for applying the target substance by utilizing the characteristics of a fluid flowing in a flow path having a minute cross section, and a microchemical chip to which the target substance is applied.
[0016] 本発明に係る目的物質の塗布方法は、図 1に例示するように、  [0016] A method for applying a target substance according to the present invention is illustrated in FIG.
• 流路 Bの内壁における第 1領域 (符号 Mで示す斜線領域であって、流路 Bの長 手方向 Jと交差する方向 κ , K, Kに沿った領域)に親和性物質を塗布する工程と、 • Affinity substance is applied to the first region on the inner wall of channel B (the hatched region indicated by symbol M and the region along the direction κ, K, and K that intersects the longitudinal direction J of channel B) Process,
• 目的物質を含む第 1溶液 Dを層流状態で前記流路 Bに流すことによって、前記 第 1領域 Mのうち、前記第 1溶液 Dと接触する第 2領域 (つまり、図 1(b)に符号 Mで• By flowing the first solution D containing the target substance into the channel B in a laminar flow state, Of the first region M, the second region in contact with the first solution D (i.e., M in FIG.
1 1 2 示す部分)に前記目的物質を付着させる工程と、 1 1 2) to attach the target substance to
からなる。ここで、前記第 1溶液 Dを層流状態で前記流路 Bに流す方法としては、 目  Consists of. Here, as a method of flowing the first solution D into the flow path B in a laminar flow state,
1 3  13
的物質を含まない第 2溶液 Dを第 1溶液 Dと共に流路 Bに流す方法を挙げることが  The second solution D that does not contain a target substance may be flown into the channel B together with the first solution D.
2 1 3  2 1 3
できる。また、前記目的物質としては、血液中の血小板を凝集させるための凝集惹起 剤を挙げることができ、前記親和性物質としては、該凝集惹起剤を吸着することので きる生体親和性物質を挙げることができる。なお、前記第 1領域 Mの幅 (長手方向 J  it can. The target substance may include an aggregation inducer for aggregating platelets in blood, and the affinity substance may include a biocompatible substance capable of adsorbing the aggregation inducer. Can do. The width of the first region M (longitudinal direction J
1  1
の幅)は例えば 50 x mとし、前記第 1溶液 Dの層流幅 Wは例えば 50 z mにすると  For example, the laminar flow width W of the first solution D is 50 zm.
1 1  1 1
良レ、。ところで、図 1の流路 Bは矩形断面である力 S、もちろんこれに限られるものでは  Good. By the way, the flow path B in Fig. 1 is a force S with a rectangular cross section.
3  Three
なぐ他の形状であっても良い。また、図 1(a)  Other shapes may be used. Figure 1 (a)
では、親和性物質を上壁及び両側壁に塗布している力 もちろんこれに限られるもの ではない。  Then, the force of applying the affinity substance to the upper wall and both side walls is not limited to this.
[0017] 一方、 目的物質が塗布されるマイクロ化学チップとしては、図 2及び図 3に符号 Aで 例示するもののように、 目的物質を含む第 1溶液 Dが流れる第 1流路 B、 目的物質  [0017] On the other hand, as a microchemical chip to which the target substance is applied, the first channel B through which the first solution D containing the target substance flows, as illustrated by reference A in FIGS. 2 and 3, the target substance
1 1  1 1
をほとんど含まない(全く含まなレ、か、含んだとしても微量である)第 2溶液 Dが流れ  2nd solution D that contains almost no (no or very little if any)
2 る第 2流路 B、並びに、これら第 1及び第 2流路 B , Bの下流側に接続されることによ  2 and the downstream of the first and second flow paths B and B.
2 1 2  2 1 2
り前記第 1溶液 D及び前記第 2溶液 Dが層状に流される第 3流路 Bを有する構造の  The first solution D and the second solution D have a third flow path B through which the first solution D and the second solution D flow in layers.
1 2 3  one two Three
ものを挙げること力 Sできる。なお、図 2中の符号 Cは、第 1流路 B及び第 2流路 Bの合  The ability to raise things S. Note that the symbol C in FIG. 2 indicates the sum of the first flow path B and the second flow path B.
1 2 流部を示す。また、図 3中の符号 Eは、前記第 1溶液 D及び前記第 2溶液 Dの界面  1 2 Indicates the flow part. Further, symbol E in FIG. 3 denotes an interface between the first solution D and the second solution D.
1 2 を示す。さらに、図 2中の符号 Iは、図 1(a)中の符号 Iと同じ方向を示す。  1 Indicates 2. Further, the symbol I in FIG. 2 indicates the same direction as the symbol I in FIG.
[0018] この場合、前記第 1流路 Bに第 1溶液供給手段 Pを接続しておいて前記第 1流路 In this case, the first solution supply means P is connected to the first channel B, and the first channel is connected.
1 1  1 1
Bへの前記第 1溶液 Dの供給量を制御できるようにしておき、その制御によって、前 It is possible to control the supply amount of the first solution D to B.
1 1 1 1
記第 3流路 B中における前記第 1溶液 Dの層流幅 Wを調整できるようにしておくと  If the laminar flow width W of the first solution D in the third flow path B can be adjusted,
3 1 1  3 1 1
良い。同様に、前記第 2流路 Bに第 2溶液供給手段 Pを接続しておいて前記第 2流  good. Similarly, a second solution supply means P is connected to the second flow path B so that the second flow
2 2  twenty two
路 Bへの前記第 2溶液 Dの供給量を制御できるようにしておき、その制御によって、 The supply amount of the second solution D to the path B can be controlled, and by the control,
2 2 twenty two
前記第 3流路 B中における前記第 2溶液 Dの層流幅 Wを調整できるようにしておく  The laminar flow width W of the second solution D in the third flow path B can be adjusted.
3 2 2  3 2 2
と良レ、。これらの溶液供給手段 P, Pにより各溶液 D , Dの層流幅 W, Wを調整  And good. The laminar flow width W, W of each solution D, D is adjusted by these solution supply means P, P
1 2 1 2 1 2 することにより、適正な幅の領域に目的物質を塗布することができる。なお、図 5に示 すように、第 3流路 Bの下流側を、第 1溶液 Dが流れる側に配置される第 4流路 Bと1 2 1 2 1 2 By doing this, the target substance can be applied to an area with an appropriate width. As shown in Fig. 5. As shown, the downstream side of the third channel B is connected to the fourth channel B arranged on the side where the first solution D flows.
3 1 43 1 4
、第 2溶液 Dが流れる側に配置される第 5流路 Bに分岐しておいて、第 1流路 Bに The second solution D branches to the fifth channel B arranged on the flow side, and the first solution B
2 5 1 は第 1溶液供給手段としての押出ポンプ Pを配置し、第 5流路 Bには密閉容器 Lを  2 5 1 has an extrusion pump P as the first solution supply means, and a closed container L is installed in the fifth flow path B.
1 5 1 介して第 1吸引ポンプ(第 2溶液供給手段) Pを配置するようにしても良い。このような  A first suction pump (second solution supply means) P may be arranged through 1 5 1. like this
3  Three
装置において押出ポンプ Pを最初に稼動させると、第 1流路 B、第 3流路 B、第 4流 When the extrusion pump P is first operated in the apparatus, the first flow path B, the third flow path B, the fourth flow
1 1 3 路 B及び第 5流路 Bが第 1溶液 Dにより満たされることとなる。この状態で第 1吸引 1 1 3 Channel B and channel 5 B are filled with the first solution D. First suction in this state
4 5 1 4 5 1
ポンプ Pを稼動させると、その吸引力は、密閉容器 L内の空気→第 5流路 B 中の第When the pump P is operated, the suction force is changed from the air in the sealed container L to the 5th flow path B.
3 1 53 1 5
1溶液 D→第 3流路 B中の第 1溶液 Dを介して第 2流路 B中の第 2溶液 Dにまで及1 Solution D → extends from the first solution D in the third channel B to the second solution D in the second channel B
1 3 1 2 2 ぶこととなり、その結果、第 5流路 B中の第 1溶液 D及び第 3流路 B中の第 1溶液 D 1 3 1 2 2 As a result, the first solution D in the fifth channel B and the first solution D in the third channel B
5 1 3 1 が該容器 L内に排出され、それに伴って、第 2溶液 Dが第 2流路 B力 第 3流路 B  5 1 3 1 is discharged into the container L, and accordingly, the second solution D has the second flow path B force and the third flow path B.
1 2 2 3 に供給されて層流状態で流れ、その後、第 5流路 Bから前記容器 L内に排出される  1 2 2 3 and flows in a laminar flow state, and then discharged from the fifth flow path B into the container L
5 1  5 1
。押出ポンプ Pによる第 1溶液 Dの押出量と、第 1吸引ポンプ Pによる第 2溶液 Dの  . Extrusion amount of first solution D by extrusion pump P and second solution D by first suction pump P
1 1 3 2 吸引量とを調整することにより、第 1溶液 Dの層流幅 Wと第 2溶液 Dの層流幅 Wと  1 1 3 2 By adjusting the suction amount, the laminar flow width W of the first solution D and the laminar flow width W of the second solution D
1 1 2 2 を変化させることができる。また、第 2流路 Bには第 2溶液供給手段としての押出ボン  1 1 2 2 can be changed. In addition, the second flow path B has an extrusion bonnet as a second solution supply means.
2  2
プを配置し(図 2の符号 P参照)、前記第 4流路 Bに第 1溶液供給手段としての第 2 (See symbol P in FIG. 2), the second channel as the first solution supply means is placed in the fourth channel B.
2 4  twenty four
吸引ポンプ(不図示)を配置するようにしても良い。また、図 6に示すように、第 1流路 Bには第 1溶液供給手段としての押出ポンプ Pを配置し、第 2流路 Bにはバルブ VA suction pump (not shown) may be arranged. Further, as shown in FIG. 6, an extrusion pump P as a first solution supply means is disposed in the first flow path B, and a valve V is disposed in the second flow path B.
1 1 2 1 1 2
を配置し、第 4流路 Bには密閉容器 Lを介して第 1溶液供給手段としての第 2吸引 And the second suction as the first solution supply means via the sealed container L in the fourth flow path B.
4 2  4 2
ポンプ!3を配置し、第 5流路 Bには密閉容器 Lを介して第 2溶液供給手段としての 3 is arranged, and the 5th channel B is connected to the 5th channel B via the sealed container L as a second solution supply means.
4 5 1 4 5 1
第 1吸引ポンプ Pを配置するようにしても良レ、。このような装置において、バルブ Vを Even if the first suction pump P is arranged, it is good. In such a device, valve V
3  Three
閉じると共に各吸引ポンプ P , Pを停止状態として押出ポンプ Pだけを稼動させると When the suction pumps P and P are stopped and only the extrusion pump P is operated
3 4 1  3 4 1
、第 1流路 B、第 3流路 B、第 4流路 B及び第 5流路 Bが第 1溶液 Dにより満たされ  First channel B, third channel B, fourth channel B, and fifth channel B are filled with first solution D.
1 3 4 5 1  1 3 4 5 1
ることとなる。この状態で両方の吸引ポンプ P及び Pを稼動させると、その吸引力は The Rukoto. When both suction pumps P and P are operated in this state, the suction power is
3 4  3 4
、密閉容器し及び L内の空気→第 5流路 B及び第 4流路 B 中の第 1溶液 D→第 3  , Sealed container and air in L → first solution D → third channel 5 in channel B and channel B
1 2 5 4 1 流路 B中の第 1溶液 Dを介して第 2流路 B中の第 2溶液 Dにまで及ぶこととなる。こ 1 2 5 4 1 It reaches the second solution D in the second channel B through the first solution D in the channel B. This
3 1 2 2 3 1 2 2
のとき、バルブ Vを開けていくと同時に押出ポンプ Pの押出量をある一定のところま で低下させると、各流路 B, B中の第 1溶液 D及び第 3流路 B中の第 1溶液 Dが該 When the valve V is opened and at the same time the extrusion amount of the extrusion pump P is reduced to a certain level, the first solution D in each of the channels B and B and the first solution D in the third channel B Solution D is
4 5 1 3 1 容器し及び L内に排出され、それに伴って、第 2溶液 Dが第 2流路 B力 第 3流路 Bに供給されて層流状態で流れ、その後、第 5流路 Bから前記容器 L内に排出され4 5 1 3 1 Container and discharged into L, and accordingly, second solution D is second flow path B force third flow path Is supplied to B and flows in a laminar flow state, and then discharged from the fifth flow path B into the container L.
3 5 1 3 5 1
る。第 1吸引ポンプ Pによる第 2溶液 Dの吸引量と、第 2吸引ポンプ Pによる第 1溶  The The suction amount of the second solution D by the first suction pump P and the first solution by the second suction pump P
3 2 4  3 2 4
液 Dの吸引量とを調整することにより、第 1溶液 Dの層流幅 Wと第 2溶液 Dの層流 By adjusting the suction amount of liquid D, the laminar flow width W of the first solution D and the laminar flow of the second solution D
1 1 1 2 幅 Wとを変化させることができる。あるいは、吸引ポンプ P及び Pとともに、押出ボン1 1 1 2 The width W can be changed. Or, with the suction pumps P and P,
2 3 4 2 3 4
プ Pも同時に稼動させ、吸引ポンプ Pと押出ポンプ Pの両方によって、第 1流路 B、 P is also operated simultaneously, and both the suction pump P and the extrusion pump P
1 3 1 1 第 3流路 B、第 4流路 Bを流れる緩衝液 Dの流路幅を調整してもよい。 1 3 1 1 The channel width of the buffer D flowing through the third channel B and the fourth channel B may be adjusted.
3 4 1  3 4 1
[0019] なお、上述したマイクロ化学チップ Aの本体部分はガラスや樹脂により形成しておく と良い。  [0019] The main body portion of the above-described microchemical chip A is preferably formed of glass or resin.
[0020] 次に、上述のようにして凝集惹起剤を流路内壁に塗布したマイクロ化学チップの利 用方法について説明する。  [0020] Next, a method of using the microchemical chip in which the aggregation-inducing agent is applied to the inner wall of the flow path as described above will be described.
[0021] このマイクロ化学チップを利用するに当たっては、第 1溶液 Dとして緩衝液を流し、 [0021] In using this microchemical chip, a buffer solution is poured as the first solution D,
1  1
第 2溶液 Dとして血液を流す。そして、前記第 1溶液供給手段 Pにより前記緩衝液 D  Blood flows as second solution D. Then, the buffer solution D is supplied by the first solution supply means P.
2 1 の供給量が調整され、前記第 2溶液供給手段 Pにより前記血液 Dの供給量が調整 2 The supply amount of 1 is adjusted, and the supply amount of the blood D is adjusted by the second solution supply means P.
1 2 2 1 2 2
されることに基づいて、前記第 3流路 Bにおける、前記緩衝液 Dと血液 Dの層流幅  The laminar flow width of the buffer D and the blood D in the third channel B
3 1 2  3 1 2
W , Wが調整されることとなり、  W and W will be adjusted,
1 2  1 2
• 図 4(a)に示すように、凝集惹起剤 Gが緩衝液 Dとのみ接触していて、血液 Dとは  • As shown in Fig. 4 (a), aggregation inducer G is in contact with buffer D only, and blood D
1 2 接触していない状態、  1 2 No contact,
• 図 4(b)に示すように、血液 Dが凝集惹起剤 Gに接触し始める状態  • As shown in Fig. 4 (b), blood D begins to contact the agglutinating agent G
2  2
• 図 4(c)に示すように、凝集惹起剤 Gの塗布領域全てが血液 Dと接触している状  • As shown in Fig. 4 (c), all areas where the aggregation-inducing agent G is applied are in contact with blood D
2  2
 State
を作り出すことができる。  Can produce.
[0022] これにより、血小板の未凝集状態、及び凝集される様子を観察することができ、詳 細な分析 (例えば、凝集塊の大きさや面積や体積が時間と共にどのように変化するか の分析)を行うことができる。また、未凝集状態と凝集状態との比較のために静止画 像や動画像を撮らなければならない場合においても、 "凝集惹起剤が塗布された箇 所 G"を撮影するだけで足り、撮影作業はいたって簡単になる。 [0022] Thus, the unaggregated state of platelets and the state of aggregation can be observed, and detailed analysis (for example, analysis of how the size, area, and volume of aggregates change with time) )It can be performed. In addition, even when still images or moving images must be taken for comparison between the unaggregated state and the agglomerated state, it is only necessary to photograph “location G where the aggregating agent is applied”. Yes, it becomes easy.
産業上の利用可能性  Industrial applicability
[0023] 本発明は、微小断面の流路の内壁の微小エリアに目的物質を塗布する用途に利 用できる。 The present invention is useful for applications in which a target substance is applied to a minute area on the inner wall of a flow passage having a minute cross section. Can be used.

Claims

請求の範囲 The scope of the claims
[1] 流路の内壁における、該流路の長手方向と交差する方向に沿った第 1領域に親和 性物質を塗布する工程と、  [1] Applying an affinity substance to the first region of the inner wall of the flow path along the direction intersecting the longitudinal direction of the flow path;
目的物質を含む第 1溶液を層流状態で前記流路に流すことによって、前記親和性 物質が塗布された領域のうち、前記第 1溶液と接触する第 2領域に前記目的物質を 付着させる工程と、  A step of attaching the target substance to a second region in contact with the first solution in a region where the affinity substance is applied by flowing a first solution containing the target substance in a laminar flow through the channel. When,
を備えたことを特徴とする目的物質の塗布方法。  A method for applying a target substance, comprising:
[2] 前記流路には、前記第 1溶液、及び前記目的物質を含まない第 2溶液を層流状態 で流す、 [2] In the flow path, the first solution and the second solution not containing the target substance are allowed to flow in a laminar flow state.
ことを特徴とする請求項 1に記載の目的物質の塗布方法。  The method for applying a target substance according to claim 1, wherein:
[3] 前記目的物質は、血液中の血小板を凝集させるための凝集惹起剤であり、 [3] The target substance is an aggregation inducer for aggregating platelets in blood,
前記親和性物質は、該凝集惹起剤を吸着することのできる生体親和性物質である ことを特徴とする請求項 1に記載の目的物質の塗布方法。  2. The method of applying a target substance according to claim 1, wherein the affinity substance is a biocompatible substance capable of adsorbing the aggregation-inducing agent.
[4] 目的物質を含む第 1溶液が流れる第 1流路と、 [4] a first channel through which a first solution containing a target substance flows;
目的物質をほとんど含まない第 2溶液が流れる第 2流路と、  A second flow path through which a second solution containing almost no target substance flows,
これら第 1及び第 2流路の下流側に接続されることにより前記第 1溶液及び前記第 2 溶液が層状に流される第 3流路と、  A third channel through which the first solution and the second solution are flowed in layers by being connected to the downstream side of the first and second channels;
を備えたマイクロ化学チップ。  Micro chemical chip equipped with.
[5] 前記第 1流路への前記第 1溶液の供給量を制御することに基づき前記第 3流路中 における前記第 1溶液の層流幅を調整するように構成された第 1溶液供給手段と、 前記第 2流路への前記第 2溶液の供給量を制御することに基づき前記第 3流路中 における前記第 2溶液の層流幅を調整するように構成された第 2溶液供給手段と、 を備えたことを特徴とする請求項 4に記載のマイクロ化学チップ。 [5] The first solution supply configured to adjust the laminar flow width of the first solution in the third channel based on controlling the supply amount of the first solution to the first channel. And a second solution supply configured to adjust a laminar flow width of the second solution in the third channel based on controlling a supply amount of the second solution to the second channel. The microchemical chip according to claim 4, further comprising: means.
PCT/JP2007/058485 2006-05-23 2007-04-19 Method of application of target substance and chemical microchip WO2007135826A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-142215 2006-05-23
JP2006142215A JP2007315754A (en) 2006-05-23 2006-05-23 Application method of object material, and microchemical chip

Publications (1)

Publication Number Publication Date
WO2007135826A1 true WO2007135826A1 (en) 2007-11-29

Family

ID=38723139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058485 WO2007135826A1 (en) 2006-05-23 2007-04-19 Method of application of target substance and chemical microchip

Country Status (2)

Country Link
JP (1) JP2007315754A (en)
WO (1) WO2007135826A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032472A (en) * 2008-07-31 2010-02-12 Kowa Co Microchemical chip device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004002A (en) * 2002-04-01 2004-01-08 Kunimasa Koga Thrombus forming ability measuring instrument
WO2004051231A1 (en) * 2002-11-29 2004-06-17 Nec Corporation Separator and separating method
JP2004251630A (en) * 2003-02-18 2004-09-09 Tokai Univ Thrombus process observing apparatus, and thrombus process observation method
JP2004301515A (en) * 2003-03-28 2004-10-28 Dkk Toa Corp Method for immobilizing active substance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004002A (en) * 2002-04-01 2004-01-08 Kunimasa Koga Thrombus forming ability measuring instrument
WO2004051231A1 (en) * 2002-11-29 2004-06-17 Nec Corporation Separator and separating method
JP2004251630A (en) * 2003-02-18 2004-09-09 Tokai Univ Thrombus process observing apparatus, and thrombus process observation method
JP2004301515A (en) * 2003-03-28 2004-10-28 Dkk Toa Corp Method for immobilizing active substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KENIS P.J.A. ET AL.: "Microfabrication Inside Capillaries Using Multiphase Laminar Flow Patterning", SCIENCE, vol. 285, no. 5424, 2 July 1999 (1999-07-02), pages 83 - 85, XP002975775 *

Also Published As

Publication number Publication date
JP2007315754A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
Tanyeri et al. A microfluidic-based hydrodynamic trap: design and implementation
US6619311B2 (en) Microfluidic regulating device
Ellinas et al. Superhydrophobic, passive microvalves with controllable opening threshold: Exploiting plasma nanotextured microfluidics for a programmable flow switchboard
WO2010141326A1 (en) Fluidic devices with diaphragm valves
KR100998535B1 (en) Microfluidic circuit element comprising microfluidic channel with nano interstices and fabrication thereof
US20010054702A1 (en) Valve for use in microfluidic structures
US7357898B2 (en) Microfluidics packages and methods of using same
US20060245933A1 (en) Valve and pump for microfluidic systems and methods for fabrication
JP6068850B2 (en) Fluid handling apparatus and fluid handling method
US20020148992A1 (en) Pneumatic valve interface for use in microfluidic structures
US8343425B1 (en) Multi-layer micro/nanofluid devices with bio-nanovalves
EP2553423A1 (en) Fluidic article fabricated in one piece
JP2013512116A (en) Composite plastic article
EP2384429A1 (en) Instrument with microfluidic chip
WO2006022495A1 (en) A capillary flow control module and lab-on-a-chip equipped with the same
CN102003560B (en) Normally closed active micro valve for electrically driven shape memory alloy wire
WO2007135826A1 (en) Method of application of target substance and chemical microchip
JP2004033919A (en) Micro fluid control mechanism and microchip
WO2007055151A1 (en) Microreactor and microanalysis system
US20150300985A1 (en) Fluid handling device and fluid handling method
JPWO2008007532A1 (en) Liquid feeding device and liquid feeding method
JP3947794B2 (en) Micropump and fluid transfer device including micropump
TWI574909B (en) Device and method for microfluidic transport
WO2004011922A1 (en) System for detection of a component in a liquid
JP6357217B2 (en) Fluid handling apparatus and fluid handling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741921

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741921

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)