WO2007133110A1 - Power cycle - Google Patents

Power cycle Download PDF

Info

Publication number
WO2007133110A1
WO2007133110A1 PCT/RU2006/000672 RU2006000672W WO2007133110A1 WO 2007133110 A1 WO2007133110 A1 WO 2007133110A1 RU 2006000672 W RU2006000672 W RU 2006000672W WO 2007133110 A1 WO2007133110 A1 WO 2007133110A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
gas
liquid
temperature
heat
Prior art date
Application number
PCT/RU2006/000672
Other languages
French (fr)
Russian (ru)
Inventor
Albert Viktorovich Serogodskiy
Igor Sergeevich Tabachuk
Original Assignee
Albert Viktorovich Serogodskiy
Igor Sergeevich Tabachuk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albert Viktorovich Serogodskiy, Igor Sergeevich Tabachuk filed Critical Albert Viktorovich Serogodskiy
Publication of WO2007133110A1 publication Critical patent/WO2007133110A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia

Definitions

  • the invention relates to the field of energy and can be used in engine building, in particular in engines operating in a circular process.
  • a known method of operation of a heat engine using a gas-liquid solution having inverse temperature solubility as a working fluid In the first working phase, the working fluid expands to complete the work with subsequent heat transfer, and in the second working phase it is compressed to the initial volume, after which it is brought back to its original temperature by applying heat (see Russian patent ⁇ Nb 2121582 1997).
  • a known energy cycle in which a mixture is used where a gas-liquid solution having inverse temperature solubility is used as a working fluid is used.
  • the working fluid expands with the completion of the work.
  • the gas phase is released, which is accompanied by the release of heat, so the supplied heat can be less.
  • the gas dissolves in the liquid, which is accompanied by heat absorption, so the compression work decreases (see Russian patent N ° 2148722 1998).
  • the disadvantage of this method is that the high efficiency of the cycle is realized at sufficiently high pressures and heat is supplied at sufficiently high temperatures, which narrows the scope of use of existing plants.
  • the aim of the present invention is to expand the field of use of power plants using a mixture of substances in the form of a gas-liquid solution in the energy cycle as a working fluid.
  • Fig.l depicts the cycle A.V. Gray Doskogo, built on experimentally obtained dependences for a gas-liquid solution of a mixture of freon - butane.
  • Figure 2 depicts the dependence of the change in the volume of the liquid phase, butane, of a gas-liquid solution of a mixture of freon-butane under compression.
  • the temperature at the beginning of compression is 10 0 C. and the end of compression is 21 0 C.
  • the working fluid is a mixture of substances in the form of a gas-liquid solution, which consists of several components that are in equilibrium in the liquid and gas phases.
  • a gas-liquid solution which consists of several components that are in equilibrium in the liquid and gas phases.
  • a working fluid we choose a gas-liquid solution of a mixture of freon-butane, in which freon is the gas phase, and butane is the liquid phase.
  • freon is the gas phase
  • butane is the liquid phase.
  • Fig. 1 the adiabat of expansion of the 1-2 working fluid of the freon-butane mixture.
  • Upper initial pressure 80 bar lower pressure at the end of expansion 5 bar.
  • the initial temperature at the beginning of expansion at point 1 is 160 0 C
  • the temperature at the end of expansion at point 2 is 17 0 C.
  • the isobar of heat dissipation is 2-3
  • the temperature at point 3 is 10 0 C.
  • the adiabat 3-4 of compression is built on the total volume adiabats of compression of the gas phase - freon and adiabats of compression of the liquid phase - butane.
  • the initial compression pressure of freon and butane is 5 bar, the initial compression temperature at point 3 is 10 0 C.
  • Butane is compressed separately to a pressure of 80 bar, and at point 4 the temperature of liquid butane is 21 0 C.
  • the volume of the liquid phase with compression from 5 bar to 80 bar it practically does not change.
  • Freon is compressed separately to a pressure of 80 bar, and at point 4, the temperature of freon is 185 ° C.
  • isobar 4-1 liquid butane is heated to 50 ° C and mixed with freon.
  • Cycle A.V. Gray gray in fig.l is carried out as follows.
  • the working fluid a gas-liquid solution of the freon – butane mixture — is at the initial temperature of 160 ° C and a pressure of 80 bar completely in the gaseous state.
  • the expansion is carried out to a temperature of 17 0 C.
  • the isobar 2-3 removes heat from the working fluid.
  • the temperature at point 3 is 10 0 C. At this temperature, at a pressure of 5 bar, butane completely passes from a gaseous state to a liquid state. Freon at point 3 remains in a gaseous state.
  • a characteristic feature of the cycle of A.V.Serogodsky is the ability to supply heat to the cycle at low temperature.
  • the cycle of A.V.Serogodsky can significantly expand the field of use of power plants that use a mixture of substances in the form of a gas-liquid solution in the energy cycle as a working fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention relates to power engineering and can be used for engine building, in particular in cyclic process engines. A mixture of substances in the form of a gas-liquid solution consisting of several components having a balance state in liquid and gas phases is used in the form of a working medium. In the first working phase at an initial temperature and pressure, the working medium is expended in such a way that a work is done and heat is subsequently removed. The expansion of the working medium and the heat removal are carried out up to a temperature at which the working medium is divided into the gas and liquid phases.The liquid phase of the working body being separated from the gas phase, both phases are separately compressed. The compressed liquid phase is heated by supplying heat and is mixed with the gas phase in such a way that the working medium having the initial temperature is formed. The inventive cycle makes it possible to utilise a low-temperature heat for operating a thermal machine.

Description

ЭНЕРГЕТИЧЕСКИЙ ЦИКЛ ENERGY CYCLE
Изобретение относится к области энергетики и может быть использовано в двигателестроении, в частности в двигателях работающих в круговом процессе.The invention relates to the field of energy and can be used in engine building, in particular in engines operating in a circular process.
Известен способ работы теплового двигателя, использующий в качестве рабочего тела газожидкостный раствор, обладающий обратной растворимостью по температуре. В первой рабочей фазе рабочее тело расширяется с совершением работы с последующей отдачей тепла, а во второй рабочей фазе сжимается до исходного объема, после чего посредством подвода тепла доводится до первоначальной температуры (см. патент России ÷Nb 2121582 1997г.)A known method of operation of a heat engine using a gas-liquid solution having inverse temperature solubility as a working fluid. In the first working phase, the working fluid expands to complete the work with subsequent heat transfer, and in the second working phase it is compressed to the initial volume, after which it is brought back to its original temperature by applying heat (see Russian patent ÷ Nb 2121582 1997).
Недостатком этого способа является то, что в области обратной растворимости цикл может быть осуществлен только при больших давлениях, что приводит к увеличению веса энергоустановки.The disadvantage of this method is that in the field of reverse solubility, the cycle can be carried out only at high pressures, which leads to an increase in the weight of the power plant.
Известен энергетический цикл, в котором используется смесь, где в качестве рабочего тела используется газожидкостный раствор, обладающий обратной растворимостью по температуре. В первой рабочей фазе рабочее тело расширяется с совершением работы. При падении давления и увеличении объема происходит выделение газовой фазы, которое сопровождается выделением тепла, поэтому подводимое тепло может быть меньше. При сжатии происходит растворение газа в жидкости, которое сопровождается поглощением тепла, поэтому работа сжатия уменьшается (см. патент России N° 2148722 1998г.).A known energy cycle in which a mixture is used where a gas-liquid solution having inverse temperature solubility is used as a working fluid is used. In the first working phase, the working fluid expands with the completion of the work. When the pressure drops and the volume increases, the gas phase is released, which is accompanied by the release of heat, so the supplied heat can be less. During compression, the gas dissolves in the liquid, which is accompanied by heat absorption, so the compression work decreases (see Russian patent N ° 2148722 1998).
Недостатком этого способа является то, что высокая эффективность цикла реализуется при достаточно больших давлениях и подвод тепла осуществляется при достаточно высоких температурах, что сужает область использования действующих установок. Целью настоящего изобретения является расширение области использования энергоустановок, использующих в энергетическом цикле в качестве рабочего тела смесь веществ в виде газожидкостного раствора.The disadvantage of this method is that the high efficiency of the cycle is realized at sufficiently high pressures and heat is supplied at sufficiently high temperatures, which narrows the scope of use of existing plants. The aim of the present invention is to expand the field of use of power plants using a mixture of substances in the form of a gas-liquid solution in the energy cycle as a working fluid.
Поставленная цель достигается тем, что в энергетическом цикле А.В. Серого дского, использующем в качестве рабочего тела смесь веществ' в виде газожидкостного раствора состоящего из нескольких компонентов, находящихся в жидкой и газовой фазах, в котором в первой рабочей фазе рабочее тело, находящееся при первоначальной температуре, расширяется с совершением работы и последующим отводом тепла, а во второй рабочей фазе сжимается с последующим подводом тепла, расширение рабочего тела и последующий отвод тепла проводят до температуры, при которой рабочее тело разделяется на газовую фазу и жидкую фазу, и после отвода тепла отделяют жидкую фазу от газовой фазы, после чего раздельно сжимают газовую фазу и жидкую фазу, а после сжатия жидкую фазу нагревают путем подвода тепла и смешивают с газовой фазой с образованием рабочего тела при первоначальной температуре.This goal is achieved by the fact that in the energy cycle A.V. Gray Dusky, using a mixture of substances as a working fluid in the form of a gas-liquid solution consisting of several components in the liquid and gas phases, in which in the first working phase the working fluid at the initial temperature expands with completion of work and subsequent heat removal, and in the second working phase it is compressed with the subsequent supply of heat, the expansion of the working fluid and the subsequent heat removal are carried out to a temperature at which the working fluid is separated into a gas phase and a liquid phase, and e removing heat from the separated liquid phase of the gas phase, after which the separately compressed gas phase and a liquid phase and a liquid phase after compression is heated by supplying heat and mixed with the gas phase to form the working medium at the initial temperature.
Рис.l изображает цикл А.В. Серого дского, построенный на экспериментально полученных зависимостях для газожидкостного раствора смеси фреон - бутан.Fig.l depicts the cycle A.V. Gray Doskogo, built on experimentally obtained dependences for a gas-liquid solution of a mixture of freon - butane.
Pиc.2 изображает зависимость изменения объёма жидкой фазы - бутана газожидкостного раствора смеси фреон-бутан при сжатии. Температура в начале сжатия 100C. и конце сжатия 210C.Figure 2 depicts the dependence of the change in the volume of the liquid phase, butane, of a gas-liquid solution of a mixture of freon-butane under compression. The temperature at the beginning of compression is 10 0 C. and the end of compression is 21 0 C.
В энергетическом цикле А.В.Серогодского рабочее тело представляет собой смесь веществ в виде газожидкостного раствора, который состоит из нескольких компонентов, находящихся в равновесии в жидкой и газовой фазах. При изменении давления и температуры происходят равновесные процессы изменения количества и концентрации фаз, происходящие с тепловыми процессами, величины которых зависят от выбора давления и температуры.In the energy cycle of A.V.Serogodsky, the working fluid is a mixture of substances in the form of a gas-liquid solution, which consists of several components that are in equilibrium in the liquid and gas phases. When pressure and temperature change there are equilibrium processes of changes in the number and concentration of phases that occur with thermal processes, the values of which depend on the choice of pressure and temperature.
Рассмотрим цикл А.В. Серого дского, изображенный на рис.l, состоящий из адиабаты расширения 1-2, изобары отвода тепла 2-3, адиабаты сжатияConsider the cycle A.V. Gray gray, shown in Fig. L, consisting of an adiabat of expansion 1-2, isobars of heat removal 2-3, an adiabat of compression
3-4 и изобары подвода тепла и смешивания жидкой и газовой фаз 4-1. В качестве примера рабочего тела выберем газожидкостный раствор смеси фреон-бутан, в котором фреон составляет газовую фазу, а бутан жидкую фазу. На рис.l адиабата расширения 1-2 рабочего тела смеси фреон-бутан. Верхнее первоначальное давление 80 бар, нижнее давление в конце расширения 5 бар. Первоначальная температура в начале расширения в точке 1 равна 1600C, температура в конце расширения в точке 2 равна 170C. Изобара отвода тепла 2-3, температура в точке 3 равна 100C. Адиабата 3-4 сжатия построена на суммарном объеме адиабаты сжатия газовой фазы - фреона и адиабаты сжатия жидкой фазы - бутана. Начальное давление сжатия фреона и бутана 5 бар, начальная температура сжатия в точке 3 равна 100C. Бутан сжимают отдельно до давления 80 бар, и в точке 4 температура жидкого бутана равна 210C. Как показано на pиc.2, объём жидкой фазы при сжатии от 5 бар до 80 бар практически не меняется. Фреон сжимают отдельно до давления 80 бар, и в точке 4 температура фреона равна 1850C. По изобаре 4-1 жидкий бутан нагревают до 500C и смешивают с фреоном.3-4 and isobars of heat supply and mixing of liquid and gas phases 4-1. As an example of a working fluid, we choose a gas-liquid solution of a mixture of freon-butane, in which freon is the gas phase, and butane is the liquid phase. In Fig. 1, the adiabat of expansion of the 1-2 working fluid of the freon-butane mixture. Upper initial pressure 80 bar, lower pressure at the end of expansion 5 bar. The initial temperature at the beginning of expansion at point 1 is 160 0 C, the temperature at the end of expansion at point 2 is 17 0 C. The isobar of heat dissipation is 2-3, the temperature at point 3 is 10 0 C. The adiabat 3-4 of compression is built on the total volume adiabats of compression of the gas phase - freon and adiabats of compression of the liquid phase - butane. The initial compression pressure of freon and butane is 5 bar, the initial compression temperature at point 3 is 10 0 C. Butane is compressed separately to a pressure of 80 bar, and at point 4 the temperature of liquid butane is 21 0 C. As shown in Fig. 2, the volume of the liquid phase with compression from 5 bar to 80 bar, it practically does not change. Freon is compressed separately to a pressure of 80 bar, and at point 4, the temperature of freon is 185 ° C. According to isobar 4-1, liquid butane is heated to 50 ° C and mixed with freon.
Цикл А.В. Серого дского на рис.l осуществляется следующим образом. В точке 1 рабочее тело - газожидкостный раствор смеси фреон - бутан — при первоначальной температуре 1600C и давлении 80 бар находится полностью в газообразном состоянии. При расширении по адиабате 1-2 с совершением работы происходит охлаждение рабочего тела и соответственно увеличение доли жидкой фазы бутана. Расширение проводят до температуры 170C. По изобаре 2-3 отводится тепло от рабочего тела. Температура в точке 3 равна 100C. При этой температуре при давлении 5 бар бутан полностью переходит из газообразного состояния в жидкое. Фреон в точке 3 остаётся в газообразном состоянии. При этих условиях в точке 3 жидкую фазу - бутан отделяют от газовой фазы - фреон. В точке 3 фреон находится в газообразном состоянии при давлении 5 бар и начальной температуре сжатия 100C, а бутан в жидком состоянии при давлении 5 бар и начальной температуре сжатия 100C. Фреон сжимают отдельно по адиабате до давления 80 бар. В точке 4 при давлении 80 бар температура фреона равна 1850C. Бутан сжимают отдельно по адиабате до давления 80 бар, и в точке 4 температура жидкого бутана равна 210C. Как показано на pиc.2, объём жидкого бутана при сжатии от 5 бар до 80 бар практически не меняется. В точке 4 при давлении 80 бар нагревают жидкую фазу — бутан до температуры 500C, после чего смешивают жидкую фазу рабочего тела - бутан и газовую фазу рабочего тела — фреон при постоянном давлении, поэтому характер адиабаты 3-4 определяет газовая фаза — фреон. Адиабата 3-4 построена на суммарном объеме фреона и бутана при сжатии каждого от 5 бар до 80 бар. При смешении жидкого бутана при температуре 500C и газообразного фреона при температуре 1850C жидкий бутан испаряется. При постоянном давлении объём фреона уменьшается, но за счет испарения жидкого бутана при постоянном давлении объём смеси увеличивается по изобаре 4-1 и в точке 1 образуется рабочее тело - газожидкостный раствор смеси фреон - бутан - полностью в газообразном состоянии при первоначальной температуре 1600C. Цикл завершен. Характерной особенностью цикла А.В.Серогодского является возможность осуществлять подвод тепла в цикл при низкой температуре.Cycle A.V. Gray gray in fig.l is carried out as follows. At point 1, the working fluid — a gas-liquid solution of the freon – butane mixture — is at the initial temperature of 160 ° C and a pressure of 80 bar completely in the gaseous state. With adiabatic expansion of 1-2 s By completing the work, the working fluid is cooled and, accordingly, the proportion of the liquid phase of butane increases. The expansion is carried out to a temperature of 17 0 C. The isobar 2-3 removes heat from the working fluid. The temperature at point 3 is 10 0 C. At this temperature, at a pressure of 5 bar, butane completely passes from a gaseous state to a liquid state. Freon at point 3 remains in a gaseous state. Under these conditions, at point 3, the liquid phase — butane — is separated from the gas phase — freon. At point 3, freon is in a gaseous state at a pressure of 5 bar and an initial compression temperature of 10 0 C, and butane is in a liquid state at a pressure of 5 bar and an initial compression temperature of 10 0 C. Freon is compressed separately by adiabat to a pressure of 80 bar. At point 4, at a pressure of 80 bar, the temperature of freon is 185 0 C. Butane is compressed separately by adiabat to a pressure of 80 bar, and at point 4, the temperature of liquid butane is 21 0 C. As shown in Fig. 2, the volume of liquid butane under compression from 5 bar up to 80 bar practically does not change. At point 4, at a pressure of 80 bar, the liquid phase - butane is heated to a temperature of 50 0 C, after which the liquid phase of the working fluid - butane and the gas phase of the working fluid - freon are mixed at constant pressure, so the nature of adiabat 3-4 determines the gas phase - freon. Adiabat 3-4 is built on the total volume of freon and butane with a compression of each from 5 bar to 80 bar. When liquid butane is mixed at a temperature of 50 ° C and gaseous freon at a temperature of 185 ° C, liquid butane evaporates. At constant pressure, the volume of freon decreases, but due to the evaporation of liquid butane at constant pressure, the volume of the mixture increases along isobar 4-1 and at point 1 a working fluid is formed - a gas-liquid solution of the mixture freon - butane - completely in a gaseous state at an initial temperature of 160 0 C. The cycle is completed. A characteristic feature of the cycle of A.V.Serogodsky is the ability to supply heat to the cycle at low temperature.
Таким образом, цикл А.В.Серогодского позволяет значительно расширить область использования энергоустановок, использующих в энергетическом цикле в качестве рабочего тела смесь веществ в виде газожидкостного раствора. Thus, the cycle of A.V.Serogodsky can significantly expand the field of use of power plants that use a mixture of substances in the form of a gas-liquid solution in the energy cycle as a working fluid.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯCLAIM
Энергетический цикл А.В. Серого дского, использующий в качестве рабочего тела смесь веществ в виде газожидкостного раствора, состоящего из нескольких компонентов, находящихся в жидкой и газовой фазах, в котором в первой рабочей фазе рабочее тело, находящееся при первоначальной температуре, расширяется с совершением работы и последующим отводом тепла, а во второй рабочей фазе сжимается с последующим подводом тепла, отличающийся тем, что расширение рабочего тела и последующий отвод тепла проводят до температуры, при которой рабочее тело разделяется на газовую фазу и жидкую фазу, и после отвода тепла отделяют жидкую фазу от газовой фазы, после чего раздельно сжимают газовую фазу и жидкую фазу, а после сжатия жидкую фазу нагревают путем подвода тепла и смешивают с газовой фазой с образованием рабочего тела при первоначальной температуре. Energy cycle A.V. Gray Dusky, using as a working fluid a mixture of substances in the form of a gas-liquid solution consisting of several components in the liquid and gas phases, in which in the first working phase the working fluid at the initial temperature expands with completion of work and subsequent heat removal, and in the second working phase it is compressed with a subsequent supply of heat, characterized in that the expansion of the working fluid and the subsequent heat removal are carried out to a temperature at which the working fluid is divided into a gas phase and in the liquid phase, and then removing heat from the separated liquid phase of the gas phase, after which the separately compressed gas phase and a liquid phase and a liquid phase after compression is heated by supplying heat and mixed with the gas phase to form the working medium at the initial temperature.
PCT/RU2006/000672 2006-05-11 2006-12-14 Power cycle WO2007133110A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2006115935/06A RU2304722C1 (en) 2006-05-11 2006-05-11 Energy cycle
RU2006115935 2006-05-11

Publications (1)

Publication Number Publication Date
WO2007133110A1 true WO2007133110A1 (en) 2007-11-22

Family

ID=38511972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2006/000672 WO2007133110A1 (en) 2006-05-11 2006-12-14 Power cycle

Country Status (2)

Country Link
RU (1) RU2304722C1 (en)
WO (1) WO2007133110A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009053390B3 (en) * 2009-11-14 2011-06-01 Orcan Energy Gmbh Thermodynamic machine and method for its operation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1357947A (en) * 1970-09-28 1974-06-26 Halocarbon Prod Corp Prime mover system utilizing trifluoroethanol as working fluid
US4196594A (en) * 1977-11-14 1980-04-08 Abom Jan V Process for the recovery of mechanical work in a heat engine and engine for carrying out the process
US4779424A (en) * 1987-01-13 1988-10-25 Hisaka Works, Limited Heat recovery system utilizing non-azeotropic medium
RU2103521C1 (en) * 1994-03-18 1998-01-27 Научно-исследовательская фирма "Эн-Ал" Heat engine operating process
RU2148722C1 (en) * 1998-09-24 2000-05-10 Научно-исследовательская фирма "Эн-Ал" Energy cycle with use of mixture
RU2158831C1 (en) * 1999-04-08 2000-11-10 Научно-исследовательская фирма "Эн-Ал" Heat engine operating process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1357947A (en) * 1970-09-28 1974-06-26 Halocarbon Prod Corp Prime mover system utilizing trifluoroethanol as working fluid
US4196594A (en) * 1977-11-14 1980-04-08 Abom Jan V Process for the recovery of mechanical work in a heat engine and engine for carrying out the process
US4779424A (en) * 1987-01-13 1988-10-25 Hisaka Works, Limited Heat recovery system utilizing non-azeotropic medium
RU2103521C1 (en) * 1994-03-18 1998-01-27 Научно-исследовательская фирма "Эн-Ал" Heat engine operating process
RU2148722C1 (en) * 1998-09-24 2000-05-10 Научно-исследовательская фирма "Эн-Ал" Energy cycle with use of mixture
RU2158831C1 (en) * 1999-04-08 2000-11-10 Научно-исследовательская фирма "Эн-Ал" Heat engine operating process

Also Published As

Publication number Publication date
RU2304722C1 (en) 2007-08-20

Similar Documents

Publication Publication Date Title
CN101449029B (en) Method and system for generating power from a heat source
Liu et al. A novel cryogenic power cycle for LNG cold energy recovery
CN1840868B (en) Process to convert low grade heat source into power using dense fluid expander
JPH0626441A (en) Method and device for carrying out thermodynamic cycle
CN102562179A (en) Organic Rankine cycle power generation system with liquid ejection device
CN111456822B (en) Double-working-medium organic Rankine cycle power generation system and control method thereof
WO1998006791A1 (en) Pentafluoropropanes and hexafluoropropanes as working fluids for power generation
Zhu et al. Parameter optimization of dual-pressure vaporization Kalina cycle with second evaporator parallel to economizer
Somayaji et al. Second law analysis and optimization of organic Rankine cycle
CN101761389A (en) Circulatory thermal power generation method and device of working medium phase-change gas turbine
CN205330750U (en) Utilize LNG cold energy generation's device
RU2612240C1 (en) Gas liquefaction unit
WO2007133110A1 (en) Power cycle
KR101917430B1 (en) Power generating apparatus
JP4563730B2 (en) Fume processing method
JP2005002998A (en) Fume treating method including energy recovery
Shah et al. The Theoretical Framework of the Modified Organic Rankine Cycles for Improved Energy and Exergy Performances
RU2747894C1 (en) Closed energy cycle
US20220213812A1 (en) Single-working-medium vapor combined cycle
US20130227948A1 (en) Method and system for converting thermal power, delivered from a variable temperature heat source, into mechanical power
RU2148722C1 (en) Energy cycle with use of mixture
RU2158831C1 (en) Heat engine operating process
Cho et al. Experimental study on N 2 impurity effect in the pressure drop during CO 2 mixture transportation
US20220381159A1 (en) Single-working-medium vapor combined cycle
EA043750B1 (en) CLOSED ENERGY CYCLE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06844008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06844008

Country of ref document: EP

Kind code of ref document: A1