WO2007132888A1 - 平滑筋収縮抑制剤 - Google Patents

平滑筋収縮抑制剤 Download PDF

Info

Publication number
WO2007132888A1
WO2007132888A1 PCT/JP2007/060031 JP2007060031W WO2007132888A1 WO 2007132888 A1 WO2007132888 A1 WO 2007132888A1 JP 2007060031 W JP2007060031 W JP 2007060031W WO 2007132888 A1 WO2007132888 A1 WO 2007132888A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
lipid
smooth muscle
vasospasm
group
Prior art date
Application number
PCT/JP2007/060031
Other languages
English (en)
French (fr)
Inventor
Satoru Ohgiya
Naoki Morita
Keiko Hanada
Kahoko Ichise
Toshikatsu Kobayashi
Sei Kobayashi
Hiroko Kishi
Kazuo Miyashita
Masashi Hosokawa
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Yamaguchi University
National University Corporation Hokkaido University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Yamaguchi University, National University Corporation Hokkaido University filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2008515586A priority Critical patent/JP5158715B2/ja
Publication of WO2007132888A1 publication Critical patent/WO2007132888A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • the present invention relates to a smooth muscle contraction inhibitor. More specifically, the present invention relates to an inhibitor of smooth muscle calcium-independent abnormal contraction, a therapeutic and prophylactic agent for cardiovascular diseases, and a FynZRho kinase signal transduction system inhibitor.
  • vasoconstrictors such as sphingosylphosphorylcholine (SPC) have enhanced calcium ion sensitivity via cytoplasmic Rho kinase and do not depend on contraction exceeding the calcium ion concentration or on the calcium ion concentration. It is known to cause contraction. These are calcium ion-independent contractions and are considered abnormal contractions.
  • SPC activates Fyn, one of the Src family tyrosine kinases that does not increase the cytosolic calcium concentration, further activates Rho kinase, and phosphorylates the myosin light chain. It is thought that the smooth muscle contracts independently of calcium ions (Anesthesia, 47 ⁇ , No. 5, 530-540, 1998).
  • Rho kinase inhibitor fasdylic acid or Y-27632 is known (Nature, 389 ⁇ , October 30 ⁇ , 990). — 994, 1997). Since it has an action to suppress the contraction dependent on canoresicum, such as S, and so on, there is a limit to its therapeutic effect as well as side effects. Therefore, drugs that selectively suppress only calcium-independent contraction The current situation is that things are longing for.
  • JP 2001-261556 discloses that eicosapentaenoic acid (EPA) inhibits Fyn's activity without affecting calcium ion-dependent normal smooth muscle contraction. It has been reported that only calcium ion-independent abnormal contraction is selectively suppressed.
  • EPA eicosapentaenoic acid
  • eicosapentaenoic acid can only be taken internally, and may not be able to accurately respond to acute vascular disease.
  • An object of the present invention is to provide a calcium ion-independent smooth muscle contraction inhibitor and preventive agent without affecting calcium ion-dependent normal smooth muscle contraction.
  • lipids having a specific acyl group and octadecapentaenoic acid and octadecatetraenoic acid solve the above problems, and have completed the present invention. .
  • the present invention is characterized by containing at least one selected from the group consisting of octadecapentaenoic acid and octadecatetraenoic acid, salts thereof, and ester power thereof. It is a smooth muscle contraction inhibitor.
  • the present invention also relates to a smooth muscle contraction inhibitor containing a lipid, wherein at least one acyl chain strength of the lipid is octadecapentaenoic acid, octadecatetraenoic acid and eicosapentaene.
  • a smooth muscle contraction inhibitor characterized by being at least one selected from the group consisting of acidity.
  • the present invention is the smooth muscle contraction inhibitor described above, wherein the lipid is a simple lipid or a complex lipid.
  • the present invention provides the smooth muscle contraction inhibitor, wherein the simple lipid is ceramide or glyceride.
  • the glyceride is a triglyceride, a diglyceride, or a monoglyceride.
  • the present invention also provides the smooth muscle contraction inhibitor described above, wherein the complex lipid is a phospholipid.
  • the present invention is selected from the group consisting of phospholipid strength phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acid, cardiolipin, sphingomyelin, and lysosomes thereof. It is at least one of the above-mentioned smooth muscle contraction inhibitors,
  • the present invention is characterized in that it contains at least one selected from the group consisting of octadecapentaenoic acid and octadedecatetraenoic acid, salts thereof, and ester power thereof. It is a therapeutic agent for cardiovascular diseases.
  • the present invention also relates to a therapeutic agent for cardiovascular diseases containing lipids, wherein at least one acyl chain strength of the lipid is octadecapentaenoic acid, octadecatetraenoic acid and A therapeutic agent for cardiovascular diseases, characterized in that it is at least one member selected from the group consisting of cosapentaenoic acid.
  • the present invention is the above therapeutic agent for cardiovascular disease, wherein the lipid is a simple lipid or a complex lipid.
  • the present invention is the above therapeutic agent for cardiovascular disease, wherein the simple lipid is ceramide or glyceride.
  • the glyceride is a triglyceride, a diglyceride, or a monoglyceride.
  • the therapeutic agent for cardiovascular disease is the therapeutic agent for cardiovascular disease.
  • the present invention is also the above therapeutic agent for cardiovascular disease, wherein the complex lipid is a phospholipid.
  • the present invention provides a group consisting of phospholipid strength phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acid, cardiolipin, sphingomyelin, and lysosomes thereof. It is at least one selected from the above-mentioned therapeutic agents for cardiovascular diseases.
  • the present invention is also the above therapeutic agent, wherein the cardiovascular disease is vasospasm.
  • the present invention is the above therapeutic agent, wherein the vasospasm is selected from the group consisting of cerebral vasospasm, coronary artery vasospasm, pulmonary vasospasm, mesenteric vasospasm, and finger vasospasm.
  • the present invention also relates to octadecapentaenoic acid, octadedecatetraenoic acid, and salts thereof.
  • an agent for preventing cardiovascular disease characterized by containing at least one selected from the group consisting of these ester powers.
  • the present invention is a circulatory disease preventive agent containing a lipid, wherein at least one acyl chain strength of the lipid is octadecapentaenoic acid, octadecatetraenoic acid and A circulatory disease preventive agent, characterized in that it is at least one member selected from the group consisting of cosapentaenoic acid.
  • the present invention is the above-mentioned preventive agent for cardiovascular disease, wherein the lipid is a simple lipid or a complex lipid.
  • the present invention is the above-mentioned cardiovascular disease preventive agent, wherein the simple lipid is ceramide or glyceride.
  • the glyceride is a triglyceride, a diglyceride, or a monoglyceride.
  • the present invention is the above circulatory disease preventive agent, wherein the complex lipid is a phospholipid.
  • the present invention is selected from the group consisting of phospholipid strength phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acid, cardiolipin, sphingomyelin, and lysosomes thereof. It is at least one of the above-mentioned cardiovascular disease preventive agents.
  • the present invention is the above preventive agent, wherein the cardiovascular disease is vasospasm.
  • the present invention is the above preventive agent, wherein the vasospasm is selected from the group consisting of cerebral vasospasm, coronary artery vasospasm, pulmonary vasospasm, mesenteric vasospasm, and finger vasospasm. [0036] Further, the present invention is characterized in that it contains at least one selected from the group consisting of octadecapentaenoic acid and octadecatetetraenoic acid, salts thereof, and ester power thereof. It is a FynZRho kinase signal transduction system inhibitor.
  • the present invention provides a lipid-containing FynZRho kinase signal transduction system inhibitor, wherein at least one acyl chain strength of the lipid is octadecapentaenoic acid, octodecatetraenoic acid, and eicosapentaenoic acid. It is a FynZRho kinase signal transduction system inhibitor characterized by being at least one selected from the above.
  • the present invention is the FynZRho kinase signal transduction system inhibitor described above, wherein the lipid is a simple lipid or a complex lipid.
  • the present invention is the FynZRho kinase signal transduction system inhibitor described above, wherein the simple lipid is ceramide or glyceride.
  • the glyceride is a triglyceride, a diglyceride, or a monoglyceride.
  • the present invention is the FynZRho kinase siderogenic system inhibitor described above, wherein the complex lipid is a phospholipid.
  • the present invention is selected from the group consisting of phospholipid strength phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acid, cardiolipin, sphingomyelin, and lysosomes thereof. It is said FynZRho kinase signal transmission system inhibitor characterized by being at least one kind.
  • the smooth muscle targeted by the present invention is not particularly limited with respect to organs and parts, and examples thereof include vascular smooth muscle, digestive organ smooth muscle, respiratory organ smooth muscle, uterine smooth muscle and the like. Particularly preferred is vascular smooth muscle, which can be mentioned as an example.
  • vascular smooth muscle which can be mentioned as an example.
  • the octadecapentaenoic acid used in the present invention is not particularly limited. For example, all-cis 3, 6, 9, 12, 15-octadecapentaenoic acid can be mentioned as a preferred example. wear.
  • the octadecatetraenoic acid used in the present invention is not particularly limited.
  • all-cis 6, 9, 12, 15-octadecatetetranoic acid is a preferred example. I can do it.
  • the eicosapentaenoic acid used in the present invention is not particularly limited.
  • eicosapentaenoic acid can be given as a preferred example.
  • Octadecapentaenoic acid and octadecatetraenoic acid are in the form of acids, and in the form of salts such as sodium, potassium, calcium, magnesium, and ammonium salts. However, sodium salts can be mentioned as preferred salts.
  • Otadecapentaenoic acid and octadecatetraenoic acid may be in the form of esters such as methyl ester, ethyl ester, butyl ester, and glyceryl ester, and may be in the form of phospholipids such as phosphatidyl choline and other complex lipids. May be. Of these, ethyl esters are particularly preferred.
  • octodecapentaenoic acid As a method for producing octodecapentaenoic acid, octodecatetraenoic acid and eicosapentaenoic acid used in the present invention, there is no particular limitation, in addition to chemical synthesis and production in microorganisms, It can also be produced by extracting natural products such as seaweed.
  • Lipids having a specific acyl group used in the present invention include simple lipids and complex lipids, as long as at least one acyl chain is otadecapentaenoic acid, octadecatetraenoic acid or eicosapentaenoic acid. Can be mentioned.
  • the position of glycerol to which octadecapentaenoic acid, octadecatetetranoic acid or eicosapentaenoic acid is bound is any of ⁇ -position, ⁇ -position, and ⁇ -position. It is acceptable if at least one acyl chain is octadecapentaenoic acid, octadecatetraenoic acid or eicosapentaenoic acid.
  • acyl chain other than octadecapentaenoic acid octadecatetraenoic acid or eicosapentaenoic acid
  • saturated or unsaturated fatty acids having 1 to 30 carbon atoms there are no particular restrictions, for example, saturated or unsaturated fatty acids having 1 to 30 carbon atoms.
  • at least one acyl chain is octadecapentaenoic acid, octadecatetraenoic acid or eicosapentaenoic acid, three, two, or one acyl chain may be bound to glycerol. .
  • monoacylglyceride having an acyl chain of eicosapentaenoic acid and diacylglyceride having at least one acyl chain of eicosapentaenoic acid may be referred to as “EPA-monoglyceride” and “EPA-diglyceride”, respectively.
  • the method for producing a simple lipid that is at least one acyl chain strength octadecapentaenoic acid, octodecatetraenoic acid or eicosapentaenoic acid used in the present invention is not particularly limited. Can be produced by conjugating glycerol to octadecapentaenoic acid, octadecatetraenoic acid or eicosapentaenoic acid with an enzyme such as lipase and fractionating by chromatography or the like.
  • a method of chemically synthesizing glycerol with octadecapentaenoic acid, octadecatetraenoic acid or eicosapentaenoic acid, or a method of separating natural products can be used.
  • the simple lipid is ceramide
  • it is produced by combining sphingosine and octadecapentaenoic acid, otadecatetraenoic acid or eicosapentaenoic acid with an enzyme such as SCDase and fractionating by chromatography or the like.
  • an enzyme such as SCDase and fractionating by chromatography or the like.
  • SCDase an enzyme
  • a method of chemically synthesizing sphingosine and octadecapentaenoic acid, octadecatetraenoic acid or eicosapentaenoic acid can also be used.
  • the complex lipid used in the present invention is not particularly limited as long as it contains a carbon atom, oxygen atom, hydrogen atom, phosphorus atom and Z or nitrogen atom and Z or sulfur atom in the molecule.
  • phospholipid can be mentioned as a preferred example.
  • the phospholipid used in the present invention is not particularly limited as long as it is a lipid containing phosphoric acid.
  • phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acid, cardiolipin, Sphingomyelin and their lysates can be mentioned.
  • phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol can be mentioned as preferable phospholipids.
  • These phospholipids can be used alone or in combination of two or more.
  • the position of glycerol to which octadecapentaenoic acid, octadecatetraenoic acid or eicosapentaenoic acid binds may be either ⁇ -position or ⁇ 8-position.
  • the glyceport phospholipid has two acyl chains, the other acyl chain is not particularly limited, for example, a saturated or unsaturated fatty acid having 1 to 30 carbon atoms.
  • the acyl chain may have a branched chain.
  • the other acyl chain strength may be octadecapentaenoic acid, octadecatetraenoic acid or eicosapentaenoic acid.
  • phosphatidylcholine in which at least one acyl chain is octadecapentaenoic acid, octadecatetraenoic acid or eicosapentaenoic acid can be mentioned as a preferred example.
  • phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol whose at least one acyl chain is eicosapentaenoic acid may be referred to as “EPA-PC”, “EPA-PE”, and “EPA-PG”, respectively.
  • the method for producing the complex lipid used in the present invention is not particularly limited.
  • a phospholipid lysophospholipid and octadecapentaenoic acid
  • octadecatetraenoic acid or eicosapentaenoic acid are used.
  • lysophospholipid and octadecapentaenoic acid, octadecatetraenoic acid, or eicosapentaenoic acid can be synthesized chemically or separated from natural products.
  • the circulatory system disease targeted by the present invention is not particularly limited.
  • vasospasm such as cerebral vasospasm, coronary artery vasospasm, pulmonary vasospasm, mesenteric vasospasm, and finger vasospasm Can be mentioned.
  • the "FynZRho kinase signal transduction system inhibitor” means that Fyn tyrosine kinase is activated by stimulation of SPC and the like, and Rho kinase is activated. A protein that inhibits all or part of a series of pathways in which protein phosphate is enhanced.
  • the dosage form of the smooth muscle inhibitor of the present invention, the therapeutic or preventive agent for cardiovascular disease, and the FynZRho kinase signal transduction system inhibitor is appropriately determined according to the respective purpose without any particular limitation.
  • Oral preparations such as tablets, powders, capsules, injections, eye drops Nasal drops, patches and the like.
  • the smooth muscle inhibitor, the therapeutic or preventive agent for cardiovascular disease, and the Fyn / Rho kinase signal transduction system inhibitor of the present invention may contain a pharmaceutically acceptable carrier and other components. .
  • the administration method of the smooth muscle inhibitor, the therapeutic or preventive agent for cardiovascular disease, and the FynZRho kinase signal transduction system inhibitor of the present invention is appropriately determined according to each purpose without any particular limitation.
  • Examples of the administration method include oral, intraarterial, intravenous, intraperitoneal, subcutaneous, intradermal, transdermal, and transmucosal.
  • administration by injection into an artery or vein can be mentioned as a preferred example.
  • the dosage of the smooth muscle inhibitor, the therapeutic or preventive agent for cardiovascular disease, and the FynZRho kinase signal transduction system inhibitor of the present invention is appropriately determined according to each purpose, and its dosage form and administration It will be adjusted as appropriate according to usage, symptom level, gender, age, weight, etc.
  • a therapeutic agent for cardiovascular disease usually 1 to 200 mg, preferably 5 to: L00 mg, more preferably 10 to 50 mg of octadecapentaenoic acid, Octadecatetraenoic acid or lipid is administered once or in multiple divided doses per day.
  • octadecapentaenoic acid Cenoic acid or lipid
  • the dose is generally smaller than when administered as a therapeutic agent.
  • An Antarctic haptophyte B strain was cultured as follows. 400 mL of medium was placed in a 500 mL flask, inoculated with haptophyte B, and statically cultured at 4 ° C for 6 to 9 weeks under a white fluorescent lamp for 24 hours under a light condition.
  • the medium used was artificial seawater (Marine Art High, Senju Pharmaceutical Co., Ltd.) supplemented with ImL of Daigo 1MK medium for marine microalgae (Japan Pharmaceutical Co., Ltd.) per lOOmL. [0065] After culturing, the cells were collected by centrifugal sedimentation to obtain algal bodies having a wet weight of 1 lg.
  • Lipid extraction was performed from algal cells according to a conventional method (Bligh, EG & Dyer WJ (1959) Can. J. Biochem. Physiol. 37: 911-7) to obtain 428 mg of lipid.
  • the obtained total lipid was reacted in methanol containing 10% salt acetylacetate at 100 ° C. for 3 hours to obtain 167 mg of hexane extract.
  • the fatty acid composition of this hexane extract is as follows: myristic acid 11%, palmitic acid 5%, n-3 octadecatetraenoic acid 4%, n-3 octadecapentaenoic acid 14%, n-3 docosahexaenoic acid 8 In%.
  • n-3 octadecapentaenoic acid methyl ester and n-3 octadecatetraenoic acid methyl ester in the polyunsaturated fatty acid methyl ester mixture were purified by liquid chromatography.
  • n-3 octadecapentaenoic acid methyl ester and n-3 octadecatetraenoic acid methyl ester were 12 mg and 6 mg, respectively, and their purity was 99.7% by gas chromatography analysis, respectively. 91.0%.
  • the obtained lipid fraction was applied to a silica gel TLC plate for preparation (silica gel 60, 0.5 mm thickness, Merck) and developed with jetyl ether: acetic acid (10: 0.1, v / v). .
  • the synthesized n-3 octadecatetraenoic acid-binding ceramide spots were fractionated and extracted from silica gel to obtain 3.2 mg of n-3 octadecatetraenoic acid binding ceramide. .
  • Eicosapentaenoic acid 180 mg and egg yolk-derived lysophosphatidylcholine 1 lOmg were dispersed in 5500 mg of glycerol, and pig spleen-derived phospholipase A2 23 mg, formamide 0.5 ml, CaCl 3 mol were added 37. 50 ⁇ 200rpm at some point of C
  • the synthesis reaction was carried out for 48 hours with stirring. After completion of the reaction, the lipid fraction was collected by the Folch method Ci. Biol. Chem. 1 46, 35-44 (1942)).
  • the obtained lipid fraction was applied to a silica gel TLC plate for preparation (silica gel 60, 0.5 mm thickness, Merck), and developed with black mouth form: methanol: water (65: 25: 4, vZvZv). did.
  • the synthesized EPA-bound phosphatidylcholine (EPA—PC) spot was fractionated and extracted from silica gel to obtain 90 mg of EPA-PC.
  • the prepared EPA—PC contained 46.6% EPA! /.
  • Example 2 After 30 mg of EPA-PC synthesized in Example 2 was dissolved in 2.5 ml of ethyl acetate, l ml of 0.2 M acetate buffer (pH 5.6) containing 3.4 M L-serine was added. Furthermore, phospholipase D (derived from Streptomyces sp.) was added to lunit to start the reaction, and then phosphatidyl group transfer reaction was carried out at 37 ° C for 24 hours with stirring at 300-400 rpm. After completion of the reaction, the lipid fraction was collected by the Folch method (J. Biol. Chem. 146, 35-44 (1942)).
  • phospholipase D derived from Streptomyces sp.
  • the obtained lipid fraction was applied to a silica gel TLC plate for preparation (silica gel 60, 0.5 mm thickness, Merck), and developed with black mouth form: methanol: water (65: 25: 4, vZvZv). did.
  • the synthesized EPA-bound phosphatidylserine (EPA-PS) spot was fractionated and extracted from silica gel to obtain 12 mg of EPA-PS.
  • the prepared EPA—PS contained 47% EPA.
  • Example 2 50 mg of EPA-PC synthesized in Example 2 was dissolved in 2.2 ml of ethyl acetate, and then 1.2 ml of 0.2 M acetate buffer (pH 5.6) containing 14 mg of bovine serum albumin was prepared. Furthermore, after adding glycerol 400 ⁇ 1 and phospholipase D (derived from Streptomyces sp.) 2.4 units, the reaction was started, and then phosphatidyl group transfer was performed for 4 hours with stirring at 300–400 rpm in the dark at 37 ° C. Reaction was performed. After completion of the reaction, the lipid fraction was collected by the Folch method (J. Biol. Chem. 146, 35-44 (1942)).
  • the obtained lipid fraction was applied to a silica gel TLC plate for preparation (silica gel 60, 0.5 mm thickness, Merck), and developed with black mouth form: methanol: water (65: 25: 4, vZvZv). did.
  • the synthesized EPA-linked glycerol (EPA-PG) spot was fractionated and extracted from silica gel to obtain 20 mg of enzyme-synthesized EPA-PG. Prepared enzyme synthesis EPA—PG Contained 50% EPA.
  • EPA 300 mg and glycerol 5 g are sufficiently dispersed in the presence of ⁇ -tocopherol 9 mg, and then added with 30 mg of Lipozyme RM IM (Novozymes AZS) and stirred at 300–400 rpm in the dark at 37 ° C.
  • a time synthesis reaction was performed. After completion of the reaction, partitioning was performed using diethyl ether: water (1: 1, vZv), and the lipid fraction was recovered from the jetyl ether layer.
  • the obtained lipid fraction was applied to a silica gel TLC plate for preparation (silica gel 60, 0.5 mm thickness, Merck) and developed with n-hexane: ether (60:40, v / v). After fractionating the spot with the synthesized EPA monoglyceride, EPA-diglyceride (collected as a mixture of 1,2-EPA-diglyceride and 1,3-EPA-diglyceride), it was extracted from silica gel and extracted with 80 mg of EPA-monoglyceride, 90 mg of EPA-diglyceride was obtained.
  • the Krebs solution was changed every 15 minutes. After removing the fat around the blood vessel, the outer membrane was removed, the endothelium was removed with a cotton swab, and a smooth muscle strip lmm X 4 mm was prepared using a razor.
  • Octadecapentaenoic acid was obtained according to Example 1 and used after diluting with Krebs solution to a final concentration after replacing the solvent with ethanol.
  • the EPA-PC was obtained according to Example 3 and used after adjusting the concentration.
  • EPA-PE and EP A-PG were obtained according to Example 4 and adjusted to the final concentration based on the EPA content.
  • Octadecatetraenoic acid and octadecapentaenoic acid were obtained according to Example 1, and the solvent was replaced with ethanol. After that, it was diluted with Krebs solution to the final concentration and used.
  • EPA-monoglyceride and EPA-diglyceride were used according to Example 7 after replacing the solvent with ethanol and diluting with Krebs solution to the final concentration.
  • EPA-PS the solvent obtained in accordance with Example 5 was volatilized with nitrogen gas, added with a small amount of Krebs solution, suspended by sonication, and further diluted with Krebs solution to the final concentration. I used it.
  • Enzymatic synthesis EPA-PG and octadedecatetraenoic acid ceramide were obtained according to Example 6 and Example 2. After replacing the solvent with ethanol, diluted to the final concentration with Krebs solution. Used.
  • the wire on which the sample was suspended was connected to a transducer (FD pickup: Nihon Kohden), and the tension was detected by a recorder (desktop pen recorder U-2228: Pantos) through an amplifier (amplifier for strain pressure: Nihon Kohden).
  • FD pickup Nihon Kohden
  • recorder desktop pen recorder U-2228: Pantos
  • amplifier amplifier for strain pressure: Nihon Kohden
  • EPA-PE and EPA-PG were prepared so that the final concentration of EPA was 60 ⁇ .
  • Octadecatetraenoic acid was adjusted to a final concentration of 60%.
  • ⁇ ⁇ -monoglyceride and ⁇ -diglyceride were added based on the ⁇ content so that the final concentration of ⁇ was 60 ⁇ ⁇ .
  • ⁇ —PS and enzyme synthesis EPA—PG was prepared based on the EPA content so that the final concentration of EPA was 60 M.
  • Octadecatetraenoic acid ceramide has a final concentration of 60 M based on the content of I added so that.
  • Fig. 1 shows an example by EPA
  • Fig. 2 shows an example by octadecapentaenoic acid
  • Fig. 3 shows an example by EPA-PC
  • Fig. 4 shows an example by EPA-PE
  • Fig. 5 shows an example by EPA- Figure 6 shows an example using PG
  • Figure 6 shows an example using octadecatetraenoic acid
  • Figure 7 shows an example using EPA-monodalide
  • Figure 8 shows an example using EPA-diglyceride
  • Figure 9 shows an example using EPA.
  • Fig. 10 shows an example using enzyme-synthesizing EPA-PG
  • Fig. 11 shows an example using octodecatetraenoic acid ceramide.
  • Fig. 1 ⁇ From L1, octadecapentaenoic acid and EPA-PC, EPA-PE, EPA-PG, octadecatetetraenoic acid, EPA-monoglyceride, EPA-diglyceride, EPA-PS, Enzyme synthesis EPA-PG and octadedecatetraenoic acid ceramide are found to suppress abnormal shrinkage due to SPC, similar to EPA.
  • an inhibitor and a preventive agent for calcium ion-independent smooth muscle contraction can be provided without affecting calcium ion-dependent normal smooth muscle contraction.
  • FIG. 1 is a diagram showing EPA-induced contraction suppression in response to SPC stimulation in smooth muscle tissue.
  • Fig. 2 is a diagram showing contraction suppression by octadecapentaenoic acid in response to SPC stimulation in smooth muscle tissue.
  • FIG. 3 is a diagram showing EPA-PC contraction suppression to SPC stimulation in smooth muscle tissue.
  • FIG. 4 is a diagram showing the suppression of contraction by EPA-PE against SPC stimulation in smooth muscle tissue.
  • Figure 5 shows the suppression of contraction by EPA-PG against SPC stimulation in smooth muscle tissue. It is a figure.
  • FIG. 6 is a graph showing suppression of contraction by octadecatetraenoic acid to SPC stimulation in smooth muscle tissue.
  • FIG. 7 is a graph showing the suppression of contraction by EPA-monoglyceride against SPC stimulation in smooth muscle tissue.
  • FIG. 8 is a graph showing suppression of contraction by EPA-diglyceride in response to SPC stimulation in smooth muscle tissue.
  • FIG. 9 is a diagram showing the suppression of contraction by EPA-PS against SPC stimulation in smooth muscle tissue.
  • FIG. 10 is a graph showing inhibition of contraction by enzyme-synthesized EPA-PG in response to SPC stimulation in smooth muscle tissue.
  • Fig. 11 is a diagram showing the inhibition of contraction by octadedecatetraenoic acid ceramide in response to SPC stimulation in smooth muscle tissue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】安定して供給でき、カルシウムイオン依存性の正常な平滑筋収縮に影響を与えずに、カルシウムイオン非依存性の平滑筋収縮の抑制剤を提供する。さらに、循環器系疾患治療剤および予防剤、さらにFyn/Rhoキナーゼシグナル伝達系阻害剤を提供する。 【解決手段】オクタデカペンタエン酸およびオクタデカテトラエン酸、これらの塩、並びにこれらのエステルからなる群より選択される少なくとも1種を含有することを特徴とする、平滑筋収縮抑制剤、循環器系疾患治療剤および予防剤、Fyn/Rhoキナーゼシグナル伝達系阻害剤を用いる。また、脂質を含有する平滑筋収縮抑制剤であって、前記脂質の少なくとも1つのアシル鎖が、オクタデカペンタエン酸、オクタデカテトラエン酸およびエイコサペンタエン酸からなる群より選択される少なくとも1種であることを特徴とする、平滑筋収縮抑制剤、循環器系疾患治療剤および予防剤、Fyn/Rhoキナーゼシグナル伝達系阻害剤を用いる。

Description

明 細 書
平滑筋収縮抑制剤
技術分野
[0001] 本発明は、平滑筋収縮抑制剤に関する。より詳しくは、平滑筋のカルシウム非依存 性異常収縮の抑制剤、循環器系疾患治療剤および予防剤、さらに FynZRhoキナ ーゼシグナル伝達系阻害剤に関する。
背景技術
[0002] 平滑筋の収縮には、細胞質のカルシウムイオン濃度の上昇に依存した収縮と、これ に依存しな 、収縮があることが知られて 、る。
[0003] 即ち、神経刺激のような細胞膜脱分極の場合には、細胞質のカルシウムイオン濃 度を上昇させ、カルシウムイオン カルモジュリン複合体を形成し、この複合体によつ てミオシン軽鎖キナーゼが活性ィ匕されてミオシン軽鎖がリン酸ィ匕されて収縮を起こす ものと考えられている。このようなカルシウムイオン依存性の平滑筋収縮は、正常な収 縮と考えられている。
[0004] 一方、スフインゴシルホスホリルコリン(SPC)等の一部の血管収縮物質は、細胞質 の Rhoキナーゼを介してカルシウムイオン感受性が増強され、カルシウムイオン濃度 上昇を超える収縮またはカルシウムイオン濃度に依存しない収縮を起こすことが知ら れている。これらは、カルシウムイオン非依存性の収縮であり、異常な収縮と考えられ ている。例えば、 SPCは、細胞質のカルシウム濃度を上昇させることなぐ Srcファミリ ーチロシンキナーゼの 1種である Fynを活性ィ匕し、さらに Rhoキナーゼを活性ィ匕し、ミ オシン軽鎖をリン酸ィ匕して、カルシウムイオン非依存的に平滑筋を収縮させると考え られている(麻酔、 47卷、 5号、 530— 540ページ、 1998年)。
[0005] このようなカルシウムイオン非依存性の平滑筋収縮阻害剤としては、 Rhoキナーゼ 阻害剤であるファスジル酸または Y— 27632が知られている(Nature, 389卷、 10 月 30曰号、 990— 994頁、 1997年)。し力しな力 Sら、これらの薬剤 ίま、カノレシクム依 存性収縮を抑制する作用も有しているため、副作用のみならず、その治療効果に限 界がある。従って、選択的にカルシウム非依存性収縮のみを抑制する作用をもつ薬 物が切望されて 、るのが現状である。
[0006] また、特開 2001— 261556には、エイコサペンタエン酸(EPA)が、カルシウムィォ ン依存性の正常な平滑筋収縮に影響を与えずに、 Fynの活性ィ匕を阻害することによ つて、カルシウムイオン非依存的な異常収縮のみを選択的に抑制することが報告さ れている。
[0007] し力し、特開 2001— 261556には、エイコサペンタエン酸のナトリウム塩が平滑筋 収縮抑制作用を有して 、るが、エイコサペンタエン酸のェチルエステルおよびエイコ サペンタエン酸のトリグリセリドには、平滑筋収縮抑制作用がないことが記載されてい る。
[0008] また、エイコサペンタエン酸は、内服のみが可能であり、急性発症した血管病に的 確に対応できな 、場合がある。
発明の開示
発明が解決しょうとする課題
[0009] 本発明の課題は、カルシウムイオン依存性の正常な平滑筋収縮に影響を与えずに 、カルシウムイオン非依存性の平滑筋収縮の抑制剤および予防剤を提供することに ある。
課題を解決するための手段
[0010] 本発明者らは、特定のァシル基を有する脂質、並びにォクタデカペンタエン酸およ びォクタデカテトラェン酸が上記課題を解決することを見出し、本発明を完成させた。
[0011] 即ち、本発明は、ォクタデカペンタエン酸およびォクタデカテトラェン酸、これらの 塩、並びにこれらのエステル力 なる群より選択される少なくとも 1種を含有することを 特徴とする、平滑筋収縮抑制剤である。
[0012] また、本発明は、脂質を含有する平滑筋収縮抑制剤であって、前記脂質の少なくと も 1つのァシル鎖力 ォクタデカペンタエン酸、ォクタデカテトラェン酸およびエイコサ ペンタエン酸力 なる群より選択される少なくとも 1種であることを特徴とする、平滑筋 収縮抑制剤である。
[0013] また、本発明は、脂質が、単純脂質または複合脂質である、上記の平滑筋収縮抑 制剤である。 [0014] また、本発明は、単純脂質が、セラミドまたはグリセリドである、上記の平滑筋収縮 抑制剤である。
[0015] また、本発明は、グリセリドが、トリグリセリド、ジグリセリド、またはモノグリセリドである
、上記の平滑筋収縮抑制剤である。
[0016] また、本発明は、複合脂質が、リン脂質である、上記の平滑筋収縮抑制剤である。
[0017] また、本発明は、リン脂質力 ホスファチジルコリン、ホスファチジルセリン、ホスファ チジルエタノールァミン、ホスファチジルグリセロール、ホスファチジルイノシトール、ホ スファチジン酸、カルジォリピン、スフインゴミエリン、およびこれらのリゾ体からなる群 より選ばれる少なくとも 1種であることを特徴とする、上記の平滑筋収縮抑制剤である
[0018] また、本発明は、ォクタデカペンタエン酸およびォクタデカテトラェン酸、これらの塩 、並びにこれらのエステル力 なる群より選択される少なくとも 1種を含有することを特 徴とする、循環器系疾患治療剤である。
[0019] また、本発明は、脂質を含有する循環器系疾患治療剤であって、前記脂質の少な くとも 1つのァシル鎖力 ォクタデカペンタエン酸、ォクタデカテトラェン酸およびエイ コサペンタエン酸カもなる群より選択される少なくとも 1種であることを特徴とする、循 環器系疾患治療剤である。
[0020] また、本発明は、脂質が、単純脂質または複合脂質である、上記の循環器系疾患 治療剤である。
[0021] また、本発明は、単純脂質が、セラミドまたはグリセリドである、上記の循環器系疾 患治療剤である。
[0022] また、本発明は、グリセリドが、トリグリセリド、ジグリセリド、またはモノグリセリドである
、上記の循環器系疾患治療剤である。
[0023] また、本発明は、複合脂質が、リン脂質である、上記の循環器系疾患治療剤である
[0024] また、本発明は、リン脂質力 ホスファチジルコリン、ホスファチジルセリン、ホスファ チジルエタノールァミン、ホスファチジルグリセロール、ホスファチジルイノシトール、ホ スファチジン酸、カルジォリピン、スフインゴミエリン、およびこれらのリゾ体からなる群 より選ばれる少なくとも 1種であることを特徴とする、上記の循環器系疾患治療剤であ る。
[0025] また、本発明は、循環器系疾患が血管攣縮である、上記の治療剤である。
[0026] また、本発明は、血管攣縮が、脳血管攣縮、冠状動脈攣縮、肺血管攣縮、腸管膜 血管攣縮、および手指血管攣縮からなる群より選択される、上記の治療剤である。
[0027] また、本発明は、ォクタデカペンタエン酸およびォクタデカテトラェン酸、これらの塩
、並びにこれらのエステル力 なる群より選択される少なくとも 1種を含有することを特 徴とする、循環器系疾患予防剤である。
[0028] また、本発明は、脂質を含有する循環器系疾患予防剤であって、前記脂質の少な くとも 1つのァシル鎖力 ォクタデカペンタエン酸、ォクタデカテトラェン酸およびエイ コサペンタエン酸カもなる群より選択される少なくとも 1種であることを特徴とする、循 環器系疾患予防剤である。
[0029] また、本発明は、脂質が、単純脂質または複合脂質である、上記の循環器系疾患 予防剤である。
[0030] また、本発明は、単純脂質が、セラミドまたはグリセリドである、上記の循環器系疾 患予防剤である。
[0031] また、本発明は、グリセリドが、トリグリセリド、ジグリセリド、またはモノグリセリドである
、上記の循環器系疾患予防剤である。
[0032] また、本発明は、複合脂質が、リン脂質である、上記の循環器系疾患予防剤である
[0033] また、本発明は、リン脂質力 ホスファチジルコリン、ホスファチジルセリン、ホスファ チジルエタノールァミン、ホスファチジルグリセロール、ホスファチジルイノシトール、ホ スファチジン酸、カルジォリピン、スフインゴミエリン、およびこれらのリゾ体からなる群 より選ばれる少なくとも 1種であることを特徴とする、上記の循環器系疾患予防剤であ る。
[0034] また、本発明は、循環器系疾患が血管攣縮である、上記の予防剤である。
[0035] また、本発明は、血管攣縮が、脳血管攣縮、冠状動脈攣縮、肺血管攣縮、腸管膜 血管攣縮、および手指血管攣縮からなる群より選択される、上記の予防剤である。 [0036] また、本発明は、ォクタデカペンタエン酸およびォクタデカテトラェン酸、これらの塩 、並びにこれらのエステル力 なる群より選択される少なくとも 1種を含有することを特 徴とする、 FynZRhoキナーゼシグナル伝達系阻害剤である。
[0037] また、本発明は、脂質を含有する FynZRhoキナーゼシグナル伝達系阻害剤であ つて、前記脂質の少なくとも 1つのァシル鎖力 ォクタデカペンタエン酸、ォクタデカ テトラエン酸およびエイコサペンタエン酸力 なる群より選択される少なくとも 1種であ ることを特徴とする、 FynZRhoキナーゼシグナル伝達系阻害剤である。
[0038] また、本発明は、脂質が、単純脂質または複合脂質である、上記の FynZRhoキナ ーゼシグナル伝達系阻害剤である。
[0039] また、本発明は、単純脂質が、セラミドまたはグリセリドである、上記の FynZRhoキ ナーゼシグナル伝達系阻害剤である。
[0040] また、本発明は、グリセリドが、トリグリセリド、ジグリセリド、またはモノグリセリドである
、上記の FynZRhoキナーゼシグナル伝達系阻害剤である。
[0041] また、本発明は、複合脂質が、リン脂質である、上記の FynZRhoキナーゼシダナ ル伝達系阻害剤である。
[0042] また、本発明は、リン脂質力 ホスファチジルコリン、ホスファチジルセリン、ホスファ チジルエタノールァミン、ホスファチジルグリセロール、ホスファチジルイノシトール、ホ スファチジン酸、カルジォリピン、スフインゴミエリン、およびこれらのリゾ体からなる群 より選ばれる少なくとも 1種であることを特徴とする、上記の FynZRhoキナーゼシグ ナル伝達系阻害剤である。
発明の効果
[0043] 本発明によれば、カルシウムイオン依存性の正常な平滑筋収縮に影響を与えずに 、カルシウムイオン非依存性の平滑筋収縮の抑制剤および予防剤を提供することが できる。
発明を実施するための最良の形態
[0044] 本発明が対象とする平滑筋としては、臓器や部位等について特に制限はないが、 例えば、血管平滑筋、消化器平滑筋、呼吸器平滑筋、子宮平滑筋等を挙げることが でき、特に血管平滑筋を好ま 、例として挙げることができる。 [0045] 本発明に用いるォクタデカペンタエン酸としては、特に制限はないが、例えば全一 シス 3, 6, 9, 12, 15—ォクタデカペンタエン酸を好ましい例として挙げることがで きる。
[0046] また、本発明に用いるォクタデカテトラェン酸としては、特に制限はないが、例えば 全一シス 6, 9, 12, 15—ォクタデカテトラェン酸を好ましい例として挙げることがで きる。
[0047] また、本発明に用いるエイコサペンタエン酸としては、特に制限はないが、例えば、 全一シス一 5, 8, 11, 14, 17 エイコサペンタエン酸を好ましい例として挙げること ができる。
[0048] ォクタデカペンタエン酸およびォクタデカテトラェン酸は、酸の形態のものの他、ナ トリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニゥム塩の様な塩の形 態のものでもよぐ特にナトリウム塩を好ましい塩として挙げることができる。また、オタ タデカペンタエン酸、ォクタデカテトラェン酸は、メチルエステル、ェチルエステル、ブ チルエステル、グリセリルエステル等のエステルの形態でもよぐまた、ホスファチジル コリン等のリン脂質やその他の複合脂質の形態であってもよい。これらのなかで、特 にェチルエステルを好ましいエステルとして挙げることができる。
[0049] 本発明に用いるォクタデカペンタエン酸、ォクタデカテトラェン酸およびエイコサぺ ンタエン酸の製造方法としては、特に制限はなぐ化学合成によることや微生物に産 生させることの他、海藻等の天然物力 抽出することによつても製造することができる
[0050] 本発明に用いる特定のァシル基を有する脂質は、少なくとも 1つのァシル鎖がオタ タデカペンタエン酸、ォクタデカテトラェン酸またはエイコサペンタエン酸であれば、 特に制限はなぐ単純脂質及び複合脂質を挙げることができる。
[0051] 単純脂質がグリセリドである場合は、ォクタデカペンタエン酸、ォクタデカテトラェン 酸またはエイコサペンタエン酸が結合するグリセロールの位置としては、 α位、 β位、 γ位のいずれであってもよぐ少なくとも 1つのァシル鎖がォクタデカペンタエン酸、 ォクタデカテトラェン酸またはエイコサペンタエン酸であれば良 、。ォクタデカペンタ ェン酸、ォクタデカテトラェン酸またはエイコサペンタエン酸以外のァシル鎖としては 、特に制限はなぐ例えば炭素数 1〜30の飽和若しくは不飽和脂肪酸を挙げることが できる。また、少なくとも 1つのァシル鎖がォクタデカペンタエン酸、ォクタデカテトラエ ン酸またはエイコサペンタエン酸であれば、グリセロールに結合して 、るァシル鎖は 3 つでも 2つでも 1つでも良い。以下、ァシル鎖がエイコサペンタエン酸であるモノァシ ルグリセリド及び少なくとも 1つのァシル鎖がエイコサペンタエン酸であるジァシルグリ セリドを、それぞれ「EPA—モノグリセリド」、「EPA—ジグリセリド」ということがある。
[0052] 本発明に用いる少なくとも 1つのァシル鎖力 ォクタデカペンタエン酸、ォクタデカ テトラエン酸またはエイコサペンタエン酸である単純脂質を製造する方法としては、特 に制限はないが、例えば、グリセリドの場合は、グリセロールとォクタデカペンタエン酸 、ォクタデカテトラェン酸またはエイコサペンタエン酸をリパーゼ等の酵素によって結 合させ、クロマトグラフィー等で分画することにより、製造することができる。さらには、 グリセロールとォクタデカペンタエン酸、ォクタデカテトラェン酸またはエイコサペンタ ェン酸から化学合成する方法や、天然物力 分離する方法を用いることもできる。
[0053] また、単純脂質がセラミドの場合は、スフインゴシンとォクタデカペンタエン酸、オタ タデカテトラェン酸またはエイコサペンタエン酸を SCDaseなどの酵素によって結合さ せ、クロマトグラフィー等で分画することにより、製造することができる。さらには、スフィ ンゴシンとォクタデカペンタエン酸、ォクタデカテトラェン酸またはエイコサペンタエン 酸力 化学合成する方法を用いることもできる。
[0054] 本発明に用いる複合脂質としては、その分子内に炭素原子、酸素原子、水素原子 の他、リン原子および Zまたは窒素原子および Zまたは硫黄原子を含むものであれ ば、特に制限はないが、リン脂質を好ましい例として挙げることができる。
[0055] 本発明に用いるリン脂質としては、リン酸を含む脂質であれば特に制限はないが、 例えば、ホスファチジルコリン、ホスファチジルセリン、ホスファチジルエタノールァミン 、ホスファチジルグリセロール、ホスファチジルイノシトール、ホスファチジン酸、カルジ オリピン、スフインゴミエリンおよびそれらのリゾ体を挙げることができる。これらのなか で、特にホスファチジルコリン、ホスファチジルエタノールァミン、ホスファチジルグリセ ロールを好ましいリン脂質として挙げることができる。なお、これらのリン脂質は、単独 で用いることのほか、 2種以上を組み合わせて用いることもできる。 [0056] 複合脂質がグリセ口リン脂質である場合は、ォクタデカペンタエン酸、ォクタデカテト ラエン酸またはエイコサペンタエン酸が結合するグリセロールの位置としては、 α位、 ι8位のいずれであってもよい。そして、グリセ口リン脂質が 2つのァシル鎖を有する場 合、もう一方のァシル鎖としては、特に制限はなぐ例えば炭素数 1〜30の飽和若し くは不飽和脂肪酸を挙げることができ、これらのァシル鎖は分枝鎖を有していても良 い。また、もう一方のァシル鎖力 ォクタデカペンタエン酸、ォクタデカテトラェン酸ま たはエイコサペンタエン酸であってもよい。これらのなかで、少なくとも 1つのァシル鎖 がォクタデカペンタエン酸、ォクタデカテトラェン酸またはエイコサペンタエン酸であ るホスファチジルコリンを、好ましい例として挙げることができる。以下、少なくとも 1つ のァシル鎖がエイコサペンタエン酸であるホスファチジルコリン、ホスファチジルェタノ ールァミン、ホスファチジルグリセロールを、それぞれ「EPA— PC」、「EPA— PE」、「 EPA—PG」ということがある。
[0057] 本発明に用いる複合脂質を製造する方法としては、特に制限はないが、例えばリン 脂質の場合は、リゾリン脂質とォクタデカペンタエン酸、ォクタデカテトラェン酸または エイコサペンタエン酸をホスホリパーゼなどの酵素によって結合させ、クロマトグラフィ 一等で分画することにより、製造することができる。さらには、リゾリン脂質とォクタデカ ペンタエン酸、ォクタデカテトラェン酸またはエイコサペンタエン酸力 化学合成する 方法や天然物から分離する方法を用いることもできる。
[0058] 本発明が対象とする循環器系疾患としては、特に制限はないが、例えば、脳血管 攣縮、冠状動脈攣縮、肺血管攣縮、腸管膜血管攣縮、および手指血管攣縮のような 血管攣縮を挙げることができる。
[0059] 本発明にお 、て、「FynZRhoキナーゼシグナル伝達系阻害剤」とは、 SPC等の刺 激により Fynチロシンキナーゼが活性ィ匕され、さらに Rhoキナーゼが活性ィ匕されるこ とにより、タンパク質リン酸ィ匕が亢進する一連の経路の全部またはその一部を阻害す るものをいう。
[0060] 本発明の平滑筋抑制剤、循環器系疾患治療剤若しくは予防剤、 FynZRhoキナ ーゼシグナル伝達系阻害剤の剤形としては特に制限はなぐそれぞれの目的に応じ て適宜決定されるが、例えば、錠剤、散剤、カプセル剤等の経口剤、注射剤、点眼剤 、点鼻剤、貼付剤等を挙げることができる。
[0061] また、本発明の平滑筋抑制剤、循環器系疾患治療剤若しくは予防剤、 Fyn/Rho キナーゼシグナル伝達系阻害剤には、薬学上許容されるキャリアや他の成分を含む ことができる。
[0062] 本発明の平滑筋抑制剤、循環器系疾患治療剤若しくは予防剤、 FynZRhoキナ ーゼシグナル伝達系阻害剤の投与方法としては特に制限はなぐそれぞれの目的に 応じて適宜決定されるが、例えば経口、動脈内、静脈内、腹腔内、皮下、皮内、経皮 、経粘膜などの投与方法を挙げることができる。特に、循環器系疾患治療剤の場合 は、動脈や静脈への注射による投与を好ましい例として挙げることができる。
[0063] 本発明の平滑筋抑制剤、循環器系疾患治療剤若しくは予防剤、 FynZRhoキナ ーゼシグナル伝達系阻害剤の投与量としては、それぞれの目的に応じて適宜決定さ れ、その剤形、投与用法、症状の程度、性別、年齢、体重等により適宜調整されるこ ととなる。例えば、循環器系疾患の治療剤として、動脈内あるいは静脈内への投与す る場合は、通常 l〜200mg、好ましくは 5〜: L00mg、より好ましくは 10〜50mgのォ クタデカペンタエン酸、ォクタデカテトラェン酸または脂質を、 1日 1回または複数回 に分けて投与される。また、循環器系疾患の治療剤として経口投与する場合は、通 常 0. l〜9g、好ましくは 0. 5〜6g、より好ましくは l〜3gのォクタデカペンタエン酸、 ォクタデカテトラェン酸または脂質を、 1日 1回または複数回に分けて投与される。さ らに、循環器系疾患の予防剤として経口投与する場合は、治療剤として投与する場 合よりも一般的に少ない投与量となる。
実施例
[0064] < <実施例 1 :n— 3ォクタデカペンタエン酸、 n— 3ォクタデカテトラェン酸の調製 >
>
南極海産のハプト藻 B株を以下の様にして培養した。 500mLのフラスコに 400mL の培地を入れ、ハプト藻 B株を植菌し、 4°Cで 6— 9週間、白色蛍光灯の下 24時間明 期条件下で計 16本静置培養した。培地は、人工海水 (マリンアートハイ、千寿製薬( 株)) lOOmL当たり ImLの海産微細藻類用ダイゴ 1MK培地(日本製薬 (株))を添加 したものを使用した。 [0065] 培養後、遠心沈降法で細胞を回収し湿重量 1 lgの藻体を得た。常法 (Bligh, EG &Dyer WJ (1959) Can. J. Biochem. Physiol. 37 : 911— 7)に従って藻体より 脂質抽出を行い 428mgの脂質を得た。得られた全脂質を、 10%塩ィ匕ァセチルを含 むメタノール中で 100°C、 3時間反応させへキサン抽出物を 167mg得た。このへキサ ン抽出物の脂肪酸組成は、ミリスチン酸 11%、パルミチン酸 5%、 n— 3ォクタデカテ トラェン酸 4%、 n— 3ォクタデカペンタエン酸 14%、 n— 3ドコサへキサェン酸 8%で めつに。
[0066] 次に、高度不飽和脂肪酸組成を上げるために薄層クロマトグラフィーを行った。へ キサン抽出物をシリカゲル (シリカゲル 60、メルク社)に塗布し、展開溶媒へキサン: ジェチルエーテル = 19: 1を用いて、二重結合を分子内に 3個以上含む高度不飽和 脂肪酸メチルエステル画分を 37mg回収した。このメチルエステル混合物の脂肪酸 糸且成は、 n— 3ォクタデカテトラェン酸 14%、 n— 3ォクタデカペンタエン酸 36%、 n— 3ドコサへキサェン酸 34%であり、ミリスチン酸、パルミチン酸は殆ど検出されなかつ た。
[0067] この高度不飽和脂肪酸メチルエステル混合物中の n— 3ォクタデカペンタエン酸メ チルエステル、 n— 3ォクタデカテトラェン酸メチルエステルを液体クロマトグラフィー により精製した。用いたカラムは ODS逆相カラム (TSK— GEL ODS— 120T、内 径 4. 6mm、長さ 250mm、東ソー(株))で、溶媒はァセ卜-トリル:水 =85: 15、 205 nm波長の紫外吸光度計で検出することにより n— 3ォクタデカペンタエン酸メチルェ ステル、 n— 3ォクタデカテトラェン酸メチルエステルを回収した。回収した n— 3ォクタ デカペンタエン酸メチルエステル、 n— 3ォクタデカテトラェン酸メチルエステルはそ れぞれ 12mg、 6mgであり、その純度はガスクロマトグラフィー分析により、それぞれ 9 9. 7%、 91. 0%であった。
[0068] 得られた n— 3ォクタデカペンタエン酸メチルエステル、 n— 3ォクタデカテトラェン酸 メチルエステルは、 0. 5NHC1を含むァセトニトリル:水 = 9 : 1溶液中で、 100°C、 3時 間反応させ、遊離 n— 3ォクタデカペンタエン酸、遊離 n— 3ォクタデカテトラェン酸と した。
[0069] < <実施例 2 :n— 3ォクタデカテトラェン酸結合型セラミドの調製〉 > n— 3ォクタデカテトラェン酸(Cayman Chemical Company) 12. 8 mol、牛 脳セレブロシド由来 D—スフインゴシン(SIGMA) 5. 12 μ molと SCDase (タカラバイ ォ) 80mUを 0. l%Triton X— 100を含む 25mMリン酸ナトリウム緩衝液(pH7. 0 ) 3. 2mlに分散させ、 37°Cで 40時間合成反応を行った。この酵素合成反応を計 14 本行った後、常法(Bligh, EG&Dyer WJ (1959) Can. J. Biochem. Physiol. 3 7 : 911 - 7)に従って脂質抽出を行った。
[0070] 得られた脂質画分を調製用シリカゲル TLCプレート(シリカゲル 60、 0. 5mm厚 、メルク社)に供し、ジェチルエーテル:酢酸(10 : 0. 1, v/v)にて展開した。合成さ れた n— 3ォクタデカテトラェン酸結合型セラミドのスポットを分画した後、シリカゲルよ り抽出し 3. 2mgの n— 3ォクタデカテトラェン酸結合型セラミドを得た。
[0071] < <実施例 3 :EPA—PCの調製 > >
エイコサペンタエン酸(EPA) 180mgと卵黄由来のリゾホスファチジルコリン 1 lOmg をグリセロール 5500mg〖こ分散させ,これにブタ脾臓由来ホスホリパーゼ A2 23mg ,フオルムアミド 0. 5ml, CaCl 3 molを添加し、 37。Cの喑所にて 50— 200rpmで
2
攪拌しながら 48時間合成反応を行った。反応終了後, Folch法 Ci. Biol. Chem. 1 46, 35—44 (1942) )により脂質画分を回収した。
[0072] 得られた脂質画分を調製用シリカゲル TLCプレート(シリカゲル 60、 0. 5mm厚 、メルク社)〖こ供し,クロ口ホルム:メタノール:水(65 : 25 :4, vZvZv)にて展開した。 合成された EPA結合型ホスファチジルコリン (EPA— PC)のスポットを分画した後、 シリカゲルより抽出し 90 mgの EPA— PCを得た。調製した EPA— PCには、 46. 6 %の EPAが含まれて!/、た。
[0073] < <実施例 4 :EPA— PE、 EPA— PGの調製〉 >
lOOOmLのフラスコに 200mLの培地を入れ、 EPA生産細菌 Shewanella benth ica ATCC43991株を植菌し、 10°Cで 1週間、計 28本振とう培養した。培地は LB +Na培地(1. 0%トリプトン、 0. 5%酵母エキス、 3. 0%塩ィ匕ナトリウム)を用いた。
[0074] 培養後、遠心沈降法で細胞を回収し湿重量 36gの菌体を得た。常法 (Bligh, EG &Dyer WJ (1959) Can. J. Biochem. Physiol. 37 : 911— 7)に従って菌体より 全脂質抽出を行 ヽ 468mgの脂質を得た。得られた全脂質を薄層クロマトグラフィー( TLC)プレート(シリカゲル 60、メルク社)に塗布し、展開溶媒クロ口ホルム:メタノール :水 =65 : 25 :4を用いて展開した。 EPAを多く含む PEおよび PGのスポットを搔き取 りシリカゲルより各々抽出し、それぞれ 49mg、 27mgの脂質を得た。これら EPAを多 く含む PEおよび PGを、各々 EPA—PEおよび EPA—PGとした。 EPA—PEおよび EPA— PGには、それぞれ 38%、 39%の EPAが含まれていた。
[0075] < <実施例 5 :EPA— PSの調製 > >
実施例 2で合成した EPA— PC 30mgを酢酸ェチル 2. 5mlに溶解させた後, 3. 4 Mの L セリンを含む 0. 2M酢酸緩衝液(pH5. 6) lmlを加えた。更に、ホスホリパ ーゼ D (Streptomyces sp. 由来)を lunit添カ卩して反応を開始した後、 37°Cの喑 所にて 300— 400rpmで攪拌しながら 24時間ホスファチジル基転移反応を行った。 反応終了後, Folch法 (J. Biol. Chem. 146, 35— 44 (1942) )により脂質画分を 回収した。
[0076] 得られた脂質画分を調製用シリカゲル TLCプレート(シリカゲル 60、 0. 5mm厚 、メルク社)〖こ供し,クロ口ホルム:メタノール:水(65 : 25 :4, vZvZv)にて展開した。 合成された EPA結合型ホスファチジルセリン(EPA— PS)のスポットを分画した後、 シリカゲルより抽出し 12mgの EPA— PSを得た。調製した EPA— PSには、 47%の E PAが含まれていた。
[0077] < <実施例 6 :酵素合成 EPA— PGの調製 > >
実施例 2で合成した EPA— PC 50mgを酢酸ェチル 2. 2mlに溶解させた後, 14 mgの牛血清アルブミンを含む 0. 2M酢酸緩衝液(pH5. 6) 1. 2mlをカ卩えた。更に、 グリセロール 400 μ 1とホスホリパーゼ D (Streptomyces sp. 由来)を 2. 4units添 加して反応を開始した後、 37°Cの暗所にて 300— 400 rpmで攪拌しながら 4時間 ホスファチジル基転移反応を行った。反応終了後, Folch法 (J. Biol. Chem. 146, 35—44 (1942) )により脂質画分を回収した。
[0078] 得られた脂質画分を調製用シリカゲル TLCプレート(シリカゲル 60、 0. 5mm厚 、メルク社)〖こ供し,クロ口ホルム:メタノール:水(65 : 25 :4, vZvZv)にて展開した。 合成された EPA結合型グリセロール (EPA— PG)のスポットを分画した後、シリカゲ ルより抽出し 20 mgの酵素合成 EPA— PGを得た。調製した酵素合成 EPA— PGに は、 50%の EPAが含まれていた。
[0079] < <実施例 7 :EPA モノグリセリド、 EPA—ジグリセリドの調製〉 >
EPA300mgとグリセロール 5gを α トコフエロール 9mg存在下で十分に分散させ た後,これに Lipozyme RM IM (Novozymes AZS) 30mgを添カ卩し、 37°Cの 暗所にて 300— 400rpmで攪拌しながら 24時間合成反応を行った。反応終了後,ジ ェチルエーテル:水(1 : 1, vZv)を用いて分配を行い、ジェチルエーテル層より脂質 画分を回収した。
[0080] 得られた脂質画分を調製用シリカゲル TLCプレート(シリカゲル 60、 0. 5mm厚 、メルク社)に供し, n—へキサン:エーテル(60 :40, v/v)にて展開した。合成され た EPA モノグリセリド、 EPA—ジグリセリド(1, 2—EPA—ジグリセリドと 1, 3—EP A—ジグリセリドの混合物として回収)とのスポットを分画した後、シリカゲルより抽出し 80mgの EPA—モノグリセリド、 90mgの EPA—ジグリセリドを得た。
[0081] < <実施例 8 :張力試験 > >
<標本 >
ブタ冠状動脈 (左前下行枝)を主幹分岐部力 lcm遠位で約 3cm切り取り、あらか じめ混合ガス(95%0 , 5%CO )を通気し氷冷した Krebs液(123mM NaCl, 4.
2 2
7mM KC1, 15. 5mM NaHCO , 1. 2mM KH PO , 1. 2mM MgCl , 1.
3 2 4 2
25mM CaCl , 11. 5mM D— glucose)に浸した。以下のサンプノレ調製は、上記
2
Krebs液を 15分おきに交換しながら行った。血管の周りの脂肪を取り除いたあと、外 膜を取り除き、綿棒で内皮を除去し、剃刀を用いて平滑筋条片 lmm X 4mmを作製 した。
[0082] <試料 >
ォクタデカペンタエン酸は、実施例 1にしたがって得られたものについて、溶媒をェ タノールに置換した後、 Krebs液で最終濃度となるように希釈して用いた。 EPA-P Cは、実施例 3にしたがって得られたものを、濃度を調整して用いた。 EPA— PE、 EP A— PGは、実施例 4に従って得られたものを、 EPAの含量を元に、 EPAの濃度とし て最終濃度になるように調整して用いた。ォクタデカテトラェン酸、ォクタデカペンタ ェン酸は、実施例 1にしたがって得られたものについて、溶媒をエタノールに置換し た後、 Krebs液で最終濃度となるように希釈して用いた。 EPA—モノグリセリド、 EPA ージグリセリドは、実施例 7にしたがって得られたものについて、溶媒をエタノールに 置換した後、 Krebs液で最終濃度となるように希釈して用いた。 EPA— PSは、実施 例 5に従って得られたものについて、溶媒を窒素ガスで揮発後、少量の Krebs液を 加えて超音波処理で懸濁し、これを更に Krebs液で最終濃度となるように希釈して用 いた。酵素合成 EPA— PG、ォクタデカテトラェン酸セラミドは実施例 6、実施例 2にし たがって得られたものについて、溶媒をエタノールに置換した後、 Krebs液で最終濃 度となるように希釈して用いた。
[0083] <装置 >
標本をつるしたワイヤーをトランスデューサー(FDピックアップ:日本光電)につなぎ 、増幅器 (歪圧力用アンプ:日本光電)を通して記録計 (卓上型ペンレコーダー U— 2 28 : Pantos)で張力を検出した。標本は 37°Cに保った 5mLのマグヌス管中にひたし 、試験液は 37°Cに保ち混合ガスを負荷したものを用いた。
[0084] <測定方法 >
レファレンス(100%)の収縮として、 118mM高カリウム溶液による脱分極性のカル シゥム依存性収縮を 15分間起こし、その後 Krebs液で 15分間弛緩させる操作を繰り 返し、高カリウム脱分極による張力の波形が安定してきたところで、 40mMカリウム溶 液を加え、その収縮がプラトーに達したところでブラジキュン 1 Mをカ卩えて、内皮の 有無を確認した。ブラジキュンによって平滑筋が弛緩しないことにより、内皮が除去さ れていると判断した。その後、 Krebs液で 20分弛緩させ、 SPC30 /Z Mで刺激をカロえ た。更に、 SPC刺激による張力が最大、かつ、プラトーになったところで、ォクタデカ ペンタエン酸、 EPA— PC、 EPA (参考例)を最終濃度が 60 Mになるように加えた 。 EPA— PE、 EPA— PGは、 EPAの含量を元に、 EPAの最終濃度が 60 μ Μとなる ようにカ卩えた。ォクタデカテトラェン酸は最終濃度が 60 Μになるようにカ卩えた。 ΕΡ Α—モノグリセリド、 ΕΡΑ—ジグリセリドは ΕΡΑの含量を元に、 ΕΡΑの最終濃度が 60 μ Μとなるように加えた。 ΕΡΑ— PS、酵素合成 EPA— PGは EPAの含量を元に、 E PAの最終濃度が 60 Mとなるようにカ卩えた。ォクタデカテトラェン酸セラミドは、オタ タデカテトラェン酸の含量を元に、ォクタデカテトラェン酸の最終濃度が 60 Mとな るように加えた。
[0085] <結果 >
図 1に EPAによる参考例を、図 2にォクタデカペンタエン酸による実施例を、図 3に EPA— PCによる実施例を、図 4に EPA— PEによる実施例を、図 5に EPA— PGによ る実施例を、図 6にォクタデカテトラェン酸による実施例を、図 7に EPA—モノダリセリ ドによる実施例を、図 8に EPA—ジグリセリドによる実施例を、図 9に EPA— PSによる 実施例を、図 10に酵素合成 EPA— PGによる実施例を、図 11にォクタデカテトラエ ン酸セラミドによる実施例それぞれ示す。
[0086] いずれもブラジキュンによる内皮依存性弛緩反応は観察されな力つたので、内皮 細胞は除去されて 、る血管であることがわかる。
[0087] 図 1〜: L 1より、ォクタデカペンタエン酸および EPA— PC、 EPA— PE、 EPA— PG 、ォクタデカテトラェン酸、 EPA—モノグリセリド、 EPA—ジグリセリド、 EPA— PS、酵 素合成 EPA— PG、ォクタデカテトラェン酸セラミドは、 EPAと同様に SPCによる異常 収縮を抑制することがわかる。
産業上の利用可能性
[0088] 本発明によれば、カルシウムイオン依存性の正常な平滑筋収縮に影響を与えずに 、カルシウムイオン非依存性の平滑筋収縮の抑制剤および予防剤を提供することが できる。
図面の簡単な説明
[0089] [図 1]図 1は、平滑筋組織における SPC刺激に対する EPAによる収縮抑制を示す図 である。
[図 2]図 2は、平滑筋組織における SPC刺激に対するォクタデカペンタエン酸による 収縮抑制を示す図である。
[図 3]図 3は、平滑筋組織における SPC刺激に対する EPA— PCによる収縮抑制を 示す図である。
[図 4]図 4は平滑筋組織における SPC刺激に対する EPA— PEによる収縮抑制を示 す図である。
[図 5]図 5は平滑筋組織における SPC刺激に対する EPA— PGによる収縮抑制を示 す図である。
[図 6]図 6は平滑筋組織における SPC刺激に対するォクタデカテトラェン酸による収 縮抑制を示す図である。
[図 7]図 7は平滑筋組織における SPC刺激に対する EPA—モノグリセリドによる収縮 抑制を示す図である。
[図 8]図 8は平滑筋組織における SPC刺激に対する EPA—ジグリセリドによる収縮抑 制を示す図である。
[図 9]図 9は平滑筋組織における SPC刺激に対する EPA— PSによる収縮抑制を示 す図である。
[図 10]図 10は平滑筋組織における SPC刺激に対する酵素合成 EPA—PGによる収 縮抑制を示す図である。
[図 11]図 11は平滑筋組織における SPC刺激に対するォクタデカテトラェン酸セラミド による収縮抑制を示す図である。

Claims

請求の範囲
[I] ォクタデカペンタエン酸およびォクタデカテトラェン酸、これらの塩、並びにこれらの エステル力もなる群より選択される少なくとも 1種を含有することを特徴とする、平滑筋 収縮抑制剤。
[2] 脂質を含有する平滑筋収縮抑制剤であって、
前記脂質の少なくとも 1つのァシル鎖力 ォクタデカペンタエン酸、ォクタデカテトラエ ン酸およびエイコサペンタエン酸力 なる群より選択される少なくとも 1種であることを 特徴とする、平滑筋収縮抑制剤。
[3] 脂質が、単純脂質または複合脂質である、請求項 2に記載の平滑筋収縮抑制剤。
[4] 単純脂質が、セラミドまたはグリセリドである、請求項 3に記載の平滑筋収縮抑制剤。
[5] グリセリドが、トリグリセリド、ジグリセリド、またはモノグリセリドである、請求項 4に記載 の平滑筋収縮抑制剤。
[6] 複合脂質が、リン脂質である、請求項 3に記載の平滑筋収縮抑制剤。
[7] リン脂質が、ホスファチジルコリン、ホスファチジルセリン、ホスファチジルエタノールァ ミン、ホスファチジルグリセロール、ホスファチジルイノシトール、ホスファチジン酸、力 ルジオリピン、スフインゴミエリン、およびこれらのリゾ体力もなる群より選ばれる少なく とも 1種であることを特徴とする、請求項 6に記載の平滑筋収縮抑制剤。
[8] ォクタデカペンタエン酸およびォクタデカテトラェン酸、これらの塩、並びにこれらの エステルカゝらなる群より選択される少なくとも 1種を含有することを特徴とする、循環器 系疾患治療剤。
[9] 脂質を含有する循環器系疾患治療剤であって、
前記脂質の少なくとも 1つのァシル鎖力 ォクタデカペンタエン酸、ォクタデカテトラエ ン酸およびエイコサペンタエン酸力 なる群より選択される少なくとも 1種であることを 特徴とする、循環器系疾患治療剤。
[10] 脂質が、単純脂質または複合脂質である、請求項 9に記載の循環器系疾患治療剤。
[II] 単純脂質が、セラミドまたはグリセリドである、請求項 10に記載の循環器系疾患治療 剤。
[12] グリセリドが、トリグリセリド、ジグリセリド、またはモノグリセリドである、請求項 11に記載 の循環器系疾患治療剤。
[13] 複合脂質が、リン脂質である、請求項 10に記載の循環器系疾患治療剤。
[14] リン脂質が、ホスファチジルコリン、ホスファチジルセリン、ホスファチジルエタノールァ ミン、ホスファチジルグリセロール、ホスファチジルイノシトール、ホスファチジン酸、力 ルジオリピン、スフインゴミエリン、およびこれらのリゾ体力もなる群より選ばれる少なく とも 1種であることを特徴とする、請求項 13に記載の循環器系疾患治療剤。
[15] 循環器系疾患が血管攣縮である、請求項 8〜14のいずれかに記載の治療剤。
[16] 血管攣縮が、脳血管攣縮、冠状動脈攣縮、肺血管攣縮、腸管膜血管攣縮、および 手指血管攣縮力 なる群より選択される、請求項 15に記載の治療剤。
[17] ォクタデカペンタエン酸およびォクタデカテトラェン酸、これらの塩、並びにこれらの エステルカゝらなる群より選択される少なくとも 1種を含有することを特徴とする、循環器 系疾患予防剤。
[18] 脂質を含有する循環器系疾患予防剤であって、
前記脂質の少なくとも 1つのァシル鎖力 ォクタデカペンタエン酸、ォクタデカテトラエ ン酸およびエイコサペンタエン酸力 なる群より選択される少なくとも 1種であることを 特徴とする、循環器系疾患予防剤。
[19] 脂質が、単純脂質または複合脂質である、請求項 18に記載の循環器系疾患予防剤
[20] 単純脂質が、セラミドまたはグリセリドである、請求項 19に記載の循環器系疾患予防 剤。
[21] グリセリドが、トリグリセリド、ジグリセリド、またはモノグリセリドである、請求項 20に記載 の循環器系疾患予防剤。
[22] 複合脂質が、リン脂質である、請求項 19に記載の循環器系疾患予防剤。
[23] リン脂質が、ホスファチジルコリン、ホスファチジルセリン、ホスファチジルエタノールァ ミン、ホスファチジルグリセロール、ホスファチジルイノシトール、ホスファチジン酸、力 ルジオリピン、スフインゴミエリン、およびこれらのリゾ体力もなる群より選ばれる少なく とも 1種であることを特徴とする、請求項 22に記載の循環器系疾患予防剤。
[24] 循環器系疾患が血管攣縮である、請求項 17〜23のいずれかに記載の予防剤。
[25] 血管攣縮が、脳血管攣縮、冠状動脈攣縮、肺血管攣縮、腸管膜血管攣縮、および 手指血管攣縮カもなる群より選択される、請求項 24に記載の予防剤。
[26] ォクタデカペンタエン酸およびォクタデカテトラェン酸、これらの塩、並びにこれらの エステルカゝらなる群より選択される少なくとも 1種を含有することを特徴とする、 FynZ
Rhoキナーゼシグナル伝達系阻害剤。
[27] 脂質を含有する FynZRhoキナーゼシグナル伝達系阻害剤であって、
前記脂質の少なくとも 1つのァシル鎖力 ォクタデカペンタエン酸、ォクタデカテトラエ ン酸およびエイコサペンタエン酸力 なる群より選択される少なくとも 1種であることを 特徴とする、 FynZRhoキナーゼシグナル伝達系阻害剤。
[28] 脂質が、単純脂質または複合脂質である、請求項 27に記載の FynZRhoキナーゼ シグナル伝達系阻害剤。
[29] 単純脂質が、セラミドまたはグリセリドである、請求項 28に記載の FynZRhoキナー ゼシグナル伝達系阻害剤。
[30] グリセリドが、トリグリセリド、ジグリセリド、またはモノグリセリドである、請求項 29に記載 の FynZRhoキナーゼシグナル伝達系阻害剤。
[31] 複合脂質が、リン脂質である、請求項 28に記載の FynZRhoキナーゼシグナル伝達 系阻害剤。
[32] リン脂質が、ホスファチジルコリン、ホスファチジルセリン、ホスファチジルエタノールァ ミン、ホスファチジルグリセロール、ホスファチジルイノシトール、ホスファチジン酸、力 ルジオリピン、スフインゴミエリン、およびこれらのリゾ体力もなる群より選ばれる少なく とも 1種であることを特徴とする、請求項 31に記載の FynZRhoキナーゼシグナル伝 達系阻害剤。
PCT/JP2007/060031 2006-05-16 2007-05-16 平滑筋収縮抑制剤 WO2007132888A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008515586A JP5158715B2 (ja) 2006-05-16 2007-05-16 平滑筋収縮抑制剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-136523 2006-05-16
JP2006136523 2006-05-16

Publications (1)

Publication Number Publication Date
WO2007132888A1 true WO2007132888A1 (ja) 2007-11-22

Family

ID=38693977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060031 WO2007132888A1 (ja) 2006-05-16 2007-05-16 平滑筋収縮抑制剤

Country Status (2)

Country Link
JP (1) JP5158715B2 (ja)
WO (1) WO2007132888A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211017A1 (ja) * 2021-04-01 2022-10-06 花王株式会社 油脂組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913076A (ja) * 1995-07-04 1997-01-14 Nisshin Oil Mills Ltd:The 血小板凝集能を抑制する油脂
JP2001261556A (ja) * 2000-03-17 2001-09-26 Mochida Pharmaceut Co Ltd 平滑筋異常収縮の抑制剤
US20040116738A1 (en) * 2001-03-29 2004-06-17 Arne Ptock Conjugated unsaturated glyceride mixtures and a method for producing the same
WO2004058281A1 (de) * 2002-12-24 2004-07-15 Nutrinova Nutrition Specialties & Food Ingedients Gmbh Cholesterinsenkendes mittel, enthaltend eine n-3-fettsäure
WO2004069238A1 (ja) * 2003-02-07 2004-08-19 Mochida Pharmaceutical Co., Ltd. くも膜下出血の予後改善剤
US20050054724A1 (en) * 2003-09-05 2005-03-10 Mustad Vikkie A. Lipid system and methods of use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913076A (ja) * 1995-07-04 1997-01-14 Nisshin Oil Mills Ltd:The 血小板凝集能を抑制する油脂
JP2001261556A (ja) * 2000-03-17 2001-09-26 Mochida Pharmaceut Co Ltd 平滑筋異常収縮の抑制剤
US20040116738A1 (en) * 2001-03-29 2004-06-17 Arne Ptock Conjugated unsaturated glyceride mixtures and a method for producing the same
WO2004058281A1 (de) * 2002-12-24 2004-07-15 Nutrinova Nutrition Specialties & Food Ingedients Gmbh Cholesterinsenkendes mittel, enthaltend eine n-3-fettsäure
WO2004069238A1 (ja) * 2003-02-07 2004-08-19 Mochida Pharmaceutical Co., Ltd. くも膜下出血の予後改善剤
US20050054724A1 (en) * 2003-09-05 2005-03-10 Mustad Vikkie A. Lipid system and methods of use

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ABEYWARDENA M.Y. ET AL.: "Longchain n-3 polyunsaturated fatty acids and blood vessel function", CARDIOVASC. RES., vol. 52, 2001, pages 361 - 371, XP003018980 *
CALDER P.C.: "Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients", BRAZ. J. MED. BIOL. RES., vol. 36, no. 4, 2003, pages 433 - 446, XP003018982 *
DAS U.N.: "Long-chain polyunsaturated fatty acid interact with nitric oxide, superoxide anion, and transforming growth factor-beta to prevent human essential hypertension", EUR. J. CLIN. NUTR., vol. 58, no. 2, 2004, pages 195 - 203, XP003018981 *
MUSTAD V.A. ET AL.: "Differential effects of n-3 polyunsaturated fatty acids on metabolic control and vascular reactivity in the type 2 diabetic ob/ob mouse", METABOLISM CLINICAL AND EXPERIMENTAL, vol. 55, no. 10, October 2006 (2006-10-01), pages 1365 - 1374, XP005644033 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211017A1 (ja) * 2021-04-01 2022-10-06 花王株式会社 油脂組成物

Also Published As

Publication number Publication date
JPWO2007132888A1 (ja) 2009-09-24
JP5158715B2 (ja) 2013-03-06

Similar Documents

Publication Publication Date Title
Paul et al. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease
Lee Biosynthesis and possible biological functions of plasmalogens
Brites et al. Functions and biosynthesis of plasmalogens in health and disease
Nagan et al. Plasmalogens: biosynthesis and functions
Schlame et al. Lysocardiolipin formation and reacylation in isolated rat liver mitochondria
Das et al. Lipid metabolism in mucous-dwelling amitochondriate protozoa
US20230146709A1 (en) Therapeutic use of compounds
Zhou et al. Advances in the biosynthetic pathways and application potential of plasmalogens in medicine
US20090131368A1 (en) Mixtures of and methods of use for polyunsaturated fatty acid-containing phospholipids and alkyl ether phospholipids species
Patelski et al. Modification of enzyme activities in experimental atherosclerosis in the rabbit
JP2007506733A (ja) ホスファチジルセリンの安定化された配合物
Gustafson et al. Phospholipase C from Clostridium perfringens stimulates phospholipase A2-mediated arachidonic acid release in cultured intestinal epithelial cells (INT 407)
Forehand et al. Phospholipase A2 activity in human neutrophils. Stimulation by lipopolysaccharide and possible involvement in priming for an enhanced respiratory burst.
US20080058286A1 (en) Novel applications of omega-3 rich phospholipids
US20100216197A1 (en) Microbial fermentation-based production of phospholipids containing long-chain polyunsaturated fatty acids as their constituents
CA2343116C (en) Methods and compositions for increasing intestinal absorption of fats
JP5158715B2 (ja) 平滑筋収縮抑制剤
Adosraku et al. Tetrahymena thermophila: analysis of phospholipids and phosphonolipids by high-field 1H-NMR
Liu et al. Effects of phospholipids on sphingomyelin hydrolysis induced by intestinal alkaline sphingomyelinase: an in vitro study
Bechoua et al. Docosahexaenoic acid lowers phosphatidate level in human activated lymphocytes despite phospholipase D activation
Schuster et al. Alterations in cell lipid metabolism by glycol methacrylate (HEMA)
Salem Jr et al. Polyunsaturated fatty acids and ethanol
Holmsen Uptake and release of eicosanoid precursors from phospholipids and other pools: platelets
Hui et al. Inhibition of vasopressin-induced formation of diradylglycerols in vascular smooth muscle cells by incorporation of eicosapentaenoic acid in membrane phospholipids
Flesch et al. Phospholipases and acyltransferases in macrophages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008515586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743466

Country of ref document: EP

Kind code of ref document: A1