WO2007132930A2 - Method for performing heating process and heating method utilizing tunnel effect of infrared and far-infrared radiation energy - Google Patents

Method for performing heating process and heating method utilizing tunnel effect of infrared and far-infrared radiation energy Download PDF

Info

Publication number
WO2007132930A2
WO2007132930A2 PCT/JP2007/060180 JP2007060180W WO2007132930A2 WO 2007132930 A2 WO2007132930 A2 WO 2007132930A2 JP 2007060180 W JP2007060180 W JP 2007060180W WO 2007132930 A2 WO2007132930 A2 WO 2007132930A2
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
temperature
magnetic material
magnetic
heat
Prior art date
Application number
PCT/JP2007/060180
Other languages
French (fr)
Japanese (ja)
Inventor
Buhei Kono
Kazuhito Kono
Original Assignee
Buhei Kono
Kazuhito Kono
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buhei Kono, Kazuhito Kono filed Critical Buhei Kono
Priority to JP2008515604A priority Critical patent/JP5804233B2/en
Publication of WO2007132930A2 publication Critical patent/WO2007132930A2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • A47J36/027Cooking- or baking-vessels specially adapted for use in microwave ovens; Accessories therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6491Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors

Definitions

  • the magnetic material When the wavelength of the microwave is converted by the magnetic material, the magnetic material is selected according to the heat absorption wavelength and the optimum temperature of the material to be heated, and the temperature range and density are increased within the optimum temperature.
  • the method of heat treatment and the structure of tunnel effect of infrared and far infrared energy are shown.
  • the present invention shows a structure that efficiently radiates heat as an industrial machine in the food industry, etc., by making the temperature distribution of radiation heating using the wavelength region uniform and by creating a partial temperature change.
  • the magnetic material is sintered inside and outside the cylindrical pipe structure of the magnetic material and the ceramic of the cylindrical pipe structure, and the microwave is irradiated to the inside of the cylindrical shape.
  • a structure that radiates heat from the outside is shown.
  • the structure of the snow melting facility is shown by heat radiation of a uniform temperature in a continuous long pipe structure.
  • Microwave wavelength is converted by magnetic material, infrared and far-infrared wavelengths are radiated from the shape of cylindrical pipes, showing structures such as continuous heat treatment, chemical synthesis, chemical decomposition, chemical polymerization, and food processing .
  • a magnetic body and a magnetic body are sintered or a magnetic film is applied to the inside of the container, the hook and the rotary hook, and the Tefton resin processing is performed thereon, and the microwave is guided from the waveguide to guide the container, the hook and the rotary hook.
  • Technology to irradiate and heat the interior of The structure of industrial mass production and continuous processing is shown.
  • the wavelength density decreases as the wavelength region changes from 20 m to 100 m, and the heat absorption efficiency decreases with external heating.
  • the heat absorption wavelength range of calcium, magnesium, chitin and chitosan is 20 ⁇ ⁇ ! In the region of ⁇ 60 / im.
  • Increasing the wavelength density of ⁇ 60 m increases the wavelength density of calcium, magnesium component or chicken, chitosan decomposition, synthesis, polymerization, and calcium, magnesium or chitin, chitosan content. Extracts, synthesizes, decomposes, polymerizes and processes foods by radiating specific components. At this time, the higher the content of calcium and magnesium in the material to be heated, the faster the temperature rises as the wavelength radiated from the magnetic material tunes with the heat absorption wavelength of chanoleum and magnesium to resonate.
  • Liquid soy products, salmon products, fish, shells, livestock bones with high calcium and magnesium content Ingredients such as carp shells and shrimp shells are processed and extracted, decomposed, synthesized, and polymerized at a certain temperature by wavelength and density.
  • the weight ratio of aluminum oxide is mixed with magnetite 100 to 5 to 2 °, and the mixture is sintered into heat-resistant ceramic.
  • the wavelength density of 0.2j m ⁇ l. 0 / zm is increased, and the metal is synthesized, polymerized, and melted in resonance with the absorption wavelength of inorganic metal and noble metal molecules.
  • Calcium of livestock such as chickens, pigs, and cattle
  • chitin such as shells of shellfish, shrimp shells
  • protein components in the composition such as chitosan, mucopolysaccharides in a certain temperature depending on the wavelength range and density Extraction and separation method.
  • Calcium ferrite and C a F e 4 0 7, C a F e 3 ⁇ 5, calcium-substituted garnet were or, Mn- Zn ferrite mixture of calcium within 5 to 20% by weight of the magnetic material, such as bets
  • a method of heating and thawing with infrared and far infrared rays in the state of a conventional container using microwaves is a method of heating and thawing with infrared and far infrared rays in the state of a conventional container using microwaves.
  • Patent Document 1 Japanese Patent Application No. 2 0 0 5-7 1 8 8 Applying for 5
  • the microwave wavelength is changed by the magnetic material and magnetic resonance occurs from the eddy current loss, the thermal energy is amplified, exceeding the relationship between temperature and wavelength density in the ideal black body radiation conditions, the wavelength The density of the becomes higher. If the material is heated while maintaining this condition, heating with high thermal efficiency can be performed.
  • the wavelength is tuned between the materials. Can be shortened. Induction heating, eddy current loss heating, and heating by electron spin resonance simultaneously The structure that occurs is caused by a shape that allows the vortex to continue rotating in a structure where the electromagnetic waves are constant.
  • It has a circular, elliptical, or concave, convex, cylindrical, conical, or spherical structure. Magnetization increases faster as the radius decreases.
  • the container used for heating has a magnetic structure in which magnetization occurs, and when a plurality of concave semicircular spheres are arranged on the inner surface, each hemisphere individually generates eddy current loss and radiates heat.
  • the concave hemisphere radiates heat from the concave inner surface to the surface.
  • the structure of the magnetic material increases as the radius of the hemisphere decreases, and the temperature rises faster.
  • Cylindrical magnetic ferrite ferrite is sintered on the inner and outer surfaces of the ceramic, guided from the waveguide, irradiated with microwaves from the cylindrical inlet, and the cylindrical inner diameter near the inner diameter is small on the opposite outlet side Alternatively, if a magnetic structure with a semicircular magnetic field that generates eddy currents in a strong magnetic field is installed, the magnetization of the magnetic substance on the exit side becomes stronger, microwaves are absorbed, and the temperature rises until the Curie temperature is reached. When the magnetic material on the outlet side reaches the Curie temperature, the entire cylindrical magnetic material absorbs microwaves and generates heat.
  • the diameter of the cylindrical shape at this time is selected to be an inner diameter that is equal to or greater than the wavelength of the microwave.
  • magnetic bodies with different compositions magnetic bodies with different Curie temperatures, or magnetic bodies with different magnetizations are arranged inside a cylindrical pipe, the temperature of the place with strong magnetization rises first, and when it reaches the Curie temperature, it is next magnetized. A lower temperature indicates an increase in temperature. Magnetic materials with different Curie temperatures are arranged. If arranged, the control of the maximum temperature becomes the highest point of the Curie temperature depending on the arrangement, and heat radiation that causes a temperature difference is possible.
  • the magnetic body of the sphere or hemisphere will have higher magnetization than the magnetic body of the cylindrical pipe, and will heat faster. Radiate.
  • a sphere or hemisphere is forced on the concave surface of the cylindrical pipe, heat is radiated from the concave surface to the outside, and the sphere or hemispherical concave surface is attached to the inner surface. If you cut it toward the side, it will radiate heat inside the cylinder.
  • Teflon resin When Teflon resin is coated on the surface of a magnetic material when heated using microwaves, the plasma phenomenon caused by sputtering, in which U-waves are generated on the metal surface, does not occur, and the microphone 7 wave penetrates Teflon resin. It is absorbed by the magnetic material and generates heat by converting into infrared and far infrared wavelengths depending on the composition of the magnetic material.
  • the wavelength region is radiated by heat as in the case of a magnetic material having a conventional composition even if Teflon resin is present.
  • the wavelength of microwaves is changed, far infrared rays or infrared rays are radiated, food processing, Thawing, enzyme deactivation, heating, cooking, sterilization can be performed.
  • the technology for extracting proteins, mucopolysaccharides, and fatty acids was extracted by pressurization and alcohol, catalyst, enzyme, etc., but the wavelength range within a certain temperature range is 2.5 m ⁇ 20. Extraction by wavelength oscillation can be performed by increasing the density of ⁇ m and radiating heat.
  • Drying of foods such as drying of rosin is heated from the outside while depressurizing and degassing, but the heating temperature is limited by certain quality standards, and it is difficult to degas by controlling the heating temperature It takes time. There is no method for degassing the wavelength range of water absorption from 2.5 / i m to 6.8 ja m by increasing the wavelength density while controlling the temperature.
  • Livestock waste sludge has a high moisture content, so methane gas fermentation is not stable, and the amount of sludge after methane gas fermentation is an issue.
  • odors such as mercabtan and ammonia diffuse by stirring and become a source of odor pollution. Decomposes off-flavors and steams only moisture It was desired to emit.
  • the wavelength range for decomposing mercabbutane and ammonia is in the range of 2.5 m to 20 m. When the density in this region is increased, it decomposes inside the highly viscous liquid, and at the same time, the water also evaporates due to wavelength oscillation.
  • Magnetic body Curie temperature such as ceramic manganese ferrite, manganese zinc ferrite, manganese nickel ferrite, nickel ferrite, etc. is applied to the exterior or interior of cylindrical pipes such as ceramics.
  • the wavelength of the microwave is converted by the magnetic material, the density in the wavelength region of 2.5 ⁇ to 20 / zm increases.
  • microwaves are guided from the waveguide and the wavelength is changed from the inside of the cylindrical pipe of the ceramic, water can evaporate from the heel of the viscous liquid in a short time and diverge from livestock waste.
  • the mercaptan is decomposed and the water is evaporated.
  • Snow-covered areas are required to be easy and fast to melt snow on the roof and outdoors, and to have low energy costs and be durable. Due to the aging of snow-covered areas, a low-cost snow melting method is essential.
  • Ice and snow have the same absorption wavelength region as water, 2.5 ⁇ ! Up to 6.5 m, increasing the wavelength density in this region, and vibrational radiation will quickly increase the thermal efficiency due to absorption resonance, which will melt eternity and snow into water.
  • the heat energy required for thawing is the number of heat of fusion, the temperature range from ice or snow temperature to thawing to water, and the weight. So far, thawing and snow melting have been thawed simply by applying temperature, and there has been no way to increase the heat absorption wavelength density of water and to thaw it with increased thermal efficiency.
  • Roof materials are tiles, galvanized iron plates, asbestos tiles, thatched roofs, etc. If the temperature of melting snow rises, there is a risk of fire and material deterioration, and the maximum temperature ranges from 100 ° C to 300 ° C. Up to C is desirable.
  • a magnetic cylindrical pipe is installed along the roof ridge, and microwaves are guided by the waveguide and radiated inside the magnetic pipe.
  • the concave surfaces of the magnetic hemispheres are arranged in a row parallel to the outside of the pipe, and the cut hemisphere surface is installed to radiate heat parallel to the slope of the roof.
  • Magnetic materials that have the highest density in the temperature and wavelength range to be set are manganese ferrite, manganese zinc ferrite, manganese nickel ferrite, and two: y-kel ferrite.
  • ⁇ Select at ° C. The wavelength range when these magnetic materials absorb microwaves and radiate heat is 2.5 ⁇ ⁇ ⁇ 20 m, and the radiated wavelength density is high and the thawing is done. This is an effective area for melting snow.
  • Canolecium and magnesium are decomposed and ionized by water even at low temperatures, borax, magnesium and chitin, and chitosan is difficult to decompose even when heated to high temperatures. Therefore, there is little physical decomposition method due to heat of lucium, magnesium and chitin, and chitosan. It is processed by proper grinding. As a result, energy costs are high and processing costs are high.
  • Other processing methods include degradation with enzymes and acids, but the degradation of enzymes has a long degradation period and the degradation of acids is limited in its use after processing.
  • the wavelength range absorbed by calcium, magnesium and chitin, and chitosan is 3! From the law of thermal energy of blackbody radiation, the wavelength density does not increase even when the temperature is increased.
  • This region has low solar energy and wavelength density in nature, and only bone remains in the soil for hundreds of years.
  • Microwave (2. 45 GHz) is irradiated to the magnetic material, and the structure and composition of the magnetic material shown in [001 5] are applied to 5% to 2 °% calcium to the magnetic material such as manganese ferrite and manganese zinc ferrite.
  • the wavelength range of heat radiation depends on the composition of the magnetic material.
  • the wavelength density is increased to 10 2 (W / cm 2 m) to 10 (W / cm 2 .m) Depending on the wavelength region and its density, it can be decomposed or synthesized.
  • Substances that contain a lot of calcium or chitin, chitosan and calcium, hyaluronic acid contained in the composition of magnesium, etc. depend on enzymatic degradation treatment, treatment with organic solvents and mechanical pressure energy It has been crushed.
  • the composition covered with calcium, magnesium, or covered with chitin is 30 / zrc from the outside!
  • the internal composition can also be decomposed and extracted by wavelength oscillation.
  • Substances containing calcium, magnesium or chitin contain a lot of water, and the wavelength range is 2.5 / ZD!
  • a magnetic material having a high density in the wavelength region of -6 ° / x m is selected, water, organic matter, calcium, chitin, and chitosan can be decomposed and synthesized by wavelength vibration.
  • the wavelength When it radiates (45GHz), the wavelength is changed and the wavelength range is 2.5! ⁇ 60 ⁇ radiation wavelength density increases.
  • the blending ratio When the blending ratio is 5% or less, the reactivity of calcium and magnesium is low, and the temperature rise of heat is the same as that of manganferrite. When the blending ratio is 20%, the temperature rise is slow. - ⁇ -The optimum blending ratio is about 1% in the range of 5% or more and 20% or less.
  • Extraction of amino acids, organic acids, fatty acids, proteins, mucopolysaccharides, etc. contained in calcium is a magnetic substance in which the mixing ratio of manganese ferrite, manganese zinc ferrite and calcium is mixed at a ratio of 10%, and the Curie temperature is When the temperature is set to 1550 ° C to 2550 ° C, the peak of the highest temperature and the wavelength region are matched to be in the range of 2.5 m to 60 im.
  • [0 0 1 5] Using the structure shown in [0 0 2 0], irradiate a mic mouth wave (2.45 GHz) in a magnetic container containing calcium, and the content of canorecicum and magnesium High-temperature seaweed, soy milk, milk, salmon products, leafy vegetables, bones, and fish. The temperature rises faster than the light and manganese phosphor containers and direct microwave irradiation and heating, and the thermal efficiency can be increased.
  • Wavelength is changed by irradiating a magnetic material with microwaves.
  • FeAl, magnetite, Mn—Zn ferrite is mixed with 5% to 20% of aluminum oxide, and 5% to 20% of anoremium oxide is added to magnetite.
  • anoremium oxide is added to magnetite.
  • This region is a region of a wavelength that is absorbed by metals such as iron, and metal melting, metal crystals, and alloys can be performed in a short time.
  • Metal crystals require purity, but they can be easily crystallized in an environment of rare gas such as argon gas or nitrogen gas by blocking oxygen.
  • a stable high temperature can be obtained in a short time with a small amount of electricity output, and the density of the wavelength region of 1 (THZ) is increased, enabling thermal radiation with high thermal efficiency.
  • Apples, pears, persimmons, grapes and citrus peel which are wastes in the food processing process, are sterilized, inactivated, and reused and processed as food ingredients, poultry additives, and pigments. Yes.
  • the reuse of food waste is one of the challenges for the entire food industry, as legislation is enacted. [0 0 2 4]
  • the soup stock of kelp dasha mochi is the basis of Japanese cuisine. To extract kelp stock, it has been a technique that has been inherited for many years. Seaweeds, including kelp, have a high calcium content, and since ancient times, the basic method was to take the soup stock over time at low temperatures. It is.
  • Seaweed including kelp, bonito contains calcium and abundant amino acids, and many amino acids are the center of taste.
  • the optimal wavelength range for extracting kelp, seaweed and bonito stock is 2.5 ju n!
  • the optimal extraction temperature is between 50 ° C and 75 ° C.
  • soup stock with excellent taste can be extracted in a short time.
  • the magnetic material at this time is selected from 0 0 2 1 to a Curie temperature of 2 ° 0 ° C or lower.
  • the stock can be extracted in a short time in a large pot or container.
  • extract components contained in bone can be extracted in 30 minutes to 1 hour in a short time.
  • the portion that becomes a crack caused by heating is separated and floated first by heating for about 5 to 10 minutes, and can be removed in a short time.
  • the optimum temperature during extraction is 60 ° C to 80 ° C.
  • the wavelength of microwave is converted by a magnetic material, and the wavelength range is 2.5 B! Up to 60 / z m Heating temperature
  • the magnetic material used at this time is selected from a wavelength range of 2.5 m to 60 / xm within a Curie temperature range of 100 ° C. to 25 ° C. from 0 0 21.
  • the components contained in the composition are extracted or separated, they are extracted by adding water or ethyl alcohol to obtain a powder processing state or a liquid state.
  • the wavelength region that matches the absorption wavelength of the substance constituting the substance extracted from the composition and the density is increased and the wavelength is vibrated directly at a certain temperature without adding water, the composition is The composition contained inside can be separated and extracted. Energy to heat the water to be hydrated can be reduced, and energy saving can be extracted.
  • Calcium powder and calcium powder processing can be simplified.
  • Extraction with ethyl alcohol is performed on many substances.
  • ethyl alcohol is separated after extraction with ethyl alcohol, and the separation is generally vaporized.
  • the boiling point temperature of ethyl alcohol is 78.3 2 ° C.
  • the absorption wave number is 10 8 0 to 1 0. Increasing the 50 V / cm— 1 region and its density makes it easy to vaporize the alcohol and separate it from the substance to be extracted.
  • the effective magnetic materials for vaporizing ethynole alcohol are manganese ferrite, manganese zinc ferrite, nickel ferrite, manganese nickel ferrite, etc., and the Curie temperature at this time is 10 0 ° ( ⁇ 2 0 0 ° C) The temperature can be easily controlled by selecting between the two.
  • Boiling point of Aseton which is used as solvent 5 6.
  • 5 ° C absorption wave can be vaporized in the same manner is in the 1 4 5 0 v / cm one 1 ethyl alcohol and similar locations.
  • the cause of the failure was partly high temperature, increased thawing unevenness, and lost commercial value.
  • Microphones are not used to thaw frozen tuna.
  • a magnetic sphere or a semi-spherical sphere is embedded in the frozen product and frozen, and when thawing, microwaves are irradiated from the outside of the magnetic container. It is converted into infrared and far-infrared wavelengths by the magnetic material of the container and radiates heat.
  • the wavelength converted from the magnetic substance in the container is absorbed in a strong magnetization place, and the heat radiation
  • thawing starts from the inside of the freezing cost.
  • heat radiation starts automatically from the internal magnetic body of the container and is defrosted entirely.
  • the Curie temperature of the magnetic material used becomes the maximum temperature for thawing, and the temperature can be controlled.
  • the frozen product is thawed from the inside and thawed throughout the entire time.
  • magnetization proceeds rapidly due to eddy current loss if a spherical or hemispherical magnetic material is inserted. Thawing large frozen products such as beef, pork and tuna in a short time without losing quality is always a challenge.
  • Wavelength radiated by ferromagnetic resonance of magnetic material is converted into infrared and far-infrared wavelengths and wavelength oscillation
  • the absorption wavelength of the heated material is matched and the oscillation wavelength is tuned, resulting in the energy tunneling effect.
  • the magnetic material was manganese zinc ferrite, the Curie temperature was 20 ° C., and the average particle size was 10 ⁇ ⁇ .
  • the container was made of heat-resistant ceramic, the average thickness of the ceramic was 5 mm, the container was divided into a lid part and a container, and the magnetic material was sintered inside the container with an average thickness of 20 ⁇ m.
  • Other containers used were heat-resistant ceramic cups, heat-resistant paper cups, and PP resin containers.
  • a heat-resistant ceramic container inside the container sintered with a magnetic substance is used as a heat-resistant container such as PTFE, PP heat-resistant container, heat-resistant paper
  • a heat-resistant container such as PTFE, PP heat-resistant container, heat-resistant paper
  • the inside of the magnetic container first changes to a high temperature.
  • the food inside the heat-resistant container was put in and heated, only the food showed a rapid temperature rise.
  • the temperature of the food in the heat-resistant container first rises, the heat absorption of the substance proceeds, and when the temperature rises, the temperature of the entire heat-resistant container increases, and the temperature of the entire heat-resistant container becomes high.
  • the internal temperature has increased, and the temperature of the entire magnetic container has increased.
  • the temperature of the external container begins to become high and heat transfer is observed inside.
  • the heat absorption wavelength of the material to be heated and the magnetic material are mixed.
  • the temperature of the internal magnetic container rises only when the heat absorption capacity of the internal substance decreases, and the internal magnetic container
  • the temperature of the external magnetic container begins to rise only when it becomes higher. The energy effect is different from the conventional law of heat energy transfer.
  • potage soup was placed in a paper cup inside the ceramics sintered with magnetic material, and heated by microwaves in a microwave oven.
  • the magnetic material used at this time was manganese ferrite with a Curie temperature of 200 ° C.
  • the wavelength range of heat radiation and its peak were set in the wavelength range from 2.5 zm to 20 zm by changing the wavelength by microwave heating.
  • the potage soup in a paper cup is 1 ⁇ 0 g at a temperature of 15 ° C, heated at 0.7 kw for 120 seconds, and the potage soup temperature is 68 tons.
  • the temperature was between 16 ° C and 26 ° C. This indicates that the heat-radiated wavelength passes through the paper cup and is absorbed by the potage soup inside.
  • the composition of potage soup is mainly composed of protein, carbohydrates, lipids, carbohydrates and moisture. Proteins, carbohydrates, lipids, carbohydrates, and water have a major absorption wavelength range of 2.5 m-20 ⁇ ⁇ , which is consistent with the wavelength range of heat radiation by magnetic materials.
  • the conventional law of thermodynamics that heats from outside does not increase the temperature by absorbing heat from the central part of the material to be heated, but matches the wavelength of the magnetic material with the absorption wavelength of the material to be heated, and adjusts the wavelength density. It was proved that the heat was increased from the inside by absorption resonance when the value was increased.
  • Frozen cooked rice is made of PP resin with a cold-resistant grade, and sushi shari is put in it and frozen.
  • Shari is 20 ° C, 1 25 5 g is 10 in a magnetic container, heated in a microwave oven for 180 seconds, and thawed evenly throughout, thawing at 15 It had been. At this time, no alteration of PP resin was observed.
  • Frozen products can also be thawed with temperature differences depending on the packaging.
  • the tunnel effect can be used widely such as food thawing and partial thawing of thawing products.
  • the small container sintered the magnetic material with a Curie temperature of 25 ° C.
  • the temperature of the container rises first, and the temperature rise of the small container slows down, the temperature of the small container starts at the Curie temperature of 200 ° C, and then the temperature of the external container rises. It was.
  • the temperature rises differently.
  • the phenomenon of 0 0 31, 0 0 3 2, 0 0 3 3 is caused by the consistency between the magnetic resonance of the ferromagnet and the heat absorption wavelength.
  • the wavelength density exhibited by blackbody radiation
  • the wavelength density increases beyond this range.
  • the wavelength of the material to be heated oscillates and radiates in a state where the wavelength density is high, the wavelength is tuned between the radiated wavelength oscillation and absorption, indicating the energy tunneling effect.
  • the method of heating by applying heat from the outside has been widely used in the industry for a long time, but heat from outside the container to heat the material and bare forest increases the temperature of the entire atmosphere environment, Heat The energy radiated is growing. All of the heat energy radiated to the surroundings is useless energy. The energy radiated and diffused in the vicinity often exceeds the energy required for substantial heating, and heating using the tunneling phenomenon of energy has a significant energy saving effect.
  • Microwaves are irradiated from the outside of the magnetic material, and a substance to be heated in a separate container is confined to the collar of the magnetic material, and the structure of the container is a material that transmits the absorption wavelength of the material to be heated or similar. Composed of a material having an absorption wavelength, and aligning the wavelength range where the magnetic material radiates heat with the wavelength range absorbed by the substance to be heated, an energy tunnel effect occurs, and the substance to be heated is heated first.
  • the heating temperature can be controlled by the Curie temperature of the magnetic material.
  • the wavelength region of the magnetic material and its peak can be selected according to the magnetic material composition.
  • make the magnetic body a double-soft structure fill the space between the substance to be heated and the container, or the space between the magnetic body and the magnetic body with nitrogen gas or argon gas, and heat it.
  • Infrared and far-infrared light can be heated in anoxic state through nitrogen and argon gas.
  • Control of the heating temperature can be adjusted by the temperature of nitrogen gas and argon gas. All products require accuracy and purity. In external heating, products are made according to the ambient temperature, but when the absorption wavelength and optimum temperature are set and tuned by the vibration wavelength, and products are made by the tunnel effect, all products are mixed with the initial ingredients. A product with high accuracy and purity is created by the balance.
  • the temperature, temperature, and unevenness of the ceramics will vary depending on the shape, height, and size of the ceramics.
  • it is cooked intensively from the center or local area, it will be delicious and efficient cooking will be possible in a short time.
  • a sphere, semicircle, or cylinder made of the same magnetic composition If a sphere, semicircle, or cylinder made of the same magnetic composition is put inside the ceramic, the magnetization becomes fast and strong in the sphere, semicircle, or cylinder, and eddy current loss occurs in the sphere, semicircle, or cylinder. Occurs, electromagnetic waves are absorbed, and the temperature rises from that position. At this time, spheres and semicircular magnetic materials have earlier eddy current losses as the radius is smaller, and the temperature rises faster.
  • a cooking utensil in which a magnetic material is sintered throughout the interior of a ceramic is heated by a microwave in a microwave
  • the magnetic material is magnetized by the microwave and a magnetic field is uniformly generated throughout the interior of the ceramic.
  • the magnetic material is evenly applied to the surface of a spherical, hemispherical or cylindrical ceramic, sintered, and placed inside the ceramic container.
  • the magnetic field is induced by a strong magnetic field.
  • the position of the sphere, hemisphere, or cylinder becomes a strong magnetic field, and the temperature rises quickly. The temperature rises to a single temperature, and the position of the sphere or hemisphere changes.
  • the temperature of the magnetic material sintered in the buttock of the ceramic container increases.
  • the sphere or concave hemisphere radiates heat to the same surface as the concave lens reflection, and the convex hemisphere radiates heat outward.
  • the Curie temperature of a sphere, hemisphere, or cylindrical magnetic material is set as the optimum temperature for heating, the temperature can be controlled.
  • multiple spheres or concave semicircular magnetic bodies are arranged, the surface area of the entire container increases, and the temperature rises quickly.
  • a uniform temperature can be heated by placing a spherical or semicircular structure between the materials.
  • Microwave leakage does not occur if microwaves are absorbed into a magnetic material and heated in a container such as a microwave oven. This is because all the microwaves are absorbed by the magnetic material.
  • the microphone mouth wave is absorbed by ferromagnetism and radiates heat from the wavelength change.
  • the magnetron In the method of heating by irradiating a strong magnetic field with a microphone mouth wave, the magnetron is not loaded even if it is used continuously, indicating high thermal efficiency using a microwave oven.
  • the range of wavelengths that microwaves can be used in Japan is currently limited by licensing. Its wavelength is 2.45 GHz. The length of the wavelength is about 10 cm.
  • Microwaves oscillate from a magnetron can be guided by aluminum waveguides, and can be guided without loss without leakage of radio waves.
  • Microwaves are affected and change their waves when ferromagnetism is applied to the outside of the waveguide. Between magnetic materials, it is attracted ferromagnetically. When absorbed by a magnetic material, the wavelength is changed to infrared or far-infrared heat. The temperature of the heat wavelength emitted at this time is the maximum temperature of the Curie temperature of the magnetic material. The position of the wavelength region and the highest density varies depending on the composition of the magnetic material. The density of the wavelength increases in parallel and increases as the output applied to the magneto aperture increases, and increases as the number of electron spins in the magnetic composition increases.
  • a magnetic substance is sintered inside and outside a cylindrical magnetic substance or ceramic cylindrical pipe, and microwaves induced from a waveguide are irradiated.
  • Induction heating, heating due to eddy current loss, and magnetic resonance heating can be obtained from resonance due to atomic spin of a magnetic material, and heat radiation can be radiated from the entire long cylindrical structure.
  • the length of the wavelength is set to the pipe inner diameter of about 10 cm or more.
  • the opposite side of the induction is a sphere or semi-circular structure.
  • Polarization occurs due to the magnetization of the sphere's magnetic material, resulting in an eddy current that increases the magnetization.
  • the wavelength of the microphone mouth wave first concentrates on a highly magnetized sphere or hemisphere, and the temperature rises.
  • the magnetization decreases and the magnetic material of the cylindrical tube sequentially becomes microwaves.
  • the heat radiation starts from the whole and radiates at a uniform temperature.
  • the maximum temperature of the cylindrical tube can be controlled by the temperature of the magnetic material.
  • the position of the energy radiation can be determined by changing the wavelength of the microwave induced in the cylindrical pipe.
  • magnetic spheres or hemispheres are embedded in parallel at regular intervals in parallel with the pipe and installed along the parallel surface of the spheres or hemispheres. Radiates heat.
  • the same effect can be obtained by cutting the pipe surface into a semispherical sphere.
  • a plurality of cylindrical pipes with the structure of 0 0 3 8 are installed on the top, bottom, left and right, a benolet conveyor is installed inside it, the whole is covered with aluminum material, and the material to be heated is arranged on the belt conveyor, When it is flowed, a continuous heating process can be performed.
  • the wavelength is converted by the magnetic material and the wavelength is converted to infrared and far-infrared in the heated state, and the entrance and exit of the belt conveyor is safe by opening it. Can operate.
  • Aluminum has a high thermal efficiency when it has a structure that reflects electromagnetic waves and converges the wavelength on a belt conveyor.
  • the Curie temperature of the magnetic material is changed from 100 ° C to 300 ° C, and the wavelength is changed from microwaves
  • the radiated wavelength 2 ⁇ 5 / zm ⁇ 20 m select a material with high wavelength density, such as manganese ferrite, mangan zinc ferrite, manganese nickel ferrite.
  • the wavelength absorbed by water is the same as that absorbed by snow and ice, and is between 2.5 / zm and 6.8 / zm. And it melts into snow and turns into water.
  • the roof structure in the snowy area is made of ceramic tiles, galvanized iron plates, heat-resistant slate tiles, thatched roofs, and thats.
  • the optimum temperature for these roof materials is less than 200 ° C, which reduces the risk of fire. If the roof is inclined on both slopes, it will be installed along both sides along the ridge. If it is a single roof, it will be installed along the ridge at the apex. Many roofs have slopes, and snow is piled along the roof slopes.
  • Snowy areas require a lot of money to dispose of snow after snow removal, and there is a need for a method of melting snow in the water. Yes.
  • Magnetic ferrite and ceramics are less affected by corrosion deterioration in the natural environment, and are excellent in corrosion resistance and durability.
  • Ceramics are vulnerable to impacts, and if Teflon resin or aluminum material is used as a force par for the outside of the ceramics, there is little effect on heat radiation and the strength against impact can be reinforced.
  • Heating always requires temperature control, and temperature control can be controlled stably by the Curie temperature of the magnetic material.
  • Each substance to be heated has an absorption wavelength.
  • the composition of the magnetic material is selected from the range of the absorption wavelength, the absorption wavelength and the wavelength of heat radiation are synchronized, and heating with high thermal efficiency can be established.
  • this heating method absorbs thermal energy mainly in the material to be heated without raising the surrounding environment. Heat radiation to the surroundings caused by heating can be minimized, and ventilation energy can be greatly reduced.
  • Rotating kettles, kettles and containers are always made up of sealed lids rather than open. Microwaves are guided by the waveguide from the side of the container and part of the lid.
  • the microwaves When the magnetic material is directly irradiated with microwaves, the microwaves interact with the electrons on the surface of the magnetic material, and the electrons on the surface are ejected, causing sputtering. In order to prevent this phenomenon, if the surface of the magnetic material is treated with Teflon resin, the sparging phenomenon can be prevented.
  • the heat-resistant temperature of Teflon resin is 2600 ° C, and if the temperature of selection when selecting a magnetic material is 2600 ° C or less, heat treatment below that temperature can be performed.
  • the microwave wavelength is directly irradiated into the container, the wavelength is converted by the magnetic material, and the material in the container part is heated by infrared and far infrared thermal radiation. can do.
  • the structure of 0 ⁇ 3 5 and 0 0 3 6 is installed in the hook of the vessel and the container, the surface area is increased, and when microwave irradiation is performed, sputtering does not occur, induction heating, eddy current loss Heating by magnetic resonance and heating by magnetic resonance synergize with the resonance caused by the electron spin generated from the strong magnetic field, and can be heated quickly. If a pressurization system or a decompression system is installed in this structure, a method of heating while applying pressure or a method of heating while reducing pressure can be systematized.
  • the range of wavelengths absorbed by calcium, magnesium or chitin, and chitosans is 30 ⁇ n! It exists at ⁇ 6 ° ⁇ m, and the peak is around 50 ⁇ .
  • Calcium atoms in the magnetic material, calcium ions in the food, and magnesium ions resonate together, increasing the temperature of the food as shown in 0 0 1 5 and improving thermal efficiency.
  • the heating efficiency is highest when the amount of calcium mixed per magnetic substance is 10%.
  • Elements that are not easily pyrolyzed such as livestock bones, cartilage, fish bones, crustaceans, chitin, and chitosan, are 30 ⁇ n in black body radiation, which represents ideal heat energy!
  • the density in the wavelength region of ⁇ 60 ⁇ m is extremely low, and the wavelength density when heated to 200 ° C is not significantly different from the density at room temperature, and the temperature dependence of thermal energy is low It is shown that.
  • the magnetic material is irradiated with microwaves, excited by phonon, which is the lattice of the magnetic material, and the spin of the magnetic material.
  • phonon which is the lattice of the magnetic material
  • spin of the magnetic material A high wavelength density is obtained when magnon is excited.
  • the absorption wavelength of calcium at 3 ° C / ⁇ ⁇ at 1 0 0 ° C to 25 50 ° C 3 ⁇ 41!
  • the density of ⁇ 60 / zm is higher than that of blackbody radiation, and the wavelength is absorbed by calcium, chitin, or chitosan.
  • the wavelength can be increased by increasing the wavelength density from 2.5 im to 60 jm.
  • the conventional heating method has poor heat conduction inside the bones and chicken crowns, and a long heating time is necessary, but the heat radiation from ferromagnetic materials is less than the temperature outside the bones and chicken crowns when radiated for a short time.
  • the remaining bone, cartilage, fish bone, and crustacean calcium from the livestock after extraction are continuous as they are, and when heated with this magnetic material, they decompose into wavelengths and can be used as calcium material instead of industrial waste. [0 0 4 5]
  • excitation from magnons to high temperatures was caused by excitation of phonon, which is a magnetic crystal lattice, and spin of magnetic materials.
  • the temperature rises from 600 ° C to 160 ° C over 100 to 200 seconds, and the wavelength region is radiated by amplifying the wavelength density of ⁇ .2 zm to l .0 / x ni. To do.
  • heat radiation exceeds the wavelength density of 10 ° (W / cm 2 .M m)
  • the material materials can be combined, decomposed, fused, and crystallized.
  • the vibration energy of the molecular bonds is increased by the vibration energy of the infrared and far infrared rays.
  • the dipole moment changes, and amino acids are formed from the molecular composition.
  • the quality temperature at this time is 40 to 65 ° C.
  • the Curie temperature is set to 13 ° C to 200 ° C, and the irradiation wavelength range is 2.5!
  • the dye can be stabilized and quality can be maintained by sterilization and enzyme deactivation in a short time.
  • the quality of fruits and vegetables deteriorates at high temperatures and their pigments change.
  • the temperature is 80 ° C or higher.
  • Bacillus and the like are at 130 ° C for 5 seconds or longer.
  • the advantage of heating by radiating heat by ferromagnetism is that after a certain period of time, the buttocks temperature rises higher than the surface temperature of the heated material, and the overall temperature is high and uniform. [0 0 4 8]
  • the wavelength of the microwave is converted by the magnetic material, and the heat of the magnetic material is radiated.
  • Ft Suitable temperature is from 130 ° C to 200 ° C, and the wavelength range is 2 ⁇ 5 ⁇ ⁇ !
  • Kelp has a high content of potassium, canoresium, magnesium, and amino acids, and has a composition that cannot be extracted deliciously even when heated to high temperatures.
  • the kelp so far has been stocked in water at temperatures as low as 20 ° C for over 10 hours.
  • the wavelength range of heat absorption of calcium is 2.5 m to 60 / z m.
  • the material containing a large amount of amino acids is heated at a low temperature and the optimum temperature is 50 to 65 ° C.
  • the wavelength of microwave is converted by the magnetic material of ⁇ 04 3 3 and heat radiation is increased in the range of 2.5 jm to 60 / m wavelength, 40 ° C
  • the temperature can be controlled at ⁇ 60 ° C, and the components that become the soup can be extracted in a short time of 3 to 18 ° C.
  • the microwave wavelength is adjusted by the output.
  • microwave wavelength is absorbed by 0 0 4 3 magnetic substance
  • wavelength conversion wavelength In the range of 2.5 ⁇ ⁇ 60 / im, the optimum temperature for heating is in the range of 130 ° C. ( ⁇ 25 ° C.), and the maximum temperature is selected from the Curie temperature of the magnetic material.
  • the heating time is 5 minutes to 20 minutes, and the components containing mucopolysaccharides are separated from the solids.
  • the part separated from the solid flows out into the lower part of the squirrel-like shape, and the solid and liquid part are separated and can be easily removed.
  • the separated liquid is a clear liquid, a cloudy liquid and a two-layer force.
  • the clarified liquid When the clarified liquid is gelled and separated by adding a gelling agent, carrageenan, and agar, it is not necessary to create a sterilization process and the components can be easily separated after removal.
  • Alcohol extraction is carried out in the field of chemical extraction. Alcohol extraction may be followed by a separation operation to vaporize the alcohol.
  • the wavelength of the microwave is converted by a magnetic material
  • the composition of the magnetic material is selected from the range of alcohol vaporization temperature and wavelength and heated.
  • Magnetic materials that can be used at this time include manganese ferrite, manganese zinc ferrite, nickel ferrite, and manganese nickel ferrite.
  • scallop shells, oyster shells are heated at a temperature of 10 ° C to 20 ° C for 15 minutes to 20 minutes, and shells Changes to a shape that can be easily crushed. If it continues and heats for 30 minutes, the shape changes to a flip-flop state. The shape of calcium changed to a flip-flop shape in 1 hour at a total force of 5 ° C.
  • the diameter of the center of the thawed product is 0.5 c n!
  • a sphere or semi-sphere of ⁇ 5 cm in a magnetic material put the frozen product in a magnetic material container, and irradiate it from the outside with a microwave.
  • Microwaves are converted into infrared and far-infrared wavelengths by a magnetic material and emitted, and absorbed by a magnetic material with strong magnetization in a sphere or hemisphere to be emitted. If the sphere or hemisphere placed in the ridge of the frozen product is the same magnetic material as the container or a strong magnetic material, thawing starts from the center.
  • the Curie temperature of the magnetic material is selected from the composition to be thawed.
  • manganese fluorite and manganese zinc ferrite Curie temperatures between 180 ° C and 25 ° C allow safe, fast and uniform thawing.
  • a chicken with a bone weight of 500,000 g put a magnetic sphere with a radius of 3 cm into it and freeze it at a temperature of 20 ° C.
  • the Curie temperature of the magnetic substance is 20
  • the whole will thaw from the center in 5 minutes with an output of 0.7 kw.
  • direct heating with microwaves when thawed, it is partially thawed and does not result in uniform thawing.
  • the thermal energy that is converted from the wavelength of the microwave by the magnetic material and radiated from the ferromagnetic material is tuned when the radiated vibration wavelength and the absorption wavelength of the heating material match, and the tunnel effect is the same as that of the energy .
  • the tunnel effect condition is tuned when the region of the heat radiating wavelength matches the region of the material that absorbs heat. Structurally, for the wavelength of the heat radiating, the tunnel effect is the wavelength generated from the resonance phenomenon. The higher the tuning rate, the higher the thermal efficiency.
  • the magnetic material was selected from manganese zinc ferrite and its composition was set to a Curie temperature of 200 ° C.
  • the microwave wavelength is absorbed by the magnetic material, and the wavelength range by wavelength conversion is 2.5 ⁇ ⁇ ! Adjusted to ⁇ 20 ⁇ .
  • the average particle size of manganese zinc ferrite was processed to 1 ° ⁇ , and the thickness was sintered to average 20 ⁇ .
  • the ceramic container was covered with a lid on a semicircular container with an inner diameter of 24 cm and a height of 21 era, and a magnetic material was sintered inside the ceramic container and the cover.
  • the small container inside is made of the same ceramic material, with an outer shape of 9 cm and a height of 15 cm, and with two lids made of the same structure.
  • Zinc ferrite was sintered, and the other was sintered at a temperature of 2550 ° C.
  • a microwave output of 0.7 kw was used, and pure water and potage soup were used for heating.
  • a heat resistant glass cup and a paper cup with aluminum were used as comparative materials.
  • Large and small containers with magnetic materials sintered are magnetic materials with the same Curie temperature, When heated in the child range, the internal temperature of the ceramic body showed 1800 ° C.
  • a small container with a temperature of 2550 ° C has a temperature of 2 20 ° C in one minute. When the heat-resistant glass container was left in place and heated in the microwave, the temperature rose to 43 ° C in 1 minute.
  • the heat-resistant glass weighs 1700 g
  • the two small containers of magnetic material are 3 10 g each
  • the paper cup is 8 g
  • the large container weighs 1.2 kg.
  • the temperature of the pure water was confirmed to be 15 ° C and the side temperature of the magnetic material container was 16 ° C.
  • the temperature was the same 87 ° C.
  • the container rose to 92 ° C when heated for 2 minutes. Even if pure water 1 4 40 cc is placed in an aluminum paper cup and heated, no increase in temperature is observed.
  • a heat-resistant glass container was placed in a large magnetic container, pure water 140 c was added, and heated in a microwave for 2 minutes.
  • the temperature of pure water at that time was 87 ° C.
  • the rise in temperature of the magnetic material sintered on the inner surface of a large container rises from 16 ° C to 34 ° C and rises by 18 ° C.
  • the temperature rise of the two magnetic containers is 15 ° C at 3 1 ° C for the inner surface of the large container, and the temperature of the small container is 34 ° C at 18 ° C. It was a rise in C.
  • the magnetic substance changes the wavelength of the microwave, the wavelength passes through the space of the two magnetic containers, and is heated in synchronization with the water inside the container. It can be proved that the tunnel effect by the energy of the magnetic material is shown.
  • the wavelength range where heat is radiated from a magnetic material is similar to the wavelength range where water is absorbed, indicating that it is synchronized and absorbs heat. Part of the wavelength that is not absorbed by water is the temperature rise on the side of the magnetic material.
  • Aluminum material reflects without absorbing the wavelength in this region. For this reason, the temperature of pure water in aluminum containers is small, indicating that it has only risen by radiant heat from the surroundings, and the temperature of the magnetic container is rising.
  • the potage soup 100 g
  • the temperature increased without bumping and showed 68 ° C.
  • the resulting heat radiation is heated by magnetic resonance due to induction heating, heating due to eddy current loss, and resonance of atomic spins caused by ferromagnetism.
  • Magnetic material is irradiated by microwaves, infrared and far infrared rays are radiated by spin resonance of the magnetic material, and eddy currents flow through the magnetic material in a uniform magnetic field.
  • the magnetic material is heated by magnetic resonance between the spin and infrared and far-infrared radiation. This principle is a quantum mechanical principle, not a classical thermodynamic law.
  • the generated thermal energy is amplified from the incident energy.
  • the ceramics coated with a magnetic material in layers and heated by microwaves are heated, a uniform magnetic field is generated inside the ceramics, and infrared and far infrared rays are radiated inside the ceramics.
  • an auxiliary device coated with a magnetic material and sintered inside the ceramic is placed, the auxiliary device coated with the magnetic material is heated by the magnetic resonance between the infrared radiation and the spin of magnetization caused by the eddy current of the auxiliary device.
  • microwaves are irradiated to a magnetic material, the heat energy efficiency of wavelength conversion and heat radiation is increased, food heating, processing, cooking, sterilization, drying, chemical reaction, chemical synthesis, decomposition, polymerization, enzyme Deactivation, pigment extraction, composition separation, crystallization, alloying. [0 0 5 7]
  • magnetization In order to cause eddy current loss by irradiating a magnetic material with microwaves, magnetization is generated by a structure in which the electromagnetic wave rotates in a certain direction, and when the magnetization becomes stronger, the electromagnetic wave is attracted to the magnetic field and a stronger magnetic field is created.
  • the strength of magnetization increases as the radius of rotation of the magnetic material that generates the magnetization decreases, and the speed of heating increases.
  • Curie temperature 2 0 0 and Curie temperature 2 5 0 C were powdered with an average particle size of 10 m.
  • the inside of one small ceramic was cured with a Curie temperature of 2 ° 0 ° C and the remaining small ceramic was sintered with a Curie temperature of 2550 ° C.
  • Figure 1-A is a 45 mm diameter hemisphere and a 5 mm thick double structure with a magnetic Curie temperature of 200 on the front and back surfaces.
  • the cylindrical shape shown in Fig. 1-B has a magnetic material with a curing temperature of 200 on the outer surface of the bottom surface 3 O mm, top surface 2 O mm, height 55 mm, thickness 5 min.
  • a spherical magnetic body was also coated with a magnetic material at a temperature of 200 ° C. and sintered.
  • Two microwave ovens 0.5 kW and 0.7 kW, were used. Both are devices that can adjust the output.
  • Fig. 1-C shows the structure of a large ceramic container.
  • the container When the container is emptied and heated in a microwave oven, the temperature rises quickly at the sides and lid and at the bottom. The same phenomenon occurs when the temperature of the bottom surface is delayed even when a substance is added and heated.
  • the temperature rise in the place where they overlap is slow. This is because the amount of heat radiation in the overlapping area is reduced.
  • a 2 O mm sphere and a semicircular ceramic were placed in a convex shape and a cylinder at the same time in a large ceramic, and heated in a 0.7 kW microwave oven for 3 seconds. In the temperature state, only the sphere is hot, and the other magnetic materials have less heat radiation. Next, when the semispherical sphere is made concave, and three kinds of magnetic materials are added and heated for 30 seconds, the temperature of the sphere and the concave semicircular sphere rise quickly, and the temperature rise of the cylindrical shape is low.
  • the wavelength converted from the microwave by the magnetic material is a small diameter sphere, semicircle It can be seen that the sphere structure is first magnetized and the temperature rises. When a sphere or hemisphere is attached to the concave surface, a rapid temperature rise is shown.
  • the average temperature was 15 ° C, and the core temperature was 15 ° C.
  • the temperature was measured by measuring the inner side of each large ceramic (Figure 1-C), bottom, lid, surface of the surface facing the ceramic, the core temperature, and the location where the three potatoes are in contact.
  • the temperature increases every 30 seconds, 60 seconds, and 1800 seconds.
  • Fig. 1 of 0 0 5 8 Same as the 1-C pottery, the thin concave surface with a major axis of 5 miii and a depth of 2 mm was scraped into fish scales, and the same magnetic material was sintered and used in 0 0 5 8 The container and heating were compared. There was a difference in temperature between 5 2 ° C and 63 ° C when the water temperature was 15 ° C when water 300 ° c was added and heated in a microwave oven of 0.7 kw for 15 50 seconds. As for the temperature disparity, when the inside of the container was a concave fish scale structure, the temperature rose 11 ° C earlier. It was proved that the heating effect was enhanced by increasing the surface area for heat radiation.
  • a spherical magnetic material of 2 O mm was placed inside 500 g of chicken, frozen at 120 ° C., and then thawed in a microwave oven. The microwave oven was heated for 5 minutes at an output of 0.7 kw. As a result, the area around the magnetic body was already discolored in the same state as cooking, and the outside of the chicken was in a thawed state and there was a temperature difference between the outside and the buttocks.
  • thawing When thawing using a ferromagnetic material, it can be thawed from the inside of the frozen product, and the energy of thawing at this time is defrosted by the heat of melting and the energy of the microwave oven smaller than the heat energy required for thawing.
  • the magnetic thin film on the outside of the hemispherical ceramic is magnetically polarized by the magnetic field inside the ceramic, and eddy currents are generated. Flowed and induction heated.
  • the magnetization generated at this time can be explained by the following equation.
  • the magnetic permeability of the magnetic material is ⁇ , and the magnetic permeability of the sky is. ⁇ The uniform magnetic field inside the pottery. Then the magnetization ⁇ outside the hemisphere is
  • the magnetization of the magnetic layer on the outside of the hemispherical ceramic is polarized, eddy current flows, and is heated by induction.
  • the magnetic layer on the outside of the hemispherical ceramic is 20 m, which is very thin, so even a magnetic material with high permeability will not shield the magnetic field.
  • the interior of the hemispherical ceramic is magnetized by the magnetic field.
  • the hemispherical inner magnetic layer is further polarized by the magnetic field due to the polarization effect of the outer magnetic layer, causing eddy currents to flow, induction heating, and heating to a higher temperature than the outer magnetic layer.
  • the eddy current is generated by the polarization of the magnetic material, the magnetization is induced, and the magnetic resonance is induced by the influence of infrared rays and far infrared rays radiated inside the ceramic. It is heated efficiently by the synergistic effect. Also, the smaller the radius, the higher the eddy current speed due to the polarization of the magnetic material, and the higher the heating efficiency.
  • a magnetic material was applied in a layer form to a thickness of 20 ⁇ on the inside and outside of a cylindrical ceramic.
  • a uniform magnetic field is generated by microwave heating inside the ceramic.
  • the cylindrical magnetic material is placed, the temperature is uniformly diffused inside the ceramic due to the influence of infrared rays radiated to the ceramic bowl and heated uniformly.
  • Heat radiation can be used as a continuous operation when microwave radiation is applied in the form of a long pipe, and the industrial application range is wide.
  • heat radiation is concentrated from one side, so when several pipes are combined, heat wavelengths are collected at the center, and heat treatment with high thermal efficiency can be performed.
  • the frequency at which microwaves can be used is determined, 2.45 GHz, and a wavelength of about 10 cm. If the inner diameter of the pipe is not longer than this wavelength, the microwave does not pass through the pipe.
  • the wavelength is converted by the magnetic material and heat is radiated. In order to propagate microwave wavelengths accurately between long distance spaces without leakage, it is stable to install a ferromagnetic material at the arrival point and maintain a high magnetization state.
  • FIG. 1 shows a heat-resistant ceramic with an inner diameter of 105 mm, an outer diameter of 120 mm, a length of 150 mm, and two pipes with a length of 150 mm, and magnetic particles of manganese zinc ferrite and a Curie temperature of 200 ° C.
  • the average thickness was 10 ⁇ , and the outside was sintered with an average thickness of 20 m.
  • the structure shown in Fig. 1 has the same shape as the shape shown in Fig. 1, but a circular concave surface with a diameter of 7 mm is cut in a row at intervals of 50 mm.
  • a magnetic material was sintered on the entire outer peripheral surface of the pipe.
  • a magnetic material was sintered on the inner surface and the surface of a semi-spherical ceramic with outer dimensions of 105 mm and 120 mm.
  • the oscillator from the magnetron which emits microwaves, has a structure that can adjust the output using 1.5 kW, and the space between the magnetron and the magnetic material is guided by a waveguide. Considering the worst danger, the whole pipe was clamped with anoremi pipe to prevent leakage.
  • the long pipe structure is stable and radiates heat, and refrigeration and snow melting are also effective. Can be installed.
  • manganese zinc ferrite powder was sintered in ceramics, but the same effect can be obtained by using ferrite materials such as manganese zinc ferrite as they are. When using the ferrite as it is, make Teflon to prevent sputtering etc. And there is a preventive effect such as chicken droppings outdoors.
  • Figure 1-A shows the position of the roof when magnetic pipes are installed in snowmelt. Microwaves oscillated from a magnetron are guided from a waveguide to a magnetic pipe. The guidance from the waveguide is installed under the eaves etc. according to the roof structure, and the switchboard and controller are installed in the roof and controlled.
  • the material to be heated flows in the center part A continuous heating line is created.
  • uneven heating is reduced and stable radiation can be achieved.
  • Figure 5 shows the position of the pipes in a continuous production line.
  • the magnetic material of the pipe used at this time is selected from the absorption wavelength of the heating material, and the optimum temperature is controlled by the queue temperature.
  • a lot of organic matter is 2.5 / in! ⁇ 2 0 j m ⁇ for chim, chitin, chitosan, etc. 30 ⁇ n! ⁇ 60 / ⁇ ⁇ , for heating materials rich in calcium and organic matter, the wavelength of 2.5 ju m ⁇ 60 m, for other inorganic substances ⁇ . 1 / xm ⁇ l ⁇ ⁇ is the wavelength density Selecting a material that peaks will increase thermal efficiency.
  • Continuous infrared and far-infrared heat radiation structure food processing, sugar beet processing, vegetable and fruit sterilization, enzyme deactivation, pigment extraction, food material extraction, chemical synthesis, chemical reaction, chemical decomposition, Polymerization, melting, and drying can be performed by temperature and wavelength range and density.
  • Sputtering occurs when heated with the lid of a container with a magnetic material sintered in a ceramic, and that part is heated red at a stroke from the plasma reaction, and may exceed 1,00 ° C.
  • Teflon resin Teflon resin
  • Fig. 6 and Fig. 7 show the interior of the hook structure and the structure when it is made large as a rotary hook.
  • Fig. 6 shows a structure in which the inside of the kettle is processed on the surface of the magnetic ferrite with Teflon grease, and the stirring fin is also made with magnetic flight, and the surface is processed with Teflon resin.
  • the heat efficiency increases due to heat radiation from the inside and heat radiation from the inside of the hook and the fins.
  • Figure 1 shows a structure in which a magnetic ferrite plywood and an interior of Teflon resin are processed inside an anoroleuminum, the stirring fins are made of magnetic ferrite, and the surface is processed with Teflon resin to cause microwave wavelengths to be sputtered. It shows a structure that absorbs light without any change, changes wavelength, and emits heat.
  • Microwaves are guided from the magnetron by a waveguide, and introduced into the kettle from the lid position and irradiated. Microwave diffuses to the periphery when a small stirring fin is attached and irradiates the heel of the magnetic pot. If the magnetic material is processed with Teflon, it is absorbed by the magnetic material without sputtering, and the wavelength is changed depending on the composition of the magnetic material.
  • Teflon Teflon
  • the wavelength range when the wavelength is changed from microwave to magnetic material is selected from the composition of the magnetic material.
  • the absorption wavelength of the main composition is from 2.5 ⁇ m to 20 i ra for materials containing organic matter, amino acids and water, and manganese ferrite, manganese zinc ferrite, Nikkeno ferrite, nickel zinc ferrite in the case of And nickel manganese ferrite. Calcium and chitosan, chitosan, etc. are 3 ⁇ !
  • the composition of the magnetic material is selected according to organic matter, inorganic matter, calcium, chitin, etc.
  • Figure 1 shows a device for reducing the pressure and drying from the generation of the microphone mouth wave when the microwave wave is converted by a magnetic material and heated using a rotary pot.
  • a microwave is generated by a microwave generator, and the microwave is introduced from the waveguide into the hook of the hook. Stir the microwaves with the fins on the top.
  • the pot is made of manganese zinc ferrite.
  • the inside is surface-treated by Teflon processing.
  • Teflon processing There is a rotating fin in the pan to stir the dry substance. When agitated, the dry substance rises along the kettle, and from the side, agitates with the fins on the side from the chopper motor to promote homogenization.
  • stirring in vacuum at low temperature will result in uniform drying. Deaerate with a vacuum pump.
  • Fig. 9 shows a structure in which a magnetic material is sintered inside a ceramic, and a cocoon is placed on the bottom inside the ceramic.
  • the salmon is coated with a magnetic material and sintered, and the cormorant has a concave hole in a fish scale shape.
  • Figure 10 shows that the area of the concave hole where the magnetic material is coated and sintered is induction-heated by eddy current loss, and the heating efficiency is increased by thermal radiation.
  • the extraction and separation of moisture, water separation, steaming process, drying, and the temperature range are determined within a certain temperature range.
  • the component can be separated easily and quickly by increasing the wavelength density with wavelength oscillation.
  • the composition of the magnetic material is selected from the absorption wavelength of the substance contained therein.
  • the selection of the absorption wavelength is the same as the selection method indicated by Q 0 6 6.
  • the magnetic substance calcium ferrite was powdered with an average particle size of 10 / im and sintered inside the container with an average thickness of 20 / Xm.
  • the Curie temperature of canoleum ferrite is 2400 ° C.
  • the wavelength density in the wavelength range from 30 0 i m to 60 xm does not exceed 10 — 2 (W / cm 2 , ja m).
  • Calcium does not decompose at 500 ° C.
  • Calcium Decomposition begins only when the temperature at which it decomposes exceeds 1,00 ° C.
  • the density of the wavelength at this time is 10- 2 (W / cm 2. M) or more.
  • the density of the wavelength of the calcium ferrite that is converted and radiated by the microwave is 10 to 2 in the state where the temperature is 180 ° C to 250 ° C, which is lower than the definition of blackbody radiation. It can be proved that it is more than (W / cm 2 .m).
  • the condition of bone heating was compared with the container sintered with canoresim ferrite and manganese zinc ferrite.
  • One of the children's dislikes about fish is small bones, which can be eaten without removing small bones by adding 20% canoleum ferrite and the other mixed with manganese zinc ferrite.
  • the cooking of fish is an effective cooking heating that also serves as calcium intake.
  • lucium ferrite 20% calcium ferrite, 80% manganese zinc ferrite, 50% calcium ferrite, 50% manganese zinc ferrite, canolesi
  • a container in which 0% lumferrite is pulverized to an average particle size of 10 m and sintered in each container heat for 5 minutes, then remove the water, heat to 60 ° C for 1 minute, 500 cc for 10 minutes, microwave output 0
  • the extraction status of the broth was confirmed at 3 kw. Every magnetic substance jumps out first, and the extract containing the part that gets wet, moisture and some fat is extracted first.
  • the amount of odorous components extracted by the first heating was approximately 40 g, which was almost the same for 20% and 50% chanoleum ferrite.
  • Calcium ferrite ⁇ % is the least 25 g, followed by 100% calcium ferrite 28 g.
  • the components that become unclear are extracted by the wavelength vibration of calcium and the wavelength vibration of amino acids, and it is shown that calcium fluoride and manganese zinc ferrite alone do not have sufficient wavelength vibration for the entire composition. Yes.
  • 20% and 50% of the water after heating had no turbidity and a transparent extract could be extracted.
  • Calcium Ferrite 0% and Canoleum Ferrite 100% have a certain transparency, but each has a different color tone, Calcium Ferrite 100% has a little bone scent, and Kanolesum Ferrite 0% Is a unique taste of chicken.
  • the blending ratio of manganese zinc ferrite and manganese ferrite 5: 1 or 10: 1 is an effective blending ratio of magnetic substances. Similar to calcium ferrite, ferrite containing canoleum converts the wavelength in the same wavelength region and absorbs the microphone mouth wave, and radiates heat.
  • Fig. 11 Using the apparatus shown in Fig. 11, two types of canoleum were added to the magnetic material of ⁇ - ⁇ ⁇ ferrite by adding 10% and 20% of the weight, applying a molten and alloyed magnetic material, and sintering at 1250. Apply the same kind of ⁇ - ⁇ ferrite magnetic material without ceramic and calcium, place a beaker inside the sintered ceramic, and an aqueous solution with an ion value of 1 100 pm containing calcium ions and magnesium ions in the beaker 100 cc was added, heated for 1 minute by microwave 700OW, and heated for 5 minutes by 350W, the temperature rose, and the ion value was compared. The data of the experimental results are shown in Figs.
  • the temperature rise is higher at the same time by 10 ° C or more for ceramics using magnetic forests with added calcium than for ceramics without added calcium, and calcium ions and magnesium ions are Ceramics using the added magnetic forest had a higher ion value by about 10% than ceramics without calcium, and the temperature rose and the ionic value showed the highest value for ceramics with 10% calcium added.
  • the method using ceramics with a Ca content of 10% did not increase in temperature within the same time when heated at 700 W for 1 minute and 350 W for 5 minutes.
  • a large amount of raw materials for proteins and mucopolysaccharides are extracted from chicken crowns.
  • high-molecular-weight hyaluronic acid health foods are extracted.
  • High molecular weight hyaluronic acid is a water-soluble component, so far it has been crushed, added to ethyl alcohol, heated and extracted.
  • the wavelength range radiated by microwave from the container is 2.5 / ⁇
  • the optimal temperature is oscillated at a wavelength of 60 ⁇ 80 ° C
  • the protein is separated from the short crown.
  • sterilization is required at the final finishing stage at 1300 ° C for 3 to 10 seconds, complete sterilization can be obtained.
  • a 1 kg chicken crown was heated in a microwave oven at 7 kw using the blend ratio of 50% of the magnetic substance calcium ferrite and manganese zinc ferrite shown in Fig. 9 or Fig. 10.
  • a heat-resistant glass container was placed under the cage in Fig. 9 or Fig. 10 for easy removal. After 7 minutes of heating, the quality temperature reached 70 and the output was switched to 0.3 kw and continued for 10 minutes. Underneath the cocoons, there are two layers of liquid sediment and liquid. Remove the chicken crown and extract the extracted extract Thereafter, the mixture was sterilized by heating at 0.7 kw for 1 minute. The weight of the extracted extract was 2 47 g, and the gelling agent jelly rice in powder form was put in this and lightly stirred to precipitate and gelled.
  • the gelation state is divided into three layers; the upper clear water is high molecular protein, muco other sugars, the lower clear water is low molecular protein and moisture, and the white and cloudy precipitate layer is It is a part and can be easily cut with a paper knife.
  • Proteins and mucopolysaccharides can be separated by a single heating process, which contains small molecules of hyaluronic acid, macromolecules, chondroitin, heparin, chitin, and collagen as active ingredients. It can be used as a health food cosmetic material.
  • the initial sterilization heating eliminates the need for post-treatment of residual bacteria.
  • Immobilization with a gelling agent provides long-term quality stability in the chinoredo zone.
  • Gelling agents can be selected according to their use, and carrageenan and agar are also effective methods and can be used for food and cosmetic materials.
  • the temperature rise was confirmed by placing a small heat-resistant ceramic container with a diameter of 9 omni in a container with the structure shown in Fig. 9 in which no magnetic material was sintered. Inside the two small heat-resistant ceramics, FeAl and magnetite were average particles 10 / x m and sintered with an average thickness of 20 ⁇ ⁇ . FeAl and magnetite require a large heat-resistant container in order to reach a high temperature in a short period of time. Use the container structure shown in Fig. 9 as a heat-resistant container, remove the cocoon bar, and place a small heat-resistant ceramic container inside. Put microwave oven 0.
  • thermometer Heated at 5 kw.
  • the thermometer was measured with a platinum thermocouple. After 60 seconds, the temperature of the FeAl sintered container was 840 ° C, and the magnetite container was 760 ° C. After 10:00 seconds, it showed 1480 ° C and 1 1300 ° C, after which it was difficult to measure.
  • a FeAl cup put lime at a rate of 7% in a powder of iron and stir to make a total of 100 g. Add nitrogen gas from the outside of the microwave oven with a Teflon tube and inside the large container. The inside of the container was filled and heated by 0.5 kw electron range.
  • the magnetic material was manganese zinc ferrite and Curie temperature was 20 ° C.
  • the microwave oven uses a structure that can adjust the output with 1 kW output.
  • fruits and vegetables When fruits and vegetables are sterilized, they can be used directly for the distribution of fruits and vegetables, and when heated, the value of fruits and vegetables is impaired. Apples and tangerine peels have high utility value for flavors, coloring agents, etc., if the enzyme is inactivated and the pigment is left behind. For sterilization and enzyme deactivation, the amount of processing and the density of the wavelength are important, and how quickly the surface temperature rises and sterilization by temperature is possible. If the temperature is kept between 30 and 40 ° C, the enzyme activity increases and the number of bacteria increases.
  • the sterilization of chemicals changes the material when strong chemicals are used, and the resistance of bacteria is created. It remains at low concentrations, but it can be sterilized by repeating different sterilization methods in low concentrations and repeating environmental changes. In many cases, highly resistant bacteria rarely survive.
  • the first output is important, and how the radiant heat spreads over the entire volume and volume.
  • the coliform group was 10 x 1
  • the number of common bacteria was 10 s x 4 / l
  • the temperature of the potato epidermis was 18 ° C.
  • 0.5 kw for 30 seconds is 10 x 1 coliform bacteria, 10 3 x 5 / l
  • the surface temperature of the partition at this time was 43 ° C.
  • l kw for 30 seconds is 0 coliforms, —the number of common bacteria is 0, yeast 0
  • the method of 1 kW for 20 seconds, cold air for 30 seconds, and 1 kW for 20 seconds was adopted.
  • the cold air was 0 ° C differential pressure cold air.
  • the number of coliforms, general viable bacteria, and yeast became zero.
  • the surface temperature has risen to 73 ° C, and the core temperature has risen to 46 ° C.
  • the temperature must be lowered quickly with cold air, and management with vacuum packaged vegetables is necessary.
  • Infrared and far-infrared sterilization using a strong magnetic field has a close relationship between the volume and density and the wavelength density, and can quickly sterilize and deactivate the enzyme.
  • the magnetic substance was manganese zinc ferrite and the Curie temperature was 200 ° C, and the tunnel effect caused by ferromagnetism was confirmed for each container.
  • Container weight is heat resistant ceramic cup, 320 g, heat resistant glass cup, 310 g, Pyrex glass cup, 280 g, anoremi-coated paper cup, 8 g, PP cup, 4 g, microwave oven is 0.7 kw , Heating time is 120 seconds, each cup contains 140 cc water, water temperature 15 ° C, side temperature of magnetic material 16 ° C, side temperature where water temperature and magnetic material of magnetic container are sintered did.
  • a cup was placed in the center of the container, and the gap between the cojib and the container was about 5 Omm.
  • Water temperature after heating for 120 seconds is: heat-resistant ceramic, 80 ° C, heat-resistant glass, 87 ° C, pyrex glass 88 ° (, aluminum-coated paper cup, 24 ° C, PP cup, 83.C, magnetic Side temperature of body container is: heat-resistant ceramic, 34 ° C, heat-resistant glass, 34 ° C, Pyrex glass, 33 ° C, aluminum coated paper cup, 182 ° C, PP cup, 33 ° C, water temperature The range of the rise is as high as 9 ° C for the aluminum coated paper cup, and the other water temperature is 65 ° C to 71 ° C higher than the temperature of the magnetic material sintered in the container.
  • the temperature of the side of the magnetic body of the container of the aluminum paper cup has risen significantly as a result of this experiment, and as a result of this experiment, the tunneling effect of energy is not achieved unless certain conditions are met.
  • the other container absorbs the wavelength radiated from the magnetic material and is absorbed by the water inside the container, and the temperature of the water is getting higher. As a result, the temperature rises completely different from that of the conventional external heating, and the heating is very different.
  • a small cup with a magnetic material on the collar shown in Fig. 1 into a large container in a magnetic manganese zinc ferrite and Curie temperature of 200 ° C.
  • Five kinds of cups were put in, such as heat-resistant ceramic, heat-resistant glass, Pyrex glass, paper coated with anoremi-coated, and PP cup, and 140 cc of water was tested in the same way.
  • Microwave oven output was the same 0.7 kw, heated for 20 seconds. The temperature was measured at three locations: the side of the large magnetic body, the side of the small magnetic cup, and the water temperature.
  • the water temperature is heat-resistant ceramic, 81 ° C, heat-resistant glass 87 ° C, Pyrex glass
  • the side temperature of large containers is 33 ° C for heat-resistant ceramics and 3 for heat-resistant glass.
  • Potage soup can be heated without bumping.
  • Raw fish, pickles, etc. do not change in quality in the raw state, even if they are heated simultaneously with a sheet of aluminum coated paper and heated.
  • the frozen porridge was then thawed. We experimented with pork cutlet and eel crab.
  • Fig. 1-A The hemispherical magnetic material used in Fig. 1-A was placed in the bottom of the same container in Fig. 9 or Fig. 10 into the concave surface, and frozen pork cutlet and eel porridge were placed on top of each and heated.
  • the frozen products were frozen at 120 ° C, and the weights of 3 10 g and 3 0 5 g containers were made of pp resin coated with foamed urethane resin. Thawed uniformly by heating in a microwave oven at 0.7 kW for 5 minutes. There was no temperature difference between pork cutlet or eel and cooked rice.
  • Fig. 11 A frozen container is placed in a magnetic porcelain with a fish scale-like concave surface at the bottom in the C container structure, and when heated for 5 minutes in the same way, the temperature rises from the bottom and hits the bottom of the tool. It was possible to prevent the thawing of the part at a low temperature.
  • the wavelength When microwaves are used, the wavelength is changed by a magnetic material, and when radiated, the density of the wavelength increases.
  • the tunneling phenomenon of energy that occurs in the material to be heated is the absorption wavelength and magnetism due to the chemical potential of the energy of the heated material. Occurs when the resonance frequency is tuned.
  • Equation 1 When a magnetic layered film is irradiated with microwaves, the energy generated by spin resonance tunnels through the magnetic film.
  • Equation 1 The tunneling Schrodinger equation is expressed by Equation 1 below.
  • This Equation 13 indicates that the microwave is absorbed by the magnetic material, the frequency is shifted to infrared and far infrared, and the electromagnetic wave is amplified and radiated more than blackbody radiation.
  • a tunneling phenomenon occurs when the wavelength of electromagnetic waves such as infrared rays and far infrared rays radiated at an energy density higher than blackbody radiation by the magnetic resonance due to the spin is synchronized with the absorption wavelength of the heated object to be absorbed by food.
  • the absorption of electromagnetic waves by the chemical potential of the energy of chemicals such as foods that absorb and absorb electromagnetic waves such as infrared rays and far infrared rays is synchronized with the energy of infrared rays and far infrared rays radiated by magnetic resonance.
  • the distribution function of the chemical substance of the energy of molecular vibration due to electromagnetic waves such as infrared rays and far infrared rays is expressed by the following equation (14).
  • q partition function
  • n number of molecules
  • h Planck constant
  • frequency of molecular vibration
  • Boltzmann constant
  • temperature
  • the chemical potential is expressed by the following formula 1 by the free energy of Helmholtz.
  • Formula 1 7 The first term on the left side represents the chemical potential when the electromagnetic wave is absorbed, the first term on the right side represents the chemical potential before absorbing the electromagnetic wave, and the second term on the right side represents the absorption due to resonance between the electromagnetic wave and the chemical substance.
  • This equation represents the relationship between the chemical potential due to the free energy of a chemical substance and the absorption of the electromagnetic wave when the electromagnetic wave is absorbed by the chemical substance.
  • Direct heating with a microphone mouth wave reduces the wasted energy, which is a major improvement in heat energy, but on the other hand, the composition is often decomposed or denatured during heating, and food heating There are health problems.
  • Microwave wavelengths use frictional heat between molecules by molecular rotation.
  • Snow removal work on roofs, outdoors, and roads accompanying the aging of snow-covered areas has become a major social problem every year in Hokuriku, Joshinetsu, Tohoku, and Hokkaido.
  • hot water is the most suitable method for thawing and melting snow because of the heat heat rate, but it has been found that the thermal efficiency is higher than that of hot water when the heat is absorbed by increasing the density of the wavelength absorbed by water.
  • the temperature can be easily controlled, and if the structure is made of ceramic, it is excellent in durability and slows down even when left outdoors.
  • Magnetoton can be manufactured at a very low price recently, and cheap products can be obtained from overseas.
  • the temperature sensor and the weight sensor for the amount of snow are also simplified, so it is possible to melt snow outdoors in a short time, and the energy cost is radiated by heat when it snows. Just don't need much. Rather, it leads to new industrial development in snowy areas.
  • this wavelength is a wavelength in the infrared and far-infrared range, and is consistent with the absorption wavelength of many organic substances, and there are many factors that can be tuned.
  • the oscillation wavelength is the optimum wavelength for tuning because of the size of the wavelength. There are elements that are difficult to tune because the wavelength of microwaves is large and the energy of rotation is large, not vibration.
  • A— indicates a hemispherical structure.
  • 6- is a magnetic material sintered inside
  • C— indicates the structure of a ceramic container.
  • Ceramics are divided into a lid part and a container part.
  • a structure in which a magnetic material is sintered to a cylindrical pipe is shown.
  • a and B guide the microwave from the waveguide and irradiate the inside of the pipe with the microphone mouth wave.
  • A is a structure in which a semi-spherical sphere is installed in a concave shape on the outer surface of the pipe,
  • B is a structure in which a semispherical sphere of magnetic material is installed on the concave surface toward the inside of the pipe,
  • D 4 A part where the magnetic material is applied to the surface of the pipe and sintered
  • 2 1 Structure of a ceramic pipe
  • 2 2 Parts coated and sintered on the outer surface of the pipe
  • 2 3 Structure of a hemispherical magnetic body
  • Fig. 2 and Fig. 1 are schematic diagrams showing the position of the belt conveyor and pipe in the continuous operation of the magnetic pipe shown in Fig. 1;
  • the magnetic body structure of the magnetic pot and the stirring device inside is shown.
  • 3 7 Discharge chute
  • 3 8 Vacuum gauge
  • 3 9 Band filter with heater

Description

明細書  Specification
マイクロ波の波長を、 磁性体によって波長転換するとき、 加熱する物質が持つ熱吸収波長 と最適温度に合わせて、 磁性体を選択し最適温度のなかで波長の領域とその密度を高めて 加熱加工、 熱処理を行う方法並びに赤外線、 遠赤外線エネルギーのトンネル効果の構造を 示す。 When the wavelength of the microwave is converted by the magnetic material, the magnetic material is selected according to the heat absorption wavelength and the optimum temperature of the material to be heated, and the temperature range and density are increased within the optimum temperature. The method of heat treatment and the structure of tunnel effect of infrared and far infrared energy are shown.
【技術分野】  【Technical field】
【0 0 0 1】  [0 0 0 1]
本発明は、 波長の領域を利用した輻射加熱の温度分布の均一化、 及び部分的温度変化を作 る構造によって、 食品産業などの産業機械として効率的な熱輻射する構造を示す。 The present invention shows a structure that efficiently radiates heat as an industrial machine in the food industry, etc., by making the temperature distribution of radiation heating using the wavelength region uniform and by creating a partial temperature change.
【0 0 0 2】  [0 0 0 2]
マイクロ波によって磁性体を加熱するときに同一容器の内部に数多くの渦電流損を複数に 又は部分的に生じる構造を作り、 容器内部の早い温度上昇が生じる構造を示す。 A structure in which a large number of eddy current losses are generated in the interior of the same container when the magnetic material is heated by microwaves in part or in part, and the temperature rises rapidly inside the container is shown.
【0 0 0 3】  [0 0 0 3]
磁性体の円筒形のパイプ構造及び円筒形のパイプの構造の陶磁器の内部及び外部に磁性体 を燒結し、 マイクロ波を円筒形の内部に照射し、 磁性体によって波長転換し円筒形の内部 及び外部から熱輻射する構造を示す。 The magnetic material is sintered inside and outside the cylindrical pipe structure of the magnetic material and the ceramic of the cylindrical pipe structure, and the microwave is irradiated to the inside of the cylindrical shape. A structure that radiates heat from the outside is shown.
連続した長いパイプの構造のなかで均一な温度の波長を熱輻射し解凍、 融雪施設の構造を 示す。 The structure of the snow melting facility is shown by heat radiation of a uniform temperature in a continuous long pipe structure.
マイクロ波の波長を磁性体によって転換し、 赤外線、 遠赤外線の波長を円筒形のパイプの 形状から熱輻射し、 連続した加熱処理、 化学合成、 化学分解、 化学重合、 食品加工などの 構造を示す。 Microwave wavelength is converted by magnetic material, infrared and far-infrared wavelengths are radiated from the shape of cylindrical pipes, showing structures such as continuous heat treatment, chemical synthesis, chemical decomposition, chemical polymerization, and food processing .
【0 0 0 4】  [0 0 0 4]
容器の内部、 釜及び回転釜の内部に磁性体及び磁性体を燒結又は磁性膜を張り、 その上に テフ口ン樹脂加工し、 マイクロ波を導波管から誘導して容器及び釜並びに回転釜の内部に 照射し加熱する技術。 産業的大量生産並びに連続加工の構造を示す。 A magnetic body and a magnetic body are sintered or a magnetic film is applied to the inside of the container, the hook and the rotary hook, and the Tefton resin processing is performed thereon, and the microwave is guided from the waveguide to guide the container, the hook and the rotary hook. Technology to irradiate and heat the interior of The structure of industrial mass production and continuous processing is shown.
【0 0 0 5】  [0 0 0 5]
黒体輻射の理想的輻射密度とされているなかで波長の領域が 2 0 mから 1 0 0 mにな るほど波長の密度は低くなり、 外部加熱では熱吸収効率は低くなる。 2 0 μ ηιから 1 0 0 /z mの領域を外部加熱する場合は温度を上げても熱効率は低い。 カルシウム、 マグネシゥ ムゃキチン質、 キトサンなどの熱吸収波長の領域は、 2 0 μ η!〜 6 0 /i mの領域にある。 マイクロ波 (2 . 4 5 G H z ) を磁性体に照射し波長転換するときに、 一定の波長の領域 の密度が高くなる特性を生かし、 一定温度の中で波長の領域 3 0 /ζ π!〜 6 0 mの波長密 度を高めるとカルシウム、マグネシウム成分又はチキン質、キトサンの分解、合成、重合、 及びカルシウム、 マグネシウムの含有又はキチン質、 キトサンの含有率が高い物質に波長 密度を上げて輻射し特定の成分を抽出、 合成、 分解、 重合や食品加工が短時間にできる。 このとき加熱する物質のカルシウム、 マグネシウムの含有率が高いほど、 磁性体から輻射 する波長とカノレシゥム、 マグネシウムの熱吸収波長が同調し共鳴が生じ早い温度上昇を示 す。 In the ideal radiation density of blackbody radiation, the wavelength density decreases as the wavelength region changes from 20 m to 100 m, and the heat absorption efficiency decreases with external heating. When heating the region from 20 μ ηι to 1 0 0 / z m externally, the thermal efficiency is low even if the temperature is increased. The heat absorption wavelength range of calcium, magnesium, chitin and chitosan is 20 μ η! In the region of ~ 60 / im. Taking advantage of the characteristic that the density of the constant wavelength region increases when the wavelength is changed by irradiating the magnetic material with microwaves (2.45 GHz), the wavelength region 3 0 / ζ π! Increasing the wavelength density of ~ 60 m increases the wavelength density of calcium, magnesium component or chicken, chitosan decomposition, synthesis, polymerization, and calcium, magnesium or chitin, chitosan content. Extracts, synthesizes, decomposes, polymerizes and processes foods by radiating specific components. At this time, the higher the content of calcium and magnesium in the material to be heated, the faster the temperature rises as the wavelength radiated from the magnetic material tunes with the heat absorption wavelength of chanoleum and magnesium to resonate.
カルシウム、 マグネシウムの含有量の多い液体大豆製品、轧製品、魚類、貝殻、家畜の骨、 蟹の甲羅、 海老の殻等の内部の成分を食品加工及び抽出、 分解、 合成、 重合を一定の温度 のなかで波長とその密度によって、 行う磁性体の組成構造を示す。 Liquid soy products, salmon products, fish, shells, livestock bones with high calcium and magnesium content, Ingredients such as carp shells and shrimp shells are processed and extracted, decomposed, synthesized, and polymerized at a certain temperature by wavelength and density.
【0006】  [0006]
磁性体の熱輻射の領域特性を生かし、 一定の温度のなかで 0. 2μιη〜1. の波長 密度を高め無機質の金属、 貴金属が持つ吸収波長に合わせて金属合成、 重合、 溶融を行う 方法。 マイクロ波 (2. 45GHz) の波長を磁性体に照射したときに輻射する領域のな かでマグネタイ ト 100に対して酸化アルミニウムの重量比を 5〜2◦を混合し、 耐熱性 陶磁器に燒結し結晶させた磁性材料を用いて、 0. 2j m~l. 0 /zmの波長密度を高め、 無機質の金属、貴金属分子が持つ吸収波長と共鳴、同調させ金属合成、重合、溶融を行う。 【0007】 A method of synthesizing, polymerizing, and melting metals according to the absorption wavelength of inorganic metals and precious metals by increasing the wavelength density of 0.2 μιη to 1. at a constant temperature, taking advantage of the thermal radiation region characteristics of magnetic materials. In the region that radiates when the magnetic material is irradiated with microwaves (2.45GHz), the weight ratio of aluminum oxide is mixed with magnetite 100 to 5 to 2 °, and the mixture is sintered into heat-resistant ceramic. Using the crystallized magnetic material, the wavelength density of 0.2j m ~ l. 0 / zm is increased, and the metal is synthesized, polymerized, and melted in resonance with the absorption wavelength of inorganic metal and noble metal molecules. [0007]
鶏や豚、 牛などの家畜のカルシウム、 又は蟹の甲羅、 海老の殻などのキチン質、 キトサン などの組成内部のタンパク質成分、 ムコ多糖体を一定温度の中で波長の領域とその密度に よって抽出、 分離する方法。 Calcium of livestock such as chickens, pigs, and cattle, or chitin such as shells of shellfish, shrimp shells, protein components in the composition such as chitosan, mucopolysaccharides in a certain temperature depending on the wavelength range and density Extraction and separation method.
従来外部加熱では熱吸収効率が低く、 カルシウム内部まで加熱するために長時間を必要と していた。 Conventionally, heat absorption efficiency is low in external heating, and it takes a long time to heat the calcium inside.
カルシウムフェライト及び C a F e 40 7、 C a F e 35,カルシウム置換ガーネット、 ま たは、 Mn— Znフェライ トなどの磁性材料の重量に対し 5 %〜 20%以内のカルシウム を混合し陶磁器に焼結した磁性素材を作り陶磁器の外部からマイクロ波(2. 45Gh z) を照射することによって、 熱効率の高い抽出、 分離ができる。 Calcium ferrite and C a F e 4 0 7, C a F e 3 〇 5, calcium-substituted garnet, were or, Mn- Zn ferrite mixture of calcium within 5 to 20% by weight of the magnetic material, such as bets By making a magnetic material sintered in ceramic and irradiating it with microwaves (2.45 GHz) from the outside of the ceramic, extraction and separation with high thermal efficiency can be performed.
【0008】  [0008]
【0005】 の構造を利用し、 魚貝類に含まれている脂肪酸類 (DHA、 EPA) を一定 の温度のなかで波長の密度を上げて抽出する方法。  [0005] A method of extracting fatty acids (DHA, EPA) contained in fish and shellfish by increasing the wavelength density at a constant temperature using the structure of
【0009】  [0009]
外部から熱を加え加熱する方法では、 容器の内部に入っている物質別に褸数の温度格差を 作り、 加熱したり、 外部から加わる温度以上の高温で加熱する構造。 In the method of heating by applying heat from the outside, a structure in which a temperature difference of a few is created for each substance contained in the container and heated, or heated at a temperature higher than the temperature applied from the outside.
容器内部にスノコ、 中フタの構造を取り付け、 スノコ、 中フタに磁性体を燒結し、 スノコ の表面及び中フタの裏面に燒結する磁性体の選択と一定の間隔で渦電流損、 誘導加熱、 電 子スピンによる加熱が生じる構造。 Installed the structure of the slat and inner lid inside the container, sintered the magnetic material to the slat and the middle lid, selected the magnetic material to be sintered on the surface of the slat and the back of the middle lid, eddy current loss at regular intervals, induction heating, A structure that generates heat due to electron spin.
【0010】  [0010]
ファーストフード、 中食などで販売されている弁当類、 総菜類、 スープ類はチノレド温度、 冷凍で管理されており加熱では電子レンジのマイクロ波によるそのままの加熱である。 マイクロ波の直接加熱は食品素材の分子回転によって加熱されており、 品質の変化が生じ やすい。 Lunch boxes, prepared dishes and soups sold as fast food and prepared meals are controlled by chilled temperature and refrigeration, and heating is performed directly by microwaves in the microwave. The direct heating of microwaves is heated by the molecular rotation of the food material, and the quality is likely to change.
マイクロ波を利用して従来の容器の状態で赤外線、 遠赤外線による加熱、 解凍する方法。A method of heating and thawing with infrared and far infrared rays in the state of a conventional container using microwaves.
【001 1】 [001 1]
磁性体の容器を利用し、 同一容器の内部に異なった加熱温度が必要な素材を同じ容器に入 れ個別の温度で加熱する方法。 Using a magnetic container, materials that require different heating temperatures inside the same container are placed in the same container and heated at individual temperatures.
【0012】  [0012]
外部からエネレギ一を加える方法では多くのエネノレギーロスが生じている。 There are many energy losses in the method of adding energy from the outside.
従来の外部からの加熱では、 熱エネルギーのトンネル効果の現象は見られない。 赤外線、 遠赤外線エネルギーのトンネル効果を利用すると加熱に必要な物質だけを集中的 に加熱でき、 省エネルギー効果、 加熱による酸化の予防、 高品質の安定する方法を示す。In conventional heating from outside, the phenomenon of thermal energy tunneling is not observed. By using the tunnel effect of infrared and far-infrared energy, only the substances necessary for heating can be heated intensively, and energy saving effect, prevention of oxidation by heating, and high-quality stable methods are shown.
【背景の技術】 [Background technology]
【0 0 1 3】  [0 0 1 3]
電子レンジのマイクロ波を利用し、 陶磁器に熱交換の機能性を持たせ、 調理、 加熱、 解凍 を行う技術開発は本出願者によって 【特許文献 1】 特願 2 0 0 5 - 7 1 8 8 5によって出 願している。 Applicant has developed the technology for cooking, heating, and thawing by using microwaves in a microwave oven to make ceramics have heat exchange functionality [Patent Document 1] Japanese Patent Application No. 2 0 0 5-7 1 8 8 Applying for 5
陶磁器をマイクロ波によって加熱し、 陶磁器から遠赤外線、 赤外線波長の放射に転換 し、 熱効率を上げて調理及び化学反応、 化学合成、 金属加工、 金属結晶、 金属の焼結、 冶 金を行う技術開発は本出願者によって 【特許文献 2】 特願 2 0 0 5— 1 8 5 6 7 3によつ て出願している。 アミノ酸、ペプチド、 タンパク質、及び有機化合物の持つ熱吸収波長帯、 2 . 5 j m〜20 inの鎮域、無機金属や半導体が持つ熱吸収波長帯、 0. Ι Π!〜 6. の 領域などの物質が持つ熱吸収波長帯に合わせた波長を高密度で照射し、アミノ酸類、ペプチド、 タンパク質及び有機化合物の生成、合成、及び反応、分解を促進し、無機素材のナノ粒子の生 成、薄膜、金属結晶の合成を促進する技術開発は本出願者によって【特許文献 3】特願 2005— 348434によって出願している。 Technology development to heat ceramics by microwaves, convert from ceramics to far infrared and infrared wavelength radiation, increase heat efficiency, cooking and chemical reaction, chemical synthesis, metal processing, metal crystals, metal sintering, metallurgy Has been filed by the present applicant in Japanese Patent Application No. 2 0 0 5-1 8 5 6 7 3. Heat absorption wavelength bands of amino acids, peptides, proteins, and organic compounds, 2.5 j m to 20 in band, heat absorption wavelength bands of inorganic metals and semiconductors, 0. Ι Π! -6. Irradiate with high density the wavelength that matches the heat absorption wavelength band of substances such as in the region of 6. to promote the generation, synthesis, reaction, and decomposition of amino acids, peptides, proteins and organic compounds, Technological development that promotes the production of nanoparticles, thin films, and metal crystals has been filed by the present applicant in Japanese Patent Application No. 2005-348434.
【0 0 1 4】  [0 0 1 4]
陶磁器の内部全体に磁性体を塗布し焼結した構造の外部から、マイクロ波を照射し加熱すると き、磁性体がマイクロ波によって磁化が進み、陶磁器の内部全体に磁場が生じ、マイクロ波が吸 収され、早い温度上昇が見られ、加熱される。このとき陶磁器の内部の面からマイクロ波の波長が 波長転換し、赤外線、遠赤外線の波長で輻射し加熱する。陶磁器の内部に複数の加熱物質を重 ねて入れ加熱すると物質同士の影になる部分が生じたとき、輻射する波長に対して影の部分の 温度上昇が低くなり、不均一な温度の上昇が見られ、この解決方法が課題となっていた。 When a microwave is irradiated and heated from the outside of the structure in which the magnetic material is applied and sintered to the entire interior of the ceramic, the magnetic material is magnetized by the microwave and a magnetic field is generated in the entire interior of the ceramic, and the microwave is absorbed. Is observed, a rapid temperature rise is observed, and it is heated. At this time, the wavelength of the microwave is converted from the inner surface of the ceramic, and it radiates and heats at infrared and far-infrared wavelengths. When multiple heated substances are placed inside a ceramic and heated, the shadowed part of the substance is generated, the temperature rise of the shadowed part becomes lower with respect to the radiated wavelength, and the temperature rises unevenly. As seen, this solution has been a challenge.
同一容器の内部で物質を加熱する場合は、常に均一な加熱が求められる。均一な温度の上昇を 目的にした加熱方法の確立とは別に容器の一部分の力所だけを局所的に高温にする方法の要 求や異なった物質を同一容器に入れ個別に加熱し反応させる方法も求められていた。 When heating a substance inside the same container, uniform heating is always required. Apart from the establishment of a heating method for the purpose of raising the temperature uniformly, there is a need for a method of locally raising only a part of the container's force, or a method in which different substances are placed in the same container and heated to react. Was also sought.
同一容器の中に入れた物質を加熱するときに外部から加熱方法では、液体を入れずに均一な温 度の上昇や計画された温度の異なった分布のなかで分離して加熱する方法は困難であり、多く の課題が残されていた。 When heating materials placed in the same container, it is difficult to heat them from the outside by separating them within a uniform temperature rise or different distribution of planned temperatures without liquid. And many challenges remained.
【0 0 1 5】 [0 0 1 5]
マイクロ波によって磁性体を加熱するときには、 誘導加熱、 渦電流損から生じる加熱、 強 磁性体の原子スピンの共鳴よつて磁気共鳴による加熱が存在する。 When a magnetic material is heated by microwaves, there are induction heating, heating resulting from eddy current loss, and heating by magnetic resonance due to resonance of the atomic spin of a ferromagnetic material.
マイクロ波の波長を磁性体に照射し渦電流損が生じ磁気共鳴によって加熱したとき、磁性体のス ピンの量子力学的効果によって古典的熱力学の法則を破る。 When a magnetic material is irradiated with microwave wavelengths and eddy current loss occurs and it is heated by magnetic resonance, the quantum mechanical effect of the magnetic material spin breaks the classical thermodynamic law.
マイクロ波の波長を磁性体によって波長転換し渦電流損から磁気共鳴が生じた場合、熱エネル ギ一は増幅され、理想的な黒体輻射の条件の温度と波長密度の関係を越えて、波長の密度は高 くなる。この条件を維持して物質を加熱すると、熱効率が高い加熱ができる。 When the microwave wavelength is changed by the magnetic material and magnetic resonance occurs from the eddy current loss, the thermal energy is amplified, exceeding the relationship between temperature and wavelength density in the ideal black body radiation conditions, the wavelength The density of the becomes higher. If the material is heated while maintaining this condition, heating with high thermal efficiency can be performed.
マイクロ波の波長を磁性体が吸収し加熱する場合、 磁性体から熱輻射する波長の領域と加 熱する物質が持つ熱吸収波長が整合すると波長は物質の間で同調すると、 共鳴現象により 加熱時間は短縮できる。 誘導加熱、 渦電流損加熱、 電子スピンの共鳴による加熱が同時に 起きる構造は、 電磁波が一定の構造のなかで渦状の回転運動が継続できる形状によって生 じる。 When the magnetic material absorbs and heats the microwave wavelength, if the wavelength range of heat radiated from the magnetic material matches the heat absorption wavelength of the heated material, the wavelength is tuned between the materials. Can be shortened. Induction heating, eddy current loss heating, and heating by electron spin resonance simultaneously The structure that occurs is caused by a shape that allows the vortex to continue rotating in a structure where the electromagnetic waves are constant.
円形、 楕円形、 又は凹面、 凸面、 円筒、 円錐、 球の構造である。 磁化は半径が小さいほど 早く高くなる。 It has a circular, elliptical, or concave, convex, cylindrical, conical, or spherical structure. Magnetization increases faster as the radius decreases.
加熱に利用する容器は磁化が生じる磁性体構造にし、 その内面に磁性体の凹面の半円球を 複数に配列するとそれぞれの半円球が個別に渦電流損を生じて熱輻射する。 凹面の半円球 は、 凹面の内面から表面に向かって熱輻射する。 容器の内面に凹面の半円球を魚鱗の状態 に配列し、 容器内部の表面積が大きくなると熱輻射する面積が大きくなり、 加熱時間は短 縮できる。 物質加熱では輻射面から距離の 2乗で離れるほどエネルギー効率は低下する。 加熱物との接点が多いほど、 加熱時間は短縮される。 The container used for heating has a magnetic structure in which magnetization occurs, and when a plurality of concave semicircular spheres are arranged on the inner surface, each hemisphere individually generates eddy current loss and radiates heat. The concave hemisphere radiates heat from the concave inner surface to the surface. When concave hemispheres are arranged in a fish scale on the inner surface of the container, and the surface area inside the container increases, the area for heat radiation increases and the heating time can be shortened. In material heating, the energy efficiency decreases as the distance from the radiation surface increases by the square of the distance. The more contacts with the heated object, the shorter the heating time.
渦電流損が生じ磁化が生じるときの磁性体の構造は半円球の半径が小さいほど磁化が高く なり、 早い温度の上昇がみられる。 When the eddy current loss causes magnetization, the structure of the magnetic material increases as the radius of the hemisphere decreases, and the temperature rises faster.
水分率の高い物質を加熱すると水分分離が始まり、 分離した水分が底に溜まると加熱物質 と分離した氷分が接する場所は温度上昇が遅くなる。 加熱する磁性体の容器の中に磁性体 を塗布し焼結した凹面上に穴を複数に空けたスノコを設置し、 スノコの構造は円錐の凹面 にすると同様に渦電流損、 誘導加熱、 電子スピンの加熱が生じ、 スノコの開いた各部から 熱輻射することにより、 加熱物質から分離した水分はスノコから下に落ち、 加熱物と分離 され均一に早く加熱できる。 When a material with a high moisture content is heated, water separation begins, and when the separated water accumulates at the bottom, the temperature rises slowly at the place where the heated material and separated ice are in contact. If a magnetic material is coated in a heated magnetic container and a slat with a plurality of holes is placed on the sintered concave surface, the stool structure is eddy current loss, induction heating, electron as well as a conical concave surface. The spin is heated and heat is emitted from the open parts of the slats, so that the water separated from the heated material falls down from the slats and is separated from the heated material and heated evenly and quickly.
スノコの下に少量の水分を入れ加熱すると水分は早く蒸気化しスチーム加熱と赤外線、 遠 赤外線の直接加熱との併用ができる。 When a small amount of moisture is placed under the slat and heated, the moisture is quickly vaporized, and steam heating can be used in combination with infrared and far infrared direct heating.
磁性体の容器にスノコと中フタを設置するとスチーム加熱、 加圧加熱、 直接加熱が同時に 併用し行える。 When a slat and an inner lid are installed in a magnetic container, steam heating, pressure heating, and direct heating can be used simultaneously.
容器内部に複数の渦電流損が生じる構造を作ると同一出力、 同一磁性体を利用しても早い 温度上昇が得られる。 By creating a structure in which multiple eddy current losses occur inside the container, the same output and rapid temperature rise can be obtained even if the same magnetic material is used.
【0 0 1 6】  [0 0 1 6]
従来マイクロ波による加熱ではマイク口波が漏洩する危険性があり、 長尺の構造やトンネ ル式の長い構造においてマイクロ波を均一に放射し利用することは困難とされていた。 マイクロ波をァノレミニゥムで作られた導波管によって誘導し、 強磁場構造のなかでマイク 口波の波長を導波管から磁性体のパイプのなかに放射したとき 1 O m以上の距離において もマグネトロンから放射するマイクロ波の出力と磁性体の構造によって安定し誘導するこ とが出来、 マイクロ波の漏涣はしない。 Conventional microwave heating has the risk of leakage of the microphone mouth wave, making it difficult to uniformly radiate and use microwaves in long structures or long tunnel structures. When a microwave is guided by a waveguide made of anorem, and the wavelength of a microphone mouth wave is radiated from a waveguide into a magnetic pipe in a strong magnetic field structure, even at a distance of 1 O m or more It can be stably guided by the output of the microwave radiated from the magnetic field and the structure of the magnetic material, and does not leak the microwave.
円筒形の磁性体フェライトゃ陶磁器の内面と外面に磁性体を燒結し、 導波管から誘導し、 円筒形の入り口からマイクロ波を照射し、 反対の出口側に円筒形の内径寄りも小さな球形 又は半円形の強磁場の渦電流が生じる磁性体の構造を設置すると出口側の磁性体の磁化が 強くなり、 マイクロ波が吸収され、 キュリー温度になるまで温度は上昇する。 出口側の磁 性体がキュリ一温度に達すると次ぎに円筒形の磁性体全体がマイクロ波を吸収し発熱す る。 このときの円筒形の直径は、 マイクロ波の波長以上の内径を選択する。 Cylindrical magnetic ferrite ferrite is sintered on the inner and outer surfaces of the ceramic, guided from the waveguide, irradiated with microwaves from the cylindrical inlet, and the cylindrical inner diameter near the inner diameter is small on the opposite outlet side Alternatively, if a magnetic structure with a semicircular magnetic field that generates eddy currents in a strong magnetic field is installed, the magnetization of the magnetic substance on the exit side becomes stronger, microwaves are absorbed, and the temperature rises until the Curie temperature is reached. When the magnetic material on the outlet side reaches the Curie temperature, the entire cylindrical magnetic material absorbs microwaves and generates heat. The diameter of the cylindrical shape at this time is selected to be an inner diameter that is equal to or greater than the wavelength of the microwave.
円筒形のパイプの内部に異なった組成の磁性体及びキュリ一温度の異なる磁性体や磁化の 異なる磁性体を配列すると始めに磁化の強い場所の温度が上昇しキュリー温度に到達する と次ぎに磁化の低い位匱が温度の上昇を示す。 磁性体のキュリー温度の異なる磁性体を配 列すると配列によって最高温度の制御がキュリー温度の最高点になり温度格差が生じる熱 輻射が可能である。 When magnetic bodies with different compositions, magnetic bodies with different Curie temperatures, or magnetic bodies with different magnetizations are arranged inside a cylindrical pipe, the temperature of the place with strong magnetization rises first, and when it reaches the Curie temperature, it is next magnetized. A lower temperature indicates an increase in temperature. Magnetic materials with different Curie temperatures are arranged. If arranged, the control of the maximum temperature becomes the highest point of the Curie temperature depending on the arrangement, and heat radiation that causes a temperature difference is possible.
円筒形のパイプ状の磁性体の構造に同一磁性体の球又は半円球の凹凸を付けると球又は半 円球の磁性体が円筒形のパイプの磁性体よりも磁化が高くなり、 早く熱輻射をおこなう。 球並びに半円球が円筒形のパイプの外部に凹面に力ットすると凹面から外部に熱輻射し、 磁性体の円筒形のパイプ状の内部に球を付けるか又は半円球の凹面を内面に向けてカツト すると円筒形の内部に熱輻射する。 If the same magnetic sphere or hemispherical irregularities are added to the structure of a cylindrical pipe-shaped magnetic body, the magnetic body of the sphere or hemisphere will have higher magnetization than the magnetic body of the cylindrical pipe, and will heat faster. Radiate. When a sphere or hemisphere is forced on the concave surface of the cylindrical pipe, heat is radiated from the concave surface to the outside, and the sphere or hemispherical concave surface is attached to the inner surface. If you cut it toward the side, it will radiate heat inside the cylinder.
円筒形のパイプに球又は凹面の磁性体構造を並列し設置すると並列に熱輻射され、 磁性体 の組成の選択によってマイクロ波の波長転換し、 赤外線、 遠赤外線の波長の領域を並列に 一方向に熱輻射することができる。 When a spherical or concave magnetic structure is installed in parallel on a cylindrical pipe, heat is radiated in parallel, and the wavelength of the microwave is changed by selecting the composition of the magnetic material, and the infrared and far-infrared wavelength regions are unidirectional in parallel. Can radiate heat.
【0 0 1 7】  [0 0 1 7]
マイクロ波の波長を磁性体によって、 赤外線、 遠赤外線の波長に転換し、 加熱する産業的 規模の大型機器開発及び連続作業の機器開発や回転釜の利用は困難とされていた。 It has been difficult to develop industrial-scale large-scale equipment that heats microwaves by converting them into infrared and far-infrared wavelengths using a magnetic material, and to develop equipment for continuous operation and use of a rotary kettle.
直接マイクロ波が磁性体に照射するとスパジタリングを起こし、 プラズマ現象を起こしこ とから利用されていない。 When microwaves are directly irradiated to a magnetic material, it causes sparging and is not used because it causes a plasma phenomenon.
マイクロ波を利用し加熱するときに磁性体の表面にテフ口ン榭脂をコーティングするとマ イク U波が金属表面で生じるスパッタリングよるプラズマ現象が生じずに、 マイク 7波は テフロン榭脂を透過し磁性体に吸収され、 磁性体の組成によって赤外線、 遠赤外線の波長 に転換し発熱する。 When Teflon resin is coated on the surface of a magnetic material when heated using microwaves, the plasma phenomenon caused by sputtering, in which U-waves are generated on the metal surface, does not occur, and the microphone 7 wave penetrates Teflon resin. It is absorbed by the magnetic material and generates heat by converting into infrared and far infrared wavelengths depending on the composition of the magnetic material.
このときの波長の領域は、 テフ口ン榭脂が存在していても従来の組成の磁性体と変わらず 熱輻射する。 At this time, the wavelength region is radiated by heat as in the case of a magnetic material having a conventional composition even if Teflon resin is present.
磁性体の構造を持つ組成の容器、 釜、 回転釜又は磁性体を塗布又は、 焼結した回転釜を用 いて、 マイクロ波の波長を転換し、 遠赤外線、 赤外線を輻射させ、 食品の加工、 解凍、 酵 素の失活、 加熱、 調理、 殺菌を行うことができる。 Using a container with a magnetic structure, a pot, a rotary pot, or a rotary pot coated or sintered with a magnetic substance, the wavelength of microwaves is changed, far infrared rays or infrared rays are radiated, food processing, Thawing, enzyme deactivation, heating, cooking, sterilization can be performed.
従来、 タンパク質類、 ムコ多糖体、 脂肪酸類を抽出する技術は加圧並びにアルコール、 触 媒、 酵素などによって抽出されていたが、 一定の温度の中で波長の領域、 2 . 5 m~ 2 0 μ mの密度を上げ熱輻射し波長振動による抽出ができる。 Conventionally, the technology for extracting proteins, mucopolysaccharides, and fatty acids was extracted by pressurization and alcohol, catalyst, enzyme, etc., but the wavelength range within a certain temperature range is 2.5 m ~ 20. Extraction by wavelength oscillation can be performed by increasing the density of μm and radiating heat.
食品の乾燥ゃ榭脂の乾燥等は、 減圧し脱気しながら外部から加熱しているが加熱する温度 には一定の品質基準から限度があり、 加熱温度を制御し脱気するのに大変な時間 要して いる。 水が吸収する波長の領域 2 . 5 /i m~ 6 . 8 ja mを温度の制御のなかで波長の密度 を高めて脱気する方法は取られていない。 Drying of foods such as drying of rosin is heated from the outside while depressurizing and degassing, but the heating temperature is limited by certain quality standards, and it is difficult to degas by controlling the heating temperature It takes time. There is no method for degassing the wavelength range of water absorption from 2.5 / i m to 6.8 ja m by increasing the wavelength density while controlling the temperature.
【0 0 1 8】  [0 0 1 8]
粘性の強い物質の水分蒸発、 畜産汚泥の水分蒸発は常に課題となっている。 Evaporation of moisture from highly viscous substances and evaporation from livestock sludge have always been challenges.
粘性の強い液体の水分を蒸発するには外部から熱を加えると加熱される表面の水分が蒸発 し、 内部までの熱伝導が悪く、 表面温度だけが上がりその結果、 表面だけ炭化し、 粘性の 強い物質の内部から水分を蒸発させるには、 全体を撹拌しなければ困難とされていた。 粘 性の強い物質の撹拌には、 常に大きなエネルギーが必要である。 In order to evaporate the moisture of a highly viscous liquid, when the heat is applied from the outside, the moisture on the heated surface evaporates, the heat conduction to the inside is poor, and only the surface temperature rises. It was difficult to evaporate moisture from the inside of a strong substance unless the whole was stirred. A large amount of energy is always required to stir highly viscous materials.
畜産廃棄物の汚泥は水分率が高いことからメタンガス発酵が安定せず、 メタンガス発酵後 の汚泥の量の多さが課題となっている。 畜産廃棄物は搅拌するとメルカブタン、 アンモニ ァなどの臭いも撹拌によって拡散し、 臭気公害の元になる。 異臭を分解し、 水分だけを蒸 発することが望まれていた。 メルカブタンやアンモニアを分解する波長の鎮域は、 2 . 5 m〜2 0 mのなかにあり、 この領域の密度を上げると粘性の強い液体内部で分解し、 同時に水分も波長振動によって蒸発する。 陶磁器などの円筒形のパイプの外部又は内部に 磁性体のマンガンフェライ ト、 マンガン亜鉛フェライ ト、 マンガンニッケルフェライ ト、 ニッケルフェライト等の磁性体キュリー温度、 1 5 0 °C~ 2 5 0 °Cを燒結し、 マイクロ波 の波長を磁性体によって波長転換すると 2 . 5 μ ιη〜 2 0 /z mの波長領域の密度が高くな る。 粘性の強い物質の内部に設置し、 導波管からマイクロ波を導き陶磁器の円筒形のパイ プの内部から波長転換すると粘性の強い液体の內部から短時間に水分蒸発ができ畜産廃棄 物から発散するァンモニァゃメルカプタンは分解され水分が蒸発する。 Livestock waste sludge has a high moisture content, so methane gas fermentation is not stable, and the amount of sludge after methane gas fermentation is an issue. When livestock waste is stirred, odors such as mercabtan and ammonia diffuse by stirring and become a source of odor pollution. Decomposes off-flavors and steams only moisture It was desired to emit. The wavelength range for decomposing mercabbutane and ammonia is in the range of 2.5 m to 20 m. When the density in this region is increased, it decomposes inside the highly viscous liquid, and at the same time, the water also evaporates due to wavelength oscillation. Magnetic body Curie temperature such as ceramic manganese ferrite, manganese zinc ferrite, manganese nickel ferrite, nickel ferrite, etc. is applied to the exterior or interior of cylindrical pipes such as ceramics. As a result, when the wavelength of the microwave is converted by the magnetic material, the density in the wavelength region of 2.5 μιη to 20 / zm increases. When installed inside a highly viscous substance, microwaves are guided from the waveguide and the wavelength is changed from the inside of the cylindrical pipe of the ceramic, water can evaporate from the heel of the viscous liquid in a short time and diverge from livestock waste. The mercaptan is decomposed and the water is evaporated.
畜産廃棄物は金属類の腐蝕が早いが、 陶磁器を利用すると腐蝕の老化年数が長く、 経済的 である。 Livestock waste corrodes metals quickly, but if ceramics are used, the aging period of corrosion is long and economical.
【0 0 1 9】  [0 0 1 9]
積雪地域は屋根、 屋外の融雪を簡便に早く、 エネルギーコストが安い施設で且つ耐久性の あることが求められている。 積雪地域の高齢化によって施設コス卜の安い融雪方法は必須 条件である。 Snow-covered areas are required to be easy and fast to melt snow on the roof and outdoors, and to have low energy costs and be durable. Due to the aging of snow-covered areas, a low-cost snow melting method is essential.
氷や雪は水と同じ吸収波長の領域は 2 . 5 μ η!〜 6 . 5 mであり、 この領域の波長密度 を上げ、 振動輻射すると吸収共鳴によって、 熱効率が高くなり早く、 永や雪を溶かし水に なる。 Ice and snow have the same absorption wavelength region as water, 2.5 μη! Up to 6.5 m, increasing the wavelength density in this region, and vibrational radiation will quickly increase the thermal efficiency due to absorption resonance, which will melt eternity and snow into water.
氷や雪が溶けるには、 融解熱と氷や雪の温度から水に解凍するまでの温度較差とその重量 を掛けた数字が解凍に必要な熱エネルギーである。 これまで解凍や融雪は単に温度を加え て解凍されており、 水が持つ熱吸収波長の密度を上げ、 熱効率を上げて解凍する方法は取 られていない。 In order for ice and snow to melt, the heat energy required for thawing is the number of heat of fusion, the temperature range from ice or snow temperature to thawing to water, and the weight. So far, thawing and snow melting have been thawed simply by applying temperature, and there has been no way to increase the heat absorption wavelength density of water and to thaw it with increased thermal efficiency.
積雪地域では屋根に勾配がある場合が多く、 屋根の頂上に近い場所で融雪し温度の高い水 に変化すると、 屋根の斜面に沿って水が流れ、 屋根の低い部分の雪も重量の変化と解凍さ れた水によって共に流れ落ちる。 In snowy areas, there are many slopes on the roof, and when snow melts near the top of the roof and changes to hot water, water flows along the slope of the roof, and the snow on the lower roof also changes in weight. It will flow down together with thawed water.
屋根の素材は、 瓦、 亜鉛鉄板、 アスベスト瓦、 茅葺きなどであり、 融雪の温度は高温にな ると火災や素材の変質の心配があり、 最高温度が 1 0 0 °C〜3 0 0 °Cまでが望ましい。 磁性体の円筒形パイプを屋根の棟に沿って設置し、 マイクロ波を導波管によって誘導し、 磁性体のパイプの内部に放射する。 パイプには、 磁性体の半円球の凹面をパイプの外部に 平行に一列に配列し、 カツトした半年球の面は屋根の斜面に平行に熱輻射するように設置 する。 Roof materials are tiles, galvanized iron plates, asbestos tiles, thatched roofs, etc. If the temperature of melting snow rises, there is a risk of fire and material deterioration, and the maximum temperature ranges from 100 ° C to 300 ° C. Up to C is desirable. A magnetic cylindrical pipe is installed along the roof ridge, and microwaves are guided by the waveguide and radiated inside the magnetic pipe. In the pipe, the concave surfaces of the magnetic hemispheres are arranged in a row parallel to the outside of the pipe, and the cut hemisphere surface is installed to radiate heat parallel to the slope of the roof.
設定する温度と波長の領域が最高密度となる磁性体は、 マンガンフェライ ト、 マンガン亜 鉛フェライト、 マンガンニッケルフェライト、 二: yケルフェライト等で磁性体のキュリー 温度を 1◦◦ ° (〜 3 0◦ °Cで選択する。 これらの磁性体がマイクロ波を吸収し熱輻射する 時の波長の領域は 2 . 5 μ ιη~ 2 0 mであり、 このときに輻射する波長密度が高く、 解 凍、 融雪に効果的な領域である。 Magnetic materials that have the highest density in the temperature and wavelength range to be set are manganese ferrite, manganese zinc ferrite, manganese nickel ferrite, and two: y-kel ferrite. ◦ Select at ° C.The wavelength range when these magnetic materials absorb microwaves and radiate heat is 2.5 μ ιη ~ 20 m, and the radiated wavelength density is high and the thawing is done. This is an effective area for melting snow.
【0 0 2 0】  [0 0 2 0]
カノレシゥム、 マグネシウムは低温でも水によって分解しイオン化する、 かるしうむ、 マグ ネシゥム及ぴキチン質、 キトサンは高温に加熱しても分解し難い性質がある。 そのため力 ルシゥム、 マグネシウム及びキチン質、 キトサンの熱による分解する方法は少なく物理的 な粉砕によって加工されている。 そのためにエネルギーコストが高く、 加工費用が高くな つている。 他の加工方法として酵素及び酸による分解等があるが酵素の分解は分解期間が 長く酸の分解は加工後の用途に限度がある。 Canolecium and magnesium are decomposed and ionized by water even at low temperatures, borax, magnesium and chitin, and chitosan is difficult to decompose even when heated to high temperatures. Therefore, there is little physical decomposition method due to heat of lucium, magnesium and chitin, and chitosan. It is processed by proper grinding. As a result, energy costs are high and processing costs are high. Other processing methods include degradation with enzymes and acids, but the degradation of enzymes has a long degradation period and the degradation of acids is limited in its use after processing.
カルシウム、 マグネシウム及びキチン質、 キトサンが吸収する波長の領域は、 3 !〜 60 mにあり、 黒体輻射の熱エネルギーの法則からみて、 温度を上げても波長の密度が 高くならない。 The wavelength range absorbed by calcium, magnesium and chitin, and chitosan is 3! From the law of thermal energy of blackbody radiation, the wavelength density does not increase even when the temperature is increased.
加熱しても吸収する波長の密度が低いことが熱による分解がし難い原因である。 The fact that the density of wavelengths that are absorbed even when heated is low is the reason why it is difficult to decompose by heat.
この領域は太陽のエネルギー、 自然界でも波長の密度が低く、 土壌の中で骨だけが何百年 も残っている。 This region has low solar energy and wavelength density in nature, and only bone remains in the soil for hundreds of years.
カルシウムを熱エネルギーによる分解、 合成などは、 実施されておらず、 工学的エネルギ 一による粉砕又は酸及び酵素による分解が一般的である。 No decomposition or synthesis of calcium by thermal energy has been carried out, and grinding by engineering energy or decomposition by acid and enzyme is common.
マイクロ波 (2. 45GHz) を磁性体に照射し 【001 5】 に示した構造と磁性体の組 成をマンガンフェライト、 マンガン亜鉛フェライト等磁性体に対して 5%〜2◦%のカル シゥムを混合し燒結した容器を利用し、 熱輻射する波長の領域が磁性体の組成によって、Microwave (2. 45 GHz) is irradiated to the magnetic material, and the structure and composition of the magnetic material shown in [001 5] are applied to 5% to 2 °% calcium to the magnetic material such as manganese ferrite and manganese zinc ferrite. Using a mixed and sintered container, the wavelength range of heat radiation depends on the composition of the magnetic material.
30 !〜 6◦ m波長転換し、 80°C~300°Cの低温であっても、 波長の密度を 10 一2 (W/cm2 m) 〜10 (W/cm2. m) に上がり温度と波長の領域とその密度に よって、 分解又は合成ができる。 30! Up to 6◦ m wavelength conversion, even at low temperatures of 80 ° C to 300 ° C, the wavelength density is increased to 10 2 (W / cm 2 m) to 10 (W / cm 2 .m) Depending on the wavelength region and its density, it can be decomposed or synthesized.
組成にカルシウムが多く含まれている物質又はキチン質、 キトサンやカルシウム、 マグネ シゥムの組成の内部含有しているヒアル口ン酸等では酵素分解処理、 有機溶媒による処理 や機械的な加圧エネルギーよる粉砕処理がされている。 Substances that contain a lot of calcium or chitin, chitosan and calcium, hyaluronic acid contained in the composition of magnesium, etc. depend on enzymatic degradation treatment, treatment with organic solvents and mechanical pressure energy It has been crushed.
カルシウム、 マグネシウムによって被われていたり、 又はキチン質で被われている組成も 外部から 30 /zrc!〜 60 /zmの波長を照射すると内部の組成も波長振動によって分解され 抽出できる。 カルシウム、 マグネシウム又はキチン質を含む物質には水分も多く含んでお り、 波長の領域は、 2. 5 /ZD!〜 6◦ /x mの波長領域の密度が高い磁性体を選択すると水 分、 有機物、 カルシウム、 キチン質、 キトサンが波長振動によって分解や合成が出来る。The composition covered with calcium, magnesium, or covered with chitin is 30 / zrc from the outside! When irradiated with a wavelength of ~ 60 / zm, the internal composition can also be decomposed and extracted by wavelength oscillation. Substances containing calcium, magnesium or chitin contain a lot of water, and the wavelength range is 2.5 / ZD! When a magnetic material having a high density in the wavelength region of -6 ° / x m is selected, water, organic matter, calcium, chitin, and chitosan can be decomposed and synthesized by wavelength vibration.
【0021】 [0021]
カルシウム、 マグネシウムの含有率の高い食品並びに物質を加熱するとき、 従来の外部加 熱では熱吸収率が低く、 カルシウムに被われている食品の内部やカルシウム含有率の高い 食品を加熱するには長時間必要とした。 When heating foods and substances with high calcium and magnesium content, the heat absorption rate is low with conventional external heating, and it is long to heat foods covered with calcium and foods with high calcium content. I needed time.
マイクロ波の波長を転換させ、 輻射させる磁性素材として、 カルシウムフェライト、 Ca F Ο 、 C a F eaOe. カルシウム置換ガーネットを用いて、キュリー温度、 150°C〜 3 00°Cの磁性体を選択し、 マイクロ波 (2. 45 GHz) を輻射すると波長転換し、 波長 の領域、 30/zn!〜 60jumの密度が高く輻射する。水が吸収する領域から有機物及びカルシゥ ム、マグネシウムの吸収波長、 2.5 Π!〜 60 /imの波長領域の密度を上げるには、 マンガ ンフェライ ト、 マンガン亜鉛フェライ ト、 マンガンニッケルフェライ ト、 ニッケノレフェラ イ トにカルシウムを 5 %〜 20%を配合した磁性体を陶磁器に燒結し、 マイクロ波 (2.As a magnetic material that changes the wavelength of the microwave and radiates it, calcium ferrite, CaF 、, CaFeaOe. Using a calcium-substituted garnet, select a magnetic material with a Curie temperature of 150 ° C to 300 ° C. When microwave (2. 45 GHz) is radiated, the wavelength is changed, and the wavelength region is 30 / zn! ~ 60jum density is high radiation. Absorption wavelength of organic matter, calcium, and magnesium from the region absorbed by water, 2.5 Π! In order to increase the density in the wavelength region of ~ 60 / im, ceramic materials containing 5% to 20% calcium in Manganite, Manganese Zinc, Manganese Nickel, and Nickenoreferrites are sintered in ceramics. , Microwave (2.
45GHz) を輻射すると波長転換し、 波長の領域 2. 5 !〜 60 μιηの輻射する波長 密度が高くなる。 When it radiates (45GHz), the wavelength is changed and the wavelength range is 2.5! ~ 60 μιη radiation wavelength density increases.
配合比率が 5%以下ではカルシウム、 マグネシウムの反応性が少なく、 熱の上昇温度がマ ンガンフェライトの時と変わらない、配合比率が 20 %になるとやはり温度の上昇が遅く、 - δ - 最適配合比率は 5 %以上、 2 0 %以下の範囲約 1◦ %前後である。 When the blending ratio is 5% or less, the reactivity of calcium and magnesium is low, and the temperature rise of heat is the same as that of manganferrite. When the blending ratio is 20%, the temperature rise is slow. -δ-The optimum blending ratio is about 1% in the range of 5% or more and 20% or less.
カルシウム内部に含まれるアミノ酸類、 有機酸、 脂肪酸、 タンパク質、 ムコ多糖体等の抽 出にはマンガンフェライト及びマンガン亜鉛フェライトとカルシウムの配合比率を 1 0 % 割合で配合した磁性体でキュリ一温度は、 1 5 0 °C〜 2 5 0 °Cに設定すると最高温度のピ ークと波長の領域が整合し 2 . 5 m〜6 0 i mの範囲になる。 Extraction of amino acids, organic acids, fatty acids, proteins, mucopolysaccharides, etc. contained in calcium is a magnetic substance in which the mixing ratio of manganese ferrite, manganese zinc ferrite and calcium is mixed at a ratio of 10%, and the Curie temperature is When the temperature is set to 1550 ° C to 2550 ° C, the peak of the highest temperature and the wavelength region are matched to be in the range of 2.5 m to 60 im.
【0 0 1 5】 【0 0 2 0】 で示した構造を利用しカルシウムを配合した磁性体の容器でマ イク口波 (2 . 4 5 G H z ) を照射し、 カノレシクム、 マグネシウムの含有率の高い海藻、 豆乳、 牛乳、 轧製品、 葉野菜、 骨、 魚類の加熱 JtKェを行うと磁性体のカルシウムと內容物 に含まれているカルシウム、 マグネシウムが同調し吸収共鳴を起こし、 マンガン亜鉛フエ ライト、 マンガンフヱライトの容器や直接マイクロ波を照射し加熱するよりも早い温度上 昇が見られ、 熱効率を上げることができる。  [0 0 1 5] Using the structure shown in [0 0 2 0], irradiate a mic mouth wave (2.45 GHz) in a magnetic container containing calcium, and the content of canorecicum and magnesium High-temperature seaweed, soy milk, milk, salmon products, leafy vegetables, bones, and fish. The temperature rises faster than the light and manganese phosphor containers and direct microwave irradiation and heating, and the thermal efficiency can be increased.
【0 0 2 2】  [0 0 2 2]
磁性体にマイクロ波を照射し波長転換し、波長の領域、 0. !〜 1 . 0 ju mの波長密度を高 く輻射するには、 FeAl、マグネタイト、 Mn— Znフェライトに酸化アルミニウムを 5%〜20%に配 合、マグネタイトに対して酸化ァノレミニゥム 5%〜20%配合、マグネタイトに対してカーボン 5%〜 20%の配合した各素林を陶磁器に燒結し陶磁の外部からマイクロ波(2· 45 GHz)を照射すると 陶磁器の内部は短時間で 1、 000°Cの高温になり、 波長の領域は 0. 2 /i m~l. 0 z mの波長 の密度を上げて熱輻射する。この領域は鉄、を始めとする金属が吸収する波長の領域であり、金 属の溶融、金属結晶、合金が短時間にできる。 金属結晶では純度が求められるが、 酸素を遮 断し、 希ガスのアルゴンガス、 窒素ガス等の環境下で簡易に結晶加工ができる。 Wavelength is changed by irradiating a magnetic material with microwaves. In order to radiate a high wavelength density of ~ 1.0 jum, FeAl, magnetite, Mn—Zn ferrite is mixed with 5% to 20% of aluminum oxide, and 5% to 20% of anoremium oxide is added to magnetite. When each forest containing 5% to 20% carbon to magnetite is sintered in ceramics and irradiated with microwaves (2-45 GHz) from the outside of the ceramics, the interior of the ceramics will quickly reach 1 000 ° C. As the temperature rises, the wavelength range is 0.2 / im ~ l. 0 zm. This region is a region of a wavelength that is absorbed by metals such as iron, and metal melting, metal crystals, and alloys can be performed in a short time. Metal crystals require purity, but they can be easily crystallized in an environment of rare gas such as argon gas or nitrogen gas by blocking oxygen.
電気炉などでは 1、 000°C以上の高温になるには数時間を要しており、実験では高温になるまで の待機時間が長く、無駄な時間が多ぐその上に高出力の電気が必要になっている。 In an electric furnace, etc., it takes several hours to reach a high temperature of 1,000 ° C or more, and in the experiment, it takes a long time to wait until it reaches a high temperature, and there is a lot of wasted time. It has become.
少ない電気の出力で短時間に安定した高温が短時間に得られ、波長の領域も 1 (THZ)の領域 の密度が高くなり、熱効率の高い熱輻射ができる。 A stable high temperature can be obtained in a short time with a small amount of electricity output, and the density of the wavelength region of 1 (THZ) is increased, enabling thermal radiation with high thermal efficiency.
【0 0 2 3】 [0 0 2 3]
食品加工のなかでも青果物、 果実を熱処理を行うと色素を失い褐色に変化することが商品 価値を失い課題となっている。 8 0 °C〜2◦ 0 °Cの範囲で加熱処理を行うときに輻射する 波長の範囲を 2 . 5 m〜2 0 μ πιの波長、 赤外線、 遠赤外線の中でその密度を上げて、 短時間に輻射すると殺菌及び酵素を失活によって、 色素を安定させ、 品質保持ができ食品 加工を行うことが可能である。 Among food processing, when heat is applied to fruits and vegetables, fruit loses its commercial value due to loss of pigment and changes to brown. When the heat treatment is performed in the range of 80 ° C to 2 ° 0 ° C, the wavelength range of radiation is increased to 2.5 m to 20 μπι, in the infrared and far infrared, and the density is increased. When radiated in a short time, sterilization and inactivation of enzymes stabilize the pigment, maintain quality, and allow food processing.
産業的にこれらの作業は経済コストが安く、低価格で連続的に大量に処理する必要がある。 中でもエネルギーコストが安いことが欠かせない条件である。 Industrially, these operations are economically cheap and need to be processed continuously in large quantities at a low price. Above all, low energy costs are indispensable conditions.
食品加工の工程において廃棄物となるリンゴ、 梨、 柿、 ブドウ及び柑橘類の皮を殺菌、 酵 素失活させ、 食品の素材及び禽品添加物、 色素として再利用し加工することが求められて いる。 食品廃棄物の再利用化は法律が制定されており食品産業全体の課題の一つである。 【0 0 2 4】 Apples, pears, persimmons, grapes and citrus peel, which are wastes in the food processing process, are sterilized, inactivated, and reused and processed as food ingredients, poultry additives, and pigments. Yes. The reuse of food waste is one of the challenges for the entire food industry, as legislation is enacted. [0 0 2 4]
日本の料理は始めに出汁を取り、 調理することが伝統的な方法である。 The traditional way to cook Japanese food is to take the broth first and cook it.
昆布だしゃ鰹の出汁が和風料理の基本である。 昆布だしを取り出すには低温で 1 0時間以 上低温で寝かせて抽出することが長年引き継がれた技法となっている。 昆布を始め海草類 にはカルシウムの含有量が多く、 古くから低温で時間をかけて出汁を取る方法が基本にな つている。 The soup stock of kelp dasha mochi is the basis of Japanese cuisine. To extract kelp stock, it has been a technique that has been inherited for many years. Seaweeds, including kelp, have a high calcium content, and since ancient times, the basic method was to take the soup stock over time at low temperatures. It is.
昆布を始め海草類、 鰹節にはカルシウムと豊富なアミノ酸が含まれており、 多くのァミノ 酸類が味覚の中心になっている。 Seaweed including kelp, bonito contains calcium and abundant amino acids, and many amino acids are the center of taste.
昆布及び海草類、 鰹節の出汁を抽出するときの最適波長の範囲は、 2 . 5 ju n!〜 6 0 JU IIL であり、 抽出最適温度は 5 0 °C〜7 5 °Cこの範囲で、 波長密度をあげて波長振動を与える と短時間に味覚の優れた出汁が抽出できる。 このときの磁性体は 0 0 2 1からキュリー温 度 2◦ 0 °C以下を選択する。 The optimal wavelength range for extracting kelp, seaweed and bonito stock is 2.5 ju n! The optimal extraction temperature is between 50 ° C and 75 ° C. When the wavelength density is increased and wavelength oscillation is applied, soup stock with excellent taste can be extracted in a short time. The magnetic material at this time is selected from 0 0 2 1 to a Curie temperature of 2 ° 0 ° C or lower.
大きな釜や容器のなかで出汁が短時間に抽出できる。 The stock can be extracted in a short time in a large pot or container.
【0 0 2 5】  [0 0 2 5]
牛骨、 鳥骨、 豚骨のなかにある成分エキスは、 ラーメンの出汁、 惣菜の出汁として利用さ れている。 骨類はカルシウムが被われており、 長時間低温加熱しなければカルシウム内部 のエキスが抽出できない難点があり、 多くの場合は 8時間から 2 4時間も連続し加熱し、 加熱している間は、 抽出物から出る、 あく取りを人手で続けており、 機械化が困難な作業 の一つになっていた。 Ingredient extracts in beef bones, bird bones, and pork bones are used as ramen noodles and side dishes. Bones are covered with calcium, and there is a problem that the extract inside the calcium cannot be extracted unless it is heated at low temperature for a long time. In many cases, it is continuously heated for 8 to 24 hours, and while it is heated, It was one of the difficult tasks to mechanize, because the extraction from the extract was continued manually.
水の吸収波長から有機物の吸収波長及びカルシウムの吸収波長に合わせて、 磁性体のキュ リー温度 8 0 °C〜2 5 0 °Cのなかで照射する波長の領域 2 . 5 /ζ π!〜 6 0 /z mの範囲の波 長密度を上げて短時間の 3 0分から 1時間で骨に含まれるエキスの成分を抽出できる。 加 熱によって生じるァクになる部分は 5〜1 0分程度の加熱で先に分離し浮きだし、 短時間 に除去できる。 The range of wavelengths irradiated from the water absorption wavelength to the organic absorption wavelength and calcium absorption wavelength within the Curie temperature of 80 ° C to 2550 ° C of the magnetic material 2.5 / ζ π! By increasing the wavelength density in the range of ~ 60 / zm, extract components contained in bone can be extracted in 30 minutes to 1 hour in a short time. The portion that becomes a crack caused by heating is separated and floated first by heating for about 5 to 10 minutes, and can be removed in a short time.
抽出時の最適温度は 6 0 °C〜8 0 °Cである。 The optimum temperature during extraction is 60 ° C to 80 ° C.
このときの磁性体は、 0 0 2 1の磁性体を選択し利用すると波長振動によって抽出が短時 間にできる。 In this case, when a magnetic substance of 0 21 is selected and used, extraction can be performed in a short time by wavelength oscillation.
【0 0 2 6】  [0 0 2 6]
鶏冠、 軟骨、 鮫の軟骨、 鶏骨、 蟹の甲羅の内部にあるタンパク質原料、 ムコ多糖原料を抽 出するには、 これまで、 酵素を利用し、 タンパク質、 ムコ多糖類の分解又は、 加圧し、 了 ルコールを含有させ、 分離、 抽出されていた。 酵素分解には時間が必用であり、 加圧下の 中でアルコールによる抽出では、 加圧の設備の費用と粉砕加工が必要であり、 分離には遠 心分離方式が採られている。 In order to extract protein raw materials and mucopolysaccharide raw materials inside the chicken crown, cartilage, salmon cartilage, chicken bone, and salmon shell, enzymes have been used so far to decompose or pressurize proteins and mucopolysaccharides. It was separated and extracted by containing alcohol. Enzymatic degradation requires time. Extraction with alcohol under pressure requires the cost of pressurization equipment and pulverization, and the separation method uses the centrifugal separation method.
マイクロ波の波長を磁性体によって波長転換し、 波長の領域 2 . 5 B!〜 6 0 /z m加熱温 度 6 0 °C〜 1 0 0 °Cの間で波長の密度上げて加熱すると加熱時間 1◦分〜 5 0分の短時間 に分解、 抽出が出来る。 このときに使用する磁性体は、 0 0 2 1からキュリー温度、 1 0 0 °C〜2 5 0 °Cの中で波長の領域 2 . 5 m〜6 0 /x mを選択する。 The wavelength of microwave is converted by a magnetic material, and the wavelength range is 2.5 B! Up to 60 / z m Heating temperature When the wavelength density is increased between 60 ° C and 100 ° C and heating is performed, decomposition and extraction can be performed in a short time of 1 to 50 minutes. The magnetic material used at this time is selected from a wavelength range of 2.5 m to 60 / xm within a Curie temperature range of 100 ° C. to 25 ° C. from 0 0 21.
【0 0 2 7】  [0 0 2 7]
組成に含まれている成分を抽出又は分離するときは、 粉体加工の状態にしたり、 液状の状 態にするために加水又はエチルアルコールを添加し抽出されている。 組成から抽出する物 質の構成している物質が有する吸収波長に整合する波長の領域とその密度を高くして加水 せずに直接、 一定の温度で波長密度を高めて波長振動させると、 組成内部に含まれている 組成が分離し、 抽出する事ができる。 加水する水分を加熱するエネルギーが軽減でき省ェ ネルギ一の抽出ができる。 When the components contained in the composition are extracted or separated, they are extracted by adding water or ethyl alcohol to obtain a powder processing state or a liquid state. When the wavelength region that matches the absorption wavelength of the substance constituting the substance extracted from the composition and the density is increased and the wavelength is vibrated directly at a certain temperature without adding water, the composition is The composition contained inside can be separated and extracted. Energy to heat the water to be hydrated can be reduced, and energy saving can be extracted.
【0 0 2 8】 ホタテ貝、 アコャ貝、 牡蛎などの養殖場では、 貝殻の処理は粉砕処理に多くの費用を必要 としている。 これら貝殻はカルシウムと同じ波長が吸収波長であり、 波長の領域 3 0 μ ηι 〜6 0 /z m、 温度 1 0 0〜 2 0 0 °Cを照射すると組成が変化し短時間に容易に粉砕分解が できる。 [0 0 2 8] In farms such as scallops, pearl oysters, and oysters, the processing of shells requires a lot of cost for grinding. These shells have the same absorption wavelength as calcium, and the composition changes when irradiated with a wavelength range of 30 μηι to 60 / zm and a temperature of 100 to 200 ° C. Is possible.
カルシウム素材、 カルシウム原料の粉体加工が簡素化できる。 Calcium powder and calcium powder processing can be simplified.
【0 0 2 9】  [0 0 2 9]
エチルアルコールによる抽出は多くの物質で行われている。 エチルアルコールによる抽出 後にエチルアルコールを分離することが多く、 分離は気化されることが一般的である。 抽 出した物質がエチルアルコールの沸点よりも高い組成の時、エチルアルコールの沸点温度、 7 8 . 3 2 °Cであり、 エチルアルコールの沸点温度のなかで、 吸収波数 1 0 8 0〜 1 0 5 0 V / c m— 1の領域とその密度を上げると簡便にアルコールが気化し、 抽出する物質と分 離することができる。 ェチノレアルコールが気化するのに効果的な磁性体はマンガンフェラ ィ ト、 マンガン亜鉛フェライト、 ニッケルフェライト、 マンガンニッケルフェライ トなど でこのときのキュリー温度は 1 0 0 ° (〜 2 0 0 °Cの間で選択すると温度の制御が簡便であ る。 Extraction with ethyl alcohol is performed on many substances. In many cases, ethyl alcohol is separated after extraction with ethyl alcohol, and the separation is generally vaporized. When the extracted substance has a composition higher than the boiling point of ethyl alcohol, the boiling point temperature of ethyl alcohol is 78.3 2 ° C. Among the boiling points of ethyl alcohol, the absorption wave number is 10 8 0 to 1 0. Increasing the 50 V / cm— 1 region and its density makes it easy to vaporize the alcohol and separate it from the substance to be extracted. The effective magnetic materials for vaporizing ethynole alcohol are manganese ferrite, manganese zinc ferrite, nickel ferrite, manganese nickel ferrite, etc., and the Curie temperature at this time is 10 0 ° (~ 2 0 0 ° C) The temperature can be easily controlled by selecting between the two.
溶剤として利用されているァセトンの沸点は 5 6 . 5 °C吸収波数は 1 4 5 0 v / c m一1 エチルアルコールと類似した位置にあり同様の方法によって気化できる。 Boiling point of Aseton which is used as solvent 5 6. 5 ° C absorption wave can be vaporized in the same manner is in the 1 4 5 0 v / cm one 1 ethyl alcohol and similar locations.
【0 0 3 0】  [0 0 3 0]
冷凍品を解凍するとき、 冷凍品の外部から熱を加え解凍する、 そのために内部と外部の温 度格差が生じ、 品質が低下することが多い。 これまで內部と外部を同時に解凍することは 困難となっていた。 マイクロ波を照射して冷凍肉を解凍する方法の多くは、 失敗し最近で は見られない。 When thawing a frozen product, heat is applied from the outside of the frozen product to defrost it. This often causes a temperature difference between the inside and outside, resulting in poor quality. Until now, it has been difficult to thaw the buttocks and the outside at the same time. Many methods of thawing frozen meat by microwave irradiation have failed and have not been seen recently.
失敗の原因は部分的に高温なり解凍ムラが多くなり、 商品価値を失つていた。 The cause of the failure was partly high temperature, increased thawing unevenness, and lost commercial value.
冷凍マグロの解凍はマイク o波は利用されていない。 Microphones are not used to thaw frozen tuna.
冷凍の大きな塊を製造するときに、 磁性体の球又は磁性体の半円球を冷凍品の内部に埋め 込み冷凍し、 解凍の時に磁性体の容器の外部からマイクロ波を照射するとマイクロ波は容 器の磁性体によって赤外線、 遠赤外線の波長に転換し、 熱輻射する。 このとき容器の磁性 体の磁化よりも冷凍品の内部に揷入している磁性体の磁化が高くなる構造にすると容器の 磁性体から転換した波長は、 磁化の強い場所に吸収され、 熱輻射し、 冷凍費の内部から解 凍が始まる。 このとき内部の磁性体が一定温度になると自動的に容器の内部の磁性体から 熱輻射が始まり全体に解凍される。 When a frozen large lump is produced, a magnetic sphere or a semi-spherical sphere is embedded in the frozen product and frozen, and when thawing, microwaves are irradiated from the outside of the magnetic container. It is converted into infrared and far-infrared wavelengths by the magnetic material of the container and radiates heat. At this time, if the structure of the magnetic substance inserted into the frozen product is higher than the magnetization of the magnetic substance in the container, the wavelength converted from the magnetic substance in the container is absorbed in a strong magnetization place, and the heat radiation However, thawing starts from the inside of the freezing cost. At this time, when the internal magnetic body reaches a certain temperature, heat radiation starts automatically from the internal magnetic body of the container and is defrosted entirely.
利用する磁性体のキュリ一温度が解凍の最高温度になり、 温度の制御ができる。 冷凍品が 内部から解凍され短時間に全体に解凍が進む。 The Curie temperature of the magnetic material used becomes the maximum temperature for thawing, and the temperature can be controlled. The frozen product is thawed from the inside and thawed throughout the entire time.
冷凍品の内部に入れる磁性体の磁化が高くなる構造は、 球又は半円球の磁性体を入れてお くと渦電流損によって早く磁化が進む。 牛肉、 豚肉、 マグロ等の大きな冷凍品を短時間に 品質を損なわずに解凍することは常に課題の一つである。 In the structure where the magnetization of the magnetic material to be inserted into the frozen product is high, magnetization proceeds rapidly due to eddy current loss if a spherical or hemispherical magnetic material is inserted. Thawing large frozen products such as beef, pork and tuna in a short time without losing quality is always a challenge.
【0 0 3 1】  [0 0 3 1]
これまで熱エネルギーの赤外線、 遠赤外線の波長がトンネル効果を起こし波長が伝播する ことを利用した機器開発の事例は見られない。 To date, there have been no examples of equipment development utilizing the fact that the wavelengths of infrared and far infrared of thermal energy cause the tunnel effect and propagate.
磁性体の強磁性共鳴によって輻射する波長が、 赤外線、 遠赤外線の波長に転換し波長振動 し輻射するときに、 加熱する物質が有する吸収波長が整合し振動波長が同調しエネルギー のトンネル効果が生じる。 Wavelength radiated by ferromagnetic resonance of magnetic material is converted into infrared and far-infrared wavelengths and wavelength oscillation When radiated, the absorption wavelength of the heated material is matched and the oscillation wavelength is tuned, resulting in the energy tunneling effect.
この実証のために以下の実験をおこなった。 The following experiment was conducted for this demonstration.
電子レンジ、 0 . 5 k wを利用し、 磁性体はマンガン亜鉛フェライト、 キュリー温度は 2 0 0 °C、 平均粒子 1 0 μ ιηの粒子に加工した。 容器は耐熱性の陶磁器を利用し、 陶磁器の 平均の厚さは、 5 mm、 容器は蓋の部分と容器に分かれ、 容器の内側に磁性体を厚さ平均 2 0 μ mで燒結した。 他に利用する容器は耐熱性のセラミックコップ、 耐熱紙コップ、 P P樹脂の容器で試みた。 Using a microwave oven of 0.5 kW, the magnetic material was manganese zinc ferrite, the Curie temperature was 20 ° C., and the average particle size was 10 μ ιη. The container was made of heat-resistant ceramic, the average thickness of the ceramic was 5 mm, the container was divided into a lid part and a container, and the magnetic material was sintered inside the container with an average thickness of 20 μm. Other containers used were heat-resistant ceramic cups, heat-resistant paper cups, and PP resin containers.
磁性体の容器にマイクロ波を照射し加熱するときに、 磁性体を燒結した容器の内部に耐熱 性のセラミックの容器ゃテフ口ン加工等の耐熱容器、 P P榭脂の耐熱容器、 耐熱の紙容器 を入れ容器の内部にいれて加熱すると始めに磁性体の容器の内部が高い温度に変化する。 次ぎに耐熱容器の内部食品を入れて加熱すると食品だけが早く温度上昇が見られた。 耐熱容器にいれた食品が始めに温度が上昇し、 物質の熱吸収が進み、 高温になると耐熱容 器全体に温度が高くなり、 耐熱容器全体が高温になって、 始めに磁性体の熱輻射している 内部の温度が高くなり、 磁性体の容器全体の温度が高くなつた。 When a magnetic container is heated by irradiating it with microwaves, a heat-resistant ceramic container inside the container sintered with a magnetic substance is used as a heat-resistant container such as PTFE, PP heat-resistant container, heat-resistant paper When the container is put in the container and heated, the inside of the magnetic container first changes to a high temperature. Next, when the food inside the heat-resistant container was put in and heated, only the food showed a rapid temperature rise. The temperature of the food in the heat-resistant container first rises, the heat absorption of the substance proceeds, and when the temperature rises, the temperature of the entire heat-resistant container increases, and the temperature of the entire heat-resistant container becomes high. The internal temperature has increased, and the temperature of the entire magnetic container has increased.
次ぎに磁性体の容器の内部に、 もう少し小さな磁性体の容器を入れ、 その中に耐熱容器を 入れ耐熱容器の内部に加熱する食品を入れ、 磁性体容器の外部から、 マイク口波を照射し 加熱すると温度の上昇は耐熱容器の食品が始めに高温になり、 次ぎに中の小さな耐熱容器 が高い温度なり、 耐熱容器が高温になって始めて内部に入れている小さな磁性体容器の内 面温度が高くなる。 このときに外部の磁性体の容器の內面は温度上昇は少なく、 熱輻射が 少なく外部に熱輻射がなく、 むしろ断熱効果の役割が見られる。 小さな磁性体が高温にな り、 始めて外部の磁性体容器が高い温度に変化した。 Next, put a little smaller magnetic container inside the magnetic container, put a heat resistant container in it, put food to heat inside the heat resistant container, and irradiate the microphone mouth wave from the outside of the magnetic container When heated, the temperature rises first in the food in the heat-resistant container, then the temperature in the small heat-resistant container inside becomes high, and the internal temperature of the small magnetic container that is put inside when the heat-resistant container becomes high in temperature. Becomes higher. At this time, the temperature of the outer surface of the external magnetic material container is small, there is little heat radiation, there is no heat radiation outside, and rather a role of heat insulation effect is seen. The small magnetic material became hot, and for the first time, the external magnetic container changed to a high temperature.
従来外部から加熱する方法では、 外部の容器が高い温度なり始めて内部に熱伝尊が見られ るがマイクロ波を利用した強磁性体の加熱では、 加熱する物質の熱吸収波長と磁性体がマ イク口波によって熱輻射する波長が整合していると内部から温度が上昇し、 内部の物質の 熱吸収力が低下して始めて内部の磁性体の容器の温度が高くなり、 内部の磁性体容器が高 くなると始めて、 外部の磁性体容器の温度上昇が始まる。 従来の熱エネルギー伝達の法則 とは異なった、 エネルギー効果が見られる。 In the conventional method of heating from the outside, the temperature of the external container begins to become high and heat transfer is observed inside. However, when heating a ferromagnetic material using microwaves, the heat absorption wavelength of the material to be heated and the magnetic material are mixed. When the wavelength of heat radiated by the mouth wave is matched, the temperature rises from the inside, and the temperature of the internal magnetic container rises only when the heat absorption capacity of the internal substance decreases, and the internal magnetic container The temperature of the external magnetic container begins to rise only when it becomes higher. The energy effect is different from the conventional law of heat energy transfer.
【0 0 3 2】  [0 0 3 2]
0 0 3 1の容器を利用し、 磁性体を燒結した陶磁器の内部に紙コップにポタージュスープ を入れ、 電子レンジのマイクロ波による加熱を行った。 このときに利用した磁性体はキュ リー温度 2 0 0 °C、 のマンガンフヱライトを利用した。 マイクロ波加熱による波長の転換 によって熱輻射する波長の領域及びそのピークを 2 . 5 z m〜2 0 z mで波長で設定した。 紙コップに入れたポタージュスープは 1 ◦ 0 g、 温度 1 5 °Cの状態で、 0 . 7 k wの出力 で 1 2 0秒加熱するとポタージュスープの温度は 6 8 tになり、 磁性体容器の温度は 1 6 °Cから 2 6 °Cの状態であった。 このことから熱輻射された波長は、 紙コップを透過し、 中 のポタージュスープが吸収していることを示している。  Using the container of 0 0 3 1, potage soup was placed in a paper cup inside the ceramics sintered with magnetic material, and heated by microwaves in a microwave oven. The magnetic material used at this time was manganese ferrite with a Curie temperature of 200 ° C. The wavelength range of heat radiation and its peak were set in the wavelength range from 2.5 zm to 20 zm by changing the wavelength by microwave heating. The potage soup in a paper cup is 1 ◦ 0 g at a temperature of 15 ° C, heated at 0.7 kw for 120 seconds, and the potage soup temperature is 68 tons. The temperature was between 16 ° C and 26 ° C. This indicates that the heat-radiated wavelength passes through the paper cup and is absorbed by the potage soup inside.
ポタージュスープの組成はタンパク質、糖質、脂質、炭水化物、水分がおもな構成である。 タンパク質、 糖質、 脂質、 炭水化物、 水分が有する主な吸収波長の領域は、 2 . 5 m - 2 0 μ πιであり、 磁性体が熱輻射する波長の領域と整合している。 従来の外部から加熱する熱力学の法則では、 加熱する物質の中心部分から熱吸収し温度が 高くなることはなく、 磁性体の波長を加熱する物質が有する吸収波長に整合させ、 波長密 度を高くすると吸収共鳴によって内部から加熱することが証明できた。 The composition of potage soup is mainly composed of protein, carbohydrates, lipids, carbohydrates and moisture. Proteins, carbohydrates, lipids, carbohydrates, and water have a major absorption wavelength range of 2.5 m-20 μ πι, which is consistent with the wavelength range of heat radiation by magnetic materials. The conventional law of thermodynamics that heats from outside does not increase the temperature by absorbing heat from the central part of the material to be heated, but matches the wavelength of the magnetic material with the absorption wavelength of the material to be heated, and adjusts the wavelength density. It was proved that the heat was increased from the inside by absorption resonance when the value was increased.
エネルギーのトンネノレ効果を示している。 It shows the tunnel effect of energy.
次ぎに冷凍の米飯の解凍状態を確認した。 冷凍米飯は P P樹脂の耐寒グレードで製造され ており、 その中に寿司用のシャリを入れ冷凍されている。 シャリは一 2 0 °C、 1ケ 2 5 g が 1 0ケを磁性体の容器の中に入れ 1 8 0秒電子レンジで加熱した、 全体に満遍なく解凍 されており、温度は 1 5 で解凍されていた。このとき P P榭脂の変質は見られなかった。 冷凍のシャリの上に冷凍の鯛、 イカ、 ハマチのにぎり寿司用のシャリに乗せ、 その上にァ ルミを紙コートされたシートを掛け、 寿司シャリ 1 0ケは、 P P樹脂の状態で同じ磁性体 容器に入れ、 電子レンジで 1 8 0秒加熱した。 その結果寿司シャリは 1 5 °Cで解凍されて おり、 寿司ネタは◦ °Cの状態であつた。 Next, the frozen thawed rice was confirmed. Frozen cooked rice is made of PP resin with a cold-resistant grade, and sushi shari is put in it and frozen. Shari is 20 ° C, 1 25 5 g is 10 in a magnetic container, heated in a microwave oven for 180 seconds, and thawed evenly throughout, thawing at 15 It had been. At this time, no alteration of PP resin was observed. Put frozen salmon, squid, hamachi nigiri nigiri sushi on frozen shari, and hang sushi on paper-coated sheet. It was put in a body container and heated in a microwave oven for 180 seconds. As a result, the sushi was thawed at 15 ° C, and the sushi material was at ◦ ° C.
冷凍品なども包装によつて温度格差のある解凍が可能である。 Frozen products can also be thawed with temperature differences depending on the packaging.
食品解凍や解凍品の部分的解凍など広く、 トンネル効果が利用できる。 The tunnel effect can be used widely such as food thawing and partial thawing of thawing products.
【0 0 3 3】  [0 0 3 3]
0 0 3 1の磁性体容器の実験では、 磁性体はマンガン亜鉛フェライト、 キュリー温度 2 0 0 °Cを利用し、 2種類の小さい容器を內部に入れ、 電子レンジのマイクロ波によって加熱 した。 一つの小さな容器は別にキュリー温度を 2 5 0 °Cのマンガン亜鉛フェライト、 もう 一つは外部の容器と同じマンガン亜鉛フェライト、 キュリー温度 2 0 0 °Cを利用した。 二 つの小さな磁性体の容器は同じ陶磁器で同じ形状で作り、 內部に燒結した磁性体のキュリ 一温度は 2 5 0 °Cと 2 0 0 °Cを利用した。 キュリ一温度 2 0 0 °Cの磁性体を燒結した大き な陶磁器の中に同時に異なつた磁性体の小さな容器を入れ加熱すると、 小さな容器はキュ リー温度 2 5 0 °Cの磁性体を燒結した容器が先に温度の上昇がみられ、 小さな容器の温度 上昇が緩やかになると次ぎにキュリ一温度 2 0 0 °Cの小さな容器の温度上昇を始め、 次ぎ に外部の容器の温度の上昇が見られた。 同一容器の内部で異なった温度帯や磁化を持つ磁 性体の容器を入れると異なった温度上昇を示す。  In the experiment of the magnetic container of 0 0 31, manganese zinc ferrite was used as the magnetic substance, and Curie temperature was 200 ° C. Two kinds of small containers were put in the buttock and heated by microwaves in a microwave oven. One small container used another manganese zinc ferrite with a Curie temperature of 25 ° C., and the other used the same manganese zinc ferrite with a Curie temperature of 200 ° C. as the outer container. Two small magnetic containers were made of the same pottery with the same shape, and the curative temperatures of the magnetic bodies sintered in the buttock were 2500 ° C and 2200 ° C. When a small container made of different magnetic materials was placed in a large ceramic ceramic with a Curie temperature of 20 ° C sintered at the same time, the small container sintered the magnetic material with a Curie temperature of 25 ° C. When the temperature of the container rises first, and the temperature rise of the small container slows down, the temperature of the small container starts at the Curie temperature of 200 ° C, and then the temperature of the external container rises. It was. When a magnetic container with different temperature zones and magnetizations is placed inside the same container, the temperature rises differently.
【0 0 3 4】  [0 0 3 4]
0 0 3 1、 0 0 3 2 , 0 0 3 3の現象は、 強磁性体の磁性共鳴と熱吸収波長の整合性から 生じ、 強磁性体にマイクロ波を照射すると黒体輻射が示す波長密度を超えて波長密度が高 くなる。 波長密度が高い状態で波長が振動し輻射するとき加熱する物質の吸収波長の領域 が整合すると輻射する波長振動と吸収の間で波長が同調し、 エネルギーのトンネル効果が 示された。  The phenomenon of 0 0 31, 0 0 3 2, 0 0 3 3 is caused by the consistency between the magnetic resonance of the ferromagnet and the heat absorption wavelength. When the ferromagnet is irradiated with microwaves, the wavelength density exhibited by blackbody radiation The wavelength density increases beyond this range. When the wavelength of the material to be heated oscillates and radiates in a state where the wavelength density is high, the wavelength is tuned between the radiated wavelength oscillation and absorption, indicating the energy tunneling effect.
外部から熱を加えて加熱する方法が従来から広く産業界に利用されているが、 物質や素林 を加熱するために容器の外部から熱を加え、 雰囲気環境全体の温度が高くなり、 周辺に熱 放射されるエネルギーが大きくなつている。 周辺に熱放射される熱エネルギーの全てが無 駄なエネルギーである。 周辺に輻射し拡散しているエネルギーが実質加熱に必要なェネル ギーを越えていることが多く、 エネルギーのトンネル現象を利用し加熱すると省エネルギ 一効果は大きい。 The method of heating by applying heat from the outside has been widely used in the industry for a long time, but heat from outside the container to heat the material and bare forest increases the temperature of the entire atmosphere environment, Heat The energy radiated is growing. All of the heat energy radiated to the surroundings is useless energy. The energy radiated and diffused in the vicinity often exceeds the energy required for substantial heating, and heating using the tunneling phenomenon of energy has a significant energy saving effect.
化学合成、 化学分解、 融合、 重合、 榭脂成形、 化学繊維加工、 金属結晶、 金属合成、 食品 加工等全てが外部加熱であり、 無駄なエネルギーを拡散している。 マイクロ波を磁性体の外部から照射し、 磁性体の內部に別途の容器に加熱する物質を閉じ こめられた状態におき、 容器の構造は加熱する物質が有する吸収波長を透過する素材又は 類似した吸収波長を有する素材で構成し、 磁性体が熱輻射する波長の鎮域と加熱する物質 の吸収する波長の領域を整合させるとエネルギーのトンネノレ効果が生じ、 加熱する物質が 始めに加熱される。 加熱する温度の制御は磁性体のキュリー温度によって、 制御できる。 磁性体の波長の領域とそのピークは磁性体組成によつて選択できる。 加熱によって酸化又 は酸素による組成が変化を避ける場合は、 磁性体を 2柔構造にして、 加熱する物質と容器 の空間又は磁性体と磁性体の空間に窒素ガスやアルゴンガスを充填し加熱すると赤外線、 遠赤外線は窒素やアルゴンガスを透過し無酸素の状態で加熱できる。 加熱する温度の制御 は窒素ガス、 アルゴンガスの温度によって調整が出来る。 全ての製品は精度及び純度が求 められている。 外部加熱では雰囲気温度よつて製品が作られているが、 吸収波長と最適温 度を設定し振動波長によって同調し、 トンネル効果によつて製品が作られると全ての製品 は、 初期の素材の配合パランスによって、 精度、 純度の高い製品が作られる。 Chemical synthesis, chemical decomposition, fusion, polymerization, resin molding, chemical fiber processing, metal crystals, metal synthesis, food processing, etc. are all external heating, and useless energy is diffused. Microwaves are irradiated from the outside of the magnetic material, and a substance to be heated in a separate container is confined to the collar of the magnetic material, and the structure of the container is a material that transmits the absorption wavelength of the material to be heated or similar. Composed of a material having an absorption wavelength, and aligning the wavelength range where the magnetic material radiates heat with the wavelength range absorbed by the substance to be heated, an energy tunnel effect occurs, and the substance to be heated is heated first. The heating temperature can be controlled by the Curie temperature of the magnetic material. The wavelength region of the magnetic material and its peak can be selected according to the magnetic material composition. To avoid changes in the composition due to oxidation or oxygen due to heating, make the magnetic body a double-soft structure, fill the space between the substance to be heated and the container, or the space between the magnetic body and the magnetic body with nitrogen gas or argon gas, and heat it. Infrared and far-infrared light can be heated in anoxic state through nitrogen and argon gas. Control of the heating temperature can be adjusted by the temperature of nitrogen gas and argon gas. All products require accuracy and purity. In external heating, products are made according to the ambient temperature, but when the absorption wavelength and optimum temperature are set and tuned by the vibration wavelength, and products are made by the tunnel effect, all products are mixed with the initial ingredients. A product with high accuracy and purity is created by the balance.
【発明の開示】  DISCLOSURE OF THE INVENTION
【0 0 3 5】  [0 0 3 5]
【発明の解決しょうとする課題】  [Problems to be solved by the invention]
電子レンジを利用し、 磁性体を陶磁器に塗布し燒結した調理器具を使用するとき、 その陶 磁器の形状、 高さ、 大きさによって、 加熱される温度のむらが生じ、 一定ではない。 調理する目的に応じて、 中心部や局部から集中的に加熱調理されると、 美味しくでき短時 間に効率的な調理ができる。 When using a cooking utensil made by applying a magnetic material to ceramics using a microwave oven, the temperature, temperature, and unevenness of the ceramics will vary depending on the shape, height, and size of the ceramics. Depending on the purpose of cooking, if it is cooked intensively from the center or local area, it will be delicious and efficient cooking will be possible in a short time.
陶磁器内部に同一磁性体組成から作られた球又は半円球、 円筒形をいれると球や半円形、 円筒形に早く磁化が強くなり、 球や半円球、 円筒形の場所に渦電流損が生じ、 電磁波が吸 収され、 その位置から温度が高くなる。 このとき球や半円形の磁性体は半径が小さいほど 渦電流損が早く生じ、 早い温度上昇を示す。 If a sphere, semicircle, or cylinder made of the same magnetic composition is put inside the ceramic, the magnetization becomes fast and strong in the sphere, semicircle, or cylinder, and eddy current loss occurs in the sphere, semicircle, or cylinder. Occurs, electromagnetic waves are absorbed, and the temperature rises from that position. At this time, spheres and semicircular magnetic materials have earlier eddy current losses as the radius is smaller, and the temperature rises faster.
磁性体を陶磁器の内部全体に焼結した調理器具を電子レンジによってマイクロ波で加熱す ると、 マイクロ波によって磁性体が磁化し、 陶磁器の内部全体に一様に磁場が生じる。 そ の中に、 球、 半球型又は円筒形の陶磁器に磁性体を表に一様に塗布し、 焼結加工し、 陶磁 器の容器の内部に入れてマイク口波を照射し加熱すると一様な磁場によつて磁性が誘導さ れ、 始めに、 球又は半円球、 円筒形の位置が強磁場となり温度の上昇が早くなり、 キユリ 一温度まで上昇し、 球又は半円球の位置がキュリ一温度に到達すると陶磁器の容器の內部 に燒結した磁性体の温度が高くなる。 このとき球又は凹面半円球は凹レンズ反射と同じ內 面に熱放射し、 凸面の半円球は外部に向かって熱輻射する。 球や半円球、 円筒形の磁性体 が持つキュリー温度を加熱に最適な温度として設定するとその温度によって制御できる。 複数の球又は凹面の半円形の磁性体を複数配列すると容器全体の表面積が大きくなり、 早 い温度上昇を示す。 When a cooking utensil in which a magnetic material is sintered throughout the interior of a ceramic is heated by a microwave in a microwave, the magnetic material is magnetized by the microwave and a magnetic field is uniformly generated throughout the interior of the ceramic. The magnetic material is evenly applied to the surface of a spherical, hemispherical or cylindrical ceramic, sintered, and placed inside the ceramic container. The magnetic field is induced by a strong magnetic field. First, the position of the sphere, hemisphere, or cylinder becomes a strong magnetic field, and the temperature rises quickly. The temperature rises to a single temperature, and the position of the sphere or hemisphere changes. When the Curie temperature is reached, the temperature of the magnetic material sintered in the buttock of the ceramic container increases. At this time, the sphere or concave hemisphere radiates heat to the same surface as the concave lens reflection, and the convex hemisphere radiates heat outward. If the Curie temperature of a sphere, hemisphere, or cylindrical magnetic material is set as the optimum temperature for heating, the temperature can be controlled. When multiple spheres or concave semicircular magnetic bodies are arranged, the surface area of the entire container increases, and the temperature rises quickly.
球形や凹凸のある多くの物質を同時に加熱するときは球又は半円形の構造を物質との間に 設置すると均一な温度の加熱が可能になる。 When heating many materials with a spherical shape or irregularities at the same time, a uniform temperature can be heated by placing a spherical or semicircular structure between the materials.
【0 0 3 6】  [0 0 3 6]
同一磁性体を利用し、 同一容積の容器のなかにおいても、 その内部に凹面の構造を多く設 けると発熱する表面積が大きいなる。 熱輻射する面積が大きいほど、 熱効率は高くなる。 同一容器の內部に小さな凹面半円形の構造を魚鱗状に全体に配列するとそれぞれの凹面の 半円形の場所で磁性が強くなり、 渦電流損による加熱が生じ熱輻射する表面積が大きくな り、 電子スピンによる共鳴によって磁気共鳴の加熱と相乗効果によって早い温度の上昇が 生じる。 Even in a container having the same volume using the same magnetic material, the surface area that generates heat increases if a large number of concave structures are provided inside the container. The larger the area that radiates heat, the higher the thermal efficiency. If a small concave semicircular structure is arranged in a fish scale like shape on the buttock of the same container, the magnetism becomes stronger in the semicircular location of each concave surface, heating due to eddy current loss occurs and the surface area for heat radiation increases, and the electron Spin resonance causes a rapid rise in temperature due to magnetic resonance heating and synergistic effects.
【0 0 3 7】  [0 0 3 7]
電子レンジなどの容器の中でマイクロ波を磁性体に吸収させ加熱する方法を用いるとマイ クロ波の電波漏れが生じない。 マイクロ波が全て磁性体に吸収されるためである。 マイク 口波は、 強磁性に吸収され、 波長の転換から熱輻射する。 Microwave leakage does not occur if microwaves are absorbed into a magnetic material and heated in a container such as a microwave oven. This is because all the microwaves are absorbed by the magnetic material. The microphone mouth wave is absorbed by ferromagnetism and radiates heat from the wavelength change.
電子レンジに磁性体を燒結した陶磁器で加熱調理すると連続し 2時間以上加熱しても電子 レンジのマグネト口ンが加熱され電源が遮断することが見られない。 When cooking in a ceramic oven with a magnetic material sintered in a microwave oven, even if it is heated continuously for more than 2 hours, the microwave oven of the microwave oven is heated and the power supply is not cut off.
従来の石英ガラスに調理品を入れそのまま電子レンジで加熱すると早!/、場合は 2 0分間程 度の連続使用で、 電子レンジが高温になり、 自動的に電源が遮断される。 この現象は、 鼋 子レンジ全体が高温になり、 マグネトロンに負荷を掛けていることを示している。 Put the cooked food in the conventional quartz glass and heat it as it is in the microwave! In the case of /, continuous use for about 20 minutes causes the microwave to become hot and the power is automatically shut off. This phenomenon indicates that the entire insulator range is hot and is loading the magnetron.
強磁場にマイク口波を照射し加熱する方法では連続して利用してもマグネトロンに負荷が 掛からず、 電子レンジを利用した熱効率の高さを示している。 In the method of heating by irradiating a strong magnetic field with a microphone mouth wave, the magnetron is not loaded even if it is used continuously, indicating high thermal efficiency using a microwave oven.
【0 0 3 8】  [0 0 3 8]
マイクロ波は、 現在日本では、 許認可によって利用できる波長の範囲は限られている。 そ の波長は 2 . 4 5 G H Zである。 波長の長さは約 1 0 c mである。 The range of wavelengths that microwaves can be used in Japan is currently limited by licensing. Its wavelength is 2.45 GHz. The length of the wavelength is about 10 cm.
マイクロ波の波長の長さや波数の違 ヽと磁性体の組成の違 、によって、 波長転換から生じ る波長の領域を確認する実験が民間では出来ない欠点がある。 Due to the difference in the length and wavenumber of the microwave and the composition of the magnetic material, there is a drawback that experiments cannot be conducted in the private sector to confirm the wavelength range resulting from wavelength conversion.
次ぎに磁性体が波長転換したときに派生する波長の密度を計測する機器も存在していな い。 加熱した物質の変化によって、 判断する以外方法がない。 Next, there is no device that measures the density of the wavelength derived when the wavelength of a magnetic material changes. There is no other way than to judge by the change of the heated material.
マイクロ波はマグネトロンから発振しアルミ製の導波管によって誘導でき、 電波の漏洩な く、 ロスなく誘導出来る。 Microwaves oscillate from a magnetron and can be guided by aluminum waveguides, and can be guided without loss without leakage of radio waves.
マイクロ波は、 導波管の外部に強磁性を加えると影響され波動が変わる。 磁性のある素材 間では強磁性に吸引される。 磁性体に吸収されると波長が転換し、 赤外線、 遠赤外線熱の 波長に転換する。 このとき放射する熱波長の温度は磁性体のキュリ一温度が最高温度にな る。 波長の領域と最高密度を示す位置は、 磁性体の組成によって変化する。 波長の密度は マグネト口ンに加わる出力が大きくなると平行し大きくなり、 他に磁性体の組成が持つ電 子スピンの数が多いほど大きくなる。 Microwaves are affected and change their waves when ferromagnetism is applied to the outside of the waveguide. Between magnetic materials, it is attracted ferromagnetically. When absorbed by a magnetic material, the wavelength is changed to infrared or far-infrared heat. The temperature of the heat wavelength emitted at this time is the maximum temperature of the Curie temperature of the magnetic material. The position of the wavelength region and the highest density varies depending on the composition of the magnetic material. The density of the wavelength increases in parallel and increases as the output applied to the magneto aperture increases, and increases as the number of electron spins in the magnetic composition increases.
円筒形の長いパイプの構造全体から熱輻射を行うには、 円筒形の磁性体又は陶磁器の円筒 形のパイプの内部及び外部に磁性体を燒結し、 導波管から誘導したマイクロ波を照射し、 誘導加熱、 渦電流損による加熱、 磁性体の原子スピンによる共鳴から磁気共鳴による加熱 が得られ、 長い円筒形構造の全体から熱輻射することができる。 マイクロ波は、 パイプの 内部に照射するときは、 波長の長さ、 約 1 0 c m以上のパイプの内径にする。 In order to radiate heat from the entire structure of a long cylindrical pipe, a magnetic substance is sintered inside and outside a cylindrical magnetic substance or ceramic cylindrical pipe, and microwaves induced from a waveguide are irradiated. Induction heating, heating due to eddy current loss, and magnetic resonance heating can be obtained from resonance due to atomic spin of a magnetic material, and heat radiation can be radiated from the entire long cylindrical structure. When irradiating the inside of a pipe with a microwave, the length of the wavelength is set to the pipe inner diameter of about 10 cm or more.
円筒形のパイプの内部にマイクロ波を誘導する場合は、 誘導する反対側は、 球又は半円球 の構造の強磁性が生じる磁性体を燒結しておくとマイクロ波の波長が球又は半円球の磁性 体の磁化によって分極し渦電流が生じ磁化が高くなる。 円筒形のパイプの內部ではマイク 口波の波長は、 始めに磁化の高い球又は半円球に集中し、 温度が高くなる。 磁性体の球又 は半円球がキュリー温度に到達すると磁化が低下し円筒形の管の磁性体が順次マイクロ波 を吸収し、 全体から熱放射が始まり、 均一な温度で熱放射する。 円筒形の管の温度は磁性 体のキユリ一温度よって最高温度の制御できる。 When microwaves are induced inside a cylindrical pipe, the opposite side of the induction is a sphere or semi-circular structure. Polarization occurs due to the magnetization of the sphere's magnetic material, resulting in an eddy current that increases the magnetization. At the heel part of the cylindrical pipe, the wavelength of the microphone mouth wave first concentrates on a highly magnetized sphere or hemisphere, and the temperature rises. When the sphere or hemisphere of the magnetic material reaches the Curie temperature, the magnetization decreases and the magnetic material of the cylindrical tube sequentially becomes microwaves. The heat radiation starts from the whole and radiates at a uniform temperature. The maximum temperature of the cylindrical tube can be controlled by the temperature of the magnetic material.
円筒形のパイプに誘導されたマイクロ波の波長を波長転換しエネルギー放射の位置を決め ることができる。 パイプの長さ方向と平行に一側面から熱放射するには、 磁性体の球又は 半円球を一定の間隔でパイプに並列に並べ埋め込み設置するとその球又は半円球の並列面 に沿って熱輻射する。 パイプの表面を半円球にカツトし加工しても同じ効果がある。 球又は半円球の磁性体をパイプの表面に螺旋形に配列すると螺旋形に熱放射する。 The position of the energy radiation can be determined by changing the wavelength of the microwave induced in the cylindrical pipe. In order to radiate heat from one side parallel to the length of the pipe, magnetic spheres or hemispheres are embedded in parallel at regular intervals in parallel with the pipe and installed along the parallel surface of the spheres or hemispheres. Radiates heat. The same effect can be obtained by cutting the pipe surface into a semispherical sphere. When spherical or hemispherical magnetic materials are arranged in a spiral on the surface of the pipe, heat is radiated in a spiral.
半円球をパイプの外部向け凹面に設けるとパイプの外面に早く熱輻射し、 パイプの内面に 凹面を設けるとパイプの内面に向かって熱輻射する。 If a semispherical sphere is provided on the concave surface of the pipe, heat is radiated quickly to the outer surface of the pipe, and if a concave surface is provided on the inner surface of the pipe, heat is radiated toward the inner surface of the pipe.
【0 0 3 9】  [0 0 3 9]
0 0 3 8の構造による円筒形の管を上下、 左右に複数設置し、 その内部にベノレトコンベア 一を設け、 全体をアルミニウム素材によって被う構造にし、 ベルトコンベヤーの上に加熱 する物質を配列し、 流すと連続した加熱工程ができる。  A plurality of cylindrical pipes with the structure of 0 0 3 8 are installed on the top, bottom, left and right, a benolet conveyor is installed inside it, the whole is covered with aluminum material, and the material to be heated is arranged on the belt conveyor, When it is flowed, a continuous heating process can be performed.
マイクロ波による加熱では漏教の心配が常に生じるが、 磁性体によつて波長転換され加熱 の状態で波長は赤外線、 遠赤外線に転換されており、 開放型にしてベルトコンベヤーの出 入り口も安全な操業ができる。 Although there is always concern about leaking with microwave heating, the wavelength is converted by the magnetic material and the wavelength is converted to infrared and far-infrared in the heated state, and the entrance and exit of the belt conveyor is safe by opening it. Can operate.
アルミニウムは電磁波を反射しベルトコンベヤーに波長が収束する構造を取ると熱効率が たかくなる。 Aluminum has a high thermal efficiency when it has a structure that reflects electromagnetic waves and converges the wavelength on a belt conveyor.
加熱、 調理、 乾燥、 殺菌、 化学反応、 合成、 重合、 化学分解、 抽出、 組成の分離、 色素の 抽出、 組成の酵素失活処理、 樹脂成形、 金属合成などの連続作業を熱効率の高く効率的に 上げる技術開発。 Heating, cooking, drying, sterilization, chemical reaction, synthesis, polymerization, chemical decomposition, extraction, composition separation, pigment extraction, composition enzyme deactivation treatment, resin molding, metal synthesis, etc. Technology development.
【0 0 4 0】  [0 0 4 0]
0 0 3 8の構造において、円筒形のパイプの内部に磁性体を燒結し、融雪に利用するとき、 磁性体のキュリー温度を 1 0 0 °C〜3 0 0 °C、 マイクロ波から波長転換し放射する波長の 領域 2 · 5 /z m~ 2 0 mの範囲で波長の密度が高くなる素材、 マンガンフェライ ト、 マ ンガン亜鉛フェライト、 マンガンニッケルフヱライト等を選択する。 水が吸収する波長と 雪や氷が吸収する波長は、 同じであり、 2 . 5 /z m~ 6 . 8 /z mの間であり、 この波長を 高密度で放射すると熱吸収は早く、 早く解凍及び融雪し水に変わる。  In the structure of 0 0 3 8, when a magnetic material is sintered inside a cylindrical pipe and used for melting snow, the Curie temperature of the magnetic material is changed from 100 ° C to 300 ° C, and the wavelength is changed from microwaves In the range of the radiated wavelength 2 · 5 / zm ~ 20 m, select a material with high wavelength density, such as manganese ferrite, mangan zinc ferrite, manganese nickel ferrite. The wavelength absorbed by water is the same as that absorbed by snow and ice, and is between 2.5 / zm and 6.8 / zm. And it melts into snow and turns into water.
解凍や融雪は、 水が吸収する波長の領域に整合する波長の密度を高め、 波長の輻射温度を 火災などの危険性が解除できる温度を選択し、 設定すると効率の良い解凍及び融雪が出来 る。 積雪地域の屋根の構造は陶磁器の瓦、 亜鉛鉄板、 耐熱スレート瓦、 茅葺き、 檜皮葺き などである。これらの屋根の素材から最適温度は、 2 0 0 °C以下が火災の危険性が少ない。 設置する屋根の位置は両斜面に傾斜している場合は棟に沿つて両側に、 片屋根の場合はそ の頂点の位置の棟に沿って設置する。 屋根の多くには、 傾斜があり、 積雪は屋根の斜面に 沿って積もる。 熱放射するパイプの熱輻射する角度を屋根の傾斜に沿って平行に角度を取 ると早い融雪ができ、融雪水が流れ出すと雪は重量が增し、屋根の斜面に沿って落下する。 凹面の半円球の小さな磁性体を燒結しパイプの長さ方向に一列に配列し屋根の斜面に平行 に設置すると磁性体のパイプから屋根の斜面に平行に熱輻射し融雪される。 Thawing and melting snow increases the density of wavelengths that match the wavelength range absorbed by water, and the wavelength radiation temperature is set to a temperature that can eliminate the risk of fire and other conditions. . The roof structure in the snowy area is made of ceramic tiles, galvanized iron plates, heat-resistant slate tiles, thatched roofs, and thats. The optimum temperature for these roof materials is less than 200 ° C, which reduces the risk of fire. If the roof is inclined on both slopes, it will be installed along both sides along the ridge. If it is a single roof, it will be installed along the ridge at the apex. Many roofs have slopes, and snow is piled along the roof slopes. If the angle of heat radiation of the pipe that radiates heat is parallel to the slope of the roof, fast snow melting can be achieved, and when snow melt flows, the snow increases in weight and falls along the slope of the roof. When small concave hemispherical magnetic bodies are sintered and arranged in a line in the length direction of the pipe and installed parallel to the slope of the roof, heat is radiated from the magnetic pipe parallel to the slope of the roof and snow is melted.
隆屋根のような平面の構造では、 パイプを平行に移動し融雪する構造にする。 In a flat structure such as a raised roof, the pipes are moved in parallel to melt snow.
積雪地域は除雪後の雪の処分に多くの費用が必要であり、 水に融雪する方法が求められて いる。 Snowy areas require a lot of money to dispose of snow after snow removal, and there is a need for a method of melting snow in the water. Yes.
磁性フェライト、 陶磁器は自然環境において腐蝕劣化の影響度が少なく、 耐食性及び耐久 性に優れており、 屋外放置に対しても経年変化が少なく、 優れている。 Magnetic ferrite and ceramics are less affected by corrosion deterioration in the natural environment, and are excellent in corrosion resistance and durability.
陶磁器は衝撃に弱く、 陶磁器の外部は、 テフロン樹脂やアルミニウム素材を力パーとして 利用すると熱輻射に影響が少なく衝擊に対する強度が補強できる。 Ceramics are vulnerable to impacts, and if Teflon resin or aluminum material is used as a force par for the outside of the ceramics, there is little effect on heat radiation and the strength against impact can be reinforced.
【0 0 4 1】  [0 0 4 1]
惣菜加工、 食品加工、 炊飯などや化学合成、 重合、 乾燥、 脱気などは一定量を撹拌しなが ら力!]熱し、 加圧、 減圧する方法が多く、 釜構造の加熱システムは全て外部加熱であり、 釜 が高温になって始めて内部に熱が伝導する構造のために熱エネルギーのロスが多い。 釜構 造の中でマイクロ波を釜の内部に放射し、 波長の転換によって赤外線、 遠赤外線による加 熱が可能であれば産業界に広く応用ができる。 従来、 釜の内部に加熱する物質が入り、 そ の中に直接マイクロ波を照射するとマイクロ波の波長が直接加熱する物質に吸収されると されていた。 しかし釜の内部に強磁場が存在していると物質を透過し強磁性に波長が集ま り、 波長転換することが解った。 又マイクロ波を導波管から導き、 釜の内部を照射すると きに、 小さな扇風機で波長を撐拌すると分散する。 釜が磁性体構造で仕上がっているとマ イク口波は磁性体に引き寄せられ、 より磁場の強い位置にマイクロ波が吸収され、 波長転 換し熱輻射する。 Prepared food processing, food processing, rice cooking, chemical synthesis, polymerization, drying, and degassing, etc. are heated with stirring a certain amount!] There are many ways to heat, pressurize and depressurize, and all heating systems with a pot structure are external There is a lot of heat energy loss due to the structure in which heat is transferred to the inside only when the kettle becomes hot. If microwaves can be radiated inside the kettle structure and heated by infrared rays or far infrared rays by changing the wavelength, it can be widely applied to industry. Conventionally, it was said that a substance to be heated enters the inside of the kettle, and when microwaves are directly irradiated into the pot, the wavelength of the microwave is absorbed by the substance to be heated directly. However, it was found that when a strong magnetic field is present inside the kettle, the material is transmitted and the wavelength gathers ferromagnetically, and the wavelength is changed. Also, when the microwave is guided from the waveguide and irradiates the inside of the pot, it is dispersed by stirring the wavelength with a small fan. When the kettle is finished with a magnetic structure, the microphone mouth wave is attracted to the magnetic material, and the microwave is absorbed at a position where the magnetic field is stronger, and the wavelength is converted and heat is radiated.
加熱には、 必ず温度の制御が必要であり、 温度の制御は磁性体のキュリー温度によって安 定した制御ができる。 加熱する物質にはそれぞれ吸収波長が存在しており、 吸収波長の鎮 域から磁性体の組成を選択すると吸収波長と熱輻射する波長が同調し熱効率の高い加熱が 確立できる。 この加熱の方法では外部加熱の方法とは異なり、 周辺の環境を高温にするこ となく、 加熱する物質を中心に熱エネルギーが吸収される。 加熱から生じる周辺への熱輻 射を最低限度に抑えられ、 換気のエネルギーが大幅に軽減できる。 Heating always requires temperature control, and temperature control can be controlled stably by the Curie temperature of the magnetic material. Each substance to be heated has an absorption wavelength. When the composition of the magnetic material is selected from the range of the absorption wavelength, the absorption wavelength and the wavelength of heat radiation are synchronized, and heating with high thermal efficiency can be established. Unlike the method of external heating, this heating method absorbs thermal energy mainly in the material to be heated without raising the surrounding environment. Heat radiation to the surroundings caused by heating can be minimized, and ventilation energy can be greatly reduced.
回転釜や釜や容器は必ず開放ではなく密閉した蓋によって構成する。 マイクロ波は、 容器 の側面及び蓋の一部から導波管によつて誘導する。 Rotating kettles, kettles and containers are always made up of sealed lids rather than open. Microwaves are guided by the waveguide from the side of the container and part of the lid.
磁性体に直接マイクロ波が照射すると、 マイクロ波と磁性体の表面の電子が相互作用し、 表面の電子がはじき出され、 スパッタリングが起こる。 この現象を防止するため、 磁性体 の表面にテフロン樹脂加工をするとスパジタリング現象が予防できる。 When the magnetic material is directly irradiated with microwaves, the microwaves interact with the electrons on the surface of the magnetic material, and the electrons on the surface are ejected, causing sputtering. In order to prevent this phenomenon, if the surface of the magnetic material is treated with Teflon resin, the sparging phenomenon can be prevented.
テフロン樹脂の耐熱温度は 2 6 0 °Cであり、 磁性体を選択するときのキユリ一温度を 2 6 0 °c以下を選択するとその温度以下の熱処理ができる。 The heat-resistant temperature of Teflon resin is 2600 ° C, and if the temperature of selection when selecting a magnetic material is 2600 ° C or less, heat treatment below that temperature can be performed.
【0 0 4 2】  [0 0 4 2]
0 0 4 1の構造において、 マイクロ波の波長を直接回転釜ゃ签、 容器のなかに照射し、 磁 性体によって波長転換し、 赤外線、 遠赤外線の熱輻射によって、 容器の內部の物質を加熱 することができる。  In the structure of 0 0 4 1, the microwave wavelength is directly irradiated into the container, the wavelength is converted by the magnetic material, and the material in the container part is heated by infrared and far infrared thermal radiation. can do.
0 0 4 1の構造に 0◦ 3 5及び 0 0 3 6の構造を釜及び容器の內部に設置し、 表面積を大 きくし、 マイクロ波を照射するとスパッタリングが生じずに、 誘導加熱、 渦電流損による 加熱及び強磁場から生じる電子スピンによる共鳴によつて磁気共鳴による加熱が相乗し、 早い加熱ができる。 この構造に加圧のシステムや減圧のシステムを設置すると加圧しなが ら加熱する方法や減圧しながら加熱する方法がシステム化できる。  In the structure of 0 0 4 1, the structure of 0◦ 3 5 and 0 0 3 6 is installed in the hook of the vessel and the container, the surface area is increased, and when microwave irradiation is performed, sputtering does not occur, induction heating, eddy current loss Heating by magnetic resonance and heating by magnetic resonance synergize with the resonance caused by the electron spin generated from the strong magnetic field, and can be heated quickly. If a pressurization system or a decompression system is installed in this structure, a method of heating while applying pressure or a method of heating while reducing pressure can be systematized.
【0 0 4 3】 マイクロ波の波長を磁性素材である C a F e 4〇 C a F e 35、カルシウムフェライト、 カルシウム置換ガーネット、 に照射するとフオノンの励起、 磁性素材のマグノンの励起に よって、 カノレシゥムが吸収する波長の領域、 3 0 /χ πι~60 μ ιηの波長の密度が高く、波長 転換して輻射する。 [0 0 4 3] Irradiation of microwave wavelength C a F e 40 C a F e 3 0 5 , calcium ferrite, calcium-substituted garnet, excitation of phonon and absorption of magnetic material by excitation of magnon of magnetic material The wavelength range, 30 / χ πι ~ 60 μ ιη, has a high density of wavelengths, and radiates by changing the wavelength.
磁性体のキュリー温度を 100°C~250°Cの低温において波長の領域、 30 μ ηι〜6 O /z tnに おいて波長の密度を 1 0 - 2 (W/ c m2. m) 以上に高く輻射するとカルシウム、マグネシ ゥム又はキチン質、キトサンの分解又は合成することができる。 Region of wavelengths in the low Curie temperature 100 ° C ~ 250 ° C of the magnetic substance, 30 μ ηι~6 O / z tn 1 the density of Oite wavelength 0 - 2 (. W / cm 2 m) or more High radiation can break down or synthesize calcium, magnesium or chitin, and chitosan.
カルシウム、マグネシウム又はキチン質、キトサン類が吸収する波長の領域は 30 μ n!〜 6◦ μ m に存在しピークは 5 0 μ ηιの前後にある。 The range of wavelengths absorbed by calcium, magnesium or chitin, and chitosans is 30 μn! It exists at ~ 6 ° μm, and the peak is around 50 μηη.
カルシウム、 マグネシウム又はキチン質、 キトサンなどに水や有機物が含まれている物質 を加熱し、 固体内部に含まれている有機物を抽出又は組成の分離をするときは、 2 . 5 μ π!〜 6 0 μ ιηの波長の密度を上げると効果的な加熱によって有機物の抽出及び組成の分離 が出来る。 このときは、 マンガンフェライト、 マンガンニッケルフェライ ト、 マンガン亜 鉛フヱライ トの磁性体の重量に対してカルシウムを 5 %~ 2◦ %を配合し燒結すると波長 領域の広い範囲で密度の高い熱輻射ができる。 When heating substances containing water or organic substances such as calcium, magnesium or chitin, or chitosan to extract organic substances contained in the solid or to separate the composition, 2.5 μπ! Increasing the wavelength density of ~ 60 μιη can extract organic substances and separate the composition by effective heating. In this case, if calcium is mixed in an amount of 5% to 2◦% with respect to the weight of the magnetic material of manganese ferrite, manganese nickel ferrite, or manganese zinc ferrite, high density thermal radiation is generated over a wide wavelength range. it can.
磁性素材のカルシウム原子と、 食品内のカルシウムイオン、 マグネシウムイオンが分子共 鳴し、 0 0 1 5で記されているように食品の昇温のスピードが早くなり、 熱効率は改善さ れる。 加熱効率はカルシウムの磁性体当たりの混合量 1 0 %が最も高い。 Calcium atoms in the magnetic material, calcium ions in the food, and magnesium ions resonate together, increasing the temperature of the food as shown in 0 0 1 5 and improving thermal efficiency. The heating efficiency is highest when the amount of calcium mixed per magnetic substance is 10%.
【0 0 4 4】  [0 0 4 4]
畜産類の骨、 軟骨、 魚の骨、 甲殻類、 キチン質、 キトサンなどの熱分解が容易でない要素 は、 理想的な熱エネルギーを示す黒体輻射において 3 0 μ n!〜 6 0 μ mの波長鎮域の密度 が極端に少なく、 2 0 0 °Cに加熱したときの波長の密度は、 常温の時の密度と大きな較差 がなく、 熱エネルギーの温度依存性が少ないことを示している。 Elements that are not easily pyrolyzed, such as livestock bones, cartilage, fish bones, crustaceans, chitin, and chitosan, are 30 μn in black body radiation, which represents ideal heat energy! The density in the wavelength region of ~ 60 μm is extremely low, and the wavelength density when heated to 200 ° C is not significantly different from the density at room temperature, and the temperature dependence of thermal energy is low It is shown that.
同一温度において熱輻射し、 理想的な黒体輻射以上の波長密度を得るには、 磁性体にマイ クロ波照射し、 磁性体の結晶の格子であるフオノンの励起及び磁性体が持つスピンによつ てマグノンが励起したときに高い波長密度が得られる。 In order to obtain thermal radiation at the same temperature and obtain a wavelength density higher than the ideal blackbody radiation, the magnetic material is irradiated with microwaves, excited by phonon, which is the lattice of the magnetic material, and the spin of the magnetic material. A high wavelength density is obtained when magnon is excited.
0 0 4 3の磁性体を選択しマイクロ波の波長を磁性体によって波長転換すると 1 0 0 °C〜 2 5 0 °Cの ¾1熱温度でカルシウムの吸収波長 3◦ /χ η!〜 6 0 /z mの密度が黒体輻射よりも 高くなり、 カルシウム、 又はキチン質、 キトサンが吸収する波長になる。 カルシウム、 又 はキチン質の内部に存在する成分、 タンパク質、 ムコ多糖体、 アミノ酸、 ペプチドを抽出 するときは、 波長の領域を 2 . 5 i m〜6 0 j mの波長密度を高くすると早い抽出ができ る。  When a magnetic material of 0 0 4 3 is selected and the wavelength of the microwave is converted by the magnetic material, the absorption wavelength of calcium at 3 ° C / χ η at 1 0 0 ° C to 25 50 ° C ¾1! The density of ~ 60 / zm is higher than that of blackbody radiation, and the wavelength is absorbed by calcium, chitin, or chitosan. When extracting calcium, chitinous components, proteins, mucopolysaccharides, amino acids, and peptides, the wavelength can be increased by increasing the wavelength density from 2.5 im to 60 jm. The
従来の加熱方法では骨や鶏冠等の内部に熱伝導が悪く、 長時間の加熱時間が必用であった が、 強磁性体による熱輻射は、 短時間輻射すると骨や鶏冠の外部の温度よりも内部温度が 高くなり、 骨格内部の成分が加熱され膨張し早い抽出ができる。 The conventional heating method has poor heat conduction inside the bones and chicken crowns, and a long heating time is necessary, but the heat radiation from ferromagnetic materials is less than the temperature outside the bones and chicken crowns when radiated for a short time. The internal temperature rises, and the components inside the skeleton are heated and expanded, allowing rapid extraction.
畜産物のエキスを抽出する場合は、 あくになる成分があり、 分離の作業が必要であるが、 始めから水を加えずに直接加熱するとあくの部分が始めに分離し、 出汁を取るときはその 後に温水で抽出すると澄んだ液体が取り出せる。 鶏冠から取り出すムコ多糖体は、 澄んだ 状態の清澄であり、 そのまま直接加熱で分離出来る。 加熱温度が 1 3 0 °Cを越えていると 殺菌工程も必要としない。 初期加熱の段階で水を入れずに 1 3 0 °C以上で加熱し一定の温 度後に水分を入れ抽出すると耐熱性菌の処理が簡便に出来る。 When extracting livestock extracts, there are ingredients that become unreliable, and separation work is necessary, but when directly heating without adding water from the beginning, the reeds part is separated first, After that, a clear liquid can be taken out by extraction with warm water. Mucopolysaccharides removed from chicken crowns are clear and clear, and can be separated directly by heating. If the heating temperature exceeds 1300 ° C, no sterilization process is required. Heat at a temperature of 130 ° C or higher without adding water in the initial heating stage to maintain a constant temperature. When water is added after extraction, heat-resistant bacteria can be easily treated.
抽出後の残された畜産類の骨、 軟骨、 魚の骨、 甲殻類のカルシウムはそのまま連続しこの 磁性体で加熱すると波長分解し産業廃棄物ではなく、 カルシウム素材として利用できる。 【0 0 4 5】 The remaining bone, cartilage, fish bone, and crustacean calcium from the livestock after extraction are continuous as they are, and when heated with this magnetic material, they decompose into wavelengths and can be used as calcium material instead of industrial waste. [0 0 4 5]
磁性素材である FeAl、アルミニウムフェライト、または Mn— Ζϋフェライトに重量比当たり 5%〜20 %のアルミニウムを混合し燒結した磁性材料、マグネタイトに重量比当たり 5%~20%のアルミ二 ゥムを混合した混合物、並びにマグネタイトに重量比あたり 5%〜20%のカーボンを混合した混 合物をマイクロ波で照射すると、磁性の結晶格子であるフオノンの励起や磁性体のスピンによって マグノンの励起から高温になり、温度は 100秒〜 200秒で、 600°C以上〜 1 6 0 0 °Cに上昇し、 波長の領域は◦. 2 z m~ l . 0 /x niの波長の密度を増幅して輻射する。 波長の密度、 1 0 ° (W/ c m 2. M m) 以上に熱輻射すると、 材料素材の化合、 分解、 融合、 結晶を行う ことができる Magnetic material FeAl, aluminum ferrite, or Mn—Magnetic ferrite mixed with 5% to 20% aluminum by weight and magnetite mixed with 5% to 20% aluminum per weight When the mixture was mixed with magnetite and a mixture of 5% to 20% carbon per weight ratio was irradiated with microwaves, excitation from magnons to high temperatures was caused by excitation of phonon, which is a magnetic crystal lattice, and spin of magnetic materials. The temperature rises from 600 ° C to 160 ° C over 100 to 200 seconds, and the wavelength region is radiated by amplifying the wavelength density of ◦.2 zm to l .0 / x ni. To do. When heat radiation exceeds the wavelength density of 10 ° (W / cm 2 .M m), the material materials can be combined, decomposed, fused, and crystallized.
【0 0 4 6】  [0 0 4 6]
マイク G波の波長によって有機物の分子を照射すると分子の結合は双極子モーメントの回 転によるエネルギーになる。 タンパク質にマイクロ波を照射するとタンパク質の結合を安 定化させる双極子モーメントが回転することによって不安定になり、 タンパク質はアミノ 酸に分離する。 総タンパク質の量は減少する。 When organic molecules are irradiated by the wavelength of the microphone G wave, the molecular bonds become energy due to the rotation of the dipole moment. When a protein is irradiated with microwaves, the dipole moment that stabilizes protein binding rotates and becomes unstable, and the protein is separated into amino acids. The amount of total protein is reduced.
次ぎにマイクロ波の波長を磁性体によって、 赤外線、 遠赤外線に変換し、 赤外線、 遠赤外 線を有機分子に照射すると、 赤外線、 遠赤外線の振動のエネルギーによって分子結合の振 動のエネルギーが增強され、 双極子モーメントが遷移し、 分子組成からアミノ酸が形成さ れる。 Next, when the wavelength of microwaves is converted into infrared and far infrared rays by a magnetic material and the organic molecules are irradiated with infrared rays and far infrared rays, the vibration energy of the molecular bonds is increased by the vibration energy of the infrared and far infrared rays. The dipole moment changes, and amino acids are formed from the molecular composition.
継続し波長照射するとアミノ酸の増加と共にペプチド、 タンパク質も増加する。 When the wavelength is continuously irradiated, the number of peptides and proteins increases with the increase of amino acids.
この時の品質温度は、 4 0〜6 5 °Cである。 The quality temperature at this time is 40 to 65 ° C.
【0 0 4 7】  [0 0 4 7]
青果物や果実をマイクロ波の波長を波長転換する磁性体の装置においてキュリ一温度 1 3 ◦ °C〜2 0 0 °Cに設定し、 照射する波長の領域を 2 . 5 !〜 2 0 μ πιの密度を上げ、 熱 輻射すると短時間で殺菌及び酵素を失活によって、 色素を安定させ、 品質保持が出来る。 青果物は、 高温になると品質は劣化し色素も変化する。 その温度は 8 0 °C以上とされてい る。 殺菌や酵素の失活はバチルス菌等は、 1 3 0 °C、 5秒以上とされている。 In a magnetic device that converts the wavelength of microwaves and fruits and fruits, the Curie temperature is set to 13 ° C to 200 ° C, and the irradiation wavelength range is 2.5! When the density of ~ 20 μπι is increased and heat radiation is applied, the dye can be stabilized and quality can be maintained by sterilization and enzyme deactivation in a short time. The quality of fruits and vegetables deteriorates at high temperatures and their pigments change. The temperature is 80 ° C or higher. For sterilization and enzyme deactivation, Bacillus and the like are at 130 ° C for 5 seconds or longer.
殺菌や酵素の失活は、 これまで温度だけが定義されているが、 温度に対する波長の領域と その密度について定義されていない。 水分率の多い食品では、 水が吸収する波長の領域と ァミノ酸が吸収する領域の波長密度を上げ、 8 0 以下の温度帯においても殺菌効果が見 られる。 この温度による殺菌や酵素の失活は品質の劣化を予防でき、 安定した加工処理が できる。 加熱工程で 3 5 °C〜 4 5 °Cの時間帯で波長の密度を上げると菌数の増加、 酵素の 活性が確認できる。 For sterilization and enzyme deactivation, only the temperature has been defined so far, but the region of wavelength with respect to temperature and its density have not been defined. In foods with a high moisture content, the wavelength density in the wavelength region absorbed by water and the region absorbed by amino acid is increased, and a bactericidal effect can be seen even in a temperature range of 80 ° or lower. This temperature sterilization and enzyme deactivation can prevent quality deterioration and stable processing. Increasing the density of the wavelength in the time zone of 35 ° C to 45 ° C during the heating process increases the number of bacteria and confirms the enzyme activity.
強磁性によって熱輻射し加熱するときの特長は、 一定時間を経過すると加熱物質の表面温 度よりも內部温度か高くなり、 全体の温度が高く均一になる時間が短いことである。 【0 0 4 8】 The advantage of heating by radiating heat by ferromagnetism is that after a certain period of time, the buttocks temperature rises higher than the surface temperature of the heated material, and the overall temperature is high and uniform. [0 0 4 8]
食品加工の工程において廃棄物となるリンゴ、 梨、 柿、 ブドウ及び投橘類の皮及びエキス の搾り力すを殺菌及び酵素失活させ、 乾燥及び粉体加工、 油脂分の抽出すると食品の素材 及び食品添加物、 色素、 香料として利用できる。 マイクロ波の波長を磁性体によって波長 転換し、 磁性体の熱輻射する ft適温度は 1 3 0 °C〜2 0 0 °C、 波長の領域は 2 · 5 μ η!〜 2 0 /z m ,磁性体による波長転換によって密度が高くなり、短時間に殺菌、酵素失活でき、 加熱温度を一定におき、 波長照射時間をながく取ると波長振動による水分分離を行い、 脱 気すると乾燥が容易なる。 油脂分の抽出には水分率が 3 0 %以上含まれた状態で加熱する と水分と油脂分が同時に抽出でき、 抽出後に油脂分と水分を遠心分離によって分離する。 油脂の抽出の温度は低温ほど酸化が進まず、 品目による温度管理が欠かせない。 ' 【0 0 4 9】 Disinfecting and squeezing the squeezing force of apples, pears, persimmons, grapes and citrus peels and extracts that become waste in the food processing process, drying and powder processing, extraction of fats and oils, food materials It can also be used as a food additive, pigment, and fragrance. The wavelength of the microwave is converted by the magnetic material, and the heat of the magnetic material is radiated. Ft Suitable temperature is from 130 ° C to 200 ° C, and the wavelength range is 2 · 5 µ η! ~ 20 / zm, density increases due to wavelength conversion by magnetic material, sterilization and enzyme inactivation can be done in a short time, heating temperature is kept constant, and when wavelength irradiation time is slowed down, moisture separation by wavelength vibration is performed, Drying will be easier if you care. Oil and fat can be extracted at the same time when the moisture content is 30% or more, and the oil and fat can be extracted simultaneously. After extraction, the oil and fat are separated by centrifugation. The lower the temperature of oil and fat extraction, the less oxidation occurs, and the temperature control by item is indispensable. '[0 0 4 9]
昆布はカリウム、 カノレシゥム、 マグネシウム、 アミノ酸類の含有量が多く、 高温に加熱し ても美味しく抽出出来ない組成とされている。 昆布はこれまで 2 0 °C以下の低温で、 1 0 時間以上、 水のなかで出汁を取っている。 カルシウムの熱吸収の波長の領域は 2 . 5 m 〜6 0 /z mである。 Kelp has a high content of potassium, canoresium, magnesium, and amino acids, and has a composition that cannot be extracted deliciously even when heated to high temperatures. The kelp so far has been stocked in water at temperatures as low as 20 ° C for over 10 hours. The wavelength range of heat absorption of calcium is 2.5 m to 60 / z m.
アミノ酸類を多く含有する素材の加熱は低温で最適温度は 5 0 〜 6 5 °Cである。 The material containing a large amount of amino acids is heated at a low temperature and the optimum temperature is 50 to 65 ° C.
昆布及び鰹節の出汁を抽出するときに◦ 0 4 3の磁性体によってマイクロ波の波長を波長 転換すると 2 . 5 j m〜6 0 / m波長の範囲を密度をあげ熱輻射する、 4 0 °C~ 6 0 °Cの 温度管理し、 3◦分から 1 8◦分の短時間に出汁となる成分を抽出できる。 最適温度を維 持するには、 マイクロ波の波長を出力によって調整する。 When extracting kombu and bonito soup stock, the wavelength of microwave is converted by the magnetic material of ◦04 3 3 and heat radiation is increased in the range of 2.5 jm to 60 / m wavelength, 40 ° C The temperature can be controlled at ~ 60 ° C, and the components that become the soup can be extracted in a short time of 3 to 18 ° C. To maintain the optimum temperature, the microwave wavelength is adjusted by the output.
【0 0 5 0】  [0 0 5 0]
鶏冠、 軟骨、 鮫の軟骨、 鶏骨、 蟹の甲羅に存在するタンパク質原料、 ムコ多糖体原料を抽 出するとき、 マイクロ波の波長を 0 0 4 3の磁性体によって吸収し、 波長転換し波長の鎮 域 2 . 5 μ ιη〜6 0 /i m、 加熱の最適温度は、 1 3 0 ° (〜 2 5 0 °Cの範囲であり、 最高温 度は、 磁性体のキュリー温度から選択する。 この温度帯で波長振動を与えると加熱時間は 5分〜 2 0分でムコ多耱体を含む成分が固体から分離する。 加熱容器の内部を 2層にし、 スノコ状にして抽出した液体が分離できる構造にしておくと固体から分離した部分がスノ コ状の下部に流だし固体と液体部分が分離し簡便に取り出せる。 分離した液体は、 あくと 淸澄液と白濁した液体と 2層分力^ Iており、 それぞれを分離し、 タンパク質原料、 ムコ多 糖体は淸澄液から得られる。 When extracting protein raw material and mucopolysaccharide raw material existing in chicken crown, cartilage, salmon cartilage, chicken bone, salmon shell, microwave wavelength is absorbed by 0 0 4 3 magnetic substance, wavelength conversion wavelength In the range of 2.5 μιη˜60 / im, the optimum temperature for heating is in the range of 130 ° C. (˜25 ° C.), and the maximum temperature is selected from the Curie temperature of the magnetic material. When wavelength oscillations are applied in this temperature range, the heating time is 5 minutes to 20 minutes, and the components containing mucopolysaccharides are separated from the solids. If the structure is made, the part separated from the solid flows out into the lower part of the squirrel-like shape, and the solid and liquid part are separated and can be easily removed.The separated liquid is a clear liquid, a cloudy liquid and a two-layer force. ^ I have separated each, protein raw material, mucopolysaccharides are obtained from the supernatant The
淸澄液をゲル化剤、 カラギナン、 寒天を加えて加熱しゲル状にして分離すると殺菌工程を 作る必要がなく、 取り出した後に成分分離が容易である。 When the clarified liquid is gelled and separated by adding a gelling agent, carrageenan, and agar, it is not necessary to create a sterilization process and the components can be easily separated after removal.
【0 0 5 1】  [0 0 5 1]
化学抽出の現場では多くのアルコール抽出が実施されている。 アルコール抽出ではその後 にアルコールを気化する分離作業がとられる場合がある。 Many alcohol extractions are carried out in the field of chemical extraction. Alcohol extraction may be followed by a separation operation to vaporize the alcohol.
多くの場合は熱を加えて気化されている。 エチルアルコールの気化温度は 7 8 . 3 °Cであ り、 赤外線吸収波長は C— O伸縮波数、 1 0 8 0〜: L◦ 5◦ v / c m 1であり、 気化に最 適な方法は內容物が変性しない最適温度と最適波長を選択し熱輻射する。 マイクロ波を磁 性体によつて波長転換するときに、 アルコールの気化温度と波長の領域から磁性体の組成 を選択し加熱する。 この時に利用できる磁性体はマンガンフェライト、 マンガン亜鉛フエ ライト、 ニッケルフェライト、 マンガンニッケルフェライ トが利用できる。 磁性体のキュ リー温度は 2 0 0 °C以下を選択し、 加熱最適温度を 7 0 °C~ 8 0 °Cの範囲で温度のコント ロールをマイクロ波の出力で調整し、 波長の領域は 2 . 5 !〜 2 0 ju mの範囲の波長の 振動で早い気化が容易にできる。 In many cases, it is vaporized by applying heat. Vaporization temperature of the ethyl alcohol Ri 7 8 3 ° C der, infrared absorption wavelength C-O stretching wavenumber, 1 0 8 0~:. L◦ 5◦ v a / cm 1, optimal way the vaporization Select the optimum temperature and wavelength at which the contents are not denatured and radiate heat. When the wavelength of the microwave is converted by a magnetic material, the composition of the magnetic material is selected from the range of alcohol vaporization temperature and wavelength and heated. Magnetic materials that can be used at this time include manganese ferrite, manganese zinc ferrite, nickel ferrite, and manganese nickel ferrite. Select a magnetic material with a Curie temperature of 200 ° C or less, adjust the temperature control within the range of 70 ° C to 80 ° C with the microwave output, and the wavelength range twenty five ! Of wavelengths in the range of ~ 20 ju m Easily vaporize quickly with vibration.
【0 0 5 2】  [0 0 5 2]
マイクロ波の波長を 0 0 4 3の磁性体を利用し、 ホタテの貝殻、 牡蛎の貝殻を加熱温度、 1 0 0 °C〜 2 0 0 °Cで、 1 5分〜 2 0分加熱すると貝殻は簡便に粉砕できる形状に変化す る。 継続し 3 0分加熱するとパラパラの状態に形状変化する。 カルシウムの形状は合計時 間 5◦分力 sら 1時間でパラパラの形状に変化した。 Utilizing a magnetic material with a microwave wavelength of 0 0 4 3, scallop shells, oyster shells are heated at a temperature of 10 ° C to 20 ° C for 15 minutes to 20 minutes, and shells Changes to a shape that can be easily crushed. If it continues and heats for 30 minutes, the shape changes to a flip-flop state. The shape of calcium changed to a flip-flop shape in 1 hour at a total force of 5 ° C.
【0 0 5 3】  [0 0 5 3]
大きな形状の冷凍品を早く、 均一に解凍するには、 解凍品の中心部分に直径 0 . 5 c n!〜 5 c mの磁性体の球又は半円球を入れ、 冷凍品を磁性体の容器に入れ、 磁性体の外部から マイクロ波によって照射する。 マイクロ波は磁性体によって、 赤外線、 遠赤外線の波長に 転換し、 放射され、 球や半円球の磁化の強い、 磁性体に吸収され熱放射する。 冷凍品の內 部に入れた、 球や半円球は容器と同一磁性体又は磁化の強い磁性体であれば中心部分から 解凍が始まる。 磁性体のキュリー温度は解凍する組成から選択する。 食品ではマンガンフ ヱライト、 マンガン亜鉛フェライトキュリー温度 1 8 0 °C〜2 5 0 °Cで選択すると安全で 早く、 均一な解凍ができる。 In order to thaw a frozen product with a large shape quickly and uniformly, the diameter of the center of the thawed product is 0.5 c n! Put a sphere or semi-sphere of ~ 5 cm in a magnetic material, put the frozen product in a magnetic material container, and irradiate it from the outside with a microwave. Microwaves are converted into infrared and far-infrared wavelengths by a magnetic material and emitted, and absorbed by a magnetic material with strong magnetization in a sphere or hemisphere to be emitted. If the sphere or hemisphere placed in the ridge of the frozen product is the same magnetic material as the container or a strong magnetic material, thawing starts from the center. The Curie temperature of the magnetic material is selected from the composition to be thawed. For foods, manganese fluorite and manganese zinc ferrite Curie temperatures between 180 ° C and 25 ° C allow safe, fast and uniform thawing.
鶏肉の一羽分重量 5 0 0 gを骨が付いている状態でその中に半径 3 c mの磁性体の球を入 れ一 2 0 °Cの状態に冷凍し、 磁性体のキュリー温度 2 0 0 °Cの鍋の中に入れ、 解凍すると 0 . 7 k wの出力で 5分間で中心部分から全体が解凍する。 マイクロ波による直接加熱で は解凍すると部分的に解凍され均一な解凍にはならない、 湯せん解凍では、 2◦分が必要 である。 A chicken with a bone weight of 500,000 g, put a magnetic sphere with a radius of 3 cm into it and freeze it at a temperature of 20 ° C. The Curie temperature of the magnetic substance is 20 When placed in a 0 ° C pan and thawed, the whole will thaw from the center in 5 minutes with an output of 0.7 kw. In direct heating with microwaves, when thawed, it is partially thawed and does not result in uniform thawing.
【0 0 5 4】  [0 0 5 4]
マイクロ波を磁性体によつて波長転換され強磁性体から輻射する熱エネルギーは、 輻射す る振動波長と加熱する物質が有する吸収波長とが整合すると波長が同調し、 エネノレギ一の トンネル効果が生じる。 The thermal energy that is converted from the wavelength of the microwave by the magnetic material and radiated from the ferromagnetic material is tuned when the radiated vibration wavelength and the absorption wavelength of the heating material match, and the tunnel effect is the same as that of the energy .
トンネル効果の条件は、 熱輻射する波長の領域と熱吸収する素材の領域が整合するときに 同調し、 構造的には、 熱輻射する波長に対して、 トンネル効果は、 共鳴現象から生じる波 長の同調率が高いほど熱効率は高くなる。  The tunnel effect condition is tuned when the region of the heat radiating wavelength matches the region of the material that absorbs heat. Structurally, for the wavelength of the heat radiating, the tunnel effect is the wavelength generated from the resonance phenomenon. The higher the tuning rate, the higher the thermal efficiency.
【0 0 5 5】  [0 0 5 5]
強磁性から生じるエネルギーのトンネル効果を実証するために、 磁性体の素材をマンガン 亜鉛フェライト、 その組成は、 キュリー温度 2 0 0 °Cを選定した。 マイクロ波の波長を磁 性体に吸収し波長転換による波長の領域を 2 . 5 ζ π!〜 2 0 μ πιに合わせた。 耐熱性の陶 磁器の内部にマンガン亜鉛フェライ トの平均粒子 1◦ μ ιηに加工し、 厚さを平均 2 0 μ ιη で陶磁器に燒結した。 陶磁器の容器は、 内径が 2 4 c m内部の高さが 2 1 e raの半円形の 容器に蓋を付け陶磁器の容器と蓋の内部に磁性体を燒結した。内部に入れる小さな容器は、 同じ陶磁器の素材で外形が 9 c m高さ 1 5 c mで蓋を付け、同じ構造の容器を 2つを作り、 一つは、 内部の磁性体は大きい容器と同じマンガン亜鉛フェライトを、 もう一つには、 キ ユリ一温度 2 5 0 °Cマンガンフ亜鉛エラィトを燒結した。 In order to demonstrate the tunneling effect of energy resulting from ferromagnetism, the magnetic material was selected from manganese zinc ferrite and its composition was set to a Curie temperature of 200 ° C. The microwave wavelength is absorbed by the magnetic material, and the wavelength range by wavelength conversion is 2.5 ζ π! Adjusted to ~ 20 μππι. Inside the heat-resistant ceramic, the average particle size of manganese zinc ferrite was processed to 1 ° μιη, and the thickness was sintered to average 20 μμιη. The ceramic container was covered with a lid on a semicircular container with an inner diameter of 24 cm and a height of 21 era, and a magnetic material was sintered inside the ceramic container and the cover. The small container inside is made of the same ceramic material, with an outer shape of 9 cm and a height of 15 cm, and with two lids made of the same structure. Zinc ferrite was sintered, and the other was sintered at a temperature of 2550 ° C.
電子レンジの出力 0 . 7 k wを利用し、 加熱には、 純水とポタージュスープを利用した。 他に比較材料として耐熱ガラスのコップとアルミで内装されている紙コップを利用した。 磁性体を燒結した大きな容器も小さな容器も同じキュリー温度の磁性体であり、 1分間電 子レンジに入れ加熱すると陶磁器の磁性体の内部温度は 1 8 0 °Cを示した。 キユリ一温度 2 5 0 °Cの小さな容器は 1分間で容器の内部は 2 2 0 °Cを示した。 耐熱ガラスの容器をそ のまま入れ電子レンジで加熱すると 1分間で 4 3 °Cに上昇した。 A microwave output of 0.7 kw was used, and pure water and potage soup were used for heating. In addition, a heat resistant glass cup and a paper cup with aluminum were used as comparative materials. Large and small containers with magnetic materials sintered are magnetic materials with the same Curie temperature, When heated in the child range, the internal temperature of the ceramic body showed 1800 ° C. A small container with a temperature of 2550 ° C has a temperature of 2 20 ° C in one minute. When the heat-resistant glass container was left in place and heated in the microwave, the temperature rose to 43 ° C in 1 minute.
アルミの紙コップを電子レンジに入れてもアルミ面の内部の温度は上昇が見られない。 耐熱ガラスの重量は 1 7 0 g、 磁性体の 2つの小さな容器重量はそれぞれ 3 1 0 g、 紙コ ップは 8 g、 大きな容器の重量は 1 . 2 k gである。 それぞれに純水 1 4 0 c cを入れ温 度上昇を確認した純水の温度は 1 5 °C、 磁性体の容器の側面温度は 1 6 °Cであった。 耐熱ガラスに純水 1 4 0 c c入れ、 電子レンジで 2分間、 加熱した時の温度は 8 7 °C、 次 ぎに磁性体のキュリ一温度 2 0 0 °Cの小さな容器に純水 1 4 0 c cを入れ、 電子レンジで 2分間加熱すると温度は同じ 8 7 °Cであった。 キュリー温度 2 5 0 °C容器は、 2分間加熱 では 9 2 °Cに上昇していた。 アルミの紙コップに純水 1 4 0 c cを入れ加熱しても温度の 上昇は見られない。 Even if an aluminum paper cup is placed in the microwave oven, the temperature inside the aluminum surface does not increase. The heat-resistant glass weighs 1700 g, the two small containers of magnetic material are 3 10 g each, the paper cup is 8 g, and the large container weighs 1.2 kg. The temperature of the pure water was confirmed to be 15 ° C and the side temperature of the magnetic material container was 16 ° C. Pure water in a heat-resistant glass 1 4 0 cc, heated in a microwave for 2 minutes, heated to 8 7 ° C, then the magnetic material's Curie temperature 2 0 0 ° C in a small container 1 4 After putting 0 cc and heating in a microwave for 2 minutes, the temperature was the same 87 ° C. Curie temperature 2500 ° C The container rose to 92 ° C when heated for 2 minutes. Even if pure water 1 4 40 cc is placed in an aluminum paper cup and heated, no increase in temperature is observed.
大きな磁性体の容器のなかに耐熱ガラスの容器を入れ、 純水 1 4 0 c cを入れ、 2分間、 電子レンジで加熱した、 その時の純水の温度は 8 7 °Cを示した。 大きな容器の内面に燒結 している磁性体の温度の上昇は 1 6 °Cから 3 4 °Cに上がり 1 8 °Cの上昇である。 A heat-resistant glass container was placed in a large magnetic container, pure water 140 c was added, and heated in a microwave for 2 minutes. The temperature of pure water at that time was 87 ° C. The rise in temperature of the magnetic material sintered on the inner surface of a large container rises from 16 ° C to 34 ° C and rises by 18 ° C.
次ぎに大きな磁性体の容器に磁性体が同じ小さな容器に水 1 4 0 c cを入れ 2分間電子レ ンジ加熱すると同じ 8 7 °Cであった。 このとき大きな容器の内面の温度は 3 4 °Cで、 1 8 °C上昇しており耐熱ガラスの時と同じであった。 Next, when water was placed in a small container with the same magnetic material in a large magnetic material container and water was heated for 2 minutes, the temperature was the same at 87 ° C. At this time, the temperature of the inner surface of the large container was 34 ° C and increased by 18 ° C, which was the same as that for heat-resistant glass.
次ぎにに大きな磁性体の容器にアルミの紙コジブに水 1 4 0 c cを入れ、 電子レンジで 2 分間加熱した、 水の温度は、 初期温度と 1 0 °C上昇している状態で、 大きな容器の内面が 1 8 0 °Cになっていた。 Next, put 14 cc of water in an aluminum paper cojib in a large magnetic container and heat it in a microwave for 2 minutes. The water temperature is 10 ° C higher than the initial temperature. The inner surface of the container was 1800 ° C.
次ぎに大きな磁性体の容器に小さな磁性体の容器を入れ、 その中に耐熱ガラスの容器を入 れ、 純永 1 4◦ c cを入れ、 電子レンジで 2分間加熱した。 純水の温度は 8 7 になって いた。 Next, a small magnetic material container was placed in a large magnetic material container, a heat-resistant glass container was placed in it, and Junagai 14 ◦ c c was placed, and heated in a microwave oven for 2 minutes. The temperature of pure water was 8 7.
2つの磁性体の容器の温度の上昇は、 大きい容器の内面は 3 1 °Cで 1 5 °Cの上昇、 小さな 容器の温度は 3 4 °Cで、 1 8。Cの上昇であつた。  The temperature rise of the two magnetic containers is 15 ° C at 3 1 ° C for the inner surface of the large container, and the temperature of the small container is 34 ° C at 18 ° C. It was a rise in C.
この現象からマイクロ波の波長を磁性体が転換し、 2つの磁性体の容器の空間を波長は透 過し、 容器の内部の水と同調し加熱されている。 磁性体のエネルギーによるトンネノレ効果 を示していることが証明できる。 磁性体から熱輻射する波長の領域と水が吸収する波長の 領域が類似しており、 同調し熱吸収する事を示している。 水が吸収していない波長の一部 が磁性体の側面の温度上昇となっている。 From this phenomenon, the magnetic substance changes the wavelength of the microwave, the wavelength passes through the space of the two magnetic containers, and is heated in synchronization with the water inside the container. It can be proved that the tunnel effect by the energy of the magnetic material is shown. The wavelength range where heat is radiated from a magnetic material is similar to the wavelength range where water is absorbed, indicating that it is synchronized and absorbs heat. Part of the wavelength that is not absorbed by water is the temperature rise on the side of the magnetic material.
アルミの素材はこの領域の波長を吸収せず反射する。 そのためにアルミの容器の純水は温 度の上昇が少なく、 周辺の輻射熱でしか上がっていないことを示し、 磁性体の容器の温度 が上昇している。 Aluminum material reflects without absorbing the wavelength in this region. For this reason, the temperature of pure water in aluminum containers is small, indicating that it has only risen by radiant heat from the surroundings, and the temperature of the magnetic container is rising.
次ぎにに大きな磁性体の容器にキュリー温度の異なる小さな容器を 2つ入れ純水 1 4 0 c cを入れ、 電子レンジで 2分間加熱した。 キュリー温度 2 5 0 °Cの容器の温度は 4 8 °Cキ ユリ一温度 2 0 0 の容器の温度 4 4 °Cと約 4 °Cの差があり、 その後沸縢するまで継続し 加熱するとキユリ一温度 2 5 0 °Cの容器は 2 1 0秒で 9 8 °Cにキユリ一温度 2 0 0 °Cの容 器は 2 5 0秒で 9 8 °Cに達した。 Next, two small containers with different Curie temperatures were placed in a large magnetic container, and pure water 140 c was added, and heated in a microwave for 2 minutes. The temperature of the container with a Curie temperature of 25 ° C is 48 ° C. The temperature of the container with the temperature of 20 ° C is the difference between the temperature of 44 ° C and 4 ° C. After that, continue heating until boiling. A container with a temperature of 2550 ° C reached 98 ° C in 2 10 seconds, and a container with a temperature of 2100 ° C reached 98 ° C in 2500 seconds.
次ぎに有機質の多いポタージュスープを使い同じ実験を行った。 ポタージュスープは各 1 0 0 gの重量で、 加熱時間を各 2分間で温度の変化を見た。 ポタージュスープを耐熱ガラスに入れ、 そのまま電子レンジに入れると 1 0 0秒で突沸し 実験にならなかった。 突沸はポタージュスープ等の粘性が強い液体が部分的に温度が上が り、 温度格差が生じ起きる現象である。 粘性が強く、 温度が不均一になり、 撹拌しなけれ ば、 突沸しそのままの加熱は困難である。 Next, the same experiment was conducted using a potage soup with a lot of organic matter. The potage soup weighed 100 g each, and the change in temperature was observed with a heating time of 2 minutes each. When potage soup was placed in heat-resistant glass and placed in a microwave oven as it was, it boiled in 100 seconds and was not experimental. Bumping is a phenomenon in which a temperature difference occurs due to a partial rise in the temperature of a highly viscous liquid such as potage soup. Viscosity is strong, temperature becomes non-uniform, and if it is not stirred, it will be bumped and it will be difficult to heat it as it is.
次ぎにポタージュスープ、 1 0 0 gを磁性体の小さな容器に入れ、 電子レンジで 2分間、 加熱すると突沸することなく温度の上昇が見られ 6 8 °Cを示した。 Next, the potage soup, 100 g, was placed in a small container of magnetic material and heated for 2 minutes in a microwave oven. The temperature increased without bumping and showed 68 ° C.
大きな磁性体の容器のなかに、 耐熱ガラスにポタージュスープ 1 0 0 g入れ、 2分間加熱 すると 6 8 °Cを示し、 磁性体の大きな容器の内面温度は 1 6 °Cから 2 6 °Cに上がり、 1 0 °Cの温度の上昇であった。 Put 100 g of potage soup in heat-resistant glass in a large magnetic container and heat for 2 minutes to show 68 ° C. The internal temperature of the large magnetic container is from 16 ° C to 26 ° C. There was a temperature increase of 10 ° C.
次ぎに大きな磁性体の容器の內部に小さな磁性体の容器を入れ、 その中に耐熱ガラスの容 器を入れ、 ポタージュスープ 1 0 0 gを入れ、 2分間加熱すると同じ 6 8 °Cを示し、 大き な磁性体の内面は 1 6 °Cから 2 3 °Cになり 7 °Cの温度の上昇を示し、 小さな容器の内面は 1 6 °C 2 6 °Cに上がり 1 0 °Cの温度の上昇であった。 Next, put a small magnetic container in the buttocks of a large magnetic container, put a container of heat-resistant glass in it, put 100 g of potage soup and heat for 2 minutes, showing the same 68 ° C, The inner surface of a large magnetic material increases from 16 ° C to 23 ° C, showing a temperature increase of 7 ° C, and the inner surface of a small container increases to 16 ° C 26 ° C and has a temperature of 10 ° C. It was an increase.
水を加熱するしたときよりも、 ポタージュスープを加熱するときは磁性体の容器の側面温 度の上昇が少ない。 この現象はポタージュスープが有する波長の吸収領域の広さに影響し ていると考えられる。 When heating potage soup, the side temperature rise of the magnetic container is less than when heating water. This phenomenon is thought to affect the width of the wavelength absorption region of potage soup.
この 2つの実験から強磁性体から熱輻射する波長は吸収波長と整合していると波長の同調 率が高く、 エネルギーのトンネル効果が大きいことを示しており、 エネルギーのトンネル 効果の存在を証明している。 These two experiments show that the wavelength of heat radiated from a ferromagnet matches the absorption wavelength, the wavelength tuning rate is high, and the energy tunneling effect is large, demonstrating the existence of the energy tunneling effect. ing.
水とポタージュスープの温度の上昇に違いがあり、 重量が少ないポタージュスープの温度 の上昇が少ない、 この違いは組成の違いから生じる吸収エネルギーの較差と考えられる。 又同じ容器の内部に異なった磁性体を入れ外部からマイクロ波を照射すると磁性体の組成 で温度の上昇に違いがあることを示した。 There is a difference in the temperature rise between water and potage soup, and a little temperature rise in potage soup, which is less weight. This difference is considered to be a difference in absorbed energy resulting from the difference in composition. It was also shown that when different magnetic materials were placed inside the same container and microwaves were irradiated from the outside, there was a difference in temperature rise depending on the composition of the magnetic material.
【0 0 5 6】  [0 0 5 6]
【課題を解決する手段】  [Means for solving the problems]
磁性体にマイクロ波を照射し、 波長転換によって、 生じる熱輻射は、 その構造によって、 誘導加熱、 渦電流損による加熱、 強磁性から生じる原子スピンの共鳴によって磁気共鳴に よる加熱が生じる。 マイクロ波によって磁性材料を照射し、 磁性体のスピンの共鳴によつ て、 赤外線、 遠赤外線を輻射し、 一様な磁場の中で磁性材料に渦電流が流れることによつ て生じる磁化のスピンと赤外線、 遠赤外線の輻射との磁性共鳴によつて磁性材料は加熱さ れる。 この原理は量子力学的原理であり、 古典熱力学的法則ではない。 By irradiating a magnetic material with microwaves and changing the wavelength, the resulting heat radiation is heated by magnetic resonance due to induction heating, heating due to eddy current loss, and resonance of atomic spins caused by ferromagnetism. Magnetic material is irradiated by microwaves, infrared and far infrared rays are radiated by spin resonance of the magnetic material, and eddy currents flow through the magnetic material in a uniform magnetic field. The magnetic material is heated by magnetic resonance between the spin and infrared and far-infrared radiation. This principle is a quantum mechanical principle, not a classical thermodynamic law.
発生した熱エネルギーは入射エネルギーより增幅される。 マイクロ波によつて磁性体を内 部に層状に塗布し燒結した陶磁器を加熱すると一様に磁場が陶磁器内部に生じ、 赤外線、 遠赤外線が陶磁器内部に輻射する。 陶磁器内部に磁性体を塗布し燒結した補助器具を入れ ると、 赤外線の輻射と補助器具の渦電流による磁化のスピンとの磁気共鳴によって、 磁性 体を塗布した補助器具は加熱される。 この原理を利用し、 マイクロ波を磁性体に照射し、 波長転換し熱輻射する熱エネルギー効率を上げて、 食品加熱、 加工、 調理、 殺菌、 乾燥、 化学反応、 化学合成、 分解、 重合、 酵素の失活、 色素の抽出、 組成の分離、 結晶、 合金を 行う。 【0 0 5 7】 The generated thermal energy is amplified from the incident energy. When the ceramics coated with a magnetic material in layers and heated by microwaves are heated, a uniform magnetic field is generated inside the ceramics, and infrared and far infrared rays are radiated inside the ceramics. When an auxiliary device coated with a magnetic material and sintered inside the ceramic is placed, the auxiliary device coated with the magnetic material is heated by the magnetic resonance between the infrared radiation and the spin of magnetization caused by the eddy current of the auxiliary device. Utilizing this principle, microwaves are irradiated to a magnetic material, the heat energy efficiency of wavelength conversion and heat radiation is increased, food heating, processing, cooking, sterilization, drying, chemical reaction, chemical synthesis, decomposition, polymerization, enzyme Deactivation, pigment extraction, composition separation, crystallization, alloying. [0 0 5 7]
磁性体にマイクロ波を照射し渦電流損が生じるには、 電磁波が一定の方向に回転運動を起 こす構造によって磁化が生じ、 磁化が強くなると電磁波が磁場に吸引し一層強い磁場が作 られる。 磁化の強さは磁化が生じる磁性体の回転半径が小さいほど強くなり、 加熱のスピ 一ドは早くなる。 磁性体の磁場が強くなり、 渦電流損が生じると強磁性によつて原子スピ ンの共鳴から熱輻射が大きくなる。 球、 円形、 半円形、 円錐、 円筒、 凹面、 凸面などの湾 曲した磁性体では湾曲した半径が小さいほど電磁波のドリフト速度が早くなり、 磁化が早 く大きくなり、 早い温度の上昇を示す。 In order to cause eddy current loss by irradiating a magnetic material with microwaves, magnetization is generated by a structure in which the electromagnetic wave rotates in a certain direction, and when the magnetization becomes stronger, the electromagnetic wave is attracted to the magnetic field and a stronger magnetic field is created. The strength of magnetization increases as the radius of rotation of the magnetic material that generates the magnetization decreases, and the speed of heating increases. When the magnetic field of a magnetic material becomes strong and eddy current loss occurs, thermal radiation increases due to the resonance of atomic spins due to ferromagnetism. In curved magnetic materials such as spheres, circles, semicircles, cones, cylinders, concave surfaces, and convex surfaces, the smaller the radius of curvature, the faster the drift velocity of electromagnetic waves, the faster the magnetization, and the faster the temperature rises.
【0 0 5 8】  [0 0 5 8]
0 0 5 7を実証するためにマンガン亜鉛フェライト、 キュリー温度 2 0 0 とキュリー温 度 2 5 0 Cを平均粒子 1 0 mの粉体にした。 耐熱性陶磁器を直径 2 4 c m、 高さ 2 1 c m (図一 1— C )、 を 1ケと直径 9 c m高さ 1 5 c m (図一 1一 D) を 2ケを作り、 大き な陶磁器と小さな陶磁器一つの内側にキュリー温度 2◦ 0 °Cを残りの小さな陶磁器にキュ リ一温度 2 5 0 °Cを燒結した。  In order to demonstrate 0 0 5 7, manganese zinc ferrite, Curie temperature 2 0 0 and Curie temperature 2 5 0 C were powdered with an average particle size of 10 m. Make 1 piece of heat-resistant ceramic with a diameter of 24 cm, 21 cm with a height of 21 cm (Fig. 1—C) and 2 pieces with a diameter of 9 cm and a height of 15 cm (Fig. 1 with 1 D). The inside of one small ceramic was cured with a Curie temperature of 2 ° 0 ° C and the remaining small ceramic was sintered with a Curie temperature of 2550 ° C.
If熱性陶磁器と同じ素材を用いて、 半円形の磁性体 (図一 1— A)、 円筒形 (図ー1一 B ) の磁性体と 2 0 mm、 1 O mmの球を製作した。 図一 1— Aの構造は、 直径の 4 5 mmの 半円球、 厚さ 5 mmの 2重構造で、 表面裏面に磁性体キュリー温度 2 0 0を燒結した。 図 一 1—Bの円筒形は、 底面 3 O mm上面 2 O mm高さ 5 5 mm厚さ 5 min外面內面にキュ リ一温度 2 0 0の磁性体を燒結した。 球の磁性体の構造にもキユリ一温度 2 0 0 °C磁性体 を表面全体に塗布し燒結した。  Using the same material as If thermal ceramics, semicircular magnetic bodies (Fig. 1-1 A), cylindrical magnetic bodies (Fig. 1-1 B) and 20 mm, 1 O mm spheres were produced. Figure 1-A is a 45 mm diameter hemisphere and a 5 mm thick double structure with a magnetic Curie temperature of 200 on the front and back surfaces. The cylindrical shape shown in Fig. 1-B has a magnetic material with a curing temperature of 200 on the outer surface of the bottom surface 3 O mm, top surface 2 O mm, height 55 mm, thickness 5 min. A spherical magnetic body was also coated with a magnetic material at a temperature of 200 ° C. and sintered.
電子レンジは 0 . 5 k w、 0 . 7 k wの 2台を利用した。 どちらも出力の調整が出来る機 器である。 Two microwave ovens, 0.5 kW and 0.7 kW, were used. Both are devices that can adjust the output.
図— 1—Cは大きな陶磁器の容器の構造を示す。 容器を空の状態で電子レンジに入れ加熱 すると温度の上昇は側面と蓋が早く底の部分は遅くなる。 物質を入れ加熱しても同じよう に底の面の温度が遅れる現象が出る。 他に加熱するときに、 パレイショ等を 2つ以上入れ るど 2つが重なっている状態では、 重なった場所の温度上昇が遅い。 重なっている場所の 熱輻射量が少なくなるためである。 Fig. 1-C shows the structure of a large ceramic container. When the container is emptied and heated in a microwave oven, the temperature rises quickly at the sides and lid and at the bottom. The same phenomenon occurs when the temperature of the bottom surface is delayed even when a substance is added and heated. When heating more than two, if two or more of them are put together, the temperature rise in the place where they overlap is slow. This is because the amount of heat radiation in the overlapping area is reduced.
大きな陶磁器に、 直径 2 O mm磁性体の球を入れ加熱すると始めに底から加熱し側面そし て蓋の状態で温度の上昇が見られる。 次ぎに半円球 (図一 1一 A) を凸面に入れ加熱する と球よりも早く底の温度が上がり、 次ぎに側面、 蓋の状態で温度が高くなる。 半円球 (図 一 1一 A) を凹面に入れると蓋と側面が高くなり次ぎに底が高くなる。 円筒形を入れると 側面と底がほぼ同じように高くなり次ぎに蓋が高くなる。 構造によつて熱輻射の方向の違 いが解る。 When a ball of 2 O mm in diameter is placed in a large ceramic bowl and heated, the heating starts from the bottom, and the temperature rises on the side and lid. Next, when a hemispherical sphere (Fig. 1-11 A) is placed on the convex surface and heated, the bottom temperature rises faster than the sphere, and then the temperature rises in the side and lid states. If a hemispherical sphere (Fig. 11 A) is placed in the concave surface, the lid and sides will rise, and then the bottom will rise. When a cylinder is inserted, the side and bottom are raised almost the same, and then the lid is raised. The difference in the direction of heat radiation can be understood depending on the structure.
大きな陶磁器に 2 O mm球と半円形の陶磁器を凸面状、 円筒を同時に入れ、 0 . 7 k wの 電子レンジで 3◦秒加熱した。温度の状態は球のみが熱く、他の磁性体は熱輻射が少ない。 次ぎに半円球を凹面の状態にして、 3つの種類の磁性体を入れ、 3 0秒加熱すると球と凹 面の半円球が温度の上昇が早く、 円筒形の温度の上昇は低い。 A 2 O mm sphere and a semicircular ceramic were placed in a convex shape and a cylinder at the same time in a large ceramic, and heated in a 0.7 kW microwave oven for 3 seconds. In the temperature state, only the sphere is hot, and the other magnetic materials have less heat radiation. Next, when the semispherical sphere is made concave, and three kinds of magnetic materials are added and heated for 30 seconds, the temperature of the sphere and the concave semicircular sphere rise quickly, and the temperature rise of the cylindrical shape is low.
次ぎに 2 0 mm、 1 O mmの球の磁性体を入れ、 2 0秒間加熱した。 1 0 mmの球の温度 が上がり 2 O mmの温度はそれ程上がっていない。 Next, a 20 mm, 1 O mm sphere magnetic material was placed and heated for 20 seconds. The temperature of the 10 mm sphere increased and the temperature of 2 O mm did not increase that much.
この事からマイクロ波から磁性体によって波長転換された波長は、 直径の小さな球、 半円 球の構造が先に磁化が進み温度上昇することが解る。 球や半円球を凹面に付けると早い温 度上昇を示す。 For this reason, the wavelength converted from the microwave by the magnetic material is a small diameter sphere, semicircle It can be seen that the sphere structure is first magnetized and the temperature rises. When a sphere or hemisphere is attached to the concave surface, a rapid temperature rise is shown.
【0 0 5 9】  [0 0 5 9]
0 0 5 6の大きな磁性体の陶磁器 (図一 1— C ) にパレイショを 3ケを入れ、 0 . 7 k w で加熱すると 3つのパレイショは陶磁器の外周に沿った場所は早く熱が入るが 3つのパレ イショが重なっている中心部分の温度の上昇が遅い。  When 3 pieces are placed in a ceramic with a large magnetic body of 0 0 5 6 (Fig. 1—C) and heated at 0.7 kw, the three partitions heat up quickly along the outer circumference of the ceramic 3 The temperature rises slowly in the center where the two partitions overlap.
3つのパレイショの中心に 0 0 5 6の磁性体の球、 半円球、 円筒形を入れたときの温度の 上昇を見た。  We saw a rise in temperature when a sphere, hemisphere, and cylinder of 0 0 5 6 were placed in the center of the three partitions.
パレイショは 1ケ平均 1 5 ◦ gを選び、 芯温は、 1 5 °Cであった。 The average temperature was 15 ° C, and the core temperature was 15 ° C.
温度の計測は、 大きな陶磁器 (図一 1—C ) の各内部の側面、 底、 蓋、 陶磁器に面したパ レイショの表面、 芯温、 3つのバレイショが接している場所を測定した。 The temperature was measured by measuring the inner side of each large ceramic (Figure 1-C), bottom, lid, surface of the surface facing the ceramic, the core temperature, and the location where the three potatoes are in contact.
温度は 3 0秒、 6 0秒、 1 8 0秒ごの上昇を示す。 The temperature increases every 30 seconds, 60 seconds, and 1800 seconds.
【表一 1】 パレイショ 4 5 0 gを入れ加熱したときの温度格差 秒 °C  [Table 1] Temperature difference when paro 4 5 0 g is added and heated to seconds ° C
磁性体なし、 2 0 m m球、 凹面、 凸面 円筒形 Without magnetic material, 20 mm sphere, concave, convex cylindrical
30 60 180 30 60 180 30 60 180 30 60 180 30 60 180 秒 蓋の温度 45 68 83 42 63 84 47 66 86 39 58 82 46 66 83 °C 側面の温度 47 68 83 41 60 82 46 66 85 49 68 82 47 66 83 底の温度 38 52 74 52 70 88 43 55 76 56 72 89 39 53 76 パレイショ側面 36 58 72 33 52 74 36 58 74 37 60 76 37 60 76 バレイショの内面 28 46 57 39 58 75 39 61 76 36 58 74 39 58 75 パレィショ芯温 26 54 72 27 56 74 27 56 75 27 58 75 27 57 75 パレイショとバレイショの中心部分に磁性体を入れると加熱温度のパラッキが少なくな り、 芯温が安定することが解る。 従来の外部加熱では、 外部の温度との格差が生じるが磁 性体の側面温度とバレイショの温度格差が少ない状態で加熱され、 加熱時間によっては芯 温は磁性体の温度よりも高くなることが解つた。 30 60 180 30 60 180 30 60 180 30 60 180 30 60 180 seconds Lid temperature 45 68 83 42 63 84 47 66 86 39 58 82 46 66 83 ° C Side temperature 47 68 83 41 60 82 46 66 85 49 68 82 47 66 83 Bottom temperature 38 52 74 52 70 88 43 55 76 56 72 89 39 53 76 Side of the plate 36 58 72 33 52 74 36 58 74 37 60 76 37 60 76 Inside of the plate 28 46 57 39 58 75 39 61 76 36 58 74 39 58 75 Pallet core temperature 26 54 72 27 56 74 27 56 75 27 58 75 27 57 75 When a magnetic material is placed in the center of the partition and potato, the heating temperature is reduced and the core temperature is stable. I understand what to do. In conventional external heating, there is a difference from the external temperature, but heating is performed in a state where the temperature difference between the side surface temperature of the magnetic material and the potato is small, and depending on the heating time, the core temperature may be higher than the temperature of the magnetic material. I solved it.
【0 0 6 0】  [0 0 6 0]
0 0 5 8の図一 1—Cの陶磁器と同じ容器の構造に長径 5 miii深さ 2 mmの薄い凹面を魚 鱗状に 5 0ケ削り取り、同じ磁性体を燒結し 0 0 5 8で利用した容器と加熱の比較をした。 水 3 0 0 c cを入れ 0 . 7 k wの電子レンジで 1 5 0秒加熱した温度の格差は、 水温 1 5 °Cを加熱し 5 2 °Cと 6 3 °Cの違いがあった。 温度の格差は、 容器の内部を凹面の魚鱗構造 にすると 1 1 °C早く温度の上昇が見られた。 熱輻射する表面積を大きくすると加熱効果が 高くなることが立証できた。  Fig. 1 of 0 0 5 8 Same as the 1-C pottery, the thin concave surface with a major axis of 5 miii and a depth of 2 mm was scraped into fish scales, and the same magnetic material was sintered and used in 0 0 5 8 The container and heating were compared. There was a difference in temperature between 5 2 ° C and 63 ° C when the water temperature was 15 ° C when water 300 ° c was added and heated in a microwave oven of 0.7 kw for 15 50 seconds. As for the temperature disparity, when the inside of the container was a concave fish scale structure, the temperature rose 11 ° C earlier. It was proved that the heating effect was enhanced by increasing the surface area for heat radiation.
【0 0 6 1】  [0 0 6 1]
0 0 5 8で利用した磁性体の直径 2 O m m球と半円球を使い冷凍品の解凍の実験を行つ た。 水 3 0 0 c cの真ん中に半円球の磁性体キュリー温度 2◦ 0 °Cを真ん中に入れー2 0 °Cに凍らし、 大きな磁性体の陶磁器の真ん中に中空に糸でぶら下げて、 0 . 7 k wの出力 の電子レンジに入れ、 加熱した。 2分間で真ん中にある磁性体から氷は、 落下しほぼ解凍 されていた。 氷の解凍は氷の中に入れた磁性体から熱を輻射しており、 氷の中心部分から 溶けていた。 落下し残された氷の形状は 2 m m程度に薄い外部の部分だけである。 容器の 温度は全く上がっておらずこのときの解凍は氷の内部から溶けることが解った。 次ぎに 5 0 0 gの鶏肉の内部に 2 O mmの球形の磁性体を入れ、 一2 0 °Cに凍結し、 電子 レンジで解凍を試みた。 電子レンジ 0 . 7 k wの出力で 5分間加熱した。 その結果磁性体 の周辺は既に調理加熱と同じ状態で、 変色し、 鶏肉の外部はやつと解凍された状態であり 外部と內部では温度格差が付いていた。 Experiments on thawing frozen products were performed using the 2 O mm sphere and hemisphere of the magnetic material used in 0 0 5 8. Put a hemispherical magnetic Curie temperature 2◦ 0 ° C in the middle of water 300 cc in the middle and freeze it at -20 ° C, and hang it hollow in the middle of a large magnetic ceramic, Placed in a microwave oven with 7 kw output and heated. Ice fell from the magnetic material in the middle in 2 minutes and was almost thawed. When thawing ice, heat was radiated from the magnetic material in the ice and melted from the center of the ice. The shape of the ice that falls and remains is only the outer part as thin as 2 mm. It was found that the temperature of the container did not rise at all, and thawing at this time melted from the inside of the ice. Next, a spherical magnetic material of 2 O mm was placed inside 500 g of chicken, frozen at 120 ° C., and then thawed in a microwave oven. The microwave oven was heated for 5 minutes at an output of 0.7 kw. As a result, the area around the magnetic body was already discolored in the same state as cooking, and the outside of the chicken was in a thawed state and there was a temperature difference between the outside and the buttocks.
冷凍品に磁性体を入れておくと内部から解凍できることが解つた。 It has been found that if a magnetic material is placed in a frozen product, it can be thawed from the inside.
強磁性体を利用し解凍すると冷凍品の内部から解凍ができ、 このときの解凍のエネルギー は従来の融解熱と解凍に必要な熱エネルギーよりも電子レンジの出力が小さいエネルギー によって解凍されている。 When thawing using a ferromagnetic material, it can be thawed from the inside of the frozen product, and the energy of thawing at this time is defrosted by the heat of melting and the energy of the microwave oven smaller than the heat energy required for thawing.
【0 0 6 2】  [0 0 6 2]
マイク口波を磁性体の薄膜を内部に塗布した、 陶磁器全体にマイク口波を照射したとき、 陶磁器内部全体の磁界によって半球形の陶磁器の外側の磁性体の薄膜は磁気分極し、渦電流 が流れ、誘導加熱される。このときに生じる磁化は以下の方程式によって説明できる。 When a microphone thin film is applied to the inside of the ceramic, the magnetic thin film on the outside of the hemispherical ceramic is magnetically polarized by the magnetic field inside the ceramic, and eddy currents are generated. Flowed and induction heated. The magnetization generated at this time can be explained by the following equation.
磁性体の透磁率を μ、寘空の透磁率を 。 、 陶磁器内部の一様な磁界を Β。とすると半球形 の外側の磁化 Μは次のようになる。 The magnetic permeability of the magnetic material is μ, and the magnetic permeability of the sky is.を The uniform magnetic field inside the pottery. Then the magnetization 磁化 outside the hemisphere is
【数式- 1】 Μ= ο 3 , {^—^) Β[Formula-1] Μ = ο 3 , {^ — ^) Β .
半球形の陶磁器の外側の磁性体の層の磁化は分極し、 渦電流が流れ、 誘導加熱される。 半球形の陶磁器の外側の磁性体の層は 2 0 mであり非常に薄いので、高透磁率の磁性体で あっても磁場は遮蔽されず。半球形の陶磁器の内部はその磁場によって磁化される。 The magnetization of the magnetic layer on the outside of the hemispherical ceramic is polarized, eddy current flows, and is heated by induction. The magnetic layer on the outside of the hemispherical ceramic is 20 m, which is very thin, so even a magnetic material with high permeability will not shield the magnetic field. The interior of the hemispherical ceramic is magnetized by the magnetic field.
半球形の内部の磁性体の層は外部の磁性体の層の分極の効果による磁界によって更に分極し、 渦電流が流れ、誘導加熱され、外側磁性体の層より高い温度に加熱される。 The hemispherical inner magnetic layer is further polarized by the magnetic field due to the polarization effect of the outer magnetic layer, causing eddy currents to flow, induction heating, and heating to a higher temperature than the outer magnetic layer.
磁性体の分極によって渦電流が生じ、磁化が誘導されることと、陶磁器内部に輻射する赤外線、 遠赤外線の影響によって磁気共鳴が誘導され、半円球の磁性体を塗布した陶磁器は渦電流との 相乗効果によって効率的に加熱される。また半径が小さいほど、磁性体の分極によって、渦電流 の電流の速度は早くなり、高い加熱効率となる。 The eddy current is generated by the polarization of the magnetic material, the magnetization is induced, and the magnetic resonance is induced by the influence of infrared rays and far infrared rays radiated inside the ceramic. It is heated efficiently by the synergistic effect. Also, the smaller the radius, the higher the eddy current speed due to the polarization of the magnetic material, and the higher the heating efficiency.
円筒状の陶磁器の内側と外側に磁性体を厚さ 20 μ ιηに層状に塗布した。陶磁器内部に磁界は マイクロ波加熱によって一様な磁界が生じており。そのことによって円筒形の磁性体がおかれて いることによって温度は陶磁器內部に輻射する赤外線の影響によって一様に陶磁器内部を拡散 し、一様に加熱される。 A magnetic material was applied in a layer form to a thickness of 20 μιη on the inside and outside of a cylindrical ceramic. A uniform magnetic field is generated by microwave heating inside the ceramic. As a result, since the cylindrical magnetic material is placed, the temperature is uniformly diffused inside the ceramic due to the influence of infrared rays radiated to the ceramic bowl and heated uniformly.
【0 0 6 3】 [0 0 6 3]
マイクロ波の波長を長いパイプの形状で熱輻射すると加熱加工を連続的な作業として利用 でき、 産業的応用範囲が広い。 又パイブから熱輻射するときに一側面から集中的に熱輻射 することから、 数本のパイプを組み合わすと中心部に熱波長が集められ、 熱効率の高い加 熱処理が出来る。 Heat radiation can be used as a continuous operation when microwave radiation is applied in the form of a long pipe, and the industrial application range is wide. In addition, when heat is radiated from a pipe, heat radiation is concentrated from one side, so when several pipes are combined, heat wavelengths are collected at the center, and heat treatment with high thermal efficiency can be performed.
日本ではマイクロ波が使用できる周波数が決められており、 2 . 4 5 GH z、 約 1 0 c m の波長である。 パイプの内径はこの波長以上でなければパイプの内部をマイクロ波は、 透 過しない。 マイクロ波をパイプ状の管の中を透過させ、 管の外周や内面に磁性体を燒結す ると磁性体によって波長転換し、 熱輻射する。 マイクロ波の波長を長い距離空間の間を正 確に漏洩無く伝播させるには、 到達点に強磁性体を設置し磁化が高い状態を維持すると安 定する。 図一 2は耐熱陶磁器を内径 1 0 5 mm外形 1 2 0 mm長さ 1 5 0 O mmのパイプの形状を 2本をつくり、 磁性体のマンガン亜鉛フェライト、 キュリー温度 2 0 0 °Cを粒子平均 1 0 μ ηιにして外部に平均 2 0 mの厚さで燒結した。 図一 3の構造は図一 2の形状と同じパ イブに、 直径 7 mm円形の凹面を 5 0 mm間隔で一列にカットした。 パイプの外周面全体 に磁性体を燒結した。 In Japan, the frequency at which microwaves can be used is determined, 2.45 GHz, and a wavelength of about 10 cm. If the inner diameter of the pipe is not longer than this wavelength, the microwave does not pass through the pipe. When microwaves are transmitted through a pipe-shaped tube and a magnetic material is sintered on the outer periphery or the inner surface of the tube, the wavelength is converted by the magnetic material and heat is radiated. In order to propagate microwave wavelengths accurately between long distance spaces without leakage, it is stable to install a ferromagnetic material at the arrival point and maintain a high magnetization state. Fig. 1 shows a heat-resistant ceramic with an inner diameter of 105 mm, an outer diameter of 120 mm, a length of 150 mm, and two pipes with a length of 150 mm, and magnetic particles of manganese zinc ferrite and a Curie temperature of 200 ° C. The average thickness was 10 μηι, and the outside was sintered with an average thickness of 20 m. The structure shown in Fig. 1 has the same shape as the shape shown in Fig. 1, but a circular concave surface with a diameter of 7 mm is cut in a row at intervals of 50 mm. A magnetic material was sintered on the entire outer peripheral surface of the pipe.
他に部品として外形 1 0 5 mm , 1 2 0 mmの半円球の陶磁器内面と表面に磁性体を燒結 した。 マイクロ波が発信する、 マグネトロンからの発振器は、 1 . 5 k wを利用し出力が 調整できる構造で、 マグネトロンから磁性体の間は導波管によって誘導した。 最悪の危険 性を考えパイプ全体をァノレミの管によつて力パーを付け漏涣を予防した。 In addition, a magnetic material was sintered on the inner surface and the surface of a semi-spherical ceramic with outer dimensions of 105 mm and 120 mm. The oscillator from the magnetron, which emits microwaves, has a structure that can adjust the output using 1.5 kW, and the space between the magnetron and the magnetic material is guided by a waveguide. Considering the worst danger, the whole pipe was clamped with anoremi pipe to prevent leakage.
円筒形のパイプの端には、 1 0 5 mm半円球の磁性体パイプの內側の入れを設置した。 マ グネトロンの出力を 0 . 2 k wにして 5分間加熱するとパイプの端の出口側の磁性体だけ が熱くなり、 パイプ全体に熱は広がらなかった。 At the end of the cylindrical pipe, a container on the heel side of a 105 mm hemispherical magnetic pipe was installed. When the magnetron output was 0.2 kW and heated for 5 minutes, only the magnetic material on the outlet side of the pipe became hot, and heat did not spread throughout the pipe.
次ぎに 0 . 5 k wに上げると半円球の磁性体は直ぐ高温になり、 緩やかにパイプ全体の温 度が上昇を始めた。 次ぎに l k wに上げ、 5分経過するとパイプの温度は全体に高温にな りパイプの温度は、 1 4 3 °Cを示した。 次ぎに半円球 1 2 O mmを外部に取り付け、 同じ 実験を行った。 その結果温度の変化は、 内部に半球形を入れる場合と変わらなかった。 但しパイプの一部に部分的に温度の変化があり、 一定ではなくパラツキが生じている。 こ のパラツキは、 パイプが手作りであり、 均一でないことから生じている現象である。 次ぎに図一 3で示す、 側面に一列に半円球の磁性体カツトをしているパイプを用いて同じ 実験を行った。 Next, when the temperature was raised to 0.5 kW, the hemispherical magnetic body immediately became hot, and the temperature of the entire pipe began to rise gradually. Next, the temperature was raised to l k w, and after 5 minutes, the pipe temperature became high overall, and the pipe temperature was 14 3 ° C. Next, a hemisphere 1 2 O mm was attached outside and the same experiment was performed. As a result, the change in temperature was the same as when a hemisphere was placed inside. However, there is a partial temperature change in a part of the pipe, which is not constant and has a fluctuation. This paralysis is a phenomenon that arises from the fact that pipes are handmade and not uniform. Next, the same experiment was performed using a pipe with a semi-spherical magnetic material cut in a row on the side, as shown in Figure 1-3.
マグネトロンの出力を 0 . 2 k wで 2分間加熱を始めるとパイプと導波管の近いマイク口 波を導波管から取り入れる、 入り口の場所の半円球の磁性体が温度が上がり全体には広が らなかった。 When heating of the magnetron output at 0.2 kw for 2 minutes is started, the microphone mouth wave close to the pipe and the waveguide is taken in from the waveguide. I didn't get it.
次ぎに 0 . 5 k wに出力を上げ、 5分間加熱すると導波管の近くの半円球の磁性体の部分 とパイプの端の出口側の磁性体が温度が上がり、全体の磁性体に温度の上昇は見られない。 次ぎに 1 k wに出力を上げ 5分経過するとパイプの端の磁性体と半円球の磁性体の場所か ら外部に向かって熱輻射が一方向に放射されていた。 このときの熱は 1 8 0 °Cを示した。 この実験から熱輻射を安定させるには一定のマグネトロンからの出力が必要である。 1、 5 0 O mmのパイプでは 1 k w以上の出力があると熱輻射はパイプ全体に安定する。 パイプから熱輻射する熱エネルギーをパイプを半円球の凹面にカツトして個々に磁場が生 じる構造にするとその磁性体から個々に熱輻射することが解り、 磁性体のカツトする構造 によつて熱輻射する方向を自由に設定することが解つた。 Next, when the output is increased to 0.5 kw and heated for 5 minutes, the temperature of the hemispherical magnetic material near the waveguide and the magnetic material at the outlet end of the pipe rises, and the temperature of the entire magnetic material increases. The rise of is not seen. Next, when the power was increased to 1 kW and 5 minutes passed, heat radiation was emitted in one direction from the location of the magnetic material at the end of the pipe and the magnetic material at the hemispherical shape. The heat at this time was 1800 ° C. From this experiment, a certain output from the magnetron is required to stabilize the heat radiation. With 1, 50 O mm pipes, if there is an output of 1 kW or more, thermal radiation stabilizes throughout the pipe. It is understood that when the heat energy radiated from the pipe is cut onto the concave surface of the hemisphere and a magnetic field is generated individually, it is understood that the heat is radiated individually from the magnetic material. Thus, it was found that the direction of heat radiation can be set freely.
長いパイプの形状においてもマイクロ波の波長は磁性体に吸収され波長の転換ができるこ とが立証でき、長さに応じた出力によつて長!/、構造でも熱輻射が安定することが示された。 【0 0 6 4】 Even in the shape of a long pipe, it is proved that the wavelength of the microwave can be absorbed by the magnetic material and the wavelength can be changed, and the output according to the length makes it long! /, It was shown that thermal radiation is stable even in the structure. [0 0 6 4]
0 0 6 1の実験及び 0 0 6 3の実験によって、 長いパイプの構造から安定し熱輻射し冷凍 及ぴ融雪も同様に効果があり、 長いパイプの形状で屋根の棟や融雪に必要な場所に設置す ることができる。 実験ではマンガン亜鉛フェライトの粉体を陶磁器に燒結したがマンガン 亜鉛フェライト等のフェライト素材をそのまま利用しても同様の効果が得られる。 フェラ ィトをそのまま利用するときはスパッタリング等を予防するためにテフロン加工しておく と屋外では鶏の糞等の予防効果がある。 From the experiment of 0 0 6 1 and the experiment of 0 0 6 3, the long pipe structure is stable and radiates heat, and refrigeration and snow melting are also effective. Can be installed. In the experiment, manganese zinc ferrite powder was sintered in ceramics, but the same effect can be obtained by using ferrite materials such as manganese zinc ferrite as they are. When using the ferrite as it is, make Teflon to prevent sputtering etc. And there is a preventive effect such as chicken droppings outdoors.
図一 4— Aは融雪に磁性体パイプを設置するときの屋根の位置構造を示す。 磁性体のパイ プにはマグネトロンから発振したマイクロ波を導波管から誘導する。 導波管からの誘導は それぞれの屋根構造に合わせて、軒下等に設置し、配電盤、コントローラーを屋內におき、 制御する。 Figure 1-A shows the position of the roof when magnetic pipes are installed in snowmelt. Microwaves oscillated from a magnetron are guided from a waveguide to a magnetic pipe. The guidance from the waveguide is installed under the eaves etc. according to the roof structure, and the switchboard and controller are installed in the roof and controlled.
磁性体のパイプは衝撃に弱く、 予防的効果としてアルミやステンレスのカバーを付けてお くと屋外では安全である。 アルミやステンレスの力パーを付ける場合は図一 4—Bの図に 示すように、 熱放射の方向に開口面を配列する。 Magnetic pipes are vulnerable to impact, and as a precautionary effect, it is safe outdoors if you have an aluminum or stainless steel cover. When using aluminum or stainless steel force pars, arrange the apertures in the direction of heat radiation as shown in Fig. 4-B.
【0 0 6 5】  [0 0 6 5]
0 0 6 3のパイプの磁性体から熱輻射する構造に置いて、 加熱する素材の量によってパイ プの数と設置の位置を複数に配列しその中央部分に加熱する素材が流れる構造を取ると連 続した加熱ラインができる。 コンベヤーによって流れる工程の場合は、 コンベヤーの上部 や下部から、 パイプから熱輻射する位置を中心部分にコンベヤーのラインに沿って複数に 照射すると加熱のむらが少なくなり、 安定した輻射ができる。  If you place the pipe in the structure that radiates heat from the magnetic material of the pipe 3 and arrange the number of pipes and the installation position in multiple according to the amount of material to be heated, the material to be heated flows in the center part A continuous heating line is created. In the case of a process that flows by a conveyor, if irradiation is performed along the conveyor line from the upper and lower parts of the conveyor to the central part at the position where heat is radiated from the pipe, uneven heating is reduced and stable radiation can be achieved.
図— 5は連続した製造ラインでのパイプの位置を示す。 Figure 5 shows the position of the pipes in a continuous production line.
このときに利用するパイプの磁性体は加熱物質が有する吸収波長から選択し最適温度はキ ユリ一温度で制御する。 The magnetic material of the pipe used at this time is selected from the absorption wavelength of the heating material, and the optimum temperature is controlled by the queue temperature.
有機物の多くは 2 . 5 /i n!〜 2 0 j mカ^^シゥム、 又はキチン質、 キトサンなどは 3 0 μ n!〜 6 0 /ζ ιη、 カルシウムと有機物の多い加熱物質に付いては、 2 . 5 ju m〜6 0 mの 波長を、 その他の無機物は◦. 1 /x m〜l μ ιηが波長の密度がピークになる素材を選択す ると熱効率が高くなる。 A lot of organic matter is 2.5 / in! ~ 2 0 j m ^^ for chim, chitin, chitosan, etc. 30 μ n! ~ 60 / ζ ιη, for heating materials rich in calcium and organic matter, the wavelength of 2.5 ju m ~ 60 m, for other inorganic substances ◦. 1 / xm ~ l μ ιη is the wavelength density Selecting a material that peaks will increase thermal efficiency.
連続した赤外線、 遠赤外線が熱輻射する構造によって、 食品の加工、 惣菜の加工、 野菜や 果物の殺菌、酵素の失活、色素の抽出、食品素材の抽出、化学合成、化学反応、化学分解、 重合、 溶融、 乾燥が温度と波長の領域とその密度によってできる。 Continuous infrared and far-infrared heat radiation structure, food processing, sugar beet processing, vegetable and fruit sterilization, enzyme deactivation, pigment extraction, food material extraction, chemical synthesis, chemical reaction, chemical decomposition, Polymerization, melting, and drying can be performed by temperature and wavelength range and density.
【 0 0 6 6】  [0 0 6 6]
従来マイクロ波を利用した釜の構造や回転釜の構造は直接マイク口波を照射して主に乾燥 等に利用されていた。 Conventionally, the structure of a pot using a microwave and the structure of a rotary pot have been used mainly for drying by directly irradiating a microphone mouth wave.
マイクロ波を利用し磁性体によって波長を赤外線、 遠赤外線の波長に転換し利用されてい ない。 直接金属にマイクロ波を照射するとスパッタリングしが生じ易い欠陥がある。 磁性体の表面にテフロン樹脂を加工し、 マイクロ波を照射するとスパッタリングせずにマ イク口波の波長を磁性体が吸収し、 赤外線、 遠赤外線の波長の転換し熱輻射する。 It is not used by converting the wavelength to infrared or far-infrared using a magnetic substance using microwaves. When a metal is directly irradiated with microwaves, there is a defect that tends to cause sputtering. When a Teflon resin is processed on the surface of a magnetic material and microwaves are irradiated, the magnetic material absorbs the wavelength of the microphone mouth wave without sputtering, and the infrared and far-infrared wavelengths are converted to radiate heat.
陶磁器に磁性体を燒結した容器の蓋を開けた状態で加熱するとスパッタリングを起こし、 その部分はプラズマ反応から一気に真っ赤に加熱され、 1、 0 0 o °cを越えることがある。 陶磁器の磁性体の表面をテフ口ン榭脂によつて表面加ェすると直接マイク口波を照射して も磁性体の表面では、 スパッタリングは見られなかった。 テフ oン榭脂加工によってマイ ク口波の波長が分極し電位差が生じないことがこの要因と考えられる。 Sputtering occurs when heated with the lid of a container with a magnetic material sintered in a ceramic, and that part is heated red at a stroke from the plasma reaction, and may exceed 1,00 ° C. When the surface of the ceramic material was heated with Teflon resin, no sputtering was observed on the surface of the magnetic material even when directly irradiated with the microphone mouth wave. This is thought to be due to the polarization of the microwave mouth wave caused by the teflon resin processing and no potential difference.
このことから磁性フヱライトを釜の構造に利用しテフロン加工すれば大型の釜、 圧力釜、 減圧釜、 回転釜として利用することが出来る。 This makes it possible to use it as a large hook, pressure hook, decompression hook, and rotary hook by using magnetic ferrite for the hook structure and teflon processing.
これまでマイク口波を利用した加熱では開放部分からマイクロ波が漏涣する心配があり、 コンべヤーなどで開放された構造は、 漏涣予防の構造が複雑で産業化が進まなかった。 マイクロ波を磁性体に吸収させる方法は、 既にマイクロ波の波長は磁性体によって波長転 換されており、 マイクロ波の漏洩の心配が無く、 開放型の構造で生産ラインが簡便に設計 できる。 図一 3のようにパイブに半円球のカツト面を付けておくとそれぞれのパイプから 必要とする方向にエネルギーが輻射でき、 コンベヤーによつて連続的に流す工程ではコン ベヤーの上にの加熱物質のラィン位置に熱輻射を集中させると熱効率の高い加熱処理が出 来る。 Up to now, there was a concern that microwaves would leak from the open part when heating using a microphone mouth wave, and the structure opened by a conveyor or the like had a complicated structure for preventing leaks and did not advance industrialization. In the method of absorbing microwaves in the magnetic material, the wavelength of the microwaves has already been converted by the magnetic material, and there is no concern about microwave leakage, and the production line can be easily designed with an open structure. As shown in Fig. 1, when a semi-spherical cut surface is attached to the pipe, energy can be radiated from each pipe in the required direction, and in the process of continuous flow through the conveyor, heating is performed on the conveyor. When heat radiation is concentrated at the line position of the material, heat treatment with high thermal efficiency can be achieved.
【0 0 6 7】  [0 0 6 7]
図一 6, 図一 7は、 釜構造や回転釜として大型にした場合の構造の内部を示す。 Fig. 6 and Fig. 7 show the interior of the hook structure and the structure when it is made large as a rotary hook.
図一 6は、 釜の内部を磁性フェライ トの表面にテフロン榭脂によって加工し、 櫈拌するフ インも磁性フ ライトによって作り、 その表面をテフロン樹脂加工した構造を示し、 撹拌 しながら、 フィンからも熱輻射し、 釜の内部とフィンからの熱輻射によって、 熱効率が高 くなる。 Fig. 6 shows a structure in which the inside of the kettle is processed on the surface of the magnetic ferrite with Teflon grease, and the stirring fin is also made with magnetic flight, and the surface is processed with Teflon resin. The heat efficiency increases due to heat radiation from the inside and heat radiation from the inside of the hook and the fins.
図一 7は、 ァノレミニゥムの内部に磁性フェライトを合板とその内部をテフロン樹脂加工し た構造を示し、 撹拌するフィンは磁性フェライトによって作り、 表面をテフロン樹脂加工 しマイクロ波の波長をスパッタリングを起こすことなく吸収させ、 波長を転換し熱輻射さ せる構造を示す。 Figure 1 shows a structure in which a magnetic ferrite plywood and an interior of Teflon resin are processed inside an anoroleuminum, the stirring fins are made of magnetic ferrite, and the surface is processed with Teflon resin to cause microwave wavelengths to be sputtered. It shows a structure that absorbs light without any change, changes wavelength, and emits heat.
マイクロ波をマグネトロンから導波管によって誘導し、 釜の蓋の場所から釜の中に導入し 照射する。 マイクロ波は小さな境拌するフィンを付けると周辺に拡散し磁性体の釜の內部 に照射する。 磁性体はテフロン加工されているとスパッタリングをせずに磁性体に吸収さ れ、 磁性体の組成によって波長転換をする。 大量の加熱する物質を入れる場合や乾燥する 場合は全体の温度を均一にするために釜の底に、 撹拌機図一 6図一 7を付け回転させなが ら加熱する。 撹拌機を回転させると釜の側面に沿つて加熱物質は立ち上がり加熱される釜 の側面に小さな撹拌機を付けると全体にかき混ぜられ、 一層安定した加熱が進む。 Microwaves are guided from the magnetron by a waveguide, and introduced into the kettle from the lid position and irradiated. Microwave diffuses to the periphery when a small stirring fin is attached and irradiates the heel of the magnetic pot. If the magnetic material is processed with Teflon, it is absorbed by the magnetic material without sputtering, and the wavelength is changed depending on the composition of the magnetic material. When adding a large amount of material to be heated or drying, heat the agitator with a stirrer at the bottom of the kettle and rotate it to make the whole temperature uniform. When the stirrer is rotated, the heated material rises along the side of the kettle, and if a small stirrer is attached to the side of the kettle to be heated, the whole is stirred, and more stable heating proceeds.
この構造で減圧すると乾燥が早くなり、 加圧すると加熱時間が短縮する。 If the pressure is reduced with this structure, drying will be faster, and if the pressure is increased, the heating time will be shortened.
減圧の場合は図一 8で示すように真空ポンプによって脱気しながら一定温度で加熱すると 乾燥が安定する。 加圧の場合は蓋の密閉度を上げ内部の圧力が漏れない構造を作る。 マイクロ波から磁性体によって波長の転換するときの波長の領域は磁性体の組成から選択 する。 主な組成の吸収波長は、 有機物やアミノ酸及び水を含む素材の吸収波長は 2 . 5 β m〜 2 0 i ra、 の場合はマンガンフェライト、 マンガン亜鉛フェライト、 ニッケノレフェラ イ ト、 ニッケル亜鉛フェライ ト、 ニッケルマンガンフェライ ト等である。 カルシウムゃキ チン質、 キトサンなどは 3◦ !〜 6 0 z m、 0 0 4 3の磁性体によって、 無機物の多く は 0 . 2 i m〜 l . 0 i m、 0 0 4 5の磁性体によって、 カノレシクムにアミノ酸やタンパ ク質、 脂質が多い素材は 2 . !〜 6 0 /z m、 0◦ 4 3の磁性体を選択する。 In the case of reduced pressure, drying is stabilized by heating at a constant temperature while degassing with a vacuum pump as shown in Fig. 8. In the case of pressurization, the structure of the lid is raised and the internal pressure does not leak. The wavelength range when the wavelength is changed from microwave to magnetic material is selected from the composition of the magnetic material. The absorption wavelength of the main composition is from 2.5 β m to 20 i ra for materials containing organic matter, amino acids and water, and manganese ferrite, manganese zinc ferrite, Nikkeno ferrite, nickel zinc ferrite in the case of And nickel manganese ferrite. Calcium and chitosan, chitosan, etc. are 3◦! Depending on the magnetic substance of ~ 60 zm, 0 04 3, most of the inorganic substances are 0.2 im ~ 1 .0 im, 0 0 45 5 and the magnetic substance of canorecicum is rich in amino acids, proteins, and lipids. 2! Select a magnetic material of ~ 60 / z m, 0◦ 43.
加熱する素材が有する吸収波長と磁性体が波長転換する波長が整合すると波長は同調し、 吸収共鳴が生じ早く加熱される。 有機物、 無機物、 カルシウム、 キチン質等によって磁性 体の組成を選択する。 When the absorption wavelength of the material to be heated matches the wavelength at which the magnetic substance changes the wavelength, the wavelength is tuned, and absorption resonance occurs and heats up quickly. The composition of the magnetic material is selected according to organic matter, inorganic matter, calcium, chitin, etc.
熱効率を上げるには、 0 0 5 8で示した凹面を釜の底に魚鱗状に設置すると釜の表面積が 大きくなり、 加熱効率は早くなる。 In order to increase the thermal efficiency, if the concave surface indicated by 0 0 5 8 is placed in a fish scale shape on the bottom of the kettle, the surface area of the kettle increases and the heating efficiency becomes faster.
図一 8は、 回転釜を用いてマイク Ο波を磁性体によつて波長転換し加熱する場合のマイク 口波発生から減圧、 乾燥の装置を示す。 マイクロ波発生器によってマイクロ波を発生し、 導波管から釜の內部にマイクロ波を導入 する。 マイクロ波を上部のフィンによって、 横拌する。 釜はマンガン亜鉛フェライトによ つて製作する。 内部はテフロン加工によって表面処理をおこなう。 鍋のそこには、 回転フ インを付け乾燥物質を撹拌する。 撹拌すると釜に沿って乾燥物質が立ち上がり、 側面から チョッパーモーターから側面のフィンで撹拌し、 均一化を進める。 乾燥物質によって、 低 温で真空にして撹拌すると、 均一な乾燥が得られる。 寘空ポンプによって、 脱気する。 減圧の場合は、 テフロン樹脂素材の乾燥、 食品素材の乾燥、 殺菌、 酵素の失活、 色素の宗 出、 香料の香り成分の抽出、 加圧の場合、 均一な加熱、 組成分の抽出、 化学反応、 化学合 成、 重合、 溶融、 反応等に利用できる。 Figure 1 shows a device for reducing the pressure and drying from the generation of the microphone mouth wave when the microwave wave is converted by a magnetic material and heated using a rotary pot. A microwave is generated by a microwave generator, and the microwave is introduced from the waveguide into the hook of the hook. Stir the microwaves with the fins on the top. The pot is made of manganese zinc ferrite. The inside is surface-treated by Teflon processing. There is a rotating fin in the pan to stir the dry substance. When agitated, the dry substance rises along the kettle, and from the side, agitates with the fins on the side from the chopper motor to promote homogenization. Depending on the dry substance, stirring in vacuum at low temperature will result in uniform drying. Deaerate with a vacuum pump. In the case of decompression, drying of Teflon resin material, drying of food material, sterilization, deactivation of enzyme, extraction of pigments, extraction of fragrance components of fragrances, in the case of pressurization, uniform heating, extraction of components, chemical Can be used for reaction, chemical synthesis, polymerization, melting, reaction, etc.
【0 0 6 8】  [0 0 6 8]
図— 9は磁性体を陶磁器の内部に燒結し、 陶磁器の内部の底の上に簀の子を敷いた構造に なっている。 黉の子には磁性材料を塗布し焼結してあり、 簧の子には凹面上の穴を魚鱗状 に空けている。 図一 1 0は磁性体を塗布焼結してある凹面状の穴の部分の面積によって、 渦電流損によつて誘導加熱され、 熱輻射によって加熱効率が上がる。 Fig. 9 shows a structure in which a magnetic material is sintered inside a ceramic, and a cocoon is placed on the bottom inside the ceramic. The salmon is coated with a magnetic material and sintered, and the cormorant has a concave hole in a fish scale shape. Figure 10 shows that the area of the concave hole where the magnetic material is coated and sintered is induction-heated by eddy current loss, and the heating efficiency is increased by thermal radiation.
この簀の子を入れた構造にして直接、 魚類、 畜産、 野菜、 食品素材を入れ加熱すると、 耝 成の抽出や分離、 水分分離、 蒸し工程、 乾燥、 が一定温度のなかで波長の領域を決め、 波 長密度をあげて波長振動で簡便に早く、 成分の分離ができる。 When the fish, livestock, vegetables, and food ingredients are directly placed and heated in the structure containing this cocoon candy, the extraction and separation of moisture, water separation, steaming process, drying, and the temperature range are determined within a certain temperature range. The component can be separated easily and quickly by increasing the wavelength density with wavelength oscillation.
磁性体の組成は中に入れる物質が有する吸収波長から選択する。 吸収波長の選択は Q 0 6 6によって示している選択方法と同じである。 The composition of the magnetic material is selected from the absorption wavelength of the substance contained therein. The selection of the absorption wavelength is the same as the selection method indicated by Q 0 6 6.
魚、 畜産物の骨やから成分を抽出するときは、 この中で一定時間加熱するとあくが先に除 かれその後に温水に入れ加熱すると短時間に骨に入っている成分が抽出でき、 あく取りの 作業のために継続し作業に付く必要がない。 When extracting components from bones of fish and livestock products, if they are heated for a certain period of time, they will be removed first, and then heated in warm water to extract the components contained in the bones in a short time. There is no need to continue to work for this work.
【0 0 6 9】  [0 0 6 9]
図一 9容器又は図一 1 0のの容器の構造に磁性体カルシウムフェライトを粒子平均 1 0 /i mの大きさで粉体にして容器の内側に平均厚さ 2 0 /X mで燒結した。 カノレシゥムフェライ トのキュリー温度は 2 4 0 °Cである。 In the structure of the container shown in FIG. 9 or the container shown in FIG. 10, the magnetic substance calcium ferrite was powdered with an average particle size of 10 / im and sintered inside the container with an average thickness of 20 / Xm. The Curie temperature of canoleum ferrite is 2400 ° C.
この容器のなかに牡蛎殻 1 k gを入れ、 電子レンジ◦. 7 k wで 5分間加熱した、 温度は 8 2 °Cに上がっていた。 取り出して、 手で割れる状態を確認したが、 まだ手で簡単に割れ る状態ではなかった。 その後 5分間、 追加し加熱した。 牡娠殻の温度は 1 5 0 °Cに上がつ ていた。 低温になった状態で手で割ると簡単にパリパリと煎餅が割れる状態に変化した。 次ぎにホタテの貝殻を 1 k gを同じ容器に入れ、 電子レンジの中に入れ、 1 0分間加熱し た牡蛎殻と同じように手で簡単にバラバラに割れることができた。 In this container, 1 kg of oyster shell was put and heated in a microwave oven ◦ 7 kW for 5 minutes. The temperature rose to 82 ° C. It was taken out and confirmed to be broken by hand, but it was not yet easily broken by hand. After that, it was heated for an additional 5 minutes. The temperature of the oyster shell rose to 1550 ° C. When it was broken down by hand in a low temperature state, it changed to a state where crackles and rice crackers could be easily broken. Next, 1 kg of scallop shells were placed in the same container, placed in a microwave oven, and easily broken apart by hand, just like an oyster shell heated for 10 minutes.
この現象は、 カルシウムフェライトを磁性体として利用するとカルシウムが吸収する波長 の領域、 3◦ !!!〜 6 0 μ ιηが、黒体輻射で示されている温度において、波長の領域では、 密度を示している範囲を越えて、 熱輻射され、 貝殻のカルシウム組成構造が変化している ことを示している。 貝殻をガスコン口の火の上に乗せ、 5 0 0 °Cの温度の場所で 1 0分間 加熱しても、 貝殻の薄い場所しか割れる状態にはならない。 次ぎに 1、 0 0 0 ¾の温度の 状態に設定し、 1 0分間加熱すると、手でパラパラと砕ける状態になった。 この現象から、 黒体輻射で 5 0 0 °Cになっても波長の領域 3 0 ii m〜6 0 x mの波長の密度は 1 0— 2 (W / c m 2 , ja m) を越えない又 5 0 0 °Cの状態ではカルシウムは分解しない。 カルシウム が分解する温度は 1、 00 o°c以上になって始めて分解が始まる。 この時の波長の密度は 10— 2 (W/cm2. m) 以上である。 この事からカルシウムフェライ トがマイクロ波 によって波長転換し輻射している波長の密度は、 黒体輻射の定義よりも低い温度 180°C 〜250°Cの状態のなかで波長の密度は 10— 2 (W/cm2. m) 以上になっているこ とが証明できる。 This phenomenon occurs when calcium ferrite is used as a magnetic substance, in the wavelength range where calcium absorbs, 3◦ !!! ~ 60 μ ιη is the density in the wavelength range at the temperature indicated by blackbody radiation. Exceeding the indicated range, it is shown that heat is radiated and the calcium composition structure of the shell changes. Even if the shell is placed on the gas con- tainer and heated at a temperature of 500 ° C for 10 minutes, it will break only at the thin shell. Next, the temperature was set to 1, 0 00 ¾ and heated for 10 minutes. From this phenomenon, even when the black body radiation reaches 500 ° C, the wavelength density in the wavelength range from 30 0 i m to 60 xm does not exceed 10 — 2 (W / cm 2 , ja m). Calcium does not decompose at 500 ° C. calcium Decomposition begins only when the temperature at which it decomposes exceeds 1,00 ° C. The density of the wavelength at this time is 10- 2 (W / cm 2. M) or more. For this reason, the density of the wavelength of the calcium ferrite that is converted and radiated by the microwave is 10 to 2 in the state where the temperature is 180 ° C to 250 ° C, which is lower than the definition of blackbody radiation. It can be proved that it is more than (W / cm 2 .m).
次ぎにこの容器を利用してサンマの骨付きを加熱したサンマは 1匹、 180 gを 2匹入れ 4分間加熱した。 サンマの小さな骨はそのまま食べられ状態に軟らかくなつていた。 魚の小骨は、 4分程度加熱すると食べられ、 軟らかく砕ける状態に分解していることが示 された。 Next, using this container, the saury that had been heated with saury bones was heated in 4 min. The small bones of saury were eaten as they were and softened. Fish ossicles were eaten when heated for about 4 minutes and were shown to have broken down into a soft, crushed state.
次ぎに図一 9又は図一 10の容器 2つに、 カノレシゥムフェライト 50%、 マンガン亜鉛フ ヱライトを 50%とカノレシゥムフェライ ト 20%、 マンガン亜鉛フェライ ト 80%を同じ 10 mの粒子に粉砕し、 図— 9の容器の内面に平均 20 imの厚さで燒結した。 Next, in the two containers shown in Fig. 9 or Fig. 10, 50% canoleum ferrite, 50% manganese zinc ferrite, 20% canoremium ferrite, and 80% manganese zinc ferrite are the same 10 m. The particles were pulverized and sintered on the inner surface of the container in Figure 9 with an average thickness of 20 im.
カノレシゥムフェライト並びにマンガン亜鉛フェライトを燒結した容器との骨の加熱の状態 を比較した。 The condition of bone heating was compared with the container sintered with canoresim ferrite and manganese zinc ferrite.
サンマ 180 g 2匹を入れそれぞれで 4分間加熱してみた。 サンマの小骨はカノレシゥムフ ェライ ト 20%と 50%によって加熱した場合のサンマの小骨は、 食べられる状態に軟ら かくなり、 骨の柔らかさに大きな差が生じていない。 そのまま嚙み砕ける状態であった。 眛覚は大変良く、 かみ碎く感触はこのパランスが最適であった。 カルシウムフェライト 1 00 %の容器で加熱するとサンマの小骨は食べられるが、もう一つ美味しさに差が生じた。 カノレシゥムフェライト 50%及びカノレシゥムフェライト 20%と明らかな差が生じる。 加 熱しているサンマにはアミノ酸類が多い 2. 5 /zm〜20 /zmの波長の密度が欠かせない 条件であり、 骨の內部の組成を加熱する場合は、 味覚の較差から見ても明らかに波長が持 つ領域との較差が生じる。 この事から骨の內部の組成を抽出するには、 マンガン亜鉛フエ ライト等が持つ波長の領域 2. 5 11!〜 20 //mの波長密度が高いフェライトを 50%以 上入れた配合するのが最適と考えられる。 Two saury 180 g were put and heated for 4 minutes each. Saury ossicles, when heated by 20% and 50% canoleum ferrite, are softer to eat and have no significant difference in bone softness. It was in a state of being crushed as it was. The sense of sensation was very good, and this balance was optimal for the chewing feel. When heated in a 100% calcium ferrite container, the small bones of saury can be eaten, but another difference in taste. There is a clear difference between 50% canoresitic ferrite and 20% canoresitic ferrite. Heated saury has many amino acids 2.5 Density of wavelengths from 5 / zm to 20 / zm is an indispensable condition. When heating the composition of the bone heel, Clearly, there is a difference from the wavelength range. To extract the composition of the heel of the bone from this, the wavelength region of manganese zinc ferrite etc. 2.5 11! It is considered optimal to add 50% or more of ferrite with a high wavelength density of ~ 20 // m.
子供の魚嫌いの一つが小骨にあり、 カノレシゥムフェライト 20%を入れ、 他をマンガン亜 鉛フヱライトに配合するとそのまま小骨を除くことなく食べられる。 One of the children's dislikes about fish is small bones, which can be eaten without removing small bones by adding 20% canoleum ferrite and the other mixed with manganese zinc ferrite.
魚の加熱にはカルシウムの摂取を兼ねて効果的な調理加熱となる。 The cooking of fish is an effective cooking heating that also serves as calcium intake.
次ぎに鶏の骨を 2羽分を図一 9の容器にルシゥムフェライト 100%、 カルシウムフェラ イ ト 20%とマンガン亜鉛フェライト 80%、 カルシウムフェライト 50%とマンガン亜 鉛フェライト 50%、 カノレシゥムフェライト 0%を平均粒子 10 mに粉砕加工し容器に それぞれ燒結した容器で、 5分間加熱し、 その後あくを取り、 60°Cのお湯 1、 500 c cに 10分間、 電子レンジの出力 0. 3 kwの状態で、 出汁の抽出状態を確認した。 どの 磁性体もあくが先に飛び出し、 あくになる部分と水分、 一部の脂肪を含むエキスが先に抽 出する。 あくになる成分が始めの加熱で多く抽出するのは、 カノレシゥムフェライト 20% と 50%はほぼ同程度の量 40 gが抽出された。 カルシウムフヱライト◦%が一番少なく 25 g、 次ぎにカルシウムフェライト 100%が 28 gである。 このことからあくになる 成分は、 カルシウムの波長振動とアミノ酸類の波長振動によって抽出しており、 カルシゥ ムフヱライト、 マンガン亜鉛フェライトの単独では組成全体には波長の振動が十分ではな いことを示している。 その後それぞれを加熱した後の味覚検査では、 カルシウムフェライ ト 20%、 50%の加熱後の水分には濁りが無く透明なエキスが抽出できた。 カルシウム フェライト 0%とカノレシゥムフェライト 100%は一定の透明感はあるがぞれぞれ色調に 違いがあり、 カルシウムフェライト 100%は少し骨の香りがあり、 カノレシゥムフェライ ト 0 %は鶏独特のこくが少ない味覚である。 Next, two chicken bones are placed in the container shown in Fig. 9 in 100% lucium ferrite, 20% calcium ferrite, 80% manganese zinc ferrite, 50% calcium ferrite, 50% manganese zinc ferrite, canolesi In a container in which 0% lumferrite is pulverized to an average particle size of 10 m and sintered in each container, heat for 5 minutes, then remove the water, heat to 60 ° C for 1 minute, 500 cc for 10 minutes, microwave output 0 The extraction status of the broth was confirmed at 3 kw. Every magnetic substance jumps out first, and the extract containing the part that gets wet, moisture and some fat is extracted first. The amount of odorous components extracted by the first heating was approximately 40 g, which was almost the same for 20% and 50% chanoleum ferrite. Calcium ferrite ◦% is the least 25 g, followed by 100% calcium ferrite 28 g. The components that become unclear are extracted by the wavelength vibration of calcium and the wavelength vibration of amino acids, and it is shown that calcium fluoride and manganese zinc ferrite alone do not have sufficient wavelength vibration for the entire composition. Yes. Then, in the taste test after heating each, 20% and 50% of the water after heating had no turbidity and a transparent extract could be extracted. Calcium Ferrite 0% and Canoleum Ferrite 100% have a certain transparency, but each has a different color tone, Calcium Ferrite 100% has a little bone scent, and Kanolesum Ferrite 0% Is a unique taste of chicken.
骨等カルシウム組成に含有しているエキスの抽出には、 マンガン亜鉛フェライトとカ ン ゥムフェライトの配合 5 : 1又は 10 : 1が効果的な磁性体の配合パランスである。 カルシウムフェライ トと同様にカノレシゥムを含むフェライトは同様の波長の镇域をマイク 口波を吸収すると波長転換し熱輻射する。 For extraction of extracts contained in the calcium composition such as bone, the blending ratio of manganese zinc ferrite and manganese ferrite 5: 1 or 10: 1 is an effective blending ratio of magnetic substances. Similar to calcium ferrite, ferrite containing canoleum converts the wavelength in the same wavelength region and absorbs the microphone mouth wave, and radiates heat.
図一 1 1の装置を用いて、 カノレシゥムを Μη— Ζ ηフェライトの磁性素材に重量の 10% 及び 20%添加し、 溶融、 合金化した磁性素材を塗布し、 1250 で焼結した 2種類の 陶磁器とカルシウムを含まない、 同一種類の Μη— Ζηフェライトの磁性素材を塗布し、 焼結した陶磁器の内部にビーカーを置き、 ビーカー内にカルシウムイオン及びマグネシゥ ムイオンを含むイオン値 1 100 pmの水溶液 100 c cを入れ、 マイクロ波 70〇W によって一分間、 350Wによって 5分間加熱し温度上昇、 イオン値を比較した。 実験結 果のデータを図一 1 2, 1 3 に示す。 温度上昇はカルシウムを添加した磁性素林を使用 した陶磁器の方がカルシクム無添加の磁性素材を使用した陶磁器よりも 10°C以上同一時 間で上昇し、 カルシゥムイオン及びマグネシゥムイオン値はカルシゥムを添加した磁性素 林を使用した陶磁器は、 カルシウム無添加の陶磁器より約 10%程イオン値は高く、 温度 上昇、 イオン値ともカルシウム 10%を添加した陶磁器が最高値を示した。 カルシウムを Mn-Znに添加し燒結させた磁性材料にマイク口波を照射させることによつて黒体輻射 以上の波長密度が輻射し、 水の中のカルシウム、 マグネシウムイオンと同調し、 共鳴し加 熱効率が上がることが示された。 また轧製品、 大豆を各 100 c c上記の実験方法で加熱 すると、 700Wで一分間、 350Wで 5分間の加熱では C aの含有率 10%の陶磁器を 使用した方法が同一時間内で温度上昇は一番早く、 Mn— Znフヱライトの磁性材料のみ の加熱と比べ、 温度上昇は 10 °Cほど異なり、 加熱効率は 90 °Cまでの温度上昇で時間は 約 10%改善された。 Fig. 11 Using the apparatus shown in Fig. 11, two types of canoleum were added to the magnetic material of Μη- Ζ η ferrite by adding 10% and 20% of the weight, applying a molten and alloyed magnetic material, and sintering at 1250. Apply the same kind of Μη- Ζη ferrite magnetic material without ceramic and calcium, place a beaker inside the sintered ceramic, and an aqueous solution with an ion value of 1 100 pm containing calcium ions and magnesium ions in the beaker 100 cc was added, heated for 1 minute by microwave 700OW, and heated for 5 minutes by 350W, the temperature rose, and the ion value was compared. The data of the experimental results are shown in Figs. The temperature rise is higher at the same time by 10 ° C or more for ceramics using magnetic forests with added calcium than for ceramics without added calcium, and calcium ions and magnesium ions are Ceramics using the added magnetic forest had a higher ion value by about 10% than ceramics without calcium, and the temperature rose and the ionic value showed the highest value for ceramics with 10% calcium added. By irradiating a Mic-Zn calcium material with a Mic mouth wave, a wavelength density higher than that of blackbody radiation is radiated, synchronized with calcium and magnesium ions in water, and resonated. It has been shown that thermal efficiency is increased. In addition, when 100 cc each of the cocoon products and soybeans were heated by the above experimental method, the method using ceramics with a Ca content of 10% did not increase in temperature within the same time when heated at 700 W for 1 minute and 350 W for 5 minutes. The earliest, compared to heating only the magnetic material of Mn—Zn ferrite, the temperature rise was different by about 10 ° C, and the heating efficiency increased to 90 ° C and the time was improved by about 10%.
【0070】  [0070]
鶏冠からはタンパク質の原料、 ムコ多糖体が多く含有し、 なかでも高分子ヒアルロン酸の 健康食品の原料が抽出されている。 高分子のヒアルロン酸は水溶性の成分であり、 これま では粉砕し、 エチルアルコールに加水し加熱され抽出されている。 波長による抽出では、 水分を加えて加熱する必要はなく、 粉砕せずにそのままの状態で、 直接図一 9容器の中に 入れ、 容器からマイクロ波によって輻射する波長の領域を 2. 5 /ζιη〜60 μιηに設定し 最適温度をタンパク質の最適温度 60°C〜80 で波長振動させると短時間の鶏冠から分 離する。 この時最後の仕上げの段階で殺菌が必要な 1 30 °Cの温度帯で 3秒から 10秒間 維持すると完全な殺菌が得られる。 A large amount of raw materials for proteins and mucopolysaccharides are extracted from chicken crowns. Among them, high-molecular-weight hyaluronic acid health foods are extracted. High molecular weight hyaluronic acid is a water-soluble component, so far it has been crushed, added to ethyl alcohol, heated and extracted. In the extraction by wavelength, it is not necessary to add water and heat, so it is not pulverized and directly put into the container shown in Fig. 9. The wavelength range radiated by microwave from the container is 2.5 / ζιη When set to ~ 60 μιη and the optimal temperature is oscillated at a wavelength of 60 ~ 80 ° C, the protein is separated from the short crown. At this time, if sterilization is required at the final finishing stage at 1300 ° C for 3 to 10 seconds, complete sterilization can be obtained.
図一 9又は図一 10の磁性体カルシウムフェライト、 マンガン亜鉛フェライトの配合比率 50%を利用し、 1 k gの鶏冠を電子レンジ◦. 7 kwで加熱した。 図一 9又は図一 10 の箦の子の下には耐熱ガラスの容器を入れ取り出しやすいようにした。 加熱時間 7分で品 質温度が 70 になり出力を 0. 3 kwに切り替え、 10分間継続した。簧の子の下には、 あくの沈殿層と液体が 2層になり沈殿している。 鶏冠を取り出し、 抽出したエキスをその 後 0 . 7 k wで 1分間加熱し殺菌した。 抽出したエキスの重量は、 2 4 7 gこの中に粉末 のゲル化剤ゼライスを入れ軽く横拌し沈殿させゲル化した。ゲル化の状態は 3層に分;^れ、 上の清澄水は高分子タンパク質、 ムコ他糖体、 下の層の清澄水は低分子のタンパク質及び 水分、 白く白濁した沈殿層は、 あくの部分であり、 簡単にペーパーナイフで切り分けられ る。 A 1 kg chicken crown was heated in a microwave oven at 7 kw using the blend ratio of 50% of the magnetic substance calcium ferrite and manganese zinc ferrite shown in Fig. 9 or Fig. 10. A heat-resistant glass container was placed under the cage in Fig. 9 or Fig. 10 for easy removal. After 7 minutes of heating, the quality temperature reached 70 and the output was switched to 0.3 kw and continued for 10 minutes. Underneath the cocoons, there are two layers of liquid sediment and liquid. Remove the chicken crown and extract the extracted extract Thereafter, the mixture was sterilized by heating at 0.7 kw for 1 minute. The weight of the extracted extract was 2 47 g, and the gelling agent jelly rice in powder form was put in this and lightly stirred to precipitate and gelled. The gelation state is divided into three layers; the upper clear water is high molecular protein, muco other sugars, the lower clear water is low molecular protein and moisture, and the white and cloudy precipitate layer is It is a part and can be easily cut with a paper knife.
一回の加熱の工程でタンパク質、 ムコ多糖体が分離でき、 この中には、 ヒアルロン酸の低 分子、 高分子、 コンドロイチン、 へパリン、 キチン、 コラーゲンが含有しており、 そのま ま有効成分として健康食品化粧品素材として利用することが出来る。 Proteins and mucopolysaccharides can be separated by a single heating process, which contains small molecules of hyaluronic acid, macromolecules, chondroitin, heparin, chitin, and collagen as active ingredients. It can be used as a health food cosmetic material.
これらの成分は品質劣化が早い難点がある。 始めの殺菌加熱で、 残留菌に対する後処理の 必要がなく、 ゲル化剤によって固定化するとチノレド帯で品質の長期間安定が得られる。 ゲル化剤は用途によって選別することが出来、 カラギナン、 寒天なども効果的な方法であ り、 食品、 化粧品素材に利用できる。 These components have a drawback of rapid quality deterioration. The initial sterilization heating eliminates the need for post-treatment of residual bacteria. Immobilization with a gelling agent provides long-term quality stability in the chinoredo zone. Gelling agents can be selected according to their use, and carrageenan and agar are also effective methods and can be used for food and cosmetic materials.
【0 0 7 1】  [0 0 7 1]
図一 9の構造で磁性体を燒結しない容器の中に直径 9 O mniの小さな耐熱陶磁器の容器を 入れ温度の上昇を確認した。 2つの小さな耐熱陶磁器の内部に FeAl並びにマグネタイト を平均粒子 1 0 /x mにして平均の厚さ 2 0 μ ηιで燒結した。 FeAlやマグネタイトは短時間 に高温になるために大きな耐熱容器が必要であり、 図一 9の容器の構造を耐熱容器として 利用し、 簧の子の部分を取り除き、 中に小さな耐熱陶磁器の容器を入れ、 電子レンジ 0 .The temperature rise was confirmed by placing a small heat-resistant ceramic container with a diameter of 9 omni in a container with the structure shown in Fig. 9 in which no magnetic material was sintered. Inside the two small heat-resistant ceramics, FeAl and magnetite were average particles 10 / x m and sintered with an average thickness of 20 μ ηι. FeAl and magnetite require a large heat-resistant container in order to reach a high temperature in a short period of time. Use the container structure shown in Fig. 9 as a heat-resistant container, remove the cocoon bar, and place a small heat-resistant ceramic container inside. Put microwave oven 0.
5 k wで加熱した。 温度計は白金の熱電対で計測した。 6 0秒経過すると FeAlを燒結した 容器の温度は 8 4 0 °Cを示し、 マグネタイトの容器は 7 6 0 °Cを示した。 1 0 0秒後は 1 4 8 0 °Cと 1 1 3 0 °Cを示し、 その後は計測が困難であった。 FeAlのコップの中に鉄の粉 体に 7 %の割合で石灰を入れ撹拌し、 合計 1 0 0 gにして、 電子レンジの外部からテフ口 ン管によって窒素ガスを入れ大きな容器の内部と小さな容器の内部に充満させ、 電子レン ジ 0 . 5 k w加熱した。 3 0 0秒で 1 4 8 0 °Cを示し、 弱に切り替え 3 5 0 w野状態にし て温度状態を均一に保ち 1 0分後に、 強に切り替え、 ◦. 7 k wで 5◦秒間、 後に取り出 した。 鉄粉と石灰が溶融し結晶構造となつていた。 Heated at 5 kw. The thermometer was measured with a platinum thermocouple. After 60 seconds, the temperature of the FeAl sintered container was 840 ° C, and the magnetite container was 760 ° C. After 10:00 seconds, it showed 1480 ° C and 1 1300 ° C, after which it was difficult to measure. In a FeAl cup, put lime at a rate of 7% in a powder of iron and stir to make a total of 100 g. Add nitrogen gas from the outside of the microwave oven with a Teflon tube and inside the large container. The inside of the container was filled and heated by 0.5 kw electron range. Show 1 4 80 ° C in 3 00 seconds, switch to weak 3 5 0 w Keep field temperature uniform to maintain temperature, switch to strong 10 minutes later, ◦ 7 kw for 5 seconds, later Removed. Iron powder and lime melted to form a crystal structure.
短時間に鉄と石灰から結晶が可能であることが示された。 It was shown that crystallization from iron and lime is possible in a short time.
【0 0 7 2】  [0 0 7 2]
図一 9又は図一 1◦の簀の子を入れた容器で磁性体はマンガン亜鉛フェライト、 キュリー 温度 2 0 0 °Cを利用し、 胄果物の殺菌及びリンゴの皮の加熱実験をおこなった。 Fig. 9 or Fig. 1 In a container with 1 ◦ cocoons, the magnetic material was manganese zinc ferrite and Curie temperature was 20 ° C.
電子レンジは、 1 k wの出力で出力が調整できる構造を利用した。 The microwave oven uses a structure that can adjust the output with 1 kW output.
青果物は表面殺菌するとそのまま青果流通に利用でき、 加熱が過ぎると青果としての価値 を損なう。 リンゴやみかんの皮は、 酵素を失活させ、 色素を残すと香料、 色素剤等の利用 価値が高い。 殺菌や酵素の失活は処理量と波長の密度が大切で、 表面温度が如何に早く上 がり、 温度による殺菌が出来かである。 温度が 3 0〜 4 0 °Cの場合をそのままにすると酵 素の活性が進み逆に菌数は增加する。 When fruits and vegetables are sterilized, they can be used directly for the distribution of fruits and vegetables, and when heated, the value of fruits and vegetables is impaired. Apples and tangerine peels have high utility value for flavors, coloring agents, etc., if the enzyme is inactivated and the pigment is left behind. For sterilization and enzyme deactivation, the amount of processing and the density of the wavelength are important, and how quickly the surface temperature rises and sterilization by temperature is possible. If the temperature is kept between 30 and 40 ° C, the enzyme activity increases and the number of bacteria increases.
薬品の殺菌は強い薬品を使うと素材が変質し、 菌の耐性が作られることがおおく、 弱い濃 度では残留するが、 低濃度のなかで異なる殺菌方法を繰り返し環境変化を操り返すと殺菌 効果が高まることが多く、 耐性の強い菌が生存することは少ない。 The sterilization of chemicals changes the material when strong chemicals are used, and the resistance of bacteria is created. It remains at low concentrations, but it can be sterilized by repeating different sterilization methods in low concentrations and repeating environmental changes. In many cases, highly resistant bacteria rarely survive.
温度による殺菌では、 1 0 0 °C以上 2 0秒間、 2 0 °C以下 2 0秒間、 1 0 0 °C以上 2 0秒 間の環境が作られると殺菌効果は高くなり、 同様に酵素の失活も可能である。 この環境を 作り出すことが大変困難である。 For sterilization by temperature, 100 ° C or higher 20 seconds, 20 ° C or lower 20 seconds, 100 ° C or higher 20 seconds When the environment is created, the bactericidal effect is enhanced, and the enzyme can be deactivated as well. Creating this environment is very difficult.
早く高温に立ち上がるには、 始めの出力が大切であり、 量や容積のパランスで輻射熱が如 何に全体に広がるかにある。 In order to quickly rise to high temperatures, the first output is important, and how the radiant heat spreads over the entire volume and volume.
実験ではパレイショを利用し、 表皮を洗い、 うつすら水部が付いている状態で始めた。 パレイショは 600 g容器は図— 9又は図一 10の容器を利用し、 磁性体はマンガン亜鉛 フェライト、 キュリー温度 200を利用した。 早い立ち上がりが必要なために始めに容器 を 2分間加熱し、 容器の温度を上げて実験をした。 In the experiment, we started with the use of a potato, washing the epidermis, and even having a water part. For the 600 g container, the container shown in Fig. 9 or Fig. 10 was used, and the magnetic substance was manganese zinc ferrite and the Curie temperature was 200. Since a quick rise was necessary, the container was first heated for 2 minutes, and the temperature of the container was raised to conduct the experiment.
菌数の実験では、 未処理菌数状態、 マイクロ波の出力、 0. 5 kw、 30秒、 マイクロ波 の出力 1 k wで 1◦秒、 2◦秒、 30秒の菌数を確認した。 In the bacterial count experiment, the number of untreated bacteria, microwave output, 0.5 kW, 30 seconds, and microwave output 1 kW were confirmed for 1 s, 2 s, 30 s.
未処理では大腸菌群は、 10 x 1, —般生菌数は、 10sx4/l、 酵母 102x 3 1 このときのバレイショの表皮の温度は 18°Cであった。 In the untreated group, the coliform group was 10 x 1, the number of common bacteria was 10 s x 4 / l, and yeast 10 2 x 3 1 The temperature of the potato epidermis was 18 ° C.
0. 5kw30秒は、 大腸菌群 10 X 1、 一般生菌数は、 103x 5/l, 0.5 kw for 30 seconds is 10 x 1 coliform bacteria, 10 3 x 5 / l
酵母 102 X 4 Z 1 Yeast 10 2 X 4 Z 1
このときのパレイショの表面温度は 43°Cであった。  The surface temperature of the partition at this time was 43 ° C.
l kwl O秒は、 大腸菌群 5, 一般生菌数は、 102x 5ノ1、 酵母 102x 3/1 l kw20秒は、 大腸菌群 ◦, 一般生菌数は、 10 X 2、 酵母 8 l kwl O s is coliform group 5, general viable count is 10 2 x 5 -1, yeast 10 2 x 3/1 l kw 20 sec is coliform group ◦ general viable count is 10 x 2, yeast 8
l kw30秒は、 大腸菌群 0, —般生菌数は、 0、 酵母 0  l kw for 30 seconds is 0 coliforms, —the number of common bacteria is 0, yeast 0
この結果、 0. 5 k w30秒のときと 1 kw 10秒では 1 kw 30秒に殺菌効果見られ、 20秒はより殺菌処理は効果的であることがわかる。 1 kw30秒間照射すると大腸菌群、 一般性菌数、 酵母は 0になる。 しかし、 少し加熱時間が長く、 パレイショの表面は白蠟化 が始まっている。 青果物の状態ではなく、 加工品になっている。 As a result, at 0.5 kw for 30 seconds and at 1 kw for 10 seconds, a sterilizing effect is seen at 1 kw for 30 seconds, and it can be seen that the sterilizing treatment is more effective for 20 seconds. Irradiation for 1 kw for 30 seconds results in zero coliforms, general bacterial counts, and yeast. However, the heating time is a little longer, and the surface of the partition has begun to turn white. It is a processed product, not a state of fruits and vegetables.
そこで 1 k w 20秒間、 冷風 30秒間、 1 k w 20秒間の方法を取り入れた。 冷風は 0 °C の差圧冷風気を利用した。 その結果、 大腸菌群、 一般生菌数、 酵母の数が 0になった。 このときの表面温度 73°C、 芯温は 46°Cに上がっており、 早い温度の上昇が見られる。 青果物として早く冷風で温度を下げ、 真空包装菜との管理が必要である。 Therefore, the method of 1 kW for 20 seconds, cold air for 30 seconds, and 1 kW for 20 seconds was adopted. The cold air was 0 ° C differential pressure cold air. As a result, the number of coliforms, general viable bacteria, and yeast became zero. At this time, the surface temperature has risen to 73 ° C, and the core temperature has risen to 46 ° C. As fruits and vegetables, the temperature must be lowered quickly with cold air, and management with vacuum packaged vegetables is necessary.
次ぎにリンゴの皮を 50◦ g入れ同じ容器のなかで、 その効果を見た。 パレイショの実験 から l kw、 20秒で処理し色素が残り、 酵素が失活していることが、 目的である。 電子レンジ 1 kwを利用し図— 9の容器に入れ 20秒入れると果皮の水分が一部流れた状 態である。 取り出し乾燥機に入れ、 水分率を 5%にして乾燥状態で 1ヶ月間貯蔵した。 その結果、 色素が完全に残り、 菌数検査の結果は大腸菌群、 酵母は 0—般性菌数 5の状態 で残っていた。 一般性菌数は多少残っているが、 低温管理をすると何ら品質的には製品化 が可能である。 Next, 50 g of apple peel was put in the same container and the effect was seen. The purpose of the experiment is to leave the dye and the enzyme inactivated after treatment in l kw for 20 seconds. Using a microwave oven of 1 kw, put it in the container of Fig. 9 and put it in the container for 20 seconds. The product was taken out and placed in a dryer, and the moisture content was 5%, and the product was stored in a dry state for 1 month. As a result, the dye remained completely, and the results of the bacterial count test were coliforms, and the yeast remained in the state of 0-general bacterial count. Although the number of general bacteria remains, it can be commercialized in terms of quality if controlled at low temperatures.
強磁場による赤外線、遠赤外線殺菌は、量や容積の関係と波長の密度が密接な関係にあり、 早い殺菌、 酵素の失活ができる。 Infrared and far-infrared sterilization using a strong magnetic field has a close relationship between the volume and density and the wavelength density, and can quickly sterilize and deactivate the enzyme.
【0073】  [0073]
図— 9の容器を使い磁性体はマンガン亜鉛フヱライト、 キュリー温度 200°Cを使い、 各 種の容器別に強磁性から生じるトンネル効果を確認した。 Using the container in Fig. 9, the magnetic substance was manganese zinc ferrite and the Curie temperature was 200 ° C, and the tunnel effect caused by ferromagnetism was confirmed for each container.
中に入れる容器は、 耐熱性セラミックのコップ、 耐熱ガラスコップ、 パイレックスガラス コップ、 内部がァノレミコートされた紙コップ、 耐熱 PFのコップの 5種類を利用した。 容器の重量は耐熱性セラミックコップ、 320 g、 耐熱ガラスコップ、 310 g、 パイレ ックスガラスコップ、 280 g、 ァノレミコートの紙コップ、 8 g、 PPのコップ、 4 g、 電子レンジは 0. 7 kw、加熱時間は 120秒、それぞれのコップの中には水 140 c c、 水温 15 °C、 磁性体の側面温度 16 °C、 水温と磁性体容器の磁性体が燒結してある側面温 度を測定した。 Five types of containers were used: a heat-resistant ceramic cup, a heat-resistant glass cup, a Pyrex glass cup, a paper cup with an interior coating, and a heat-resistant PF cup. Container weight is heat resistant ceramic cup, 320 g, heat resistant glass cup, 310 g, Pyrex glass cup, 280 g, anoremi-coated paper cup, 8 g, PP cup, 4 g, microwave oven is 0.7 kw , Heating time is 120 seconds, each cup contains 140 cc water, water temperature 15 ° C, side temperature of magnetic material 16 ° C, side temperature where water temperature and magnetic material of magnetic container are sintered did.
容器の中央にコップをおき、 コジブと容器の側面は約 5 Ommの間隔ができた。 A cup was placed in the center of the container, and the gap between the cojib and the container was about 5 Omm.
120秒加熱後の水温の温度は、 耐熱性セラミック、 80°C、 耐熱ガラス、 87°C、 パイ レックスガラス 88° (、 アルミコートの紙コップ、 24°C、 PPコップ、 83。C、 磁性体容器の側面温度は、 耐熱性セラミック、 34°C、 耐熱ガラス、 34°C、 パイレック スガラス、 33°C、 アルミコートの紙コップ、 182°C、 PPコップ、 33°C、 水の温度の上昇の較差はアルミコートされている紙コップは、 わずか 9°Cしか上がらず、 他の水温は、 65°C〜7 1°Cの上昇である。 容器に燒結している磁性体の温度よりも水温 が高くなつている。 反対にアルミの紙コップは容器の磁性体側面の温度が大きく上昇して いる。 この実験の結果、 エネルギーのトンネル効果は、 一定の条件がそろわなければ、 生 じないことが説明できる。 アルミコートされているコップは、 磁性体から輻射する波長を 吸収せずに反射しており、 コジブの中の水に波長が吸収されず、 磁性体と編み見コートさ れて!/、るコップとの空間温度が高くなっている。 他の容器は磁性体から輻射している波長 を吸収し、 容器の内部の水に吸収され、 水温が高くなつている。 輻射する波長の領域と吸 収する波長が整合し始めて、 波長が同調し、 トンネル効果が生まれる。 強磁性体の加熱は 従来の外部加熱の温度の上昇とは、 全く違う温度の上昇が見られ、 異なった加熱であるこ とが角早る。 Water temperature after heating for 120 seconds is: heat-resistant ceramic, 80 ° C, heat-resistant glass, 87 ° C, pyrex glass 88 ° (, aluminum-coated paper cup, 24 ° C, PP cup, 83.C, magnetic Side temperature of body container is: heat-resistant ceramic, 34 ° C, heat-resistant glass, 34 ° C, Pyrex glass, 33 ° C, aluminum coated paper cup, 182 ° C, PP cup, 33 ° C, water temperature The range of the rise is as high as 9 ° C for the aluminum coated paper cup, and the other water temperature is 65 ° C to 71 ° C higher than the temperature of the magnetic material sintered in the container. On the other hand, the temperature of the side of the magnetic body of the container of the aluminum paper cup has risen significantly as a result of this experiment, and as a result of this experiment, the tunneling effect of energy is not achieved unless certain conditions are met. I can explain that there is no aluminum coated cup. Reflects without absorbing the wavelength radiated from the sex body, the wavelength is not absorbed by the water in the Kojib, and the magnetic material and the knit coat are coated! The other container absorbs the wavelength radiated from the magnetic material and is absorbed by the water inside the container, and the temperature of the water is getting higher. As a result, the temperature rises completely different from that of the conventional external heating, and the heating is very different.
次ぎに 2重の磁性体の構造を透しても同じ効果が生じるのかを実験した。 Next, an experiment was conducted to see if the same effect would occur even if the structure of the double magnetic material was passed through.
同じ図一 9の容器を利用し、 磁性体マンガン亜鉛フェライト、 キュリー温度 200°Cのな かに、 図一 1で示した內部に磁性体を燒結した小さなコップを大きな容器の中に入れ、 そ の中に、 耐熱性セラミック、 耐熱ガラス、 パイレックスガラス、 ァノレミコートされた紙コ ップ、 PPコップの 5種類のコップを入れ、 同じように水 140 c cを入れ実験した。 電 子レンジ出力は同じ 0. 7 kw、 1 20秒加熱した。 温度の測定は大きな磁性体の側面、 小さな磁性体のコップの側面、 水温の 3力所をそれぞれ測定した。 Using the same container shown in Fig. 9, put a small cup with a magnetic material on the collar shown in Fig. 1 into a large container in a magnetic manganese zinc ferrite and Curie temperature of 200 ° C. Five kinds of cups were put in, such as heat-resistant ceramic, heat-resistant glass, Pyrex glass, paper coated with anoremi-coated, and PP cup, and 140 cc of water was tested in the same way. Microwave oven output was the same 0.7 kw, heated for 20 seconds. The temperature was measured at three locations: the side of the large magnetic body, the side of the small magnetic cup, and the water temperature.
その結果、 水温は、 耐熱性セラミック、 81°C、 耐熱ガラス 87°C、 パイレックスガラスAs a result, the water temperature is heat-resistant ceramic, 81 ° C, heat-resistant glass 87 ° C, Pyrex glass
89°C、 アルミコートの紙コジプ、 25°C、 P Pコップ 84°Cを示した。 89 ° C, aluminum coated paper zip, 25 ° C, PP cup 84 ° C.
大きな容器の側面温度は、 耐熱性セラミックの場合は、 33°C、 耐熱ガラスの場合は、 3The side temperature of large containers is 33 ° C for heat-resistant ceramics and 3 for heat-resistant glass.
1 、 パイレックスガラスの場合は、 30°C、 アルミコートの紙コップの場合は、 178 °C、 PPコジブの場合は、 31°Cを示し、 小さな磁性体の容器の側面は、 耐熱性セラミツ クの場合は、 37。C、 耐熱ガラスの場合は、 35°C、 パイレックスガラスの場合は、 32 °C、 ァノレミコートの紙コップの場合は、 182。C、 PPコップの場合は、 33°Cを示した。 それぞれ温度の格差があるが、 その差はコップの組成の較差が温度の格差と予測できる。 マイクロ波の波長始めの磁性体によって波長転換し、 次の磁性体の間を伝播し、 コシプの 中の水に吸収されている。 2つの磁性体の間を波長は伝播し、 トンネル効果が存在してい ることを示された。 1.Pyrex glass is 30 ° C, aluminum coated paper cup is 178 ° C, PP cojib is 31 ° C, and the side of small magnetic container is heat resistant ceramic In the case of 37. C, 35 ° C for heat-resistant glass, 32 ° C for Pyrex glass, 182 for an anoremi-coated paper cup. In the case of C and PP cups, 33 ° C was indicated. There is a temperature difference, but the difference in the composition of the cup can be predicted as a temperature difference. The wavelength is changed by the magnetic material at the beginning of the microwave wavelength, propagates between the next magnetic materials, and is absorbed by the water in the Kosip. Wavelengths propagated between the two magnetic materials, indicating that a tunnel effect exists.
【0074】 0 0 7 3で利用した図一 9又は図一 1 0のマンガン亜鉛フェライトを利用した、 容器にコ ンビニエンスで販売されている無菌米飯をそのまま入れ加熱した。 電子レンジ対応の容器 は、そのままこの容器で利用できる。但し味覚は電子レンジで直接加熱方法とは全く違い、 この磁性体の容器に入れた米飯は赤外線、 遠赤外線が吸収され、 大変美味しい。 マイクロ 波の直接加熱と大きな差が生じている。 [0074] Sterile cooked rice sold at convenience stores using the manganese zinc ferrite of Fig. 1 9 or Fig. 10 used in 0 0 73 was put into a container as it was and heated. Containers compatible with microwave ovens can be used as they are. However, the taste is completely different from the direct heating method in a microwave oven, and the cooked rice in this magnetic container absorbs infrared and far infrared rays and is very delicious. There is a big difference from direct microwave heating.
惣菜が入っている弁当類も同様で、 従来の容器をそのまま利用でき、 油や油脂類の多い惣 菜と来飯を同時に入れて置いても温度の格差がなく加熱できる。 The same is true for lunchboxes containing sugar beet, so conventional containers can be used as they are, and even if a vegetable and rice with a lot of oils and fats are placed at the same time, they can be heated without temperature differences.
ポタージュスープは突沸せずに加熱できる。 Potage soup can be heated without bumping.
生の魚や、 漬け物等は紙にアルミにコートされたシートを乗せて同時に加熱しても温度の 上昇が見られず、 生の状態で何ら品質の変化が生じない。 Raw fish, pickles, etc. do not change in quality in the raw state, even if they are heated simultaneously with a sheet of aluminum coated paper and heated.
次ぎに冷凍の丼物を解凍した。 具材の豚カツとクナギの丼を実験した。 The frozen porridge was then thawed. We experimented with pork cutlet and eel crab.
この二つの井物は、 湯によって解凍することを進めており、 電子レンジの解凍では、 豚力 ッゃゥナギが先に加熱され、 下にある米飯類が冷凍のままの状態になり、 温度の不均一が 生じる問題が残されていた。 湯による解凍は時間が掛かり、 惣菜店や外食、 中食では、 早 い解凍が求められている。 These two wells are being thawed with hot water, and in the thawing of the microwave oven, the pork power eel is heated first, and the cooked rice underneath remains frozen. The problem of non-uniformity remained. Thawing with hot water takes time, and quick defrosting is required at side dishes stores, restaurants, and prepared meals.
図一 9又は図— 1 0の同じ容器の底に図一 1— Aで利用した半円球の磁性体を凹面に入 れ、 その上に冷凍の豚カツ丼、 ゥナギ丼をそれぞれ入れ加熱した。 冷凍品は一 2 0 °Cで凍 結されており、 重量は 3 1 0 gと 3 0 5 g容器は p p榭脂を発泡ウレタン樹脂でコートし てある素材であった。 電子レンジ 0 . 7 k wで 5分間の加熱で均一に解凍されていた。 豚カツやゥナギと米飯との温度格差が生じていない状態であった。 The hemispherical magnetic material used in Fig. 1-A was placed in the bottom of the same container in Fig. 9 or Fig. 10 into the concave surface, and frozen pork cutlet and eel porridge were placed on top of each and heated. The frozen products were frozen at 120 ° C, and the weights of 3 10 g and 3 0 5 g containers were made of pp resin coated with foamed urethane resin. Thawed uniformly by heating in a microwave oven at 0.7 kW for 5 minutes. There was no temperature difference between pork cutlet or eel and cooked rice.
図一 1一 Cの容器の構造で底に魚鱗状に凹面をつけた磁性体陶磁器の中に冷凍丼を入れ、 同じように 5分間加熱すると底の部分から温度が高くなり、 具の下にあたる部分の温度低 い状態の解凍を防ぐことができた。 Fig. 11 A frozen container is placed in a magnetic porcelain with a fish scale-like concave surface at the bottom in the C container structure, and when heated for 5 minutes in the same way, the temperature rises from the bottom and hits the bottom of the tool. It was possible to prevent the thawing of the part at a low temperature.
【0 0 7 5】  [0 0 7 5]
マイクロ波を利用し、 磁性体によって波長を転換し、 輻射すると波長の密度が高くなり、 加熱する物質とのなかで生じるエネルギーのトンネル現象は、 加熱物質のエネルギーの化 学ポテンシャルによる吸収波長と磁性共鳴の周波数が同調した場合に生じる。 When microwaves are used, the wavelength is changed by a magnetic material, and when radiated, the density of the wavelength increases. The tunneling phenomenon of energy that occurs in the material to be heated is the absorption wavelength and magnetism due to the chemical potential of the energy of the heated material. Occurs when the resonance frequency is tuned.
マイクロ波を磁性体の層状の膜に照射した場合、 スピンの共鳴によって生じるエネ^^ギー が磁性体の膜をトンネルする、 トンネル現象のシュレディンガー方程式は次の数式一 2に によって表される。 When a magnetic layered film is irradiated with microwaves, the energy generated by spin resonance tunnels through the magnetic film. The tunneling Schrodinger equation is expressed by Equation 1 below.
【数式 - 2】 - ^^ (-^- S B - V ( τ ) ) φ  [Formula-2]-^^ (-^-S B-V (τ)) φ
8 π m 2 ιη π  8 π m 2 ιη π
h ;プランク定数、 π ;円周率、 m;電子の質量、 Φ ;波動方程式、 e ;電子の電荷、h: Planck's constant, π: pi, m: electron mass, Φ: wave equation, e: electron charge,
S ;磁性体のスピン、 B ;磁場、 V;磁性体の障壁のポテンシャル、 r ;距離 この数式— 2の左辺の第 1項はシュレディンガー方程式の波動を意味し、 右辺の第 1項は 磁性体のスピンによる共鳴による項であり、 右辺の第 2項は磁性体による障壁によるポテ ンシャルを意味する。 この方程式によってマイクロ波は磁性体に共鳴することによって量 子力学的に磁性体による障壁の壁を透過するトンネル現象を生じさせることを表す。 そのとき磁性体の層状の膜による障壁を越えて、 マイクロ波による磁性体の共鳴によって 波長転換し、 輻射するエネルギーは、 トンネル現象を起こし、 輻射するエネルギーは、 黒 体輻射以上のエネルギーとなり、輻射されるエネルギー密度は、次の数式一 3で表される。 Λ - „ 、 ― 1 -S: Spin of magnetic material, B: Magnetic field, V: Potential of magnetic material barrier, r: Distance The first term on the left-hand side of this equation-2 means the wave of Schrodinger equation, and the first term on the right-hand side is magnetic material The second term on the right-hand side means the potential due to the magnetic barrier. This equation indicates that the microwave resonates with the magnetic material to cause a tunneling phenomenon that penetrates the barrier wall due to the magnetic material. At that time, the wavelength is changed by the resonance of the magnetic substance by the microwave, beyond the barrier by the layered film of the magnetic substance, and the radiated energy causes a tunnel phenomenon, and the radiated energy is black. The energy density that is higher than the body radiation and is radiated is expressed by the following equation (13). Λ-„, ― 1-
【数式ー3】 Ρ= (—— -. ) z- ~— a [Formula-3] Ρ = (——-.) Z- ~ — a
h 2 π ΐ )  h 2 π ΐ)
Ρ ;輻射されるエネルギー、 /i ;磁気モーメント、 B r f ;磁界、 h ;プランク定数 ;磁性体の原子によって遷移する周波数、 ω ;輻射する周波数、 η ;遷移した原子の 数  Ρ radiated energy, / i, magnetic moment, B r f, magnetic field, h, Planck's constant, frequency transitioned by atoms of magnetic material ω radiated frequency η, number of transitioned atoms
この数式一 3によってマイクロ波は磁性体に吸収され、 赤外線、 遠赤外線に周波数は遷移 され黒体輻射以上に電磁波は増幅され輻射されることを表す。 This Equation 13 indicates that the microwave is absorbed by the magnetic material, the frequency is shifted to infrared and far infrared, and the electromagnetic wave is amplified and radiated more than blackbody radiation.
スピンによる磁性共鳴によって黒体輻射以上のエネルギー密度で輻射される赤外線、 遠赤 外線などの電磁波の波長と食品などの吸収する加熱物の吸収波長が同調した場合、 トンネ ル現象が生じる。 その場合赤外線、 遠赤外線などの電磁波を吸収し加熱される食品等の化 学物質の持つエネルギーの化学ポテンシャルによる電磁波の吸収は、 磁性共鳴によって輻 射された赤外線、 遠赤外線のエネルギーと同調する。 赤外線、 遠赤外線などの電磁波によ る分子振動のエネルギーの化学物質の分配関数は次ぎの数式一 4で表される。 A tunneling phenomenon occurs when the wavelength of electromagnetic waves such as infrared rays and far infrared rays radiated at an energy density higher than blackbody radiation by the magnetic resonance due to the spin is synchronized with the absorption wavelength of the heated object to be absorbed by food. In that case, the absorption of electromagnetic waves by the chemical potential of the energy of chemicals such as foods that absorb and absorb electromagnetic waves such as infrared rays and far infrared rays is synchronized with the energy of infrared rays and far infrared rays radiated by magnetic resonance. The distribution function of the chemical substance of the energy of molecular vibration due to electromagnetic waves such as infrared rays and far infrared rays is expressed by the following equation (14).
【数式— 4】 q =∑ e x p (― (n + l/2) 1ιω/ΚΤ)  [Formula-4] q = q e x p (― (n + l / 2) 1ιω / ΚΤ)
q ;分配関数、 n ;分子の数、 h ;プランク定数、 ω ;分子振動の周波数、 Κ;ボルツマ ン定数、 Τ ;温度 q: partition function, n: number of molecules, h: Planck constant, ω: frequency of molecular vibration, 、: Boltzmann constant, Τ: temperature
振動の分配関数によってヘルムホルツの自由エネルギーは次の数式一 5で表される。 【数式— 5】 F = NKT 1 n q The free energy of Helmholtz is expressed by the following equation (15) according to the partition function of vibration. [Formula-5] F = NKT 1 n q
F ;ヘルムホルツの自由エネルギー、 N;化学物質の粒子の数  F: free energy of Helmholtz, N: number of chemical particles
ヘルムホルツの自由エネルギーによって化学ポテンシャルは次の数式一 6で表される。 The chemical potential is expressed by the following formula 1 by the free energy of Helmholtz.
【数式一 6】 β= ( ^-) [Equation 1] β = (^-)
d N  d N
化学物質の持つエネルギーによる化学ポテンシャルと赤外線、 遠赤外線、 マイクロ波のよ うな電磁波が食品のような化学物質に吸収されるときの関係式は次の数式一 7で表され る。 The chemical potential due to the energy of chemical substances and the relational expression when electromagnetic waves such as infrared rays, far infrared rays, and microwaves are absorbed by chemical substances such as foods are expressed by the following formula (17).
【数式— 7】 μ (/), Τ) =μ0 (Ρ, Τ) ―"—Σω'Ό $ ' [Formula 7] μ (/), Τ) = μ 0 ( Ρ , Τ) ― ”— Σω'Ό $ '
4 π 3 ρ  4 π 3 ρ
4 π  4 π
D:  D:
Ρ ;化学物質の密度、 f ;誘電率の関数 Ρ: Chemical density, f: Dielectric constant function
数式一 7左辺第 1項は電磁波を吸収した場合の化学ポテンシャル、 右辺第 1項は電磁波を 吸収する前の化学ポテンシャル、 右辺第 2項は電磁波と化学物質との共鳴による吸収を表 す。 Formula 1 7 The first term on the left side represents the chemical potential when the electromagnetic wave is absorbed, the first term on the right side represents the chemical potential before absorbing the electromagnetic wave, and the second term on the right side represents the absorption due to resonance between the electromagnetic wave and the chemical substance.
この方程式は電磁波が化学物質に吸収されるとき、 化学物質の持つ自由エネルギーによる 化学ポテンシャルと電磁波の吸収との関係を表す。 This equation represents the relationship between the chemical potential due to the free energy of a chemical substance and the absorption of the electromagnetic wave when the electromagnetic wave is absorbed by the chemical substance.
数式一 7の吸収される電磁波の周波数 ωと数式一 2による磁性共鳴による磁性の膜のトン ネル現象を導き出したシュレディンガー方程式の解の周波数が同調した場合、 化学物質の エネルギーの化学ポテンシャルによつて磁性共鳴によつて輻射された赤外線、 遠赤外線の 熱エネルギーはトンネル現象を起こす。 When the frequency ω of the absorbed electromagnetic wave in Equation 1 and the frequency of the solution of the Schrodinger equation that derived the tunneling phenomenon of the magnetic film by magnetic resonance in Equation 1 are synchronized, the chemical potential of the chemical energy Of infrared rays and far infrared rays radiated by magnetic resonance Thermal energy causes a tunnel phenomenon.
【発明の効果】  【The invention's effect】
【 0 0 7 6】  [0 0 7 6]
全ての熱エネルギーを利用している産業及び家電製品は省エネルギーが求められている。 省エネルギーの効果は、 全て C O 2の発生を軽減に直接又は間接的に結びついており、 国 民的、 国家的な課題であり、 その技術は世界が求めている。 All industrial and home appliances that use thermal energy are required to save energy. The energy saving effects are all directly or indirectly linked to the reduction of CO 2 generation, and are national and national issues, and the technology is demanded by the world.
内燃機を利用していない加熱方法以外は、 外部加熱が多く、 外部加熱の問題点は外部から 何らかの容器を介在し熱輻射する。 物質に直接熱加工に必要な熱エネルギーに対して多く の無駄なエネルギーが放射されている。 Except for heating methods that do not use an internal combustion machine, there are many external heatings, and the problem of external heating is that heat is radiated from outside through some kind of container. Much wasteful energy is radiated to the heat energy required for direct thermal processing of materials.
マイク口波による直接加熱はその無駄なエネ ギーを少なくしていることで大きな熱エネ ルギ一の改善となっているが反面、 加熱時に組成が分解されたり、 変性することが多く、 食品の加熱では健康面に問題が指摘されている。 マイクロ波の波長は分子回転によって分 子同士の摩擦熱を利用している。 Direct heating with a microphone mouth wave reduces the wasted energy, which is a major improvement in heat energy, but on the other hand, the composition is often decomposed or denatured during heating, and food heating There are health problems. Microwave wavelengths use frictional heat between molecules by molecular rotation.
マイクロ波の波長を赤外線、 遠赤外線の波長に転換し、 加熱する物質が持つ熱吸収波長に 転換し、 加熱すると分子回転から生じる加熱ではなく、 分子振動から生じる振動加熱のた めに熱効率が大きく改善できることが特願 2 0 0 5 - 7 1 8 8 5の鍋構造によって立証で きた。 Converts microwave wavelengths to infrared and far-infrared wavelengths, converts them to the heat absorption wavelength of the material to be heated, and heat does not generate heat due to molecular rotation, but because of vibrational heat generated from molecular vibration, thermal efficiency is high The improvement was proved by the pan structure of Japanese Patent Application 2 0 0 5-7 1 8 8 5.
この加熱の方法では、 炊飯では I H電気釜の、 エネルギーの約 4 0 %、 豚の加熱調理では ガス調理の 1 5 %のエネ ギ一で調理が可能になった。 With this heating method, cooking was possible with about 40% of the energy of the IH electric kettle for cooking rice and 15% of energy for gas cooking for cooking pigs.
このことから全ての外部加熱にこの加熱の方法が可能であることから、 熱効率を一層高め るために構造的な改善と産業化及び大型化並びに他の用途の拡大を工夫した。 Since this heating method is possible for all external heating, structural improvements, industrialization and enlargement, and expansion of other applications were devised in order to further increase thermal efficiency.
温度のパラツキを改善するには、 磁性体から磁化を早く進める構造と輻射する場所の選択 の方法、 トンネル式の構造で均一に熱輻射する方法、回転釜のように釜の構造を大きくし、 内部に直接マイク口波を照射し、 磁性体による波長の転換を行った。 In order to improve the temperature variation, the structure to advance the magnetization from the magnetic material and the method of selecting the place to radiate, the method of uniformly radiating the heat with the tunnel type structure, the structure of the pot like a rotary hook is enlarged, Microwave mouth wave was directly irradiated inside, and the wavelength was changed by the magnetic material.
新たな用途として、 波長の領域をカルシウムが吸収する波長の領域及び無機物質の金属が 吸収する波長の領域の密度を高める新たな素材を開発をした。 As new applications, we have developed new materials that increase the density of the wavelength region where calcium is absorbed by the wavelength region and the wavelength region where the inorganic metal is absorbed.
【0 0 7 7】  [0 0 7 7]
積雪地域の高齢化に伴う、 屋根や屋外、 道路の除雪作業は、 北陸、 上信越、 東北地域、 北 海道地域で例年大きな社会問題となっている。 Snow removal work on roofs, outdoors, and roads accompanying the aging of snow-covered areas has become a major social problem every year in Hokuriku, Joshinetsu, Tohoku, and Hokkaido.
屋根の除雪後に廃棄する場所もなく、 年々、 自治体予算を圧迫している。 There is no place to dispose of the roof after snow removal.
除雪には限界があり、 完全な融雪でなければ、 生活スペースが確立できない。 幸いにも最 近はこの地域の電力事情は改善され、 余力が残されている。 There is a limit to snow removal, and a living space cannot be established unless the snow is completely melted. Fortunately, the power situation in this area has improved recently, and there is room for power.
これまで、 解凍や融雪は温水が熱伝統率から最適な方法とされていたが、 水が吸収する波 長の密度をあげて熱輻射すると熱効率は温水よりも高いことが解った。 温水を作る熱エネ ルギーそのものにエネルギー口スが存在する。 So far, it has been said that hot water is the most suitable method for thawing and melting snow because of the heat heat rate, but it has been found that the thermal efficiency is higher than that of hot water when the heat is absorbed by increasing the density of the wavelength absorbed by water. There is an energy source in the heat energy itself that makes hot water.
マイク口波に磁性体を照射する場合は温度の制御が簡便であり、 構造をセラミックにする と耐久性にも優れ、 屋外に放置していても劣化するスピードが遅い。 When a microphone is irradiated with a magnetic substance, the temperature can be easily controlled, and if the structure is made of ceramic, it is excellent in durability and slows down even when left outdoors.
マグネト口ンは最近では大変低価格で製造が可能になり、海外からも安い製品が入手でき、 製品価格は比較的安く製造できる。 温度感知のセンサー、 積雪量の対する重量センサーも 簡素化されており、 短時間に屋外の融雪ができ、 エネルギーコストも積雪時に熱輻射する だけであり、 多くを必要としない。 むしろ積雪地域の新たな産業興しに結びつく。 Magnetoton can be manufactured at a very low price recently, and cheap products can be obtained from overseas. The temperature sensor and the weight sensor for the amount of snow are also simplified, so it is possible to melt snow outdoors in a short time, and the energy cost is radiated by heat when it snows. Just don't need much. Rather, it leads to new industrial development in snowy areas.
【0 0 7 8】  [0 0 7 8]
エネルギーのトンネル効果、 トンネルダイォード、 江崎ダイォードが発明されてから既に 4 0年近く経つが実際に製品化は進んでいな 1/、。 Almost 40 years have passed since the invention of the tunnel effect of energy, the tunnel diode, and the Ezaki diode, but the commercialization has not progressed 1 /.
エネルギーのトンネル効果の応用範囲は大変広い。 特にこの波長は赤外線、 遠赤外線の鎮 域の波長であり、 多くの有機物が有する吸収波長と整合しており、 同調する要因が多く存 在している。 又波長の大きさから振動波長であることが同調に最適な波長になっている。 マイクロ波の波長では波長が大きく、 振動ではなく回転のエネルギーが大きく、 同調し難 い要素がある。 The application range of energy tunneling is very wide. In particular, this wavelength is a wavelength in the infrared and far-infrared range, and is consistent with the absorption wavelength of many organic substances, and there are many factors that can be tuned. In addition, the oscillation wavelength is the optimum wavelength for tuning because of the size of the wavelength. There are elements that are difficult to tune because the wavelength of microwaves is large and the energy of rotation is large, not vibration.
小さな容器のなかに存在する物質だけを一定温度に上げ、 その内部に閉じこめた状態で熱 エネルギーが加えられ、 熱処理加工や合成、 重合、 反応、 殺菌などが簡単に出来る。 大きな容器の内部だけの一部分だけを加熱するために熱エネルギーは大幅に改善できる。 クリーン度の高い製品を作るのに欠カ^:ない加熱の条件が得られる。 Only the substance present in a small container is raised to a certain temperature, and heat energy is applied in a confined state, making it easy to perform heat treatment, synthesis, polymerization, reaction, sterilization, etc. Thermal energy can be greatly improved by heating only a portion of the interior of a large container. It is lacking in making products with high cleanliness.
酸化の予防、 アルゴンガス、 窒素ガスによる温度のコントロールの中で波長の密度だけ上 げることができ産業界の応用範囲は計り知れない。 In the prevention of oxidation and temperature control with argon gas and nitrogen gas, only the wavelength density can be increased, and the range of application in industry is immeasurable.
【図面の簡単な説明】  [Brief description of the drawings]
図一 1  Figure 1
容器内部に入れた磁性体の構造及び陶磁器の構造を示す。 The structure of the magnetic substance put in the container and the structure of the ceramics are shown.
A—は半円球の構造を示す。  A— indicates a hemispherical structure.
1一陶磁器、 2—外面に磁性体を燒結した部分、 3—内面に燒結した磁性体 B—は円筒形の構造を示す。  1) Ceramic, 2—Magnetic body sintered on the outer surface, 3—Magnetic body B—laminated on the inner surface, shows a cylindrical structure.
4 -は陶磁器の素材部分、 5—は磁性体を燒結した部分、  4-is a ceramic material part, 5-is a part sintered with a magnetic material,
6―は内部に燒結した磁性体、  6- is a magnetic material sintered inside,
C—は陶磁器の容器の構造を示す。  C— indicates the structure of a ceramic container.
陶磁器は、 蓋の部分と容器の部分に分かれる。  Ceramics are divided into a lid part and a container part.
7—陶磁器の容器の蓋、 8—蓋部分の燒結した磁性体、 9—容器の架台、  7—Ceramic container lid, 8—Magnetic body with sintered lid, 9—Container base,
1 0—容器内部の磁性体を燒結した部分、 1 1—容器の容器の陶磁器の素材部分 D—は小さな陶磁器の構造  1 0—the part where the magnetic material inside the container is sintered 1 1—the ceramic material part of the container of the container D—is the structure of a small ceramic
図一 2  Figure 1
円筒形のパイプに磁性体を燒結した構造を示す。 A structure in which a magnetic material is sintered to a cylindrical pipe is shown.
A、 Bはマイクロ波を導波管から誘導しパイプの内部にマイク口波照射する。  A and B guide the microwave from the waveguide and irradiate the inside of the pipe with the microphone mouth wave.
Aは磁性体の半円球をパイプの外面に凹型に設置した構造、  A is a structure in which a semi-spherical sphere is installed in a concave shape on the outer surface of the pipe,
Bは磁性体の半円球をパイプの内部に向かって凹面に設置した構造、  B is a structure in which a semispherical sphere of magnetic material is installed on the concave surface toward the inside of the pipe,
1 2—パイプに設置した凸面の半円球磁性体、  1 2—Convex hemispherical magnetic body installed on the pipe,
1 3—凸面の磁性体は内部と外部に塗布し燒結した構造  1 3—Convex magnetic body is applied and sintered inside and outside
ェ 4—パイプの表面に磁性体を塗布し燒結した部分、  D 4—A part where the magnetic material is applied to the surface of the pipe and sintered,
1 5—マイク ϋ波を導波管から誘導しパイプとジョイント部分  1 5—Microphone Guidance of sine wave from waveguide to pipe and joint
1 6—陶磁器パイプの內面、 1 7—パイプを固定する耐熱性素材の部分  1 6—Surface of ceramic pipe, 1 7—Part of heat-resistant material to fix the pipe
1 8—温度計揷入口、 1 9—パイプに設置した凹面に設置した半円球の磁性体の部分 2 0—パイプの左のエンド、 半円球によって内部に凹型に閉じた部分 図— 3 1 8—Temperometer inlet, 1 9—Part of hemispherical magnetic body installed on the concave surface of the pipe 2 0—Left end of the pipe, part closed inside by a hemisphere Fig. 3
磁性体のパイプに小さな半円球を一方向に配列し、 熱輻射する構造を示す。  A structure in which small hemispheres are arranged in one direction on a magnetic pipe to radiate heat.
2 1一陶磁器のパイプの構造、 2 2—パイプの外面の磁性体を塗布し燒結した部分、 2 3—半円球の磁性体の構造  2 1 Structure of a ceramic pipe, 2 2—Parts coated and sintered on the outer surface of the pipe, 2 3—Structure of a hemispherical magnetic body
図一 4  Fig. 4
A—磁性体のパイプを融雪に利用するときの屋根の位置構造を示す。  A—Shows the roof position structure when using magnetic pipes for melting snow.
B—磁性体のパイプをアルミニウムやステンレスで力パーしたときの熱輻射の構造を示 す。  B—Indicates the structure of heat radiation when a magnetic pipe is force par with aluminum or stainless steel.
2 4—屋根、 2 5—磁性体のパイプ、  2 4—Roof, 2 5—Magnetic pipe,
2 6—磁性体のパイプから熱輻射するためのアルミニウム又はステンレスカバーの構 造  2 6—Structure of aluminum or stainless steel cover for heat radiation from magnetic pipe
図一 5  Fig. 5
図一 2、 図一 3の磁性体パイプの連続作業におけるベルトコンべヤーとパイプの位置を 示す、 概要図。  Fig. 2 and Fig. 1 are schematic diagrams showing the position of the belt conveyor and pipe in the continuous operation of the magnetic pipe shown in Fig. 1;
2 7—磁性体パイプの連続作業の工程から熱輻射することを防止するために全体の熱 輻射部分を被う力パー、 ァノレミニゥム、 ステンレス等で加工する。 2 7—To prevent heat radiation from the continuous work process of the magnetic pipe, it is processed with force par, anorium, stainless steel, etc. that covers the entire heat radiation part.
2 8—磁性体のパイプ、 2 9—ベルトコンベア一 2 8—Magnetic pipe, 2 9—Belt conveyor
図一 6  Fig. 6
磁性体の釜と内部の撹拌装置の磁性体構造を示す。  The magnetic body structure of the magnetic pot and the stirring device inside is shown.
3 0—撹拌装置、 3 1—撹拌装置のフィン、 3 2—テフロン樹脂、 3 3—磁性体の釜 図一 7  3 0—Agitator, 3 1—Fin of agitator, 3 2—Teflon resin, 3 3—Magnetic hook Figure 1
磁性体をアルミニゥム構造に張り付けた釜構造と撹拌装置の磁性体構造をしめす。  This shows the structure of a hook with a magnetic material attached to an aluminum structure and the magnetic structure of a stirring device.
3 4—ァノレミニゥム構造の釜、 3 5—釜のテフロン加工、 3 6—釜に張り付けられた 磁性体  3 4—Kanoleminium pot, 3 5—Teflon processing of the hook, 3 6—Magnetic material attached to the hook
図一 8  Fig. 8
磁性体の釜を利用した乾燥装置の構造を示す。  The structure of a drying device using a magnetic pot is shown.
3 7—排出シュート、 3 8—真空ゲージ、 3 9—ヒーター付バグフィルター、 3 7—Discharge chute, 3 8—Vacuum gauge, 3 9—Bag filter with heater,
4 0—メインバルブ、 4 1一導波管、 4 2—パワーモニター、 4 3—ァイソレタータ 一、 4 4—品温計、 4 5—チヨッパモーター、 4 6—マイクロ波発生器、 4 7—フィ ン、 4 8—フィン、 4 9一フィン、 5 0—モーター、 5 1—モーター、 5 2—真空ポ ンプ、 5 3—ドレイン 4 0—Main valve, 4 1 Single wave guide, 4 2—Power monitor, 4 3—Iso-letter, 1 4 4—Thermometer, 4 5—Chopper motor, 4 6—Microwave generator, 4 7— Fin, 4 8—Fin, 4 9 One fin, 5 0—Motor, 5 1—Motor, 5 2—Vacuum pump, 5 3—Drain
図— 9  Fig. 9
磁性体を利用した加熱、 抽出、 乾燥などの構造を示す。  Shows the structure of heating, extraction and drying using magnetic materials.
5 4—陶磁器に磁性体を塗布し、 燒結した構造、  5 4—A structure in which a ceramic is coated with a magnetic material and sintered.
5 5一すのこ状に開口部を設けた構造で表面に磁性体を塗布し燒結した陶板、 5 6—簧の子の開口部分、  5 5 Porcelain plate with a magnetic material applied on the surface and sintered in a structure with an opening in the shape of a saw blade,
図一 1 0  Fig. 1 0
5 7—簧の子の円形の凹面状の開口部分  5 7—A circular concave opening in a spider
図— 1 1カルシウムを添加した磁性陶磁器の加熱効果実験装置 Fig. 1 Experimental apparatus for heating effect of magnetic ceramics added with 1 calcium
図一 1 2 マイクロ波 7 0 0Wによるカルシウムを添加し磁性材料を焼結した陶磁器の加 熱効果の実験結果 Fig. 1 1 2 Addition of ceramics sintered with magnetic material by adding calcium by 700 W Experimental results of thermal effect
図一 13 マイクロ波 300Wによるカルシウムを添加し磁性材料を焼結した陶磁器の加 熱効果の実験結果 Fig. 13 Experimental results of the heating effect of ceramics made by adding calcium by 300W microwave and sintering magnetic materials

Claims

請求の範囲 The scope of the claims
【請求項 1】  [Claim 1]
電子レンジを利用し、陶磁器の内部に磁性フェライトを燒結した調理道具を利用するとき、 調 [[熱時に容器の内部で生じる不均一な温度分布に対して、 容器の内部の温度分布を均 一にする構造及び部分的に温度変化を必要とするときに温度格差を作る構造。 When using a microwave oven and cooking utensils with magnetic ferrite sintered inside a ceramic, adjust the temperature distribution inside the container against the uneven temperature distribution that occurs inside the container when heated. And a structure that creates temperature differences when partial temperature changes are required.
【請求項 2】  [Claim 2]
マイク ο波を磁性体に照射して加熱する構造において、 誘導加熱並びに渦電流損による加 熱並びに強磁性体の原子スピンの共鳴よつて生じる磁気共鳴によって熱が生じる。 磁性体 が渦電流損によって発熱するときは、 磁性体の磁化が大きくなる。 磁性体の磁化が大きい ほど、 マイクロ波は磁性体の強磁場の位置に吸収され、 早い温度上昇を示す。 同一磁性体 の構造に、 構造物よりも小さい直径の磁性体の球形又は半円形、 円筒形の構造を作り設置 すると、 球形又は半球形の場所に早く渦電流損が生じ磁化が高くなり、 早い温度上昇が得 られ、 円筒形の場合は周辺の熱輻射が早くなる。 球又は半円形の半径が小さいほど磁化が 早く高くなり、 その部分の温度は早く上昇する。 同一磁性素材を利用しても、 球形及び半 円球の半径が小さい磁性体を複数設置するとその部分に早い温度上昇が見られる。 球形や 円筒形、 半円球の凹面の構造は、 容器全体に熱輻射し、 早い温度上昇をする。 凸面の半円 球の内面に磁性体を設置するとその内面に熱が集中する。 In a structure where a magnetic material is irradiated with a microwave and heated, heat is generated by induction heating, heating due to eddy current loss, and magnetic resonance generated by resonance of the atomic spin of a ferromagnetic material. When a magnetic material generates heat due to eddy current loss, the magnetization of the magnetic material increases. The greater the magnetization of the magnetic material, the more microwaves are absorbed by the magnetic field of the magnetic material and the faster the temperature rises. If a spherical, semi-circular, or cylindrical structure of a magnetic material with a smaller diameter than the structure is created and installed in the same magnetic material structure, eddy current loss occurs quickly in the spherical or hemispherical location, resulting in high magnetization and rapid A temperature rise is obtained, and in the case of a cylindrical shape, the thermal radiation of the surroundings becomes faster. The smaller the radius of the sphere or semicircle, the faster the magnetization becomes, and the temperature of that part rises faster. Even if the same magnetic material is used, if a plurality of magnetic bodies having a small spherical or hemispherical radius are installed, a rapid temperature rise is observed in that part. Spherical, cylindrical, and semispherical concave structures radiate heat to the entire container, resulting in rapid temperature rise. When a magnetic material is placed on the inner surface of a convex semicircle, heat is concentrated on the inner surface.
同一容積のなかでも熱輻射する磁性体の表面積が大きいほど、 容器の内部の温度は早く、 上昇し、 直径の小さな凹面の半円形の磁性体を容器の内面に魚鱗状に付ける構造にすると 容器の内部の表面積が大きくなり熱輻射する面積が大きく熱効率が高くなる。 Even within the same volume, the larger the surface area of the magnetic material that radiates heat, the faster the temperature inside the container rises, and a concave semicircular magnetic material with a small diameter is attached to the inner surface of the container in a fish scale shape. As a result, the surface area of the inside increases, the area for heat radiation increases, and the thermal efficiency increases.
磁性体を塗布し焼結した容器の内部に、 直径の小さな凹面上の穴をあけ磁性体を塗布し焼 結したスノコを設置する、 穴の面積によって渦電流損が生じ、 熱輻射によって安定した温 度分布をつくり、 スノコの上面の加熱によって水分、 脂肪分等を含んだ物質を加熱すると き水分、 脂肪分が分離し、 スノコの下部に落とされ均一した熱輻射が継続され熱効率を上 げる。 スノコの下に入れる液体及び物質とスノコの上部に入れる物質と異なった物質を同 時に加熱し、 組成反応、 融合させることができる。 Inside a container coated with magnetic material and sintered, a hole on a concave surface with a small diameter is drilled, and a slatted metal is applied and sintered. Eddy current loss occurs due to the area of the hole, and it is stabilized by thermal radiation. When a substance containing moisture, fat, etc. is heated by heating the top surface of the slats, the moisture and fats are separated and dropped to the bottom of the slats, and uniform heat radiation is continued to increase thermal efficiency. The It is possible to simultaneously heat, mix, react, and fuse liquids and materials that are placed under the slats and materials that are different from the materials that are placed above the slats.
球形、 半円球、 円筒形及び凹面、 凸面の構造を磁性体容器の内部に設置又は燒結し、 温度 の分布を作り出す方法。 A method of creating a temperature distribution by installing or sintering a spherical, hemispherical, cylindrical, concave, or convex structure inside a magnetic container.
【請求項 3】  [Claim 3]
マイクロ波を磁性体に照射し、 加熱する構造において、 円筒形の長いパイプ形状の全体か ら熱輻射する構造ができる。 パイプに磁性体を内面に燒結すると內面に向かって、 イブ の外面に燒結すると外面に向かって熱輻射することが出来る。 A structure in which microwaves are irradiated to a magnetic material and heated, and a structure in which heat is radiated from the entire cylindrical long pipe shape can be created. When a pipe is magnetically bonded to the inner surface, heat can be radiated toward the outer surface, and when it is sintered to the outer surface of the eve, heat can be radiated toward the outer surface.
マイクロ波の波長に整合する円筒形の筒の直径をマイクロ波の波長から選択し、 円筒形の 筒の内部にマイクロ波を誘尊し照射し、 円筒形構造の内面並びに外面に磁性体を燒锆し、 マイクロ波の波長を磁性体に吸収させ、マイクロ波の波長を磁性体の組成から波長転換し、 円筒形の筒から赤外線、 遠赤外線の波長を輻射することができる。 The diameter of the cylindrical tube that matches the wavelength of the microwave is selected from the wavelength of the microwave, and the microwave is induced and irradiated inside the cylindrical tube, and a magnetic material is applied to the inner surface and the outer surface of the cylindrical structure. Then, the wavelength of the microwave can be absorbed by the magnetic material, the wavelength of the microwave can be converted from the composition of the magnetic material, and infrared and far-infrared wavelengths can be radiated from the cylindrical tube.
磁性を有する円筒形の長いパイプ状の筒にマイクロ波を吸収させ、 赤外線、 遠赤外線の波 長に転換し、 加熱、 調理、 蒸発、 乾燥、 重合、 化学合成、 殺菌、 分解、 化学反応、 組成の 抽出、 分離、 色素の抽出、 酵素失活処理などを波長の振動によって連続作業を効率的に上 げる方法。 Microwave is absorbed in a long cylindrical pipe with magnetism and converted to infrared and far-infrared wavelengths, heating, cooking, evaporation, drying, polymerization, chemical synthesis, sterilization, decomposition, chemical reaction, composition Extraction, separation, pigment extraction, enzyme deactivation treatment, etc. are methods that efficiently increase continuous work by vibration of the wavelength.
【請求項 4】 [Claim 4]
請求項 3の円筒形のパイプの構造の内部並びに外部から熱輻射する温度を均一な温度分布 を維持する構造及びパイプの一部分から早 、温度の上昇や、 一部分が高い温度を必要とす る場合がある。 円筒形のパイプの外面に請求項 2の球、 凹面の半円球を作るとその場所に 渦電流損による早い加熱が生じる。 パイプの外面に球や凹面の半円球を並列に並べ他に、 早く熱を必要とする位置に複数設置するとその位置から外部に向かつて早い熱輻射が始ま り、 加熱の効率が高くなる。 反対に円筒形の筒の内面に凹面の半円球の磁性体の構造を設 置すると筒の内面に向かって熱輻射する。 パイプに燒結する磁性体の組成並びにキュリ一 温度の異なる組成を複数燒結することから加熱する最高温度の格差を制御できる。 A structure that maintains a uniform temperature distribution of heat radiation from the inside and outside of the cylindrical pipe structure of claim 3 and a case where the temperature rises quickly from a part of the pipe or a part requires a high temperature There is. When the sphere of claim 2 and the concave hemisphere are formed on the outer surface of a cylindrical pipe, rapid heating due to eddy current loss occurs at that location. In addition to arranging spheres and concave hemispheres in parallel on the outer surface of the pipe, if multiple are installed at a position where heat is needed quickly, heat radiation will start from that position to the outside and heating efficiency will increase. On the contrary, if a concave hemispherical magnetic structure is installed on the inner surface of a cylindrical tube, heat is radiated toward the inner surface of the tube. Since the composition of the magnetic material sintered in the pipe and the composition having different Curie temperatures are sintered, the difference in the maximum temperature for heating can be controlled.
円筒形の筒に球及び凹面の磁性体構造を設置する事によって、 マイクロ波の波長を波長転 換させ熱輻射する位置や温度を効率的に操作する方法。 A method of efficiently operating the position and temperature of heat radiation by converting the wavelength of microwaves by installing a spherical and concave magnetic structure on a cylindrical tube.
【請求項 5】  [Claim 5]
請求項 3及び請求項 4の構造を利用して、 建築物の屋根、 道路、 屋外施設に設置すると雪 及び氷を短時間に、 解凍、 融雪できる。 傾斜のある屋根の場合は、 円筒形のパイプを屋根 の棟に沿って設置し、 円筒形のパイプには、 長さ方向に並列に磁性体を凹面の半円球に切 り込んで並べ、 屋根の傾斜面に沿って、 凹面の半円球から熱輻射すると効率的に屋根全体 の融雪出来る。 磁性体の組成の選択は、 水が吸収する波長 2 . 5 m~ 6 . 8 μ ιηの範囲 の密度を高く熱輻射する組成によって、氷や雪を波長振動させることから早く融解できる。 磁性体のキュリー温度は火災等の危険性のない 1 0 0 °C〜3 0 0 °Cの温度の範囲で設定す る。 By using the structure of claim 3 and claim 4 and installing it on the roof of a building, road, outdoor facility, snow and ice can be thawed and melted in a short time. In the case of an inclined roof, cylindrical pipes are installed along the roof ridge, and in the cylindrical pipes, magnetic materials are arranged in parallel in the length direction by cutting them into concave hemispheres, Heat radiation from the concave hemisphere along the sloped surface of the roof can efficiently melt the snow on the entire roof. The composition of the magnetic material can be melted quickly because ice and snow are vibrated with a wavelength by a composition that radiates heat with a high density in the wavelength range of 2.5 m to 6.8 μιη which is absorbed by water. Set the Curie temperature of the magnetic material within the range of 100 ° C to 300 ° C without risk of fire.
磁性フヱライト並びに陶磁器に磁性フヱライトを燒結すると耐水生、 耐蝕生が優れ、 安全 な構造で施設の処置ができ、 且つエネルギーコストの安い、 解凍、 融雪ができる方法。 A method in which thawing and melting snow can be performed at a low energy cost, with excellent water and corrosion resistance, safe construction, and low energy costs when magnetic lights and ceramics are sintered.
【請求項 6】 [Claim 6]
容器や釜の構造や回転式の釜を利用しマイクロ波の波長を磁性体によって、 赤外線、 遠赤 外線に転換し、 加熱、 調理加熱、 乾燥、 殺菌、 分解、 重合、 化学合成、 化学反応、 組成の 抽出、 分離、 色素の抽出、 酵素失活を行うとき、 容器や釜、 回転釜の内部に磁性フェライ ト、 磁性体の層又は磁性体の膜を燒結し、 マイクロ波を照射する面にテフロン榭脂によつ てコーティングする。 マイクロ波を導波管によって誘導し直接容器や釜の内部に照射しテ フロン榭脂を通して磁性体にマイクロ波を吸収させ波長転換を行い加熱する。 Using the structure of the container and kettle and the rotary kettle, the microwave wavelength is converted to infrared and far-infrared rays by magnetic materials, heating, cooking and heating, drying, sterilization, decomposition, polymerization, chemical synthesis, chemical reaction, When performing composition extraction, separation, pigment extraction, or enzyme deactivation, a magnetic ferrite, magnetic layer, or magnetic film is sintered inside a container, kettle, or rotary kettle, and exposed to microwaves. Coat with Teflon oil. Microwaves are guided by a waveguide and directly radiated into the container or kettle, and the microwaves are absorbed by the magnetic material through Teflon resin, and the wavelength is changed and heated.
容器の温度及び波長の領域は、 磁性体の組成からキュリー温度によって制御できる。 最高 温度の制御は磁性体のキュリー温度におき、 温度と波長の密度は、 マグネトロンの出力及 び、 磁性体の組成から選択できる。 磁性体から熱輻射する波長の領域とその密度は、 加熱 する素材の吸収波長に合わせ磁性体の組成から選択すると熱効率が高くなる。 The temperature and wavelength range of the container can be controlled by the Curie temperature from the composition of the magnetic material. The maximum temperature is controlled by the Curie temperature of the magnetic material, and the density of temperature and wavelength can be selected from the output of the magnetron and the composition of the magnetic material. When the wavelength region and the density of the heat radiated from the magnetic material are selected from the composition of the magnetic material according to the absorption wavelength of the material to be heated, the thermal efficiency becomes high.
マイク ϋ波を導波管によって誘導し、 容器の内部に照射すると磁性体は、 誘奪加熱と釜の 内部で渦電流損が生じ、 磁性体の電子スピンから生じる共鳴による加熱によって、 マイク 口波の波長は磁性体によつて波長転換し熱エネルギーになる。 When the microwave wave is induced by the waveguide and irradiated inside the container, the magnetic material is attracted and eddy current loss occurs inside the kettle, and by the heating due to the resonance generated from the electron spin of the magnetic material, the microphone mouth wave Is converted into heat energy by the magnetic substance.
このときに使用する磁性体の組成によって、 赤外線、 遠赤外線に転換し、 輻射し、 連続し た熱エネルギーを得ることができる。 Depending on the composition of the magnetic material used at this time, it can be converted into infrared rays and far infrared rays and radiated to obtain continuous thermal energy.
請求項 2の構造の魚鱗状に磁性体を容器の内部に設置すると熱効率が高くなる。 If the magnetic material is installed inside the container in a fish scale shape having the structure of claim 2, the thermal efficiency is increased.
容器の内部や釜並びに回転釜による磁性体を利用したマイクロ波の波長転換した加熱の方 法。 Heating by microwave wavelength conversion using the magnetic material inside the container, the pot and the rotary pot Law.
【請求項 7】  [Claim 7]
請求項 1, 請求項 2, 請求項 3, 請求項 4、 請求項 6の構造において、 利用する磁性体の 組成をカルシウムフェライト及び Ca Fe40 Ca F e 3E、カルシウム置換ガーネッ ト又は Mn— Znフェライトに対しカルシウムを重量当たり 5%〜20%混合し燒結した 磁性材料にマイクロ波の波長を照射すると波長の領域の範囲は、 30 /zm〜60 jumの波 長の密度が他の磁性体よりも同一温度の状態において高く放射する。 最も高い放射波長密 度はカルシウムの磁性体当たりの含有率、 10%〜1 5%である。 この波長の領域の密度 を高く放射すると、 カルシウム、 マグネシウム、 及びカルシウムとマグネシウムの含有量 の高い組成物、 又はキチン、 キトサンが吸収する波長の領域であり、 カノレシゥム、 マグネ シゥム、 又はキチン質、 キトサンの結晶の分解及び力 ンゥム、 マグネシウム、 又はキチ ン質を組成内部に含有している物質を温度とその波長の領域と密度から波長振動によって 抽出するができる。またカルシウム、マグネシウムを組成内部に含有している海藻、豆乳、 大豆商品、 牛乳、 乳製品、 葉野菜、 骨、 魚類を加熱 工する効率を上げる方法。 Claim 1, claim 2, claim 3, claim 4, in the structure of claim 6, calcium ferrite composition of the magnetic material utilized and Ca Fe 4 0 Ca F e 3E, calcium-substituted garnet preparative or Mn — When a microwave material is irradiated with a microwave material mixed with 5% to 20% calcium by weight with Zn ferrite, the wavelength range is 30 / zm to 60 jum. It emits higher at the same temperature than the body. The highest radiation wavelength density is 10% to 15% of calcium content per magnetic substance. When the density of this wavelength region is radiated with high density, calcium, magnesium, and a composition with a high content of calcium and magnesium, or a wavelength region that chitin and chitosan absorb, canoleum, magnesia, or chitin, chitosan It is possible to extract a substance containing N, magnesium, or chitin in the composition from the temperature, its wavelength region and density by wavelength oscillation. A method to increase the efficiency of heating seaweed, soy milk, soy products, milk, dairy products, leaf vegetables, bones and fish containing calcium and magnesium.
カルシゥムの吸収波長の波長の密度を上げて照射し波長振動によつてカルシウム及びマグ ネシゥム、 カルシウム、 マグネシウム含有の多い組成物、 又はキチン質、 キトサンの分解 及び組成の抽出を行う方法。 A method of decomposing and extracting a composition containing calcium and magnesium, a composition containing a lot of calcium, magnesium, or chitin, and chitosan by irradiating with an increased wavelength density of calcium absorption wavelength and oscillating wavelength.
【請求項 8】  [Claim 8]
請求項 1, 請求項 2, 請求項 3, 請求項 4、 請求項 6の構造において、 マイクロ波の波長 転換を行う磁性体の素材に FeAl、 アルミニウムフェライト、 マグネタイ ト又は Mn— Z nフェライトに重量当たり 5 %〜 20%当たりのアルミニウムを配合させ燒結した磁性材 料又はカーボンをマグネタイトに重量当たり、 5 %〜 20%配合し燒結した素材を利用す ると波長の領域は、 同一温度において、 波長の領域は 0. 2/im〜l. の範囲が、 波長の密度が高くなる。 In the structure of claim 1, claim 2, claim 3, claim 4, and claim 6, the magnetic material that performs microwave wavelength conversion is FeAl, aluminum ferrite, magnetite, or Mn-Zn ferrite. When using a magnetic material mixed with 5% to 20% aluminum per weight or a material mixed with 5% to 20% carbon by weight and magnetized with magnetite, the wavelength range is the same at the same temperature. In the range of 0.2 / im to l., The wavelength density is high.
無機系の素材の吸収波長のピークが 0. 2 m〜l. 0 /imの素材を選択し、分解、反応、 溶融、 合金、 結晶、 生成するとき、 磁性体の素林を利用し波長振動を高め熱効率上げる方 法。 When an inorganic material has an absorption wavelength peak of 0.2 m to l. 0 / im and is decomposed, reacted, melted, alloyed, crystallized, or generated, it uses a magnetic forest to generate wavelength vibrations. To increase heat efficiency.
【請求項 9】  [Claim 9]
請求項 1、 請求項 2、 請求項 3、 請求項 4、 請求項 6の装置において、 青果物、 果実が有 する波長の領域は 2. 5 m〜20 /imであり、 この波長の領域の中で必要とする温度の 範囲を制御し、 磁性体のから熱輻射する波長の範囲を 2. 5 μη!〜 20 /imの赤外線、 遠 赤外線の中でその密度を上げて、 輻射し、 波長振動によって、 殺菌及び酵素を失活によつ て、 色素を安定させ、 品質保持し、 食品加工を行う方法。 In the device according to claim 1, claim 2, claim 3, claim 4, and claim 6, the wavelength range of fruits and vegetables is 2.5 m to 20 / im, Controls the temperature range required for, and the wavelength range of heat radiation from the magnetic material is 2.5 μη! ~ 20 / im Infrared, far infrared Infrared, far-infrared, radiate, sterilization and deactivation of enzymes by wavelength vibration, stabilize pigment, maintain quality, and process food .
【請求項 10】  [Claim 10]
請求項 1、 請求項 2、 請求項 3、 請求項 4、 請求項 6、 請求項 9の構造において、 食品加 ェの工程において廃棄物となるリンゴ、 梨、 柿、 ブドク及び柑橘類の皮を殺菌、 酵素失活 させ、 食品の素材及び食品添加物としての加工及び油脂類を波長振動を高めて抽出し加工 する方法。 In the structure of claim 1, claim 2, claim 3, claim 4, claim 6, claim 9 sterilization of apple, pear, straw, buddock and citrus peel that becomes waste in the food processing process A method of inactivating enzymes, processing as food materials and food additives, and extracting and processing oils and fats with increased wavelength vibration.
【請求項 1 1】  [Claim 1 1]
請求項 1、 請求項 2、 請求項 3、 請求項 4、 請求項 6の構造と請求項 7の磁性体において 昆布及ぴ鰹節の出汁を抽出するときに一定温度のなかで照射する波長の範囲とその密度を あげることで短時間に出汁となる成分を抽出する方法。 In the structure of claim 1, claim 2, claim 3, claim 4, claim 6 and magnetic body of claim 7, A method of extracting components that become soup in a short time by increasing the range of wavelengths to be irradiated and the density at a constant temperature when extracting the soup stock from kelp and bonito.
【請求項 1 2】  [Claim 1 2]
請求項 1,請求項 2,請求項 3, 請求項 4、請求項 6の構造と請求項 7の磁性体を利用し、 鶏冠、 牛骨、 鳥骨、 豚骨、 蟹の甲羅、 鮫軟骨のなかにある成分エキス、 タンパク質原料、 ムコ多糖体原料を一定温度のなかで、 波長の領域とその密度を高め照射し、 波長振動を高 めて抽出、 分離する方法。 The structure of claim 1, claim 2, claim 3, claim 4, claim 6 and the magnetic material of claim 7 are used to make chicken crown, cow bone, bird bone, pig bone, salmon shell, salmon cartilage This is a method of extracting and separating the component extracts, protein raw materials, and mucopolysaccharide raw materials at a constant temperature, increasing the wavelength region and its density, and increasing the wavelength vibration.
【請求項 1 3】  [Claim 1 3]
請求項 1 ,請求項 2 ,請求項 3, 請求項 4 ,請求項 6の構造と請求項 7の磁性体を利用し、 貝類、 家畜の骨、 蟹の甲羅、 海老の殻、 を一定の温度の中で波長の密度を上げて波長振動 によって分解する方法。 Using the structure of claim 1, claim 2, claim 3, claim 4, and claim 6 and the magnetic material of claim 7, shellfish, livestock bones, salmon shells, shrimp shells, In this method, the wavelength density is increased and decomposition is performed by wavelength oscillation.
【請求項 1 4】  [Claim 1 4]
請求項 1、請求項 2 ,請求項 3、請求項 4,請求項 6の構造と請求項 7の磁性体を利用し、 魚の鮭や鰯、 鯖、 サンマに含まれている脂肪酸類、 —リノレン酸系脂肪酸を一定の温度 と波長の領域及びその密度を上げて波長振動によって抽出する方法。 Fatty acids contained in fish salmon, salmon, salmon, saury using the structure of claim 1, claim 2, claim 3, claim 4, claim 6, and claim 7 A method in which acid fatty acids are extracted by wavelength oscillation by increasing the density and density of a certain temperature and wavelength.
【請求項 1 5】  [Claim 1 5]
請求項 2の構造を利用し、冷凍されている素林の内部から波長振動によつて解凍する方法。 【請求項 1 6】 A method for thawing by wavelength vibration from the inside of a frozen forest using the structure of claim 2. [Claim 1 6]
請求項 3、 請求項 4の構造と請求項 7, 請求項 8 , の磁性体を利用して、 磁性体の円筒形 の筒を複数利用し連続したトンネル式の加熱加工処理を行う機械 A machine that performs continuous tunnel-type heat processing using a plurality of cylindrical cylinders of magnetic material using the structure of claim 3 and claim 4 and the magnetic material of claim 7 and claim 8
【請求項 1 7】  [Claim 1 7]
エネルギーのトンネノレ効果、 磁性体による熱輻射において、 赤外線、 遠赤外線の波長を輻 射し、 振動し輻射する波長の領域と物質が持つ吸収波長の領域を整合させ、 輻射する波長 の密度を黒体輻射以上の密度に上げて輻射すると輻射する波長の温度よりも低い温度の状 態にある物質は、吸収共鳴が生じ、振動輻射し波長と吸収の間で波長は同調し熱移動する。 振動によって波長が同調するときは、 輻射する波長と吸収の間に、 磁性体や類似した吸収 波長を有する物質が存在しても輻射する波長が物質を透過し、 波長吸収を示し、 エネルギ 一のトンネノレ効果を示す。 In the energy tunnel effect, thermal radiation by magnetic material radiates infrared and far-infrared wavelengths, matches the region of the wavelength that vibrates and radiates with the region of the absorption wavelength of the material, and the density of the radiated wavelength is a black body When the material is radiated to a density higher than that of radiation, absorption resonance occurs in the material at a temperature lower than the temperature of the radiated wavelength, and the radiation is oscillated and the wavelength is tuned between the absorption and the heat transfer. When the wavelength is tuned by vibration, even if a magnetic substance or a substance with a similar absorption wavelength exists between the radiating wavelength and absorption, the radiating wavelength is transmitted through the substance, indicating wavelength absorption, and having the same energy. Shows the tunnel effect.
エネルギーのトンネル効果を利用し磁性体の熱輻射による物質の加熱は、 直接加熱する物 質だけの温度を上げることが出来エネ^ ^ギー効率が高い加熱構造。 Heating a material by thermal radiation of a magnetic material using the tunneling effect of energy can raise the temperature of only the material to be heated directly, and the heating structure has high energy efficiency.
【請求項 1 8】  [Claim 1 8]
マイクロ波の加熱において磁性体の容器の内部に磁性体から熱輻射する波長の領域と加熱 する物質が持つ熱吸収波長の領域を整合させ、 磁性体の容器の内部に別途の容器に入れ、 加熱すると内部の容器の物質を先に加熱する事が出来る。 容器の素材は、 陶磁器、 耐熱ガ ラス、 パイレックスガラス、 紙、 P P樹脂、 ナイロン、 テフロンなどの輻射する波長を透 過又は吸収する素材によって構成されているとトンネル効果を示す構造。 In microwave heating, the region of the wavelength of heat radiated from the magnetic material is matched with the region of the heat absorption wavelength of the heated material inside the magnetic material container, and the magnetic material container is placed in a separate container and heated. Then, the substance in the inner container can be heated first. The container is made of a material that transmits or absorbs radiated wavelengths, such as ceramics, heat-resistant glass, Pyrex glass, paper, PP resin, nylon, and Teflon.
【請求項 1 9】  [Claim 1 9]
電子レンジのマイクロ波を利用してファーストフードや中食の弁当、 惣菜類、 おにぎり、 スープ類を常温、 チノレド、 冷凍の状態で包装されているままで磁性体の容器のなかで赤外 線、 遠赤外線によって加熱する事が出来る方法。 【請求項 2◦】 Using microwaves in microwave ovens, fast food and meal lunch boxes, side dishes, rice balls, soups are packaged at room temperature, chinoledo, and frozen, with infrared rays in a magnetic container, A method that can be heated by far infrared rays. [Claim 2◦]
磁性体の容器のなかに加熱温度の異なった複数の物質を同じ容器に入れ、 磁性体の容器を 同時に加熱して異なった温度で加熱する方法。 A method in which a plurality of substances with different heating temperatures are placed in the same container in a magnetic container, and the magnetic container is heated at different temperatures simultaneously.
【請求項 2 1】  [Claim 2 1]
磁性体をマイクロ波によって加熱するときに請求項 1 7で示す構造は、 磁性共鳴のエネノレ ギ一のトンネル効果の現象を示す。 The structure shown in claim 17 when a magnetic material is heated by microwaves shows the phenomenon of tunneling effect similar to that of magnetic resonance.
磁性体から振動輻射する波長の領域とその密度が高くなり、 加熱する物質が有する熱吸収 波長が同調すると磁性共鳴のエネルギーのトンネル効果が生じ、 加熱する物質を被ってい る磁性体やその構造物よりも早く、 目的温度に到達させることができる。 The region of the wavelength of vibration radiation from the magnetic material and its density increase, and when the heat absorption wavelength of the material to be heated is synchronized, the magnetic resonance energy tunnel effect occurs, and the magnetic material and its structure covering the material to be heated Faster than the target temperature.
2重や複数の磁性体の壁構造においても、 磁性共鳴のエネルギーのトンネノレ効果の現象は 見られ、 加熱による酸化防止の構造や窒素置換構造に置いても目的温度による加熱ができ る方法。 Even in the wall structure of double or multiple magnetic materials, the phenomenon of the tunnel effect of the energy of magnetic resonance can be seen, and it can be heated at the target temperature even if it is placed in an anti-oxidation structure or a nitrogen substitution structure.
【請求項 2 2】 磁性素材にカルシウム、 マグネシウム、 ァノレミニゥム、 などの金属を重量 当たり 1 0 %〜2◦%配合し、 陶磁器の内部に塗布、 燒結し、 マイクロ波を照射すること によつて波長密度を黒体輻射以上に輻射させ、陶磁器内の加工物中の金属イオンと同調し、 共鳴させ、 加工及ぴ加熱効率を上げる方法。  [Claim 2 2] Wavelength is determined by blending 10% to 2◦% by weight of metal such as calcium, magnesium, ano-reminium, etc. into the magnetic material, applying and sintering inside the ceramic, and irradiating with microwaves. A method of increasing the processing and heating efficiency by radiating the density more than black body radiation, synchronizing with the metal ions in the workpiece in the ceramic, and resonating.
PCT/JP2007/060180 2006-05-14 2007-05-11 Method for performing heating process and heating method utilizing tunnel effect of infrared and far-infrared radiation energy WO2007132930A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008515604A JP5804233B2 (en) 2006-05-14 2007-05-11 When the wavelength of the microwave is converted by the magnetic material, the magnetic material is selected according to the heat absorption wavelength and optimum temperature of the material to be heated, and the heat treatment is performed by increasing the wavelength range and density within the optimum temperature. The method of performing heat treatment and the structure of the tunnel effect of infrared and far infrared energy are shown.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006160259 2006-05-14
JP2006-160259 2006-05-14

Publications (1)

Publication Number Publication Date
WO2007132930A2 true WO2007132930A2 (en) 2007-11-22

Family

ID=38694315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060180 WO2007132930A2 (en) 2006-05-14 2007-05-11 Method for performing heating process and heating method utilizing tunnel effect of infrared and far-infrared radiation energy

Country Status (2)

Country Link
JP (1) JP5804233B2 (en)
WO (1) WO2007132930A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799181A (en) * 2010-04-08 2010-08-11 梁伟研 Novel electric heating furnace
JP2013026086A (en) * 2011-07-22 2013-02-04 Hirata Technical Co Ltd Exothermic rubber
JP2015034127A (en) * 2009-08-07 2015-02-19 株式会社半導体エネルギー研究所 Preparation method of lithium-transition metal oxides
KR101662962B1 (en) * 2015-11-30 2016-10-06 김두성 electric heater having dual-spherical for all-in-one
JP2016209497A (en) * 2015-05-03 2016-12-15 一夫 小花 Shallot extract extraction pottery container
JP6080974B2 (en) * 2013-10-29 2017-02-15 三菱電機株式会社 Cooker
CN107440469A (en) * 2016-05-30 2017-12-08 佛山市顺德区美的电热电器制造有限公司 The cooking control method and device of a kind of seafood soup
CN107440470A (en) * 2016-05-30 2017-12-08 佛山市顺德区美的电热电器制造有限公司 A kind of cooking control method and device of domestic animal bone soup
JP2018111096A (en) * 2016-08-19 2018-07-19 日本碍子株式会社 Method for refining organic compound
CN114586950A (en) * 2022-03-07 2022-06-07 江南大学 Microwave direct heating-wave absorbing heat transfer processing method for improving pork fragrance by increasing temperature

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302222A (en) * 1987-05-30 1988-12-09 Kyocera Corp Cooking tool for microwave range
JPH05258856A (en) * 1992-03-10 1993-10-08 Tokyo Yogyo Co Ltd Microwave oven cooking apparatus
JP3234911B2 (en) * 1997-01-31 2001-12-04 シャープ株式会社 High frequency cooking device
JP2001338748A (en) * 2000-05-26 2001-12-07 Sumitomo Osaka Cement Co Ltd Heating member
JP2002272602A (en) * 2001-03-19 2002-09-24 Tdk Corp Cooking utensil for microwave oven
JP2003041807A (en) * 2001-08-02 2003-02-13 Ten Kk Snow-melting method using ferrite magnetic material
JP2004097179A (en) * 2002-09-04 2004-04-02 Buhei Kono Method for thawing frozen material and heating raw material by radiant heat within curie temperature range by heat generation of magnetic substance by utilizing curie temperature of magnetic substance since magnetic substance generates heat on irradiating magnetic substance with microwave in microwave oven and the like
JP2004159777A (en) * 2002-11-11 2004-06-10 Ajinomoto Co Inc Common container for electromagnetic cooking operation and microwave oven
JP2006052932A (en) * 2004-07-16 2006-02-23 Matsushita Electric Ind Co Ltd Cooker for high frequency heating apparatus
JP2006087842A (en) * 2004-08-23 2006-04-06 Sanyo Electric Co Ltd Cooking vessel for microwave oven
JP2006093071A (en) * 2004-09-27 2006-04-06 Buhei Kono Method of defrosting frozen foods and heating foods at predetermined temperature using microwave oven by selecting magnetic property
JP2006198054A (en) * 2005-01-19 2006-08-03 Yoshio Oyama Magnetic metal plate for high frequency/electromagnetic induction heating, and cooking method using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9809456B2 (en) 2009-08-07 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for positive electrode active material
JP2015034127A (en) * 2009-08-07 2015-02-19 株式会社半導体エネルギー研究所 Preparation method of lithium-transition metal oxides
CN101799181A (en) * 2010-04-08 2010-08-11 梁伟研 Novel electric heating furnace
JP2013026086A (en) * 2011-07-22 2013-02-04 Hirata Technical Co Ltd Exothermic rubber
JP6080974B2 (en) * 2013-10-29 2017-02-15 三菱電機株式会社 Cooker
JP2016209497A (en) * 2015-05-03 2016-12-15 一夫 小花 Shallot extract extraction pottery container
KR101662962B1 (en) * 2015-11-30 2016-10-06 김두성 electric heater having dual-spherical for all-in-one
CN107440469A (en) * 2016-05-30 2017-12-08 佛山市顺德区美的电热电器制造有限公司 The cooking control method and device of a kind of seafood soup
CN107440470A (en) * 2016-05-30 2017-12-08 佛山市顺德区美的电热电器制造有限公司 A kind of cooking control method and device of domestic animal bone soup
JP2018111096A (en) * 2016-08-19 2018-07-19 日本碍子株式会社 Method for refining organic compound
JP2022037934A (en) * 2016-08-19 2022-03-09 日本碍子株式会社 Method for purifying organic compound
JP7242806B2 (en) 2016-08-19 2023-03-20 日本碍子株式会社 Method for purifying organic compounds
CN114586950A (en) * 2022-03-07 2022-06-07 江南大学 Microwave direct heating-wave absorbing heat transfer processing method for improving pork fragrance by increasing temperature

Also Published As

Publication number Publication date
JPWO2007132930A1 (en) 2009-09-24
JP5804233B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2007132930A2 (en) Method for performing heating process and heating method utilizing tunnel effect of infrared and far-infrared radiation energy
Priyadarshini et al. Emerging food processing technologies and factors impacting their industrial adoption
US9125428B2 (en) Retort sterilization device, heating device, heat sterilization method and heat treatment method
Rock et al. Conventional and alternative methods for tomato peeling
US20080271730A1 (en) Underwater ultrasonic thawing apparatus
JP2008116058A (en) Technological development for carrying out cooking and chemical reaction, chemical synthesis, metal working, metal crystallization, metal sintering and metallurgy by heating pottery with microwave for converting into far infrared or infrared wave radiation and improving heat efficiency
US20180045462A1 (en) Ultrasound and infrared assisted conductive hydro-dryer
KR101825163B1 (en) Processing system for food and method thereof
MX2008013261A (en) Ir reflective material for cooking.
CN101053376B (en) Electromagnetic wave pollen-wall broken method
Wu et al. Research progress in fluid and semifluid microwave heating technology in food processing
Yu et al. Advances in prepared dish processing using efficient physical fields: A review
CN102389120A (en) Manufacturing method of sauced duck
JP2003125745A (en) Method for producing high temperature steam at normal pressure using microwave and development of sterilization system by microwave application, germ-free distribution system of fruit and vegetable and development of food processing and cooking system
CN101589822A (en) A kind of method for processing dog chop seasoned with soy sauce
RU2667751C2 (en) Microwave installation with spherical resonators for thermal processing of fat-containing raw materials
CN101869323A (en) Preparation method of fast food fish noodles by utilizing vacuum microwave drying
CN107960619A (en) A kind of processing method of scallop food
JP2007295817A (en) Cooked frozen food having favorable flavor without losing color tone and nutrient component of fruit vegetable, and method for producing the same
KR20180112476A (en) A method for making a dried anchovy containing an extract of ramie leaves
RU2246879C2 (en) Method for producing of canned food from fish liver
JP3203832U (en) Deep-fried food
KR20160091073A (en) Packaging method of cooking food and packaged cooking food
Ahmed et al. Synergism of ultrasound and microwave for food processing, preservation, and extraction
Horikoshi Can a Semiconductor Generator Be Used at Microwave Heating or Energy Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743615

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008515604

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743615

Country of ref document: EP

Kind code of ref document: A2