WO2007055151A1 - Microreactor and microanalysis system - Google Patents

Microreactor and microanalysis system Download PDF

Info

Publication number
WO2007055151A1
WO2007055151A1 PCT/JP2006/321965 JP2006321965W WO2007055151A1 WO 2007055151 A1 WO2007055151 A1 WO 2007055151A1 JP 2006321965 W JP2006321965 W JP 2006321965W WO 2007055151 A1 WO2007055151 A1 WO 2007055151A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
microreactor
chip
fluid
micropump
Prior art date
Application number
PCT/JP2006/321965
Other languages
French (fr)
Japanese (ja)
Inventor
Akihisa Nakajima
Kusunoki Higashino
Yasuhiro Sando
Youichi Aoki
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2007544114A priority Critical patent/JPWO2007055151A1/en
Publication of WO2007055151A1 publication Critical patent/WO2007055151A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0078Constitution or structural means for improving mechanical properties not provided for in B81B3/007 - B81B3/0075
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00837Materials of construction comprising coatings other than catalytically active coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/051Micromixers, microreactors

Definitions

  • the present invention relates to a microreactor and a microanalysis system, and more particularly to a microreactor in which a plurality of substrates are bonded with a silicone-based adhesive material and a microanalysis system including the microreactor.
  • microreactors that provide simple and rapid analysis means, and their solutions are desired.
  • plastics having excellent processability and mechanical characteristics are often used as materials.
  • at least two substrates are bonded to form a chip, and various techniques such as a welding method using an organic solvent are applied in the bonding. It is.
  • the surface state of the hot plate portion in contact with the substrate is transferred as it is, so that an optically smooth hot plate is often required.
  • Filling a biological material as a target molecule capture molecule is a process after fusion.
  • ultrasonic fusion it is not easy to weld the entire substrate without distortion.
  • Adhesion with adhesives takes a long time to obtain sufficient bonding strength, and there are concerns about the effects of residual solvents and the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-322099
  • Patent Document 2 JP 2004-108285 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-74775
  • Patent Literature 4 Japanese Translation of Special Publication 2005-513196
  • the present invention made in view of the above-described actual situation can be easily bonded to each other when a plurality of substrates having plastic material strength are bonded to each other, and can be manufactured into a chip with good adhesion.
  • a microreactor composed of substrates is proposed.
  • the microreactor of the present invention comprises:
  • a chip-type microreactor that performs a reaction by flowing a fluid in a microchannel, and at least a chip substrate on which the microchannel is formed;
  • the coated thin plate may be a sheet or film.
  • the adhesive layer of the coated thin plate is an adhesive layer in which a pressure-sensitive adhesive material is applied to the bonding surface, and a silicone-based adhesive material is preferable.
  • the silicone pressure-sensitive adhesive material comprises a polydiorganosiloxane polyurea copolymer and a silicone tackifier resin.
  • the silicone tackifier resin is a silicone resin having a molecular weight of about 100 to about 50,000 and a silanol (S-OH) content of about 1.5 mass% or less.
  • the chip substrate is preferably made of a resin material selected from polystyrene, polyolefin, polypropylene, and polycarbonate.
  • Each of the fine channels is individually connected to a micropump separate from the chip substrate, and each fluid is fed to each channel force mixing channel by driving the micropump. It is the flow path which carries out.
  • the microreactor of the present invention comprises:
  • a liquid feed control unit that blocks passage of fluid at a lower pressure than a preset pressure, and allows passage of fluid at a pressure higher than a preset pressure
  • a backflow prevention unit for preventing backflow of fluid in the flow path
  • It is characterized in that it is provided with a quantitative liquid feeding mechanism for controlling the liquid feeding and the amount of the liquid feeding in the branched flow path.
  • sample in the sample receiving unit and the reagent storing unit are passed through a fine channel by the action of a separate micro pump connected to the micro pump connecting unit provided downstream from the sample receiving unit and the reagent storing unit.
  • a detection unit for measuring a reaction product obtained by reaction in the reaction unit is provided downstream from the sample receiving unit and the reagent storing unit.
  • the present invention provides the microreactor described above,
  • the device body
  • a base body A base body,
  • a channel opening disposed in the base body for communicating with the microreactor A micro pump unit including the chip connection part, the micro pump, and a detection device that optically detects a reaction product,
  • a control device that controls at least the function and temperature of the micropump unit
  • microanalysis system characterized in that measurement is performed by mounting the microreactor on an apparatus main body in which these components are integrated.
  • the micropump comprises:
  • a second flow path provided in the flow path and having a flow rate resistance change ratio with respect to a change in differential pressure smaller than that of the first flow path;
  • a pressurization chamber provided in the flow path and connected to the first flow path and the second flow path; an actuator for changing the internal pressure of the pressurization chamber;
  • the microreactor of the present invention can be produced more easily than other bonding methods by simply pressing a coated thin plate having an adhesive layer on the bonding surface to the surface of the chip substrate on which the fine channel is formed.
  • the coated thin plate may be made of the same material as the chip substrate, but can provide characteristics different from the chip substrate, such as strong water repellency.
  • the microanalysis system of the present invention has a configuration in which a microreactor for each specimen and a control 'detection component that is a main body of the apparatus are separated. Cross-contamination and carry-over contamination problems are avoided for trace analysis, and a highly reliable and highly sensitive analysis is possible with a quantitative liquid feeding mechanism based on fluid motion control.
  • Fig. 1 is a schematic diagram of a micro-analysis system including a microreactor, an apparatus main body, and force.
  • FIG. 2 is a schematic view of a microreactor (chip).
  • the micropump belongs to a separate device from the micro-mouth reactor.
  • FIG. 3 shows a microphone-mouth reactor (chip) structure formed using a groove-formed substrate and a basic substrate that is a coated thin plate.
  • Fig. 4 illustrates the wettability of fluid when a water-repellent coated thin plate is used.
  • FIG. 5 shows a configuration around the pump connection portion of the microreactor when the micropump 11 is separated from the microreactor.
  • (a) is a diagram showing a configuration of a pump unit for feeding a driving liquid
  • (b) is a diagram showing a configuration of a pump unit for feeding a reagent.
  • FIG. 6 shows a piezo pump
  • (a) is a sectional view showing an example of the pump
  • (b) is a top view thereof.
  • (C) is a sectional view showing another example of a piezo pump.
  • FIG. 7 shows a water repellent valve
  • FIG. 8 shows a quantitative liquid feeding mechanism.
  • fluid refers to a fluid that is sent out by a force micropump such as a fluid container and flows through a flow path in a microphone-mouth reactor 'chip, and a liquid, a fluid, a gas as a fluid to be applied. It may be.
  • the target fluid is actually a liquid.
  • the “fine channel” is a minute groove-like channel formed in the microreactor, and may be simply referred to as “channel”. Even when the container for the reagents, the reaction unit, or the detection unit is formed in the shape of a wide liquid reservoir, these may be referred to as a “fine channel”. “Element” means a functional component installed in a microreactor.
  • the microreactor of the present invention is equivalent to what is generally called an analysis chip, a microreactor chip, a microfluidic chip and the like.
  • the chip has a vertical and horizontal size force of usually several tens of mm and a height of about several mm, and a fine channel having a width and height of a micro-order size is formed thereon by a fine processing technique.
  • the microreactor of the present invention is used for chemical analysis, various inspections, sample processing / separation, chemical synthesis, and the like.
  • Various molding materials can be used as the material of the chip, and it is used according to the characteristics of each material.
  • the flow path of a chip as a microreactor is formed on a substrate according to a flow path arrangement designed in advance according to the purpose.
  • the flow path through which the fluid flows is, for example, a micrometer-order width fine formed with a width and depth of several tens to several hundreds of ⁇ m, preferably a width of 50 to 200 ⁇ m and a depth of about 25 to 300 ⁇ m. It is a flow path. If the channel width is less than 50 m, the channel resistance increases, which is inconvenient for fluid delivery and detection. The advantage of micro-scale space diminishes in channels over 500 m wide.
  • the forming method is based on a conventional fine processing technique.
  • the basic substrate material for forming the fine flow path of the microreactor is preferably a plastic having good mechanical properties that can accurately transfer the sub-micron structure and hardly cause deformation of the flow path due to water absorption.
  • polystyrene and polydimethylsiloxane are excellent in shape transferability. If necessary, processing by injection molding or extrusion molding may be used.
  • the microreactor of the present invention is a chip-type microreactor in which a fluid flows in a fine channel and performs a reaction, and its basic structure is manufactured by appropriately combining one or more molding materials, and the main body is composed of at least two substrates.
  • This is a chip type microreactor (microfluidic chip) (Fig. 3).
  • the microreactor of the present invention includes a chip substrate having at least a fine channel formed thereon and a coated thin plate having an adhesive layer on a bonding surface, and the surface on the fine channel side of the chip substrate and the coated thin plate. This is a microreactor made by laminating the laminated surfaces of each other.
  • the structure includes a chip substrate (groove forming substrate) in which a fine channel is formed and a basic substrate that is a coated thin plate.
  • a base and a liquid reservoir are formed, and a flow path is formed on the groove forming substrate.
  • the detection section, or at least the detection section, is covered with a light-transmitting coated thin plate.
  • FIG. 3A illustrating a specific embodiment of the present invention
  • a chip formed by laminating two substrates of a groove-formed substrate and a coated thin plate having an adhesive layer on the bonding surface is shown.
  • the waste liquid storage part is formed on the surface opposite to the surface on which the fine channel is formed, so that the coated thin plate and the coated substrate are bonded to both surfaces of the groove forming substrate, respectively.
  • Force A coated thin plate having an adhesive layer is bonded to the bonded surface at least on the surface on the fine channel side.
  • the material of the two coated thin plates may be the same or different.
  • the coated thin plate which may be a sheet or film
  • a silicone tackifier resin molecular weight of about 100 to about 50,000, silanol (Si-OH) content of about 1.5 mass) %)
  • a polydiorganosiloxane polyurea copolymer and a pressure-sensitive adhesive material that can also be applied uniformly to form a pressure-sensitive adhesive layer as a bonding surface, and the surface of this pressure-sensitive adhesive layer and a fine substrate on which fine channels are formed The side of the channel
  • the chip substrate which is the chip body in which the fine channel is formed, is bonded to the coated thin plate, thereby sealing the fine channel and sealing the waste liquid reservoir.
  • the coated thin plate is a coated thin plate having an adhesive layer on the bonding surface as a cover plate that covers the fine flow path formed on the chip substrate. For this reason, it is a cover plate having a flat surface that is in close contact with the chip substrate, but if there is no problem in terms of adhesion, strength, etc., a thin plate having an adhesive layer that may be a sheet or film, That is, it may be in the form of an adhesive sheet or an adhesive film. Therefore, the thickness is not particularly limited and can be set to the required thickness as required.
  • the two substrates can be firmly bonded together simply by pressure bonding. For example, pressing both sides with a pair of coated thin plate and chip substrate sandwiched between two pressure plates May be. Since the adhesive layer of the coated thin plate is pushed onto the surface to be contacted of the chip substrate and is in close contact with the surface, this state is maintained, so that no leakage occurs.
  • the pressure-sensitive adhesive layer is desirably a pressure-sensitive pressure-sensitive adhesive material.
  • Pressure sensitive adhesives use pressure to provide tackiness, but can be performed at room temperature (approximately 20-30 ° C) and do not require the use of heating equipment. Thus, since heating is not required for crimping, there is no possibility of deformation of the substrate made of resin, plastic, distortion of the flow path, or the like. Adhesion does not require additional equipment such as laser irradiation equipment or ultrasonic generators as long as there is a pressurizing tool, and can be carried out easily.
  • the production of such a chip is easy and simpler than other bonding methods.
  • the base material of the coated thin plate may be the same base material as the chip substrate. According to the method of the present invention, it is possible to impart characteristics different from those of the chip substrate and water repellency enhancement described later.
  • a method of bonding two or more substrates together using an adhesive is also used, but the adhesive is a solvent used for dissolving the adhesive immediately after the excess portion protrudes from between the substrates, or for bonding.
  • Part of the agent may remain in the substrate or dissolve in the fluid in the flow path, contaminating the inner wall of the flow path and adversely affecting reaction and detection. Or there is a risk that the excess adhesive will enter the microchannel and clog it.
  • such a concern does not require time for drying and hardening required when pasting with an adhesive. Can be glued.
  • undercoating may be applied between the coated thin plate and the adhesive layer to force-bond.
  • useful chemical primer agents include solvent solutions of acrylonitrile butadiene rubber, epoxy resin and polyamide resin. In addition to such chemical undercoats, mechanical undercoatings may be used.
  • the coated thin plate having the adhesive layer on the bonding surface can be produced by applying an adhesive material to form the adhesive layer on the coated thin plate.
  • the material of the coated thin plate is not particularly limited, but a material that can form an adhesive layer is preferable.
  • the pressure-sensitive adhesive layer is formed by applying a pressure-sensitive adhesive material to the coated thin plate, and the coating may be performed uniformly on the surface of the coated thin plate or by applying only to some necessary portions.
  • the thickness of the adhesive layer may be 50 to 5000 ⁇ m, preferably 100 to 1000 ⁇ m.
  • the adhesive layer of the coated thin plate is an adhesive layer coated with a pressure-sensitive adhesive material that can be easily bonded.
  • the pressure-sensitive adhesive material suitable for the present invention is a silicone-based adhesive material having water repellency, which is a pressure-sensitive adhesive containing a polydiorganosiloxane polyurea copolymer and a compatible tackifier. is there.
  • a typical silicone-based pressure-sensitive adhesive is composed of a polydiorganosiloxane polyurea copolymer and a silicone-tackifying resin added to enhance its pressure-sensitive adhesive properties.
  • the content of silicone tackifying resin is desirably present at least about 55% by weight based on the weight of the resin and the polydiorganosiloxane polyurea copolymer.
  • Useful polydi-noreganosiloxane polyurea copolymers comprise two or more different monomers having polydi-noreganosiloxane units, polyisocyanate residue units, and optionally organic polyamine residue units and Z or polyol residue units.
  • Including polymer This polymer is a product of a polycondensation reaction of polydionoreganosiloxane polyamine and polyisocyanate, and may be a product obtained by reacting with addition of a polyfunctional chain extender.
  • the silicone tackifier resin does not substantially contain silanol (Si-OH) having a molecular weight of about 100 to about 50,000! /, (The total mass of the silicone tackifier resin is (Based on the standard, silanol content of about 1.5% by mass or less) Silicone resin, and typical examples include MQ silicone tackified resin, MQD silicone tackified resin, MQT silicone Examples thereof include tackifying rosin.
  • the above-mentioned adhesive layer has a well-balanced aspect in terms of adhesive strength, adhesion, elasticity and strength required for adhesion of two substrates.
  • improving the function of the water-repellent valve disposed as a flow path element as described later has extremely advantageous characteristics.
  • the flow path and flow path elements (water repellent valve, etc.) in the microreactor of the present invention are: The movement of the fluid is controlled using the fact that the material of the substrate is hydrophobic. In other words, the response on the fluid side is improved with respect to control from pumps, valves, etc. acting on the fluid flowing through the flow path (changes in liquid supply pressure, liquid supply timing, changes in liquid supply direction, etc.). In addition, it becomes easier to control the movement.
  • the chip substrate is preferably made of a resin selected from polystyrene, polyolefin, polypropylene, and polycarbonate.
  • the contact angle that indicates the wettability of water to polyolefin is close to 90 degrees, which is the boundary of the occurrence of fluid “wetting”.
  • FIG. 4 shows a state in which a channel is formed by bonding a chip substrate and a coated thin plate having a pressure-sensitive adhesive layer (a substrate serving as a lid of the channel), and a fluid flows through the channel.
  • a pressure-sensitive adhesive layer a substrate serving as a lid of the channel
  • the portion remaining without being directly bonded to the chip substrate comes into contact with the fluid as the water repellent inner surface, so that the wettability of the inner surface of the flow path is lowered. Therefore, the contact angle ⁇ of the fluid in contact with the coated thin plate can be made larger than the contact angle ⁇ with respect to the chip substrate.
  • the flow path having such a structure has high water repellency on the flow path surface, which is convenient for controlling the fluid motion, and improves flow path characteristics such as prevention of loss of adsorption of a specimen substance. .
  • the fluid in each storage unit such as various reagent storage units and specimen storage unit is connected by a pump connection unit having a channel opening for communicating with the micropump. Then, the liquid is fed by a micropump communicated with each of these accommodating portions.
  • a plurality of fluids sent from a plurality of channels are combined at a single junction and mixed in a downstream mixing channel, and each of the plurality of channels is individually provided in a micropump separate from the chip. Each fluid is fed to each flow path force confluence by driving the micropump.
  • a micropump 11 is provided for each of the sample receiving unit 20, the reagent storage unit 18, and, if necessary, the control storage unit, to feed the content liquid in these storage units.
  • the micropump 11 is connected to the upstream side of the reagent storage unit 18, and supplies the driving liquid to the reagent storage unit side by the microphone port pump 11, thereby pushing out the reagent into the flow path and feeding the liquid.
  • the micropump unit is built in a device body (microanalysis system) that is separate from the microreactor. By attaching the microreactor to the device body, the micropump unit can be connected to the microreactor from the pump connection part 12. ( Figure 5).
  • a piezo pump is used as a micro pump. That is,
  • a second flow path provided in the flow path, wherein a ratio of a change in flow path resistance to a change in differential pressure is smaller than the first flow path;
  • a pressurization chamber provided in the flow path and connected to the first flow path and the second flow path; an actuator for changing a pressure inside the pressurization chamber;
  • FIG. 6 (a) is a cross-sectional view showing an example of a piezo pump
  • FIG. 6 (b) is a top view thereof.
  • the micropump includes a substrate 42 on which a first liquid chamber 48, a first flow path 46, a pressurization chamber 45, a second flow path 47, and a second liquid chamber 49 are formed, and is laminated on the substrate 42.
  • the micropump belongs to the system main body as an apparatus different from the chip constituting the microreactor, and communicates with the driving liquid tank.
  • the micro-port pump and the chip constituting the microreactor are joined together in a predetermined state, they are connected to the pump connection portion on the chip and communicate with the flow path of the chip.
  • FIG. 5 shows the configuration of the periphery of the pump connection part on the chip communicating with the piezo pump as the micropump.
  • the flow path downstream from the pump connection portion 12 connecting from the fluid delivery port of the micro pump to the flow path of the chip is on the chip constituting the micro reactor.
  • FIG. 5 (a) shows the configuration of the pump section for feeding the driving liquid
  • FIG. 5 (b) shows the configuration of the pump section for feeding the reagent.
  • reference numeral 24 denotes a drive fluid container, which corresponds to the drive fluid tank 10 in FIG.
  • the driving fluid may be either an oil system such as mineral oil or an aqueous system.
  • Reference numeral 25 denotes a sealing liquid storage unit that stores a sealing liquid for sealing a reagent stored in advance. This sealing liquid is for preventing the reagent from reacting due to leakage into the fine channel.
  • the sealing liquid may be filled in a fine flow path or may be filled in a reservoir provided for the sealing liquid.
  • the first liquid chamber 48 is connected to the port 72 connected to the driving liquid tank 10, and the second liquid chamber 49 is connected to the pump connecting portion.
  • Port 73 is provided.
  • the first fluid chamber plays the role of a “reservoir”, and receives supply of drive fluid from the drive fluid tank 10 at port 72.
  • the second liquid chamber forms a flow path for the micropump unit, and the end of the flow path 73 and connects to the “pump connection” 12 of the chip.
  • micropump itself can also be incorporated on the chip.
  • this form can be adopted when the flow path on the chip is relatively simple and the microreactor is used for the purpose or application premised on repeated use, for example, a chemical synthesis reaction.
  • Fig. 7 schematically shows the structure of a water repellent valve (also called a hydrophobic valve).
  • the water-repellent valve is composed of a portion with a narrowed passage diameter, that is, a "restricted passage", so that fluid that reaches this portion from one end passes to the other end. Is regulated.
  • the passage of fluid is blocked until the liquid feeding pressure in the forward direction (usually the direction in which the fluid is pushed out by the pump, that is, the downstream direction) reaches a predetermined pressure. It functions so as to allow passage of fluid by applying the above liquid feeding pressure.
  • This throttle channel is formed, for example, so that the length and breadth are about 200 m ⁇ 30 m with respect to the channel of 200 m ⁇ 200 m connected in series on both sides.
  • the pump drive voltage is not stopped, and the drive voltage is continuously applied to the pump at a pressure that does not allow the fluid to move for a predetermined time.
  • the fluid is pushed out from the end of the narrow throttle channel to the downstream downstream channel by increasing the drive voltage so that the liquid feed pressure is higher than the allowable pressure of the water repellent nozzle. . Therefore, the stopping and passage of the fluid can be controlled by the pump pressure from the micropump. For example, the movement of the fluid is temporarily stopped at a predetermined position of the flow path, and the force at the desired timing is also detected. It is also possible to resume liquid feeding to the previous flow path.
  • the stoppage of the fluid is deteriorated, and the fluid flows little by little.
  • the effectiveness of the water repellent valve is improved by increasing the water repellency.
  • the viscous behavior is more dominant than the inertial force in the behavior of the fluid, and if the flow path is water repellent, the fluid is less likely to stick to the flow path wall, so the viscous resistance is reduced. The fluid flows smoothly and stabilizes. For this reason, the flow rate of the fluid can be easily decelerated and stopped. 'Quantitative liquid feeding mechanism
  • a check valve is provided at an appropriate position in the flow path between the reagent storage unit, the reaction unit, and the detection unit. In addition to the above, it is preferable to provide a check valve at an appropriate position for preventing contamination as well as cross contamination as described above.
  • a microsphere is used as a valve body, and an opening formed in the substrate is opened and closed by the movement of the microsphere to allow and block the passage of fluid.
  • Check valve the valve element closes the flow path opening due to the backflow pressure.
  • a flexible substrate that is laminated on a substrate and whose end portion extends to the upper side of the opening may be a check valve that opens and closes the opening by moving the upper side of the opening up and down by hydraulic pressure. Good.
  • the flow path (fluid filling flow path 15A) between the check valve 16 and the water repellent valve 13a is filled with a predetermined amount of fluid, for example, a reagent.
  • a branch flow path 15B is provided that branches from the fluid filling flow path 15A and communicates with the micropump 11 that feeds the driving liquid.
  • the flow of the fluid is blocked until the fluid flow pressure in the forward direction and the fluid feed pressure in the forward direction reach a prescribed pressure, and a fluid delivery pressure higher than the prescribed pressure is applied.
  • the liquid feeding control unit 13 that allows passage of the fluid and can control the passage of the fluid by the pumping pressure of the pump, and the backflow prevention unit that prevents the backflow of the fluid in the flow path are included.
  • the fluid (reagent liquid) 60 is first supplied from the check valve 16 side to the reagent filling flow path 15A at a liquid feed pressure that prevents the fluid (reagent liquid) 60 from passing through the water repellent valve 13a first. Fill 60.
  • the micropump 11 feeds the driving liquid 70 in the direction toward the branch flow path 15B toward the reagent filling flow path 15A.
  • the fluid 60 filled in the fluid filling channel 15A is pushed out from the liquid feeding control unit 15A first, and thereby the fluid 60 is quantitatively fed.
  • the quantitative variation is reduced.
  • This quantitative liquid feeding mechanism is also used for reagent quantitative mixing and specimen quantitative liquid feeding. do it Yes.
  • the micro-analysis system of the present invention comprises:
  • a pump connection part having a channel opening for communicating with a micropump separate from the chip, a fine channel through which fluid flows, and a mixing channel through which two or more fluids merge and mix are provided at least A microfluidic chip,
  • the system body is at least
  • a base body A base body,
  • a micropump unit including a chip connection portion disposed in the base body and having a channel opening for communicating with the chip; and the micropump;
  • a control device for controlling at least the function of the micropump unit
  • the measurement is automatically performed by mounting the microreactor on the apparatus main body in which these components are integrated.
  • FIGS. 1 and 2 are conceptual diagrams showing a configuration in an embodiment of the micro-analysis system of the present invention.
  • a heating / cooling unit (Peltier element, heater) for reaction
  • a micropump for liquid feeding
  • driving liquid tank and a micropump having a chip connection part
  • Detection data that includes the unit, a control device (not shown) related to the control of liquid feeding, temperature, and reaction (not shown) and an optical detection system (LED, photodiode, etc.), and is also responsible for data collection (measurement) and processing
  • a system unit with a processing unit (CPU).
  • the components other than the chip are configured as a system device main body in which these are integrated, and the chip is attached to and detached from the device main body.
  • a plurality of micropumps having substantially the same shape are incorporated in the apparatus main body.
  • a micropump unit including the plurality of micropumps and a chip connecting part having a channel opening for communicating with the chip is arranged in the base body of the system body of the present invention. As shown in the figure, the chip is attached to the main body and the surfaces are overlapped The pump connection part of the chip is connected to the port of the chip connection part in the micro pump unit of the main body of the device.
  • the device of the electric control system that controls the micropump sets a target value of flow rate and timing of liquid feeding, and supplies a drive voltage corresponding to the target value to the micropump.
  • the control device responsible for such control is also incorporated into the main body of the system of the present invention as described later, and operates when the pump connection part of the microreactor chip is connected to the chip connection part of the micro pump cup of the main body. You can make it control!
  • the detection processing apparatus which is a unit responsible for optical detection, data collection and processing, is not particularly limited as a means for optical measurement when a technique such as visible spectroscopy or fluorescence photometry is applied. It is desirable that LEDs, photomultipliers, photodiodes, CCD cameras, etc. be installed as appropriate in the system unit body.
  • a control device that controls at least the function of the micropump unit and the function of the detection processing device is incorporated in the main body of the system of the present invention.
  • the control device may further control the system as a whole, including temperature management and measurement data recording and processing.
  • the control device incorporates various conditions set in advance for the order, volume, and timing of the liquid delivery into the software installed in the microanalysis system as the contents of the program along with the micropump and temperature control. .
  • a series of analysis steps of sample pretreatment, reaction, and detection is performed in a state where a chip is mounted on a system apparatus body in which the micro pump, the detection processing apparatus, and the control apparatus are integrated.
  • the analysis may be started after the sample is injected into the mounted chip, or after the chip into which the sample is injected is mounted in the apparatus main body.
  • Predetermined reactions and optical measurements based on the feeding, pretreatment and mixing of specimens and reagents are automatically performed as a series of continuous processes, and the measurement data is stored in a file together with the necessary conditions and recorded items. The stored form is desirable.
  • the microreactor of the present invention has at least a sample receiving part, a reagent storage part, a waste liquid storage part, a microphone port pump connection part, and a fine flow path, and communicates each part through the fine flow path.
  • the sample liquid is passed through the flow path constituting the reaction unit provided downstream of the sample receiving unit, and then the detection unit.
  • the microreactor is characterized in that the reaction product is measured by flowing it into the flow path, and the waste liquid generated as a result of the measurement is transferred to the waste liquid storage part and confined.
  • each element such as a liquid feed control section, a backflow prevention section, a reagent quantification section, and a mixing section has a microfabrication technique at a functionally appropriate position. It is installed by.
  • a target substance in a specimen can be analyzed by performing the following processing:
  • the sample in the sample container (or the sample) A target substance contained in a processing solution processed in the flow path),
  • Liquid is sent to the flow path that constitutes the reaction part and merged
  • the obtained reaction product substance or its treatment substance is sent to the flow path constituting the detection section, and the detection is performed by the detection treatment apparatus.
  • each reagent 31 accommodated in a plurality of reagent accommodating portions 18 located in the most upstream part is mixed in a flow channel downstream from the reagent accommodating portion 18,
  • the mixed reagent is sent to the downstream analysis channel.
  • the sample and the mixed reagent are merged and mixed from the Y-shaped channel or the like, the reaction is started by temperature rise or the like, and the reaction is detected in the detection unit provided downstream of the channel.
  • the specimen pretreatment section and the detection section communicate with each other through a through hole, and are a hollow chamber provided at the bottom of the microreactor, and are a sealed waste liquid reservoir that contains waste liquid generated as a result of specimen measurement. It is comprised so that it may have a waste liquid storage part, It is characterized by the above-mentioned.
  • the waste liquid reservoir is completely sealed in the microreactor and is a disposable chip, so it is discarded in the hazard box after use. For this reason, after injecting clinical specimens into the microreactor, inspectors who are involved in the examination need to be consistently in contact with the specimen even during the examination and after the examination, ensuring infectious safety.

Abstract

A microreactor and a microanalysis system enabling a high-reliability analysis. The microreactor which is a chip type microreactor for performing reaction by allowing fluid to flow through micro flow paths, and which comprises a chip substrate formed with micro flow paths, and a coated thin sheet having an adhesive layer on a pasting surface, the surface on the flow path side of the chip substrate and the pasting surface of the coated thin sheet being pressure bonded together which is the simplest way of bonding. The coated thin sheet may be the same in material as the chip substrate, or may have characteristics different from those of the chip substrate, for example, may be provided with a strong water repellency. The microanalysis system comprises a specimen-based chip mounting thereon a reagent and a liquid feed system element, and a device body which consists of separate control/detection components. When performing microanalysis, cross contamination, or carry over contamination is not likely to occur.

Description

技術分野  Technical field
[0001] 本発明は、マイクロリアクタおよびマイクロ分析システムに関し、さらに詳しくは、複 数基板をシリコーン系粘着材により接合させたマイクロリアクタおよびこのマイクロリア クタを含むマイクロ分析システムに関するものである。  The present invention relates to a microreactor and a microanalysis system, and more particularly to a microreactor in which a plurality of substrates are bonded with a silicone-based adhesive material and a microanalysis system including the microreactor.
背景技術  Background art
[0002] 近年、マイクロマシン技術および超微細加工技術を駆使することにより、従来の試 料調製、化学分析、化学合成などを行うための装置、手段 (例えばポンプ、バルブ、 流路、センサーなど)を微細化して 1チップ上に集積ィ匕したシステムが開発されている 。これは、 一 TAS (Micro total Analysis System)、バイオリアクタ、ラブ 'オン'チ ップ (Lab-on-chips)、バイオチップとも呼ばれ、医療検査'診断分野、環境測定分野 、農産製造分野でその応用が期待されている。煩雑な工程、熟練した手技、機器類 の操作が必要とされる場合には、自動化、高速化および簡便化されたミクロ化分析シ ステムは、コスト、必要試料量、所要時間のみならず、時間および場所を選ばない分 析を可能とする。  [0002] In recent years, by making full use of micromachine technology and ultrafine processing technology, devices and means (for example, pumps, valves, flow paths, sensors, etc.) for performing conventional sample preparation, chemical analysis, chemical synthesis, etc. have been developed. A system that has been miniaturized and integrated on a single chip has been developed. This is also called TAS (Micro total Analysis System), bioreactor, lab 'on-chips', biochip, and is used in medical examination' diagnostic field, environmental measurement field, agricultural production field. Its application is expected. When complex processes, skilled procedures, and instrumentation are required, automated, accelerated and simplified microanalysis systems are not only cost, required sample volume, and time, but also time Analysis is possible anywhere.
[0003] 臨床検査を始めとする各種検査を行う現場では、場所を選ばず迅速に結果を出す これらの分析用チップにおける測定においても、その定量性、解析の精度などが重 要視される。分析チップではそのサイズ、形態の点力 厳しい制約があるため、シン プルな構成で、高い信頼性の送液システムを確立することが課題となる。そのため精 度が高ぐ信頼性に優れるマイクロ流体制御素子が求められている。これに好適なマ イク口ポンプシステムを本発明者らはすでに提案して ヽる(特許文献 1および 2)。  [0003] In the field where various tests such as clinical tests are performed, results are obtained quickly regardless of the location. Even in the measurement using these analysis chips, the quantitativeness, accuracy of analysis, etc. are important. Since the analysis chip has severe restrictions on its size and shape, establishing a highly reliable liquid delivery system with a simple configuration is an issue. Therefore, there is a need for a microfluidic control element that has high accuracy and excellent reliability. The present inventors have already proposed a microphone pump system suitable for this (Patent Documents 1 and 2).
[0004] 簡便かつ迅速な分析手段を提供するマイクロリアクタには、実際問題として解決す べき具体的な問題、要望が提起され、その解決が望まれている。例えばチップ形状 のマイクロリアクタを作製するには、材質として加工性、機械的特性などに優れるブラ スチックを用いることが多い。この場合少なくとも 2枚の基板を接着してチップとするが 、その接合においては、有機溶剤を用いる溶着法を始めとして各種の技術が応用さ れている。 [0004] Specific problems and demands that should be solved as actual problems have been raised for microreactors that provide simple and rapid analysis means, and their solutions are desired. For example, in order to manufacture a chip-shaped microreactor, plastics having excellent processability and mechanical characteristics are often used as materials. In this case, at least two substrates are bonded to form a chip, and various techniques such as a welding method using an organic solvent are applied in the bonding. It is.
[0005] 例えば熱融着法では、基板と接触する熱板部分の表面状態がそのまま転写される ことから、光学的に平滑な熱板が必要となることも多い。標的物質の捕捉分子として 生体物質を充填するには、融着後での処理となる。超音波融着では、基板全体を歪 みなく溶着させることは容易ではない。接着剤による接着も充分な接合強度を得るに は長時間を要し、残存溶剤などの影響も懸念される。レーザー光を照射する溶着方 法もあるが、そのための特別の設備が必要となる(特許文献 3)。  [0005] For example, in the heat fusion method, the surface state of the hot plate portion in contact with the substrate is transferred as it is, so that an optically smooth hot plate is often required. Filling a biological material as a target molecule capture molecule is a process after fusion. In ultrasonic fusion, it is not easy to weld the entire substrate without distortion. Adhesion with adhesives takes a long time to obtain sufficient bonding strength, and there are concerns about the effects of residual solvents and the like. There is also a welding method of irradiating laser light, but special equipment is required for that (Patent Document 3).
特許文献 1:特開 2001-322099号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-322099
特許文献 2:特開 2004-108285号公報  Patent Document 2: JP 2004-108285 A
特許文献 3:特開 2005-74775号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-74775
特許文献 4:特表 2005-513196号公報  Patent Literature 4: Japanese Translation of Special Publication 2005-513196
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 上記の実状に鑑みてなされた本発明は、プラスチック材料力もなる複数の基板を互 いに接合する際に、簡便に張り合わせることができ、し力も密着良好なチップに作製 できるような基板で構成されるマイクロリアクタを提案する。 [0006] The present invention made in view of the above-described actual situation can be easily bonded to each other when a plurality of substrates having plastic material strength are bonded to each other, and can be manufactured into a chip with good adhesion. A microreactor composed of substrates is proposed.
課題を解決するための手段  Means for solving the problem
[0007] 本発明のマイクロリアクタは、 [0007] The microreactor of the present invention comprises:
微細流路内で流体を流し、反応を行うチップタイプのマイクロリアクタであって、 少なくとも、微細流路を形成したチップ基板と、  A chip-type microreactor that performs a reaction by flowing a fluid in a microchannel, and at least a chip substrate on which the microchannel is formed;
張り合せ面に粘着層を有する被覆薄板と、  A coated thin plate having an adhesive layer on the bonding surface;
を含み、チップ基板の微細流路側の面と被覆薄板の張り合せ面とを互いに張り合わ せてなるマイクロリアクタである。  And a microreactor in which the surface on the fine flow path side of the chip substrate and the bonding surface of the coated thin plate are bonded to each other.
[0008] 前記被覆薄板がシート状体もしくはフィルム状体であってもよ!/、。 [0008] The coated thin plate may be a sheet or film.
[0009] 前記被覆薄板の粘着層が、張り合せ面に感圧性粘着材を塗布した粘着層であるこ とが望ましぐ好ましくはシリコーン系粘着材である。 [0009] It is desirable that the adhesive layer of the coated thin plate is an adhesive layer in which a pressure-sensitive adhesive material is applied to the bonding surface, and a silicone-based adhesive material is preferable.
[0010] 前記シリコーン系粘着材カ ポリジオルガノシロキサンポリウレアコポリマーとシリコ ーン粘着性付与榭脂とからなる。 [0011] 前記シリコーン粘着性付与榭脂は、分子量が約 100〜約 50, 000であり、シラノー ル (Sト OH)含量が約 1. 5質量%以下のシリコーン榭脂である。 [0010] The silicone pressure-sensitive adhesive material comprises a polydiorganosiloxane polyurea copolymer and a silicone tackifier resin. [0011] The silicone tackifier resin is a silicone resin having a molecular weight of about 100 to about 50,000 and a silanol (S-OH) content of about 1.5 mass% or less.
[0012] また、前記チップ基板が、好ましくはポリスチレン、ポリオレフイン、ポリプロピレン、ポ リカーボネートから選ばれる榭脂材料で作製されている。 [0012] The chip substrate is preferably made of a resin material selected from polystyrene, polyolefin, polypropylene, and polycarbonate.
[0013] 前記微細流路は、それぞれ前記チップ基板とは別途のマイクロポンプに個別に連 通されており、該マイクロポンプを駆動することによりそれぞれの流路力 混合流路へ 各流体を送液する流路であることを特徴とする。 [0013] Each of the fine channels is individually connected to a micropump separate from the chip substrate, and each fluid is fed to each channel force mixing channel by driving the micropump. It is the flow path which carries out.
[0014] 本発明のマイクロリアクタは、 [0014] The microreactor of the present invention comprises:
分岐した微細流路と、  Branched microchannels,
予め設定された圧より低 ヽ圧では流体の通過を遮断し、予め設定された圧以上の圧 では流体の通過を許容する送液制御部と、  A liquid feed control unit that blocks passage of fluid at a lower pressure than a preset pressure, and allows passage of fluid at a pressure higher than a preset pressure;
流路内の流体の逆流を防止する逆流防止部と、  A backflow prevention unit for preventing backflow of fluid in the flow path;
から構成され、  Consisting of
分岐した流路内における流体の送液およびその送液量を制御する定量送液機構を 備えることを特徴としている。  It is characterized in that it is provided with a quantitative liquid feeding mechanism for controlling the liquid feeding and the amount of the liquid feeding in the branched flow path.
[0015] また、本発明のマイクロリアクタは、 [0015] In addition, the microreactor of the present invention,
検体受容部、試薬収容部、廃液貯留部、マイクロポンプ接続部および各部を連通す る微細流路を有し、  A sample receiving part, a reagent containing part, a waste liquid storing part, a micropump connecting part, and a fine flow path that connects each part,
さらに、前記検体受容部および前記試薬収容部より下流部に設けられた、前記マイ クロポンプ接続部に接続させる別途のマイクロポンプの作用により微細流路を通して 、該検体受容部にある検体と該試薬収容部にある試薬とが流入する反応部および該 反応部で反応して得られる反応生成物を測定する検出部を有することを特徴として いる。  Furthermore, the sample in the sample receiving unit and the reagent storing unit are passed through a fine channel by the action of a separate micro pump connected to the micro pump connecting unit provided downstream from the sample receiving unit and the reagent storing unit. And a detection unit for measuring a reaction product obtained by reaction in the reaction unit.
[0016] さらに、本発明は、前記のマイクロリアクタと、  [0016] Further, the present invention provides the microreactor described above,
装置本体と、  The device body;
を備え、その装置本体は、少なくとも  Comprising at least the device body.
ベース本体と、  A base body,
そのベース本体内に配置され、前記マイクロリアクタに連通させるための流路開口 を有するチップ接続部と、該マイクロポンプとを含むマイクロポンプユニットと、 反応生成物の検出を光学的に行う検出装置と、 A channel opening disposed in the base body for communicating with the microreactor A micro pump unit including the chip connection part, the micro pump, and a detection device that optically detects a reaction product,
少なくとも該マイクロポンプユニットの機能および温度を制御する制御装置と、 を備え、  A control device that controls at least the function and temperature of the micropump unit, and
これらの構成要素が一体化された装置本体に該マイクロリアクタを装着することによ り、測定を行うことを特徴とするマイクロ分析システムも含まれる。  Also included is a microanalysis system characterized in that measurement is performed by mounting the microreactor on an apparatus main body in which these components are integrated.
[0017] 前記マイクロポンプが、  [0017] The micropump comprises:
流路に設けられ、流路抵抗が差圧に応じて変化する第 1流路と、  A first flow path provided in the flow path, the flow path resistance changing according to the differential pressure;
前記流路に設けられ、差圧の変化に対する流路抵抗の変化割合が第 1流路よりも 小さい第 2流路と、  A second flow path provided in the flow path and having a flow rate resistance change ratio with respect to a change in differential pressure smaller than that of the first flow path;
前記流路に設けられ、第 1流路および第 2流路に接続された加圧室と、 該加圧室の内部圧力を変化させるァクチユエータと、  A pressurization chamber provided in the flow path and connected to the first flow path and the second flow path; an actuator for changing the internal pressure of the pressurization chamber;
該ァクチユエータを駆動する駆動装置と  A driving device for driving the actuator;
を備えるマイクロポンプであることが望まし 、。  Desirable to be a micropump with
発明の効果  The invention's effect
[0018] 本発明のマイクロリアクタは、張り合せ面に粘着層を有する被覆薄板を、チップ基板 の微細流路が形成された面に圧着すればよぐ他の接着方法よりも簡便に作製でき る。その被覆薄板は、チップ基板と同一の材質であってもよいが、チップ基板とは異 なる特性、例えば強い撥水性を付与できる。  [0018] The microreactor of the present invention can be produced more easily than other bonding methods by simply pressing a coated thin plate having an adhesive layer on the bonding surface to the surface of the chip substrate on which the fine channel is formed. The coated thin plate may be made of the same material as the chip substrate, but can provide characteristics different from the chip substrate, such as strong water repellency.
[0019] また、本発明のマイクロ分析システムは、検体ごとのマイクロリアクタと、装置本体で ある制御'検出コンポーネントとを別個にする構成をとる。微量分析に対し、クロス'コ ンタミネーシヨン、キャリーオーバ一'コンタミネーシヨンの問題が回避され、流体運動 の制御に基づく定量送液機構によって信頼性の高い高感度分析を可能とする。 図面の簡単な説明  [0019] The microanalysis system of the present invention has a configuration in which a microreactor for each specimen and a control 'detection component that is a main body of the apparatus are separated. Cross-contamination and carry-over contamination problems are avoided for trace analysis, and a highly reliable and highly sensitive analysis is possible with a quantitative liquid feeding mechanism based on fluid motion control. Brief Description of Drawings
[0020] [図 1]図 1は、マイクロリアクタと装置本体と力もなるマイクロ分析システムのシステム概 要図である。  [0020] [Fig. 1] Fig. 1 is a schematic diagram of a micro-analysis system including a microreactor, an apparatus main body, and force.
[図 2]図 2は、マイクロリアクタ(チップ)の概略図である。なお、マイクロポンプは、本マ イク口リアクタとは別途の装置に属する。 [図 3]図 3は、溝形成基板および被覆薄板なる基本的基板を用いて形成されたマイク 口リアクタ (チップ)構造体を示す。 FIG. 2 is a schematic view of a microreactor (chip). The micropump belongs to a separate device from the micro-mouth reactor. [FIG. 3] FIG. 3 shows a microphone-mouth reactor (chip) structure formed using a groove-formed substrate and a basic substrate that is a coated thin plate.
[図 4]図 4は、撥水性の被覆薄板を用いた場合の流体の濡れ性を図示したものである  [Fig. 4] Fig. 4 illustrates the wettability of fluid when a water-repellent coated thin plate is used.
[図 5]図 5は、マイクロポンプ 11をマイクロリアクタとは別体とした場合におけるマイクロ リアクタのポンプ接続部周辺の構成を示す。 (a)は、駆動液を送液するポンプ部の構 成を示した図であり、(b)は、試薬を送液するポンプ部の構成を示した図である。 [FIG. 5] FIG. 5 shows a configuration around the pump connection portion of the microreactor when the micropump 11 is separated from the microreactor. (a) is a diagram showing a configuration of a pump unit for feeding a driving liquid, and (b) is a diagram showing a configuration of a pump unit for feeding a reagent.
[図 6]図 6は、ピエゾポンプを示し、(a)は、このポンプの一例を示した断面図、(b)は 、その上面図である。(c)は、ピエゾポンプの他の例を示した断面図である。 FIG. 6 shows a piezo pump, (a) is a sectional view showing an example of the pump, and (b) is a top view thereof. (C) is a sectional view showing another example of a piezo pump.
[図 7]図 7は、撥水バルブを示す。 FIG. 7 shows a water repellent valve.
[図 8]図 8は、定量送液機構を示す。 [FIG. 8] FIG. 8 shows a quantitative liquid feeding mechanism.
符号の説明 Explanation of symbols
1 装置本体  1 Main unit
2 マイクロリアクタ (検査チップ)  2 Microreactor (inspection chip)
3 ぺノレチヱ素子  3 Penolech element
4 ヒーター  4 Heater
5 ホトダイオード  5 photodiode
6 LED  6 LED
7 流体貯留部  7 Fluid reservoir
10 駆動液タンク  10 Drive fluid tank
11 マイクロポンプ(ピエゾポンプ)  11 Micro pump (piezo pump)
12 ポンプ接続部  12 Pump connection
13 送液制御部  13 Liquid feed controller
13a 撥水バルブ  13a Water repellent valve
15 流路  15 flow path
15A 流体充填流路  15A fluid filling channel
15B 分岐流路 18 試薬収容部 15B branch flow path 18 Reagent storage
19 検体  19 specimens
20 検体受容部  20 Sample receiver
24 駆動液収容部  24 Drive fluid storage
25 封止液収容部  25 Sealing liquid container
26 空気抜き用流路  26 Air vent flow path
31 試薬  31 Reagents
41 上側基板  41 Upper board
42 基板  42 PCB
43 ¾S¾板  43 ¾S¾ plate
44 圧電素子  44 Piezoelectric element
45 加圧室  45 Pressurization chamber
46 第 1流路  46 1st channel
47 第 2流路  47 Second flow path
48 第 1液室  48 1st liquid chamber
49 第 2液室  49 Second chamber
54 検体送液側流路  54 Sample flow path
60 流体(試薬液)  60 Fluid (reagent solution)
70 駆動液  70 Driving fluid
71 シリコン基板  71 Silicon substrate
72 ポート  72 ports
73 ポート  73 ports
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明のマイクロリアクタおよびこのマイクロリアクタとマイクロポンプ、各種制 御装置、検出装置とからなるマイクロ分析システムについて説明する。なお、本明細 書において、「流体」とは、流体収容部など力 マイクロポンプにより送出され、マイク 口リアクタ'チップ内の流路を流れるものであり、適用する流体として液体、流動体、気 体などであってもよい。対象とする流体は、実際は液体であることが多ぐ具体的には 、各種の試薬類、試料液、変性剤液、洗浄液、駆動液などが該当する。 Hereinafter, a microreactor of the present invention and a microanalysis system including the microreactor, a micropump, various control devices, and a detection device will be described. In the present specification, “fluid” refers to a fluid that is sent out by a force micropump such as a fluid container and flows through a flow path in a microphone-mouth reactor 'chip, and a liquid, a fluid, a gas as a fluid to be applied. It may be. In particular, the target fluid is actually a liquid. And various reagents, sample liquids, denaturant liquids, cleaning liquids, driving liquids, and the like.
[0023] 「微細流路」は、マイクロリアクタに形成された微小な溝状流路のことであり、単に「 流路」ということもある。試薬類などの収容部、反応部もしくは検出部が、広幅の液溜 め状に形成されている場合にも、これらを含めて「微細流路」ということもある。「エレメ ント」とは、マイクロリアクタに設置される機能部品をいう。  The “fine channel” is a minute groove-like channel formed in the microreactor, and may be simply referred to as “channel”. Even when the container for the reagents, the reaction unit, or the detection unit is formed in the shape of a wide liquid reservoir, these may be referred to as a “fine channel”. “Element” means a functional component installed in a microreactor.
マイクロリアクタ ·マイクロリアクタチップ  Microreactor · Microreactor chip
本発明のマイクロリアクタは、一般に分析チップ、マイクロリアクタ'チップ、マイクロ 流体チップなどとも称されるものと同等である。そのチップは、縦横のサイズ力 通常 、数十 mm、高さが数 mm程度であり、微細加工技術によりマイクロオーダーサイズの 幅および高さを有する微細流路をその上に形成したものである。  The microreactor of the present invention is equivalent to what is generally called an analysis chip, a microreactor chip, a microfluidic chip and the like. The chip has a vertical and horizontal size force of usually several tens of mm and a height of about several mm, and a fine channel having a width and height of a micro-order size is formed thereon by a fine processing technique.
[0024] 本発明のマイクロリアクタは、化学分析、各種検査、試料の処理'分離、化学合成な どに利用される。チップの材料として、様々な成形材料が使用可能であり、個々の材 料特性に応じて使用される。 The microreactor of the present invention is used for chemical analysis, various inspections, sample processing / separation, chemical synthesis, and the like. Various molding materials can be used as the material of the chip, and it is used according to the characteristics of each material.
•流路  • Flow path
マイクロリアクタとしてのチップの流路は、基板上に目的に応じて予め設計された流 路配置に従って形成される。流体が流れる流路は、例えば、幅および深さが数十〜 数百 μ m、好ましくは幅 50〜200 μ m、深さ 25〜300 μ m程度に形成されるマイクロメ 一ターオーダー幅の微細流路である。流路幅が 50 m未満であると、流路抵抗が増 大し、流体の送出および検出上不都合である。幅 500 mを超える流路ではマイクロ スケール空間の利点が薄まる。その形成方法は、従来の微細加工技術による。典型 的にはフォトリソグラフィ技術による感光性榭脂による微細構造の転写が好適であり、 その転写構造を利用して、不要部分の除去、必要部分の付加、形状の転写が行わ れる。チップの構成要素を型どるパターンをフォトリソグラフィ技術により作製し、この パターンを樹脂に転写成形する。したがって、マイクロリアクタの微細流路を形成カロ ェする基本的基板の材料は、サブミクロンの構造も正確に転写でき、吸水による流路 の変形などが起こりにくぐ機械的特性の良好なプラスチックが好ましい。例えばポリ スチレン、ポリジメチルシロキサンなどは形状転写性に優れる。必要であれば射出成 形、押し出し成形などによる加工も使用してもよい。 [0025] マイクロメーター領域での流路と流体との関係では、一般に流体の挙動は慣性力よ りも粘性力の方が支配的となる。流路の幅が狭いほど、粘性力と慣性力との力の比を 表す無次元パラメータであるレイノルズ数( =密度 X速度 X代表寸法 ÷粘度)が小さ くなる。例えば幅が lmm以下の領域ではこの効果は大きい。このレイノルズ数が小さ いと流れが安定ィ匕し、レイノルズ数力も流体の流れが層流かどうかを推測できる。概 ね、レイノルズ数が 2000以下だと層流である。 The flow path of a chip as a microreactor is formed on a substrate according to a flow path arrangement designed in advance according to the purpose. The flow path through which the fluid flows is, for example, a micrometer-order width fine formed with a width and depth of several tens to several hundreds of μm, preferably a width of 50 to 200 μm and a depth of about 25 to 300 μm. It is a flow path. If the channel width is less than 50 m, the channel resistance increases, which is inconvenient for fluid delivery and detection. The advantage of micro-scale space diminishes in channels over 500 m wide. The forming method is based on a conventional fine processing technique. Typically, it is preferable to transfer a fine structure by a photosensitive resin using a photolithography technique, and an unnecessary portion is removed, a necessary portion is added, and a shape is transferred using the transfer structure. A pattern that models the constituent elements of the chip is produced by photolithography, and this pattern is transferred and molded onto a resin. Therefore, the basic substrate material for forming the fine flow path of the microreactor is preferably a plastic having good mechanical properties that can accurately transfer the sub-micron structure and hardly cause deformation of the flow path due to water absorption. For example, polystyrene and polydimethylsiloxane are excellent in shape transferability. If necessary, processing by injection molding or extrusion molding may be used. [0025] In the relationship between the flow path and the fluid in the micrometer region, in general, the behavior of the fluid is dominated by the viscous force rather than the inertial force. The narrower the flow path, the smaller the Reynolds number (= density X speed X typical dimension ÷ viscosity), which is a dimensionless parameter that represents the ratio of the viscous force to the inertial force. For example, this effect is significant in regions where the width is less than lmm. If this Reynolds number is small, the flow becomes stable, and the Reynolds number force can be used to infer whether the fluid flow is laminar. In general, if the Reynolds number is 2000 or less, the flow is laminar.
[0026] このようなマイクロリアクタの微細流路内を流体力 レイノルズ数の小さい層流形態 で流れる場合、流路中央部分を流れる流体の流速は、流路壁際付近を流れる流体 の流速よりも速くなるという一般的な特性がある。力かる特性は、複数流体を混合する 際の混合効率にも影響を与える。  [0026] When flowing in a micro flow channel of such a microreactor in a laminar flow form with a small fluid force Reynolds number, the flow velocity of the fluid flowing in the center portion of the flow channel is faster than the flow velocity of the fluid flowing near the flow channel wall. There is a general characteristic. The powerful characteristics also affect the mixing efficiency when mixing multiple fluids.
[0027] さらに微細空間では流路内面が疎水性であると、流体の流れを止めたり、緩めたり 、送液方向を変更するといつた流体運動の制御に好都合である。そこで微細流路を 形成する基板に、微量の検体液が途中でロスすることなく送液されるように、疎水性、 浣水性のプラスチック榭脂を使用すれば、流路内を特に撥水コーティングは必要な い。このような材質には、ポリスチレン、ポリオレフイン、ポリプロピレン、ポリエチレンテ レフタレート、ポリエチレンナフタレート、ポリエチレンビュルアルコール、ポリカーボネ ートなどの榭脂が例示される。特にチップ基板にはこれらのプラスチックが好適である  [0027] Further, in the fine space, when the inner surface of the flow path is hydrophobic, it is convenient for controlling the fluid movement when the flow of the fluid is stopped, loosened, or the liquid feeding direction is changed. Therefore, if hydrophobic and water-repellent plastic resin is used so that a small amount of sample liquid can be sent to the substrate that forms the fine channel without any loss in the middle, the water-repellent coating is especially applied to the inside of the channel. Is not required. Examples of such materials include resin such as polystyrene, polyolefin, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyethylene butyl alcohol, and polycarbonate. These plastics are particularly suitable for chip substrates.
•チップの構造とその作製 • Chip structure and fabrication
本発明のマイクロリアクタは、微細流路内で流体を流し、反応を行うチップタイプの マイクロリアクタであって、その基本構造は、 1以上の成形材料を適宜組み合わせて 作製され、少なくとも 2つの基板で本体が構成されるチップタイプのマイクロリアクタ( マイクロ流体チップ)である(図 3)。本発明のマイクロリアクタは、具体的には、少なくと も微細流路を形成したチップ基板と、張り合せ面に粘着層を有する被覆薄板とを含 み、チップ基板の微細流路側の面と被覆薄板の張り合せ面とを互いに張り合わせて なるマイクロリアクタである。  The microreactor of the present invention is a chip-type microreactor in which a fluid flows in a fine channel and performs a reaction, and its basic structure is manufactured by appropriately combining one or more molding materials, and the main body is composed of at least two substrates. This is a chip type microreactor (microfluidic chip) (Fig. 3). Specifically, the microreactor of the present invention includes a chip substrate having at least a fine channel formed thereon and a coated thin plate having an adhesive layer on a bonding surface, and the surface on the fine channel side of the chip substrate and the coated thin plate. This is a microreactor made by laminating the laminated surfaces of each other.
[0028] そのようなチップにおける好ま 、構造は、微細流路を形成したチップ基板 (溝形 成基板)および被覆薄板なる基本的基板を用いて、構造部として、ポンプ接続部、弁 基部および液溜部 (試薬収容部、検体収容部、廃液貯留部など)を形成するとともに 、流路が溝形成基板上に形成されており、該溝形成基板におけるこれらの構造部、 流路および検出部を、あるいは少なくとも検出部を光透過性の被覆薄板を密着させ て覆うことを特徴としている。 [0028] Preferably, in such a chip, the structure includes a chip substrate (groove forming substrate) in which a fine channel is formed and a basic substrate that is a coated thin plate. A base and a liquid reservoir (reagent storage unit, specimen storage unit, waste liquid storage unit, etc.) are formed, and a flow path is formed on the groove forming substrate. The detection section, or at least the detection section, is covered with a light-transmitting coated thin plate.
[0029] 本発明の具体的な態様を例示する図 3 (A)のマイクロリアクタでは、溝形成基板お よび張り合せ面に粘着層を有する被覆薄板の 2つの基板を張り合わせて形成される チップが示されている。図 3 (B)では、微細流路を形成する面と反対側の面に、廃液 貯留部が形成されるため、溝形成基板の両面にそれぞれ被覆薄板、被覆基板が張 り合わされる態様を表す力 少なくとも微細流路側の面には、上記張り合せ面に粘着 層を有する被覆薄板を張り合わせる。この場合、 2枚の被覆薄板の材料は同一でも 異なってもよい。  [0029] In the microreactor of FIG. 3A illustrating a specific embodiment of the present invention, a chip formed by laminating two substrates of a groove-formed substrate and a coated thin plate having an adhesive layer on the bonding surface is shown. Has been. In FIG. 3 (B), the waste liquid storage part is formed on the surface opposite to the surface on which the fine channel is formed, so that the coated thin plate and the coated substrate are bonded to both surfaces of the groove forming substrate, respectively. Force A coated thin plate having an adhesive layer is bonded to the bonded surface at least on the surface on the fine channel side. In this case, the material of the two coated thin plates may be the same or different.
[0030] 本発明のマイクロリアクタを製造するには、  [0030] To produce the microreactor of the present invention,
シート状体もしくはフィルム状体であってもよい被覆薄板の一面に、シリコーン粘着 性付与榭脂(分子量として約 100〜約 50, 000であり、シラノール (Si-OH)含量が約 1. 5質量%以下)とポリジオルガノシロキサンポリウレアコポリマーと力もなる感圧性粘 着材を一様に塗布して張り合せ面となる粘着層を形成し、この粘着層の面と微細流 路が形成されたチップ基板の流路側面とを、  On one side of the coated thin plate, which may be a sheet or film, a silicone tackifier resin (molecular weight of about 100 to about 50,000, silanol (Si-OH) content of about 1.5 mass) %)) And a polydiorganosiloxane polyurea copolymer and a pressure-sensitive adhesive material that can also be applied uniformly to form a pressure-sensitive adhesive layer as a bonding surface, and the surface of this pressure-sensitive adhesive layer and a fine substrate on which fine channels are formed The side of the channel
所定の位置で互いに密着させながら、圧着して張り合わせればよ!/、。  Just stick together and stick them together in place!
[0031] 微細流路を形成したチップ本体であるチップ基板は、被覆薄板と張り合わせること により、その微細流路が封鎖され、廃液貯留部が密封される。前記被覆薄板は、チッ プ基板に形成された微細流路を覆う蓋板として、張り合せ面に粘着層を有する被覆 薄板である。このためチップ基板と密着する平坦な面を有する蓋板であるが、密着性 、強度などの点で問題がなければシート状体もしくはフィルム状体であってもよぐ粘 着層を有する薄板、すなわち粘着シートもしくは粘着フィルムの形態でも構わない。し たがってその厚さは特に限定されず必要に応じて所要の厚さに設定することができる [0031] The chip substrate, which is the chip body in which the fine channel is formed, is bonded to the coated thin plate, thereby sealing the fine channel and sealing the waste liquid reservoir. The coated thin plate is a coated thin plate having an adhesive layer on the bonding surface as a cover plate that covers the fine flow path formed on the chip substrate. For this reason, it is a cover plate having a flat surface that is in close contact with the chip substrate, but if there is no problem in terms of adhesion, strength, etc., a thin plate having an adhesive layer that may be a sheet or film, That is, it may be in the form of an adhesive sheet or an adhesive film. Therefore, the thickness is not particularly limited and can be set to the required thickness as required.
[0032] チップを作製する際に両基板を単に圧着するだけで強固に接着させることができる 。例えば 2枚の圧板の間に被覆薄板およびチップ基板の組を挟んで両側力 圧迫し てもよい。被覆薄板の粘着層がチップ基板の接触対象面上に押し込まれ、その面に 密着してこの状態が維持されるので漏液を生じることはない。 [0032] When the chip is manufactured, the two substrates can be firmly bonded together simply by pressure bonding. For example, pressing both sides with a pair of coated thin plate and chip substrate sandwiched between two pressure plates May be. Since the adhesive layer of the coated thin plate is pushed onto the surface to be contacted of the chip substrate and is in close contact with the surface, this state is maintained, so that no leakage occurs.
[0033] この作業を簡便にするためには、粘着層が感圧性粘着材であることが望ましい。感 圧性粘着材は、粘着性を与えるために圧力を用いるが、室温 (約 20〜30°C)で行な うことができ、加熱器具の使用を特に必要としない。このように圧着には加熱を必要と しないので、材質が榭脂、プラスチックである基板の変形、流路の歪みなどが生じる おそれはない。接着には加圧用具さえあればよぐレーザー照射設備、超音波発生 器といった装置などを付帯的に必要とせず、簡便に実施できる。  [0033] In order to simplify this operation, the pressure-sensitive adhesive layer is desirably a pressure-sensitive pressure-sensitive adhesive material. Pressure sensitive adhesives use pressure to provide tackiness, but can be performed at room temperature (approximately 20-30 ° C) and do not require the use of heating equipment. Thus, since heating is not required for crimping, there is no possibility of deformation of the substrate made of resin, plastic, distortion of the flow path, or the like. Adhesion does not require additional equipment such as laser irradiation equipment or ultrasonic generators as long as there is a pressurizing tool, and can be carried out easily.
[0034] このようなチップの作製は、容易であり他の接着方法よりも簡便である。被覆薄板の 基材は、チップ基板と同一の基材であってもよい。本発明の方式によれば、チップ基 板とは異なる特性、後述する撥水性の強化を付与できる。  [0034] The production of such a chip is easy and simpler than other bonding methods. The base material of the coated thin plate may be the same base material as the chip substrate. According to the method of the present invention, it is possible to impart characteristics different from those of the chip substrate and water repellency enhancement described later.
[0035] 接着剤を使用して 2つ以上の基板を張り合わせる方法も用いられているが、接着剤 は基板の間から余剰分がはみ出しやすぐあるいは接着剤の溶解に使用した溶剤、 または接着剤の一部が基板内に残留したり、流路内の流体に溶解して、流路内壁を 汚染し、反応、検出に悪影響を与える可能性もある。あるいは、接着剤の余剰分が微 細流路に入り込んで詰まらせるおそれもある。本発明のように粘着層を用いて接着す る方式ではこのような懸念はなぐ接着剤で張り合わせる場合に必要な乾燥および硬 化のための時間が不要であることから、はるかに短時間で接着できる。  [0035] A method of bonding two or more substrates together using an adhesive is also used, but the adhesive is a solvent used for dissolving the adhesive immediately after the excess portion protrudes from between the substrates, or for bonding. Part of the agent may remain in the substrate or dissolve in the fluid in the flow path, contaminating the inner wall of the flow path and adversely affecting reaction and detection. Or there is a risk that the excess adhesive will enter the microchannel and clog it. In the method of bonding using an adhesive layer as in the present invention, such a concern does not require time for drying and hardening required when pasting with an adhesive. Can be glued.
[0036] なお必要であれば、被覆薄板と粘着層との間に「下塗」を施して力 接合してもよい 。有用な化学的下塗剤には、アクリロニトリルブタジエンゴム、エポキシ榭脂およびポ リアミド榭脂の溶媒溶液が例示される。このような化学的下塗の他に、機械的下塗で あってもよい。  If necessary, “undercoating” may be applied between the coated thin plate and the adhesive layer to force-bond. Useful chemical primer agents include solvent solutions of acrylonitrile butadiene rubber, epoxy resin and polyamide resin. In addition to such chemical undercoats, mechanical undercoatings may be used.
[0037] 張り合せ面に粘着層を有する被覆薄板は、粘着材を塗布して被覆薄板に粘着層を 形成することにより作製できる。被覆薄板の材質は特に問わないが、粘着層の形成 が良好となるものが好ましい。粘着層は、被覆薄板に粘着材を塗布して形成させるが 、塗布は、被覆薄板の表面に一様に塗布してもよぐあるいは一部の必要箇所のみ に塗布して形成される。  [0037] The coated thin plate having the adhesive layer on the bonding surface can be produced by applying an adhesive material to form the adhesive layer on the coated thin plate. The material of the coated thin plate is not particularly limited, but a material that can form an adhesive layer is preferable. The pressure-sensitive adhesive layer is formed by applying a pressure-sensitive adhesive material to the coated thin plate, and the coating may be performed uniformly on the surface of the coated thin plate or by applying only to some necessary portions.
粘着層の厚さは、 50〜5000 μ m、好ましくは 100〜1000 μ mであればよい。 [0038] 本発明では上記のような両基板の接着方法を考慮して、被覆薄板の粘着層が、張 り合せが容易になし得る、感圧性粘着材を塗布した粘着層であることが望ましい。本 発明に好適な感圧性粘着材は、とりわけ撥水性を備えて ヽるシリコーン系粘着材で あり、このものはポリジオルガノシロキサンポリウレアコポリマーおよび相溶性粘着性 付与剤を含有する感圧性の粘着剤である。 The thickness of the adhesive layer may be 50 to 5000 μm, preferably 100 to 1000 μm. In the present invention, in consideration of the above-described method for bonding both substrates, it is desirable that the adhesive layer of the coated thin plate is an adhesive layer coated with a pressure-sensitive adhesive material that can be easily bonded. . The pressure-sensitive adhesive material suitable for the present invention is a silicone-based adhesive material having water repellency, which is a pressure-sensitive adhesive containing a polydiorganosiloxane polyurea copolymer and a compatible tackifier. is there.
[0039] 典型的なシリコーン系の粘着剤は、ポリジオルガノシロキサンポリウレアコポリマーと 、その感圧接着特性を強化するために添加されるシリコーン粘着性付与榭脂とから なる。シリコーン粘着性付与樹脂の含有割合は、この樹脂と前記ポリジオルガノシロ キサンポリウレアコポリマーの質量を基準にして少なくとも約 55質量%で存在すること が望ましい。有用なポリジ才ノレガノシロキサンポリウレアコポリマーは、ポリジ才ノレガノ シロキサン単位、ポリイソシァネート残基単位、および任意に有機ポリアミン残基単位 および Zまたはポリオール残基単位を有する、異なる二種以上のモノマーを含むポリ マーである。このポリマーは、ポリジオノレガノシロキサンポリアミンとポリイソシァネート との縮重合反応の生成物であり、さらに多官能性連鎖延長剤を添加して反応させた 生成物であってもよい。  [0039] A typical silicone-based pressure-sensitive adhesive is composed of a polydiorganosiloxane polyurea copolymer and a silicone-tackifying resin added to enhance its pressure-sensitive adhesive properties. The content of silicone tackifying resin is desirably present at least about 55% by weight based on the weight of the resin and the polydiorganosiloxane polyurea copolymer. Useful polydi-noreganosiloxane polyurea copolymers comprise two or more different monomers having polydi-noreganosiloxane units, polyisocyanate residue units, and optionally organic polyamine residue units and Z or polyol residue units. Including polymer. This polymer is a product of a polycondensation reaction of polydionoreganosiloxane polyamine and polyisocyanate, and may be a product obtained by reacting with addition of a polyfunctional chain extender.
[0040] 他方、前記シリコーン粘着性付与榭脂は、分子量として約 100〜約 50, 000の全く シラノール (Si-OH)を実質的に含まな!/、 (シリコーン粘着性付与樹脂の全質量を基 準にして、シラノール含量が約 1. 5質量%以下)シリコーン榭脂であり、典型的な例と して、 MQシリコーン粘着性付与榭脂、 MQDシリコーン粘着性付与榭脂、 MQTシリコ ーン粘着性付与榭脂などが挙げられる。  [0040] On the other hand, the silicone tackifier resin does not substantially contain silanol (Si-OH) having a molecular weight of about 100 to about 50,000! /, (The total mass of the silicone tackifier resin is (Based on the standard, silanol content of about 1.5% by mass or less) Silicone resin, and typical examples include MQ silicone tackified resin, MQD silicone tackified resin, MQT silicone Examples thereof include tackifying rosin.
[0041] セグメント化コポリマーおよびシリコーン粘着性付与樹脂との組み合わせ力もなる上 記粘着剤の具体的な組成、接着特性、製法などが、特開 2005-513196号公報 (特許 文献 4)に詳細に記載されており、それを用いた製剤が接着剤として市販されている。  [0041] The specific composition, adhesive properties, production method, and the like of the above-mentioned pressure-sensitive adhesive that can be combined with the segmented copolymer and the silicone tackifying resin are described in detail in JP-A-2005-513196 (Patent Document 4). And preparations using the same are commercially available as adhesives.
[0042] 上記の粘着層が、 2枚の基板の接着に要請される粘着力、合着性、弾性および強 度の諸点でバランスよく具えていることは言うまでもなぐさらにより高い撥水性を示す ことは、微細流路の流路特性を向上させるとともに、後述のように流路エレメントとして 配設されて ヽる撥水バルブの機能を改善すると ヽぅ極めて有利な特性がある。  [0042] Needless to say, the above-mentioned adhesive layer has a well-balanced aspect in terms of adhesive strength, adhesion, elasticity and strength required for adhesion of two substrates. In addition to improving the flow characteristics of the fine flow path, improving the function of the water-repellent valve disposed as a flow path element as described later has extremely advantageous characteristics.
[0043] 本発明のマイクロリアクタにおける流路および流路エレメント (撥水バルブなど)は、 基板の材質が疎水性であることを利用して流体の動きを制御している。すなわち、流 路を流れる流体に作用するポンプ、バルブなどからのコントロール (送液圧力の変化 、送液タイミングを計ること、送液方向の変更など)に対して流体側のレスポンスが向 上するために、その運動を制御しやすくなる。 [0043] The flow path and flow path elements (water repellent valve, etc.) in the microreactor of the present invention are: The movement of the fluid is controlled using the fact that the material of the substrate is hydrophobic. In other words, the response on the fluid side is improved with respect to control from pumps, valves, etc. acting on the fluid flowing through the flow path (changes in liquid supply pressure, liquid supply timing, changes in liquid supply direction, etc.). In addition, it becomes easier to control the movement.
[0044] 流路が撥水性を有することは、図 4に示すように、流路を流れる流体の濡れ性を示 す接触角がより大きいことで表される。したがって前記チップ基板は、ポリスチレン、 ポリオレフイン、ポリプロピレン、ポリカーボネートから選ばれる榭脂で作成されている ことが望ましい。例えば水のポリオレフインに対する濡れ性を示す接触角は、流体の「 濡れ」の発生の境界である 90度に近 、。  [0044] The water repellency of the flow path is represented by a larger contact angle indicating the wettability of the fluid flowing through the flow path, as shown in FIG. Therefore, the chip substrate is preferably made of a resin selected from polystyrene, polyolefin, polypropylene, and polycarbonate. For example, the contact angle that indicates the wettability of water to polyolefin is close to 90 degrees, which is the boundary of the occurrence of fluid “wetting”.
[0045] 図 4は、チップ基板と粘着層を有する被覆薄板 (流路の蓋となる基板)とを張り合わ せることにより流路が形成され、その中を流体が流れる様子を示す。シリコーン系粘 着材の粘着層のうち、チップ基板との接合に直接与らずに残っている部分が撥水性 の内表面として流体と接触するために、流路内面の濡れ性が低下する。したがって 被覆薄板に接する流体の接触角 Θは、チップ基板に対する接触角 Θよりも大きくす ることも可能である。このような構成の流路では、前記のように流路面の撥水性が高ま つて流体運動の制御に好都合であることと、検体物質などの吸着喪失の防止など、 流路特性の向上をもたらす。  FIG. 4 shows a state in which a channel is formed by bonding a chip substrate and a coated thin plate having a pressure-sensitive adhesive layer (a substrate serving as a lid of the channel), and a fluid flows through the channel. Of the adhesive layer of the silicone-based adhesive material, the portion remaining without being directly bonded to the chip substrate comes into contact with the fluid as the water repellent inner surface, so that the wettability of the inner surface of the flow path is lowered. Therefore, the contact angle Θ of the fluid in contact with the coated thin plate can be made larger than the contact angle Θ with respect to the chip substrate. As described above, the flow path having such a structure has high water repellency on the flow path surface, which is convenient for controlling the fluid motion, and improves flow path characteristics such as prevention of loss of adsorption of a specimen substance. .
[0046] 上記のような撥水性を付与するために、流路内を特に撥水コーティングする方法も ある。しかし微細かつ複雑な流路パターンが形成されるチップに撥水コーティングを 適切に実施することは、本発明のようにチップの作製時に撥水性を有する粘着層を 使用する方法に比べると、煩雑であることは疑 ヽな ヽ。  [0046] In order to impart water repellency as described above, there is also a method in which the inside of the flow path is particularly water-repellent. However, appropriately performing water-repellent coating on a chip on which a fine and complicated flow path pattern is formed is more complicated than the method of using a water-repellent adhesive layer when manufacturing a chip as in the present invention. It is doubtful that there is.
[0047] 本発明の接着方式であれば、上記のように複雑かつ微細な流路パターンが表面に 形成されたチップ基板でも、そのノ ターンに閉塞、変形、損傷などの支障を与えるこ となぐチップ基板の流路側の面を、被覆薄板と簡便に圧着させて接合することがで きる。  [0047] According to the bonding method of the present invention, even a chip substrate having a complicated and fine flow path pattern formed on the surface as described above may cause obstruction such as blocking, deformation, or damage to the pattern. The surface of the chip substrate on the flow path side can be easily bonded to the coated thin plate by bonding.
[0048] マイクロポンプおよびポンプ接続部  [0048] Micropump and pump connection
本発明のマイクロリアクタでは、各種試薬の収容部、検体収容部などの各収容部内 の流体が、マイクロポンプに連通させるための流路開口を有するポンプ接続部によつ てこれらの各収容部に連通されたマイクロポンプによって送液される。複数流路から 送液されてきた複数の流体が、一合流点で合流しそれより下流の混合流路で混合さ れ、前記の複数流路は、それぞれ前記チップとは別途のマイクロポンプに個別に連 通されており、該マイクロポンプを駆動することによりそれぞれの流路力 合流点へ各 流体を送液している。 In the microreactor of the present invention, the fluid in each storage unit such as various reagent storage units and specimen storage unit is connected by a pump connection unit having a channel opening for communicating with the micropump. Then, the liquid is fed by a micropump communicated with each of these accommodating portions. A plurality of fluids sent from a plurality of channels are combined at a single junction and mixed in a downstream mixing channel, and each of the plurality of channels is individually provided in a micropump separate from the chip. Each fluid is fed to each flow path force confluence by driving the micropump.
•マイクロポンプ  • Micro pump
本実施形態では、検体受容部 20、試薬収容部 18、さらに必要に応じてコントロー ル収容部のそれぞれについて、これらの収容部の内容液を送液するマイクロポンプ 1 1が設けられている。マイクロポンプ 11は試薬収容部 18の上流側に接続され、マイク 口ポンプ 11により駆動液を試薬収容部側へ供給することによって、試薬を流路へ押 し出して送液している。マイクロポンプユニットは、マイクロリアクタとは別途の装置本 体 (マイクロ分析システム)に組み込まれており、マイクロリアクタを装置本体に装着す ることによって、ポンプ接続部 12からマイクロリアクタに接続されるようになっている( 図 5)。  In the present embodiment, a micropump 11 is provided for each of the sample receiving unit 20, the reagent storage unit 18, and, if necessary, the control storage unit, to feed the content liquid in these storage units. The micropump 11 is connected to the upstream side of the reagent storage unit 18, and supplies the driving liquid to the reagent storage unit side by the microphone port pump 11, thereby pushing out the reagent into the flow path and feeding the liquid. The micropump unit is built in a device body (microanalysis system) that is separate from the microreactor. By attaching the microreactor to the device body, the micropump unit can be connected to the microreactor from the pump connection part 12. (Figure 5).
[0049] 本実施形態では、マイクロポンプとしてピエゾポンプを用いて!/、る。すなわち、  [0049] In this embodiment, a piezo pump is used as a micro pump. That is,
流路に設けられ、流路抵抗が差圧に応じて変化する第一流路と、  A first flow path provided in the flow path, the flow path resistance changing according to the differential pressure;
前記流路に設けられ、差圧の変化に対する流路抵抗の変化の割合が該第一流路ょ りも小さい第二流路と、  A second flow path provided in the flow path, wherein a ratio of a change in flow path resistance to a change in differential pressure is smaller than the first flow path;
前記流路に設けられ、該第一流路および該第二流路に接続された加圧室と、 該加圧室の内部の圧力を変化させるためのァクチユエータと  A pressurization chamber provided in the flow path and connected to the first flow path and the second flow path; an actuator for changing a pressure inside the pressurization chamber;
を備えたピエゾポンプである(図 6)。  This is a piezo pump equipped with (Fig. 6).
[0050] マイクロポンプとしては、ァクチユエータを設けた弁室の流出入孔に逆止弁を設け た逆止弁型のポンプなど各種のものが使用できる力 ピエゾポンプを用いることが好 適である。図 6 (a)は、ピエゾポンプの一例を示した断面図、図 6 (b)は、その上面図 である。このマイクロポンプには、第 1液室 48、第 1流路 46、加圧室 45、第 2流路 47 、および第 2液室 49が形成された基板 42と、基板 42上に積層された上側基板 41と、 上側基板 41上に積層された振動板 43と、振動板 43の加圧室 45と対向する側に積 層された圧電素子 44と、圧電素子 44を駆動するための駆動部(図示せず)とが設け られている。この駆動部と、圧電素子 44表面上の 2つの電極とは、フレキシブルケー ブルなどによる配線で接続されており、カゝかる接続を通じて当該駆動部の駆動回路 によって圧電素子 44に特定波形の電圧を印加する構成となって ヽる。その詳細は、 上記特許文献 1および 2に記載されて 、る。 [0050] As the micropump, it is preferable to use a force piezo pump that can use various types of pumps such as a check valve type pump provided with a check valve in an inlet / outlet hole of a valve chamber provided with an actuator. FIG. 6 (a) is a cross-sectional view showing an example of a piezo pump, and FIG. 6 (b) is a top view thereof. The micropump includes a substrate 42 on which a first liquid chamber 48, a first flow path 46, a pressurization chamber 45, a second flow path 47, and a second liquid chamber 49 are formed, and is laminated on the substrate 42. Upper substrate 41, diaphragm 43 laminated on upper substrate 41, piezoelectric element 44 stacked on the side of diaphragm 43 facing pressure chamber 45, and drive unit for driving piezoelectric element 44 (Not shown) It has been. The drive unit and the two electrodes on the surface of the piezoelectric element 44 are connected by wiring such as a flexible cable, and a voltage of a specific waveform is applied to the piezoelectric element 44 by the drive circuit of the drive unit through the open connection. It becomes a configuration to apply. Details thereof are described in Patent Documents 1 and 2 above.
[0051] また、 1枚のシリコン基板に複数のポンプを形成することも可能である。この場合、チ ップと接続したポートの反対側のポートには、駆動液タンク 10が接続されていることが 望ましい。ポンプが複数個ある場合、それらのポートは共通の駆動液タンクに接続さ れていてもよい。 [0051] It is also possible to form a plurality of pumps on one silicon substrate. In this case, it is desirable that the driving fluid tank 10 is connected to the port opposite to the port connected to the chip. If there are multiple pumps, their ports may be connected to a common drive fluid tank.
[0052] 上記マイクロポンプと、本発明のマイクロ流体システムとの関係を以下説明する。本 発明の好ましい態様を示す図 1の例では、マイクロポンプは、マイクロリアクタを構成 するチップとは別の装置としてシステム本体に属し、駆動液タンクと連通している。マ イク口ポンプは、マイクロリアクタを構成するチップとは、両者が互いに所定の態勢で 接合したときに、該チップ上のポンプ接続部と連結して該チップの流路と連通するよ うになる。  [0052] The relationship between the micropump and the microfluidic system of the present invention will be described below. In the example of FIG. 1 showing a preferred embodiment of the present invention, the micropump belongs to the system main body as an apparatus different from the chip constituting the microreactor, and communicates with the driving liquid tank. When the micro-port pump and the chip constituting the microreactor are joined together in a predetermined state, they are connected to the pump connection portion on the chip and communicate with the flow path of the chip.
[0053] 図 5は、マイクロポンプとしてのピエゾポンプと連通するチップ上のポンプ接続部周 辺の構成を示す。この図でマイクロポンプの流体送出のポートからチップの流路へと 接続するポンプ接続部 12から下流の流路がマイクロリアクタを構成するチップ上にあ る。図 5 (a)は駆動液を送液するポンプ部の構成を示し、図 5 (b)は試薬を送液するポ ンプ部の構成を示している。ここで、符号 24は駆動液の収容部であり、図 1の駆動液 タンク 10に相当する。駆動液は鉱物油などのオイル系または水系のいずれであって もよい。符号 25は、予め収容された試薬を封止する封止液を収容する封止液収容部 である。この封止液は、微細流路への漏出により試薬が反応してしまうこと等を防止 するためのものである。封止液は、微細流路中に充填してもよぐ封止液用に設けら れた貯留部に充填してもよ ヽ。  FIG. 5 shows the configuration of the periphery of the pump connection part on the chip communicating with the piezo pump as the micropump. In this figure, the flow path downstream from the pump connection portion 12 connecting from the fluid delivery port of the micro pump to the flow path of the chip is on the chip constituting the micro reactor. FIG. 5 (a) shows the configuration of the pump section for feeding the driving liquid, and FIG. 5 (b) shows the configuration of the pump section for feeding the reagent. Here, reference numeral 24 denotes a drive fluid container, which corresponds to the drive fluid tank 10 in FIG. The driving fluid may be either an oil system such as mineral oil or an aqueous system. Reference numeral 25 denotes a sealing liquid storage unit that stores a sealing liquid for sealing a reagent stored in advance. This sealing liquid is for preventing the reagent from reacting due to leakage into the fine channel. The sealing liquid may be filled in a fine flow path or may be filled in a reservoir provided for the sealing liquid.
[0054] 図 6 (a)、 (b)に図示されていないが、第 1液室 48には駆動液タンク 10につながるポ ート 72が、第 2液室 49にはポンプ接続部と連結するポート 73が設けられている。第 1 液室は、「リザーバ」の役割を演じ、ポート 72で駆動液タンク 10から駆動液の供給を受 けている。第 2液室は、マイクロポンプユニットの流路を形成し、その流路の先にポー ト 73があり、チップの「ポンプ接続部」 12とつながる。 [0054] Although not shown in Figs. 6 (a) and (b), the first liquid chamber 48 is connected to the port 72 connected to the driving liquid tank 10, and the second liquid chamber 49 is connected to the pump connecting portion. Port 73 is provided. The first fluid chamber plays the role of a “reservoir”, and receives supply of drive fluid from the drive fluid tank 10 at port 72. The second liquid chamber forms a flow path for the micropump unit, and the end of the flow path 73 and connects to the “pump connection” 12 of the chip.
[0055] なお、マイクロポンプそのものもチップ上に組み込むことも可能である。特にチップ 上の流路が比較的単純であり、反復使用を前提とする目的または用途、例えばィ匕学 合成反応用のマイクロリアクタとする場合にはこの形態を採り得る。 Note that the micropump itself can also be incorporated on the chip. In particular, this form can be adopted when the flow path on the chip is relatively simple and the microreactor is used for the purpose or application premised on repeated use, for example, a chemical synthesis reaction.
'撥水バルブ  'Water repellent valve
図 7に撥水バルブ (疎水性バルブとも言う)の構造を模式的に示している。撥水バル ブは、図 7に示すように流路径を絞った部分、すなわち「絞り流路」からなり、これによ り一端側からこの部分に達した流体が、他端側へ通過することを規制している。つまり 流路を途中で細くすることによって、正方向(通常、流体をポンプで押出す方向、す なわち下流方向)への送液圧力が所定圧に達するまで流体の通過を遮断し、所定圧 以上の送液圧力を加えることにより流体の通過を許容するように機能する。この絞り 流路は、例えば、両側に直列に連結された縦横が 200 m X 200 mの流路に対し て、縦横が 200 m X 30 m程度となるように形成される。このように撥水バルブを 設けることによって、ポンプの駆動停止時に流体が毛管力で勝手に移動してしまうこ とを防止することがでさる。  Fig. 7 schematically shows the structure of a water repellent valve (also called a hydrophobic valve). As shown in Fig. 7, the water-repellent valve is composed of a portion with a narrowed passage diameter, that is, a "restricted passage", so that fluid that reaches this portion from one end passes to the other end. Is regulated. In other words, by narrowing the flow path halfway, the passage of fluid is blocked until the liquid feeding pressure in the forward direction (usually the direction in which the fluid is pushed out by the pump, that is, the downstream direction) reaches a predetermined pressure. It functions so as to allow passage of fluid by applying the above liquid feeding pressure. This throttle channel is formed, for example, so that the length and breadth are about 200 m × 30 m with respect to the channel of 200 m × 200 m connected in series on both sides. By providing the water repellent valve in this way, it is possible to prevent the fluid from moving freely by capillary force when the pump is stopped.
[0056] また、撥水バルブで流体が停止してから、ポンプの駆動電圧は止めずに、しばらく は流体が動けない程度の圧力でポンプに定常的に駆動電圧を印加し続け、所定時 間が経過後、送液圧が撥水ノ レブの許容圧以上となるように駆動電圧を上げること により、流体は細径の絞り流路の端部から太径の下流側流路へと押し出される。した 力 Sつて、マイクロポンプからのポンプ圧により流体の停止と通過を制御することができ るので、例えば流路の所定箇所において流体の移動を一時止めておき、所望のタイ ミングでこの箇所力も先の流路へ送液を再開することもできる。 [0056] Further, after the fluid stops at the water repellent valve, the pump drive voltage is not stopped, and the drive voltage is continuously applied to the pump at a pressure that does not allow the fluid to move for a predetermined time. After the time elapses, the fluid is pushed out from the end of the narrow throttle channel to the downstream downstream channel by increasing the drive voltage so that the liquid feed pressure is higher than the allowable pressure of the water repellent nozzle. . Therefore, the stopping and passage of the fluid can be controlled by the pump pressure from the micropump. For example, the movement of the fluid is temporarily stopped at a predetermined position of the flow path, and the force at the desired timing is also detected. It is also possible to resume liquid feeding to the previous flow path.
[0057] 上記撥水バルブおよびこれに連結する流路の撥水性が劣ると流体の止まりが悪く なり、流体は少しずつ流れて行ってしまう。撥水性を高めることによって撥水バルブの 効きが向上する。また、微細流路内では流体の挙動は慣性力よりも粘性力の方が支 配的であり、また流路が撥水性であると流体が流路壁に付きにくくなるために粘性抵 抗が減少し、流体は円滑に流れて安定ィ匕する。このため流体の流速の減速、停止が 容易に行い得る。 '定量送液機構 If the water repellency of the water repellent valve and the flow path connected to the water repellent valve is poor, the stoppage of the fluid is deteriorated, and the fluid flows little by little. The effectiveness of the water repellent valve is improved by increasing the water repellency. In addition, in the fine flow path, the viscous behavior is more dominant than the inertial force in the behavior of the fluid, and if the flow path is water repellent, the fluid is less likely to stick to the flow path wall, so the viscous resistance is reduced. The fluid flows smoothly and stabilizes. For this reason, the flow rate of the fluid can be easily decelerated and stopped. 'Quantitative liquid feeding mechanism
流体の逆流を防止して正確に所定の送液を行うために逆止弁を配設することが望 ましい。試薬収容部、反応部および検出部の間の流路における適宜の位置に、逆止 弁が設けられて 、る。それ以外にも上記のようにクロス 'コンタミネーシヨンと 、つた汚 染を防止するための適切な位置にも逆止弁を設けることが好ましい。  It is desirable to install a check valve in order to prevent the fluid from flowing backward and accurately deliver the specified liquid. A check valve is provided at an appropriate position in the flow path between the reagent storage unit, the reaction unit, and the detection unit. In addition to the above, it is preferable to provide a check valve at an appropriate position for preventing contamination as well as cross contamination as described above.
[0058] 本発明のマイクロリアクタの流路に使用される逆止弁として、微小球を弁体として、 基板に形成した開口をこの微小球の移動により開閉させることで流体の通過を許容 および遮断している逆止弁が挙げられる(逆流圧により弁体が流路開口部を閉止す る)。あるいは基板上に積層されその端部が開口の上側に延び出した可撓性基板が 、液圧によりその開口の上側を上下動することにより該開口を開閉する方式の逆止弁 であってもよい。  [0058] As a check valve used in the flow path of the microreactor of the present invention, a microsphere is used as a valve body, and an opening formed in the substrate is opened and closed by the movement of the microsphere to allow and block the passage of fluid. Check valve (the valve element closes the flow path opening due to the backflow pressure). Alternatively, a flexible substrate that is laminated on a substrate and whose end portion extends to the upper side of the opening may be a check valve that opens and closes the opening by moving the upper side of the opening up and down by hydraulic pressure. Good.
[0059] 上記の撥水バルブおよび逆止弁を利用した好適な機構として、図 8に示した定量 送液機構を挙げることができる。この機構では、逆止弁 16と、撥水バルブ 13aとの間 の流路 (流体充填流路 15A)には、所定量の流体、例えば試薬が充填される。この流 体充填流路 15 Aから分岐し、駆動液を送液するマイクロポンプ 11に連通する分岐流 路 15Bが設けられている。  [0059] As a suitable mechanism using the water-repellent valve and the check valve, there can be mentioned a quantitative liquid feeding mechanism shown in FIG. In this mechanism, the flow path (fluid filling flow path 15A) between the check valve 16 and the water repellent valve 13a is filled with a predetermined amount of fluid, for example, a reagent. A branch flow path 15B is provided that branches from the fluid filling flow path 15A and communicates with the micropump 11 that feeds the driving liquid.
[0060] 流体を定量的に送液するには、分岐した微細流路と、正方向への送液圧力が所定 圧に達するまで流体の通過を遮断し、所定圧以上の送液圧力を加えることにより流 体の通過を許容し、ポンプの送液圧力により流体の通過を制御可能な送液制御部 1 3と、ならびに流路内の流体の逆流を防止する逆流防止部とからなる。図 8において 最初に逆止弁 16側から、撥水バルブ 13aから先へ流体 (試薬液) 60が通過しない送 液圧力で試薬充填流路 15Aに流体 (試薬液) 60を供給することにより流体 60を充填 する。次いで、撥水バルブ 13aから先へ流体 60が通過することを許容する送液圧力 で、マイクロポンプ 11により分岐流路 15B力も試薬充填流路 15Aに向力う方向へ駆 動液 70を送液することにより、流体充填流路 15A内に充填された流体 60を送液制 御部 15Aから先へ押し出し、これにより流体 60を定量的に送液する。なお、流体充 填流路 15Aに、大容積の貯留部 7を設けることによって、定量のバラツキが小さくなる oなお、この定量送液機構を、試薬の定量混合および検体の定量送液にも使用して いる。 [0060] In order to quantitatively send the fluid, the flow of the fluid is blocked until the fluid flow pressure in the forward direction and the fluid feed pressure in the forward direction reach a prescribed pressure, and a fluid delivery pressure higher than the prescribed pressure is applied. Thus, the liquid feeding control unit 13 that allows passage of the fluid and can control the passage of the fluid by the pumping pressure of the pump, and the backflow prevention unit that prevents the backflow of the fluid in the flow path are included. In FIG. 8, the fluid (reagent liquid) 60 is first supplied from the check valve 16 side to the reagent filling flow path 15A at a liquid feed pressure that prevents the fluid (reagent liquid) 60 from passing through the water repellent valve 13a first. Fill 60. Next, with the liquid feed pressure that allows the fluid 60 to pass through the water repellent valve 13a, the micropump 11 feeds the driving liquid 70 in the direction toward the branch flow path 15B toward the reagent filling flow path 15A. By doing so, the fluid 60 filled in the fluid filling channel 15A is pushed out from the liquid feeding control unit 15A first, and thereby the fluid 60 is quantitatively fed. In addition, by providing a large volume reservoir 7 in the fluid-filling flow path 15A, the quantitative variation is reduced. O This quantitative liquid feeding mechanism is also used for reagent quantitative mixing and specimen quantitative liquid feeding. do it Yes.
[0061] 本発明のマイクロ分析システムは、  [0061] The micro-analysis system of the present invention comprises:
チップとは別途のマイクロポンプに連通させるための流路開口を有するポンプ接続 部と、流体が流通する微細流路と、 2以上の流体が合流して混合される混合流路と、 を少なくとも設けられたマイクロ流体チップと、  A pump connection part having a channel opening for communicating with a micropump separate from the chip, a fine channel through which fluid flows, and a mixing channel through which two or more fluids merge and mix are provided at least A microfluidic chip,
システム本体と、  The system itself,
を備え、そのシステム本体は、少なくとも  The system body is at least
ベース本体と、  A base body,
そのベース本体内に配置され、該チップに連通させるための流路開口を有するチ ップ接続部と、該マイクロポンプとを含むマイクロポンプユニットと、  A micropump unit including a chip connection portion disposed in the base body and having a channel opening for communicating with the chip; and the micropump;
少なくとも該マイクロポンプユニットの機能を制御する制御装置と、  A control device for controlling at least the function of the micropump unit;
を備え、  With
これらの構成要素が一体化された装置本体に該マイクロリアクタを装着することによ り、測定を自動的に行うことを特徴としている。  It is characterized in that the measurement is automatically performed by mounting the microreactor on the apparatus main body in which these components are integrated.
[0062] 以下、本発明のマイクロ分析システムの一実施形態における構成を示した概念図 である図 1および 2を参照しながら本発明の実施形態について説明する。図示したよ うにマイクロリアクタチップとともに、このチップを収容する装置として、反応のための 加熱'冷却ユニット(ペルティエ素子、ヒーター)と、送液用マイクロポンプ、駆動液タン クおよびチップ接続部を有するマイクロポンプユニットと、その送液、温度、反応の各 制御に関わる制御装置(図示せず)と、光学検出系(LED、フォトダイオードなど)を 含み、データの収集 (測定)および処理をも受け持つ検出データ処理装置 (CPU)と を備えて!/、るシステム本体がある。  Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2, which are conceptual diagrams showing a configuration in an embodiment of the micro-analysis system of the present invention. As shown in the figure, together with the microreactor chip, as a device for housing this chip, a heating / cooling unit (Peltier element, heater) for reaction, a micropump for liquid feeding, a driving liquid tank, and a micropump having a chip connection part Detection data that includes the unit, a control device (not shown) related to the control of liquid feeding, temperature, and reaction (not shown) and an optical detection system (LED, photodiode, etc.), and is also responsible for data collection (measurement) and processing There is a system unit with a processing unit (CPU).
[0063] チップ以外の構成要素については、これらを一体ィ匕したシステム装置本体とし、チ ップをこの装置本体に着脱するように構成することが望ま 、。またマイクロポンプとし て、通常、形状が略同一の複数のマイクロポンプが装置本体に組み込まれる。これら 複数のマイクロポンプと、チップに連通させるための流路開口を有するチップ接続部 とを含むマイクロポンプユニットが、本発明システム本体のベース本体内に配置され ている。図示したようにチップを該装置本体に装着し、面同士で重ね合わせることに よりチップのポンプ接続部を装置本体のマイクロポンプユニットにあるチップ接続部の ポートに接続するようになって!/、る。 [0063] It is desirable that the components other than the chip are configured as a system device main body in which these are integrated, and the chip is attached to and detached from the device main body. In general, a plurality of micropumps having substantially the same shape are incorporated in the apparatus main body. A micropump unit including the plurality of micropumps and a chip connecting part having a channel opening for communicating with the chip is arranged in the base body of the system body of the present invention. As shown in the figure, the chip is attached to the main body and the surfaces are overlapped The pump connection part of the chip is connected to the port of the chip connection part in the micro pump unit of the main body of the device.
[0064] マイクロポンプを制御する電気制御系統の装置は、流量の目標値および送液のタ イミングを設定し、それに応じた駆動電圧をマイクロポンプに供給している。そうした 制御を受け持つ制御装置についても、後述するように本発明システムの装置本体に 組み込んで、マイクロリアクタチップのポンプ接続部を装置本体のマイクロポンプュ- ットのチップ接続部に接続させた場合に作動制御させるようにしてもよ!、。  [0064] The device of the electric control system that controls the micropump sets a target value of flow rate and timing of liquid feeding, and supplies a drive voltage corresponding to the target value to the micropump. The control device responsible for such control is also incorporated into the main body of the system of the present invention as described later, and operates when the pump connection part of the microreactor chip is connected to the chip connection part of the micro pump cup of the main body. You can make it control!
[0065] 光学的検出、データの収集および処理を受け持つユニットである検出処理装置は 、例えば可視分光法、蛍光測光法などの手法が適用される場合、その光学的測定の 手段として特に限定されないが、 LED,光電子増倍菅、フォトダイオード、 CCDカメラ などがその構成要素としてシステム装置本体内に適宜設置されることが望ま 、。  [0065] The detection processing apparatus, which is a unit responsible for optical detection, data collection and processing, is not particularly limited as a means for optical measurement when a technique such as visible spectroscopy or fluorescence photometry is applied. It is desirable that LEDs, photomultipliers, photodiodes, CCD cameras, etc. be installed as appropriate in the system unit body.
[0066] 少なくとも前記マイクロポンプユニットの機能と検出処理装置の機能とを制御する制 御装置が本発明システムの装置本体に組み込まれている。その制御装置は、さらに 温度管理、測定データの記録と処理なども含めてシステムを統括的に制御支配させ てもよい。この場合の制御装置は、予め送液の順序、容量、タイミングなどに関して設 定された諸条件を、マイクロポンプおよび温度の制御とともにプログラムの内容として マイクロ分析システムに搭載されたソフトウェアに組み込まれている。検体の前処理、 反応および検出の一連の分析工程は、前記のマイクロポンプ、検出処理装置および 制御装置とが一体化されたシステム装置本体にチップを装着した状態で行なわれる 。装着したチップに検体を注入してから、あるいは検体を注入したチップを装置本体 に装着してから分析を開始してもよい。検体および試薬類の送液、前処理、混合に 基づく所定の反応および光学的測定が、一連の連続的工程として自動的に実施さ れ、測定データが、必要な条件、記録事項とともにファイル内に格納される形態が望 ましい。  [0066] A control device that controls at least the function of the micropump unit and the function of the detection processing device is incorporated in the main body of the system of the present invention. The control device may further control the system as a whole, including temperature management and measurement data recording and processing. In this case, the control device incorporates various conditions set in advance for the order, volume, and timing of the liquid delivery into the software installed in the microanalysis system as the contents of the program along with the micropump and temperature control. . A series of analysis steps of sample pretreatment, reaction, and detection is performed in a state where a chip is mounted on a system apparatus body in which the micro pump, the detection processing apparatus, and the control apparatus are integrated. The analysis may be started after the sample is injected into the mounted chip, or after the chip into which the sample is injected is mounted in the apparatus main body. Predetermined reactions and optical measurements based on the feeding, pretreatment and mixing of specimens and reagents are automatically performed as a series of continuous processes, and the measurement data is stored in a file together with the necessary conditions and recorded items. The stored form is desirable.
'分析の実施態様  'Analytical Embodiment
本発明のマイクロリアクタは、少なくとも検体受容部、試薬収容部、廃液貯留部、マ イク口ポンプ接続部および微細流路を有し、各部を微細流路で連通させて!/ヽる。 検体液を、検体受容部下流に設けられた反応部を構成する流路、次いで検出部を 構成する流路へ流して反応生成物を測定するとともに、測定の結果、生じる廃液を該 廃液貯留部へ移して閉じ込めることを特徴とするマイクロリアクタである。 The microreactor of the present invention has at least a sample receiving part, a reagent storage part, a waste liquid storage part, a microphone port pump connection part, and a fine flow path, and communicates each part through the fine flow path. The sample liquid is passed through the flow path constituting the reaction unit provided downstream of the sample receiving unit, and then the detection unit. The microreactor is characterized in that the reaction product is measured by flowing it into the flow path, and the waste liquid generated as a result of the measurement is transferred to the waste liquid storage part and confined.
[0067] さらに各収容部、流路、ポンプ接続部に加えて、送液制御部、逆流防止部、試薬定 量部、混合部などの各エレメントが、機能的に適当な位置に微細加工技術により設 置されている。  [0067] Further, in addition to each storage section, flow path, and pump connection section, each element such as a liquid feed control section, a backflow prevention section, a reagent quantification section, and a mixing section has a microfabrication technique at a functionally appropriate position. It is installed by.
[0068] 本発明のマイクロ分析システムに用いられる前記マイクロリアクタチップでは、以下 の処理を行なうことによって検体中の標的物質を分析することができる:  [0068] In the microreactor chip used in the microanalysis system of the present invention, a target substance in a specimen can be analyzed by performing the following processing:
該チップのポンプ接続部と前記マイクロポンプユニットのチップ接続部とを液密に密 着させた状態で該チップをベース本体内に装着した後、該チップにおいて、 検体収容部内の検体 (または該検体を流路内で処理した処理液)に含まれる標的 物質と、  After mounting the chip in the base body in a state where the pump connection part of the chip and the chip connection part of the micropump unit are liquid-tightly sealed, the sample in the sample container (or the sample) A target substance contained in a processing solution processed in the flow path),
試薬収容部に収容された試薬とを、  The reagent stored in the reagent storage unit,
反応部を構成する流路へ送液して合流させて、  Liquid is sent to the flow path that constitutes the reaction part and merged,
これらを反応させた後、得られた反応生成物質もしくはその処理物質を、 検出部を構成する流路へ送液してその検出を前記検出処理装置により行なう。  After reacting these, the obtained reaction product substance or its treatment substance is sent to the flow path constituting the detection section, and the detection is performed by the detection treatment apparatus.
[0069] 典型的には、図 2に示されるように最上流部に位置する複数の試薬収容部 18に収 容された各試薬 31が試薬収容部 18より下流側の流路で混合され、混合試薬が下流 の分析流路に送液される。分析流路において検体と混合試薬とが Y字流路などから 合流して混合され、昇温等により反応が開始され、流路下流に設けられた検出部に おいて反応が検出される。  [0069] Typically, as shown in FIG. 2, each reagent 31 accommodated in a plurality of reagent accommodating portions 18 located in the most upstream part is mixed in a flow channel downstream from the reagent accommodating portion 18, The mixed reagent is sent to the downstream analysis channel. In the analysis channel, the sample and the mixed reagent are merged and mixed from the Y-shaped channel or the like, the reaction is started by temperature rise or the like, and the reaction is detected in the detection unit provided downstream of the channel.
[0070] 上記検体前処理部および検出部と貫通穴を介して連通しており、マイクロリアクタの 底部に設けられた中空室であり、検体の測定の結果生じる廃液などを収容する密閉 廃液溜りである廃液貯留部を有するように構成されて 、ることを特徴として 、る。廃液 貯留部は、完全にマイクロリアクタ内に密閉されており、デイスポーサブル'チップで あるため使用後はそのままハザードボックス内に廃棄される。このため検査に携わる 者は、臨床検体をマイクロリアクタに注入した後は、検査中、検査後の廃棄において も、一貫して検体などに接触する必要は全くなぐ感染力もの安全が確保される。  [0070] The specimen pretreatment section and the detection section communicate with each other through a through hole, and are a hollow chamber provided at the bottom of the microreactor, and are a sealed waste liquid reservoir that contains waste liquid generated as a result of specimen measurement. It is comprised so that it may have a waste liquid storage part, It is characterized by the above-mentioned. The waste liquid reservoir is completely sealed in the microreactor and is a disposable chip, so it is discarded in the hazard box after use. For this reason, after injecting clinical specimens into the microreactor, inspectors who are involved in the examination need to be consistently in contact with the specimen even during the examination and after the examination, ensuring infectious safety.
[0071] 以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定 されることはなく、種々の実施の形態において、本発明の趣旨に沿って任意の変形、 変更が可能であり、それらは本発明に含まれる。 Although the embodiments of the present invention have been described above, the present invention is limited to these embodiments. In various embodiments, arbitrary modifications and changes can be made in accordance with the spirit of the present invention, and they are included in the present invention.

Claims

請求の範囲 The scope of the claims
[1] 微細流路内で流体を流し、反応を行うチップタイプのマイクロリアクタであって、 少なくとも、微細流路を形成したチップ基板と、  [1] A chip-type microreactor that reacts by flowing a fluid in a microchannel, and at least a chip substrate on which the microchannel is formed;
張り合せ面に粘着層を有する被覆薄板と、  A coated thin plate having an adhesive layer on the bonding surface;
を含み、チップ基板の微細流路側の面と被覆薄板の張り合せ面とを互いに張り合わ せてなることを特徴とするマイクロリアクタ。  A microreactor comprising: a surface of a chip substrate on a fine flow path side and a bonding surface of a coated thin plate that are bonded to each other.
[2] 前記被覆薄板がシート状体もしくはフィルム状体であることを特徴とする請求の範 囲第 1項に記載のマイクロリアクタ。  [2] The microreactor according to claim 1, wherein the coated thin plate is a sheet-like body or a film-like body.
[3] 前記被覆薄板の粘着層が、張り合せ面に感圧性粘着材を塗布した粘着層であるこ とを特徴とする請求の範囲第 1項または第 2項に記載のマイクロリアクタ。 [3] The microreactor according to [1] or [2], wherein the adhesive layer of the coated thin plate is an adhesive layer in which a pressure-sensitive adhesive material is applied to a bonding surface.
[4] 前記感圧性粘着材がシリコーン系粘着材であることを特徴とする請求の範囲第 3項 に記載のマイクロリアクタ。 [4] The microreactor according to claim 3, wherein the pressure-sensitive adhesive material is a silicone-based adhesive material.
[5] 前記シリコーン系粘着材カ ポリジオルガノシロキサンポリウレアコポリマーとシリコ ーン粘着性付与樹脂とからなる粘着材であることを特徴とする請求の範囲第 4項に記 載のマイクロリアクタ。 [5] The microreactor according to claim 4, which is an adhesive material comprising the silicone-based adhesive material polydiorganosiloxane polyurea copolymer and a silicone tackifying resin.
[6] 前記シリコーン粘着性付与榭脂は、分子量が約 100〜約 50, 000であり、シラノー ル (Si-OH)含量が約 1. 5質量%以下のシリコーン榭脂であることを特徴とする請求 の範囲第 5項に記載のマイクロリアクタ。  [6] The silicone tackifier resin is a silicone resin having a molecular weight of about 100 to about 50,000 and a silanol (Si-OH) content of about 1.5% by mass or less. The microreactor according to claim 5, wherein:
[7] 前記チップ基板が、ポリスチレン、ポリオレフイン、ポリプロピレン、ポリカーボネート 力 選ばれる榭脂材料で作製されていることを特徴とする請求の範囲第 1項乃至第 6 項の 、ずれかに記載のマイクロリアクタ。 7. The microreactor according to any one of claims 1 to 6, wherein the chip substrate is made of a resin material selected from polystyrene, polyolefin, polypropylene, and polycarbonate.
[8] 前記微細流路は、それぞれ前記チップ基板とは別途のマイクロポンプに個別に連 通されており、該マイクロポンプを駆動することによりそれぞれの流路力 混合流路へ 各流体を送液する流路であることを特徴とする請求の範囲第 1項乃至第 7項のいず れかに記載のマイクロリアクタ。 [8] Each of the fine channels is individually connected to a micropump separate from the chip substrate, and each fluid is sent to each channel force mixing channel by driving the micropump. The microreactor according to any one of claims 1 to 7, wherein the microreactor is a flow path.
[9] 分岐した微細流路と、 [9] A branched microchannel,
予め設定された圧より低 ヽ圧では流体の通過を遮断し、予め設定された圧以上の圧 では流体の通過を許容する送液制御部と、 流路内の流体の逆流を防止する逆流防止部と、 A liquid feed control unit that blocks passage of fluid at a lower pressure than a preset pressure, and allows passage of fluid at a pressure higher than a preset pressure; A backflow prevention unit for preventing backflow of fluid in the flow path;
から構成され、  Consisting of
分岐した流路内における流体の送液およびその送液量を制御する定量送液機構を 備えることを特徴とする請求の範囲第 1項乃至第 8項のいずれかに記載のマイクロリ ァクタ。  The microreactor according to any one of claims 1 to 8, further comprising a quantitative liquid feeding mechanism that controls the liquid feeding and the liquid feeding amount in the branched flow path.
[10] 検体受容部、試薬収容部、廃液貯留部、マイクロポンプ接続部および各部を連通 する微細流路を有し、  [10] It has a sample receiving part, a reagent storage part, a waste liquid storage part, a micropump connection part, and a fine channel that communicates each part,
さらに、前記検体受容部および前記試薬収容部より下流部に設けられた、前記マイ クロポンプ接続部に接続させる別途のマイクロポンプの作用により微細流路を通して 、該検体受容部にある検体と該試薬収容部にある試薬とが流入する反応部および該 反応部で反応して得られる反応生成物を測定する検出部を有することを特徴とする 請求の範囲第 1項乃至第 9項のいずれかに記載のマイクロリアクタ。  Furthermore, the sample in the sample receiving unit and the reagent storing unit are passed through a fine channel by the action of a separate micro pump connected to the micro pump connecting unit provided downstream from the sample receiving unit and the reagent storing unit. 10. The reaction part according to claim 1, further comprising a reaction part into which a reagent in the part flows and a detection part for measuring a reaction product obtained by the reaction in the reaction part. Microreactor.
[11] 請求の範囲第 1項乃至第 10項のいずれかに記載のマイクロリアクタと、 [11] The microreactor according to any one of claims 1 to 10, and
装置本体と、  The device body;
を備え、  With
その装置本体は、  The device itself is
少なくとも、ベース本体と、  At least the base body,
そのベース本体内に配置され、前記マイクロリアクタに連通させるための流路開口を 有するチップ接続部と、マイクロポンプとを含むマイクロポンプユニットと、  A micropump unit including a chip connection part disposed in the base body and having a channel opening for communicating with the microreactor; and a micropump;
反応生成物の検出を光学的に行う検出装置と、  A detection device for optically detecting the reaction product;
少なくとも該マイクロポンプユニットの機能および温度を制御する制御装置と、 を備え、  A control device that controls at least the function and temperature of the micropump unit, and
これらの構成要素が一体ィ匕された装置本体に該マイクロリアクタを装着することにより By mounting the microreactor on the device body in which these components are integrated
、測定を行うことを特徴とするマイクロ分析システム。 A micro-analysis system characterized by performing measurements.
[12] 前記マイクロポンプが、 [12] The micropump
流路に設けられ、流路抵抗が差圧に応じて変化する第 1流路と、  A first flow path provided in the flow path, the flow path resistance changing according to the differential pressure;
前記流路に設けられ、差圧の変化に対する流路抵抗の変化割合が第 1流路よりも 小さい第 2流路と、 前記流路に設けられ、第 1流路および第 2流路に接続された加圧室と、 該加圧室の内部圧力を変化させるァクチユエータと、 A second flow path provided in the flow path and having a flow rate resistance change ratio with respect to a change in differential pressure smaller than that of the first flow path; A pressurization chamber provided in the flow path and connected to the first flow path and the second flow path; an actuator for changing the internal pressure of the pressurization chamber;
該ァクチユエータを駆動する駆動装置と、  A driving device for driving the actuator;
を備えるマイクロポンプであることを特徴とする請求の範囲第 11項に記載のマイクロ 分析システム。 12. The micro analysis system according to claim 11, wherein the micro analysis system comprises:
PCT/JP2006/321965 2005-11-11 2006-11-02 Microreactor and microanalysis system WO2007055151A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007544114A JPWO2007055151A1 (en) 2005-11-11 2006-11-02 Microreactor and microanalysis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-327539 2005-11-11
JP2005327539 2005-11-11

Publications (1)

Publication Number Publication Date
WO2007055151A1 true WO2007055151A1 (en) 2007-05-18

Family

ID=38023155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321965 WO2007055151A1 (en) 2005-11-11 2006-11-02 Microreactor and microanalysis system

Country Status (2)

Country Link
JP (1) JPWO2007055151A1 (en)
WO (1) WO2007055151A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019891A (en) * 2007-07-10 2009-01-29 Konica Minolta Medical & Graphic Inc Micro inspection chip and inspection device
JP2009019890A (en) * 2007-07-10 2009-01-29 Konica Minolta Medical & Graphic Inc Micro inspection chip and inspection device
JP2011523698A (en) * 2008-05-09 2011-08-18 アコーニ バイオシステムズ Microarray system
WO2014010299A1 (en) * 2012-07-09 2014-01-16 ソニー株式会社 Microchip and method for producing microchip
JP2015062360A (en) * 2013-09-25 2015-04-09 積水化学工業株式会社 Method of heating sample, and microchip
JP2016506509A (en) * 2012-12-13 2016-03-03 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Fluid system with fluid stop
WO2021107003A1 (en) * 2019-11-27 2021-06-03 京セラ株式会社 Flow path device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108285A (en) * 2002-09-19 2004-04-08 Foundation For The Promotion Of Industrial Science Micro fluid device
JP2005513196A (en) * 2001-12-18 2005-05-12 スリーエム イノベイティブ プロパティズ カンパニー Silicone pressure sensitive adhesives, articles and methods
JP2005140762A (en) * 2003-10-17 2005-06-02 Mitsuboshi Belting Ltd Method for manufacturing chip for micro analysis

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083191A (en) * 2005-09-22 2007-04-05 Konica Minolta Medical & Graphic Inc Microreacter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513196A (en) * 2001-12-18 2005-05-12 スリーエム イノベイティブ プロパティズ カンパニー Silicone pressure sensitive adhesives, articles and methods
JP2004108285A (en) * 2002-09-19 2004-04-08 Foundation For The Promotion Of Industrial Science Micro fluid device
JP2005140762A (en) * 2003-10-17 2005-06-02 Mitsuboshi Belting Ltd Method for manufacturing chip for micro analysis

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019891A (en) * 2007-07-10 2009-01-29 Konica Minolta Medical & Graphic Inc Micro inspection chip and inspection device
JP2009019890A (en) * 2007-07-10 2009-01-29 Konica Minolta Medical & Graphic Inc Micro inspection chip and inspection device
JP2011523698A (en) * 2008-05-09 2011-08-18 アコーニ バイオシステムズ Microarray system
US20150239217A1 (en) * 2012-07-09 2015-08-27 Sony Corporation Microchip and method for manufacturing the same
CN104412110A (en) * 2012-07-09 2015-03-11 索尼公司 Microchip and method for producing microchip
WO2014010299A1 (en) * 2012-07-09 2014-01-16 ソニー株式会社 Microchip and method for producing microchip
JPWO2014010299A1 (en) * 2012-07-09 2016-06-20 ソニー株式会社 Microchip and manufacturing method of microchip
JP2019002932A (en) * 2012-07-09 2019-01-10 ソニー株式会社 Microchip
JP2016506509A (en) * 2012-12-13 2016-03-03 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Fluid system with fluid stop
JP2015062360A (en) * 2013-09-25 2015-04-09 積水化学工業株式会社 Method of heating sample, and microchip
WO2021107003A1 (en) * 2019-11-27 2021-06-03 京セラ株式会社 Flow path device
JPWO2021107003A1 (en) * 2019-11-27 2021-06-03
JP7308287B2 (en) 2019-11-27 2023-07-13 京セラ株式会社 flow path device

Also Published As

Publication number Publication date
JPWO2007055151A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
US7482585B2 (en) Testing chip and micro integrated analysis system
JP4543986B2 (en) Micro total analysis system
EP1946830B1 (en) Microreactor
JP4766046B2 (en) Micro total analysis system, inspection chip, and inspection method
US9180451B2 (en) Fluidic cartridge for detecting chemicals in samples, in particular for performing biochemical analyses
US7357898B2 (en) Microfluidics packages and methods of using same
WO2007055151A1 (en) Microreactor and microanalysis system
WO2006112498A1 (en) Testing chip for analysis of sample, and microanalysis system
JP2006292472A (en) Micro comprehensive analysis system
JP2007071555A (en) Substrate having protein immobilized thereon and microreactor using it
JP2007120399A (en) Micro fluid chip and micro comprehensive analysis system
CN100536097C (en) Interconnection and packaging method for biomedical devices with electronic and fluid functions
JP2007322284A (en) Microchip and filling method of reagent in microchip
JP2007136379A (en) Micro-reactor and its manufacturing method
JP5476514B2 (en) Method for uniformly mixing a plurality of fluids in a mixing channel
EP1705488A2 (en) Analyser
JP2007139501A (en) Filling method of reagent into microchip
JPWO2006109397A1 (en) Backflow prevention structure, inspection microchip and inspection apparatus using the same
KR100995363B1 (en) Device for Controlling of Microfluidic and Method of Fabricating and Operating the Same
WO2009131043A1 (en) Microchip
WO2007145040A1 (en) Micro general analysis system with mechanism for preventing leakage of liquid
JP2006284451A (en) Micro total analysis system for analyzing target material in specimen
Xie et al. Development of an integrated bio-microfluidic package with micro-valves and reservoirs for a DNA lab on a chip (LOC) application
JP2007292506A (en) Microreactor and micro-integrated analysis system using the same
JP2009156741A (en) Opening sealing member, opening sealing method, micro inspection chip, and opening sealing tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007544114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822883

Country of ref document: EP

Kind code of ref document: A1