WO2007135812A1 - X-ray tube - Google Patents

X-ray tube Download PDF

Info

Publication number
WO2007135812A1
WO2007135812A1 PCT/JP2007/057571 JP2007057571W WO2007135812A1 WO 2007135812 A1 WO2007135812 A1 WO 2007135812A1 JP 2007057571 W JP2007057571 W JP 2007057571W WO 2007135812 A1 WO2007135812 A1 WO 2007135812A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray tube
face plate
vacuum envelope
electron
electron source
Prior art date
Application number
PCT/JP2007/057571
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyuki Okada
Toru Fujita
Tooru Yamamoto
Tatsuya Nakamura
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2007135812A1 publication Critical patent/WO2007135812A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/062Cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/068Multi-cathode assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/163Vessels shaped for a particular application
    • H01J2235/164Small cross-section, e.g. for entering in a body cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/18Windows, e.g. for X-ray transmission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • H01J35/186Windows used as targets or X-ray converters

Definitions

  • the present invention relates to an X-ray tube that irradiates X-rays, and particularly relates to an X-ray tube having a structure suitable for irradiating X-rays over a wide range.
  • An X-ray tube is a device that generates X-rays by generating electrons using an electron source in a high-vacuum tube and causing the electrons to enter a target.
  • An example of such an X-ray tube is an X-ray apparatus disclosed in Patent Document 1 below.
  • the electron beam emitted by the planar cathode force collides with the planar anode as a target, and X-rays generated from the planar anode are extracted outside through the extraction window.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-288853
  • the X-ray tube having the above-described planar electron source is advantageous for downsizing, while an X-ray tube that can irradiate a wider range is desired.
  • X-rays are irradiated over a wide area so as to extend in the direction intersecting the moving direction (for example, the vertical direction).
  • a possible X-ray tube is preferable, and it is conceivable to use a linear member as an electron source used in such an X-ray tube.
  • a linear member as an electron source of a cold cathode having an electron emitting material provided on the surface in this way is controlled by an electric field formed mainly with the extraction electrode.
  • the positioning of the member in the vacuum tube is important. In order to realize a wider range of irradiation using such a linear member, since the linear member is arranged over a wide range, its positioning is not easy, so control of electron emission is possible. Tend to be difficult.
  • the present invention has been made in view of the problems to be solved, and X-ray irradiation characteristics can be stabilized over a wide range by reliably positioning the electron source.
  • the purpose is to provide a tube.
  • an X-ray tube of the present invention includes a vacuum envelope including an insulating member at least in part, and a linear member having a carbon-based electron emission material on its surface, Both ends of the member are held by the vacuum envelope so that the electron source disposed in the vacuum envelope and the electron source in the vacuum envelope are opposed to the electron source.
  • a vacuum envelope including an insulating member at least in part, and a linear member having a carbon-based electron emission material on its surface, Both ends of the member are held by the vacuum envelope so that the electron source disposed in the vacuum envelope and the electron source in the vacuum envelope are opposed to the electron source.
  • an X-ray extraction window for taking out X-rays generated from the target and attached to the vacuum envelope, and an inner surface of the insulating member of the vacuum envelope.
  • an extraction electrode provided between the electron source and the target.
  • the linear members constituting the electron source are held by the vacuum envelope having sufficient strength to hold the vacuum at both ends thereof.
  • an extraction electrode is provided between the electron source and the target on the inner surface of the insulating member of the vacuum envelope.
  • the carbon-based electron emission material force on the surface of the linear member generates X-rays when the emitted electrons enter the target, and these X-rays are extracted through the X-ray extraction window. Stable X-ray irradiation characteristics can be obtained over a wide range by stabilizing the positional relationship between the shape member and the extraction electrode.
  • the insulating member is provided with an opening so as to face the target, and the X-ray extraction window is provided so as to cover the opening.
  • the X-ray extraction window is provided so as to cover the opening.
  • a groove portion corresponding to the linear member is formed on the inner surface of the flat insulating member, the linear member is disposed in a space surrounded by the groove portion, and the extraction electrode is formed of the insulating member. It is also preferable that it is laid along the inner surface across the groove. In this way, positioning with respect to the extraction electrode is facilitated over the entire linear members constituting the electron source, and electron emission from the electron source is made more uniform.
  • a groove corresponding to the linear member is formed on the inner surface of the flat insulating member, the linear member is disposed in a space surrounded by the groove, and the extraction electrode is insulated. Formed so that the central axis side perpendicular to the inner surface of the target is lower across the groove of the member. It is also preferable that it is laid along the inner surface.
  • both ends of the linear member are held by insulating members of the vacuum envelope. By doing so, it is possible to prevent insulation failure in the linear member.
  • the extraction electrode is preferably divided into a plurality of portions along the longitudinal direction of the linear member. If a powerful extraction electrode is provided, the electron extraction amount can be controlled for each divided region along the longitudinal direction of the linear member, and any X-ray can be generated within the divided region along the longitudinal direction of the linear member. Irradiation characteristics can be obtained.
  • the X-ray irradiation characteristics can be stabilized over a wide range by reliably positioning the electron source.
  • FIG. 1 is a plan view of an X-ray tube according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing a state where an upper face plate of the X-ray tube of FIG. 1 is removed.
  • FIG. 3 is a cross-sectional view of the X-ray tube of FIG. 1 taken along line III-III.
  • FIG. 4 is a cross-sectional view of the X-ray tube of FIG. 1 taken along line IV-IV.
  • FIG. 5 is a plan view showing a state in which an upper face plate of an X-ray tube according to a second embodiment of the present invention is removed.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in the state including the upper face plate of the X-ray tube of FIG.
  • FIG. 7 is a plan view showing a state where an upper face plate of an X-ray tube according to a third embodiment of the present invention is removed.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in a state including the upper face plate of the X-ray tube in FIG.
  • FIG. 9 is a cross-sectional view taken along the line IX—IX in the state including the upper face plate of the X-ray tube of FIG. The
  • FIG. 10 is a plan view of an X-ray tube according to a fourth embodiment of the present invention.
  • FIG. 11 is a plan view showing a state where the upper face plate of the X-ray tube of FIG. 10 is removed.
  • FIG. 12 is a cross-sectional view of the X-ray tube of FIG. 10 taken along line XII-XII.
  • FIG. 13 is a cross-sectional view of the X-ray tube of FIG. 10 taken along line XIII-XIII.
  • FIG. 14 A plan view showing a state in which the upper face plate of the X-ray tube according to the fifth embodiment of the present invention is removed.
  • FIG. 15 is a sectional view taken along line XV—XV in a state including the upper face plate of the X-ray tube of FIG.
  • FIG. 16 is a cross-sectional view taken along line XVI--XVI in a state including the upper face plate of the X-ray tube of FIG.
  • FIG. 17 is a plan view showing a state in which an upper face plate of an X-ray tube as a modification of the present invention is removed.
  • FIG. 18 is a plan view showing a state in which an upper face plate of an X-ray tube as a modification of the present invention is removed.
  • FIG. 19 is a plan view showing a state in which an upper face plate of an X-ray tube which is a modification of the present invention is removed.
  • FIG. 20 is a plan view showing a state where an upper face plate of an X-ray tube as a modification of the present invention is removed.
  • FIG. 21 is a plan view showing a state in which an upper face plate of an X-ray tube which is a modification of the present invention is removed.
  • FIG. 22 is a cross-sectional view of the X-ray tube of FIG. 21 taken along line XXII-XXII.
  • (a) is a plan view showing the main part of an X-ray tube which is a modification of the present invention, and (b) is a cross-sectional view along the axial direction of the electron source of the X-ray tube of (a). is there.
  • (a) is a plan view showing the main part of an X-ray tube which is a modification of the present invention, and (b) is a cross-sectional view along the axial direction of the electron source of the X-ray tube of (a). is there.
  • FIG. 1 is a plan view of the X-ray tube 1 according to the first embodiment of the present invention
  • FIG. 2 is a plan view showing a state in which the upper face plate of the X-ray tube 1 of FIG. 1 is removed
  • FIG. Fig. 4 is a cross-sectional view taken along line IV-IV in Fig. 1.
  • the X-ray tube 1 is composed of an upper face plate 2 and a lower face plate 3 which are insulating member forces such as flat glass, and a square columnar side wall 4 which is also an insulating member such as glass.
  • the vacuum envelope 5 is provided.
  • the upper face plate 2, the lower face plate 3, and the side wall 4 are made of glass, and the upper face plate 2 and the lower face plate 3 are sealed with the opening end of the side wall 4 by frit glass or the like, thereby allowing the inside of the vacuum envelope 5 to be sealed.
  • the part is kept airtight.
  • carbon-based electron emission materials 6a, 6b, 6c are formed on the peripheral surface by a CVD method, a spray method, a printing method, or the like.
  • Electron sources 8a, 8b, and 8c each composed of a coated metal wire (linear member) 7a, 7b, and 7c are arranged.
  • the carbon-based electron emission materials 6a, 6b, and 6c are represented by carbon nanotubes, carbon nanotubes, carbon nanofibers, diamond, diamond-like carbon, and the like, and have a property of emitting electrons to the outside by the action of an electric field. It is a field emission type electron emission material.
  • each electron source 8a, 8b, 8c metal wires 7a, 7 Carbon-based electron emission materials 6a, 6b, and 6c are coated over the entire peripheral surface excluding both ends of b and 7c.
  • the inner surface 3a refers to a surface facing the vacuum side of the lower face plate 3 and including a joint portion with the side wall 4.
  • both ends of the metal wires 7a, 7b, and 7c had a constant tension on the entire metal wires 7a, 7b, and 7c, respectively.
  • the grooves 9a, 9b, 9c of the inner surface 3a of the lower face plate 3 in this state they are held at equal intervals in parallel with each other along the longitudinal direction of the side wall 4 (see FIG. 3).
  • the grooves 9a, 9b, and 9c are formed with substantially the same width as the diameters of the metal wires 7a, 7b, and 7c at the joint portion between the inner wall 3a and each of the walls along the lateral direction of the side wall 4.
  • the bottom surfaces of the grooves 9a, 9b, 9c are formed so as to have a certain depth with respect to the inner surface 3a, and the metal wires 7a, 7b, 7c come into contact with the bottom surfaces, so that the metal wires 7a, 7b, The distance from the inner surface 3a over the entire length of 7c is kept stable. Further, the both ends of the metal wires 7a, 7b, and 7c are fitted into the grooves 9a, 9b, and 9c, and then the grooves 9a, 9b, and 9c are sealed with frit glass or the like, so that the vacuum envelope 5 Keeps the inside airtight.
  • the metal wires 7a, 7b, and 7c are fixed to the grooves 9a, 9b, and 9c using frit glass, it is preferable to use a jig for preventing misalignment.
  • the central portion excluding the joint portion of the inner surface 3a of the lower face plate 3 with the side wall 4, it corresponds to the metal wires 7a, 7b, 7c so as to be connected on the same line as each of the groove portions 9a, 9b, 9c.
  • Grooves 10a, 1 Ob, 10c are formed.
  • the groove portions 10a, 10b, and 10c have widths larger than the diameters of the metal wires 7a, 7b, and 7c including the carbon-based electron emission materials 6a, 6b, and 6c, and are formed deeper than the groove portions 9a, 9b, and 9c, respectively. ing.
  • the metal wires 7a, 7b, and 7c are formed in the groove portions 9a and 9b in the vacuum envelope 5 so that the carbon-based electron emission materials 6a, 6b, and 6c do not contact the side surfaces and the bottom surface of the groove portions 10a, 10b, and 10c, respectively. , 9c is stretched in a straight line in the space surrounded by 9c.
  • a mesh-shaped extraction electrode 11 is formed so as to cover the electron sources 8a, 8b, 8c disposed in the grooves 10a, 10b, 10c. It is installed over the inner surface 3a that sandwiches both sides of 10b and 10c (Fig. 2).
  • the extraction electrode 11 is divided into three parts along the longitudinal direction of the metal wires 7a, 7b, and 7c, and an applied voltage is applied to each of the divided extraction electrodes 11.
  • a plurality of external connection pins 12 that are independently connected to each of the divided extraction electrodes 11 are provided through the vacuum envelope 5 so as to be adjustable.
  • the extraction electrode 11 having such a configuration is positioned in the vacuum envelope 5 between the electron sources 8a, 8b, 8c and a target material 15 described later.
  • the upper face plate 2 functions as an X-ray extraction window for extracting X-rays to the outside by forming a substantially rectangular through-hole 13 at a position facing each of the electron sources 8a, 8b, 8c. ( Figure 1). These through-holes 13 are divided into two along the longitudinal direction of the electron sources 8a, 8b, 8c, and a total of six are arranged.
  • a silicon thin film 14 is bonded to the outer surface of the upper face plate 2 by anodic bonding so as to cover all the through holes 13, thereby realizing hermetic sealing inside the vacuum envelope 5.
  • a target material 15 such as tungsten is formed by vapor deposition in a portion exposed from the through hole 13 on the inner surface of the silicon thin film 14 (FIG. 4).
  • This target material 15 has the property of generating X-rays in response to the incidence of electrons from the electron sources 8a, 8b, 8c.
  • the target material 15 is provided in the vacuum envelope 5 so as to face the electron sources 8a, 8b, 8c, so that each of the electron sources 8a, 8b corresponds to the voltage applied to the extraction electrode 11. , 8c are incident on the target material 15, and X-rays generated from the target material 15 are transmitted through the silicon thin film 14 and extracted outside.
  • a conductive member such as tungsten is deposited on the vacuum side of the upper face plate 2 including the inner wall of the through hole 13.
  • the electrons from the electron source 8 are also incident on the upper face plate 2 which is an insulating member, and therefore the upper face plate 2 may be charged and affect the electric field formed in the vacuum envelope 5. . Therefore, charging is prevented by covering the electron incident side with a conductive member.
  • vapor deposition is formed integrally with the target material 15.
  • the voltage supply to the target material 15 is also performed through a conductive member that comes into contact with the external connection pin 17 provided through the vacuum envelope 5 to the outside.
  • the electrons emitted from the carbon-based electron emitting materials 6a, 6b, 6c on the surfaces of the metal wires 7a, 7b, 7c are incident on the target material 15 to cause X-rays.
  • This X-ray is extracted to the outside through the through hole 13 and the silicon thin film 14.
  • a stable X-ray irradiation characteristic can be obtained over a wide range by stabilizing the positional relationship between the metal wires 7a, 7b and 7c and the extraction electrode 11 and the target material 15.
  • the extraction electrode 11 is laid between the electron sources 8a, 8b, 8c and the target material 15 on the inner surface 3a of the lower face plate 3 of the vacuum envelope 5 having the insulating member force, whereby the electron sources 8a, 8b , 8c and the extraction electrode 11 are kept at a distance, so that the amount of electron emission from the electron sources 8a, 8b, 8c is made uniform.
  • the electric field strength between the electron sources 8a, 8b, 8c and the extraction electrode 11 is ⁇ !
  • the effect of stabilization of the electron E mission weight for the current density emitted as high as 2 ⁇ 50MAZcm 2 order of ⁇ m about the large instrument carbonaceous electron-emitting material is great.
  • the metal wires 7a, 7b, 7c constituting the electron sources 8a, 8b, 8c need to be thickened to about 0.5 mm to several mm. Therefore, the effect of stabilizing the position of the electron source by being held by the vacuum envelope 5 is also great.
  • the electron sources 8a, 8b, 8c are not brought into contact with the bottom surfaces and side surfaces of the groove portions 10a, 10b, 10c by adopting the holding structure at the end portion, the carbon-based electron emission materials 6a, 6b, It is possible to prevent the deterioration of the electron emission characteristics due to the peeling of 6c and the poor insulation due to the peeled carbon-based electron emitting materials 6a, 6b, 6c coming into contact with the electrodes.
  • grooves 10a, 10b, 10c are formed in the direction along the direction in which the metal wires 7a, 7b, 7c extend, and the metal wires 7a, 7b, 7c Arranged in the space surrounded by the grooves 10a, 10b, 10c, and the extraction electrode 11 is laid along the inner surface 3a sandwiching the grooves 10a, 10b, 10c, so that the electron sources 8a, 8b, 8c are configured.
  • the positioning of the metal wires 7a, 7b, and 7c with respect to the extraction electrode 11 is facilitated, and the electron emission from the electron sources 8a, 8b, and 8c is made more uniform.
  • both ends of the metal wires 7a, 7b, 7c are held by the glass lower face plate 3 which is an insulating member, it is possible to further prevent insulation failure in the metal wires 7a, 7b, 7c. it can.
  • the extraction electrode 11 is divided into a plurality along the longitudinal direction of the metal wires 7a, 7b, 7c, and the voltage can be adjusted for each of the extraction electrodes 11, so that the metal wires 7a, 7b, As a result of controlling the amount of extracted electrons along the longitudinal direction of 7c, uniform X-ray irradiation characteristics can be obtained along the longitudinal direction of the metal wires 7a, 7b, 7c.
  • FIG. 5 is a plan view showing a state in which the upper face plate of the X-ray tube 21 according to the second embodiment of the present invention is removed
  • FIG. 6 is a view of the VI-- in the state including the upper face plate of the X-ray tube 21 in FIG. It is sectional drawing along a VI line.
  • the configuration of the extraction electrode provided on the inner surface 3a of the lower face plate 3 is different from that of the first embodiment.
  • the configuration of the upper face plate 2 that functions as the X-ray extraction window of the X-ray tube 21 is the same as that of the first embodiment.
  • an extraction electrode 31 made of a conductive thin film such as an aluminum metal film or an ITO (Indium Tin Oxide) film is formed on the inner surface 3a of the lower face plate 3.
  • the lead electrode 31 has grooves 10a and 10c formed on the inner surface 3a sandwiched between the groove 10a and the groove 10b, on the inner surface 3a sandwiched between the groove 10b and the groove 10c, and on the two inner surfaces 3a.
  • the metal wires 7a, 7b, 7c are formed in a strip shape parallel to the portion where the carbon-based electron emission materials 6a, 6b, 6c are applied.
  • an external connection terminal 32 provided through the vacuum envelope 5 to the outside is connected to the extraction electrode 31.
  • the carbon-based electron emission materials 6a, 6b, and 6c on the surfaces of the metal wires 7a, 7b, and 7c are directed toward the target material 15 by the electric field formed by the extraction electrode 31 and the like. Electrons are emitted and X-rays are generated. These X-rays are extracted through the silicon thin film 14 and are broadened by stabilizing the positional relationship between the metal wires 7a, 7b, 7c and the extraction electrode 31. Stable X-ray irradiation characteristics can be obtained over a range.
  • the extraction electrode 31 by using a conductive thin film formed on the inner surface 3a as the extraction electrode 31, it is possible to prevent the electrons emitted from the electron sources 8a, 8b, and 8c from being absorbed by the extraction electrode. In addition, loss of electron emission can be reduced.
  • FIG. 7 is a plan view showing a state in which the upper face plate of the X-ray tube 41 according to the third embodiment of the present invention is removed, and FIG. 8 shows a state in which the upper face plate of the X-ray tube 41 in FIG.
  • FIG. 9 is a cross-sectional view taken along the line VIII.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in the state including the upper face plate of the X-ray tube 41 shown in FIG.
  • the X-ray tube 41 according to this embodiment is different from that of the first embodiment in that the electron sources 8a, 8b, 8c are held by grooves formed in the side wall 4 of the vacuum envelope 5.
  • the configuration of the upper face plate 2 that functions as the X-ray extraction window of the X-ray tube 41 is the same as that of the first embodiment.
  • both end portions of the metal wires 7a, 7b, 7c are bonded to the lower face plate 3 on the side wall 4 with a certain tension applied to the entire metal wires 7a, 7b, 7c.
  • the grooves 49a, 49b and 49c are held in parallel with each other at equal intervals (see FIG. 8).
  • the grooves 49a, 49b, 49c are formed with a width substantially the same as the diameter of the metal wires 7a, 7b, 7c, thereby ensuring the positioning of the electron sources 8a, 8b, 8c inside the vacuum envelope 5. ing.
  • the metal wires 7a, 7b, and 7c are accommodated in the groove portions 49a, 49b, and 49c, the position in the vertical direction is reached over the entire length of the metal wires 7a, 7b, and 7c by contacting the inner surface 3a. It is kept stable. Further, the both ends of the metal wires 7a, 7b, and 7c are fitted into the grooves 49a, 49b, and 49c, and then the grooves 49a, 49b, and 49c are sealed with frit glass or the like, whereby the vacuum envelope 5 The interior of is kept airtight. When the metal wires 7a, 7b, and 7c are fixed to the groove portions 49a, 49b, and 49c using frit glass, it is preferable to use a jig for preventing displacement.
  • the metal wires 7a, 7b, 7c are respectively connected so as to be connected to the grooves 49a, 49b, 49c.
  • the corresponding grooves 50a, 50b, 50c are formed!
  • the grooves 50a, 50b, 50d are formed to have a width larger than the diameter of the metal wires 7a, 7b, 7c including the carbon-based electron emission materials 6a, 6b, 6c, respectively.
  • the metal wires 7a, 7b, 7c are formed in the groove portions 49a, 49 in the vacuum envelope 5 so that the carbon-based electron emission materials 6a, 6b, 6c do not contact the side surfaces and the bottom surface of the groove portions 5 Oa, 50b, 50c, respectively. b, stretched in a straight line in the space surrounded by 49c! RU
  • a conductive thin film extraction electrode 51 is formed on the convex portions 56 sandwiching both sides of the groove portions 50a, 50b, 50c, and the carbon of the metal wires 7a, 7b, 7c.
  • -Based electron emission materials 6a, 6 It is formed in a strip shape parallel to the part where b and 6c are applied (Fig. 9).
  • This extraction electrode 51 is provided separately on both sides of each metal wire 7a, 7b, 7c, and each extraction electrode 51 is divided into two along the longitudinal direction of the metal wires 7a, 7b, 7c. And installed (Fig. 7).
  • an external connection terminal 52 that is independently connected to each divided extraction electrode 51 penetrates from the vacuum envelope 5 to the outside. Is provided.
  • the metal envelopes 7a, 7b, 7c constituting the electron sources 8a, 8b, 8c have a vacuum envelope having sufficient strength to hold a vacuum at both ends. Positioned in the height direction (direction perpendicular to the inner surface 3a) and the lateral direction (direction parallel to the inner surface 3a) in the vacuum envelope 5 by being held by the side wall 4 and the lower face plate 3 As a result, the positional relationship between the metal wires 7a, 7b, 7c and the extraction electrode 31 is stabilized, so that stable X-ray irradiation characteristics can be obtained over a wide range.
  • the extraction electrode 51 is divided into a plurality of metal wires 7a, 7b, and 7c along the longitudinal direction of the metal wire, and the voltage can be adjusted for each extraction electrode 51. Even if there is a variation in the distance to the extraction electrode between metal wires and a variation in the coating amount of the carbon-based electron-emitting material, the electron extraction amount should be controlled along the longitudinal direction for each of the metal wires 7a, 7b, and 7c. As a result, uniform X-ray irradiation characteristics can be obtained as a whole.
  • FIG. 10 is a plan view of the X-ray tube 61 according to the fourth embodiment of the present invention
  • FIG. 11 is a plan view showing a state in which the upper face plate of the X-ray tube 61 of FIG. 10 is removed
  • FIG. FIG. 13 is a cross-sectional view of the X-ray tube 61 taken along line XII-XII
  • FIG. 13 is a cross-sectional view of the X-ray tube 61 shown in FIG.
  • the X-ray tube 61 that works in this embodiment is adapted to emit X-rays emitted from the target material 75 provided on the upper face plate 2 in accordance with the emitted electron source force provided on the lower face plate 3. This is a so-called reflective X-ray tube that irradiates from the X-ray extraction window provided on the face plate 3 side.
  • two electron sources 8a and 8b are provided on the lower face plate 3 in the vacuum envelope 5 so as to be parallel to the longitudinal direction of the side wall 4, and these electron sources 8a , 8b make up both ends of the metal wires 7a, 7b with a certain tension applied to the entire metal wires 7a, 7b.
  • the face plate 3 is fitted in the grooves 69a and 69b on the inner surface 3a (see FIG. 12).
  • the grooves 69a and 69b are formed with substantially the same width as the diameters of the metal wires 7a and 7b at the junctions between the respective walls along the short side direction of the side wall 4 and the inner surface 3a. The positioning of the sources 8a and 8b inside the vacuum envelope 5 is ensured.
  • the bottom surfaces of the grooves 69a and 69b are formed so as to have a certain depth with respect to the inner surface 3a, and the metal wires 7a and 7b come into contact with the bottom surfaces so that the entire length of the metal wires 7a and 7b is reached.
  • the distance from the inner surface 3a is kept stable.
  • the grooves 69a and 69b are sealed with frit glass or the like, so that the inside of the vacuum envelope 5 is hermetically sealed. It is kept.
  • the groove portions 70a corresponding to the metal wires 7a and 7b are connected to the same line as the groove portions 69a and 69b, respectively. , 70b (Figs. 11 and 13).
  • the groove portions 70a and 70b have a width larger than the diameter of the metal wires 7a and 7b including the carbon-based electron emission materials 6a and 6b, respectively, and are formed deeper than the groove portions 69a and 69b.
  • the metal wires 7a and 7b are respectively located in the spaces surrounded by the grooves 69a and 69b in the vacuum envelope 5 so that the carbon-based electron-emitting materials 6a and 6b do not contact the side surfaces and the bottom surface of the grooves 7Oa and 70b. It is stretched in a straight line.
  • an extraction electrode 71 made of a conductive thin film is provided on the inner surface 3a of the lower face plate 3.
  • the extraction electrode 71 is formed on the inner surface 3a on the outer side of the groove part 70a and the groove part 70b (the side close to the wall along the longitudinal direction of the side wall 4) and on the convex part 76 formed on the inner side of the groove part 70a and the groove part 70b.
  • the metal wires 7a and 7b are formed in a strip shape so as to be parallel to the portions where the carbon-based electron emission materials 6a and 6b are applied.
  • the extraction electrode 71 is close to the inner side of the groove portions 70a and 70b, that is, near the central axis L1 of the target material 75 perpendicular to the inner surface of the target material 75 described later.
  • the lower face plate 3 is formed with a substantially rectangular through hole (opening) 73 that is divided into two along the longitudinal direction of the electron sources 8a and 8b at the center thereof. Take out Functions as an X-ray extraction window (Fig. 11).
  • a silicon thin film 74 is bonded to the outer surface of the lower face plate 3 by anodic bonding so as to cover the through-hole 73, thereby realizing airtight sealing of the inner portion of the vacuum envelope 5.
  • a target material 75 is formed by vapor deposition at a portion facing the through hole 73 on the inner surface of the upper face plate 2 (FIG. 13).
  • tungsten is vapor-deposited integrally with the target material 75 over almost the entire vacuum side of the upper face plate 2.
  • the voltage supply to the target material 75 is also performed through a conductive member that comes into contact with the external connection pin 77 provided penetrating from the vacuum envelope 5 to the outside.
  • the target material 75 is provided in the vacuum envelope 5 so as to face the electron sources 8a and 8b and the through hole 73, so that each electron source 8a, Electrons emitted from 8b are incident on the target material 75, and X-rays generated from the target material 75 are transmitted through the silicon thin film 74 and extracted outside.
  • X-rays are generated by the electrons emitted from the carbon-based electron emitting materials 6a and 6b on the surfaces of the metal wires 7a and 7b being incident on the target material 75.
  • X-rays are extracted to the outside through a through hole 73 and a silicon thin film 74 provided at a position facing the target material 75 of the lower face plate 3.
  • a stable X-ray irradiation characteristic over a wide range can be obtained by stabilizing the positional relationship between the metal wires 7a, 7b, the extraction electrode 71, and the target material 75.
  • the extraction electrode 71 is formed so that the through hole 73 side is lowered with the grooves 70a and 70b interposed therebetween, and electrons emitted from the electron sources 8a and 8b are directed toward the center of the target material 75. Therefore, electrons can be efficiently incident on the target material 75 in the reflective X-ray tube. As a result, the amount of X-ray irradiation is improved.
  • the present embodiment is a reflection type X-ray tube, and the X-ray extraction window (silicon thin film 74) and the target material 75 are provided separately.
  • the heat generated by electron incidence has little effect on the silicon thin film 74.
  • the X-ray extraction window (silicon thin film 74) and the target material 75 are arranged so as to face each other. In particular, it is difficult to be affected by the large distance.
  • the thickness of the get material 75 can be increased. For this reason, it is particularly preferred when increasing the electron flow to obtain a large amount of X-rays.
  • FIG. 14 is a plan view showing a state in which the upper face plate of the X-ray tube 81 according to the fifth embodiment of the present invention is removed, and FIG. 15 shows an XV-- state including the upper face plate of the X-ray tube 81 in FIG.
  • FIG. 16 is a cross-sectional view taken along the line XVI--XVI in a state including the upper face plate of the X-ray tube 81 shown in FIG.
  • the X-ray tube 81 that works in this embodiment, there is one linear electron source, and the central portion of the electron source is accommodated in the through-hole 73 that is the X-ray extraction window. Different from that.
  • the configuration of the upper face plate 2 on which the target material 75 is formed is the same as that of the fourth embodiment.
  • both end portions of the metal wire 7a constituting the electron source 8a are held in parallel with the side wall 4 by being fitted into the groove portion 89a formed on the inner surface 3a of the lower face plate 3 (FIG. 14). And Figure 15).
  • the portion of the metal wire 7a where the carbon-based electron emission material 6a is formed is held in the through hole 73 of the lower face plate 3 so as not to contact the side wall of the through hole 73 and the silicon thin film 74 (FIG. 16). .
  • a mesh-like extraction electrode 91 is laid so as to cover the opening of the through hole 73 and the carbon-based electron emission material 6a formed on the peripheral surface of the metal wire 7a.
  • the lead electrode 91 and the metal wire 7a are disposed in the X-ray passing region, if a light metal element having a smallest atomic number is used, the generated X-rays are easily transmitted. This is preferable because the X-ray dose does not decrease.
  • the extraction electrode may be divided and provided corresponding to each electron source, or in the longitudinal direction of the electron source. You may divide and provide along. At this time, a terminal for external connection may be connected to each of the divided extraction electrodes.
  • the electron source 8a is formed on the inner surfaces 3a on both sides of the grooves 10a, 10b, 10c.
  • , 8b, 8c may be divided and provided with the extraction electrode 111, and the terminal 112 may be connected to each extraction electrode 111 corresponding to the electron sources 8a, 8b, 8c.
  • an extraction electrode 131 divided in the longitudinal direction of the electron sources 8a, 8b, and 8c is further provided, and a terminal 132 is connected to each of the divided extraction electrodes 131. May be.
  • the extraction electrode By dividing the extraction electrode in this way, there is a deviation in the positional relationship between the electron sources and the extraction electrode in the longitudinal direction of one electron source, or between the electron sources and one electron source. Even when there is a variation in the coating amount of the electron emission material in the electron source, the electron emission amount can be made uniform even if the electron source is powerful. In order to improve the voltage resistance between the divided extraction electrodes, it is preferable to arrange ribs having an appropriate thickness between the extraction electrodes.
  • FIG. 19 shows an X-ray tube 141 having an extraction electrode 151 that is divided into two along the longitudinal direction of the electron source 8a with respect to the X-ray tube 81.
  • ribs 157 are provided between the divided extraction electrodes 151 along a direction perpendicular to the electron source 8a.
  • FIG. 20 shows an X-ray tube 161 having an extraction electrode 171 divided into two along the longitudinal direction of the electron sources 8a and 8b with respect to the X-ray tube 61.
  • FIG. 21 is a plan view of an X-ray tube 181 that is a modification of the X-ray tube 41
  • FIG. 22 is a cross-sectional view of the X-ray tube 181 in FIG. 21 taken along the line XXII-XXII.
  • the side wall 4 three mutually parallel grooves 190a, 190b, 190c penetrating toward the lower face plate 3 are formed, and the central portions of the electron sources 8a, 8b, 8c are respectively grooved.
  • the extraction electrode 51 is laid on the inner surface of the side wall 4 sandwiching the grooves 190 a, 190 b, 190 c so as to be parallel to the electron sources 8 a, 8 b, 8 c.
  • the inner surface of the side wall 4 here refers to the surface facing the vacuum side of the side wall 4.
  • the X-ray tube of the present invention is not limited to the configuration in which the electron source is held at the end of the vacuum envelope 5. In FIG.
  • FIG. 23 is a plan view showing the main part of an X-ray tube which is a modification of the present invention, and (b) is a cross section along the axial direction of the electron source of the X-ray tube of (a).
  • lead wires 207a having a certain degree of strength are connected to the upper portions of both ends of the metal wire 7a by welding or the like, and the lead wires 207a are penetrated from the lower face plate 3 to the outside through the groove portions 9a. At this time, by sealing the groove 9a using frit glass or the like, tension is applied to the entire metal wire 7a and the inside of the vacuum envelope 5 is kept airtight.
  • the carbon-based electron emission material 6a is applied in the middle of the metal wire 7a, and an intermediate portion is provided, and the downward force of the intermediate portion is also reduced by the metal wire.
  • a convex portion 203b is further formed between the convex portions 203a on the bottom surface of the groove portion 10a.
  • the configuration of the X-ray tube 61 may be applied to a so-called transmission X-ray tube having an X-ray extraction window on the upper face plate 2 side. That is, as in the X-ray tube 221 shown in FIG. 25, the through-hole 233 is formed in the central portion of the upper face plate 2 in the short direction, and the silicon thin film 14 is disposed outside the upper face plate 2 so as to cover the through-hole 233. Then, the target material 235 may be formed in a portion exposed from the through hole 13 on the inner surface of the silicon thin film 14.
  • the extraction electrode 71 is located on the inner side of the groove portions 70a and 70b, that is, the central axis of the target material 235 perpendicular to the inner surface of the target material 235.
  • the extraction electrode when the extraction electrode is divided and provided, it is only necessary to set the applied voltage so that the electron emission amount in each divided region is uniform. As such, the applied voltage to each divided region of the extraction electrode may be changed.
  • the electron source is arranged along the longitudinal direction of the vacuum envelope 5, it may be arranged along the short direction. In this case, it is preferable to arrange a plurality of electron sources in the longitudinal direction.
  • the vacuum envelope 5 may have the same length in the longitudinal direction and the lateral direction.
  • the members constituting the vacuum envelope 5 are not limited to insulating materials, and for example, a conductive member may be used for the upper face plate 2.
  • the window material covering the through-hole 13 is not limited to silicon, and a material having good X-ray transmission such as beryllium may be used.
  • the conductive member deposited on the vacuum side of the upper face plate 2 is not limited to being formed integrally with the target material, but is made of a conductive material different from the target material, such as aluminum or the like.
  • a thin film made of ITO (Indium Tin Oxide) or the like may be used.

Abstract

An X-ray tube for irradiating X-rays, especially, an X-ray tube having a structure suitable for irradiating X-rays over a wide range. An X-ray tube (1) comprises a vacuum enclosure (5), an electron source including metal wires (7a, 7b, 7c) having carbon based electron emission materials (6a, 6b, 6c) and arranged in the vacuum enclosure (5) by being held, at the opposite ends thereof, by the vacuum enclosure (5), a target material (15) provided in the vacuum enclosure (5) opposite to the electron source for generating X-rays in response to incidence of electrons from the electron source, a through hole (13) for taking out the X-rays generated from the target material (15) to the outside and a silicon thin film (14) fixed to the vacuum enclosure (5), and an extraction electrode (11) provided between the electron source and the target material (15) on the inner surface (3a) of the vacuum enclosure (5).

Description

明 細 書  Specification
X線管  X-ray tube
技術分野  Technical field
[0001] 本発明は、 X線を照射させる X線管に関し、特に、幅広い範囲に X線を照射するの に適した構造を有する X線管に関するものである。  The present invention relates to an X-ray tube that irradiates X-rays, and particularly relates to an X-ray tube having a structure suitable for irradiating X-rays over a wide range.
背景技術  Background art
[0002] X線管は、高真空の管内において電子源を用いて電子を発生させ、その電子をタ 一ゲットに入射させることによって X線を発生する装置である。このような X線管として は、例えば、下記特許文献 1に示された X線装置がある。この X線装置では、平面状 陰極力 放出された電子線がターゲットである平面状陽極に衝突し、平面状陽極か ら発生した X線が取り出し窓を通して外部に取り出される。  An X-ray tube is a device that generates X-rays by generating electrons using an electron source in a high-vacuum tube and causing the electrons to enter a target. An example of such an X-ray tube is an X-ray apparatus disclosed in Patent Document 1 below. In this X-ray apparatus, the electron beam emitted by the planar cathode force collides with the planar anode as a target, and X-rays generated from the planar anode are extracted outside through the extraction window.
特許文献 1:特開 2003 - 288853号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-288853
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところで、上述した平面状の電子源を有する X線管は小型化に有利である力 その 一方で、より広範囲に照射可能な X線管が望まれている。例えば、管に対して相対移 動する物体に対して X線を照射するような状況下では、移動方向に対して交わる方 向(例えば、垂直方向)に延びるように、広範囲に X線を照射可能な X線管が好ましく 、このような X線管に用いる電子源として線状部材を用いることが考えられる。また、こ のように表面に電子放出材料を設けた冷陰極の電子源としての線状部材は、主に引 出電極との間に形成される電界によって電子放出を制御されるために、線状部材の 真空管内での位置決めが重要となる。そして、このような線状部材を用いてより広範 囲の照射を実現するためには、線状部材を広範囲にわたって配置することになるた めに、その位置決めは容易でな 、ため電子放出の制御を難しくする傾向にある。 Meanwhile, the X-ray tube having the above-described planar electron source is advantageous for downsizing, while an X-ray tube that can irradiate a wider range is desired. For example, in a situation where X-rays are irradiated to an object that moves relative to the tube, X-rays are irradiated over a wide area so as to extend in the direction intersecting the moving direction (for example, the vertical direction). A possible X-ray tube is preferable, and it is conceivable to use a linear member as an electron source used in such an X-ray tube. In addition, a linear member as an electron source of a cold cathode having an electron emitting material provided on the surface in this way is controlled by an electric field formed mainly with the extraction electrode. The positioning of the member in the vacuum tube is important. In order to realize a wider range of irradiation using such a linear member, since the linear member is arranged over a wide range, its positioning is not easy, so control of electron emission is possible. Tend to be difficult.
[0004] そこで、本発明は、カゝかる課題に鑑みて為されたものであり、電子源の位置決めを 確実に行うことにより X線照射特性を広範囲に安定ィ匕することが可能な X線管を提供 することを目的とする。 課題を解決するための手段 [0004] Therefore, the present invention has been made in view of the problems to be solved, and X-ray irradiation characteristics can be stabilized over a wide range by reliably positioning the electron source. The purpose is to provide a tube. Means for solving the problem
[0005] 上記課題を解決するため、本発明の X線管は、少なくとも一部に絶縁部材を含む真 空外囲器と、炭素系電子放出材料を表面に有する線状部材を含み、線状部材の両 端が真空外囲器によって保持されることによって真空外囲器内に配置された電子源 と、真空外囲器内において電子源に対向して設けられ、電子源力 の電子の入射に 応じて X線を発生するターゲットと、真空外囲器に取り付けられ、ターゲットから発生し た X線を外部に取り出すための X線取出窓と、真空外囲器の絶縁部材の内面上にお いて、電子源とターゲットとの間に設けられた引出電極とを備える。  [0005] In order to solve the above problems, an X-ray tube of the present invention includes a vacuum envelope including an insulating member at least in part, and a linear member having a carbon-based electron emission material on its surface, Both ends of the member are held by the vacuum envelope so that the electron source disposed in the vacuum envelope and the electron source in the vacuum envelope are opposed to the electron source. Depending on the target, an X-ray extraction window for taking out X-rays generated from the target and attached to the vacuum envelope, and an inner surface of the insulating member of the vacuum envelope. And an extraction electrode provided between the electron source and the target.
[0006] このような X線管によれば、電子源を構成する線状部材が、その両端を真空を保持 するために十分な強度を有する真空外囲器によって保持されることによって、真空外 囲器内にぉ 、て位置決めされるとともに、真空外囲器の絶縁部材の内面上における 電子源とターゲットとの間には引出電極が設けられる。このような構成において、線状 部材の表面の炭素系電子放出材料力 放出された電子がターゲットに入射すること によって X線が発生し、この X線は X線取出窓を通じて外部に取り出される力 線状 部材と引出電極との位置関係が安定ィ匕されることにより広範囲に渡って安定した X線 照射特性が得られる。  [0006] According to such an X-ray tube, the linear members constituting the electron source are held by the vacuum envelope having sufficient strength to hold the vacuum at both ends thereof. In addition to being positioned in the envelope, an extraction electrode is provided between the electron source and the target on the inner surface of the insulating member of the vacuum envelope. In such a configuration, the carbon-based electron emission material force on the surface of the linear member generates X-rays when the emitted electrons enter the target, and these X-rays are extracted through the X-ray extraction window. Stable X-ray irradiation characteristics can be obtained over a wide range by stabilizing the positional relationship between the shape member and the extraction electrode.
[0007] 絶縁部材には、ターゲットと対向するように開口部が設けられ、 X線取出窓は、開口 部を覆うように設けられていることが好ましい。この場合、電子の入射方向に対して異 なる方向に X線を取り出すような、いわゆる反射型のターゲットを利用した場合に、外 部の広範囲に X線を照射することができる。  [0007] Preferably, the insulating member is provided with an opening so as to face the target, and the X-ray extraction window is provided so as to cover the opening. In this case, when a so-called reflective target that extracts X-rays in a direction different from the incident direction of electrons is used, X-rays can be irradiated over a wide area outside.
[0008] また、平板状の絶縁部材の内面には、線状部材に対応した溝部が形成されており 、線状部材は、溝部によって囲まれた空間内に配置され、引出電極は、絶縁部材の 溝部を挟んだ内面に沿って布設されていることも好ましい。こうすれば、電子源を構 成する線状部材の全体に渡って引出電極に対する位置決めが容易に為され、電子 源からの電子放出がより均一化される。  [0008] Further, a groove portion corresponding to the linear member is formed on the inner surface of the flat insulating member, the linear member is disposed in a space surrounded by the groove portion, and the extraction electrode is formed of the insulating member. It is also preferable that it is laid along the inner surface across the groove. In this way, positioning with respect to the extraction electrode is facilitated over the entire linear members constituting the electron source, and electron emission from the electron source is made more uniform.
[0009] さらに、平板状の絶縁部材の内面には、線状部材に対応した溝部が形成されてお り、線状部材は、溝部によって囲まれた空間内に配置され、引出電極は、絶縁部材 の溝部を挟んで、前記ターゲットの内面に垂直な中心軸線側が低くなるように形成さ れた内面に沿って布設されていることも好ましい。このような構成により、電子源を構 成する線状部材の全体に渡って引出電極に対する位置決めが容易に為され、電子 源からの電子放出がより均一化されるとともに、ターゲットに電子を効率的に入射させ ることがでさる。 Furthermore, a groove corresponding to the linear member is formed on the inner surface of the flat insulating member, the linear member is disposed in a space surrounded by the groove, and the extraction electrode is insulated. Formed so that the central axis side perpendicular to the inner surface of the target is lower across the groove of the member. It is also preferable that it is laid along the inner surface. Such a configuration facilitates positioning with respect to the extraction electrode over the entire linear members constituting the electron source, makes electron emission from the electron source more uniform, and efficiently distributes electrons to the target. It is possible to make it incident on.
[0010] またさらに、線状部材の両端は、真空外囲器の絶縁部材によって保持されているこ とも好ましい。このようにすることで、線状部材における絶縁不良を防止することがで きる。  [0010] Furthermore, it is also preferable that both ends of the linear member are held by insulating members of the vacuum envelope. By doing so, it is possible to prevent insulation failure in the linear member.
[0011] さらにまた、引出電極は、線状部材の長手方向に沿って複数に分割されていること も好ましい。力かる引出電極を備えれば、線状部材の長手方向に沿って分割領域毎 に電子の引出量を制御することができ、線状部材の長手方向に沿って分割領域内で 任意の X線照射特性を得ることができる。  [0011] Furthermore, the extraction electrode is preferably divided into a plurality of portions along the longitudinal direction of the linear member. If a powerful extraction electrode is provided, the electron extraction amount can be controlled for each divided region along the longitudinal direction of the linear member, and any X-ray can be generated within the divided region along the longitudinal direction of the linear member. Irradiation characteristics can be obtained.
発明の効果  The invention's effect
[0012] 本発明による X線管によれば、電子源の位置決めを確実に行うことにより X線照射 特性を広範囲に安定ィ匕することができる。  [0012] According to the X-ray tube of the present invention, the X-ray irradiation characteristics can be stabilized over a wide range by reliably positioning the electron source.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明の第 1実施形態である X線管の平面図である。 FIG. 1 is a plan view of an X-ray tube according to a first embodiment of the present invention.
[図 2]図 1の X線管の上部面板を取り除いた状態を示す平面図である。  2 is a plan view showing a state where an upper face plate of the X-ray tube of FIG. 1 is removed.
[図 3]図 1の X線管の III— III線に沿った断面図である。  3 is a cross-sectional view of the X-ray tube of FIG. 1 taken along line III-III.
[図 4]図 1の X線管の IV— IV線に沿った断面図である。  4 is a cross-sectional view of the X-ray tube of FIG. 1 taken along line IV-IV.
[図 5]本発明の第 2実施形態である X線管の上部面板を取り除いた状態を示す平面 図である。  FIG. 5 is a plan view showing a state in which an upper face plate of an X-ray tube according to a second embodiment of the present invention is removed.
[図 6]図 5の X線管の上部面板を含んだ状態における VI— VI線に沿った断面図であ る。  FIG. 6 is a cross-sectional view taken along line VI-VI in the state including the upper face plate of the X-ray tube of FIG.
[図 7]本発明の第 3実施形態である X線管の上部面板を取り除いた状態を示す平面 図である。  FIG. 7 is a plan view showing a state where an upper face plate of an X-ray tube according to a third embodiment of the present invention is removed.
[図 8]図 7の X線管の上部面板を含んだ状態における VIII— VIII線に沿った断面図で ある。  8 is a cross-sectional view taken along line VIII-VIII in a state including the upper face plate of the X-ray tube in FIG.
[図 9]図 7の X線管の上部面板を含んだ状態における IX— IX線に沿った断面図であ る。 FIG. 9 is a cross-sectional view taken along the line IX—IX in the state including the upper face plate of the X-ray tube of FIG. The
圆 10]本発明の第 4実施形態である X線管の平面図である。 [10] FIG. 10 is a plan view of an X-ray tube according to a fourth embodiment of the present invention.
[図 11]図 10の X線管の上部面板を取り除 、た状態を示す平面図である。  FIG. 11 is a plan view showing a state where the upper face plate of the X-ray tube of FIG. 10 is removed.
[図 12]図 10の X線管の XII— XII線に沿った断面図である。  12 is a cross-sectional view of the X-ray tube of FIG. 10 taken along line XII-XII.
[図 13]図 10の X線管の XIII— XIII線に沿った断面図である。  FIG. 13 is a cross-sectional view of the X-ray tube of FIG. 10 taken along line XIII-XIII.
圆 14]本発明の第 5実施形態である X線管の上部面板を取り除いた状態を示す平面 図である。 FIG. 14] A plan view showing a state in which the upper face plate of the X-ray tube according to the fifth embodiment of the present invention is removed.
[図 15]図 14の X線管の上部面板を含んだ状態における XV— XV線に沿った断面図 である。  FIG. 15 is a sectional view taken along line XV—XV in a state including the upper face plate of the X-ray tube of FIG.
[図 16]図 14の X線管の上部面板を含んだ状態における XVI— XVI線に沿った断面図 である。  FIG. 16 is a cross-sectional view taken along line XVI--XVI in a state including the upper face plate of the X-ray tube of FIG.
圆 17]本発明の変形例である X線管の上部面板を取り除いた状態を示す平面図であ る。 [17] FIG. 17 is a plan view showing a state in which an upper face plate of an X-ray tube as a modification of the present invention is removed.
圆 18]本発明の変形例である X線管の上部面板を取り除いた状態を示す平面図であ る。 [18] FIG. 18 is a plan view showing a state in which an upper face plate of an X-ray tube as a modification of the present invention is removed.
圆 19]本発明の変形例である X線管の上部面板を取り除いた状態を示す平面図であ る。 [19] FIG. 19 is a plan view showing a state in which an upper face plate of an X-ray tube which is a modification of the present invention is removed.
[図 20]本発明の変形例である X線管の上部面板を取り除いた状態を示す平面図であ る。  FIG. 20 is a plan view showing a state where an upper face plate of an X-ray tube as a modification of the present invention is removed.
圆 21]本発明の変形例である X線管の上部面板を取り除いた状態を示す平面図であ る。 21] FIG. 21 is a plan view showing a state in which an upper face plate of an X-ray tube which is a modification of the present invention is removed.
[図 22]図 21の X線管の XXII— XXII線に沿った断面図である。  FIG. 22 is a cross-sectional view of the X-ray tube of FIG. 21 taken along line XXII-XXII.
圆 23] (a)は、本発明の変形例である X線管の主要部分を示す平面図、(b)は、(a) の X線管の電子源の軸線方向に沿った断面図である。 圆 23] (a) is a plan view showing the main part of an X-ray tube which is a modification of the present invention, and (b) is a cross-sectional view along the axial direction of the electron source of the X-ray tube of (a). is there.
圆 24] (a)は、本発明の変形例である X線管の主要部分を示す平面図、(b)は、(a) の X線管の電子源の軸線方向に沿った断面図である。 圆 24] (a) is a plan view showing the main part of an X-ray tube which is a modification of the present invention, and (b) is a cross-sectional view along the axial direction of the electron source of the X-ray tube of (a). is there.
圆 25]本発明の変形例である X線管の断面図である。 25] A sectional view of an X-ray tube which is a modification of the present invention.
符号の説明 [0014] 1, 21, 41, 61, 81, 101, 121, 141, 161, 181 · · ·Χ線管、 2· · ·上部面板、 3· · ·下 部面板、 3a…内面、 4…側壁、 5…真空外囲器、 6a, 6b, 6c…炭素系電子放出材料 、 7a, 7b, 7c…金属線(線状部材)、 8a, 8b, 8c…電子源、 10a, 10b, 10c, 50a, 50b, 50c, 70a, 70b, 190a, 190b, 190c…溝部、 11, 31, 51, 71, 91 , 111, 1 31 , 151, 171 · · ·引出電極、 13· · ·貫通孔、 15, 75· · ·ターゲッ卜材、 56, 76· · ·凸部( 内面)、 73…貫通孔(開口部)。 Explanation of symbols [0014] 1, 21, 41, 61, 81, 101, 121, 141, 161, 181 ··· Wire tube, 2 ··· Upper face plate, 3 ··· Lower face plate, 3a… Inner surface, 4… Side wall, 5 ... Vacuum envelope, 6a, 6b, 6c ... Carbon-based electron emission material, 7a, 7b, 7c ... Metal wire (linear member), 8a, 8b, 8c ... Electron source, 10a, 10b, 10c, 50a, 50b, 50c, 70a, 70b, 190a, 190b, 190c ... groove, 11, 31, 51, 71, 91, 111, 1 31, 151, 171 · · · Extraction electrode, 13 · · Through hole, 15 , 75 ··· Target material, 56, 76 ··· Projection (inner surface), 73… Through hole (opening).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、図面を参照しつつ本発明に係る X線管の好適な実施形態について詳細に 説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重 複する説明を省略する。また、各図面は説明用のために作成されたものであり、説明 の対象部位を特に強調するように描かれている。そのため、図面における各部材の 寸法比率は、必ずしも実際のものとは一致しない。  Hereinafter, preferred embodiments of an X-ray tube according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts will be denoted by the same reference numerals, and redundant description will be omitted. Each drawing is made for the purpose of explanation, and is drawn so as to particularly emphasize the target part of the explanation. Therefore, the dimensional ratio of each member in the drawing does not necessarily match the actual one.
[0016] [第 1実施形態]  [0016] [First embodiment]
図 1は、本発明の第 1実施形態である X線管 1の平面図、図 2は、図 1の X線管 1の 上部面板を取り除いた状態を示す平面図、図 3は、図 1の III III線に沿った断面図、 図 4は、図 1の IV— IV線に沿った断面図である。これらの図に示すように、 X線管 1は 、平板状のガラス等の絶縁部材力 なる上部面板 2及び下部面板 3と、ガラス等の絶 縁部材カもなる四角柱状の側壁 4とから構成される真空外囲器 5を有している。上部 面板 2、下部面板 3、及び側壁 4は、ガラスによって形成され、上部面板 2及び下部面 板 3がフリットガラス等により側壁 4の開口端と封着されることにより真空外囲器 5の内 部が気密に保たれている。  FIG. 1 is a plan view of the X-ray tube 1 according to the first embodiment of the present invention, FIG. 2 is a plan view showing a state in which the upper face plate of the X-ray tube 1 of FIG. 1 is removed, and FIG. Fig. 4 is a cross-sectional view taken along line IV-IV in Fig. 1. As shown in these figures, the X-ray tube 1 is composed of an upper face plate 2 and a lower face plate 3 which are insulating member forces such as flat glass, and a square columnar side wall 4 which is also an insulating member such as glass. The vacuum envelope 5 is provided. The upper face plate 2, the lower face plate 3, and the side wall 4 are made of glass, and the upper face plate 2 and the lower face plate 3 are sealed with the opening end of the side wall 4 by frit glass or the like, thereby allowing the inside of the vacuum envelope 5 to be sealed. The part is kept airtight.
[0017] この真空外囲器 5の一部を構成する下部面板 3の内面 3a上には、周面に炭素系電 子放出材料 6a, 6b, 6cが CVD法、スプレー法、印刷法等でそれぞれ被覆された金 属線 (線状部材) 7a, 7b, 7cによって構成される電子源 8a, 8b, 8cが配置されてい る。ここで、炭素系電子放出材料 6a, 6b, 6cは、カーボンナノチューブ、カーボンナ ノウオール、カーボンナノファイバ、ダイヤモンド、ダイヤモンドライクカーボン等に代 表され、電界の作用によって電子を外部に放出する性質を有するいわゆる電界放出 型の電子放出材料である。それぞれの電子源 8a, 8b, 8cにおいては、金属線 7a, 7 b, 7cの両端部を除く周面の全体に渡って炭素系電子放出材料 6a, 6b, 6cが被覆 されている。また、以下、内面 3aとは、下部面板 3の真空側を向いた面であって、側 壁 4との接合部分を含む面のことを示すものとする。 [0017] On the inner surface 3a of the lower face plate 3 constituting a part of the vacuum envelope 5, carbon-based electron emission materials 6a, 6b, 6c are formed on the peripheral surface by a CVD method, a spray method, a printing method, or the like. Electron sources 8a, 8b, and 8c each composed of a coated metal wire (linear member) 7a, 7b, and 7c are arranged. Here, the carbon-based electron emission materials 6a, 6b, and 6c are represented by carbon nanotubes, carbon nanotubes, carbon nanofibers, diamond, diamond-like carbon, and the like, and have a property of emitting electrons to the outside by the action of an electric field. It is a field emission type electron emission material. In each electron source 8a, 8b, 8c, metal wires 7a, 7 Carbon-based electron emission materials 6a, 6b, and 6c are coated over the entire peripheral surface excluding both ends of b and 7c. Hereinafter, the inner surface 3a refers to a surface facing the vacuum side of the lower face plate 3 and including a joint portion with the side wall 4.
[0018] 上記のような構成を有する電子源 8a, 8b, 8cは、それぞれ、金属線 7a, 7b, 7cの 両端部が、金属線 7a, 7b, 7cの全体に一定のテンションが力かった状態で下部面板 3の内面 3aの溝部 9a, 9b, 9cに嵌め込まれることによって、側壁 4の長手方向に沿 つて互いに平行に等間隔になるように保持されている(図 3参照)。この溝部 9a, 9b, 9cは、側壁 4の短手方向に沿った壁のそれぞれと内面 3aとの接合部分において金 属線 7a, 7b, 7cの径とほぼ同一の幅で形成されることによって、電子源 8a, 8b, 8c の真空外囲器 5の内部における位置決めを確実にしている。このとき、溝部 9a, 9b, 9cの底面が内面 3aに対して一定の深さになるように形成されて金属線 7a, 7b, 7cが その底面に接触することによって、金属線 7a, 7b, 7cの全長に渡っての内面 3aとの 距離が安定に保たれている。さらに、金属線 7a, 7b, 7cの両端部が溝部 9a, 9b, 9c に嵌め込まれた上で、フリットガラス等を用いて溝部 9a, 9b, 9cを封止することにより 、真空外囲器 5の内部を気密に保っている。なお、金属線 7a, 7b, 7cをフリットガラス を用いて溝部 9a, 9b, 9cに固定する際には、位置ズレ防止のために治具を用いるこ とが好ましい。 [0018] In the electron sources 8a, 8b, and 8c having the above-described configuration, both ends of the metal wires 7a, 7b, and 7c had a constant tension on the entire metal wires 7a, 7b, and 7c, respectively. By being fitted in the grooves 9a, 9b, 9c of the inner surface 3a of the lower face plate 3 in this state, they are held at equal intervals in parallel with each other along the longitudinal direction of the side wall 4 (see FIG. 3). The grooves 9a, 9b, and 9c are formed with substantially the same width as the diameters of the metal wires 7a, 7b, and 7c at the joint portion between the inner wall 3a and each of the walls along the lateral direction of the side wall 4. The positioning of the electron sources 8a, 8b and 8c inside the vacuum envelope 5 is ensured. At this time, the bottom surfaces of the grooves 9a, 9b, 9c are formed so as to have a certain depth with respect to the inner surface 3a, and the metal wires 7a, 7b, 7c come into contact with the bottom surfaces, so that the metal wires 7a, 7b, The distance from the inner surface 3a over the entire length of 7c is kept stable. Further, the both ends of the metal wires 7a, 7b, and 7c are fitted into the grooves 9a, 9b, and 9c, and then the grooves 9a, 9b, and 9c are sealed with frit glass or the like, so that the vacuum envelope 5 Keeps the inside airtight. When the metal wires 7a, 7b, and 7c are fixed to the grooves 9a, 9b, and 9c using frit glass, it is preferable to use a jig for preventing misalignment.
[0019] また、下部面板 3の内面 3aの側壁 4との接合部分を除く中央部には、溝部 9a, 9b, 9cのそれぞれと同一線上に繋がるように、金属線 7a, 7b, 7cに対応した溝部 10a, 1 Ob, 10cが形成されている。この溝部 10a, 10b, 10cは、それぞれ、炭素系電子放 出材料 6a, 6b, 6cを含む金属線 7a, 7b, 7cの径より大きな幅を有し、溝部 9a, 9b, 9cより深く形成されている。金属線 7a, 7b, 7cは、それぞれ、炭素系電子放出材料 6 a, 6b, 6cが溝部 10a, 10b, 10cの側面及び底面に接触しないように、真空外囲器 5内の溝部 9a, 9b, 9cで囲まれる空間内に一直線状に張架されている。  [0019] Further, in the central portion excluding the joint portion of the inner surface 3a of the lower face plate 3 with the side wall 4, it corresponds to the metal wires 7a, 7b, 7c so as to be connected on the same line as each of the groove portions 9a, 9b, 9c. Grooves 10a, 1 Ob, 10c are formed. The groove portions 10a, 10b, and 10c have widths larger than the diameters of the metal wires 7a, 7b, and 7c including the carbon-based electron emission materials 6a, 6b, and 6c, and are formed deeper than the groove portions 9a, 9b, and 9c, respectively. ing. The metal wires 7a, 7b, and 7c are formed in the groove portions 9a and 9b in the vacuum envelope 5 so that the carbon-based electron emission materials 6a, 6b, and 6c do not contact the side surfaces and the bottom surface of the groove portions 10a, 10b, and 10c, respectively. , 9c is stretched in a straight line in the space surrounded by 9c.
[0020] 下部面板 3の内面 3aの中央部には、網目状の引出電極 11が、溝部 10a, 10b, 10 c内に配置された電子源 8a, 8b, 8cを覆うように、溝部 10a, 10b, 10cの両側を挟む 内面 3a上に亘つて布設されている(図 2)。この引出電極 11は、金属線 7a, 7b, 7cの 長手方向に沿って 3分割されて布設され、分割された引出電極 11毎に印加電圧を 調整できるように、分割された引出電極 11毎に独立に接続された外部接続用の複数 のピン 12が真空外囲器 5から外部に貫通して設けられている。このような構成の引出 電極 11は、真空外囲器 5内において、電子源 8a, 8b, 8cと後述するターゲット材 15 との間に位置することになる。 [0020] At the central portion of the inner surface 3a of the lower face plate 3, a mesh-shaped extraction electrode 11 is formed so as to cover the electron sources 8a, 8b, 8c disposed in the grooves 10a, 10b, 10c. It is installed over the inner surface 3a that sandwiches both sides of 10b and 10c (Fig. 2). The extraction electrode 11 is divided into three parts along the longitudinal direction of the metal wires 7a, 7b, and 7c, and an applied voltage is applied to each of the divided extraction electrodes 11. A plurality of external connection pins 12 that are independently connected to each of the divided extraction electrodes 11 are provided through the vacuum envelope 5 so as to be adjustable. The extraction electrode 11 having such a configuration is positioned in the vacuum envelope 5 between the electron sources 8a, 8b, 8c and a target material 15 described later.
[0021] 上部面板 2は、それぞれの電子源 8a, 8b, 8cに対向する位置に略矩形状の貫通 孔 13が形成されることによって、 X線を外部に取り出すための X線取出窓として機能 する(図 1)。これらの貫通孔 13は、電子源 8a, 8b, 8cの長手方向に沿って 2個ずつ に分割されて合計 6個配列されている。また、上部面板 2の外側表面には、全ての貫 通孔 13を覆うようにシリコン薄膜 14が陽極接合によって接合されており、真空外囲器 5の内部の気密封止が実現される。さらに、シリコン薄膜 14の内面の貫通孔 13から 露出する部位には、タングステン等のターゲット材 15が蒸着により形成されている(図 4)。このターゲット材 15は、電子源 8a, 8b, 8cからの電子の入射に応じて X線を発 生させる性質を有する。このように、ターゲット材 15が真空外囲器 5内で電子源 8a, 8 b, 8cに対向して設けられることにより、引出電極 11に印加された電圧に応じて各電 子源 8a, 8b, 8cから放出された電子がターゲット材 15に入射し、それに応じてター ゲット材 15から発生した X線がシリコン薄膜 14を透過して外部に取り出される。なお、 貫通孔 13の内壁も含めて、上部面板 2の真空側にもタングステン等の導電性部材が 蒸着されている。電子源 8からの電子は、絶縁部材である上部面板 2にも入射するた め、上部面板 2が帯電し、真空外囲器 5内に形成される電界に影響を与えてしまう場 合がある。そのため、導電性部材で電子入射側を覆うことによって、帯電を防止して いる。なお、本実施形態においては、ターゲット材 15と一体に蒸着形成されている。 また、ターゲット材 15への電圧供給も、真空外囲器 5から外部に貫通して設けられた 外部接続用ピン 17と接触する導電性部材を介して行われる。  [0021] The upper face plate 2 functions as an X-ray extraction window for extracting X-rays to the outside by forming a substantially rectangular through-hole 13 at a position facing each of the electron sources 8a, 8b, 8c. (Figure 1). These through-holes 13 are divided into two along the longitudinal direction of the electron sources 8a, 8b, 8c, and a total of six are arranged. In addition, a silicon thin film 14 is bonded to the outer surface of the upper face plate 2 by anodic bonding so as to cover all the through holes 13, thereby realizing hermetic sealing inside the vacuum envelope 5. Further, a target material 15 such as tungsten is formed by vapor deposition in a portion exposed from the through hole 13 on the inner surface of the silicon thin film 14 (FIG. 4). This target material 15 has the property of generating X-rays in response to the incidence of electrons from the electron sources 8a, 8b, 8c. In this way, the target material 15 is provided in the vacuum envelope 5 so as to face the electron sources 8a, 8b, 8c, so that each of the electron sources 8a, 8b corresponds to the voltage applied to the extraction electrode 11. , 8c are incident on the target material 15, and X-rays generated from the target material 15 are transmitted through the silicon thin film 14 and extracted outside. Note that a conductive member such as tungsten is deposited on the vacuum side of the upper face plate 2 including the inner wall of the through hole 13. The electrons from the electron source 8 are also incident on the upper face plate 2 which is an insulating member, and therefore the upper face plate 2 may be charged and affect the electric field formed in the vacuum envelope 5. . Therefore, charging is prevented by covering the electron incident side with a conductive member. In the present embodiment, vapor deposition is formed integrally with the target material 15. In addition, the voltage supply to the target material 15 is also performed through a conductive member that comes into contact with the external connection pin 17 provided through the vacuum envelope 5 to the outside.
[0022] 以上説明した X線管 1においては、金属線 7a, 7b, 7cの表面の炭素系電子放出材 料 6a, 6b, 6cから放出された電子がターゲット材 15に入射することによって X線が発 生し、この X線は貫通孔 13及びシリコン薄膜 14を通じて外部に取り出される。このと き、金属線 7a, 7b, 7cと引出電極 11及びターゲット材 15との位置関係が安定ィ匕され ることにより広範囲に渡って安定した X線照射特性が得られる。 [0023] 具体的には、電子源 8a, 8b, 8cを構成する金属線 7a, 7b, 7cが、その両端を真空 を保持するために十分な強度を有する真空外囲器 5の下部面板 3によって保持され ることによって、真空外囲器 5内の高さ方向(内面 3aに対して垂直な方向)及び横方 向(内面 3aに対して平行な方向)において位置決めされる。すなわち、金属線 7a, 7 b, 7cが一定のテンションが与えられた状態で溝部 9a, 9b, 9cに嵌め込まれることに よって、電子源 8a, 8b, 8cと下部面板 3の内面 3aとの距離が一定に保たれる。一方 、絶縁部材力 なる真空外囲器 5の下部面板 3の内面 3a上において電子源 8a, 8b, 8cとターゲット材 15との間に引出電極 11が布設されることによって、電子源 8a, 8b, 8cと引出電極 11との距離が保たれる結果、電子源 8a, 8b, 8cからの電子のエミッシ ヨン量が均一化される。特に、 X線管 1においては、電子源 8a, 8b, 8cと引出電極 11 との間の電界強度が π!〜 m程度と大きぐ炭素系電子放出材料から 放出される電流密度も 2〜50mAZcm2程度と大きいため電子ェミッション量の安定 化の効果は大きい。さらには、一般的な X線管においては電流量を大きくする必要が あり、電子源 8a, 8b, 8cを構成する金属線 7a, 7b, 7cを 0.5mm〜数 mm程度に太く する必要があるので、真空外囲器 5によって保持されることによる電子源の位置安定 化の効果も大きい。 [0022] In the X-ray tube 1 described above, the electrons emitted from the carbon-based electron emitting materials 6a, 6b, 6c on the surfaces of the metal wires 7a, 7b, 7c are incident on the target material 15 to cause X-rays. This X-ray is extracted to the outside through the through hole 13 and the silicon thin film 14. At this time, a stable X-ray irradiation characteristic can be obtained over a wide range by stabilizing the positional relationship between the metal wires 7a, 7b and 7c and the extraction electrode 11 and the target material 15. [0023] Specifically, the lower surface plate 3 of the vacuum envelope 5 in which the metal wires 7a, 7b, 7c constituting the electron sources 8a, 8b, 8c have sufficient strength to hold a vacuum at both ends thereof. Is held in the vacuum envelope 5 in the height direction (direction perpendicular to the inner surface 3a) and in the lateral direction (direction parallel to the inner surface 3a). That is, the distance between the electron sources 8a, 8b, 8c and the inner surface 3a of the lower face plate 3 by fitting the metal wires 7a, 7b, 7c in the grooves 9a, 9b, 9c with a certain tension applied. Is kept constant. On the other hand, the extraction electrode 11 is laid between the electron sources 8a, 8b, 8c and the target material 15 on the inner surface 3a of the lower face plate 3 of the vacuum envelope 5 having the insulating member force, whereby the electron sources 8a, 8b , 8c and the extraction electrode 11 are kept at a distance, so that the amount of electron emission from the electron sources 8a, 8b, 8c is made uniform. In particular, in the X-ray tube 1, the electric field strength between the electron sources 8a, 8b, 8c and the extraction electrode 11 is π! The effect of stabilization of the electron E mission weight for the current density emitted as high as 2~50MAZcm 2 order of ~ m about the large instrument carbonaceous electron-emitting material is great. Furthermore, in a general X-ray tube, it is necessary to increase the amount of current, and the metal wires 7a, 7b, 7c constituting the electron sources 8a, 8b, 8c need to be thickened to about 0.5 mm to several mm. Therefore, the effect of stabilizing the position of the electron source by being held by the vacuum envelope 5 is also great.
[0024] また、端部における保持構造を採ることにより電子源 8a, 8b, 8cと溝部 10a, 10b, 10cの底面及び側面とが接触することがないので、炭素系電子放出材料 6a, 6b, 6c の剥がれに起因する電子放出特性の劣化や、剥がれた炭素系電子放出材料 6a, 6 b, 6cが電極等に接触することによる絶縁不良を防止することができる。  [0024] Since the electron sources 8a, 8b, 8c are not brought into contact with the bottom surfaces and side surfaces of the groove portions 10a, 10b, 10c by adopting the holding structure at the end portion, the carbon-based electron emission materials 6a, 6b, It is possible to prevent the deterioration of the electron emission characteristics due to the peeling of 6c and the poor insulation due to the peeled carbon-based electron emitting materials 6a, 6b, 6c coming into contact with the electrodes.
[0025] また、下部面板 3の内面 3aには、金属線 7a, 7b, 7cの延びる方向に沿った方向に 溝部 10a, 10b, 10cが形成されており、金属線 7a, 7b, 7cは、溝部 10a, 10b, 10c によって囲まれた空間内に配置され、引出電極 11は、溝部 10a, 10b, 10cを挟んだ 内面 3aに沿って布設されているので、電子源 8a, 8b, 8cを構成する金属線 7a, 7b, 7cの全体に渡って引出電極 11に対する位置決めが容易に為され、電子源 8a, 8b, 8cからの電子放出がより均一化される。  [0025] Further, on the inner surface 3a of the lower face plate 3, grooves 10a, 10b, 10c are formed in the direction along the direction in which the metal wires 7a, 7b, 7c extend, and the metal wires 7a, 7b, 7c Arranged in the space surrounded by the grooves 10a, 10b, 10c, and the extraction electrode 11 is laid along the inner surface 3a sandwiching the grooves 10a, 10b, 10c, so that the electron sources 8a, 8b, 8c are configured. The positioning of the metal wires 7a, 7b, and 7c with respect to the extraction electrode 11 is facilitated, and the electron emission from the electron sources 8a, 8b, and 8c is made more uniform.
[0026] また、金属線 7a, 7b, 7cの両端は、絶縁部材であるガラス製の下部面板 3によって 保持されているので、金属線 7a, 7b, 7cにおける絶縁不良をより一層防止することが できる。 [0026] Further, since both ends of the metal wires 7a, 7b, 7c are held by the glass lower face plate 3 which is an insulating member, it is possible to further prevent insulation failure in the metal wires 7a, 7b, 7c. it can.
[0027] また、引出電極 11は、金属線 7a, 7b, 7cの長手方向に沿って複数に分割され、そ れぞれの引出電極 11ごとに電圧を調整可能なので、金属線 7a, 7b, 7cの長手方向 に沿って電子の引出量を制御することができる結果、金属線 7a, 7b, 7cの長手方向 に沿って均一な X線照射特性を得ることができる。  [0027] Further, the extraction electrode 11 is divided into a plurality along the longitudinal direction of the metal wires 7a, 7b, 7c, and the voltage can be adjusted for each of the extraction electrodes 11, so that the metal wires 7a, 7b, As a result of controlling the amount of extracted electrons along the longitudinal direction of 7c, uniform X-ray irradiation characteristics can be obtained along the longitudinal direction of the metal wires 7a, 7b, 7c.
[0028] [第 2実施形態]  [0028] [Second Embodiment]
次に、本発明の第 2実施形態について説明する。図 5は、本発明の第 2実施形態で ある X線管 21の上部面板を取り除いた状態を示す平面図、図 6は、図 5の X線管 21 の上部面板を含んだ状態における VI— VI線に沿った断面図である。本実施形態に かかる X線管 21では、下部面板 3の内面 3a上に設けられた引出電極の構成が第 1 実施形態のものと異なる。なお、 X線管 21の X線取出窓として機能する上部面板 2の 構成は第 1実施形態と同一である。  Next, a second embodiment of the present invention will be described. FIG. 5 is a plan view showing a state in which the upper face plate of the X-ray tube 21 according to the second embodiment of the present invention is removed, and FIG. 6 is a view of the VI-- in the state including the upper face plate of the X-ray tube 21 in FIG. It is sectional drawing along a VI line. In the X-ray tube 21 according to the present embodiment, the configuration of the extraction electrode provided on the inner surface 3a of the lower face plate 3 is different from that of the first embodiment. The configuration of the upper face plate 2 that functions as the X-ray extraction window of the X-ray tube 21 is the same as that of the first embodiment.
[0029] 詳細には、図 5及び図 6に示すように、下部面板 3の内面 3a上には、アルミ金属膜、 ITO(Indium Tin Oxide)膜等の導電性薄膜からなる引出電極 31が形成されている。 この引出電極 31は、溝部 10aと溝部 10bとで挟まれる内面 3a上,溝部 10bと溝部 10 cとで挟まれる内面 3a上、及びこれら 2箇所の内面 3a上の部位とで溝部 10a, 10cを 挟むような内面 3a上において、金属線 7a, 7b, 7cの炭素系電子放出材料 6a, 6b, 6cが塗布された部分と平行に帯状で形成されている。また、引出電極 31には、真空 外囲器 5から外部に貫通して設けられた外部接続用の端子 32が接続されている。  Specifically, as shown in FIGS. 5 and 6, an extraction electrode 31 made of a conductive thin film such as an aluminum metal film or an ITO (Indium Tin Oxide) film is formed on the inner surface 3a of the lower face plate 3. Has been. The lead electrode 31 has grooves 10a and 10c formed on the inner surface 3a sandwiched between the groove 10a and the groove 10b, on the inner surface 3a sandwiched between the groove 10b and the groove 10c, and on the two inner surfaces 3a. On the sandwiched inner surface 3a, the metal wires 7a, 7b, 7c are formed in a strip shape parallel to the portion where the carbon-based electron emission materials 6a, 6b, 6c are applied. Further, an external connection terminal 32 provided through the vacuum envelope 5 to the outside is connected to the extraction electrode 31.
[0030] このような X線管 21によっても、引出電極 31等によって形成された電界により金属 線 7a, 7b, 7cの表面の炭素系電子放出材料 6a, 6b, 6cからターゲット材 15に向け て電子が放出されて X線が発生し、この X線はシリコン薄膜 14を通じて外部に取り出 される力 金属線 7a, 7b, 7cと引出電極 31との位置関係が安定ィ匕されることにより広 範囲に渡って安定した X線照射特性が得られる。特に、この引出電極 31として内面 3 a上に成膜された導電性薄膜を用いることで、電子源 8a, 8b, 8cから放出された電 子が引出電極に吸収されることを防ぐことができ、電子放出量の損失を低減すること ができる。  [0030] With such an X-ray tube 21 as well, the carbon-based electron emission materials 6a, 6b, and 6c on the surfaces of the metal wires 7a, 7b, and 7c are directed toward the target material 15 by the electric field formed by the extraction electrode 31 and the like. Electrons are emitted and X-rays are generated. These X-rays are extracted through the silicon thin film 14 and are broadened by stabilizing the positional relationship between the metal wires 7a, 7b, 7c and the extraction electrode 31. Stable X-ray irradiation characteristics can be obtained over a range. In particular, by using a conductive thin film formed on the inner surface 3a as the extraction electrode 31, it is possible to prevent the electrons emitted from the electron sources 8a, 8b, and 8c from being absorbed by the extraction electrode. In addition, loss of electron emission can be reduced.
[0031] [第 3実施形態] 次に、本発明の第 3実施形態について説明する。図 7は、本発明の第 3実施形態で ある X線管 41の上部面板を取り除いた状態を示す平面図、図 8は、図 7の X線管 41 の上部面板を含んだ状態における VIII— VIII線に沿った断面図、図 9は、図 7の X線 管 41の上部面板を含んだ状態における IX— IX線に沿った断面図である。本実施形 態にカゝかる X線管 41では、電子源 8a, 8b, 8cが真空外囲器 5の側壁 4に形成された 溝によって保持される点が第 1実施形態のものと異なる。また、 X線管 41の X線取出 窓として機能する上部面板 2の構成は第 1実施形態と同一である。 [0031] [Third embodiment] Next, a third embodiment of the present invention will be described. FIG. 7 is a plan view showing a state in which the upper face plate of the X-ray tube 41 according to the third embodiment of the present invention is removed, and FIG. 8 shows a state in which the upper face plate of the X-ray tube 41 in FIG. FIG. 9 is a cross-sectional view taken along the line VIII. FIG. 9 is a cross-sectional view taken along the line IX-IX in the state including the upper face plate of the X-ray tube 41 shown in FIG. The X-ray tube 41 according to this embodiment is different from that of the first embodiment in that the electron sources 8a, 8b, 8c are held by grooves formed in the side wall 4 of the vacuum envelope 5. The configuration of the upper face plate 2 that functions as the X-ray extraction window of the X-ray tube 41 is the same as that of the first embodiment.
[0032] すなわち、金属線 7a, 7b, 7cの両端部は、それぞれ、金属線 7a, 7b, 7cの全体に 一定のテンションが力かった状態で、側壁 4において下部面板 3との接合面力も上方 に形成された溝部 49a, 49b, 49cに嵌め込まれることによって、互いに平行に等間 隔になるように保持されている(図 8参照)。この溝部 49a, 49b, 49cは、金属線 7a, 7b, 7cの径とほぼ同一の幅で形成されることによって、電子源 8a, 8b, 8cの真空外 囲器 5の内部における位置決めを確実にしている。このとき、金属線 7a, 7b, 7cが溝 部 49a, 49b, 49cに収容される際には、内面 3aに接触することによって金属線 7a, 7b, 7cの全長に亘つて上下方向の位置が安定に保たれている。さらに、金属線 7a, 7b, 7cの両端部が溝部 49a, 49b, 49cに嵌め込まれた上で、フリットガラス等を用い て溝部 49a, 49b, 49cを封止することにより、真空外囲器 5の内部が気密に保たれ ている。なお、金属線 7a, 7b, 7cをフリットガラスを用いて溝部 49a, 49b, 49cに固 定する際には、位置ズレ防止のために治具を用いることが好ましい。  That is, both end portions of the metal wires 7a, 7b, 7c are bonded to the lower face plate 3 on the side wall 4 with a certain tension applied to the entire metal wires 7a, 7b, 7c. By being fitted into the grooves 49a, 49b and 49c formed at the upper side, the grooves 49a, 49b and 49c are held in parallel with each other at equal intervals (see FIG. 8). The grooves 49a, 49b, 49c are formed with a width substantially the same as the diameter of the metal wires 7a, 7b, 7c, thereby ensuring the positioning of the electron sources 8a, 8b, 8c inside the vacuum envelope 5. ing. At this time, when the metal wires 7a, 7b, and 7c are accommodated in the groove portions 49a, 49b, and 49c, the position in the vertical direction is reached over the entire length of the metal wires 7a, 7b, and 7c by contacting the inner surface 3a. It is kept stable. Further, the both ends of the metal wires 7a, 7b, and 7c are fitted into the grooves 49a, 49b, and 49c, and then the grooves 49a, 49b, and 49c are sealed with frit glass or the like, whereby the vacuum envelope 5 The interior of is kept airtight. When the metal wires 7a, 7b, and 7c are fixed to the groove portions 49a, 49b, and 49c using frit glass, it is preferable to use a jig for preventing displacement.
[0033] また、下部面板 3の内面 3aの側壁 4との接合部分を除く中央部には、溝部 49a, 49 b, 49cと同一線上に繋がるように、それぞれ、金属線 7a, 7b, 7cに対応した溝部 50 a, 50b, 50c力形成されて!ヽる。この溝咅 50a, 50b, 50dま、それぞれ、炭素系電 子放出材料 6a, 6b, 6cを含む金属線 7a, 7b, 7cの径より大きな幅を有して形成され ている。金属線 7a, 7b, 7cは、それぞれ、炭素系電子放出材料 6a, 6b, 6cが溝部 5 Oa, 50b, 50cの側面及び底面に接触しないように、真空外囲器 5内の溝部 49a, 49 b, 49cで囲まれる空間内に一直線状に張架されて!、る。  [0033] Further, in the central portion excluding the joint portion of the inner surface 3a of the lower face plate 3 with the side wall 4, the metal wires 7a, 7b, 7c are respectively connected so as to be connected to the grooves 49a, 49b, 49c. The corresponding grooves 50a, 50b, 50c are formed! The grooves 50a, 50b, 50d are formed to have a width larger than the diameter of the metal wires 7a, 7b, 7c including the carbon-based electron emission materials 6a, 6b, 6c, respectively. The metal wires 7a, 7b, 7c are formed in the groove portions 49a, 49 in the vacuum envelope 5 so that the carbon-based electron emission materials 6a, 6b, 6c do not contact the side surfaces and the bottom surface of the groove portions 5 Oa, 50b, 50c, respectively. b, stretched in a straight line in the space surrounded by 49c! RU
[0034] 下部面板 3の内面 3aの中央部には、導電性薄膜の引出電極 51が、溝部 50a, 50 b, 50cの両側を挟む凸部 56上に、金属線 7a, 7b, 7cの炭素系電子放出材料 6a, 6 b, 6cが塗布された部分と平行に帯状で形成されている(図 9)。この引出電極 51は、 金属線 7a, 7b, 7c毎にそれぞれの金属線の両側に分割して設けられ、それぞれの 引出電極 51は、金属線 7a, 7b, 7cの長手方向に沿って 2分割されて布設されてい る(図 7)。さら〖こ、分割された引出電極 51毎に印加電圧を調整できるように、分割さ れた引出電極 51毎に独立に接続された外部接続用の端子 52が真空外囲器 5から 外部に貫通して設けられて 、る。 [0034] In the central portion of the inner surface 3a of the lower face plate 3, a conductive thin film extraction electrode 51 is formed on the convex portions 56 sandwiching both sides of the groove portions 50a, 50b, 50c, and the carbon of the metal wires 7a, 7b, 7c. -Based electron emission materials 6a, 6 It is formed in a strip shape parallel to the part where b and 6c are applied (Fig. 9). This extraction electrode 51 is provided separately on both sides of each metal wire 7a, 7b, 7c, and each extraction electrode 51 is divided into two along the longitudinal direction of the metal wires 7a, 7b, 7c. And installed (Fig. 7). Furthermore, in order to adjust the applied voltage for each divided extraction electrode 51, an external connection terminal 52 that is independently connected to each divided extraction electrode 51 penetrates from the vacuum envelope 5 to the outside. Is provided.
[0035] このような X線管 41によっても、電子源 8a, 8b, 8cを構成する金属線 7a, 7b, 7cが 、その両端を真空を保持するために十分な強度を有する真空外囲器 5の側壁 4及び 下部面板 3によって保持されることによって、真空外囲器 5内の高さ方向(内面 3aに 対して垂直な方向)及び横方向(内面 3aに対して平行な方向)において位置決めさ れる結果、金属線 7a, 7b, 7cと引出電極 31との位置関係が安定ィ匕されることにより 広範囲に渡って安定した X線照射特性が得られる。  [0035] Also with such an X-ray tube 41, the metal envelopes 7a, 7b, 7c constituting the electron sources 8a, 8b, 8c have a vacuum envelope having sufficient strength to hold a vacuum at both ends. Positioned in the height direction (direction perpendicular to the inner surface 3a) and the lateral direction (direction parallel to the inner surface 3a) in the vacuum envelope 5 by being held by the side wall 4 and the lower face plate 3 As a result, the positional relationship between the metal wires 7a, 7b, 7c and the extraction electrode 31 is stabilized, so that stable X-ray irradiation characteristics can be obtained over a wide range.
[0036] また、引出電極 51は、金属線 7a, 7b, 7c毎に金属線の長手方向に沿って複数に 分割され、それぞれの引出電極 51ごとに電圧を調整可能なので、金属線毎又は金 属線間での引出電極との距離のばらつきや炭素系電子放出材料のコーティング量 のばらつきがあっても、金属線 7a, 7b, 7cごとに長手方向に沿って電子の引出量を 制御することができる結果、全体で均一な X線照射特性を得ることができる。  [0036] The extraction electrode 51 is divided into a plurality of metal wires 7a, 7b, and 7c along the longitudinal direction of the metal wire, and the voltage can be adjusted for each extraction electrode 51. Even if there is a variation in the distance to the extraction electrode between metal wires and a variation in the coating amount of the carbon-based electron-emitting material, the electron extraction amount should be controlled along the longitudinal direction for each of the metal wires 7a, 7b, and 7c. As a result, uniform X-ray irradiation characteristics can be obtained as a whole.
[0037] [第 4実施形態]  [0037] [Fourth embodiment]
以下、本発明の第 4実施形態について説明する。図 10は、本発明の第 4実施形態 である X線管 61の平面図、図 11は、図 10の X線管 61の上部面板を取り除いた状態 を示す平面図、図 12は、図 10の X線管 61の XII— XII線に沿った断面図、図 13は、 図 10の X線管 61の ΧΙΠ— XIII線に沿った断面図である。本実施形態に力かる X線管 61は、下部面板 3上に設けられた電子源力 放出された電子に応じて、上部面板 2 に設けられたターゲット材 75より放射される X線を、下部面板 3側に設けられた X線取 出窓から照射する、いわゆる反射型の X線管である。  The fourth embodiment of the present invention will be described below. FIG. 10 is a plan view of the X-ray tube 61 according to the fourth embodiment of the present invention, FIG. 11 is a plan view showing a state in which the upper face plate of the X-ray tube 61 of FIG. 10 is removed, and FIG. FIG. 13 is a cross-sectional view of the X-ray tube 61 taken along line XII-XII, and FIG. 13 is a cross-sectional view of the X-ray tube 61 shown in FIG. The X-ray tube 61 that works in this embodiment is adapted to emit X-rays emitted from the target material 75 provided on the upper face plate 2 in accordance with the emitted electron source force provided on the lower face plate 3. This is a so-called reflective X-ray tube that irradiates from the X-ray extraction window provided on the face plate 3 side.
[0038] 具体的には、真空外囲器 5内の下部面板 3上には、 2本の電子源 8a, 8bが側壁 4 の長手方向に平行になるように設けられ、これらの電子源 8a, 8bを構成する金属線 7 a, 7bの両端部は、金属線 7a, 7bの全体に一定のテンションが力かった状態で下部 面板 3の内面 3aの溝咅 69a, 69bに嵌め込まれている(図 12参照)。この溝咅 69a, 6 9bは、側壁 4の短手方向に沿った壁のそれぞれと内面 3aとの接合部分において金 属線 7a, 7bの径とほぼ同一の幅で形成されることによって、電子源 8a, 8bの真空外 囲器 5の内部における位置決めを確実にしている。このとき、溝部 69a, 69bの底面 が内面 3aに対して一定の深さになるように形成されて金属線 7a, 7bがその底面にお いて接触することによって、金属線 7a, 7bの全長に亘つて内面 3aとの距離が安定に 保たれている。さらに、金属線 7a, 7bの両端部が溝部 69a, 69bに嵌め込まれた上 で、フリットガラス等を用いて溝部 69a, 69bを封止することにより、真空外囲器 5の内 部が気密に保たれている。 Specifically, two electron sources 8a and 8b are provided on the lower face plate 3 in the vacuum envelope 5 so as to be parallel to the longitudinal direction of the side wall 4, and these electron sources 8a , 8b make up both ends of the metal wires 7a, 7b with a certain tension applied to the entire metal wires 7a, 7b. The face plate 3 is fitted in the grooves 69a and 69b on the inner surface 3a (see FIG. 12). The grooves 69a and 69b are formed with substantially the same width as the diameters of the metal wires 7a and 7b at the junctions between the respective walls along the short side direction of the side wall 4 and the inner surface 3a. The positioning of the sources 8a and 8b inside the vacuum envelope 5 is ensured. At this time, the bottom surfaces of the grooves 69a and 69b are formed so as to have a certain depth with respect to the inner surface 3a, and the metal wires 7a and 7b come into contact with the bottom surfaces so that the entire length of the metal wires 7a and 7b is reached. The distance from the inner surface 3a is kept stable. Furthermore, after both ends of the metal wires 7a and 7b are fitted in the grooves 69a and 69b, the grooves 69a and 69b are sealed with frit glass or the like, so that the inside of the vacuum envelope 5 is hermetically sealed. It is kept.
[0039] また、下部面板 3の内面 3aの側壁 4との接合部分を除く中央部には、溝部 69a, 69 bと同一線上に繋がるように、それぞれ、金属線 7a, 7bに対応した溝部 70a, 70bが 形成されている(図 11及び図 13)。この溝部 70a, 70bは、それぞれ、炭素系電子放 出材料 6a, 6bを含む金属線 7a, 7bの径より大きな幅を有し、溝部 69a, 69bより深く 形成されている。金属線 7a, 7bは、それぞれ、炭素系電子放出材料 6a, 6bが溝部 7 Oa, 70bの側面及び底面に接触しないように、真空外囲器 5内の溝部 69a, 69bで囲 まれる空間内に一直線状に張架されて 、る。  [0039] Further, in the central portion excluding the joint portion with the side wall 4 of the inner surface 3a of the lower face plate 3, the groove portions 70a corresponding to the metal wires 7a and 7b are connected to the same line as the groove portions 69a and 69b, respectively. , 70b (Figs. 11 and 13). The groove portions 70a and 70b have a width larger than the diameter of the metal wires 7a and 7b including the carbon-based electron emission materials 6a and 6b, respectively, and are formed deeper than the groove portions 69a and 69b. The metal wires 7a and 7b are respectively located in the spaces surrounded by the grooves 69a and 69b in the vacuum envelope 5 so that the carbon-based electron-emitting materials 6a and 6b do not contact the side surfaces and the bottom surface of the grooves 7Oa and 70b. It is stretched in a straight line.
[0040] 下部面板 3の内面 3a上には、導電性薄膜からなる引出電極 71が布設されている。  [0040] On the inner surface 3a of the lower face plate 3, an extraction electrode 71 made of a conductive thin film is provided.
この引出電極 71は、溝部 70a及び溝部 70bの外側 (側壁 4の長手方向に沿った壁に 近い側)の内面 3a上、及び溝部 70a及び溝部 70bの内側に形成された凸部 76上に おいて、金属線 7a, 7bの炭素系電子放出材料 6a, 6bが塗布された部分と平行にな るように帯状に形成されている。ここで、引出電極 71は、溝部 69a, 69bの底面から の高さに関して、溝部 70a, 70bを挟んだ内側、すなわち、後述するターゲット材 75 の内面に垂直なターゲット材 75の中心軸線 L1に近い側(後述する貫通孔(開口部) 73側)が溝部 70a, 70bの外側よりも低くなるように配置されている。また、これらの引 出電極 31には、真空外囲器 5から外部に貫通して設けられた外部接続用の端子 72 が接続されている。  The extraction electrode 71 is formed on the inner surface 3a on the outer side of the groove part 70a and the groove part 70b (the side close to the wall along the longitudinal direction of the side wall 4) and on the convex part 76 formed on the inner side of the groove part 70a and the groove part 70b. In addition, the metal wires 7a and 7b are formed in a strip shape so as to be parallel to the portions where the carbon-based electron emission materials 6a and 6b are applied. Here, with respect to the height from the bottom surface of the groove portions 69a and 69b, the extraction electrode 71 is close to the inner side of the groove portions 70a and 70b, that is, near the central axis L1 of the target material 75 perpendicular to the inner surface of the target material 75 described later. It arrange | positions so that the side (The through-hole (opening part) 73 side mentioned later) may become lower than the outer side of groove part 70a, 70b. Further, these lead electrodes 31 are connected to terminals 72 for external connection provided through the vacuum envelope 5 to the outside.
[0041] 下部面板 3は、その中央部において、電子源 8a, 8bの長手方向に沿って 2分割さ れた略矩形状の貫通孔(開口部) 73が形成されることによって、 X線を外部に取り出 すための X線取出窓として機能する(図 11)。また、下部面板 3の外面には、貫通孔 7 3を覆うようにシリコン薄膜 74が陽極接合によって接合されており、真空外囲器 5の内 部の気密封止が実現されている。さらに、上部面板 2の内面の貫通孔 73と対向する 部位に、ターゲット材 75が蒸着により形成されている(図 13)。なお、本実施形態に おいては、上部面板 2の帯電防止のための導電性部材として、上部面板 2の真空側 のほぼ全面にわたってタングステンをターゲット材 75と一体に蒸着形成している。ま た、ターゲット材 75への電圧供給も、真空外囲器 5から外部に貫通して設けられた外 部接続用ピン 77と接触する導電性部材を介して行われる。このように、ターゲット材 7 5が真空外囲器 5内で電子源 8a, 8b及び貫通孔 73に対向して設けられることにより 、引出電極 71に印加された電圧に応じて各電子源 8a, 8bから放出された電子がタ ーゲット材 75に入射し、それに応じてターゲット材 75から発生した X線がシリコン薄膜 74を透過して外部に取り出される。 [0041] The lower face plate 3 is formed with a substantially rectangular through hole (opening) 73 that is divided into two along the longitudinal direction of the electron sources 8a and 8b at the center thereof. Take out Functions as an X-ray extraction window (Fig. 11). In addition, a silicon thin film 74 is bonded to the outer surface of the lower face plate 3 by anodic bonding so as to cover the through-hole 73, thereby realizing airtight sealing of the inner portion of the vacuum envelope 5. Further, a target material 75 is formed by vapor deposition at a portion facing the through hole 73 on the inner surface of the upper face plate 2 (FIG. 13). In this embodiment, as a conductive member for preventing the upper face plate 2 from being charged, tungsten is vapor-deposited integrally with the target material 75 over almost the entire vacuum side of the upper face plate 2. In addition, the voltage supply to the target material 75 is also performed through a conductive member that comes into contact with the external connection pin 77 provided penetrating from the vacuum envelope 5 to the outside. As described above, the target material 75 is provided in the vacuum envelope 5 so as to face the electron sources 8a and 8b and the through hole 73, so that each electron source 8a, Electrons emitted from 8b are incident on the target material 75, and X-rays generated from the target material 75 are transmitted through the silicon thin film 74 and extracted outside.
[0042] 以上説明した X線管 61においても、金属線 7a, 7bの表面の炭素系電子放出材料 6a, 6bから放出された電子がターゲット材 75に入射することによって X線が発生し、 この X線は、下部面板 3のターゲット材 75に対向する位置に設けられた貫通孔 73及 びシリコン薄膜 74を通じて外部に取り出される。このとき、金属線 7a, 7bと引出電極 7 1及びターゲット材 75との位置関係が安定ィ匕されることにより広範囲に渡って安定し た X線照射特性が得られる。  [0042] Also in the X-ray tube 61 described above, X-rays are generated by the electrons emitted from the carbon-based electron emitting materials 6a and 6b on the surfaces of the metal wires 7a and 7b being incident on the target material 75. X-rays are extracted to the outside through a through hole 73 and a silicon thin film 74 provided at a position facing the target material 75 of the lower face plate 3. At this time, a stable X-ray irradiation characteristic over a wide range can be obtained by stabilizing the positional relationship between the metal wires 7a, 7b, the extraction electrode 71, and the target material 75.
[0043] また、引出電極 71は、溝部 70a, 70bを挟んで貫通孔 73側が低くなるように形成さ れており、電子源 8a, 8bから放出された電子がターゲット材 75の中央部に向けられ るので、反射型 X線管におけるターゲット材 75に効率的に電子を入射させることがで きる。その結果、 X線照射量が向上する。  Further, the extraction electrode 71 is formed so that the through hole 73 side is lowered with the grooves 70a and 70b interposed therebetween, and electrons emitted from the electron sources 8a and 8b are directed toward the center of the target material 75. Therefore, electrons can be efficiently incident on the target material 75 in the reflective X-ray tube. As a result, the amount of X-ray irradiation is improved.
[0044] また、本実施形態は反射型の X線管であり、 X線取出窓 (シリコン薄膜 74)とターゲ ット材 75とが別体に設けられているために、ターゲット材 75への電子入射に伴って発 生する熱が、シリコン薄膜 74へ及ぼす影響が少ない。特に、本実施形態においては 、X線取出窓(シリコン薄膜 74)とターゲット材 75とが対面するように配置されているた めに、真空外囲器 5を介した沿面的にも、また空間的にも距離が大きぐ特に影響を 受けにくい。さらに、ターゲット材 75を介して X線を取り出す必要がないために、ター ゲット材 75の厚みを厚くすることもできる。そのため、多量の X線を得るベぐ電子流 量を大きくするような場合に特に好まし 、。 In addition, the present embodiment is a reflection type X-ray tube, and the X-ray extraction window (silicon thin film 74) and the target material 75 are provided separately. The heat generated by electron incidence has little effect on the silicon thin film 74. In particular, in the present embodiment, the X-ray extraction window (silicon thin film 74) and the target material 75 are arranged so as to face each other. In particular, it is difficult to be affected by the large distance. In addition, since there is no need to take out X-rays through the target material 75, The thickness of the get material 75 can be increased. For this reason, it is particularly preferred when increasing the electron flow to obtain a large amount of X-rays.
[0045] [第 5実施形態]  [0045] [Fifth Embodiment]
次に、本発明の第 5実施形態について説明する。図 14は、本発明の第 5実施形態 である X線管 81の上部面板を取り除いた状態を示す平面図、図 15は、図 14の X線 管 81の上部面板を含んだ状態における XV— XV線に沿った断面図、図 16は、図 14 の X線管 81の上部面板を含んだ状態における XVI— XVI線に沿った断面図である。 本実施形態に力かる X線管 81では、線状の電子源が 1本であり、その電子源の中央 部は X線取出窓である貫通孔 73内に収容される点で第 4実施形態のものと異なる。 なお、ターゲット材 75が形成された上部面板 2の構成は第 4実施形態と同一である。  Next, a fifth embodiment of the present invention will be described. FIG. 14 is a plan view showing a state in which the upper face plate of the X-ray tube 81 according to the fifth embodiment of the present invention is removed, and FIG. 15 shows an XV-- state including the upper face plate of the X-ray tube 81 in FIG. FIG. 16 is a cross-sectional view taken along the line XVI--XVI in a state including the upper face plate of the X-ray tube 81 shown in FIG. In the X-ray tube 81 that works in this embodiment, there is one linear electron source, and the central portion of the electron source is accommodated in the through-hole 73 that is the X-ray extraction window. Different from that. The configuration of the upper face plate 2 on which the target material 75 is formed is the same as that of the fourth embodiment.
[0046] すなわち、電子源 8aを構成する金属線 7aの両端部は、下部面板 3の内面 3aに形 成された溝部 89aに嵌め込まれることによって、側壁 4と平行に保持されている(図 14 及び図 15)。この金属線 7aの炭素系電子放出材料 6aが形成された部分は、下部面 板 3の貫通孔 73内において貫通孔 73の側壁及びシリコン薄膜 74に接触しないよう に保持されている(図 16)。  That is, both end portions of the metal wire 7a constituting the electron source 8a are held in parallel with the side wall 4 by being fitted into the groove portion 89a formed on the inner surface 3a of the lower face plate 3 (FIG. 14). And Figure 15). The portion of the metal wire 7a where the carbon-based electron emission material 6a is formed is held in the through hole 73 of the lower face plate 3 so as not to contact the side wall of the through hole 73 and the silicon thin film 74 (FIG. 16). .
[0047] 一方、下部面板 3の内面 3a上には、貫通孔 73の開口及び金属線 7aの周面に形成 された炭素系電子放出材料 6aを覆うように網目状の引出電極 91が布設されて 、る。 なお、この引出電極 91及び金属線 7aの材料としては、これらが X線通過領域に配置 されることから、できるだけ原子番号の小さい軽金属元素を用いると、発生した X線が これらを透過しやすくなり、 X線量が減少しな 、ため好適である。  On the other hand, on the inner surface 3a of the lower face plate 3, a mesh-like extraction electrode 91 is laid so as to cover the opening of the through hole 73 and the carbon-based electron emission material 6a formed on the peripheral surface of the metal wire 7a. And Since the lead electrode 91 and the metal wire 7a are disposed in the X-ray passing region, if a light metal element having a smallest atomic number is used, the generated X-rays are easily transmitted. This is preferable because the X-ray dose does not decrease.
[0048] このような X線管 81によっても、金属線 7aの表面の炭素系電子放出材料 6aから放 出された電子がターゲット材 75に入射することによって X線が発生し、この X線は、下 部面板 3のターゲット材 75に対向する位置に設けられた貫通孔 73及びシリコン薄膜 74を通じて外部に取り出される。このとき、金属線 7aと引出電極 91及びターゲット材 75との位置関係が安定化されることにより広範囲に渡って安定した X線照射特性が 得られる。  [0048] Also with such an X-ray tube 81, electrons emitted from the carbon-based electron emitting material 6a on the surface of the metal wire 7a are incident on the target material 75, and X-rays are generated. The lower face plate 3 is taken out through a through hole 73 and a silicon thin film 74 provided at a position facing the target material 75. At this time, by stabilizing the positional relationship between the metal wire 7a, the extraction electrode 91, and the target material 75, stable X-ray irradiation characteristics can be obtained over a wide range.
[0049] なお、本発明は、前述した実施形態に限定されるものではない。例えば、引出電極 としては、電子源ごとに対応して分割して設けられてもよいし、電子源の長手方向に 沿って分割して設けられていてもよい。このとき、分割された引出電極毎に外部接続 用の端子が接続されて 、てもよ 、。 Note that the present invention is not limited to the above-described embodiment. For example, the extraction electrode may be divided and provided corresponding to each electron source, or in the longitudinal direction of the electron source. You may divide and provide along. At this time, a terminal for external connection may be connected to each of the divided extraction electrodes.
[0050] 具体的には、図 17に示す X線管 101のように、第 2実施形態である X線管 21に対し て、溝部 10a, 10b, 10cの両側の内面 3a上に電子源 8a, 8b, 8c毎に分割して引出 電極 111を布設して、電子源 8a, 8b, 8cに対応するそれぞれの引出電極 111に端 子 112を接続するようにしてもよい。また、図 18に示す X線管 121のように、さらに電 子源 8a, 8b, 8cの長手方向に分割された引出電極 131を設けて、分割された引出 電極 131毎に端子 132を接続してもよい。このように引出電極を分割することで、電 子源間における引出電極との位置関係、 1つの電子源の長手方向における引出電 極との位置関係にずれがあったり、電子源間や 1つの電子源において電子放出材料 のコーティング量にばらつきがあった場合でも、電子源力もの電子放出量を均一に することができる。なお、分割された引出電極間の耐電圧性向上のためには、引出電 極間に適切な厚さのリブを配置することが好適である。  Specifically, like the X-ray tube 101 shown in FIG. 17, with respect to the X-ray tube 21 according to the second embodiment, the electron source 8a is formed on the inner surfaces 3a on both sides of the grooves 10a, 10b, 10c. , 8b, 8c may be divided and provided with the extraction electrode 111, and the terminal 112 may be connected to each extraction electrode 111 corresponding to the electron sources 8a, 8b, 8c. Further, like the X-ray tube 121 shown in FIG. 18, an extraction electrode 131 divided in the longitudinal direction of the electron sources 8a, 8b, and 8c is further provided, and a terminal 132 is connected to each of the divided extraction electrodes 131. May be. By dividing the extraction electrode in this way, there is a deviation in the positional relationship between the electron sources and the extraction electrode in the longitudinal direction of one electron source, or between the electron sources and one electron source. Even when there is a variation in the coating amount of the electron emission material in the electron source, the electron emission amount can be made uniform even if the electron source is powerful. In order to improve the voltage resistance between the divided extraction electrodes, it is preferable to arrange ribs having an appropriate thickness between the extraction electrodes.
[0051] さら〖こ、図 19には、 X線管 81に対して、電子源 8aに長手方向に沿って 2分割された 引出電極 151を有する X線管 141が示されている。この X線管 141においては、分割 された引出電極 151の間に、電子源 8aに垂直な方向に沿ってリブ 157が立設されて いる。また、図 20には、 X線管 61に対して、電子源 8a, 8bの長手方向に沿って 2分 割された引出電極 171を有する X線管 161が示されている。  FIG. 19 shows an X-ray tube 141 having an extraction electrode 151 that is divided into two along the longitudinal direction of the electron source 8a with respect to the X-ray tube 81. In the X-ray tube 141, ribs 157 are provided between the divided extraction electrodes 151 along a direction perpendicular to the electron source 8a. FIG. 20 shows an X-ray tube 161 having an extraction electrode 171 divided into two along the longitudinal direction of the electron sources 8a and 8b with respect to the X-ray tube 61.
[0052] また、電子源の中央部は下部面板 3上の溝部内に配置される場合には限られず、 また、引出電極は下部面板 3上に配置される場合には限られない。図 21は、 X線管 4 1に対する変形例である X線管 181の平面図、図 22は、図 21の X線管 181の XXII— XXII線に沿った断面図である。これらの図に示すように、側壁 4においては下部面板 3に向けて貫通する互いに平行な 3つの溝部 190a, 190b, 190cが形成され、電子 源 8a, 8b, 8cの中央部は、それぞれ、溝部 190a, 190b, 190cと内面 3aとで囲まれ る空間内において、側壁 4及び内面 3aに接触しないように保持されている。この X線 管 181においては、引出電極 51が、側壁 4における溝部 190a, 190b, 190cを挟む 内面上に、電子源 8a, 8b, 8cと平行になるように布設されている。ここで言う側壁 4の 内面とは、側壁 4の真空側を向 、た面のことを示して 、る。 [0053] また、本発明の X線管は、電子源が真空外囲器 5の端部において保持される構成 には限定されない。図 23において、(a)は、本発明の変形例である X線管の主要部 分を示す平面図、(b)は、(a)の X線管の電子源の軸線方向に沿った断面図である。 これらの図に示す X線管においては、電子源 8aの全体が下部面板 3の溝部 10a内に 収まるように配置され、金属線 7aの端部は、溝部 10aの底面上に形成された平坦面 を有する凸部 203a上に載置される。さらに、金属線 7aの両端の上部には、ある程度 の強度を有するリード線 207aが溶接等により接続され、リード線 207aが溝部 9aを通 つて下部面板 3から外部に貫通されている。このとき、フリットガラス等を用いて溝部 9 aを封止することにより、金属線 7a全体にテンションが加えられるとともに真空外囲器 5の内部が気密に保たれて 、る。 In addition, the central portion of the electron source is not limited to being disposed in the groove on the lower face plate 3, and the extraction electrode is not limited to being disposed on the lower face plate 3. 21 is a plan view of an X-ray tube 181 that is a modification of the X-ray tube 41, and FIG. 22 is a cross-sectional view of the X-ray tube 181 in FIG. 21 taken along the line XXII-XXII. As shown in these figures, in the side wall 4, three mutually parallel grooves 190a, 190b, 190c penetrating toward the lower face plate 3 are formed, and the central portions of the electron sources 8a, 8b, 8c are respectively grooved. In the space surrounded by 190a, 190b, 190c and the inner surface 3a, it is held so as not to contact the side wall 4 and the inner surface 3a. In the X-ray tube 181, the extraction electrode 51 is laid on the inner surface of the side wall 4 sandwiching the grooves 190 a, 190 b, 190 c so as to be parallel to the electron sources 8 a, 8 b, 8 c. The inner surface of the side wall 4 here refers to the surface facing the vacuum side of the side wall 4. In addition, the X-ray tube of the present invention is not limited to the configuration in which the electron source is held at the end of the vacuum envelope 5. In FIG. 23, (a) is a plan view showing the main part of an X-ray tube which is a modification of the present invention, and (b) is a cross section along the axial direction of the electron source of the X-ray tube of (a). FIG. In the X-ray tube shown in these figures, the entire electron source 8a is disposed so as to be accommodated in the groove 10a of the lower face plate 3, and the end of the metal wire 7a is a flat surface formed on the bottom surface of the groove 10a. Is placed on the convex portion 203a having Further, lead wires 207a having a certain degree of strength are connected to the upper portions of both ends of the metal wire 7a by welding or the like, and the lead wires 207a are penetrated from the lower face plate 3 to the outside through the groove portions 9a. At this time, by sealing the groove 9a using frit glass or the like, tension is applied to the entire metal wire 7a and the inside of the vacuum envelope 5 is kept airtight.
[0054] このような構成とすれば、金属線 7aを直接フリットガラスによって真空外囲器 5に封 着することによる電子源 8aの上下方向の数〜数十 μ mの位置ずれを防止することで 、X線管全体の X線放出量の均一化及び X線管の特性の固体差の低減を実現するこ とができる。これは、溝部 10aの底面上に形成した凸部 203a上に電子源 8aを載置す ることで、真空外囲器 5内での電子源の高精度の位置出しを図ることができるからで ある。また、図 24 (a)及び (b)に示すように、金属線 7aの中間において炭素系電子放 出材料 6aが塗布されて 、な 、中間部位を設けて、その中間部位の下方力も金属線 7aを支持するために、溝部 10aの底面における凸部 203aの間にさらに凸部 203bを 形成してちょい。  [0054] With such a configuration, it is possible to prevent positional deviation of several to several tens of μm in the vertical direction of the electron source 8a by directly sealing the metal wire 7a to the vacuum envelope 5 with frit glass. Thus, the X-ray emission amount of the entire X-ray tube can be made uniform and the difference in individual X-ray tube characteristics can be reduced. This is because the electron source 8a can be placed on the convex portion 203a formed on the bottom surface of the groove 10a, so that the electron source can be positioned with high accuracy in the vacuum envelope 5. is there. Also, as shown in FIGS. 24 (a) and (b), the carbon-based electron emission material 6a is applied in the middle of the metal wire 7a, and an intermediate portion is provided, and the downward force of the intermediate portion is also reduced by the metal wire. In order to support 7a, a convex portion 203b is further formed between the convex portions 203a on the bottom surface of the groove portion 10a.
[0055] また、 X線管 61の構成を、上部面板 2側に X線取出窓を有する、いわゆる透過型 X 線管に適用してもよい。すなわち、図 25に示す X線管 221のように、上部面板 2の短 手方向の中央部に貫通孔 233を形成し、上部面板 2の外側に貫通孔 233を覆うよう にシリコン薄膜 14を配置し、シリコン薄膜 14の内面の貫通孔 13から露出する部位に ターゲット材 235を形成してもよい。このような構成においても、引出電極 71が、溝部 69a, 69bの底面力もの高さに関して、溝部 70a, 70bを挟んだ内側、すなわち、ター ゲット材 235の内面に垂直なターゲット材 235の中心軸線 L2に近い側が溝部 70a, 70bの外側よりも低くなるように配置されることで、ターゲット材 235に効率的に電子を 入射させることができる。また、 1つの X線取出窓に対して複数の電子源からの電子ビ ームを入射可能になるので、 1つの X線取出窓あたりの X線出射量を増やすことがで きる。 [0055] The configuration of the X-ray tube 61 may be applied to a so-called transmission X-ray tube having an X-ray extraction window on the upper face plate 2 side. That is, as in the X-ray tube 221 shown in FIG. 25, the through-hole 233 is formed in the central portion of the upper face plate 2 in the short direction, and the silicon thin film 14 is disposed outside the upper face plate 2 so as to cover the through-hole 233. Then, the target material 235 may be formed in a portion exposed from the through hole 13 on the inner surface of the silicon thin film 14. Even in such a configuration, with respect to the height of the bottom force of the groove portions 69a and 69b, the extraction electrode 71 is located on the inner side of the groove portions 70a and 70b, that is, the central axis of the target material 235 perpendicular to the inner surface of the target material 235. By arranging the side closer to L2 to be lower than the outside of the groove portions 70a and 70b, electrons can be efficiently incident on the target material 235. In addition, electron beams from multiple electron sources can be output to one X-ray extraction window. The X-ray emission amount per X-ray extraction window can be increased.
[0056] また、引出電極を分割して設けた場合は、各分割領域毎の電子放出量を均一にす るように印加電圧を設定するのみでなぐ所望の分割領域において所望の電子放出 量になるように、引出電極の各分割領域への印加電圧を変えてもよい。  [0056] In addition, when the extraction electrode is divided and provided, it is only necessary to set the applied voltage so that the electron emission amount in each divided region is uniform. As such, the applied voltage to each divided region of the extraction electrode may be changed.
[0057] また、真空外囲器 5の長手方向に沿って電子源を配置したが、短手方向に沿って 配置してもよい。この場合、長手方向に複数の電子源を並べるように配置するのが好 ましい。  Further, although the electron source is arranged along the longitudinal direction of the vacuum envelope 5, it may be arranged along the short direction. In this case, it is preferable to arrange a plurality of electron sources in the longitudinal direction.
[0058] また、真空外囲器 5は、長手方向と短手方向の辺の長さが等しくてもよい。  [0058] In addition, the vacuum envelope 5 may have the same length in the longitudinal direction and the lateral direction.
[0059] また、真空外囲器 5を構成する部材は絶縁材料に限らず、例えば上部面板 2に導 電性部材を用いても良い。また、貫通孔 13を覆う窓材としては、シリコンに限らず、ベ リリウム等の X線透過が良好な材料を用いれば良 、。 [0059] The members constituting the vacuum envelope 5 are not limited to insulating materials, and for example, a conductive member may be used for the upper face plate 2. The window material covering the through-hole 13 is not limited to silicon, and a material having good X-ray transmission such as beryllium may be used.
[0060] また、上部面板 2の真空側に蒸着された導電性部材としては、ターゲット材と一体に 形成される場合に限らず、ターゲット材とは異なる導電性材料を用いたもの、例えば アルミニウムや、 ITO(Indium Tin Oxide)等による薄膜でもよい。  [0060] Further, the conductive member deposited on the vacuum side of the upper face plate 2 is not limited to being formed integrally with the target material, but is made of a conductive material different from the target material, such as aluminum or the like. A thin film made of ITO (Indium Tin Oxide) or the like may be used.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも一部に絶縁部材を含む真空外囲器と、  [1] a vacuum envelope including an insulating member at least in part;
炭素系電子放出材料を表面に有する線状部材を含み、前記線状部材の両端が前 記真空外囲器によって保持されることによって前記真空外囲器内に配置された電子 源と、  An electron source disposed in the vacuum envelope by including a linear member having a carbon-based electron emission material on a surface thereof, and both ends of the linear member being held by the vacuum envelope;
前記真空外囲器内において前記電子源に対向して設けられ、前記電子源からの 電子の入射に応じて X線を発生するターゲットと、  A target that is provided opposite to the electron source in the vacuum envelope and generates X-rays in response to the incidence of electrons from the electron source;
前記真空外囲器に取り付けられ、前記ターゲットから発生した X線を外部に取り出 すための X線取出窓と、  An X-ray extraction window attached to the vacuum envelope for extracting X-rays generated from the target to the outside;
前記真空外囲器の前記絶縁部材の内面上において、前記電子源と前記ターゲット との間に設けられた引出電極と、  An extraction electrode provided between the electron source and the target on the inner surface of the insulating member of the vacuum envelope;
を備えることを特徴とする X線管。  An X-ray tube characterized by comprising:
[2] 前記絶縁部材には、前記ターゲットと対向するように開口部が設けられ、 [2] The insulating member is provided with an opening so as to face the target,
前記 X線取出窓は、前記開口部を覆うように設けられている、  The X-ray extraction window is provided so as to cover the opening.
ことを特徴とする請求項 1に記載の X線管。  The X-ray tube according to claim 1, wherein:
[3] 平板状の前記絶縁部材の内面には、前記線状部材に対応した溝部が形成されて おり、 [3] On the inner surface of the flat insulating member, a groove corresponding to the linear member is formed,
前記線状部材は、前記溝部によって囲まれた空間内に配置され、  The linear member is disposed in a space surrounded by the groove,
前記引出電極は、前記絶縁部材の前記溝部を挟んだ内面に沿って布設されてい る、  The extraction electrode is laid along the inner surface of the insulating member across the groove.
ことを特徴とする請求項 1又は 2に記載の X線管。  The X-ray tube according to claim 1 or 2, wherein
[4] 平板状の前記絶縁部材の内面には、前記線状部材に対応した溝部が形成されて おり、 [4] On the inner surface of the flat insulating member, a groove corresponding to the linear member is formed,
前記線状部材は、前記溝部によって囲まれた空間内に配置され、  The linear member is disposed in a space surrounded by the groove,
前記引出電極は、前記絶縁部材の前記溝部を挟んで、前記ターゲットの内面に垂 直な中心軸線側が低くなるように形成された内面に沿って布設されている、 ことを特徴とする請求項 1又は 2に記載の X線管。  2. The lead electrode is laid along an inner surface formed so that a central axis side perpendicular to the inner surface of the target is lowered across the groove portion of the insulating member. Or the X-ray tube as described in 2.
[5] 前記線状部材の両端は、前記真空外囲器の前記絶縁部材によって保持されて 、 る、 [5] Both ends of the linear member are held by the insulating member of the vacuum envelope, The
ことを特徴とする請求項 1〜4のいずれか一項に記載の X線管。 The X-ray tube according to any one of claims 1 to 4, wherein:
前記引出電極は、前記線状部材の長手方向に沿って複数に分割されている、 ことを特徴とする請求項 1〜5のいずれか一項に記載の X線管。  The X-ray tube according to any one of claims 1 to 5, wherein the extraction electrode is divided into a plurality along the longitudinal direction of the linear member.
PCT/JP2007/057571 2006-05-18 2007-04-04 X-ray tube WO2007135812A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006139263A JP2007311195A (en) 2006-05-18 2006-05-18 X-ray tube
JP2006-139263 2006-05-18

Publications (1)

Publication Number Publication Date
WO2007135812A1 true WO2007135812A1 (en) 2007-11-29

Family

ID=38723124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057571 WO2007135812A1 (en) 2006-05-18 2007-04-04 X-ray tube

Country Status (3)

Country Link
JP (1) JP2007311195A (en)
TW (1) TW200746214A (en)
WO (1) WO2007135812A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133169A1 (en) * 2012-03-05 2013-09-12 双葉電子工業株式会社 X-ray tube
US9008276B2 (en) 2012-03-05 2015-04-14 Futaba Corporation X-ray tube
JP2016105399A (en) * 2014-11-20 2016-06-09 能▲資▼国▲際▼股▲ふん▼有限公司Energy Resources International Co., Ltd Encapsulated structure for x-ray generator with cold cathode and method of exhausting the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2782047C (en) 2009-11-30 2019-10-29 Intuity Medical, Inc. Calibration material delivery devices and methods
US8559599B2 (en) * 2010-02-04 2013-10-15 Energy Resources International Co., Ltd. X-ray generation device and cathode thereof
JP5833327B2 (en) * 2011-03-25 2015-12-16 株式会社日立ハイテクサイエンス X-ray tube and X-ray analyzer
US9173279B2 (en) * 2013-03-15 2015-10-27 Tribogenics, Inc. Compact X-ray generation device
JP6468821B2 (en) * 2014-11-28 2019-02-13 キヤノン株式会社 X-ray generator tube, X-ray generator and X-ray imaging system
US11798772B2 (en) * 2018-11-12 2023-10-24 Peking University On-chip miniature X-ray source and manufacturing method therefor
CN109273337B (en) * 2018-11-12 2023-11-10 北京大学 On-chip miniature X-ray source and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288853A (en) * 2002-03-27 2003-10-10 Toshiba Corp X-ray device
JP2005222950A (en) * 2004-02-05 2005-08-18 Ge Medical Systems Global Technology Co Llc Emitter array constitution for stillness ct system
JP2005237779A (en) * 2004-02-27 2005-09-08 Shimadzu Corp X-ray ct apparatus
JP2005346933A (en) * 2004-05-31 2005-12-15 Hamamatsu Photonics Kk Cold cathode electron source and electron tube using it
JP2006086001A (en) * 2004-09-15 2006-03-30 Shimadzu Corp X-ray tube device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288853A (en) * 2002-03-27 2003-10-10 Toshiba Corp X-ray device
JP2005222950A (en) * 2004-02-05 2005-08-18 Ge Medical Systems Global Technology Co Llc Emitter array constitution for stillness ct system
JP2005237779A (en) * 2004-02-27 2005-09-08 Shimadzu Corp X-ray ct apparatus
JP2005346933A (en) * 2004-05-31 2005-12-15 Hamamatsu Photonics Kk Cold cathode electron source and electron tube using it
JP2006086001A (en) * 2004-09-15 2006-03-30 Shimadzu Corp X-ray tube device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133169A1 (en) * 2012-03-05 2013-09-12 双葉電子工業株式会社 X-ray tube
JP2013182868A (en) * 2012-03-05 2013-09-12 Futaba Corp X-ray tube
CN104160469A (en) * 2012-03-05 2014-11-19 双叶电子工业株式会社 X-ray tube
US9008276B2 (en) 2012-03-05 2015-04-14 Futaba Corporation X-ray tube
DE112013001290B4 (en) * 2012-03-05 2016-10-20 Futaba Corp. X-ray tube
US10014147B2 (en) 2012-03-05 2018-07-03 Futaba Corporation X-ray tube
JP2016105399A (en) * 2014-11-20 2016-06-09 能▲資▼国▲際▼股▲ふん▼有限公司Energy Resources International Co., Ltd Encapsulated structure for x-ray generator with cold cathode and method of exhausting the same

Also Published As

Publication number Publication date
JP2007311195A (en) 2007-11-29
TW200746214A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
WO2007135812A1 (en) X-ray tube
KR100911434B1 (en) The compactive x-ray tube with triode structure using cnt
JP4912743B2 (en) X-ray tube and X-ray irradiation apparatus using the same
CN1954402B (en) A large-area shower electron beam irradiator with field emitters as an electron source
KR101830844B1 (en) Field Emission X-Ray Source Device
KR101072997B1 (en) Vacuum envelope and electron emission display device using the same
KR20140106291A (en) X-ray imaging system having flat panel type X-ray generator, and X-ray generator, and electron emission device
WO2007135813A1 (en) X-ray tube
KR102288924B1 (en) X-ray tube and manufacturing method thereof
WO2004049372A1 (en) Electron source device and display
JP2000251783A (en) Field emission display element
KR20180065861A (en) Field emission apparatus
KR100665881B1 (en) Carbon nanotube based electron beam emitting cathode module of x-ray tube
JP4256188B2 (en) Flat panel display device having mesh grid
KR102295279B1 (en) Field Emission X-Ray Source Device And Manufacturing Process Thereof
US7839978B2 (en) Device for generating X-rays and use of such a device
JP4344280B2 (en) Cold cathode electron source and electron tube using the same
KR102607332B1 (en) Field emission device
JP6193616B2 (en) X-ray generator
KR102186644B1 (en) Cnt x-ray source apparatus
US10535487B1 (en) Manufacturing method of electron tube
KR20070044586A (en) Spacer and electron emission display device having the spacer
KR20070102117A (en) Field emission device
KR20230126097A (en) X-ray apparatus
JP2004020233A (en) Electron-beam tube, control method for electron beam and electron beam irradiation equipment applying the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741007

Country of ref document: EP

Kind code of ref document: A1