WO2007132815A1 - Light diffusing styrene resin multilayer plate - Google Patents

Light diffusing styrene resin multilayer plate Download PDF

Info

Publication number
WO2007132815A1
WO2007132815A1 PCT/JP2007/059878 JP2007059878W WO2007132815A1 WO 2007132815 A1 WO2007132815 A1 WO 2007132815A1 JP 2007059878 W JP2007059878 W JP 2007059878W WO 2007132815 A1 WO2007132815 A1 WO 2007132815A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
rubber
weight
resin
polymer
Prior art date
Application number
PCT/JP2007/059878
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsutoshi Toyama
Original Assignee
Ps Japan Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ps Japan Corporation filed Critical Ps Japan Corporation
Priority to JP2008515547A priority Critical patent/JP5048659B2/en
Publication of WO2007132815A1 publication Critical patent/WO2007132815A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles

Definitions

  • the present invention relates to a light-diffusing styrene-based resin laminate that is low in hygroscopicity, has low light transmission yellowness, is excellent in light diffusivity, light transmittance, and impact resistance, and is suitable for practical use.
  • liquid crystal television has been attracting attention as a television that replaces a cathode ray tube television. Since liquid crystal is not a self-luminous device such as a cathode ray tube television, a light source device called a knock light device is required on the back of the liquid crystal. With the spread of LCD TVs, the size of backlights has increased, and with this, the conversion of backlight devices from edge-light or side-light types to direct-type backlight devices has rapidly progressed. In the direct type backlight device, a light diffusion sheet called a light diffusion plate is used to diffuse light from the lamp.
  • a light diffusion sheet called a light diffusion plate is used to diffuse light from the lamp.
  • the light diffusing plate is a milky white resin plate with light diffusing particles added to a transparent resin, which diffuses the light of the lamp so that the shape of the lamp cannot be seen through, and diffuses the light uniformly to brighten the screen. This is to reduce the unevenness of the thickness.
  • the function required of the light diffusing plate was to improve the optical characteristics in a trade-off relationship between high transmission and high diffusion.
  • a methacrylic resin has been used as the transparent resin used for the light diffusion plate
  • styrene has a lower hygroscopicity than the methacrylic resin from the viewpoint of preventing warpage due to water absorption.
  • the system has moved to rosin.
  • a light diffusing plate in practical use is a laminate in which a resin having a light diffusibility is laminated with a resin having a performance necessary for the light diffusing plate, such as light resistance, as a coating layer. The board is put into practical use.
  • Patent Document 1 technology for blending fine particles of LO / zm
  • Patent Document 2 technology for blending fine particles of 10 to 50 / ⁇ ⁇
  • Patent Document 3 technology for blending fine particles of silicone resin fine particles and Technology that uses 1 to 7 m of inorganic powder together
  • Patent Document 4 Technology that uses cross-linked resin particles of less than 5 ⁇ m and 5 to 10
  • Patent Document 5 Examples include a technique of blending a light diffusing agent of ⁇ 20 ⁇ m (Patent Document 5).
  • fine particles to be blended in the transparent resin are organic or inorganic, these fine particles have low affinity with the transparent resin and have low impact resistance, and are cracked during handling or transportation. In some cases, chipping may occur.
  • Patent Documents 7 to 9 For the purpose of improving impact resistance, a technique of adding an acrylic multilayer structure polymer is also disclosed (Patent Documents 7 to 9), but the particle diameter of the multilayer structure polymer usually produced by emulsion polymerization is disclosed. Is less than 0.5 m, which is not preferable because the yellowness of the transmitted color is high.
  • Patent Document 10 discloses that the particle diameter dispersed in the rubber-modified styrene-based resin and the cumulative volume ratio of the particles are within a specific range, thereby providing excellent light transmittance and light diffusibility. Is disclosed. Although this technology has improved the diffuse transmission of light, it is desired to improve the yellowness of the transmitted color.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 60-139758
  • Patent Document 3 Patent No. 2512544
  • Patent Document 4 Japanese Patent Laid-Open No. 11-60966
  • Patent Document 5 JP 2004--50607 A
  • Patent Document 6 Japanese Patent Laid-Open No. 11-5241
  • Patent Document 7 JP 08-198976 A
  • Patent Document 8 JP 2000-296581 A
  • Patent Document 9 JP 2004-90626 A Patent Document 10: Japanese Unexamined Patent Publication No. 2003-2937
  • the present invention is a light diffusivity, light transmissivity, and impact resistance with low moisture absorption and low yellowness of transmitted light, which is suitably used for a light diffusion plate that is a backlight component of a liquid crystal display or a liquid crystal television.
  • An object of the present invention is to provide a light diffusible styrene-based resin laminate having excellent resistance. Means for solving the problem
  • the present invention is as follows.
  • a styrenic polymer forming a matrix and rubbery polymer particles dispersed in islands in the matrix, the cross section of the rubbery polymer particles being a sea island containing the styrenic polymer particles
  • a rubber-modified styrene resin having a structure comprising 1 to 10% by weight of a rubbery polymer and 99 to 90% by weight of a styrene polymer, and the rubbery polymer particles have a particle size of 1 0 to 5.0 m, the value of (weight of styrene polymer Z weight of rubber polymer) in the methyl ethyl ketone insoluble content of rubber-modified styrene resin is 0.5 to 1.5.
  • Substrate layer (A) comprising the rubber-modified styrene-based resin in the range, and styrene-based resin or (meth) acrylic ester-styrene-based resin on both surfaces or one surface of the substrate layer (A).
  • a light-diffusing styrene-based resin laminate comprising a coating layer (B) comprising
  • Styrenic resin or (meth) acrylic acid ester used in the coating layer (B) The light-diffusing styrene-based resin laminate according to any one of 1) to 3), wherein the ethylene-based resin is a rubber-modified styrene-based resin or a rubber-modified (meth) acrylate ester-styrene-based resin.
  • the coating layer (B) contains 0.03 to 5 parts by weight of an ultraviolet absorber with respect to 100 parts by weight of the resin used in the coating layer (B).
  • a light diffusing plate for a backlight comprising the light diffusing styrene-based resin laminate according to any one of 1) to 5).
  • the light diffusing styrene-based resin laminate of the present invention has low moisture absorption, low yellowness of transmitted light, and is excellent in light diffusibility, light transmittance and impact resistance.
  • this laminated board is used suitably as a light-diffusion board of liquid crystal display devices, such as a lighting fixture, an electric signboard, a liquid crystal display, and a liquid crystal television.
  • the matrix resin of the rubber-modified styrene resin used in the substrate layer (A) of the present invention is a styrene polymer.
  • the styrenic monomer that forms the styrenic polymer include styrene, ⁇ -methylol styrene, ⁇ -methylol styrene, p-t-butyl styrene, and the like. These may be used alone or in combination of two or more. May be. Of these, styrene is preferred. If necessary, other monomers that can be copolymerized with the styrenic monomer may be used in a range that does not impair the object of the present invention.
  • Examples of other copolymerizable monomers used here include cyanobyl monomers such as acrylonitrile and meta-tallow-tolyl, methyl (meth) acrylate, ethyl (meth) acrylate, and (meth) acrylic acid.
  • (Meth) acrylic acid ester monomers such as butyl, anhydride group-containing monomers such as maleic anhydride and itaconic anhydride, maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide
  • dicarboxylic acid imide group-containing monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid.
  • the amount of other monomers copolymerizable with the styrenic monomer is 100 wt. % Is preferably 50% by weight or less, more preferably 25% by weight or less, and still more preferably 10% by weight or less.
  • the rubber-modified styrene-based resin used for the substrate layer (A) of the present invention has a structure as shown in FIG.
  • 1 is a styrenic polymer serving as a matrix
  • 2 is a rubbery polymer (particles) dispersed in the matrix
  • 3 is a styrene-based polymer encapsulated in the rubbery polymer. It is a polymer.
  • the rubber-like polymer particles that are the dispersed phase of the rubber-modified styrene-based resin of the present invention are dispersed in islands in the matrix, and the cross-section of the rubber-like polymer particles is a sea island containing the styrene-based polymer. Forming a structure.
  • the encapsulated styrenic polymer preferably has a very small particle size and is uniform! /.
  • the rubbery polymer formed by forming rubbery polymer particles is polybutadiene rubber (low cis bond content !, low cis polybutadiene, high cis bond content! Styrene-butadiene copolymer (random and block styrene-butadiene copolymer (SBR)), and polybutadiene rubber is preferred, especially low-cis polybutadiene.
  • the content of the styrene polymer in the styrene-butadiene copolymer is preferably 25% by weight or less, and more preferably 10% by weight or less. When the content of the styrene polymer in the styrene-butadiene copolymer increases, the refractive index with the matrix becomes close and the light diffusibility tends to decrease.
  • the rubbery polymer is less than 1 wt 0/0, impact resistance, light diffusibility decreases, more than 10 wt%, the rigidity, optical transparency is low down.
  • the weight ratio of the styrene-based polymer is determined in the styrene-based polymer and rubber-like polymer particles grafted to the styrene-based polymer, which is a matrix of the rubber-modified styrene-based resin, and the rubber-like polymer. It is the total with the styrene-based resin included.
  • the rubber-like polymer is a styrene-butadiene copolymer
  • the weight ratio of the styrene component in the copolymer is also included.
  • the rubber-modified styrene-based rubber-like polymer dispersed particles have a particle size of 1.0 to 5.0. / zm, preferably ⁇ or 1.2 to 4.0.111, more preferably 1.3 to 3.5 m.
  • the particle diameter is less than 1. O / zm, the light diffusibility is lowered, and when used as a light diffusing plate, the light source can be easily seen through, the yellowness of the transmitted color is increased, and the impact resistance is increased. Inferior to sex.
  • the particle size distribution determined by the ratio of the volume unit median diameter to the number unit median diameter of the dispersed particles is preferably in the range of 1.0 to 1.6, more preferably 1.0 to 1. .5. When the particle size distribution exceeds 1.6, the yellowness of the transmitted color tends to increase.
  • the value of (weight of styrenic polymer Z weight of rubbery polymer) in the methylethylketone insoluble content of rubber-modified styrenic resin is in the range of 0.5 to 1.5, Preferably, it is 0.6 to 1.4, and more preferably 0.7 to 1.3. If the value of (weight of styrene polymer Z weight of rubber-like polymer) is less than 0.5, impact resistance is lowered, which is not preferable. On the other hand, if the value of (weight of styrene-based polymer Z weight of rubber-like polymer) exceeds 1.5, the yellowness of the transmitted color increases, making it difficult to adjust the color when used as a diffusion plate. It is not preferable. Further, as the value of (weight of styrene polymer Z weight of rubbery polymer) increases, the light diffusibility decreases.
  • the content of the rubber-like polymer particles, which are the dispersed phase of the rubber-modified styrene-based resin, is measured by dissolving and dispersing the resin in a solvent, centrifuging, and then decanting to remove soluble components (mat It is determined by the operation of drying the insoluble matter after separating the insoluble matter (gel content) as the dispersed phase.
  • soluble components matrix It is determined by the operation of drying the insoluble matter after separating the insoluble matter (gel content) as the dispersed phase.
  • toluene is used as a solvent.
  • V the particle diameter is small, or the degree of cross-linking of the rubbery polymer is low!
  • the affinity between toluene and gel is good.
  • methyl ethyl ketone is used as a solvent.
  • Rubber-modified styrene-methyl E chill ketone insoluble components in ⁇ 3 to 25 weight 0/0 more preferably preferably range of instrument 4 to 23 wt%, more preferably from 6 to 20 wt% .
  • the light diffusibility tends to decrease as the amount of methyl ethyl ketone insolubles decreases, and the light transmittance tends to decrease as it increases.
  • the swelling index of the rubber-modified styrene-based resin with respect to toluene is preferably in the range of 5.0 to 10.0, more preferably 6.0 to 9.0. More preferably, it is 6.0 to 8.0. Swell? The number represents the crosslink density of the rubbery polymer. The smaller the value, the higher the crosslink density, and the lower the crosslink density. As the swelling index decreases, the strength of the rubber-modified styrene-based resin tends to decrease. On the other hand, as the swelling index increases, the dispersed particles tend to be deformed due to the orientation during molding, and the light diffusibility tends to decrease.
  • the rubber-modified styrene-based resin polymerization method of the present invention includes bulk polymerization, solution polymerization, bulk suspension polymerization and the like. Among these, bulk polymerization or solution polymerization is preferred, and continuous bulk polymerization or Continuous solution polymerization is particularly preferred in terms of productivity and economy. Specifically, a raw material solution comprising a rubber-like polymer, a styrene monomer, other monomers copolymerizable with a styrene monomer as required, a solvent, a polymerization initiator, a chain transfer agent, etc.
  • the polymerization is further advanced, and the solvent and unreacted monomer are removed by heating and devolatilization to obtain a rubber-modified styrene-based resin.
  • the recovery device is a device that is commonly used in the production of styrene-based resin. For example, a flash tank system, an extruder with a multistage vent, or the like can be used.
  • the particle diameter of the rubber-like polymer particles is adjusted by adjusting the rotation speed (shearing force) of a mixing stirrer that continuously stirs and mixes the first stream polymerization solution and the second stream polymerization solution under high shear.
  • the first flow The polymerization rate can be controlled by controlling the polymerization rate of the polymerization solution, the molecular weight of the styrenic polymer in the polymerization solution in the first stream, and the like. Adjustment of the value of (weight of styrene-based polymer Z weight of rubber-like polymer) in methyl ethyl ketone insolubles is based on the amount of rubber-like polymer in the first stream raw material solution and the polymerization of the first stream. It can be carried out by controlling the mixing ratio of the solution and the polymerization solution in the second stream, the amount of the styrene polymer in the mixed solution, the rotational speed of the mixing stirrer, and the like.
  • Adjustment of the swelling index of toluene-insoluble matter with respect to toluene can be carried out by controlling the temperature of the recovery system.
  • the amount of the rubbery polymer in the raw material solution of the first stream is preferably 6% by weight or more, more preferably 8% by weight or more, and the amount of the polymerization initiator in the raw material solution.
  • the mixing ratio of the polymerization solution of the first stream and the polymerization solution of the second stream is preferably 1: 1 to 3: 7, and the mixture solution
  • the amount of the styrene-based polymer is preferably 24 to 45% by weight.
  • a light-transmitting molded article made of rubber-reinforced styrene-based resin using a similar manufacturing method is the first flow shown in the force example disclosed in JP 2003-2937 A. Since the mixing ratio between the polymerization solution and the polymerization solution in the second stream is 2: 1 and the amount of the styrene polymer in the mixture is small, this production method uses the rubber-modified styrene system of the present invention. The value range of (weight of styrene-based polymer Z weight of rubber-like polymer) in the methylethylketone insoluble matter of the resin cannot be satisfied.
  • the amount of the rubber-like polymer in the rubber-modified styrene-based resin can be controlled by adjusting the content and the polymerization rate of the rubber-like polymer in the raw material so that the target content is obtained. it can.
  • the rubber-modified styrene-based resin used for the substrate layer (A) of the present invention can be produced by the above production method.
  • a rubber-modified styrene-based resin obtained by the above production method is mixed with a styrene-based resin such as a polystyrene resin that does not contain a rubbery polymer. It can also be produced by dilution.
  • the amount of the rubber-like polymer in the rubber-modified styrene resin is preferably
  • Organic peroxides used as polymerization initiators include baroxyketals, dialkyl peroxides, disilver oxides, peroxydicarbonates, peroxyesters, ketones Examples include peroxides and hide mouth peroxides.
  • Ethylbenzene, toluene, xylene, or the like can be used as the polymerization solvent.
  • mercaptans such as ⁇ -methylstyrene dimer, t-decyl mercaptan, n-dodecyl mercaptan, n-octyl mercaptan, and the like can be used.
  • the rubber-modified styrene-based resin used in the substrate layer (A) of the present invention can be blended with an ultraviolet absorber and a light stabilizer for the purpose of improving light resistance.
  • Specific examples of the ultraviolet absorber and light stabilizer are the same as the ultraviolet absorber and light stabilizer exemplified in the coating layer (B) described later.
  • the UV absorber and the light stabilizer can be used alone or in combination, and the amount added is 0.01 for 100 parts by weight of the rubber-modified styrene-based resin as the sum of the UV absorber and the light stabilizer. ⁇ 1.5 parts by weight is preferable, and 0.02 to 0.8 parts by weight is more preferable.
  • the ratio of the UV absorber to the light stabilizer is preferably in the range of 1: 0 to 1: 3.
  • the coating layer (B) is laminated on both sides or one side of the substrate layer (A).
  • the resin used for the coating layer (B) is a styrene resin or a (meth) acrylic ester-styrene resin from the viewpoint of adhesion to the rubber-modified styrene resin used for the substrate layer (A). It is fat.
  • the styrene-based resin used in the coating layer (B) of the present invention is styrene as a monomer unit. 50% by weight or more of the monomer, and even if the styrene monomer is substantially alone, the monomer copolymerizable with 50% by weight or more of the styrene monomer is 50% by weight or less. It may be a copolymer.
  • the styrene monomer and the copolymerizable monomer a styrene monomer and other copolymerizable monomers that form a continuous phase of the rubber-modified styrene resin described above. (Except (meth) acrylic acid ester) can be used, and may be used alone or in combination of two or more.
  • styrene monomer styrene is preferable.
  • the (meth) acrylic ester-styrene-based resin used for the coating layer (B) of the present invention is:
  • (meth) acrylic acid ester monomers include methyl methacrylate, ethyl acetate, butinole methacrylate, methinoare acrylate, ethino rare acrylate, butino rare acrylate, 2 —Ethylhexyl acrylate, cyclohexyl acrylate and the like. These may be used alone or in combination. In particular, methyl methacrylate and a mixture of methyl methacrylate and butyrate may be preferably used.
  • the styrene monomer the same styrene monomer that forms the continuous phase of the rubber-modified styrene resin described above can be used. Good. Styrene is preferred as the styrene monomer.
  • other copolymerizable monomers may be used as long as they do not impair the object of the present invention.
  • the other copolymerizable monomers include other copolymerizable monomers (excluding (meth) acrylic acid esters) that form the continuous phase of the above rubber-modified styrene-based resin. Can be used alone or in combination of two or more.
  • (meth) acrylic acid ester-based (meth) acrylic acid ester-based monomer used in the coating layer (B) of the present invention The proportion of the body is preferably 70% by weight or less to more than 0% by weight. More preferably, it is 55% by weight or less to more than 0% by weight. As the proportion of the (meth) acrylic acid ester monomer increases, scratch resistance and light resistance improve, which is preferable. However, when the proportion of the styrene monomer is less than 30% by weight, the laminate is obtained by coextrusion molding. The adhesion of the substrate layer (A) to the rubber-modified styrene-based resin , Because it tends to decrease.
  • the styrenic resin or (meth) acrylate ester styrene resin used in the coating layer (B) of the present invention has a rubbery polymer for the purpose of further improving impact resistance.
  • a rubber-modified styrene resin or a rubber-modified (meth) acrylate monostyrene resin obtained by grafting a styrene monomer or a (meth) acrylic acid ester-styrene monomer on the surface can be used.
  • Rubber-modified styrene-based resin or rubber-modified (meth) acrylic acid ester-styrene-based resin may be directly polymerized, or rubber-modified styrene-based resin or rubber-modified )
  • Acrylic ester-styrene resin may not contain a rubbery polymer, but may be a mixture of styrene resin or (meth) acrylic ester-styrene resin mixed and diluted.
  • the rubber-like polymer the same rubber-like polymer that forms dispersed particles as the dispersed phase of the rubber-modified styrene-based resin used for the substrate layer (A) can be used.
  • Styrenic resin or (meth) acrylate ester used in coating layer (B) The amount of rubbery polymer contained in styrene resin is either styrene resin or (meth) acrylate-styrene With respect to 100 parts by weight of rosin, 1 to LO parts by weight is preferable, and 2 to 6 parts by weight is more preferable.
  • an ultraviolet absorber can be added in order to prevent coloration due to ultraviolet rays generated from the light source lamp cover.
  • the ultraviolet absorber include 2- (5-methyl-2-hydroxyphenol) benzotriazole, 2- [2hydroxy-1,3,5-bis ( ⁇ , a, monodimethylbenzyl) phenol] benzotriazole, 2— (3,5 di-t-amyl-2-hydroxyphenol) benzotriazole UV absorbers such as benzotriazole, 2-hydroxy-1-methoxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone Benzophenone UV absorbers such as 2-hydroxy-4 n-otatoxiben zophenone, salicylic acid UV absorbers such as phenyl salicylate and 4 t-butyl phenyl salicylate, 2- (1-aryl alkydene) malonic acid ester UV Examples thereof include an absorber and an oxasulfate, 2- [2hydroxy-1,3,5-bis ( ⁇ , a, monod
  • the amount of the ultraviolet absorber is 0.03 to 5 parts by weight, preferably 0.1 to 3 parts by weight, more preferably 100 parts by weight of the resin used in the coating layer (B). Is 0.2 to 2 parts by weight. If the amount of this UV absorber is less than 0.03 parts by weight, the light resistance of the laminate is not sufficient. In addition, if the amount exceeds 5 parts by weight, the UV absorber tends to bleed out on the surface of the laminate, which may impair the surface appearance of the laminate.
  • a light stabilizer can be added to the resin used in the coating layer (B) of the present invention for the purpose of further improving light resistance.
  • the light stabilizer include hindered amine light stabilizers.
  • hindered amine light stabilizers include bis (2, 2, 6, 6—tetramethyl-4-piperidyl) separate, N, N, 1bis (3-aminopropyl) ethylenediamine, 2, 4bis. [ ⁇ butyl ⁇ — (1, 2, 2, 6, 6 pentamethyl-4-piperidyl) amino] —6, 1,3,5 triazine condensate.
  • the light stabilizer can be used alone or in combination, and the addition amount is preferably 0.01 to 3 parts by weight, with respect to 100 parts by weight of the resin used in the coating layer (foam). More preferably, it is 0.1 to 2 parts by weight.
  • the ratio of the amount added to the UV absorber is preferably not more than 3 times (weight ratio) of the amount of UV absorber added, more preferably 0.5 to 2 times (weight ratio).
  • the substrate layer ( ⁇ ) may contain a light stabilizer.
  • a light diffusing agent can be added to the resin used in the coating layer ( ⁇ ) of the present invention for the purpose of improving light diffusibility.
  • the light diffusing agent either an inorganic or organic light diffusing agent can be used.
  • the inorganic light diffusing agent include barium sulfate, calcium carbonate, aluminum hydroxide, calcium phosphate, and silica.
  • the organic light diffusing agent include acrylate-based crosslinked particles, styrene-based crosslinked particles, methyl methacrylate-styrene copolymer crosslinked particles, and silicone-based crosslinked particles. These inorganic and organic light diffusing agents can be used alone or in combination.
  • the weight average particle diameter of the light diffusing agent is preferably 0.5 to 10 ⁇ m, more preferably 3 to 8 ⁇ m.
  • the content of the light diffusing agent is preferably 0.1 to 5 parts by weight, more preferably 1 to 5 with respect to 100 parts by weight of styrene resin or (meth) acrylic ester-styrene resin. Parts by weight.
  • the light diffusing agent may be added to either the coating layer (B) or the substrate layer (A), or may be added to both layers, but may be added to the coating layer (B). preferable.
  • the light diffusing styrene-based resin laminate of the present invention can have a concavo-convex shape on the surface of the laminate to provide a matte surface.
  • Concave and convex shape on the surface of the laminate Examples of the forming method include a method in which fine particles called a diffusing agent or a matting agent are added at the time of extrusion forming, and a method of forming unevenness on the surface of the laminated plate or a method of transferring the unevenness on a roll.
  • the diffusing agent or matting agent is added to one or both of the substrate layer (A) and the coating layer (B). However, it is preferable to add to the coating layer (B).
  • the remaining end material obtained by taking out the laminate of a predetermined size from the laminate produced by extrusion molding or the like was crushed. You may recycle the product into new raw materials.
  • the end material may be added to one or both of the substrate layer (A) and the coating layer (B), but is preferably added to the substrate layer (A).
  • the light-diffusing styrene-based resin laminate of the present invention can be improved in impact strength by adding polydimethylsiloxane, mineral oil, metal salts of higher fatty acids, and amides of higher fatty acids. .
  • the light diffusable styrene-based resin laminate of the present invention has various additives such as hindered phenol, phosphorus, and io, as long as the object of the present invention is not impaired, if necessary.
  • Antioxidants, lubricants, antistatic agents, flame retardants, various dyes and pigments, fluorescent brighteners, and selective wavelength absorbers may be added.
  • the method for producing the light-diffusing styrene-based resin laminate of the present invention is not particularly limited, but for example, any stage before and after the recovery step during the production of the rubber-modified styrene-based resin.
  • styrene-based resin or (meth) acrylic acid ester, styrene-based resin, and if necessary Arbitrary additive in the range not impairing the object of the present invention is added in the same manner as described above to prepare a resin composition for coating. Then, these resin compositions are made into a laminate having the structure of the present invention by a known molding technique.
  • the above resin composition is obtained by a sheet extrusion molding machine having co-extrusion equipment.
  • a method of extruding and integrally forming at the same time is used.
  • a molding method using a coextrusion method is preferable from the viewpoint of production cost.
  • the thickness of the light-diffusing styrene-based resin laminate of the present invention is appropriately adjusted depending on the application, etc., but is usually 0.5 to 5 mm, preferably ⁇ to 0.8 to 3 mm, more preferably ⁇ to 1. 0 to 2.5 mm. If less than 5mm, the rigidity is insufficient, so it is not suitable.
  • the light diffusing styrene-based resin laminate of the present invention can be suitably used for liquid crystal display devices such as lighting fixtures, electric signboards, liquid crystal displays, and liquid crystal televisions. Among these, it is preferably used as a diffusion plate for a direct backlight of a liquid crystal display device.
  • C OULTER MULTISIZER II (trade name) manufactured by Beckman Coulter, Inc., equipped with a 30 ⁇ m aperture tube, put 2 to 5 rubber-modified styrene resin pellets in about 5 ml of dimethylformamide and about 2 to 5 Leave for a minute. Next, measure the dissolved dimethylformamide as an appropriate particle concentration, and obtain the volume-based median diameter. The particle size distribution was determined from the volume-based median diameter measured at the same time as the volume-based median diameter, as the volume-based median diameter and the Z-number-based median diameter.
  • Methyl ethyl ketone insoluble matter (W2 (g) / Wl (g)) X 100
  • PSZRu ratio of dispersed phase Value of (weight of styrene-based polymer Z weight of rubber-like polymer) in methylethylketone insoluble matter (hereinafter abbreviated as PSZRu ratio of dispersed phase).
  • the PSZRu ratio of the dispersed phase in the rubber-modified styrenic resin was determined by the following formula.
  • PSZRu ratio of dispersed phase (methylethylketone insoluble matter rubbery polymer content) Z rubbery polymer content
  • the light that is incident on the specimen in the direction perpendicular to the white light source and transmitted to the opposite side of the specimen is placed in the range of 0 ° to 70 °.
  • the luminance was measured and calculated by the following formula.
  • the 50% fracture energy was measured under the conditions of shooting type diameter 3Z8 inches and cradle diameter 1Z2 inches.
  • a raw material solution (a) of the following composition As the rubber-like polymer, 5 wt 0/0 styrene solution viscosity of 25 ° C is using Roshi scan polybutadiene rubber 35 Senchiboizu, to prepare a raw material solution (a) of the following composition.
  • Raw material solution (a) 2 JJ t s- s Is &&&&& a &&&& Rubber-like polymer 1 2.
  • the mixture was fed into a 6.2-liter column reactor (third reactor) equipped with a stirrer and a jacket, and polymerized at a temperature of 118 to 123 ° C. for 2.1 hours. Furthermore, it was fed into a 6.2 liter tower reactor (fourth reactor) equipped with a stirrer and a jacket and polymerized at a temperature of 120 to 130 ° C. for 2.1 hours.
  • the resulting polymerization solution was continuously supplied to the devolatilizing extruder with a two-stage vent, the extruder temperature was 240 ° C, the vacuum degree of the first and second stage vents was 25 torr , unreacted monomer and solvent
  • the rubber-modified styrenic resin HI was obtained.
  • the following raw material solution (a) was continuously fed in 1.5 liter ZHr to a 1.8 liter tower reactor (first reactor) having a stirrer and a jacket as the first flow.
  • Rubbery polymer 1 1.5 Styrene 7 5.5 5 && Ethylbenzene 1 3.0 Quantity Quantity Quantity Quantity Quantity ⁇ -Methylole styrene dimer 0.6 6
  • the number of stirring in the first reactor was lOOrpm, and the temperature was controlled at 108 ° C.
  • the solid content concentration at the outlet of the first reactor was 22.0% by weight.
  • the second stream was equipped with a stirrer and a jacket. 6.
  • the following raw material solution (b) was continuously fed to a 2-liter tower reactor (second reactor) at 1.5 liter ZHr. .
  • Rubbery polymer 3 As the rubbery polymer, 5 wt 0/0 styrene solution viscosity of 25 ° C is using low cis polybutadiene rubber 170 Senchiboizu, to prepare a raw material solution having the following composition. Rubbery polymer 3
  • the raw material solution was continuously supplied at a rate of 2.4 liters Zhr to a polymerization apparatus in which three column reactors equipped with a stirrer (each internal volume 6.2 liters) were connected in series.
  • the stirring speed of the first reactor was set to 90 rpm.
  • Polymerization temperature 1st reactor 122-131 ° C for 2.6 hours, 2nd reactor 135-145 ° C for 2.6 hours, 3rd reactor 145-155 ° C for 2.6 hours Carried out.
  • the obtained polymerization solution is continuously fed to a devolatilizing extruder with a two-stage vent, the extruder temperature is 230 ° C, the vacuum of the first and second vents is 25 torr, unreacted monomer and solvent 32 s s ⁇ ⁇ ⁇ ⁇ ⁇ 11 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • raw material solution (a) was continuously fed in 2.0 liter ZHr to a 2.4 liter tower reactor (first reactor) equipped with a stirrer and a jacket as the first flow.
  • first reactor a 2.4 liter tower reactor
  • a rubbery polymer a low-cis polybutaene rubber having a viscosity of 35 centipoise at 25 ° C. and a 5 wt% styrene solution was used to prepare a raw material solution (a) having the following composition.
  • the rotation speed of the second reactor was llOrpm, and the temperature was controlled at 130-140 ° C.
  • the solid concentration at the outlet of the second reactor was 50.0% by weight.
  • the first flow and the second flow have a capacity of 0.5 liter, the clearance between the tip of the stirring blade and the mixer wall is 5 mm, and a 15-stage stirring rod is attached in the axial direction.
  • a heat transfer tube was introduced into the wall into the mixing stirrer that was placed between the stirring rods, and mixed at a rotation speed of 200 rpm.
  • the mixture was fed into a 6.2 liter tower reactor (third reactor) equipped with a stirrer and a jacket, and polymerized at a temperature of 112 to 120 ° C for 2.1 hours.
  • Methyl methacrylate component content 49% by weight, styrene component content 51% by weight, weight average molecular weight Mw 130,000, number average molecular weight Mn720,000, molecular weight distribution MwZMn1.9, MFR (200 ° C — 5 kg) l. 5 g ZlO of methyl methacrylate-styrene copolymer resin was used.
  • Polymethyl methacrylate cross-linked particles (manufactured by Sekisui Plastics Co., Ltd., trade name: Techpolymer) MBX-5, refractive index 1.49, weight average particle size 5 m) was used.
  • Resin used for substrate layer (A) Al, A2, A4, A5 are rubber-modified styrene-based resin HI to 4 pellets, A3, A6-8 are rubber-modified styrene-based S SHI, H3 H4, GP polystyrene resin G 1 and light diffusing agent K1 were mixed in the composition shown in Table 1 and melt-kneaded using a 30 mm twin screw extruder. A8 was removed from the obtained pellets, and the rubbery polymer content, dispersed particle size, methyl ethyl ketone insoluble content, and swelling index with respect to toluene were measured, and the PSZRu ratio of the dispersed phase was calculated from the measurement results. The results are shown in Table 1.
  • the resin used for the substrate layer (A) is the intermediate layer
  • the resin used for the coating layer (B) is the surface layer (both sides).
  • Extruder 1 Single screw screw diameter 40mm
  • Extruder 2 Single screw screw diameter 30mm
  • Feed block 2 types, 3 layers, dice: T-die
  • the resin used for the substrate layer (A) is the extruder 1
  • the resin used for the coating layer (B) is the extruder 2.
  • the temperature of the extruder and the die is 210 to 230 ° C. This was carried out to produce a laminate having a thickness of 2 mm (intermediate layer: 1.9 mm, surface layer (both sides): 0.05 mm). Cut a specimen from the resulting laminate. The total light transmittance, light diffusivity, yellowness (yellow index), Dupont impact strength, and light resistance ( ⁇ ) were measured. The results are shown in Table 3.
  • Examples 1 to 6 are excellent in total light transmittance, light diffusibility, impact resistance, and light resistance with small yellowness of transmitted light.
  • Example 7 is excellent in total light transmittance, light diffusibility, and impact resistance in which the yellowness of transmitted light is small.
  • Comparative Examples 1 to 4 are inferior in yellowness of transmitted light. In addition, Comparative Example 3 is inferior in light diffusibility.
  • the light-diffusing styrene-based resin laminate of the present invention can be suitably used as a diffusing plate for liquid crystal display devices such as lighting fixtures, electric signs, liquid crystal displays, and liquid crystal televisions. Among these, it is suitably used as a light diffusing plate for a direct backlight of a liquid crystal display device.
  • FIG. 1 is a schematic diagram for explaining a sea-island structure of a cross section of rubbery polymer particles.
  • 1 is a styrenic polymer serving as a matrix
  • 2 is a rubbery polymer dispersed in the matrix
  • 3 is a styrene polymer encapsulated in the rubbery polymer.

Abstract

Disclosed is a light diffusing styrene resin multilayer plate comprising a substrate layer (A) and a coating layer (B) containing a styrene resin or a (meth)acrylate-styrene resin and arranged on one or both sides of the substrate layer (A). The substrate layer (A) contains a rubber-modified styrene resin containing a styrene polymer forming the matrix and rubbery polymer particles dispersed, like islands, in the matrix. The cross section of each rubbery polymer particle has a sea-island structure containing the styrene polymer particle inside. The rubber-modified styrene resin is composed of 1-10% by weight of the rubbery polymer and 99-90% by weight of the styrene polymer, and the particle diameter of the rubbery polymer particles is 1.0-5.0 µm. The value of “weight of the styrene polymer/weight of the rubbery polymer” in the methylethylketone insoluble fraction of the rubber-modified styrene resin is within the range of 0.5-1.5.

Description

明 細 書  Specification
光拡散性スチレン系樹脂積層板  Light-diffusing styrene resin laminate
技術分野  Technical field
[0001] 本発明は、低吸湿性で、透過色の黄色度が小さぐ光拡散性、光透過性及び耐衝 撃性に優れ、実用に適した光拡散性スチレン系榭脂積層板に関する。  [0001] The present invention relates to a light-diffusing styrene-based resin laminate that is low in hygroscopicity, has low light transmission yellowness, is excellent in light diffusivity, light transmittance, and impact resistance, and is suitable for practical use.
背景技術  Background art
[0002] 近年、ブラウン管式テレビに替わるテレビとして注目を浴びて 、るのが液晶テレビで ある。液晶は、ブラウン管式テレビのような自発光装置ではないため、液晶の背面に ノ ックライト装置と呼ばれる光源装置を必要とする。液晶テレビは普及とともに大型化 が進み、それに伴 、バックライト装置もエッジライト型又はサイドライト型から直下型バ ックライト装置への変換が急速に進んできた。直下型バックライト装置には、ランプか らの光を拡散させるために光拡散板と呼ばれる光拡散シートが使用される。光拡散 板は、透明樹脂に光拡散粒子を添加した乳白の榭脂板であり、ランプの光を拡散さ せランプ形状が透けて見えないようにし、かつ光を均一に拡散させ画面上の明るさの ムラを小さくするためのものである。光拡散板に求められる機能は、高透過で高拡散 という二律背反の関係にある光学特性を向上させることであった。  In recent years, a liquid crystal television has been attracting attention as a television that replaces a cathode ray tube television. Since liquid crystal is not a self-luminous device such as a cathode ray tube television, a light source device called a knock light device is required on the back of the liquid crystal. With the spread of LCD TVs, the size of backlights has increased, and with this, the conversion of backlight devices from edge-light or side-light types to direct-type backlight devices has rapidly progressed. In the direct type backlight device, a light diffusion sheet called a light diffusion plate is used to diffuse light from the lamp. The light diffusing plate is a milky white resin plate with light diffusing particles added to a transparent resin, which diffuses the light of the lamp so that the shape of the lamp cannot be seen through, and diffuses the light uniformly to brighten the screen. This is to reduce the unevenness of the thickness. The function required of the light diffusing plate was to improve the optical characteristics in a trade-off relationship between high transmission and high diffusion.
[0003] 光拡散板に使用される透明榭脂は、メタクリル系樹脂が使用されていたが、吸水に よる反りを防止するという観点から、メタクリル系樹脂よりも、より低吸湿性であるスチレ ン系榭脂に移行している。また、実用に供されている光拡散板は、光拡散性を持た せた基材榭脂に、被覆層として光拡散板に必要な性能、例えば耐光性等を付与した 榭脂を積層した積層板が実用化されている。  [0003] Although a methacrylic resin has been used as the transparent resin used for the light diffusion plate, styrene has a lower hygroscopicity than the methacrylic resin from the viewpoint of preventing warpage due to water absorption. The system has moved to rosin. In addition, a light diffusing plate in practical use is a laminate in which a resin having a light diffusibility is laminated with a resin having a performance necessary for the light diffusing plate, such as light resistance, as a coating layer. The board is put into practical use.
[0004] 光拡散板の高透過、高拡散の技術に関して、透明樹脂に屈折率が異なる微粒子 を配合する方法が古くから開示されている。例えば、 1〜: LO /z mの微粒子を配合する 技術 (特許文献 1)、 10〜50 /ζ πιの微粒子を配合する技術 (特許文献 2)、 1〜6 /ζ πι のシリコーン榭脂微粒子と 1〜7 mの無機粉末を併用する技術 (特許文献 3)、 5 μ m未満の架橋榭脂微粒子と 5〜10 ;ζ ΐηの架橋榭脂微粒子を併用する技術 (特許文 献 4)、 1〜20 μ mの光拡散剤を配合する技術 (特許文献 5)などが挙げられる。 [0005] 更に、透明樹脂に微粒子を配合した榭脂を基材層として多層化し、被覆層に耐光 性、帯電防止性等の機能を付与した光拡散積層板が提案されている (特許文献 5〜[0004] With regard to the technology of high transmission and high diffusion of a light diffusing plate, a method of blending fine particles having different refractive indexes into a transparent resin has been disclosed for a long time. For example, 1 to: technology for blending fine particles of LO / zm (Patent Document 1), technology for blending fine particles of 10 to 50 / ζ πι (Patent Document 2), 1 to 6 / ζ πι of silicone resin fine particles and Technology that uses 1 to 7 m of inorganic powder together (Patent Document 3), Technology that uses cross-linked resin particles of less than 5 μm and 5 to 10; ζ ΐη (Patent Document 4), 1 Examples include a technique of blending a light diffusing agent of ˜20 μm (Patent Document 5). [0005] Furthermore, there has been proposed a light diffusing laminate in which a resin containing fine particles in a transparent resin is multilayered as a base material layer, and functions such as light resistance and antistatic properties are imparted to the coating layer (Patent Document 5). ~
6)。 6).
[0006] し力しながら、透明樹脂に配合する微粒子が、有機系であれ無機系であれ、これら の微粒子は、透明樹脂との親和性が低く耐衝撃性が低下し、取り扱い又は輸送時に 割れ、欠けを生じる場合があると 、う問題点を有して 、た。  [0006] However, regardless of whether the fine particles to be blended in the transparent resin are organic or inorganic, these fine particles have low affinity with the transparent resin and have low impact resistance, and are cracked during handling or transportation. In some cases, chipping may occur.
[0007] 耐衝撃性を改良する目的で、アクリル系多層構造重合体を加える技術も開示され ているが (特許文献 7〜9)、通常、乳化重合で作製される多層構造重合体の粒子径 は、 0. 5 mより小さいため、透過色の黄色度が高ぐ好ましくない。  [0007] For the purpose of improving impact resistance, a technique of adding an acrylic multilayer structure polymer is also disclosed (Patent Documents 7 to 9), but the particle diameter of the multilayer structure polymer usually produced by emulsion polymerization is disclosed. Is less than 0.5 m, which is not preferable because the yellowness of the transmitted color is high.
[0008] 耐衝撃性を有するスチレン系榭脂として、ゴム変性スチレン系榭脂 (耐衝撃性ポリス チレン)があるが、従来のゴム変性スチレン系榭脂は、透過色の黄色度が高ぐ更に は光の拡散透過性に劣る問題があった。特許文献 10には、ゴム変性スチレン系榭脂 に分散している粒子の径及びこの粒子の累積体積比率を特定の範囲にすることによ り、光透過性に優れ、光拡散性を有することが開示されている。この技術では光の拡 散透過性は改良されているものの、透過色の黄色度が高ぐその改善が望まれてい る。  [0008] As a styrene resin having impact resistance, there is a rubber-modified styrene resin (impact-resistant polystyrene). However, the conventional rubber-modified styrene resin has a high yellowness of transmitted color. Had a problem inferior in light diffusion transmittance. Patent Document 10 discloses that the particle diameter dispersed in the rubber-modified styrene-based resin and the cumulative volume ratio of the particles are within a specific range, thereby providing excellent light transmittance and light diffusibility. Is disclosed. Although this technology has improved the diffuse transmission of light, it is desired to improve the yellowness of the transmitted color.
[0009] また、一方で液晶テレビの普及、大型化とともに製品価格が低下し、ノ ックライト部 材である光拡散板のコストダウンが求められており、現状のスチレン系榭脂に光拡散 剤を添加した光拡散板よりもコストダウンが可能な新規の光拡散板が望まれている。 特許文献 1 特公昭 60— 21662号公報  [0009] On the other hand, with the spread of LCD televisions and the increase in size, the price of products has decreased, and there is a need to reduce the cost of light diffusing plates, which are knocklight components. A light diffusing agent has been added to the current styrene-based resin. There is a demand for a novel light diffusing plate capable of reducing the cost compared to the added light diffusing plate. Patent Document 1 Japanese Patent Publication No. 60-21662
特許文献 2特開昭 60 - 139758号公報  Patent Document 2 Japanese Patent Application Laid-Open No. 60-139758
特許文献 3特許 2512544号公報  Patent Document 3 Patent No. 2512544
特許文献 4特開平 11 - 60966号公報  Patent Document 4 Japanese Patent Laid-Open No. 11-60966
特許文献 5特開 2004- - 50607号公報  Patent Document 5 JP 2004--50607 A
特許文献 6特開平 11 - 5241号公報  Patent Document 6 Japanese Patent Laid-Open No. 11-5241
特許文献 7特開平 08 - 198976号公報  Patent Document 7 JP 08-198976 A
特許文献 8特開 2000- - 296581号公報  Patent Document 8 JP 2000-296581 A
特許文献 9特開 2004- - 90626号公報 特許文献 10:特開 2003 - 2937号公報 Patent Document 9 JP 2004-90626 A Patent Document 10: Japanese Unexamined Patent Publication No. 2003-2937
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明は、液晶ディスプレイや液晶テレビのバックライト部品である光拡散板等に 好適に用いられる低吸湿で、透過光の黄色度が小さぐ光拡散性、光透過性及び耐 衝撃性に優れる光拡散性スチレン系榭脂積層板を提供することを目的とする。 課題を解決するための手段 [0011] The present invention is a light diffusivity, light transmissivity, and impact resistance with low moisture absorption and low yellowness of transmitted light, which is suitably used for a light diffusion plate that is a backlight component of a liquid crystal display or a liquid crystal television. An object of the present invention is to provide a light diffusible styrene-based resin laminate having excellent resistance. Means for solving the problem
[0012] 本発明者等は、前記課題を解決するため、耐衝撃性ポリスチレンにおける補強ゴム 粒子の構造と重合方法を詳細に検討した結果、特定のゴム粒子構造を分散相とする ゴム変性スチレン系榭脂層の両面あるいは片面に、スチレン系榭脂又は (メタ)アタリ ル酸エステルースチレン系榭脂を積層することにより、前記問題点が解決することを 見出し、本発明を完成するに至った。 [0012] In order to solve the above problems, the present inventors have studied in detail the structure and polymerization method of reinforced rubber particles in impact-resistant polystyrene, and as a result, a rubber-modified styrene system having a specific rubber particle structure as a dispersed phase. It has been found that the above problems can be solved by laminating styrene-based resin or (meth) acrylate ester-styrene-based resin on both surfaces or one surface of the resin layer, and the present invention has been completed. .
[0013] 即ち、本発明は以下の通りである。 [0013] That is, the present invention is as follows.
1)マトリックスを形成するスチレン系重合体及び該マトリックス中に島状に分散して いるゴム状重合体粒子を含み、該ゴム状重合体粒子の断面は、該スチレン系重合体 粒子を内包した海島構造を形成して 、るゴム変性スチレン系榭脂であって、ゴム状 重合体 1〜10重量%、スチレン系重合体 99〜90重量%からなり、該ゴム状重合体 粒子の粒子径が 1. 0〜5. 0 m、ゴム変性スチレン系榭脂のメチルェチルケトン不 溶分中の(スチレン系重合体の重量 Zゴム状重合体の重量)の値が 0. 5〜1. 5の範 囲である上記ゴム変性スチレン系榭脂を含んでなる基板層 (A)、及び該基板層 (A) の両面又は片面にスチレン系榭脂又は (メタ)アクリル酸エステルースチレン系榭脂 を含んでなる被覆層 (B)を含んでなる光拡散性スチレン系榭脂積層板。  1) a styrenic polymer forming a matrix and rubbery polymer particles dispersed in islands in the matrix, the cross section of the rubbery polymer particles being a sea island containing the styrenic polymer particles A rubber-modified styrene resin having a structure comprising 1 to 10% by weight of a rubbery polymer and 99 to 90% by weight of a styrene polymer, and the rubbery polymer particles have a particle size of 1 0 to 5.0 m, the value of (weight of styrene polymer Z weight of rubber polymer) in the methyl ethyl ketone insoluble content of rubber-modified styrene resin is 0.5 to 1.5. Substrate layer (A) comprising the rubber-modified styrene-based resin in the range, and styrene-based resin or (meth) acrylic ester-styrene-based resin on both surfaces or one surface of the substrate layer (A). A light-diffusing styrene-based resin laminate comprising a coating layer (B) comprising
2)前記基板層(A)に使用されるゴム状重合体粒子の粒子径分布が 1. 0〜1. 6の 範囲である 1)記載の光拡散性スチレン系榭脂積層板。  2) The light-diffusing styrene-based resin laminate according to 1), wherein the rubbery polymer particles used in the substrate layer (A) have a particle size distribution in the range of 1.0 to 1.6.
3)前記基板層 (A)に使用されるゴム変性スチレン系榭脂のトルエンに対する膨潤 指数が 5. 0〜10. 0の範囲である 1)又は 2)に記載の光拡散性スチレン系榭脂積層 板。  3) The light-diffusing styrene-based resin according to 1) or 2), wherein the swelling index of the rubber-modified styrene-based resin used in the substrate layer (A) with respect to toluene is in the range of 5.0 to 10.0. Laminated board.
4)前記被覆層 (B)に使用されるスチレン系榭脂又は (メタ)アクリル酸エステル—ス チレン系榭脂がゴム変性スチレン系榭脂又はゴム変性 (メタ)アクリル酸エステルース チレン系榭脂である 1)〜3)のいずれか一項に記載の光拡散性スチレン系榭脂積層 板。 4) Styrenic resin or (meth) acrylic acid ester used in the coating layer (B) The light-diffusing styrene-based resin laminate according to any one of 1) to 3), wherein the ethylene-based resin is a rubber-modified styrene-based resin or a rubber-modified (meth) acrylate ester-styrene-based resin.
5)前記被覆層 (B)が、該被覆層 (B)に使用される榭脂 100重量部に対して、紫外 線吸収剤を 0. 03〜5重量部含有する 1)〜4)のいずれか一項に記載の光拡散性ス チレン系榭脂積層板。  5) The coating layer (B) contains 0.03 to 5 parts by weight of an ultraviolet absorber with respect to 100 parts by weight of the resin used in the coating layer (B). The light diffusing styrene-based resin laminate according to claim 1.
6) 1)〜5)のいずれか一項に記載の光拡散性スチレン系榭脂積層板を含んでなる バックライト用光拡散板。  6) A light diffusing plate for a backlight comprising the light diffusing styrene-based resin laminate according to any one of 1) to 5).
発明の効果  The invention's effect
[0014] 本発明の光拡散性スチレン系榭脂積層板は、低吸湿で、透過光の黄色度が小さく 、光拡散性、光透過性及び耐衝撃性に優れる。そして、この積層板は、照明器具、 電照看板、液晶ディスプレイ、液晶テレビ等の液晶表示装置の光拡散板として好適 に用いられる。  [0014] The light diffusing styrene-based resin laminate of the present invention has low moisture absorption, low yellowness of transmitted light, and is excellent in light diffusibility, light transmittance and impact resistance. And this laminated board is used suitably as a light-diffusion board of liquid crystal display devices, such as a lighting fixture, an electric signboard, a liquid crystal display, and a liquid crystal television.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明について詳しく説明する。 [0015] Hereinafter, the present invention will be described in detail.
[0016] 本発明の基板層 (A)に使用されるゴム変性スチレン系榭脂のマトリックス榭脂はス チレン系重合体である。該スチレン系重合体を形成するスチレン系単量体としては、 例えばスチレン、 α—メチノレスチレン、 ρ—メチノレスチレン、 p— t—ブチルスチレン等 が挙げられ、これらを単独又は二種以上用いてもよい。中でも、スチレンが好ましい。 必要に応じてスチレン系単量体に共重合可能なその他の単量体を本発明の目的を 損なわな 、範囲で用いてもょ 、。ここで用いるその他の共重合可能な単量体としては 、例えばアクリロニトリル、メタタリ口-トリル等のシアンィ匕ビュル単量体、 (メタ)アクリル 酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸ブチル等の (メタ)アクリル酸エス テル単量体、無水マレイン酸、無水ィタコン酸等の無水物基含有単量体、マレイミド、 N—メチルマレイミド、 N—フエ-ルマレイミド、 N—シクロへキシルマレイミド等のジカ ルボン酸イミド基含有単量体、アクリル酸、メタクリル酸、マレイン酸、ィタコン酸等の カルボキシル基含有単量体等が挙げられる。  [0016] The matrix resin of the rubber-modified styrene resin used in the substrate layer (A) of the present invention is a styrene polymer. Examples of the styrenic monomer that forms the styrenic polymer include styrene, α-methylol styrene, ρ-methylol styrene, p-t-butyl styrene, and the like. These may be used alone or in combination of two or more. May be. Of these, styrene is preferred. If necessary, other monomers that can be copolymerized with the styrenic monomer may be used in a range that does not impair the object of the present invention. Examples of other copolymerizable monomers used here include cyanobyl monomers such as acrylonitrile and meta-tallow-tolyl, methyl (meth) acrylate, ethyl (meth) acrylate, and (meth) acrylic acid. (Meth) acrylic acid ester monomers such as butyl, anhydride group-containing monomers such as maleic anhydride and itaconic anhydride, maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide And dicarboxylic acid imide group-containing monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid.
[0017] スチレン系単量体に共重合可能なその他の単量体の量は、単量体合計 100重量 %に対して、好ましくは 50重量%以下、より好ましくは 25重量%以下、更に好ましく は 10重量%以下である。 [0017] The amount of other monomers copolymerizable with the styrenic monomer is 100 wt. % Is preferably 50% by weight or less, more preferably 25% by weight or less, and still more preferably 10% by weight or less.
[0018] 本発明の基板層 (A)に使用されるゴム変性スチレン系榭脂は図 1のような構造を有 する。図 1中の 1は、マトリックスとなっているスチレン系重合体、 2は、マトリックスに分 散しているゴム状重合体 (粒子)、 3は、該ゴム状重合体に内包されているスチレン系 重合体である。本発明のゴム変性スチレン系榭脂の分散相であるゴム状重合体粒子 は、マトリックス中に島状に分散しており、前記ゴム状重合体粒子の断面は、スチレン 系重合体を内包した海島構造を形成している。内包されたスチレン系重合体は、粒 子径が極めて小さく、かつ均一であることが好まし!/、。  [0018] The rubber-modified styrene-based resin used for the substrate layer (A) of the present invention has a structure as shown in FIG. In FIG. 1, 1 is a styrenic polymer serving as a matrix, 2 is a rubbery polymer (particles) dispersed in the matrix, and 3 is a styrene-based polymer encapsulated in the rubbery polymer. It is a polymer. The rubber-like polymer particles that are the dispersed phase of the rubber-modified styrene-based resin of the present invention are dispersed in islands in the matrix, and the cross-section of the rubber-like polymer particles is a sea island containing the styrene-based polymer. Forming a structure. The encapsulated styrenic polymer preferably has a very small particle size and is uniform! /.
[0019] ゴム状重合体粒子を形成して!/ヽるゴム状重合体は、ポリブタジエンゴム (シス結合含 有率の低!、ローシスポリブタジエン、シス結合含有率の高!ヽノヽィシスポリブタジエン) 、スチレン ブタジエン共重合体(ランダム及びブロックスチレン ブタジエン共重合 体(SBR) )であり、ポリブタジエンゴムが好ましぐ特にローシスポリブタジエンが好ま しい。スチレン ブタジエン共重合体におけるスチレン重合体の含有量は、 25重量 %以下が好ましぐ 10重量%以下がより好ましい。スチレン ブタジエン共重合体に おけるスチレン重合体の含有量が増加すると、マトリックスとの屈折率が近くなり、光 拡散性が低下する傾向がある。  [0019] The rubbery polymer formed by forming rubbery polymer particles is polybutadiene rubber (low cis bond content !, low cis polybutadiene, high cis bond content! Styrene-butadiene copolymer (random and block styrene-butadiene copolymer (SBR)), and polybutadiene rubber is preferred, especially low-cis polybutadiene. The content of the styrene polymer in the styrene-butadiene copolymer is preferably 25% by weight or less, and more preferably 10% by weight or less. When the content of the styrene polymer in the styrene-butadiene copolymer increases, the refractive index with the matrix becomes close and the light diffusibility tends to decrease.
[0020] 本発明の基板層 (A)に使用されるゴム変性スチレン系榭脂は、ゴム状重合体 1〜1 0重量0 /0、スチレン系重合体 99〜90重量0 /0の範囲である。好ましくはゴム状重合体 2〜10重量0 /0、スチレン系重合体 98〜90重量0 /0、より好ましくはゴム状重合体 3〜9 重量%、スチレン系重合体 97〜91重量%の範囲である。ゴム状重合体が 1重量0 /0 未満では、耐衝撃性、光拡散性が低下し、 10重量%を超えると剛性、光透過性が低 下する。ここで、スチレン系重合体の重量割合は、ゴム変性スチレン系榭脂のマトリツ タスであるスチレン系重合体とゴム状重合体にグラフトしているスチレン系重合体及 びゴム状重合体粒子中に内包されるスチレン系榭脂との合計である。さらに、ゴム状 重合体がスチレン ブタジエン共重合体である場合、共重合体中のスチレン成分の 重量割合も含む。 [0020] The rubber-modified styrenic榭脂used for the substrate layer (A) of the present invention, the rubber-like polymer 1 to 1 0 weight 0/0, the range of the styrene-based polymer 99 to 90 weight 0/0 is there. Preferably the rubbery polymer 2-10 wt 0/0, styrene polymer 98-90 wt 0/0, more preferably the rubbery polymer 3-9 wt%, a styrene-based polymer 97-91 wt% range It is. The rubbery polymer is less than 1 wt 0/0, impact resistance, light diffusibility decreases, more than 10 wt%, the rigidity, optical transparency is low down. Here, the weight ratio of the styrene-based polymer is determined in the styrene-based polymer and rubber-like polymer particles grafted to the styrene-based polymer, which is a matrix of the rubber-modified styrene-based resin, and the rubber-like polymer. It is the total with the styrene-based resin included. Furthermore, when the rubber-like polymer is a styrene-butadiene copolymer, the weight ratio of the styrene component in the copolymer is also included.
[0021] 前記ゴム変性スチレン系榭脂のゴム状重合体の分散粒子の粒子径は、 1. 0〜5. 0 /z mであり、好ましく ίま 1. 2〜4. 0 111、ょり好ましく【ま1. 3〜3. 5 mである。該粒 子径が 1. O /z m未満では、光拡散性が低下し、光拡散板として用いた場合に光源が 透けて見えやすくなるとともに、透過色の黄色度が増加し、更には耐衝撃性に劣る。 一方、該粒子径が 5. 0 mを超えると高光拡散性を満足するためには、ゴム状重合 体分散粒子の多量の添カ卩が必要となり、剛性が低下し好ましくない。更にはメチルェ チルケトン不溶分中の (スチレン系重合体の重量 Zゴム状重合体の重量)の比を低 下させるのが難しくなり、ひいては透過色の黄色度が増加し好ましくない。 [0021] The rubber-modified styrene-based rubber-like polymer dispersed particles have a particle size of 1.0 to 5.0. / zm, preferably ί or 1.2 to 4.0.111, more preferably 1.3 to 3.5 m. When the particle diameter is less than 1. O / zm, the light diffusibility is lowered, and when used as a light diffusing plate, the light source can be easily seen through, the yellowness of the transmitted color is increased, and the impact resistance is increased. Inferior to sex. On the other hand, when the particle diameter exceeds 5.0 m, in order to satisfy the high light diffusibility, a large amount of additive of the rubber-like polymer dispersed particles is required, which is not preferable because the rigidity is lowered. Furthermore, it is difficult to reduce the ratio of (weight of styrene polymer Z weight of rubber-like polymer) in methyl ethyl ketone insoluble matter, and as a result, the yellowness of the transmitted color increases, which is not preferable.
[0022] 該分散粒子の体積単位のメジアン径と個数単位のメジアン径の比で求められる粒 子径分布は、 1. 0〜1. 6の範囲が好ましぐより好ましくは 1. 0〜1. 5である。粒子 径分布が 1. 6を超えると透過色の黄色度が増加する傾向にある。  [0022] The particle size distribution determined by the ratio of the volume unit median diameter to the number unit median diameter of the dispersed particles is preferably in the range of 1.0 to 1.6, more preferably 1.0 to 1. .5. When the particle size distribution exceeds 1.6, the yellowness of the transmitted color tends to increase.
[0023] ゴム変性スチレン系榭脂のメチルェチルケトン不溶分中の(スチレン系重合体の重 量 Zゴム状重合体の重量)の値は、 0. 5〜1. 5の範囲であり、好ましくは、 0. 6〜1. 4、より好ましくは 0. 7〜1. 3である。この(スチレン系重合体の重量 Zゴム状重合体 の重量)の値が 0. 5未満では、耐衝撃性が低下し好ましくない。一方、この (スチレン 系重合体の重量 Zゴム状重合体の重量)の値が 1. 5を超えると、透過色の黄色度が 増加し、拡散板として用いた場合に、色の調整が難しくなり好ましくない。更にこの (ス チレン系重合体の重量 Zゴム状重合体の重量)の値が高くなるにつれて光拡散性が 低下する。  [0023] The value of (weight of styrenic polymer Z weight of rubbery polymer) in the methylethylketone insoluble content of rubber-modified styrenic resin is in the range of 0.5 to 1.5, Preferably, it is 0.6 to 1.4, and more preferably 0.7 to 1.3. If the value of (weight of styrene polymer Z weight of rubber-like polymer) is less than 0.5, impact resistance is lowered, which is not preferable. On the other hand, if the value of (weight of styrene-based polymer Z weight of rubber-like polymer) exceeds 1.5, the yellowness of the transmitted color increases, making it difficult to adjust the color when used as a diffusion plate. It is not preferable. Further, as the value of (weight of styrene polymer Z weight of rubbery polymer) increases, the light diffusibility decreases.
[0024] なお、ゴム変性スチレン系榭脂の分散相であるゴム状重合体粒子の含有量測定は 、榭脂を溶剤に溶解、分散し、遠心分離後にデカンテーシヨンによって、可溶分 (マト リックス榭脂)と分散相である不溶分 (ゲル分)を分離後、不溶分を乾燥する操作によ つて求められる。一般的には、溶剤としてトルエンが用いられている。しかし分散して V、る粒子の径が小さ 、、又はゴム状重合体の架橋度が低!、ゴム変性スチレン系榭脂 では、トルエンを使用すると、トルエンとゲル分の親和性が良いために、測定時のデ カンテーシヨン時にゲル分が流出し、分散相の含有量が真の値よりも低い値となって しまう場合がある。そこで本発明では、溶媒としてメチルェチルケトンを使用する。メチ ルェチルケトンを使用することにより、デカンテーシヨン時のゲル分の流出がなぐ分 散相の含有量を測定することができる。 [0025] ゴム変性スチレン系榭脂中のメチルェチルケトン不溶分は 3〜25重量0 /0の範囲が 好ましぐより好ましくは 4〜23重量%、更に好ましくは 6〜20重量%である。メチルェ チルケトン不溶分が少なくなるにつれて光拡散性が低下する傾向にあり、増加するに つれて光の透過性が低下する傾向にある。 [0024] The content of the rubber-like polymer particles, which are the dispersed phase of the rubber-modified styrene-based resin, is measured by dissolving and dispersing the resin in a solvent, centrifuging, and then decanting to remove soluble components (mat It is determined by the operation of drying the insoluble matter after separating the insoluble matter (gel content) as the dispersed phase. Generally, toluene is used as a solvent. However, when dispersed, V, the particle diameter is small, or the degree of cross-linking of the rubbery polymer is low! In the case of rubber-modified styrene resin, when toluene is used, the affinity between toluene and gel is good. In some cases, gel content flows out during decantation during measurement, and the content of the dispersed phase may be lower than the true value. Therefore, in the present invention, methyl ethyl ketone is used as a solvent. By using methyl ethyl ketone, it is possible to measure the content of the dispersed phase that prevents the gel from flowing out during decantation. [0025] Rubber-modified styrene-methyl E chill ketone insoluble components in榭脂3 to 25 weight 0/0 more preferably preferably range of instrument 4 to 23 wt%, more preferably from 6 to 20 wt% . The light diffusibility tends to decrease as the amount of methyl ethyl ketone insolubles decreases, and the light transmittance tends to decrease as it increases.
[0026] ゴム変性スチレン系榭脂のトルエンに対する膨潤指数は、 5. 0-10. 0の範囲が好 ましく、より好ましく ίま、 6. 0〜9. 0である。更に好ましく ίま 6. 0〜8. 0である。膨?閏旨 数は、ゴム状重合体の架橋密度を表しており、数値が小さいほど架橋密度が高ぐ数 値が大き 、ほど架橋密度は低 、。膨潤指数力 、さくなるにつれてゴム変性スチレン 系榭脂の強度が低下する傾向にある。一方、膨潤指数が大きくなるにつれて成形加 ェ時の配向によって分散粒子が変形を生じ易くなり、光拡散性が低下する傾向にあ る。  [0026] The swelling index of the rubber-modified styrene-based resin with respect to toluene is preferably in the range of 5.0 to 10.0, more preferably 6.0 to 9.0. More preferably, it is 6.0 to 8.0. Swell? The number represents the crosslink density of the rubbery polymer. The smaller the value, the higher the crosslink density, and the lower the crosslink density. As the swelling index decreases, the strength of the rubber-modified styrene-based resin tends to decrease. On the other hand, as the swelling index increases, the dispersed particles tend to be deformed due to the orientation during molding, and the light diffusibility tends to decrease.
[0027] 本発明の基板層 (Α)に使用されるゴム変性スチレン系榭脂の製造方法の例を示す  [0027] An example of a method for producing a rubber-modified styrene-based resin used for the substrate layer (Α) of the present invention is shown.
[0028] 本発明のゴム変性スチレン系榭脂の重合方法は、塊状重合、溶液重合、塊状懸濁 重合等が挙げられる力 なかでも塊状重合又は溶液重合が好ましぐさらには、連続 塊状重合又は連続溶液重合が生産性と経済性の面で特に好ましい。詳しくは、ゴム 状重合体、スチレン系単量体、必要に応じてスチレン系単量体に共重合可能なその 他の単量体及び溶媒、重合開始剤、連鎖移動剤等からなる原料溶液を重合して得 られたものであって、重合の進行をゴム状重合体が粒子化しな 、状態にとどめてある 第 1の流れの重合溶液と、スチレン系単量体、必要に応じてスチレン系単量体に共 重合可能なその他の単量体及び溶媒、重合開始剤、連鎖移動剤等からなる原料溶 液の重合途中の第 2の流れの重合溶液を連続的に高い剪断力で攪拌混合させる。 この攪拌混合により強制的に粒子化した後、更に重合を進行させ、回収装置に導き 加熱脱揮で溶媒と未反応単量体を除去し、ゴム変性スチレン系榭脂を得る。回収装 置はスチレン系榭脂の製造で常用される装置であり、例えば、フラッシュタンクシステ ム、多段ベント付き押出機等を用いることができる。 [0028] The rubber-modified styrene-based resin polymerization method of the present invention includes bulk polymerization, solution polymerization, bulk suspension polymerization and the like. Among these, bulk polymerization or solution polymerization is preferred, and continuous bulk polymerization or Continuous solution polymerization is particularly preferred in terms of productivity and economy. Specifically, a raw material solution comprising a rubber-like polymer, a styrene monomer, other monomers copolymerizable with a styrene monomer as required, a solvent, a polymerization initiator, a chain transfer agent, etc. The first polymerization solution, the styrenic monomer and, if necessary, the styrenic monomer, which are obtained by polymerization and remain in a state where the rubber-like polymer does not become particles as the polymerization proceeds. Stir and mix the polymerization solution of the second stream in the middle of polymerization of the raw material solution consisting of other monomers copolymerizable with the monomer and solvent, polymerization initiator, chain transfer agent, etc. with high shear force continuously. Let After forcibly forming particles by this stirring and mixing, the polymerization is further advanced, and the solvent and unreacted monomer are removed by heating and devolatilization to obtain a rubber-modified styrene-based resin. The recovery device is a device that is commonly used in the production of styrene-based resin. For example, a flash tank system, an extruder with a multistage vent, or the like can be used.
[0029] ゴム状重合体粒子の粒子径の調整は、第 1の流れの重合溶液と第 2の流れの重合 溶液を連続的に高剪断下で攪拌混合する混合攪拌機の回転数 (剪断力)、第 1の流 れの重合溶液の重合率、第 1の流れの重合溶液中のスチレン系重合体の分子量等 を制御することにより行うことができる。メチルェチルケトン不溶分中の (スチレン系重 合体の重量 Zゴム状重合体の重量)の値の調整は、第 1の流れの原料溶液のゴム状 重合体の量、第 1の流れの重合溶液と第 2の流れの重合溶液の混合比、混合液中の スチレン系重合体の量、混合攪拌機の回転数等を制御することにより行うことができ る。 [0029] The particle diameter of the rubber-like polymer particles is adjusted by adjusting the rotation speed (shearing force) of a mixing stirrer that continuously stirs and mixes the first stream polymerization solution and the second stream polymerization solution under high shear. The first flow The polymerization rate can be controlled by controlling the polymerization rate of the polymerization solution, the molecular weight of the styrenic polymer in the polymerization solution in the first stream, and the like. Adjustment of the value of (weight of styrene-based polymer Z weight of rubber-like polymer) in methyl ethyl ketone insolubles is based on the amount of rubber-like polymer in the first stream raw material solution and the polymerization of the first stream. It can be carried out by controlling the mixing ratio of the solution and the polymerization solution in the second stream, the amount of the styrene polymer in the mixed solution, the rotational speed of the mixing stirrer, and the like.
[0030] トルエン不溶分のトルエンに対する膨潤指数の調整は、回収系の温度等を制御す ること〖こより行うことができる。  [0030] Adjustment of the swelling index of toluene-insoluble matter with respect to toluene can be carried out by controlling the temperature of the recovery system.
[0031] 前記製造法において、第 1の流れの原料溶液中のゴム状重合体の量は、 6重量% 以上が好ましぐより好ましくは 8重量%以上、原料溶液中の重合開始剤の量は、 10 0〜: LOOOppm、より好ましくは 300〜800ppm、第 1の流れの重合溶液と第 2の流れ の重合溶液の混合比率は、好ましくは 1 : 1〜3 : 7であり、且つ混合溶液中のスチレン 系重合体の量は、 24〜45重量%が好ましい。更には第 1の流れの重合溶液と第 2の 流れの重合溶液を連続的により高い剪断力で攪拌混合することが好ましい。  [0031] In the production method, the amount of the rubbery polymer in the raw material solution of the first stream is preferably 6% by weight or more, more preferably 8% by weight or more, and the amount of the polymerization initiator in the raw material solution. 100 to: LOOOppm, more preferably 300 to 800ppm, the mixing ratio of the polymerization solution of the first stream and the polymerization solution of the second stream is preferably 1: 1 to 3: 7, and the mixture solution The amount of the styrene-based polymer is preferably 24 to 45% by weight. Furthermore, it is preferable to continuously stir and mix the first stream polymerization solution and the second stream polymerization solution with higher shearing force.
[0032] 同様な製造方法を用いたゴム補強スチレン系榭脂からなる光透過性成形品は、特 開 2003— 2937号公報に開示されている力 実施例に示されている第 1の流れの重 合溶液と第 2の流れの重合溶液の両重合溶液の混合比率が 2 : 1であり、混合液中の スチレン系重合体量が少ないため、この製造方法では、本発明のゴム変性スチレン 系榭脂のメチルェチルケトン不溶分中の (スチレン系重合体の重量 Zゴム状重合体 の重量)の値の範囲を満足することができない。また、従来のスチレン系単量体をゴ ム状重合体存在下に重合し、ゴム状重合体を粒子化させる方法や粒子化の時期を 早めるためにスチレン系重合体を添加する方法等では、本発明の基板層 (A)に使用 されるゴム変性スチレン系榭脂が得られな 、。  [0032] A light-transmitting molded article made of rubber-reinforced styrene-based resin using a similar manufacturing method is the first flow shown in the force example disclosed in JP 2003-2937 A. Since the mixing ratio between the polymerization solution and the polymerization solution in the second stream is 2: 1 and the amount of the styrene polymer in the mixture is small, this production method uses the rubber-modified styrene system of the present invention. The value range of (weight of styrene-based polymer Z weight of rubber-like polymer) in the methylethylketone insoluble matter of the resin cannot be satisfied. In addition, a conventional method of polymerizing a styrene monomer in the presence of a rubber polymer to form a rubbery polymer or a method of adding a styrene polymer in order to advance the particle formation time, A rubber-modified styrene-based resin used for the substrate layer (A) of the present invention cannot be obtained.
[0033] ゴム変性スチレン系榭脂中のゴム状重合体の量は、 目標とする含有量になるように 原材料中のゴム状重合体の含有量や重合率を調整することによって制御することが できる。本発明の基板層 (A)に使用されるゴム変性スチレン系榭脂は、前記製造法 により製造できる。別の方法として、前記の製造方法により得られたゴム変性スチレン 系榭脂に、ゴム状重合体を含有しないポリスチレン榭脂等のスチレン系榭脂を混合し 希釈することによつても製造することができる。前記製造法でゴム変性スチレン系榭 脂を製造する場合は、ゴム変性スチレン系榭脂中のゴム状重合体の量は、好ましくは[0033] The amount of the rubber-like polymer in the rubber-modified styrene-based resin can be controlled by adjusting the content and the polymerization rate of the rubber-like polymer in the raw material so that the target content is obtained. it can. The rubber-modified styrene-based resin used for the substrate layer (A) of the present invention can be produced by the above production method. As another method, a rubber-modified styrene-based resin obtained by the above production method is mixed with a styrene-based resin such as a polystyrene resin that does not contain a rubbery polymer. It can also be produced by dilution. When the rubber-modified styrene resin is produced by the above production method, the amount of the rubber-like polymer in the rubber-modified styrene resin is preferably
4〜10重量0 /0、より好ましくは 4〜9重量0 /0、更に好ましくは 5〜9重量0 /0である。ゴム 状重合体の量が 4重量未満の場合は、メチルェチルケトン不溶分中の (スチレン系重 合体の重量 Zゴム状重合体の重量)の値が大きくなる傾向にあり、 10重量%を超え る場合は、前記第 1の流れの原料溶液の粘度が高くなり、送液が困難となりやすい。 4-10 weight 0/0, more preferably 4-9 weight 0/0, more preferably from 5 to 9 weight 0/0. When the amount of the rubbery polymer is less than 4%, the value of (weight of styrene polymer Z weight of rubbery polymer) in methyl ethyl ketone insolubles tends to increase. When it exceeds, the viscosity of the raw material solution in the first flow becomes high and liquid feeding tends to be difficult.
[0034] 重合開始剤として用いられる有機過酸ィ匕物としては、バーオキシケタール類、ジァ ルキルパーオキサイド類、ジァシルバーオキサイド類、パーォキシジカーボネート類、 パーォキシエステル類、ケトンパーオキサイド類、ハイド口パーオキサイド類などが挙 げられる。 [0034] Organic peroxides used as polymerization initiators include baroxyketals, dialkyl peroxides, disilver oxides, peroxydicarbonates, peroxyesters, ketones Examples include peroxides and hide mouth peroxides.
[0035] 重合溶媒としては、ェチルベンゼン、トルエン、キシレン等を用いることが可能であ る。  [0035] Ethylbenzene, toluene, xylene, or the like can be used as the polymerization solvent.
[0036] 連鎖移動剤としては、 α—メチルスチレンダイマーや tードデシルメルカプタン、 n— ドデシルメルカプタン、 n—ォクチルメルカプタン等のメルカプタン類等を用いることが 可能である。  [0036] As the chain transfer agent, mercaptans such as α-methylstyrene dimer, t-decyl mercaptan, n-dodecyl mercaptan, n-octyl mercaptan, and the like can be used.
[0037] 本発明の基板層 (A)に使用されるゴム変性スチレン系榭脂には、耐光性の向上を 目的として紫外線吸収剤、光安定剤を配合することができる。具体的な紫外線吸収 剤及び光安定剤は後述する被覆層 (B)で例示される紫外線吸収剤及び光安定剤と 同様のものが使用される。紫外線吸収剤及び光安定剤は、各々単独又は複数での 使用が可能であり、添加量は、紫外線吸収剤と光安定剤の総和でゴム変性スチレン 系榭脂 100重量部に対して 0. 01〜1. 5重量部が好ましぐより好ましくは、 0. 02〜 0. 8重量部である。紫外線吸収剤と光安定剤の比率は、 1 : 0〜1 : 3の範囲が好まし い。  [0037] The rubber-modified styrene-based resin used in the substrate layer (A) of the present invention can be blended with an ultraviolet absorber and a light stabilizer for the purpose of improving light resistance. Specific examples of the ultraviolet absorber and light stabilizer are the same as the ultraviolet absorber and light stabilizer exemplified in the coating layer (B) described later. The UV absorber and the light stabilizer can be used alone or in combination, and the amount added is 0.01 for 100 parts by weight of the rubber-modified styrene-based resin as the sum of the UV absorber and the light stabilizer. ˜1.5 parts by weight is preferable, and 0.02 to 0.8 parts by weight is more preferable. The ratio of the UV absorber to the light stabilizer is preferably in the range of 1: 0 to 1: 3.
[0038] 本発明の積層板は、基板層 (A)の両面又は片面に被覆層 (B)が積層されている。  [0038] In the laminate of the present invention, the coating layer (B) is laminated on both sides or one side of the substrate layer (A).
被覆層 (B)に使用される榭脂は、基板層 (A)に使用されるゴム変性スチレン系榭脂 との接着性の観点からスチレン系榭脂又は (メタ)アクリル酸エステルースチレン系榭 脂である。  The resin used for the coating layer (B) is a styrene resin or a (meth) acrylic ester-styrene resin from the viewpoint of adhesion to the rubber-modified styrene resin used for the substrate layer (A). It is fat.
[0039] 本発明の被覆層 (B)に使用されるスチレン系榭脂とは、単量体単位としてスチレン 系単量体を 50重量%以上含むものであり、実質的にスチレン系単量体単独であって も、スチレン系単量体 50重量%以上と共重合可能な単量体 50重量%以下からなる 共重合体であってもよい。ここで、スチレン系単量体及び共重合可能な単量体として は、前記したゴム変性スチレン系榭脂の連続相を形成するスチレン系単量体及びそ の他の共重合可能な単量体((メタ)アクリル酸エステルは除く)と同様のものを使用す ることができ、単独又は二種以上用いてもよい。スチレン系単量体としては、スチレン が好ましい。 [0039] The styrene-based resin used in the coating layer (B) of the present invention is styrene as a monomer unit. 50% by weight or more of the monomer, and even if the styrene monomer is substantially alone, the monomer copolymerizable with 50% by weight or more of the styrene monomer is 50% by weight or less. It may be a copolymer. Here, as the styrene monomer and the copolymerizable monomer, a styrene monomer and other copolymerizable monomers that form a continuous phase of the rubber-modified styrene resin described above. (Except (meth) acrylic acid ester) can be used, and may be used alone or in combination of two or more. As the styrene monomer, styrene is preferable.
[0040] 本発明の被覆層 (B)に使用される (メタ)アクリル酸エステル—スチレン系榭脂とは、  [0040] The (meth) acrylic ester-styrene-based resin used for the coating layer (B) of the present invention is:
(メタ)アクリル酸エステル系単量体とスチレン系単量体の共重合体である。ここで、( メタ)アクリル酸エステル系単量体としては、メチルメタタリレート、ェチルメタタリレート 、ブチノレメタタリレート、メチノレアタリレート、ェチノレアタリレート、ブチノレアタリレート、 2 —ェチルへキシルアタリレート、シクロへキシルアタリレート等が挙げられる。これらを 単独、又は混合して用いてもよい。特に、メチルメタタリレート、メチルメタタリレートとブ チルアタリレートの混合品が好適に用いることができる。また、スチレン系単量体とし ては、前記したゴム変性スチレン系榭脂の連続相を形成するスチレン系単量体と同 様のものを使用することができ、単独又は二種以上用いてもよい。スチレン系単量体 としては、スチレンが好ましい。また、必要に応じてスチレン系単量体及び (メタ)アタリ ル酸エステル系単量体にその他の共重合可能な単量体を本発明の目的を損なわな い範囲で用いてもよい。ここで、その他の共重合可能な単量体としては、前記したゴ ム変性スチレン系榭脂の連続相を形成するその他の共重合可能な単量体( (メタ)ァ クリル酸エステルは除く)と同様のものを使用することができ、単独又は二種以上用い てもよい。  It is a copolymer of a (meth) acrylic acid ester monomer and a styrene monomer. Here, (meth) acrylic acid ester monomers include methyl methacrylate, ethyl acetate, butinole methacrylate, methinoare acrylate, ethino rare acrylate, butino rare acrylate, 2 —Ethylhexyl acrylate, cyclohexyl acrylate and the like. These may be used alone or in combination. In particular, methyl methacrylate and a mixture of methyl methacrylate and butyrate may be preferably used. Further, as the styrene monomer, the same styrene monomer that forms the continuous phase of the rubber-modified styrene resin described above can be used. Good. Styrene is preferred as the styrene monomer. Further, if necessary, other copolymerizable monomers may be used as long as they do not impair the object of the present invention. Here, the other copolymerizable monomers include other copolymerizable monomers (excluding (meth) acrylic acid esters) that form the continuous phase of the above rubber-modified styrene-based resin. Can be used alone or in combination of two or more.
[0041] また、特に限定されるものではないが、本発明の被覆層 (B)に使用される (メタ)ァク リル酸エステル—スチレン系榭脂における、(メタ)アクリル酸エステル系単量体の割 合は、 70重量%以下〜 0重量%超が好ましい。より好ましくは、 55重量%以下〜 0重 量%超である。 (メタ)アクリル酸エステル系単量体の割合が増加するほど耐傷性、耐 光性が向上し好ましいが、スチレン系単量体の割合が 30重量%未満になると、共押 出成形により積層板にした際に、基板層 (A)のゴム変性スチレン系榭脂との接着性 が低下する傾向にあるので好ましくな 、。 [0041] Although not particularly limited, (meth) acrylic acid ester-based (meth) acrylic acid ester-based monomer used in the coating layer (B) of the present invention The proportion of the body is preferably 70% by weight or less to more than 0% by weight. More preferably, it is 55% by weight or less to more than 0% by weight. As the proportion of the (meth) acrylic acid ester monomer increases, scratch resistance and light resistance improve, which is preferable. However, when the proportion of the styrene monomer is less than 30% by weight, the laminate is obtained by coextrusion molding. The adhesion of the substrate layer (A) to the rubber-modified styrene-based resin , Because it tends to decrease.
[0042] また、本発明の被覆層 (B)に使用されるスチレン系榭脂又は (メタ)アクリル酸エス テル スチレン系榭脂には、より耐衝撃性を向上させる目的で、ゴム状重合体にスチ レン系単量体又は (メタ)アクリル酸エステルースチレン系単量体をグラフトしたゴム変 性スチレン系榭脂又はゴム変性 (メタ)アクリル酸エステル一スチレン系榭脂とすること ができる。ゴム変性スチレン系榭脂又はゴム変性 (メタ)アクリル酸エステル—スチレン 系榭脂は、直接重合したものでも、あるいは、ゴム状重合体含有量の高いゴム変性ス チレン系榭脂又はゴム変性 (メタ)アクリル酸エステル—スチレン系榭脂にゴム状重合 体を含有しな 、スチレン系榭脂又は (メタ)アクリル酸エステル—スチレン系榭脂を混 合し希釈したものでもよい。ゴム状重合体としては、前記基板層 (A)に使用されるゴ ム変性スチレン系榭脂の分散相である分散粒子を形成するゴム状重合体と同様のも のが使用できる。被覆層 (B)に使用されるスチレン系榭脂又は (メタ)アクリル酸エス テル スチレン系榭脂に含有させるゴム状重合体の量は、スチレン系榭脂又は (メタ )アクリル酸エステル—スチレン系榭脂 100重量部に対して、 1〜: LO重量部が好まし ぐより好ましくは、 2〜6重量部である。  [0042] The styrenic resin or (meth) acrylate ester styrene resin used in the coating layer (B) of the present invention has a rubbery polymer for the purpose of further improving impact resistance. A rubber-modified styrene resin or a rubber-modified (meth) acrylate monostyrene resin obtained by grafting a styrene monomer or a (meth) acrylic acid ester-styrene monomer on the surface can be used. Rubber-modified styrene-based resin or rubber-modified (meth) acrylic acid ester-styrene-based resin may be directly polymerized, or rubber-modified styrene-based resin or rubber-modified ) Acrylic ester-styrene resin may not contain a rubbery polymer, but may be a mixture of styrene resin or (meth) acrylic ester-styrene resin mixed and diluted. As the rubber-like polymer, the same rubber-like polymer that forms dispersed particles as the dispersed phase of the rubber-modified styrene-based resin used for the substrate layer (A) can be used. Styrenic resin or (meth) acrylate ester used in coating layer (B) The amount of rubbery polymer contained in styrene resin is either styrene resin or (meth) acrylate-styrene With respect to 100 parts by weight of rosin, 1 to LO parts by weight is preferable, and 2 to 6 parts by weight is more preferable.
[0043] 本発明の被覆層 (B)に使用される榭脂には、光源ランプカゝら発生する紫外線によ る着色防止を十分なものにするために、紫外線吸収剤を添加することができる。紫外 線吸収剤とは、例えば、 2- (5—メチル 2 ヒドロキシフエ-ル)ベンゾトリアゾール 、 2- [2 ヒドロキシ一 3, 5ビス( α , a,一ジメチルベンジル)フエ-ル]ベンゾトリア ゾール、 2— (3, 5 ジ— t—ァミル— 2 ヒドロキシフエ-ル)ベンゾトリアゾール等の ベンゾトリアゾール系紫外線吸収剤、 2 ヒドロキシ一 4—メトキシベンゾフエノン、 2, 2'ージヒドロキシー4ーメトキシベンゾフエノン、 2 ヒドロキシー4 n—オタトキシベン ゾフエノン等のベンゾフエノン系紫外線吸収剤、フエ-ルサリシレート、 4 t ブチル フエニルサリシレート等のサリチル酸系紫外線吸収剤、 2—(1ーァリールアルキデン) マロン酸エステル系紫外線吸収剤、ォキサルァ-リド系紫外線吸収剤が挙げられる。 この紫外線吸収剤の量は、被覆層 (B)に使用される榭脂 100重量部に対して、 0. 0 3〜5重量部であり、好ましくは、 0. 1〜3重量部、より好ましくは、 0. 2〜2重量部で ある。この紫外線吸収剤の量が 0. 03重量部未満では、積層板の耐光性が十分では なぐまた、 5重量部を超えると積層板の表面に紫外線吸収剤がブリードアウトしやす くなり、積層板の表面外観を損なうことがある。 [0043] In the resin used in the coating layer (B) of the present invention, an ultraviolet absorber can be added in order to prevent coloration due to ultraviolet rays generated from the light source lamp cover. . Examples of the ultraviolet absorber include 2- (5-methyl-2-hydroxyphenol) benzotriazole, 2- [2hydroxy-1,3,5-bis (α, a, monodimethylbenzyl) phenol] benzotriazole, 2— (3,5 di-t-amyl-2-hydroxyphenol) benzotriazole UV absorbers such as benzotriazole, 2-hydroxy-1-methoxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone Benzophenone UV absorbers such as 2-hydroxy-4 n-otatoxiben zophenone, salicylic acid UV absorbers such as phenyl salicylate and 4 t-butyl phenyl salicylate, 2- (1-aryl alkydene) malonic acid ester UV Examples thereof include an absorber and an oxasulfide-based ultraviolet absorber. The amount of the ultraviolet absorber is 0.03 to 5 parts by weight, preferably 0.1 to 3 parts by weight, more preferably 100 parts by weight of the resin used in the coating layer (B). Is 0.2 to 2 parts by weight. If the amount of this UV absorber is less than 0.03 parts by weight, the light resistance of the laminate is not sufficient. In addition, if the amount exceeds 5 parts by weight, the UV absorber tends to bleed out on the surface of the laminate, which may impair the surface appearance of the laminate.
[0044] また、本発明の被覆層 (B)に使用される榭脂には、更に耐光性を向上させる目的 で光安定剤を添加することができる。光安定剤とは、例えばヒンダートアミン系光安定 剤などが挙げられる。ヒンダートアミン系光安定剤としては、例えば、ビス(2, 2, 6, 6 —テトラメチル一 4—ピペリジル)セパケート、 N, N,一ビス(3—ァミノプロピル)ェチ レンジァミン · 2, 4 ビス [Ν ブチル Ν— (1, 2, 2, 6, 6 ペンタメチル一 4 ピ ペリジル)ァミノ]— 6 クロ口 1, 3, 5 トリアジン縮合物が挙げられる。光安定剤は 、単独又は複数での使用が可能であり、添加量は、被覆層 (Β)に使用される榭脂 10 0重量部に対して、好ましくは、 0. 01〜3重量部、より好ましくは 0. 1〜2重量部であ る。紫外線吸収剤と併用する場合、紫外線吸収剤との添加量比率は、好ましくは紫 外線吸収剤添加量の 3倍 (重量比)以下であり、より好ましくは、 0. 5〜2倍 (重量比) である。前記紫外線吸収剤と同様に基板層 (Α)にも光安定剤を含有させてもよい。  [0044] A light stabilizer can be added to the resin used in the coating layer (B) of the present invention for the purpose of further improving light resistance. Examples of the light stabilizer include hindered amine light stabilizers. Examples of hindered amine light stabilizers include bis (2, 2, 6, 6—tetramethyl-4-piperidyl) separate, N, N, 1bis (3-aminopropyl) ethylenediamine, 2, 4bis. [Ν butyl Ν— (1, 2, 2, 6, 6 pentamethyl-4-piperidyl) amino] —6, 1,3,5 triazine condensate. The light stabilizer can be used alone or in combination, and the addition amount is preferably 0.01 to 3 parts by weight, with respect to 100 parts by weight of the resin used in the coating layer (foam). More preferably, it is 0.1 to 2 parts by weight. When used in combination with a UV absorber, the ratio of the amount added to the UV absorber is preferably not more than 3 times (weight ratio) of the amount of UV absorber added, more preferably 0.5 to 2 times (weight ratio). ) Similarly to the ultraviolet absorber, the substrate layer (Α) may contain a light stabilizer.
[0045] 本発明の被覆層 (Β)に使用される榭脂には、光拡散性を向上させる目的で光拡散 剤を添加することができる。  [0045] A light diffusing agent can be added to the resin used in the coating layer (Β) of the present invention for the purpose of improving light diffusibility.
[0046] ここで、光拡散剤として、無機系又は有機系のいずれの光拡散剤も用いることがで きる。例えば、無機系光拡散剤としては、硫酸バリウム、炭酸カルシウム、水酸化アル ミニゥム、リン酸カルシウム、シリカ等が挙げられる。有機系光拡散剤としては、アタリ ル系架橋粒子、スチレン系架橋粒子、メタクリル酸メチルースチレン共重合物架橋粒 子、シリコーン系架橋粒子が挙げられる。これら無機系及び有機系光拡散剤は、単 独で使用しても複数併用して使用することも可能である。  [0046] Here, as the light diffusing agent, either an inorganic or organic light diffusing agent can be used. For example, examples of the inorganic light diffusing agent include barium sulfate, calcium carbonate, aluminum hydroxide, calcium phosphate, and silica. Examples of the organic light diffusing agent include acrylate-based crosslinked particles, styrene-based crosslinked particles, methyl methacrylate-styrene copolymer crosslinked particles, and silicone-based crosslinked particles. These inorganic and organic light diffusing agents can be used alone or in combination.
[0047] この光拡散剤の重量平均粒子径は、 0. 5〜10 μ mが好ましぐより好ましくは 3〜8 μ mである。光拡散剤の含有量は、スチレン系榭脂又は (メタ)アクリル酸エステル— スチレン系榭脂 100重量部に対して、 0. 1〜: LO重量部が好ましぐより好ましくは、 1 〜5重量部である。光拡散剤は、被覆層 (B)、基板層 (A)のいずれか一方に添加し てもよいし、両層に添カ卩してもよいが、被覆層 (B)に添加するのが好ましい。  [0047] The weight average particle diameter of the light diffusing agent is preferably 0.5 to 10 µm, more preferably 3 to 8 µm. The content of the light diffusing agent is preferably 0.1 to 5 parts by weight, more preferably 1 to 5 with respect to 100 parts by weight of styrene resin or (meth) acrylic ester-styrene resin. Parts by weight. The light diffusing agent may be added to either the coating layer (B) or the substrate layer (A), or may be added to both layers, but may be added to the coating layer (B). preferable.
[0048] 本発明の光拡散性スチレン系榭脂積層板には、傷付き防止を目的に、積層板の表 面に凹凸形状を形成し艷消し面とすることができる。積層板の表面に凹凸形状を形 成する方法としては、押出成形時に拡散剤やマット化剤といわれる微粒子を添加し、 積層板の表面に凹凸を形成する方法や凹凸をロール転写する方法が挙げられる。 拡散剤やマット化剤を添加し、積層板の表面に凹凸形状を形成する場合、拡散剤や マット化剤は、基板層(A)及び被覆層 (B)のいずれか一方又は両方に添加してもよ いが、被覆層 (B)に添加する方が好ましい。 [0048] For the purpose of preventing scratches, the light diffusing styrene-based resin laminate of the present invention can have a concavo-convex shape on the surface of the laminate to provide a matte surface. Concave and convex shape on the surface of the laminate Examples of the forming method include a method in which fine particles called a diffusing agent or a matting agent are added at the time of extrusion forming, and a method of forming unevenness on the surface of the laminated plate or a method of transferring the unevenness on a roll. When a diffusing agent or matting agent is added to form an uneven shape on the surface of the laminate, the diffusing agent or matting agent is added to one or both of the substrate layer (A) and the coating layer (B). However, it is preferable to add to the coating layer (B).
[0049] 本発明の光拡散性スチレン系榭脂積層板には、生産コストの観点力 押出成形等 により製造した積層板カゝら所定の寸法の積層板を取り出した残りの端材を粉砕したも のを新たな原料にリサイクルしてもよい。端材は、基板層(A)及び被覆層(B)のいず れか一方又は両方に添加してもよいが、基板層 (A)に添加する方が好ましい。  [0049] In the light diffusing styrene-based resin laminate of the present invention, from the viewpoint of production cost, the remaining end material obtained by taking out the laminate of a predetermined size from the laminate produced by extrusion molding or the like was crushed. You may recycle the product into new raw materials. The end material may be added to one or both of the substrate layer (A) and the coating layer (B), but is preferably added to the substrate layer (A).
[0050] 本発明の光拡散性スチレン系榭脂積層板には、ポリジメチルシロキサンや鉱油、高 級脂肪酸の金属塩、高級脂肪酸のアミド類を添加することにより衝撃強度を高めるこ とがでさる。  [0050] The light-diffusing styrene-based resin laminate of the present invention can be improved in impact strength by adding polydimethylsiloxane, mineral oil, metal salts of higher fatty acids, and amides of higher fatty acids. .
[0051] 更に、本発明の光拡散性スチレン系榭脂積層板には、必要に応じ本発明の目的を 損なわない範囲で各種添加剤、例えば、ヒンダートフエノール系、リン系、ィォゥ系な どの酸化防止剤、滑剤、帯電防止剤、難燃剤、各種染料や顔料、蛍光増白剤、選択 波長吸収剤を添加してもよ ヽ。  [0051] Furthermore, the light diffusable styrene-based resin laminate of the present invention has various additives such as hindered phenol, phosphorus, and io, as long as the object of the present invention is not impaired, if necessary. Antioxidants, lubricants, antistatic agents, flame retardants, various dyes and pigments, fluorescent brighteners, and selective wavelength absorbers may be added.
[0052] 本発明の光拡散性スチレン系榭脂積層板を製造する方法としては、特に限定はさ れないが、例えば、ゴム変性スチレン系榭脂製造時の回収工程の前後の任意の段 階に必要に応じ本発明の目的を損なわない範囲の任意の添加剤を添加する力 又 は、ゴム変性スチレン系榭脂に必要に応じ本発明の目的を損なわない範囲の任意の 添加剤をヘンシェルミキサーやプレンダー等で混合した後、押出機等で加熱溶融混 鍊して基板用榭脂組成物を調製し、別にスチレン系榭脂又は (メタ)アクリル酸エステ ルースチレン系榭脂と、必要に応じ本発明の目的を損なわない範囲の任意の添カロ 剤を、上記と同様に添加して、被覆用榭脂組成物として調製する。次いでこれらの榭 脂組成物を公知の成形技術により、本発明の構造の積層板とする。例えば上記榭脂 組成物から圧縮成形方法、押出成形方法などの成形方法により基板層となるシート 状成形体及び被覆層となるフィルム状成形体を別々に得て、その後両者を張り合わ せる方法のほか、共押出設備を有するシート押出成形機により、上記榭脂組成物を 同時に押出して一体成形する方法等が用いられる。製造コストの点から共押出方法 による成形方法が好ましい。 [0052] The method for producing the light-diffusing styrene-based resin laminate of the present invention is not particularly limited, but for example, any stage before and after the recovery step during the production of the rubber-modified styrene-based resin. The ability to add an arbitrary additive within a range that does not impair the object of the present invention if necessary, or an optional additive within a range that does not impair the object of the present invention to a rubber-modified styrene-based resin, if necessary. After mixing by using a blender or a blender, the mixture is heated and melted with an extruder to prepare a resin composition for a substrate. Separately, styrene-based resin or (meth) acrylic acid ester, styrene-based resin, and if necessary Arbitrary additive in the range not impairing the object of the present invention is added in the same manner as described above to prepare a resin composition for coating. Then, these resin compositions are made into a laminate having the structure of the present invention by a known molding technique. For example, in addition to a method of separately obtaining a sheet-like molded body serving as a substrate layer and a film-shaped molded body serving as a coating layer from the above resin composition by a molding method such as a compression molding method or an extrusion molding method, and then bonding them together The above resin composition is obtained by a sheet extrusion molding machine having co-extrusion equipment. A method of extruding and integrally forming at the same time is used. A molding method using a coextrusion method is preferable from the viewpoint of production cost.
[0053] 本発明の光拡散スチレン系榭脂積層板の厚さは、用途等により適宜調整されるが、 通常 0. 5〜5mm、好ましく ίま 0. 8〜3mm、より好ましく ίま 1. 0〜2. 5mmである。 0. 5mm未満では剛性が不足するので適当ではなぐ 5mmを超えるものは重量的に実 用的ではない。  [0053] The thickness of the light-diffusing styrene-based resin laminate of the present invention is appropriately adjusted depending on the application, etc., but is usually 0.5 to 5 mm, preferably ί to 0.8 to 3 mm, more preferably ί to 1. 0 to 2.5 mm. If less than 5mm, the rigidity is insufficient, so it is not suitable.
[0054] 本発明の被覆層 (B)の厚さは、被覆層 (B)の厚みの合計 Z基板層 (A)の厚み = 1 Z99〜lZ2の比率範囲であるのが好ましい。  [0054] The thickness of the coating layer (B) of the present invention is preferably in the ratio range of the total thickness of the coating layer (B) Z substrate layer (A) = 1 Z99 to lZ2.
[0055] 本発明の光拡散性スチレン系榭脂積層板は、照明器具ゃ電照看板、液晶ディスプ レイや液晶テレビ等の液晶表示装置に好適に用いることができる。なかでも、液晶表 示装置の直下型バックライト用拡散板として好適に用いられる。  [0055] The light diffusing styrene-based resin laminate of the present invention can be suitably used for liquid crystal display devices such as lighting fixtures, electric signboards, liquid crystal displays, and liquid crystal televisions. Among these, it is preferably used as a diffusion plate for a direct backlight of a liquid crystal display device.
実施例  Example
[0056] 本発明について、以下具体的に説明する。但し、本発明はこれらの実施例によって 何ら限定されるものではな 、。  [0056] The present invention will be specifically described below. However, the present invention is not limited to these examples.
なお、本発明では、下記の測定方法、評価方法を用いた。  In the present invention, the following measurement method and evaluation method were used.
[0057] (1)分散粒子径 m)、粒子径分布  [0057] (1) Dispersed particle size m), particle size distribution
30 μ m径のアパーチャ一チューブを装着したベックマンコールター株式会社製 C OULTER MULTISIZER II (商品名)にて、ゴム変性スチレン系榭脂ペレット 2〜 5粒をジメチルホルムアミド約 5ml中に入れ約 2〜5分間放置する。次にジメチルホル ムアミド溶解分を適度の粒子濃度として測定し、体積基準のメジアン径を求める。粒 子径分布は、体積基準のメジアン径と同時に測定された個数基準のメジアン径より、 体積基準のメジアン径 Z個数基準のメジアン径で求めた。  In C OULTER MULTISIZER II (trade name) manufactured by Beckman Coulter, Inc., equipped with a 30 μm aperture tube, put 2 to 5 rubber-modified styrene resin pellets in about 5 ml of dimethylformamide and about 2 to 5 Leave for a minute. Next, measure the dissolved dimethylformamide as an appropriate particle concentration, and obtain the volume-based median diameter. The particle size distribution was determined from the volume-based median diameter measured at the same time as the volume-based median diameter, as the volume-based median diameter and the Z-number-based median diameter.
[0058] (2)ゴム状重合体含有量 (重量0 /0) [0058] (2) rubber-like polymer content (wt 0/0)
ゴム変性スチレン系榭脂 0. 25gをクロ口ホルム 50mlに溶解し、一塩化ヨウ素を加え てゴム成分中の二重結合を反応させた後、ヨウ化カリウムを加え、残存する一塩化ョ ゥ素をヨウ素に変え、チォ硫酸ナトリウムで逆滴定する一塩化ヨウ素法を用いて、ゴム 変性スチレン系榭脂中のゴム状重合体含有量を測定した。  0.25 g of rubber-modified styrene resin is dissolved in 50 ml of black mouth form, and after adding iodine monochloride to react the double bond in the rubber component, potassium iodide is added and the remaining iodine monochloride is added. The content of the rubbery polymer in the rubber-modified styrene-based resin was measured by using the iodine monochloride method in which T was changed to iodine and back titrated with sodium thiosulfate.
[0059] (3)メチルェチルケトン不溶分 (重量0 /0) ゴム変性スチレン系榭脂 lgを精秤し (Wl (g) )、メチルェチルケトン 20ミリリットルを カロえ 23°Cで 2時間振とう後、遠心分離機((株)日立製作所製 himac (商品名) CR— 20 (ローター: R20A2) )にて 10°C以下、 20000rpmで 60分間遠心分離する。上澄 み液をデカンテーシヨンして除き、不溶分を得る。引き続き、 160°C、 20mmHg以下 の条件で 60分間真空乾燥し、デシケーター内で室温まで冷却後、不溶分の重量を 精秤する (W2 (g) )。下記式により、メチルェチルケトン不溶分を求める。 [0059] (3) methyl E chill ketone insolubles (wt 0/0) Rubber-modified styrenic resin lg is precisely weighed (Wl (g)), 20 ml of methyl ethyl ketone is squeezed, shaken at 23 ° C for 2 hours, and then centrifuged (hiacac manufactured by Hitachi, Ltd.) Name) Centrifuge with CR-20 (rotor: R20A2)) at 10 ° C or less and 20000 rpm for 60 minutes. Decant the supernatant to remove insolubles. Next, vacuum-dry for 60 minutes under conditions of 160 ° C and 20mmHg or less, cool to room temperature in a desiccator, and accurately weigh the insoluble matter (W2 (g)). A methyl ethyl ketone insoluble content is calculated | required by a following formula.
メチルェチルケトン不溶分(重量%) = (W2 (g) /Wl (g) ) X 100  Methyl ethyl ketone insoluble matter (wt%) = (W2 (g) / Wl (g)) X 100
[0060] (4)トルエンに対する膨潤指数 [0060] (4) Swelling index for toluene
ゴム変性スチレン系榭脂 lgを精秤し (W3 (g) )、トルエン 20ミリリットルを加え 23。C で 2時間振とう後、遠心分離機((株)日立製作所製 himac (商品名) CR— 20 (ロータ 一: R20A2) )にて 10°C以下、 20000rpmで 60分間遠心分離する。上澄み液をデ カンテーシヨンして除き、トルエンを含んだ不溶分の重量を精秤する (W4 (g) )。引き 続き、 160°C、 20mmHg以下の条件で 60分間真空乾燥し、デシケーター内で室温 まで冷却後、不溶分の重量を精秤する (W5 (g) )。下記式により、トルエンに対する 膨潤指数を求める。  23. Weigh accurately rubber-modified styrenic resin lg (W3 (g)) and add 20 ml of toluene23. After shaking at C for 2 hours, centrifuge for 60 minutes at 20000 rpm at 10 ° C or less in a centrifuge (hiac (trade name) CR-20 (Hitachi: R20A2) manufactured by Hitachi, Ltd.)). Decant the supernatant and remove the weight of the insoluble matter containing toluene (W4 (g)). Next, vacuum-dry for 60 minutes at 160 ° C and 20mmHg or less, cool to room temperature in a desiccator, and weigh the insoluble matter precisely (W5 (g)). The swelling index for toluene is obtained by the following formula.
トルエンに対する膨潤指数 =W4 (g) /W5 (g)  Swelling index for toluene = W4 (g) / W5 (g)
[0061] (5)メチルェチルケトン不溶分中の(スチレン系重合体の重量 Zゴム状重合体の重 量)の値 (以下、分散相の PSZRu比と略記する)。 [0061] (5) Value of (weight of styrene-based polymer Z weight of rubber-like polymer) in methylethylketone insoluble matter (hereinafter abbreviated as PSZRu ratio of dispersed phase).
ゴム変性スチレン系榭脂中の分散相の PSZRu比は、下記式により求めた。  The PSZRu ratio of the dispersed phase in the rubber-modified styrenic resin was determined by the following formula.
分散相の PSZRu比 = (メチルェチルケトン不溶分 ゴム状重合体含有量) Zゴム 状重合体含有量  PSZRu ratio of dispersed phase = (methylethylketone insoluble matter rubbery polymer content) Z rubbery polymer content
[0062] (6)全光線透過率、黄色度 (イェローインデックス) [0062] (6) Total light transmittance, yellowness (yellow index)
JIS K7105に準拠し、 日本電色株式会社製 色差濁度測定器 COH300A (商 品名)を用いて全光線透過率を測定した。また、同時にイェローインデックスを測定し た。  Based on JIS K7105, total light transmittance was measured using a color difference turbidity measuring instrument COH300A (trade name) manufactured by Nippon Denshoku Co., Ltd. At the same time, the yellow index was measured.
[0063] (7)光拡散率 (%)  [0063] (7) Light diffusivity (%)
ォプテック株式会社製ゴ-オフオトメーターを用いて、白色光の光源で試験片に直 角方向に入光させ試験片の反対側に透過した光を 0° 〜70° の角度の範囲におけ る輝度を測定し、下式により算出した。 Using a go-off optometer manufactured by Optech Co., Ltd., the light that is incident on the specimen in the direction perpendicular to the white light source and transmitted to the opposite side of the specimen is placed in the range of 0 ° to 70 °. The luminance was measured and calculated by the following formula.
光拡散率(%) = (20° の輝度 + 70° の輝度)÷(5° の輝度 X2) X100  Light diffusivity (%) = (20 ° brightness + 70 ° brightness) ÷ (5 ° brightness X2) X100
[0064] (9)デュポン式衝撃強さ(kg · cm) [0064] (9) DuPont impact strength (kg · cm)
JIS K5400に準拠し、撃ち型 直径 3Z8インチ、受け台 直径 1Z2インチの 条件にて 50%破壊エネルギーを測定した。  In accordance with JIS K5400, the 50% fracture energy was measured under the conditions of shooting type diameter 3Z8 inches and cradle diameter 1Z2 inches.
[0065] (10)耐光性(ΔE) [0065] (10) Light resistance (ΔE)
スガ試験機 (株)サンシャインウエザーメーター 型式 S80BBRを用いて、ブラックパ ネル温度 63°C、湿度 50%RH、降雨間隔 降雨 18分 Zサイクル 120分の条件にて Suga Test Instruments Co., Ltd. Sunshine Weather Meter Model S80BBR, with black panel temperature 63 ° C, humidity 50% RH, rainfall interval Rainfall 18 minutes Z cycle 120 minutes
、 300時間暴露後、 日本電色工業 (株)色差、濁度測定器 COH— 300Aにて透過 の色差 ΔΕを測定し、耐光性の評価とした。 After exposure for 300 hours, the color difference ΔΕ of transmission was measured with Nippon Denshoku Industries Co., Ltd. color difference and turbidity measuring instrument COH-300A to evaluate the light resistance.
[0066] 実施例、比較例に用いたゴム変性スチレン系榭脂は、以下の方法で製造した。 [0066] The rubber-modified styrenic resin used in Examples and Comparative Examples was produced by the following method.
[0067] (ゴム変性スチレン系榭脂 HIの製造) [0067] (Production of rubber-modified styrene-based resin HI)
第 1の流れとして攪拌機及びジャケットを備えた容量 1.8リットルの塔式反応機 (第 A 1.8 liter tower reactor equipped with a stirrer and jacket as the first stream (No.
1反応機)に下記の原料溶液 (a)を 1.5リットル ZHrにて連続的に送液した。 The following raw material solution (a) was continuously fed to 1 reactor) with 1.5 liters of ZHr.
[0068] ゴム状重合体として、 25°Cの 5重量0 /0スチレン溶液粘度が 35センチボイズのローシ スポリブタジエンゴムを使用し、以下の組成の原料溶液 (a)を作製した。 原料溶液 (a) 2 J J t s- s Is && && &a && && ゴム状重合体 1 2. 5 量量量量量量量量量 スチレン 74. 5 部 ェチルベンゼン 1 3. 0 α—メチルスチレンダイマー 0. 26 [0068] As the rubber-like polymer, 5 wt 0/0 styrene solution viscosity of 25 ° C is using Roshi scan polybutadiene rubber 35 Senchiboizu, to prepare a raw material solution (a) of the following composition. Raw material solution (a) 2 JJ t s- s Is &&&&& a &&&& Rubber-like polymer 1 2. 5 Quantity Quantity Quantity Quantity Quantity Styrene 74.5 parts Ethylbenzene 1 3. 0 α-Methylstyrene Dimer 0 . 26
1 , 1—ビス (t—プチルパーォキシ) シクロへキサン 0. 05 ジー t—ブチルパーォキサイ ド 0. 02 第 1反応機の攪拌数を lOOrpmとし、温度は 104°Cに制御した。第 1反応機出口の 固形分濃度は、 21.0重量%であった。第 2の流れとして攪拌機及びジャケットを備 えた容量 6.2リットルの塔式反応機 (第 2反応機)に下記の原料溶液 (b)を 1.5リット ル ZHrにて連続的に送液した。 原料溶液 (b)  1,1-bis (t-butylperoxy) cyclohexane 0.05 05 tert-butyl peroxide 0.02 The number of stirring of the first reactor was lOOrpm, and the temperature was controlled at 104 ° C. The solid content concentration at the outlet of the first reactor was 21.0% by weight. As a second flow, the following raw material solution (b) was continuously fed to a 6.2 liter tower reactor (second reactor) equipped with a stirrer and a jacket at 1.5 liter ZHr. Raw material solution (b)
スチレン 95. 0 ェチルベンゼン 5. 0 Styrene 95.0 Ethylbenzene 5.0
1 , 1—ビス ( t—プチルパーォキシ) シクロへキサン 0. 01 [0070] 第 2反応機の攪拌数を llOrpmとし、温度は 123〜132°Cに制御した。第 2反応機 出口の固形分濃度は、 45. 2重量%であった。これらの第 1の流れと第 2の流れは、 0 . 5リットルの容量を持ち、攪拌翼先端と混合機壁との間隔が 2mmであり、軸方向に 1 9段の攪拌棒を装着し、機壁にはピンが攪拌棒間に出ている混合攪拌機内に導入し 、攪拌数 400rpmで混合した。次いで、攪拌機及びジャケットを備えた容量 6. 2リット ルの塔式反応機 (第 3反応機)に送入し、温度 118〜123°Cで 2. 1時間重合した。更 に攪拌機及びジャケットを備えた容量 6. 2リットルの塔式反応機 (第 4反応機)に送入 し、温度 120〜130°Cで 2. 1時間重合した。得られた重合溶液を 2段ベント付き脱揮 押出機連続的に供給し、押出機温度 240°C、 1段ベント及び 2段ベントの真空度を 2 5torrで、未反応単量体、溶媒を回収し、ゴム変性スチレン系榭脂 HIを得た。 1, 1-bis (t-butylperoxy) cyclohexane 0. 01 [0070] The number of stirring in the second reactor was llOrpm, and the temperature was controlled at 123 to 132 ° C. The solid concentration at the outlet of the second reactor was 45.2% by weight. These first flow and second flow have a capacity of 0.5 liter, the distance between the stirring blade tip and the mixer wall is 2 mm, and a 19-stage stirring rod is attached in the axial direction, The pins were introduced into the mixing stirrer, which is located between the stirring rods, on the machine wall, and mixed at a stirring speed of 400 rpm. Next, the mixture was fed into a 6.2-liter column reactor (third reactor) equipped with a stirrer and a jacket, and polymerized at a temperature of 118 to 123 ° C. for 2.1 hours. Furthermore, it was fed into a 6.2 liter tower reactor (fourth reactor) equipped with a stirrer and a jacket and polymerized at a temperature of 120 to 130 ° C. for 2.1 hours. The resulting polymerization solution was continuously supplied to the devolatilizing extruder with a two-stage vent, the extruder temperature was 240 ° C, the vacuum degree of the first and second stage vents was 25 torr , unreacted monomer and solvent The rubber-modified styrenic resin HI was obtained.
[0071] (ゴム変性スチレン系榭脂 H2の製造)  [0071] (Production of rubber-modified styrene-based resin H2)
第 1の流れとして攪拌機及びジャケットを備えた容量 1. 8リットルの塔式反応機 (第 1反応機)に下記の原料溶液 (a)を 1. 5リットル ZHrにて連続的に送液した。  The following raw material solution (a) was continuously fed in 1.5 liter ZHr to a 1.8 liter tower reactor (first reactor) having a stirrer and a jacket as the first flow.
[0072] ゴム状重合体として、 25°Cの 5重量0 /0スチレン溶液粘度が 35センチボイズのローシ スポリブタジエンゴムを使用し、以下の組成の原料溶液 (a)を作製した。 原料溶液 (a ) [0072] As the rubber-like polymer, 5 wt 0/0 styrene solution viscosity of 25 ° C is using Roshi scan polybutadiene rubber 35 Senchiboizu, to prepare a raw material solution (a) of the following composition. Raw material solution (a)
ゴム状重合体 1 1 . 5 スチレン 7 5 . 5 ΐ && ェチルベンゼン 1 3 . 0 量量量量量量量量 α—メチノレスチレンダイマー 0 . 6 6 Rubbery polymer 1 1.5 Styrene 7 5.5 5 && Ethylbenzene 1 3.0 Quantity Quantity Quantity Quantity α-Methylole styrene dimer 0.6 6
1 , 1一ビス ( t—ブチルパーォキシ) シクロへキサン 0 . 0 5 ジー t—ブチノレパーォキサイ ド 0 . 0 1
Figure imgf000019_0001
1, 1 bis (t-butylperoxy) cyclohexane 0.05 g tert-butylenoperoxide 0.0 1
Figure imgf000019_0001
[0073] 第 1反応機の攪拌数を lOOrpmとし、温度は 108°Cに制御した。第 1反応機出口の 固形分濃度は、 22. 0重量%であった。第 2の流れとして攪拌機及びジャケットを備 えた容量 6. 2リットルの塔式反応機 (第 2反応機)に下記の原料溶液 (b)を 1. 5リット ル ZHrにて連続的に送液した。 原料溶液 (b ) [0073] The number of stirring in the first reactor was lOOrpm, and the temperature was controlled at 108 ° C. The solid content concentration at the outlet of the first reactor was 22.0% by weight. The second stream was equipped with a stirrer and a jacket. 6. The following raw material solution (b) was continuously fed to a 2-liter tower reactor (second reactor) at 1.5 liter ZHr. . Raw material solution (b)
スチレン 9 5 0 ェチノレベンゼン 5 0 Styrene 9 5 0 Ethenolebenzene 5 0
1, 1 _ビス ( tーブチルバ一ォキシ) シクロへキサン 0 0 [0074] 第 2反応機の攪拌数を llOrpmとし、温度は 123〜132°Cに制御した。第 2反応機 出口の固形分濃度は、 45. 1重量%であった。攪拌混合機以降は、第 3反応機の温 度を 117〜123°C、第 4反応機の温度を 123〜133°Cとした以外はゴム変性スチレン 系榭脂 HIと同様に操作しゴム変性スチレン系榭脂 H2を得た。 1, 1 _bis (tert-butyloxy) cyclohexane 0 0 [0074] The number of stirring in the second reactor was llOrpm, and the temperature was controlled at 123 to 132 ° C. The solid concentration at the outlet of the second reactor was 45.1% by weight. After the stirring mixer, the rubber was modified in the same manner as the rubber-modified styrene-based resin HI, except that the temperature of the third reactor was 117 to 123 ° C and the temperature of the fourth reactor was 123 to 133 ° C. Styrenic resin H2 was obtained.
[0075] (ゴム変性スチレン系榭脂 H3の製造)  [0075] (Production of rubber-modified styrene-based resin H3)
ゴム状重合体として、 25°Cの 5重量0 /0スチレン溶液粘度が 170センチボイズのロー シスポリブタジエンゴムを使用し、以下の組成の原料溶液を作製した。 ゴム状重合体 3 As the rubbery polymer, 5 wt 0/0 styrene solution viscosity of 25 ° C is using low cis polybutadiene rubber 170 Senchiboizu, to prepare a raw material solution having the following composition. Rubbery polymer 3
スチレン 8 6  Styrene 8 6
ェチルベンゼン 1 0  Ethylbenzene 1 0
α—メチノレスチレンダイマー 0  α-Methylole styrene dimer 0
1 , 1 一ビス ( t _ブチルパーォキシ) シクロへキサン 0  1, 1 bis (t_butylperoxy) cyclohexane 0
ジー t一ブチルパーォキサイ ド 0  G t butyl peroxide 0
[0076] 原料溶液を、攪拌機を備えた塔式反応機 3基 (各々の内容積 6. 2リットル)を直列 に連結した重合装置に、 2. 4リットル Zhrで連続的に供給した。第 1反応機の攪拌数 は、 90rpmに設定した。重合温度は、第 1反応機 122〜131°Cで 2. 6時間、第 2反 応機 135〜145°Cで 2. 6時間、第 3反応機 145〜155°Cで 2. 6時間重合を実施し た。得られた重合溶液を 2段ベント付き脱揮押出機に連続的に供給し、押出機温度 2 30°C、 1段ベント及び 2段ベントの真空度を 25torrで、未反応単量体、溶媒を 32s sΒ Ϊ回 ί 11一一収し 量量量量量量量量量量量 剖剖剖剖剖 ¾ 、ゴム変性スチレン系榭脂 H3を得た。 β β β--. [0076] The raw material solution was continuously supplied at a rate of 2.4 liters Zhr to a polymerization apparatus in which three column reactors equipped with a stirrer (each internal volume 6.2 liters) were connected in series. The stirring speed of the first reactor was set to 90 rpm. Polymerization temperature: 1st reactor 122-131 ° C for 2.6 hours, 2nd reactor 135-145 ° C for 2.6 hours, 3rd reactor 145-155 ° C for 2.6 hours Carried out. The obtained polymerization solution is continuously fed to a devolatilizing extruder with a two-stage vent, the extruder temperature is 230 ° C, the vacuum of the first and second vents is 25 torr, unreacted monomer and solvent 32 s s Ϊ Ϊ ί ί 11 量 量 量 量 量 量 ゴ ム ゴ ム ゴ ム ゴ ム 剖 ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム ゴ ム 이 ゴ ムβ β β--.
[0077] (ゴム変性スチレン系榭脂 H4の製造)  [0077] (Production of rubber-modified styrene resin H4)
第 1の流れとして攪拌機及びジャケットを備えた容量 2. 4リットルの塔式反応機 (第 1反応機)に下記の原料溶液 (a)を 2. 0リットル ZHrにて連続的に送液した。ゴム状 重合体として、 25°Cの 5重量%スチレン溶液粘度が 35センチボイズのローシスポリブ タジェンゴムを使用し、以下の組成の原料溶液 (a)を作製した。 原料溶液 (a )  The following raw material solution (a) was continuously fed in 2.0 liter ZHr to a 2.4 liter tower reactor (first reactor) equipped with a stirrer and a jacket as the first flow. As a rubbery polymer, a low-cis polybutaene rubber having a viscosity of 35 centipoise at 25 ° C. and a 5 wt% styrene solution was used to prepare a raw material solution (a) having the following composition. Raw material solution (a)
ポリブタジエンゴム 9 . 6  Polybutadiene rubber 9.6
スチレン 7 5 . 4  Styrene 7 5.4
ェチ /レベンゼン 1 5 . 0  Yet / Lebenzene 1 5. 0
α—メチルスチレンダイマー 0 . 0 7 5 α-Methylstyrene dimer 0.0 7 5
1, 1—ビス (t—プチルパーォキシ) シクロへキサン 0 . 0 7 5 [0078] 第 1反応機の攪拌数を lOOrpmとし、温度は 97°Cに制御した。第 1反応機出口の 固形分濃度は 16. 0重量%であった。第 2の流れとして攪拌機及びジャケットを備え た容量 6. 2リットルの塔式反応機 (第 2反応機)に下記の原料溶液 (b)を 1. 0リットル ZHrにて連続的に送液した。 原料溶液 (b ) 1,1-bis (t-butylperoxy) cyclohexane 0.0 7 5 [0078] The number of stirring in the first reactor was lOOrpm, and the temperature was controlled at 97 ° C. The solid content at the outlet of the first reactor was 16.0% by weight. The following raw material solution (b) was continuously fed in 1.0 liter ZHr to a 6.2 liter tower reactor (second reactor) equipped with a stirrer and a jacket as the second flow. Raw material solution (b)
スチレン 8 9 . 7 重量部 ェチルベンゼン 1 0 ' 3 重量部  Styrene 89.7 parts by weight Ethylbenzene 1 0 '3 parts by weight
[0079] 第 2反応機の回転数を llOrpmとし、温度は 130〜140°Cに制御した。第 2反応機 出口の固形分濃度は、 50. 0重量%であった。これら第一の流れと第二の流れは、 0 . 5リットルの容量を持ち、攪拌翼先端と混合機壁との隙間が 5mmであり、軸方向に 1 5段の攪拌棒が装着し、機壁には伝熱管が攪拌棒の間に出ている混合攪拌機内に 導入され、攪拌数 200rpmの回転で混合した。次いで攪拌機及びジャケットを備えた 容量 6. 2リットルの塔式反応機 (第 3反応機)に送入し、温度 112〜120°Cで 2. 1時 間重合した。更に攪拌機及びジャケットを備えた容量 6. 2リットルの塔式反応機 (第 4 反応機)に送入し、温度 140〜155°Cで 2. 1時間重合した。得られた重合溶液を 2段 ベント付き脱揮押出機連続的に供給し、押出機温度 230°C、 1段ベント及び 2段ベン トの真空度を 25torrで、未反応単量体、溶媒を回収し、特開 2003— 2937実施例 3 に従 、操作し、ゴム変性スチレン系榭脂 H4を得た。 [0079] The rotation speed of the second reactor was llOrpm, and the temperature was controlled at 130-140 ° C. The solid concentration at the outlet of the second reactor was 50.0% by weight. The first flow and the second flow have a capacity of 0.5 liter, the clearance between the tip of the stirring blade and the mixer wall is 5 mm, and a 15-stage stirring rod is attached in the axial direction. A heat transfer tube was introduced into the wall into the mixing stirrer that was placed between the stirring rods, and mixed at a rotation speed of 200 rpm. Next, the mixture was fed into a 6.2 liter tower reactor (third reactor) equipped with a stirrer and a jacket, and polymerized at a temperature of 112 to 120 ° C for 2.1 hours. Further, it was fed into a 6.2 liter tower reactor (fourth reactor) equipped with a stirrer and a jacket, and polymerized at a temperature of 140 to 155 ° C. for 2.1 hours. The resulting polymerization solution was continuously supplied to the devolatilizing extruder with a two-stage vent, the extruder temperature was 230 ° C, the vacuum of the first-stage vent and the second-stage vent was 25 torr, and unreacted monomer and solvent were removed. It was recovered and operated according to Example 3 of JP2003-2937 to obtain a rubber-modified styrene-based resin H4.
[0080] (GPポリスチレン榭脂 G1)  [0080] (GP polystyrene resin G1)
重量平均分子量 Mw 31. 2万、数平均分子量 Mnll. 7万、分子量分布 MwZM n 2. 7、 MFR(200°C— 5kg) l. 5gZlO分の GPポリスチレンを使用した。  Weight average molecular weight Mw 312,000, number average molecular weight Mnll. 70,000, molecular weight distribution MwZM n 2.7, MFR (200 ° C—5 kg) l.
[0081] (メタクリル酸メチルースチレン共重合体榭脂 Ml)  [0081] (Methyl methacrylate-styrene copolymer resin Ml)
メタクリル酸メチル成分含有量 49重量%、スチレン成分含有量 51重量%であり 、重量平均分子量 Mw 13. 8万、数平均分子量 Mn7. 2 万、分子量分布 MwZM n 1. 9、 MFR(200°C— 5kg) l. 5gZlO分のメタクリル酸メチル—スチレン共重合 体榭脂を使用した。  Methyl methacrylate component content 49% by weight, styrene component content 51% by weight, weight average molecular weight Mw 130,000, number average molecular weight Mn720,000, molecular weight distribution MwZMn1.9, MFR (200 ° C — 5 kg) l. 5 g ZlO of methyl methacrylate-styrene copolymer resin was used.
[0082] (光拡散剤 K1)  [0082] (Light diffusing agent K1)
ポリメタクリル酸メチル架橋粒子 (積水化成品工業株式会社製、商品名テクポリマー MBX— 5、屈折率 1. 49、重量平均粒子径 5 m)を使用した。 Polymethyl methacrylate cross-linked particles (manufactured by Sekisui Plastics Co., Ltd., trade name: Techpolymer) MBX-5, refractive index 1.49, weight average particle size 5 m) was used.
[0083] (紫外線吸収剤 UVA) [0083] (UV absorber UVA)
2- (5—メチルー 2—ヒドロキシフエ-ル)ベンゾトリアゾール(チノく'スペシャルティ' ケミカルズ (株)チヌビン P)を用いた。  2- (5-Methyl-2-hydroxyphenol) benzotriazole (Tinoku 'Specialty' Chemicals Co., Ltd. Tinuvin P) was used.
[0084] (光安定剤 HALS) [0084] (Light stabilizer HALS)
ビス(2, 2, 6, 6—テトラメチルー 4ーピペリジル)セパケート(三共 (株)サノール LS Bis (2, 2, 6, 6-tetramethyl-4-piperidyl) Sepacate (Sankyo Corporation Sanol LS
- 770)を用いた -770)
[0085] [基板層 (A)に使用する榭脂の作製及び分析] [0085] [Production and analysis of resin used for substrate layer (A)]
基板層 (A)に使用する榭脂 Al、 A2、 A4、 A5は、ゴム変性スチレン系榭脂 HI〜4 のペレット、 A3、 A6〜8は、ゴム変'性スチレン系榭 S旨 HI、 H3、 H4と GPポリスチレン 榭脂 G 1及び光拡散剤 K1を表 1に示す配合組成にて混合し、 30mm二軸押出機に て溶融混鍊して得た。得られたペレットで A8を除き、ゴム状重合体含有量、分散粒 子径、メチルェチルケトン不溶分、トルエンに対する膨潤指数を測定し、測定結果か ら分散相の PSZRu比を算出した。結果を表 1に示す。  Resin used for substrate layer (A) Al, A2, A4, A5 are rubber-modified styrene-based resin HI to 4 pellets, A3, A6-8 are rubber-modified styrene-based S SHI, H3 H4, GP polystyrene resin G 1 and light diffusing agent K1 were mixed in the composition shown in Table 1 and melt-kneaded using a 30 mm twin screw extruder. A8 was removed from the obtained pellets, and the rubbery polymer content, dispersed particle size, methyl ethyl ketone insoluble content, and swelling index with respect to toluene were measured, and the PSZRu ratio of the dispersed phase was calculated from the measurement results. The results are shown in Table 1.
[0086] [被覆層 (B)に使用する樹脂の作製] [0086] [Preparation of resin used for coating layer (B)]
表 2に示す配合組成にて混合し、 30mm二軸押出機にて溶融混鍊し、被覆層(B) 榭脂 B1〜B5を得た。  It mixed with the compounding composition shown in Table 2, and melt-kneaded with the 30-mm twin-screw extruder, and coating layer (B) resin B1-B5 was obtained.
[0087] [実施例 1〜7、比較例 1〜5] [Examples 1-7, Comparative Examples 1-5]
表 3に示す層構成にて、下記構成の多層シート押出装置を用い、基板層 (A)に使 用する榭脂が中間層、被覆層 (B)に使用する榭脂が表層(両面)となるように共押出 シート成形を実施した。  In the layer configuration shown in Table 3, using a multilayer sheet extrusion apparatus with the following configuration, the resin used for the substrate layer (A) is the intermediate layer, and the resin used for the coating layer (B) is the surface layer (both sides). Coextruded sheet molding was carried out so that
[0088] 多層シート押出成形機 [0088] Multi-layer sheet extrusion molding machine
押出機 1 :単軸 スクリュー径 40mm  Extruder 1: Single screw screw diameter 40mm
押出機 2 :単軸 スクリュー径 30mm  Extruder 2: Single screw screw diameter 30mm
フィードブロック: 2種 3層、ダイス: Tダイ  Feed block: 2 types, 3 layers, dice: T-die
[0089] 基板層 (A)に使用する榭脂は押出機 1、被覆層 (B)に使用する榭脂は押出機 2を 使用し、押出機とダイの温度は 210〜230°Cにて実施し、厚さ 2mm (中間層 1. 9m m、表層(両面) 0. 05mm)の積層板を作製した。得られた積層板から試験片を切り 出し、全光線透過率、光拡散率、黄色度 (イェローインデックス)、デュポン式衝撃強 さ、耐光性(Δ Ε)を測定した。その結果を表 3に示す。 [0089] The resin used for the substrate layer (A) is the extruder 1, and the resin used for the coating layer (B) is the extruder 2. The temperature of the extruder and the die is 210 to 230 ° C. This was carried out to produce a laminate having a thickness of 2 mm (intermediate layer: 1.9 mm, surface layer (both sides): 0.05 mm). Cut a specimen from the resulting laminate. The total light transmittance, light diffusivity, yellowness (yellow index), Dupont impact strength, and light resistance (ΔΕ) were measured. The results are shown in Table 3.
[0090] 〔実施例 1〜6〕 [Examples 1 to 6]
実施例 1〜6は、透過光の黄色度が小さぐ全光線透過率、光拡散性、耐衝撃性及 び耐光性に優れる。  Examples 1 to 6 are excellent in total light transmittance, light diffusibility, impact resistance, and light resistance with small yellowness of transmitted light.
[0091] 〔実施例 7〕 [Example 7]
実施例 7は、透過光の黄色度が小さぐ全光線透過率、光拡散性及び耐衝撃性に 優れる。  Example 7 is excellent in total light transmittance, light diffusibility, and impact resistance in which the yellowness of transmitted light is small.
[0092] 〔比較例 1〜4〕 [Comparative Examples 1 to 4]
比較例 1〜4は、透過光の黄色度が大きぐ劣るものである。加えて比較例 3は光拡 散性に劣る。  Comparative Examples 1 to 4 are inferior in yellowness of transmitted light. In addition, Comparative Example 3 is inferior in light diffusibility.
[0093] 〔比較例 5〕 [Comparative Example 5]
比較例 5は、透過光の黄色度は小さいが、耐衝撃性が劣る。  In Comparative Example 5, the yellowness of the transmitted light is small, but the impact resistance is poor.
[0094] [表 1] [0094] [Table 1]
表 1 table 1
Figure imgf000024_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000025_0001
表 2 Table 2
Figure imgf000025_0002
^0095 表 3
Figure imgf000025_0002
^ 0095 Table 3
Figure imgf000026_0001
Figure imgf000026_0001
産業上の利用可能性 Industrial applicability
[0097] 本発明の光拡散性スチレン系榭脂積層板は、照明器具ゃ電照看板、液晶ディスプ レイや液晶テレビ等の液晶表示装置等の拡散板として好適に用いることができる。な かでも、液晶表示装置の直下型バックライト用光拡散板として好適に用いられる。 図面の簡単な説明  [0097] The light-diffusing styrene-based resin laminate of the present invention can be suitably used as a diffusing plate for liquid crystal display devices such as lighting fixtures, electric signs, liquid crystal displays, and liquid crystal televisions. Among these, it is suitably used as a light diffusing plate for a direct backlight of a liquid crystal display device. Brief Description of Drawings
[0098] [図 1]図 1は、ゴム状重合体粒子断面の海島構造を説明する模式図である。ここで 1 はマトリックスとなっているスチレン系重合体、 2は該マトリックスに分散しているゴム状 重合体、 3は該ゴム状重合体に内包して 、るスチレン系重合体である。  FIG. 1 is a schematic diagram for explaining a sea-island structure of a cross section of rubbery polymer particles. Here, 1 is a styrenic polymer serving as a matrix, 2 is a rubbery polymer dispersed in the matrix, and 3 is a styrene polymer encapsulated in the rubbery polymer.

Claims

請求の範囲 The scope of the claims
[1] マトリックスを形成するスチレン系重合体及び該マトリックス中に島状に分散してい るゴム状重合体粒子を含み、該ゴム状重合体粒子の断面は、該スチレン系重合体粒 子を内包した海島構造を形成して 、るゴム変性スチレン系榭脂であって、ゴム状重 合体 1〜10重量%、スチレン系重合体 99〜90重量%力もなり、該ゴム状重合体粒 子の粒子径が 1. 0〜5. 0 m、ゴム変性スチレン系榭脂のメチルェチルケトン不溶 分中の(スチレン系重合体の重量 Zゴム状重合体の重量)の値が 0. 5〜1. 5の範囲 である上記ゴム変性スチレン系榭脂を含んでなる基板層 (A)、及び  [1] It includes a styrenic polymer forming a matrix and rubber-like polymer particles dispersed in islands in the matrix, and the cross-section of the rubber-like polymer particles includes the styrenic polymer particles. It is a rubber-modified styrene-based resin that forms a sea-island structure and has a strength of 1-10% by weight of a rubbery polymer and 99-90% by weight of a styrene-based polymer. The diameter is 1.0 to 5.0 m, and the value of (weight of styrene polymer Z weight of rubber-like polymer) in the methylethylketone insoluble content of rubber-modified styrene-based resin is 0.5 to 1. A substrate layer (A) comprising the rubber-modified styrenic resin in the range of 5, and
該基板層 (A)の両面又は片面にスチレン系榭脂又は (メタ)アクリル酸エステル—ス チレン系榭脂を含んでなる被覆層 (B)  A coating layer (B) comprising styrene-based resin or (meth) acrylic ester-styrene-based resin on both surfaces or one surface of the substrate layer (A)
を含んでなる光拡散性スチレン系榭脂積層板。  A light-diffusing styrene-based resin laminate comprising:
[2] 前記基板層 (A)に使用されるゴム変性スチレン系榭脂のゴム状重合体粒子の粒子 径分布が 1. 0〜1. 6の範囲である請求項 1記載の光拡散性スチレン系榭脂積層板 2. The light diffusing styrene according to claim 1, wherein the rubber-modified styrene-based rubber-like polymer particles used in the substrate layer (A) have a particle size distribution in the range of 1.0 to 1.6. System resin laminate
[3] 前記基板層 (A)に使用されるゴム変性スチレン系榭脂のトルエンに対する膨潤指 数が 5. 0〜10. 0の範囲である請求項 1又は 2に記載の光拡散性スチレン系榭脂積 層板。 [3] The light-diffusing styrenic resin according to claim 1 or 2, wherein the rubber-modified styrenic resin used in the substrate layer (A) has a swelling index with respect to toluene of 5.0 to 10.0.榭 脂 层层 板.
[4] 前記被覆層 (B)に使用されるスチレン系榭脂又は (メタ)アクリル酸エステルースチ レン系榭脂がゴム変性スチレン系榭脂又はゴム変性 (メタ)アクリル酸エステルースチ レン系榭脂である請求項 1〜3のいずれか一項に記載の光拡散性スチレン系榭脂積 層板。  [4] The styrene-based resin or (meth) acrylate ester-based resin used in the coating layer (B) is a rubber-modified styrene resin or rubber-modified (meth) acrylate-ester resin. The light-diffusing styrene-based resin laminate according to any one of claims 1 to 3.
[5] 前記被覆層 (B)が、該被覆層 (B)に使用される榭脂 100重量部に対して、紫外線 吸収剤を 0. 03〜5重量部含有する請求項 1〜4のいずれか一項に記載の光拡散性 スチレン系榭脂積層板。  [5] The method according to any one of claims 1 to 4, wherein the coating layer (B) contains 0.03 to 5 parts by weight of an ultraviolet absorber with respect to 100 parts by weight of the resin used in the coating layer (B). The light diffusable styrene-based resin laminate according to claim 1.
[6] 請求項 1〜5の 、ずれか一項に記載の光拡散性スチレン系榭脂積層板を含んでな るバックライト用光拡散板。  [6] A light diffusing plate for backlight comprising the light diffusing styrene-based resin laminate according to any one of claims 1 to 5.
PCT/JP2007/059878 2006-05-15 2007-05-14 Light diffusing styrene resin multilayer plate WO2007132815A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008515547A JP5048659B2 (en) 2006-05-15 2007-05-14 Light-diffusing styrene resin laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-134603 2006-05-15
JP2006-134604 2006-05-15
JP2006134604 2006-05-15
JP2006134603 2006-05-15

Publications (1)

Publication Number Publication Date
WO2007132815A1 true WO2007132815A1 (en) 2007-11-22

Family

ID=38693905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059878 WO2007132815A1 (en) 2006-05-15 2007-05-14 Light diffusing styrene resin multilayer plate

Country Status (3)

Country Link
JP (1) JP5048659B2 (en)
TW (1) TWI343487B (en)
WO (1) WO2007132815A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285892A (en) * 2008-05-27 2009-12-10 Ps Japan Corp Heat-shrinkable multi-layer film
KR101464814B1 (en) 2008-08-26 2014-11-24 도아고세이가부시키가이샤 Styrene series resin composition
CN113427868A (en) * 2021-08-30 2021-09-24 佛山市德联邦盛光电科技股份有限公司 Composite board, preparation method thereof and lamp

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296581A (en) * 1999-04-16 2000-10-24 Asahi Chem Ind Co Ltd Light diffusing resin panel excellent in impact resistance
JP2003002937A (en) * 2001-06-19 2003-01-08 A & M Styrene Co Ltd Molded product excellent in light transmission characteristics
JP2003302629A (en) * 2002-04-08 2003-10-24 Daicel Chem Ind Ltd Light diffusion film
JP2004090626A (en) * 2003-07-03 2004-03-25 Sumitomo Chem Co Ltd Light diffusing laminated resin panel
JP2006076240A (en) * 2004-09-13 2006-03-23 Asahi Kasei Chemicals Corp Styrenic resin plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296581A (en) * 1999-04-16 2000-10-24 Asahi Chem Ind Co Ltd Light diffusing resin panel excellent in impact resistance
JP2003002937A (en) * 2001-06-19 2003-01-08 A & M Styrene Co Ltd Molded product excellent in light transmission characteristics
JP2003302629A (en) * 2002-04-08 2003-10-24 Daicel Chem Ind Ltd Light diffusion film
JP2004090626A (en) * 2003-07-03 2004-03-25 Sumitomo Chem Co Ltd Light diffusing laminated resin panel
JP2006076240A (en) * 2004-09-13 2006-03-23 Asahi Kasei Chemicals Corp Styrenic resin plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285892A (en) * 2008-05-27 2009-12-10 Ps Japan Corp Heat-shrinkable multi-layer film
KR101464814B1 (en) 2008-08-26 2014-11-24 도아고세이가부시키가이샤 Styrene series resin composition
CN113427868A (en) * 2021-08-30 2021-09-24 佛山市德联邦盛光电科技股份有限公司 Composite board, preparation method thereof and lamp

Also Published As

Publication number Publication date
TWI343487B (en) 2011-06-11
JPWO2007132815A1 (en) 2009-09-24
JP5048659B2 (en) 2012-10-17
TW200801590A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
KR100836572B1 (en) Photo scattering polymer composition with advanced physical properties
TW200946583A (en) Light-scattering compositions
US20070123626A1 (en) Heat resistant light diffusion blend composition
JP5209283B2 (en) Resin composition for light diffusion plate and light diffusion plate
JP2010077243A (en) Optical diffusing particle, method for producing the same, optical diffusing particle composition, and optical diffusing film
JP5401553B2 (en) Single hollow particle for light diffusion
WO2001032774A1 (en) Light-diffusing resin composition
KR20100034699A (en) A light diffusion sheet for an led light source
WO2007132815A1 (en) Light diffusing styrene resin multilayer plate
JP2007153959A (en) Resin composition for light-diffusing plate and light-diffusing plate
JP5242174B2 (en) Rubber-modified styrene resin and light diffusion plate comprising the resin
JP4386063B2 (en) Method for producing light diffusing methacrylic resin multilayer board
TW201007217A (en) Resin composition and light diffusion plate with thermal resistance and impact resistance
JPH1072512A (en) Rubber-modified copolymer resin composition and its preparation
KR100988975B1 (en) A method of preparing thermoplastic resin composition having light diffusion property
TW200936677A (en) Light dispersion plate and resin combination thereof
JP5576752B2 (en) Single hollow particle and method for producing the same
JP2007204535A (en) Light-diffusing styrene-based resin composition and molding
JP5527568B2 (en) Acrylic resin composition, acrylic resin film and light diffusion plate comprising the acrylic resin composition, backlight unit, and liquid crystal display device
KR101651719B1 (en) Light diffusing composition and light diffusing resin composition comprising thereof
KR20080086210A (en) Heat resistant light diffusion plate
JP2005181825A (en) Light diffusive resin plate-like object and method for manufacturing the same
JP2010018792A (en) Acrylic film for optics and back light using the same
WO2008013143A1 (en) Resin composition for light diffusion and light diffusion plate
JP7230814B2 (en) Resin moldings, heat ray shielding plates, roofing materials, window materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008515547

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743313

Country of ref document: EP

Kind code of ref document: A1