明 細 書 Specification
管球、反射鏡付き管球、および照明装置 Tubes, tubes with reflectors, and lighting devices
技術分野 Technical field
[0001] 本発明は、管球、反射鏡付き管球、および照明装置に関し、特に、管球におけるフ イラメント体の改良技術に関する。 TECHNICAL FIELD [0001] The present invention relates to a tube, a reflector-equipped tube, and a lighting device, and more particularly to an improvement technique of a filament body in a tube.
背景技術 Background art
[0002] 反射鏡付き管球の一種である反射鏡付きハロゲン電球は、凹面状をした反射面を 有する反射鏡とハロゲン電球とを組み合わせてなるものであり、例えば、店舗などの スポット照明用として使用されている。 [0002] A halogen lamp with a reflector, which is a kind of a tube with a reflector, is a combination of a reflector with a concave reflecting surface and a halogen lamp, and, for example, for spot illumination in a store etc. It is used.
ノ、ロゲン電球は、気密封止されたバルブ内にフィラメント体が収納されてなる構成を 有している。ハロゲン電球を反射鏡と組み合わせて使用する場合には、フィラメント体 をできるだけコンパクトにして、その発光領域を可能な限り反射鏡の焦点位置に集中 させることによって、集光効率を向上させることができる。この場合に、発光領域を特 に反射鏡の光軸方向に縮小することが、集光効率を向上させるためには効果的であ ることが知られている。 The rogen light bulb has a configuration in which a filament body is housed in a hermetically sealed bulb. When a halogen bulb is used in combination with a reflector, the collection efficiency can be improved by making the filament body as compact as possible and concentrating the light emission area as much as possible on the focal position of the reflector. In this case, it is known that reducing the light emitting area particularly in the direction of the optical axis of the reflecting mirror is effective for improving the light collection efficiency.
[0003] しカゝしながら、一般的に、ハロゲン電球の定格電圧 [V]、定格電力 [W]、および定 格寿命 (例えば、 3000時間)が決まると、これに応じて、フィラメント体を構成するタン ダステン線の線径ゃ長さが実質的に定まってしまう。したがって、例えば、単純にタン ダステン線の長さを短縮することによってフィラメント体のコンパクトィ匕を図ることは困 難である。 [0003] Generally, when the rated voltage [V], rated power [W], and rated life (for example, 3000 hours) of the halogen bulb are determined, the filament body is The wire diameter and length of the tan dastene wire to be configured are substantially fixed. Therefore, for example, it is difficult to achieve compactness of the filament body simply by shortening the length of the tundsten wire.
[0004] そこで、定格電圧 100[V]以上のハロゲン電球において、実用化されているものは、 一般的に、フィラメント体のコンパクトィ匕を図るため二重巻きコイルが用いられている。 また、特許文献 1には、さらなるコンパクトィ匕のため、フィラメント体として、三重卷きコ ィルを用いたハロゲン電球が開示されている。これによれば、タングステン線の長さが 同じであれば、反射鏡の光軸方向におけるコイル全体の長さを短縮でき、もって集光 効率が向上することとなるからである。 Therefore, among halogen bulbs with a rated voltage of 100 [V] or higher, those that have been put to practical use generally use double-turn coils to achieve a compact filament body. In addition, Patent Document 1 discloses a halogen bulb using a triple-turn coil as a filament body for further compactness. According to this, if the lengths of the tungsten wires are the same, the overall length of the coil in the optical axis direction of the reflecting mirror can be shortened, and the light collection efficiency is improved.
[0005] し力しながら、コイルの重ね卷数を増やせば増やすほど、ハロゲン電球に外力(衝
撃力)が加えられた際に生じるコイルの振動の振幅が大きくなり、これが原因で断線 し易くなるといった問題が生じる。 [0005] While the force is increased, the more the number of coiled coils is increased, the more the external force is applied to the halogen bulb. When the shock force is applied, the amplitude of the vibration of the coil that occurs is increased, which causes a problem that it becomes easy to break the wire.
この問題を解決しつつ、フィラメント体のコンパクト化 (光軸方向の短縮化)を図れる ノ、ロゲン電球として、特許文献 2には、円筒状に卷回された一重コイルを複数個、全 体的に反射鏡の光軸に対して対称となるように各々の一重コイルを反射鏡の光軸と 平行に配したものが開示されている。これ〖こより、当該複数個の一重コイルに相当す るものを 1個の一重コイルで作製した場合と比較して、光軸方向の長さが短縮される ので、集光効率が向上することとなる。また、各々のコイルは一重なので、上記振動 に因る問題も軽減される。 While this problem can be solved, the filament body can be made compact (shortening in the optical axis direction). As a rogen light bulb, Patent Document 2 discloses a plurality of single coils wound in a cylindrical shape as a whole. Each single coil is disposed parallel to the optical axis of the reflecting mirror so as to be symmetrical with respect to the optical axis of the reflecting mirror. According to this, since the length in the optical axis direction is shortened as compared with the case where the equivalent of the plurality of single coils is manufactured by one single coil, the light collection efficiency is improved. Become. Also, since each coil is single-layered, the problems due to the above-mentioned vibration can be alleviated.
[0006] さらに、これを改善したものとして、特許文献 3には、上記複数個の一重コイルの内 の 1個を、反射鏡の光軸に平行にかつ光軸を含む位置に配する構成としたハロゲン 電球が開示されている。光軸位置にコイル (すなわち、発光部)が存するのと、存しな いのとでは、得られる照度に大きな差が生じるからである。 Further, as an improvement of this, Patent Document 3 discloses a configuration in which one of the plurality of single coils is disposed parallel to the optical axis of the reflecting mirror and at a position including the optical axis. Halogen bulbs are disclosed. The presence of the coil (that is, the light emitting portion) at the optical axis position causes a large difference in the obtained illuminance.
特許文献 1:特開 2001— 345077号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2001-345077
特許文献 2:特表平 6 - 510881号公報 Patent Document 2: Japanese Patent Application Publication No. 6-510881
特許文献 3 :特開 2002— 63869号公報 Patent Document 3: JP-A-2002-63869
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problem that invention tries to solve
[0007] 特許文献 2、 3に記載のハロゲン電球において、できるだけ集光効率を向上させる ために今度は、反射鏡の光軸と直交する方向にも発光領域を短縮することが考えら れる。すなわち、略平行に配された一重コイル同士の間隔 (反射鏡の光軸と直交する 方向の間隔)を縮小することが考えられる。 In the halogen bulbs described in Patent Documents 2 and 3, it is conceivable to shorten the light emitting region also in the direction orthogonal to the optical axis of the reflecting mirror in order to improve the light collection efficiency as much as possible. That is, it is conceivable to reduce the distance between single coils disposed substantially in parallel (the distance in the direction orthogonal to the optical axis of the reflecting mirror).
し力しながら、コイル同士の間隔を縮小しすぎると、隣接するコイル (発光部)間でァ ーク放電が生じ、コイル線が断線してしまうといった事態が生じてしまう。 If the distance between the coils is reduced too much under pressure, a spark discharge may occur between adjacent coils (light emitting parts), resulting in breakage of the coil wire.
[0008] 上記した課題に鑑み、本発明は、一重のコイル状をした複数の発光部を有するフィ ラメント体を備える管球であって、アーク放電に起因する断線の生じにくい管球を提 供することを目的とする。また、本発明は、そのような管球を有する反射鏡付き管球、 および照明装置を提供することを目的とする。
課題を解決するための手段 [0008] In view of the above problems, the present invention provides a tube including a filament body having a plurality of single light emitting portions in a coil shape, wherein the tube is resistant to disconnection due to arc discharge. The purpose is Another object of the present invention is to provide a reflector-equipped tube having such a tube, and a lighting device. Means to solve the problem
[0009] 上記した目的を達成するため、本発明に係る管球は、凹面状をした反射面を有す る反射鏡内に組み込まれて使用される管球であって、気密封止されたバルブと、前 記バルブ内に設けられ、筒状に卷回されてなる一重のコイル状をした発光部が複数 個、導体を介して電気的に直列接続されてなる構成を有するフィラメント体と、を備え 、前記直列接続において隣接する二つの発光部のいずれにおいても、仮に当該二 つの発光部の軸心が平行で、かつ、当該二つの発光部の一端部同士と他端部同士 とをそれぞれ揃えた仮想状態よりも、導体で接続されていない側の端部同士の距離 が長くなる姿勢で当該二つの発光部が配されていることを特徴とする。 [0009] In order to achieve the above object, a tube according to the present invention is a tube that is used by being incorporated in a reflecting mirror having a concave reflecting surface, and hermetically sealed. A bulb, and a filament body having a configuration in which a plurality of single coil-shaped light emitting portions provided in the bulb and wound in a cylindrical shape are electrically connected in series via a conductor; In both of the two light emitting units adjacent in the series connection, the axes of the two light emitting units are temporarily parallel, and one end and the other end of the two light emitting units are respectively It is characterized in that the two light emitting parts are arranged in a posture in which the distance between the end parts on the side not connected by the conductor is longer than that in the aligned virtual state.
[0010] また、前記フィラメント体は、第 1、第 2、および第 3の発光部がこの順で電気的に直 列接続されてなるものであり、各発光部は、その軸心が前記反射鏡の光軸と略平行 となり、かつ、略同一平面上に在って、第 1の発光部と第 3の発光部との間に第 2の発 光部が存するように配されており、第 1の発光部と第 3の発光部との端部同士が前記 光軸方向において略揃っていると共に、第 2の発光部の端部が、第 1および第 3の発 光部の端部に対し、前記光軸方向に相対的にずれて 、ることを特徴とする。 In the filament body, the first, second, and third light emitting units are electrically connected in series in this order, and each light emitting unit has its axis centered on the reflection. The second light emitting portion is disposed between the first light emitting portion and the third light emitting portion so as to be substantially parallel to the optical axis of the mirror and substantially on the same plane. End portions of the first light emitting portion and the third light emitting portion are substantially aligned in the optical axis direction, and an end portion of the second light emitting portion is an end portion of the first and third light emitting portions. On the other hand, it is characterized by being relatively shifted in the optical axis direction.
[0011] また、前記フィラメント体は、第 1、第 2、および第 3の発光部がこの順で電気的に直 列接続されてなるものであり、各発光部は、その軸心が略同一平面上に在ると共に、 第 1の発光部と第 3の発光部との間に第 2の発光部が存するように配されていて、第 1 の発光部と第 3の発光部とは略平行になると共に、第 2の発光部は、第 1及び第 2の 発光部に対して相対的に傾けて配されていることを特徴とする。 In the filament body, the first, second, and third light emitting units are electrically connected in series in this order, and the light emitting units have substantially the same axial center. While being on a plane, the second light emitting unit is disposed between the first light emitting unit and the third light emitting unit, and the first light emitting unit and the third light emitting unit are approximately the same. In addition to being parallel, the second light emitting unit is arranged to be inclined relative to the first and second light emitting units.
[0012] また、前記フィラメント体は、第 1、第 2、および第 3の発光部がこの順で電気的に直 列接続されてなるものであり、第 2の発光部は、その軸心が前記反射鏡の光軸と略重 なるように配されており、第 1の発光部と第 3の発光部とは、第 2の発光部を挟むように 前記光軸と直交する方向両側に分かれ、それぞれの軸心が第 2の発光部の軸心と 略直角に立体交差して配されて 、ることを特徴とする。 Further, the filament body is formed by electrically connecting in series first, second and third light emitting parts in this order, and the second light emitting part has an axial center thereof The first light emitting portion and the third light emitting portion are divided into both sides orthogonal to the optical axis so as to sandwich the second light emitting portion. The respective axis centers are disposed in a three-dimensional crossing substantially perpendicular to the axis center of the second light emitting unit.
[0013] また、前記フィラメント体は、第 1、第 2、および第 3の発光部がこの順で電気的に直 列接続されてなるものであり、各発光部は、その軸心が略同一平面上に在ると共に、 第 1の発光部と第 3の発光部との間に第 2の発光部が存するように配されていて、第 2
の発光部は、その軸心が、第 1および第 2の発光部の両軸心と略直交するように配さ れていることを特徴とする。 In the filament body, the first, second and third light emitting parts are electrically connected in series in this order, and the light emitting parts have substantially the same axial center. The second light emitting unit is disposed on a plane, and a second light emitting unit is provided between the first light emitting unit and the third light emitting unit. The light emitting unit is characterized in that its axial center is disposed substantially orthogonal to both axial centers of the first and second light emitting units.
[0014] また、前記フィラメント体は、フィラメント線が扁平に一重巻きされてなるフィラメントコ ィルを、その長手方向ほぼ中央部で屈曲させて構成したものであり、屈曲部からフィ ラメントコイルの一端部に至る間に第 1発光部が、他端部に至る間に第 2発光部が存 することを特徴とする。 Further, the filament body is configured by bending a filament coil in which a filament wire is flatly wound in a single layer at a substantially central portion in the longitudinal direction, and from the bending portion to one end of the filament coil It is characterized in that the first light emitting part is present between the parts and the second light emitting part between the other end.
上記の目的を達成するため、本発明に係る反射鏡付き管球は、反射鏡と、前記反 射鏡内に組み込まれている、上記した管球とを有することを特徴とする。 In order to achieve the above object, a reflecting mirror-equipped tube according to the present invention is characterized by having a reflecting mirror and the above-described tube incorporated in the reflecting mirror.
[0015] 上記の目的を達成するため、本発明に係る照明装置は、反射鏡を有する照明器具 と、前記反射鏡内に組み込まれている、上記した管球とを有することを特徴とする。 上記の目的を達成するため、本発明に係る照明装置は、照明器具と、前記照明器 具に取り付けられている、上記した反射鏡付き管球とを有することを特徴とする。 発明の効果 [0015] In order to achieve the above object, a lighting device according to the present invention is characterized by including a lighting fixture having a reflecting mirror and the above-described tube incorporated in the reflecting mirror. In order to achieve the above object, a lighting device according to the present invention is characterized by including a lighting device and the above-described reflector-equipped tube attached to the lighting device. Effect of the invention
[0016] 本発明に係る管球は、上記の構成を有するので、複数の発光部が導体を介して直 列接続されたフィラメント体のコンパクトィ匕を図りつつ、それらの発光部において導体 で接続されていない側の端部間で生じるアーク放電の発生を抑制することができ、も つて、断線を効果的に防止することが可能となる。 [0016] Since the tube according to the present invention has the above configuration, the light emitting units are connected by the conductors while achieving compactness of the filament body in which the plurality of light emitting units are connected in series via the conductor. It is possible to suppress the occurrence of arcing that occurs between the end portions on the side not being used, and it is possible to effectively prevent the disconnection.
図面の簡単な説明 Brief description of the drawings
[0017] [図 1]実施の形態 1に係る照明装置の概略構成を示す一部切欠き図である。 FIG. 1 is a partial cutaway view showing a schematic configuration of a lighting device according to Embodiment 1. FIG.
[図 2]上記照明装置を構成するハロゲン電球を示す図である。 FIG. 2 is a view showing a halogen light bulb constituting the above-mentioned lighting device.
[図 3]上記ハロゲン電球におけるフィラメント体の支持構造を示す斜視図である。 FIG. 3 is a perspective view showing a support structure of a filament body in the halogen bulb.
[図 4]上記支持構造にフィラメント体が支持された状態を示す斜視図である。 FIG. 4 is a perspective view showing a state in which the filament body is supported by the support structure.
[図 5]上記フィラメント体を構成するフィラメントコイルの製作方法を説明するための図 である。 FIG. 5 is a view for explaining a method of manufacturing a filament coil constituting the above-mentioned filament body.
[図 6]フィラメントコイルの平面図(上部)と正面図(下部)を表す模式図である。 FIG. 6 is a schematic view showing a plan view (upper part) and a front view (lower part) of the filament coil.
[図 7]上記フィラメント体の平面図(上部)と正面図(下部)を表す模式図である。 [FIG. 7] A schematic view showing a plan view (upper part) and a front view (lower part) of the filament body.
[図 8]上記実施の形態 1の変形例 1に係るフィラメント体の平面図(上部)と正面図(下 部)を表す模式図である。
圆 9]狭角の反射鏡と実施の形態 1のフィラメント体(図 7、図 8)とを組み合わせた場 合と、同じ狭角の反射鏡と比較フィラメント体(図 35)とを組み合わせた場合の配光曲 線を示す図である。 FIG. 8 is a schematic view showing a plan view (upper part) and a front view (lower part) of a filament body according to Modification 1 of the first embodiment. 圆 9) When the narrow angle reflector is combined with the filament body of Embodiment 1 (FIGS. 7 and 8) and when the same narrow angle reflector and the comparison filament body (FIG. 35) are combined It is a figure which shows the light distribution curve of.
圆 10]上記実施の形態 1の変形例 2に係るフィラメント体の平面図(上部)と正面図( 下部)を表す模式図である。 10] It is a schematic diagram showing the top view (upper part) and front view (lower part) of the filament body which concerns on the modification 2 of the said Embodiment 1. FIG.
圆 11]実施の形態 2のフィラメント体の平面図(上部)と正面図(下部)を表す模式図 である。 11] A schematic view showing a plan view (upper part) and a front view (lower part) of a filament body of Embodiment 2. [FIG.
圆 12]上記実施の形態 2の変形例に係るフィラメント体の平面図(上部)と正面図(下 部)を表す模式図である。 12) A schematic view showing a plan view (upper part) and a front view (lower part) of a filament body according to a modification of the second embodiment.
圆 13]実施の形態 3のフィラメント体の平面図(上部)と正面図(下部)を表す模式図 である。 13] A schematic view showing a plan view (upper part) and a front view (lower part) of a filament body of Embodiment 3. [FIG.
圆 14]実施の形態 3のフィラメント体(図 13)と狭角の反射鏡とを組み合わせた場合の 配光分布を示す図である。 14] It is a figure which shows light distribution distribution at the time of combining the filament body (FIG. 13) of Embodiment 3, and a narrow angle reflecting mirror.
[図 15]実施の形態 3のフィラメント体(図 13)と狭角の反射鏡とを組み合わせた場合の 配光曲線を示す図である。 FIG. 15 is a view showing a light distribution curve when the filament body (FIG. 13) of Embodiment 3 is combined with a narrow-angle reflecting mirror.
圆 16]上記実施の形態 3の変形例 1に係るフィラメント体の平面図(上部)と正面図( 下部)を表す模式図である。 [Fig. 16] A schematic view showing a plan view (upper part) and a front view (lower part) of a filament body according to Modification 1 of the third embodiment.
[図 17]上記実施の形態 3の変形例 2に係るフィラメント体の正面図(左部)と右側面図 (右部)を表す模式図である。 [FIG. 17] A schematic view showing a front view (left part) and a right side view (right part) of a filament body according to a modification 2 of the third embodiment.
圆 18]実施の形態 4のフィラメント体の平面図(上部)と正面図(下部)を表す模式図 である。 18] A schematic view showing a plan view (upper part) and a front view (lower part) of a filament body of Embodiment 4. [FIG.
圆 19]上記実施の形態 4の変形例に係るフィラメント体の平面図(上部)と正面図(下 部)を表す模式図である。 FIG. 19 is a schematic view showing a plan view (upper part) and a front view (lower part) of a filament body according to a modification of the fourth embodiment.
[図 20]実施の形態 4のフィラメント体(図 18、図 19)と広角の反射鏡とを組み合わせた 場合の配光分布を示す図である。 FIG. 20 is a view showing a light distribution in the case where the filament body (FIGS. 18 and 19) of Embodiment 4 is combined with a wide-angle reflecting mirror.
[図 21]実施の形態 4のフィラメント体(図 18、図 19)と広角の反射鏡とを組み合わせた 場合の配光曲線を示す図である。 FIG. 21 is a view showing a light distribution curve in the case where the filament body (FIGS. 18 and 19) of Embodiment 4 is combined with a wide-angle reflecting mirror.
圆 22]実施の形態 5のフィラメント体の平面図(上部)と正面図(下部)を表す模式図
である。 圆 22] A schematic view showing a plan view (upper part) and a front view (lower part) of the filament body of the fifth embodiment It is.
[図 23]実施の形態 5における二つ実施例に係るハロゲン電球と反射鏡とを組み合わ せた場合のそれぞれの配光曲線を示す図である。 FIG. 23 is a view showing respective light distribution curves when the halogen bulb and the reflecting mirror according to two examples in the fifth embodiment are combined.
圆 24]実施の形態 5の変形例 1— 1に係るフィラメント体の平面図(上部)と正面図(下 部)を表す模式図である。 [Fig. 24] A schematic view showing a plan view (upper part) and a front view (lower part) of a filament body according to a modified example 1-1 of the fifth embodiment.
圆 25]実施の形態 5の変形例 1—2に係るフィラメント体の平面図(上部)と正面図(下 部)を表す模式図である。 FIG. 25 is a schematic view showing a plan view (upper part) and a front view (lower part) of a filament body according to Modification 1-2 of the fifth embodiment.
圆 26]実施の形態 5の変形例 2に係るフィラメント体の正面図(上部)と下面図(下部) を表す模式図である。 [Fig. 26] A schematic view showing a front view (upper part) and a lower view (lower part) of a filament body according to a second modification of the fifth embodiment.
圆 27]実施の形態 5の変形例 2に係るフィラメント体と反射鏡とを組み合わせた場合 の配光分布を示す図である。 FIG. 27 is a view showing a light distribution in the case where a filament body according to the second modification of the fifth embodiment and a reflecting mirror are combined.
[図 28]実施の形態 6のハロゲン電球における第 1実施例に係るフィラメント体およびそ の支持構造の概略構成を示す斜視図である。 FIG. 28 is a perspective view showing a schematic configuration of a filament body and a supporting structure thereof according to a first example of the halogen bulb in the sixth embodiment.
[図 29]実施の形態 6のハロゲン電球における第 1実施例に係るフィラメント体の平面 図 (上部)と正面図(下部)を表す模式図である。 FIG. 29 is a schematic view showing a plan view (upper part) and a front view (lower part) of a filament body according to the first example of the halogen bulb in the sixth embodiment.
[図 30]実施の形態 6のハロゲン電球における第 2実施例に係るフィラメント体の正面 図を表す模式図である。 FIG. 30 is a schematic view illustrating a front view of a filament body according to a second example of the halogen bulb in the sixth embodiment.
[図 31]実施の形態 6のハロゲン電球における第 3実施例に係るフィラメント体おびそ の支持構造の概略構成を示す斜視図である。 FIG. 31 is a perspective view showing a schematic configuration of a support structure of a filament body and a filament according to a third example of the halogen bulb in the sixth embodiment.
[図 32]実施の形態 6のハロゲン電球における第 4実施例に係るフィラメント体おびそ の支持構造の概略構成を示す斜視図である。 [FIG. 32] A perspective view showing a schematic configuration of a support structure of a filament body and a filament according to a fourth example of the halogen bulb in the sixth embodiment.
圆 33]実施の形態 7に係る反射鏡付きハロゲン電球の概略構成を示す図である。 圆 34]扁平な筒 (状)の横断面の形状を例示した図である。 FIG. 33 is a diagram showing a schematic configuration of a reflecting-mirror-equipped halogen bulb according to the seventh embodiment. 34] It is the figure which illustrated the shape of the cross section of a flat cylinder (shape).
圆 35]比較フィラメント体の平面図(上部)と正面図(下部)を表す模式図である。 圆 36]比較フィラメント体(図 35)と狭角の反射鏡とを組み合わせた場合の配光分布 を示す図である。 Fig. 35 is a schematic view showing a plan view (upper part) and a front view (lower part) of a comparative filament body.圆 36] It is a figure which shows light distribution distribution at the time of combining a comparison filament body (FIG. 35) and a narrow angle reflecting mirror.
圆 37]比較フィラメント体(図 35)と狭角の反射鏡とを組み合わせた場合の配光曲線 を示す図である。
[図 38]比較フィラメント体(図 35)と広角の反射鏡とを組み合わせた場合の配光分布 を示す図である。 [37] Fig. 35 is a diagram showing a light distribution curve in the case where a comparative filament body (Fig. 35) and a narrow angle reflector are combined. FIG. 38 is a view showing a light distribution when the comparative filament body (FIG. 35) and a wide-angle reflecting mirror are combined.
[図 39]比較フィラメント体(図 35)と広角の反射鏡とを組み合わせた場合の配光曲線 を示す図である。 FIG. 39 is a view showing a light distribution curve in the case where a comparative filament body (FIG. 35) and a wide-angle reflecting mirror are combined.
符号の説明 Explanation of sign
[0018] 10 照明装置 [0018] 10 lighting devices
12 照明器具 12 Lighting fixtures
14, 102 ハロゲン電球 14, 102 halogen bulbs
18, 104 反射鏡 18, 104 Reflector
16 バノレブ 16 Bano Reb
56, 58, 306, 412 サポート線 56, 58, 306, 412 Support line
60, 72, 73, 74, 80, 82, 84, 86, 90, 96, 300, 310, 320, 324, 400, 50 2, 520 フィラメント体 60, 72, 73, 74, 80, 82, 84, 86, 90, 96, 300, 310, 320, 324, 400, 50 2, 520 filament body
62, 64, 66, 302, 304, 402, 504 フィラメントコイル 62, 64, 66, 302, 304, 402, 504 filament coil
62A, 64A, 66A, 302A, 304A, 402A1, 402A2, 504A1, 504A2 発 光部 62A, 64A, 66A, 302A, 304A, 402A1, 402A2, 504A1, 504A2 light emitting part
100 反射鏡付きハロゲン電球 100 halogen bulbs with reflector
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<実施の形態 1 > Embodiment 1
図 1は、実施の形態 1に係る照明装置 10の概略構成を示す一部切欠き図である。 なお、図 1を含む全ての図面において、各部材間の縮尺は統一していない。 FIG. 1 is a partial cutaway view showing a schematic configuration of a lighting apparatus 10 according to a first embodiment. In all the drawings including FIG. 1, the scale among the members is not uniform.
照明装置 10は、例えば、住宅、店舗、あるいはスタジオ等におけるスポットライトとし て用いられる。照明装置 10は、照明器具 12と管球の一例として示すハロゲン電球 1 4とを有する。 The illumination device 10 is used as a spotlight in, for example, a house, a store, or a studio. The lighting device 10 includes a lighting fixture 12 and a halogen light bulb 14 shown as an example of a tube.
[0020] 照明器具 12は、有底円筒状をした器具本体 16と器具本体 16に収納された反射鏡 18とを有する。 The lighting fixture 12 has a bottomed cylindrical fixture main body 16 and a reflecting mirror 18 housed in the fixture main body 16.
器具本体 16の底部には、ハロゲン電球 14の口金 30 (図 2参照)を取り付けるため
の受け具 (図示せず)が設けられている。なお、器具本体 16は、円筒状に限らず、種 々の公知形状とすることができる。 To attach the base 30 (see Fig. 2) of the halogen bulb 14 to the bottom of the fixture body 16 Receptacle (not shown) is provided. In addition, the instrument main body 16 can be made into various well-known shapes not only cylindrically.
[0021] 反射鏡 18は、ハロゲン電球 14を取替え可能とするため、器具本体 16に対し、着脱 可能である。 The reflector 18 is detachable from the instrument body 16 in order to make the halogen bulb 14 replaceable.
反射鏡 18は、漏斗状をした硬質ガラス製基体 20を有する。基体 20において回転 楕円面または回転放物面等に形成された凹面部分 20Aには、反射面を構成する多 層干渉膜 22が形成されている。多層干渉膜 22は、アルミニウムやクロム等の金属膜 の他、二酸化ケイ素 ば) )、二酸化チタン (TiO )、フッ化マグネシウム(MgF)、硫 The reflector 18 has a funnel-shaped hard glass substrate 20. A multi-layer interference film 22 constituting a reflection surface is formed on the concave portion 20A formed on the base 20 with a spheroidal surface or a paraboloid surface. The multilayer interference film 22 may be a metal film such as aluminum or chromium, silicon dioxide)), titanium dioxide (TiO 2), magnesium fluoride (MgF), sulfur
2 2 twenty two
化亜鉛 (ZnS)等で形成することができる。反射鏡 18の開口径 (ミラ一径)は 100mm である。なお、反射面には必要に応じてファセットを形成してもよい。 It can be formed of zinc chloride (ZnS) or the like. The aperture diameter (mirror diameter) of the reflecting mirror 18 is 100 mm. In addition, you may form a facet in a reflective surface as needed.
[0022] 反射鏡 18は、基体 20の開口部に設けられた前面ガラス 24を有する。本例では、前 面ガラス 24は基体 20に固着されており、ハロゲン電球 14の取替えのため、基体 20 部分が器具本体 16と着脱自在な構成となっているが、これに限らず、基体を器具本 体に固定し、前面ガラスを基体に対し着脱自在な構成としても構わな ヽ。 The reflector 18 has a front glass 24 provided at the opening of the base 20. In this example, the front glass 24 is fixed to the base 20, and the base 20 is configured to be detachable from the tool main body 16 in order to replace the halogen bulb 14. However, the present invention is not limited to this. The tool may be fixed to the main body, and the front glass may be detachable from the base.
ノ、ロゲン電球 14は、前記受け具 (不図示)に取り付けられ、反射鏡 18内に組み込ま れて使用される。組み込まれた (取り付けられた)状態で、ハロゲン電球 14の後述す るバルブ 26の中心軸 Bと反射鏡 18の光軸 Rとが略同軸上に位置することとなる。ハロ ゲン電球 14は、定格電圧が 100[V]以上 150[V]以下で、かつ定格電力が 100[W] 以下に設定された電球である。 The rogen bulb 14 is attached to the receptacle (not shown) and incorporated in the reflector 18 for use. In the incorporated (attached) state, the central axis B of the bulb 26 described later of the halogen bulb 14 and the optical axis R of the reflecting mirror 18 are positioned approximately coaxially. The halogen bulb 14 is a bulb whose rated voltage is set to 100 [V] or more and 150 [V] or less and whose rated power is set to 100 [W] or less.
[0023] 図 2に、ハロゲン電球 14の一部切欠き正面図を示す。 FIG. 2 shows a partially cutaway front view of the halogen bulb 14.
ハロゲン電球 14は、気密封止されたバルブ 26と、バルブ 26の後述する封止部 38 側に接着剤 28によって固着された、例えば E型の口金 30とを有している。 The halogen bulb 14 has a hermetically sealed bulb 26 and, for example, an E-type cap 30 secured to the side of the bulb 26 on the later-described sealing portion 38 by an adhesive 28.
ノ レブ 26は、封止切りの残痕であるチップオフ部 32、後述するフィラメント体 60等 を収納するフィラメント体収納部 34、略円筒状をした筒部 36、および公知のピンチシ ール法によって形成された封止部 38がこの順に連なった構造をしている。 The sleeve 26 has a chip-off portion 32 which is a residual mark of sealing cut, a filament body storage portion 34 for storing a filament body 60 described later, a cylindrical portion 36 having a substantially cylindrical shape, and a known pinch seal method. The formed sealing portion 38 has a structure connected in this order.
[0024] フィラメント体収納部 34は、図 2に示すように、略回転楕円体形状をしている。ここで 言う「略回転楕円体形状」とは、完全な回転楕円体形を含むことはもちろんのこと、ガ ラスの加工上ばらつく程度分、完全な回転楕円体形からずれた形状を含むことを意
味している。なお、フィラメント体収納部は、上記した形状に限らず、例えば、略円筒 形状や略球形状、あるいは略複合楕円体形状としても構わな ヽ。 As shown in FIG. 2, the filament body storage portion 34 has a substantially spheroidal shape. The term “substantially spheroid shape” as used herein is meant to include not only a perfect spheroid shape, but also a shape deviated from a perfect spheroid shape by the degree of variation in processing of the glass. I am tasting it. The filament housing portion is not limited to the above-described shape, and may be, for example, a substantially cylindrical shape, a substantially spherical shape, or a substantially complex ellipsoidal shape.
[0025] また、バルブの構造も上記したものに限らず、例えば、チップオフ部(場合によって は無い場合もある)、フィラメント体収納部、封止部がこの順に連なったものとすること ができる。 Further, the structure of the valve is not limited to the one described above. For example, the tip-off portion (which may not be present in some cases), the filament housing portion, and the sealing portion may be connected in this order. .
なお、フィラメント体収納部 34の外面には赤外線反射膜が形成されている。もっとも 、この赤外線反射膜は必ずしも必要なものではなぐ適宜形成されるものである。 An infrared ray reflective film is formed on the outer surface of the filament housing 34. However, the infrared ray reflective film is not necessarily required but is appropriately formed.
[0026] バルブ 26内には、ハロゲン物質と希ガスとがそれぞれ所定量封入されている。これ に加えて、窒素ガスを封入することとしても構わない。 In the valve 26, predetermined amounts of a halogen substance and a rare gas are enclosed. In addition to this, nitrogen gas may be enclosed.
ノ、ロゲン物質は、点灯中、ハロゲンサイクルによって、フィラメント体 60から蒸発した その構成物質であるタングステンを再びフィラメント体 60に戻し、バルブ 26の黒ィ匕を 防止するためのものである。ハロゲン物質の濃度は 10 [ppm]〜300 [ppm]の範囲 内にあることが好ましい。また、ハロゲンサイクルを活性ィ匕させるためには、ノ レブ 26 内面における最冷点温度が 200 [°C]以上であることが好ましい。さらに、ハロゲンサ イタルを適切に機能させるためには、バルブ 26内の酸素濃度を 100 [ppm]以下に することが好ましい。 The halogen source material is used to return tungsten, which is its constituent material, which has evaporated from the filament 60, back to the filament 60 by a halogen cycle during lighting to prevent the bulb 26 from blackening. The concentration of the halogen substance is preferably in the range of 10 ppm to 300 ppm. In order to activate the halogen cycle, the coldest temperature on the inner surface of the noble metal 26 is preferably 200 ° C. or higher. Furthermore, in order to function the halogen balance properly, the oxygen concentration in the valve 26 is preferably 100 ppm or less.
[0027] 希ガスには、クリプトンガスを用いることが好ましい。クリプトンガスを用いることにより 、集光効率を高める目的でフィラメント体 60をコンパクトィ匕するため、後述するように 発光部同士を近接配置しているにもかかわらず、隣接する発光部間の任意の場所で 点灯時にアーク放電が発生して、断線するのを抑制するといつた効果が得られる。 特に、封入ガスは、クリプトンを主成分とした、窒素ガスおよびハロゲン物質を含む ものとし、バルブ 26内での常温時におけるガス圧を 2 [atm]〜10 [atm]の範囲内に 設定することが好ましい。当該ガス圧が 10[atm]を超えると、万一ノ レブ 26が破損し た場合に、飛散する破片で照明器具が破損するおそれがあり、一方、 2[atm]未満で あると、フィラメント体 60の構成物質であるタングステンが蒸発し易ぐランプ寿命が短 くなるからである。換言すると、ガス圧の上記範囲は、当該ガス圧が適度に抑制され ているため、万一バルブ 26が破損したとしても、照明器具が破損するほどの勢いで 破片が飛散せず、かつ、当該ガス圧が適度に高いため、フィラメント体 60の構成物質
であるタングステンが蒸発しにくぐ長寿命化を実現でき、さらには、点灯時に隣接す る発光部間の任意の場所で点灯時にアーク放電が発生して、断線するのを抑制する ことができる範囲である。 It is preferable to use krypton gas as the rare gas. By using krypton gas, in order to compact the filament body 60 for the purpose of enhancing the light collection efficiency, as described later, although the light emitting portions are disposed close to each other, any desired portion between the adjacent light emitting portions is provided. At the place, when the lamp is turned on, arc discharge occurs, and it is possible to obtain a good effect by suppressing disconnection. In particular, the enclosed gas contains krypton as its main component and contains nitrogen gas and a halogen substance, and the gas pressure at normal temperature in the valve 26 should be set in the range of 2 [atm] to 10 [atm]. Is preferred. If the gas pressure exceeds 10 [atm], there is a risk that the luminaire may be broken by flying fragments if the core 26 is broken, while if it is less than 2 [atm], the filament body This is because the lamp life, in which tungsten, which is the constituent material of 60, easily evaporates, is shortened. In other words, since the gas pressure is appropriately suppressed in the above-mentioned range of the gas pressure, the fragments do not scatter with a force that the lighting apparatus is broken even if the valve 26 is broken, and Since the gas pressure is moderately high, the constituent material of filament body 60 In the range where it is possible to realize long life beyond evaporation of tungsten, which is an arc, and generate arc discharge at the time of lighting at any place between the adjacent light emitting parts at the time of lighting. It is.
[0028] また、封入ガスに窒素ガスを含ませる場合、窒素ガスの組成比率は 8 [%]〜40 [% ]の範囲内に設定することが好ましい。窒素ガスの組成比率力 0[%]を超えると、点 灯中にフィラメント体 60で発生する熱が窒素ガスを介して過度に放出され、効率が低 下するおそれがあり、一方、 8[%]未満であると、点灯時に隣接する発光部間でァー ク放電が起きやすぐ断線が発生し易いからである。換言すると、窒素ガスの上記組 成比率範囲は、窒素ガスの糸且成比率が適度に抑制されているため、点灯中にフイラ メント体 60で発生する熱が窒素ガスを介して過度に放出されることにより効率が低下 するのを防止することができると共に、窒素ガスが適度に含まれているため、点灯時 に隣接する発光部間でアーク放電が発生し、断線するのを抑制することができる範 囲である。 When nitrogen gas is included in the filling gas, the composition ratio of nitrogen gas is preferably set in the range of 8% to 40%. If the compositional ratio force of nitrogen gas exceeds 0 [%], the heat generated by the filament 60 during the lighting may be released excessively through the nitrogen gas, which may reduce the efficiency, while 8 [%] If it is less than this, it is likely that an arc discharge will occur between the adjacent light emitting parts at the time of lighting and a disconnection will occur immediately. In other words, since the above-mentioned composition ratio range of nitrogen gas is appropriately controlled by the nitrogen gas composition ratio, the heat generated by filament body 60 is excessively released through the nitrogen gas during lighting. As a result, it is possible to prevent the efficiency from being lowered, and because the nitrogen gas is appropriately contained, it is possible to suppress the occurrence of the arc discharge between the adjacent light emitting parts at the time of lighting and the disconnection. It is a range that can be done.
[0029] 封止部 38内には、一対の金属箔 40, 42が封着されている。金属箔 40, 42はモリ ブデン製である。なお、封止部 38に封着されている金属箔 40, 42の過熱による酸ィ匕 が原因で、バルブ 26の気密性が損なわれるのを防止するため、封止部 38の表面を 凹凸にして、当該表面積を増やし、封止部 38での放熱性を向上させることが好まし い。 In the sealing portion 38, a pair of metal foils 40 and 42 are sealed. The metal foils 40 and 42 are made of molybdenum. In addition, in order to prevent the airtightness of the valve 26 from being damaged due to the acidity caused by the overheating of the metal foils 40 and 42 sealed to the sealing portion 38, the surface of the sealing portion 38 is made uneven. It is preferable to increase the surface area and improve the heat dissipation at the sealing portion 38.
金属箔 40の一端部には外部リード線 44の一端部力 金属箔 42の一端部には外 部リード線 46の一端部が、それぞれ接合されて電気的に接続されている。外部リード 線 44, 46は、タングステン製である。外部リード線 44, 46の他端部は、バルブ 26の 外部に導出されていて、それぞれ、口金 30の端子部 48, 50に電気的に接続されて いる。 One end of the external lead wire 44 is connected to one end of the metal foil 40. One end of the outer lead wire 46 is bonded to one end of the metal foil 42 and electrically connected. The external leads 44, 46 are made of tungsten. The other ends of the external lead wires 44 and 46 are led out of the valve 26 and are electrically connected to the terminal portions 48 and 50 of the base 30, respectively.
[0030] ここで、 2本の外部リード線 44, 46の内、少なくとも一方の外部リード線と口金 30の 対応する端子部 (48または 50)との間に、ヒューズ (図示せず)を設けておくことが好 ましい。当該ヒューズを設けることにより、万一、発光部で断線が生じ、その断線箇所 でアーク放電が発生したとしても、即座にヒューズが溶断されてアーク放電の継続を 絶ち、もってアーク放電の衝撃でバルブ 26が破損等するのを防止できる。特に、複
数の発光部を近接して配置する場合には、両方の外部リード線 44, 46と口金 30の 対応する端子部 48, 50とのそれぞれの間にヒューズを設けることが好ましい。この場 合には、発光部での断線に起因するアーク放電が発生しなくても、隣接する発光部 間でアーク放電が発生するおそれがあるからである。 Here, a fuse (not shown) is provided between at least one of the two external lead wires 44 and 46 and the corresponding terminal portion (48 or 50) of the base 30. It is preferable to keep it in mind. By providing the fuse, even if a break occurs in the light emitting portion and an arc discharge occurs at the break portion, the fuse is immediately fused to interrupt the continuation of the arc discharge, and the bulb is struck by the impact of the arc discharge. 26 can be prevented from being damaged or the like. In particular, In the case where a number of light emitting parts are arranged in proximity, it is preferable to provide a fuse between each of the external lead wires 44 and 46 and the corresponding terminal parts 48 and 50 of the base 30, respectively. In this case, arc discharge may occur between adjacent light emitting parts even if arc discharge is not generated due to disconnection in the light emitting part.
[0031] 金属箔 40の他端部には内部リード線 52の一端部力 金属箔 42の他端部には内 部リード線 54の一端部が、それぞれ接合されて電気的に接続されている。内部リード 線 52, 54は、タングステン製である。内部リード線 52, 54の一端部は、バルブ 26の 封止部 38で支持されている。内部リード線 52, 54は、口金 30を介して供給される外 部電力をフィラメント体 60に給電すると共に、フィラメント体 60の一部を直接に支持す る支持部材としての役割を果たす。 One end portion of the internal lead wire 52 is connected to the other end portion of the metal foil 40. One end portion of the inner lead wire 54 is joined to the other end portion of the metal foil 42 and electrically connected. . The inner leads 52, 54 are made of tungsten. One end of the inner lead wire 52, 54 is supported by the seal 38 of the valve 26. The inner leads 52, 54 supply external power supplied through the base 30 to the filament body 60 and also serve as a support member for supporting a portion of the filament body 60 directly.
[0032] 図 3に、フィラメント体 60を支持する支持構造体を示す斜視図を、図 4に、当該支持 構造体にフィラメント体 60が支持された状態を示す斜視図をそれぞれ示す。 FIG. 3 is a perspective view showing a support structure for supporting the filament body 60, and FIG. 4 is a perspective view showing a state in which the filament body 60 is supported by the support structure.
図 3に示すように、フィラメント体 60の一部を直接に支持する支持部材としては他に 、サポート線 56, 58力ある。サポート線 56, 58は、タングステン製である。 As shown in FIG. 3, as a supporting member for directly supporting a part of the filament body 60, there are support wires 56, 58 force. The support wires 56, 58 are made of tungsten.
内部リード線 52, 54、サポート線 56, 58は、一対の円柱状ステムガラス 57, 59で 挟持されている。これによつて、サポート線 56, 58が支持されると共に、内部リード線 52, 54、サポート線 56, 58相互間の相対的な位置が保持されることとなる。 The inner lead wires 52, 54 and the support wires 56, 58 are sandwiched by a pair of cylindrical stem glasses 57, 59. As a result, the support wires 56 and 58 are supported, and the relative positions between the inner leads 52 and 54 and the support wires 56 and 58 are maintained.
[0033] 図 4に示すように、フィラメント体 60は、複数個の (本例では、 3個の)第 1〜第 3フィ ラメン卜コイル 62, 64, 66力もなる。第 1〜第 3フィラメントコイル 62, 64, 66は、タン ダステン線を、後述するように卷回したものである。 As shown in FIG. 4, the filament body 60 also includes a plurality of (in this example, three) first to third filament coils 62, 64, 66. The first to third filament coils 62, 64, 66 are obtained by winding a tandasten wire as described later.
内部リード線 52, 54、サポート線 56, 58は、フィラメントコイル 62, 64, 66の端部 部分に挿入されて、フィラメントコイル 62, 64, 66を支持するための「コ」字状に屈曲 した部分 (以下、この部分を「コイル支持部」と称する。)を 1箇所または 2箇所有する。 The inner lead wires 52, 54 and the support wires 56, 58 are inserted into the end portions of the filament coils 62, 64, 66 and bent in a "C" shape for supporting the filament coils 62, 64, 66. It has one or two parts (hereinafter this part is called "coil support").
[0034] ここで、第 1フィラメントコイル 62は、内部リード線 52のコイル支持部 52A (図 3参照) とサポート線 56のコイル支持部 56A (図 3参照)とで支持されている。 Here, the first filament coil 62 is supported by the coil support portion 52A (see FIG. 3) of the inner lead wire 52 and the coil support portion 56A (see FIG. 3) of the support wire 56.
第 2フィラメントコイル 64は、サポート線 56のコイル支持部 56B (図 3参照)とサポー ト線 58のコイル支持部 58A (図 3参照)とで支持されている。 The second filament coil 64 is supported by a coil support portion 56B (see FIG. 3) of the support wire 56 and a coil support portion 58A (see FIG. 3) of the support wire 58.
第 3フィラメントコイル 66は、サポート線 58のコイル支持部 58B (図 3参照)とリード線
54のコイル支持部 54A (図 3参照)とで支持されている。 The third filament coil 66 has a coil support 58B (see FIG. 3) and a lead wire of the support wire 58. And 54 coil supports 54A (see FIG. 3).
[0035] また、サポート線 56, 58は、共に、 1本のタングステン線を屈曲加工したものなので 、サポート線 56におけるコイル支持部 56A, 56B同士はつながっており、サポート線 58におけるコイル支持部 58A, 58B同士はつながっている。したがって、第 1〜第 3 フィラメントコィノレ 62, 64, 66は、内咅リード線 52, 54、サポート線 56, 58に取り付け られた状態で、この順で電気的に直列に接続されることとなる。このように、サポート 線 56, 58は、隣り合うフィラメントコイルの一端部同士を電気的に接続する導電性接 続部材としても機能する。 Further, since both support wires 56 and 58 are formed by bending a single tungsten wire, coil support portions 56A and 56B in support wire 56 are connected to each other, and coil support portion 58A in support wire 58 is formed. , 58B are connected with each other. Therefore, the first to third filament cores 62, 64, 66 are electrically connected in series in this order with the inner lead wires 52, 54 and support wires 56, 58 attached. Become. Thus, the support wires 56, 58 also function as conductive connecting members for electrically connecting one ends of adjacent filament coils.
[0036] 図 4に示す状態で、内部リード線 52, 54から給電すると、第 1〜第 3フィラメントコィ ル 62, 64, 66は、コイル支持部が挿入されている部分 (コイル支持部に嵌装されて いる部分)では発光せずに (非発光部)、コイル支持部間で発光する。ここで、各フィ ラメントコイル 62, 64, 66におけるコイル支持部間の部分 (すなわち、発光する部分) を、それぞれ第 1〜第 3発光部 62A, 64A, 66Aと規定することとする。すなわち、フ イラメント体 60は、一重のコイル状をした複数の (本例では、 3個の)第 1〜第 3発光部 62A, 64A, 66Aを有している。 In the state shown in FIG. 4, when power is supplied from the internal lead wires 52 and 54, the first to third filament coils 62, 64 and 66 are parts where the coil support is inserted (the coil support is fitted). In the part where it is mounted, it emits light between the coil support parts without light emission (non-light emission part). Here, the portions between the coil support portions in each of the filament coils 62, 64, 66 (that is, the light emitting portions) are defined as first to third light emitting portions 62A, 64A, 66A, respectively. That is, the filament body 60 has a plurality of (in this example, three) first to third light emitting portions 62A, 64A, 66A in a single coil shape.
[0037] また、図 4に示すように、第 1〜第 3フィラメントコイル 62, 64, 66 (第 1〜第 3発光部 62A, 64A, 66A)は、扁平な筒状に卷回されてなる一重コイル(以下、「扁平コイル 」と略称する。)状をしている。このような形状にしたのは、以下の理由による。すなわ ち、特許文献 2や特許文献 3に記載されているような、円筒状に卷回されてなる従来 の一重コイル (以下、「円筒コイル」と略称する。)と比較して、(扁平な筒の短軸長と 円筒の直径が等しいとした場合) 1ターン当たりの素線長を長くすることができる関係 上、タングステン線の素線長が同じであれば、コイル長を短縮でき、もって、反射鏡の 光軸方向におけるフィラメントコイル (発光部)の縮小化が図れることとなるからである 。なお、コイルを扁平にすることにより、反射鏡の光軸と交差する方向の長さは、円筒 状に卷回されたコイルよりも長くなるものの、集光効率の向上には、光軸と交差する 方向よりも光軸方向に短縮する方の効果が大き 、ので問題はな 、。 Further, as shown in FIG. 4, the first to third filament coils 62, 64, 66 (first to third light emitting portions 62A, 64A, 66A) are wound in a flat cylindrical shape. It is in the form of a single coil (hereinafter abbreviated as "flat coil"). The reason for this shape is as follows. That is, compared with the conventional single coil (hereinafter referred to as “cylindrical coil”) wound in a cylindrical shape as described in Patent Document 2 and Patent Document 3 (flat) (If the short axis length of the cylinder and the diameter of the cylinder are equal) The relationship in which the wire length per turn can be increased. If the wire length of the tungsten wire is the same, the coil length can be shortened. Thus, the filament coil (light emitting portion) can be reduced in the optical axis direction of the reflecting mirror. In addition, although the length in the direction intersecting the optical axis of the reflecting mirror is longer than that of the coil wound in a cylindrical shape by flattening the coil, for improvement of the light collection efficiency, the optical axis intersects with the optical axis. The effect of shortening in the direction of the optical axis is greater than the direction, so no problem.
[0038] 扁平コイルであるフィラメントコイル 62, 64, 66は、以下のようにして作製される。 [0038] Filament coils 62, 64, 66, which are flat coils, are manufactured as follows.
すなわち、図 5に示すように、円柱状をした芯線 (マンドレル) 68を複数本(図示例
では 2本)、平行かつ一列に密着させて並べたものの外周に、タングステン線 70を卷 回した後、芯線 68を抜いて作製する。あるいは、芯線 68は、タングステン線 70を卷 回した後、溶解して除去することとしても構わない。 That is, as shown in FIG. 5, a plurality of cylindrical core wires (mandrels) 68 (shown as an example) In this case, two tungsten wires 70 are wound around the outer periphery of the two pieces arranged in parallel and closely in a row, and then the core 68 is removed. Alternatively, the core wire 68 may be dissolved and removed after winding the tungsten wire 70.
[0039] 図 6の上部に示すのは、第 1フィラメントコイル 62をそのコイル軸心 CX方向力 視た 平面図を模式的に表したものであり、図 6の下部に示すのは、同正面図を模式的に 表したものである。 The upper part of FIG. 6 schematically shows a plan view of the first filament coil 62 as viewed in force in the direction of the coil axis CX, and the lower part of FIG. It is a schematic representation of the figure.
第 1〜第 3フィラメントコイル 62, 64, 66はいずれも略同一形態なので、第 1フィラメ ントコイル 62を代表にして説明する。 Since all of the first to third filament coils 62, 64, 66 have substantially the same form, the first filament coil 62 will be described as a representative.
[0040] 図 6の上部に示すように、第 1フィラメントコイル 62は、そのコイル軸心 CX方向から 見て、平行に配された 2本の線分の対応する端同士を半円で結んでなる、いわゆる( 陸上競技の)トラック形状をしている。この形状は、上記した作製方法に由来するもの であり、芯線 68の本数が多いほど、より扁平したトラック形状となる。すなわち、芯線 6 8の本数で、扁平の度合!/、 (扁平率)を調整することができる。 As shown in the upper part of FIG. 6, the first filament coil 62 is formed by connecting corresponding ends of two line segments arranged in parallel with each other by a semicircle, as viewed from the coil axis CX direction. It has a so-called (track and field) track shape. This shape is derived from the above-described manufacturing method, and the more the number of core wires 68, the flatter the track shape. That is, with the number of core wires 68, it is possible to adjust the degree of flattening!
[0041] ここで、扁平率は、第 1フィラメントコイル 62内周における長軸 LXの長さを短軸 SX の長さで除して得られる値と規定する。本例では、上記した製作法を採る関係上、扁 平率は整数の値となり、一例として、扁平率を「2」としている。 Here, the flatness is defined as a value obtained by dividing the length of the major axis LX at the inner periphery of the first filament coil 62 by the length of the minor axis SX. In this example, the flatness is a value of an integer because the above-described manufacturing method is adopted, and for example, the flatness is “2”.
また、上述したとおり、図 6の下部に示すように、第 1フィラメントコイル 62は、コイル 支持部 52Aとコイル支持部 56A (図 4)で支持された両端部部分の非発光部 62Bと 両コイル支持部 52A, 56A間部分の発光部 62Aとを有して 、る。 Further, as described above, as shown in the lower part of FIG. 6, the first filament coil 62 includes the non-light emitting portion 62B at both end portions supported by the coil supporting portion 52A and the coil supporting portion 56A (FIG. 4). And a light emitting portion 62A at a portion between the support portions 52A and 56A.
[0042] 図 7の上部に示すのは、内部リード線 52, 54、サポート線 56, 58に取り付けられた 状態の第 1〜第 3フィラメントコイル 62, 64, 66を、反射鏡の前方からその光軸方向 に見た平面図を模式的に表したものであり、図 7の下部に示すのは、同正面図を模 式的に表したものである。なお、図 7は、第 1〜第 3フィラメントコイル 62, 64, 66間の 配置位置の関係等を説明する目的で用いるため、本図において、内部リード線 52, 54の図示は省略し、サポート線 56, 58は、フィラメントコイル間の電気的な接続関係 を示す目的で、単に線で表した。また、下部の正面図では、第 1〜第 3フィラメントコィ ル 62, 64, 66の第 1〜第 3発光部 62A, 64A, 66Aを実線で、非発光部 62B, 64B , 66Bを二点鎖線でそれぞれ表した。
[0043] 図 7【こ示すよう【こ、各フィラメント =3イノレ 62, 64, 66 (各発光咅 64A, 66A) ίま 、その軸心 CXが反射鏡 18 (図 1)の光軸 Rと略平行となり、かつ同一平面 P1上に略 存するように配されている。第 1フィラメントコイル 62 (第 1発光部 62Α)と第 3フィラメン トコイル 66 (第 3発光部 66Α)の間に在る第 2フィラメントコイル 64 (第 2発光部 64Α) は、その軸心 CXが光軸 Rと略重なるように配されて 、る。 [0042] The upper part of Fig. 7 shows the first to third filament coils 62, 64, 66 attached to the inner lead wires 52, 54 and the support wires 56, 58 from the front of the reflecting mirror. FIG. 7 schematically shows a plan view seen in the optical axis direction, and the lower portion of FIG. 7 schematically shows the same front view. 7 is used for the purpose of explaining the positional relationship among the first to third filament coils 62, 64, 66, the illustration of the internal lead wires 52, 54 is omitted in FIG. The lines 56 and 58 are simply represented by lines for the purpose of showing the electrical connection between the filament coils. In the front view of the lower part, the first to third light emitting parts 62A, 64A, 66A of the first to third filament coils 62, 64, 66 are indicated by solid lines and the non-light emitting parts 62B, 64B, 66B are indicated by two-dot chain lines. Respectively. [0043] Fig. 7 [This shows [each filament = 3 inoles 62, 64, 66 (each light emitting lamp 64A, 66A), its axis CX is the optical axis R of the reflecting mirror 18 (Fig. 1) and They are arranged substantially parallel and substantially on the same plane P1. The second filament coil 64 (second light emitting portion 64) located between the first filament coil 62 (first light emitting portion 62) and the third filament coil 66 (third light emitting portion 66) has an axial center CX It is disposed so as to substantially overlap with the axis R.
[0044] また、第 1発光部 62Αと第 3発光部 66Αの端部同士(62C, 66C同士、 62D, 66D 同士)が光軸 R方向に略揃って 、ると共に、第 2発光部 64Αの端部 64C (64D)が、 第 1および第 3発光部 62Α, 66Αの端部 62C (62D) , 66C (66D)に対し光軸 R方 向に相対的にずれている。当該ずれの向きは、第 2発光部 64Aが反射鏡 18 (図 1) の開口部力 遠ざかる向き (第 1および第 3発光部 62A, 66Aが前記開口部に近づく 向き)である。 In addition, the end portions of the first light emitting portion 62Α and the third light emitting portion 66Α (62C, 66C, 62D, 66D) are substantially aligned in the direction of the optical axis R, and the second light emitting portion 64Α The end 64C (64D) is offset relative to the ends 62C (62D) and 66C (66D) of the first and third light emitting portions 62Α and 66Α in the optical axis R direction. The direction of the deviation is the direction in which the second light emitting unit 64A moves away from the opening force of the reflecting mirror 18 (FIG. 1) (the direction in which the first and third light emitting units 62A and 66A approach the opening).
[0045] このように、第 1〜第 3発光部 62A, 64A, 66Aの内、真ん中に在る第 2発光部 64 Aを、他の第 1、第 3発光部 62A, 66Aから光軸 R方向に相対的にずらしたのは、点 灯中に発光部間で発生するアーク放電を防止して、フィラメント線が断線しな 、ように するためである。これについて説明する前に、先ず、図 35を参照しながら、前記ァー ク放電が生じるメカニズムについて説明する。 Thus, of the first to third light emitting parts 62A, 64A, 66A, the second light emitting part 64A located in the middle is the light axis R from the other first and third light emitting parts 62A, 66A. The relative shift in the direction is to prevent arcing between the light emitting parts during lighting so that the filament wire does not break. Before describing this, first, with reference to FIG. 35, the mechanism by which the arc discharge occurs will be described.
[0046] 図 35は、仮に、第 1〜第 3フィラメントコイル 62, 64, 66 (第 1〜第 3発光部 62A, 6 4A, 66A)を、その軸心 CXが互いに平行で、かつ、端部同士を軸心 CX方向に略揃 えた状態に配して構成したフィラメント体 202を示す図であり、図 7に準じた形式で描 いたものである。また、第 1〜第 3フィラメントコイル 62, 64, 66 (第 1〜第 3発光部 62 A, 64A, 66A)の軸心 CXは、同一平面 P2に在る。なお、フィラメント体 202は、本 願発明の実施の形態に係るものではなぐ以下、「比較フィラメント体 202」と称する。 [0046] FIG. 35 provisionally shows that the first to third filament coils 62, 64, 66 (first to third light emitting parts 62A, 64A, 66A) have axes CX parallel to each other and FIG. 10 is a view showing a filament body 202 in which parts are arranged substantially in alignment in the axial center CX direction, and is drawn in a format according to FIG. 7; The axial centers CX of the first to third filament coils 62, 64, 66 (first to third light emitting parts 62A, 64A, 66A) lie in the same plane P2. The filament body 202 is hereinafter referred to as a "comparative filament body 202", as compared to the embodiment of the present invention.
[0047] 比較フィラメント体 202を有するハロゲン電球において、交流電源 204から給電して 発光させると、比較フィラメント体 202の第 1〜第 3発光部 62A, 64A, 66Aが白熱発 光する。この場合、反射鏡との組み合わせにおいて集光効率を向上させるためには 、第 1〜第 3発光部 62A, 64A, 66A間のコイル間隔 Dl, D2を縮小して、発光部分 をできるだけ反射鏡の焦点に集中させればよ!、。 In the halogen bulb having the comparison filament body 202, when power is supplied from the AC power source 204 to emit light, the first to third light emitting portions 62A, 64A, 66A of the comparison filament body 202 emit incandescent light. In this case, in order to improve the light collection efficiency in combination with the reflecting mirror, the coil spacing Dl, D2 between the first to third light emitting parts 62A, 64A, 66A is reduced to make the light emitting part as much as possible. Focus on the focus!
[0048] し力しながら、単に間隔 Dl, D2を縮小して点灯させると、直列接続において隣接
す発光部の、導体であるサポート線 206, 208で接続されていない側の端部間(62C — 64C間、 64D— 66D間)でアーク放電が発生し、これが原因で、フィラメント線が断 線してしまう。比較フィラメント体 202に印加された電圧(定格電圧)の約 2Z3の電位 差力 上記端部間(62C— 64C間、 64D—66D間)に生じ、当該端部間の電界強度 が最も大きくなるからである。 [0048] If the distance Dl, D2 is simply reduced and lighted while being forced Arc discharge occurs between the ends (62C-64C, 64D-66D) of the ends of the glass light emitting part that are not connected by the support wires 206 and 208 that are the conductors, which causes the filament wire to break. Resulting in. The potential difference of about 2Z3 of the voltage (rated voltage) applied to the comparison filament body 202 occurs between the above ends (between 62C and 64C, between 64D and 66D), and the electric field strength between the ends becomes the largest. It is.
[0049] そこで、本実施の形態では、複数個のフィラメントコイル (発光部)間の相対的な配 置を工夫することによって、集光効率の低下を最小限に抑制しつつ、上記したアーク 放電に起因する断線を防止することとした。 Therefore, in the present embodiment, the above-described arc discharge is suppressed while minimizing the decrease in the light collection efficiency by devising the relative arrangement among the plurality of filament coils (light emitting units). It was decided to prevent the disconnection caused by
以下に説明する実施の形態およびその変形例においては、図 35に示す比較フイラ メント体 202における各フィラメントコイル (発光部)の配置形態 (各フィラメントコイル ( 発光部)間の相対姿勢)を採った場合よりも、導体 (サポート線)で接続されて!ヽな ヽ 側の端部間の距離を長くし得るように、各フィラメントコイル (発光部)の配置形態をェ 夫し、もって、アーク放電の発生を防止することとしている。 In the embodiment and modifications thereof described below, the arrangement of the filament coils (light emitting units) in the comparative filament body 202 shown in FIG. 35 (the relative posture between the filament coils (light emitting units)) is employed. In this case, the arrangement of each filament coil (light emitting portion) is set so that the distance between the ends on the side of the light source can be increased by connecting the conductors (support wires) more than in the case, To prevent the occurrence of
[0050] あるいは、以下に説明する実施の形態およびその変形例においては、導体 (サボ ート線)で接続されていない側の端部間を、図 35に示す比較フィラメント体 202にお ける各フィラメントコイル (発光部)の配置形態 (各フィラメントコイル (発光部)間の相 対姿勢)を採った場合に許容し得る最小距離 (すなわち、ハロゲン電球の点灯の際 および点灯中に当該端部間でアーク放電の生じない最小距離)と同等の距離に設 定したとしても、隣接する発光部同士を全体的に近づけ得るような配置形態とし、もつ て、比較フィラメント体 202を用いた場合よりも集光効率を向上させることとして 、る。 Alternatively, in the embodiment and modifications thereof described below, each end of the comparative filament body 202 shown in FIG. The minimum distance that can be tolerated when the arrangement of the filament coils (light emitters) (the relative posture between the filament coils (light emitters)) is taken (that is, when the halogen bulb is lit and during lighting) And even if the distance is set equal to the minimum distance at which arcing does not occur, the adjacent light emitting portions can be brought closer to each other as a whole, and thus compared to the case where the comparison filament body 202 is used. To improve the collection efficiency.
[0051] 図 7に戻り、実施の形態 1のフィラメント体 60では、上記したように、第 1〜第 3発光 部 62A, 64A, 66Aの内、真ん中に在る第 2発光部 64Aを、他の第 1、第 3発光部 6 2A, 66Aから光軸 R方向に相対的にずらすこととした。こうすること〖こより、直列接続 にお 、て隣接する発光部 62Aと発光部 64Aにお 、てサポート線 56で接続されて ヽ ない端部 62C、端部 64C同士の距離を長くし得るようにし、また、隣接する発光部 64 Aと発光部 66Aにお 、てサポート線 58で接続されて ヽな ヽ端部 64D、端部 66D同 士の距離を長くし得るようにしたのである。さらに言うと、図 7に示すフィラメント体 60に よれば、コイル間隔 Dl, D2が比較フィラメント体 202 (図 35)と同じであれば、端部間
(62C— 64C間、 64C— 66D間)距離が長くなるので、アーク放電が発生しにくくなり 、逆に、端部間(62C— 64C間、 64C— 66C間)距離が同じであれば、コイル間隔 D 1, D2をより縮小することができ、もって集光効率がさらに向上することとなる。 Referring back to FIG. 7, in the filament body 60 according to the first embodiment, as described above, the second light emitting portion 64A in the middle among the first to third light emitting portions 62A, 64A, 66A The first and third light emitting portions 62A and 66A are relatively shifted in the optical axis R direction. In this way, it is possible to increase the distance between the end 62C and the end 64C that are not connected by the support wire 56 to the adjacent light emitting unit 62A and the light emitting unit 64A in series connection. Also, by connecting the adjacent light emitting portion 64A and the light emitting portion 66A with the support wire 58, the distance between the end portion 64D and the end portion 66D can be increased. Furthermore, according to the filament body 60 shown in FIG. 7, if the coil spacing Dl, D2 is the same as the comparative filament body 202 (FIG. 35), Since the distance is long (between 62C and 64C, between 64C and 66D), arcing is less likely to occur, and conversely, if the distance between the ends (between 62C and 64C, 64C and 66C) is the same, the coil The intervals D1 and D2 can be further reduced, which further improves the light collection efficiency.
[0052] (変形例 1) (Modification 1)
図 7に示した例では、真ん中のフィラメントコイル 64 (発光部 64A)を、両側のフイラ メントコイル 62, 66 (発光部 62A, 66A)に対して、相対的に、反射鏡 18(図 1)の開口 部から遠ざかる向きにずらした力 これとは反対に、図 8に示すフィラメント体 72のよう に、近づく向きにずらすこととしても構わない。なお、図 8に示すフィラメント体 72は、 フィラメントコイルの配置関係が異なる以外は、図 7に示したフィラメント体 60と基本的 に同じなので、同様の構成部分については、同じ符号を付して、その説明について は省略する。 In the example shown in FIG. 7, the reflecting coil 18 (FIG. 1) is shown relative to the filament coil 64 (light emitting part 64A) in the middle with the filament coils 62 and 66 (light emitting parts 62A and 66A) on both sides. The force shifted in the direction away from the opening of the opening may be shifted in the approaching direction as in the case of the filament body 72 shown in FIG. The filament body 72 shown in FIG. 8 is basically the same as the filament body 60 shown in FIG. 7 except that the arrangement relationship of the filament coil is different, so the same components as those in FIG. The explanation is omitted.
[0053] また、本願発明者達は、フィラメント体 60またはフィラメント体 72を用いてハロゲン電 球を構成して、これを狭角の反射鏡に組み込んだ場合に、中角の配光特性が得られ ることを見出した。ここで、狭角とはビームの開き (ビーム角)が 10° 程度を、中角とは 同 20° 程度を、広角とは同 30° 程度を、それぞれ指すものとする。 In addition, the inventors of the present invention have obtained a light distribution characteristic at an intermediate angle when the halogen bulb is formed using the filament body 60 or the filament body 72 and is incorporated in a narrow-angle reflecting mirror. Found out that Here, narrow angle refers to about 10 ° of beam divergence (beam angle), middle angle refers to about 20 °, and wide angle refers to about 30 °.
図 9に、狭角の反射鏡とフィラメント体 60またはフィラメント体 72とを組み合わせた場 合と、同じ狭角の反射鏡と比較フィラメント体 202とを組み合わせた場合の配光曲線 を示す。 FIG. 9 shows light distribution curves in the case where the narrow angle reflector and the filament body 60 or the filament body 72 are combined and in the case where the same narrow angle reflector and the comparison filament body 202 are combined.
[0054] 図 9から、比較フィラメント体 202の方は、狭角の配光特性となっているのに対し、フ イラメント体 60 (72)の方は、狭角の反射鏡と組み合わせているにも関わらず、中角の 配光特性となって ヽることが分かる。 From FIG. 9, it can be seen that while the light distribution characteristics of the comparative filament body 202 have a narrow angle, the light of the filament body 60 (72) is combined with the narrow angle reflector. Regardless, it can be seen that the light distribution characteristic at the middle angle is clear.
したがって、狭角の反射鏡があれば、比較フィラメント体 202を用いたハロゲン電球 とフィラメント体 60 (72)を用いたハロゲン電球とを使い分けることで、狭角の配光特 性と中角の配光特性の両方が得られることとなる。 Therefore, if there is a narrow-angle reflector, the light distribution characteristics of the narrow angle and the distribution of the middle angle can be obtained by selectively using the halogen bulb using the comparison filament body 202 and the halogen bulb using the filament body 60 (72). Both light characteristics will be obtained.
[0055] (変形例 2) (Modification 2)
フィラメント体 60 (図 7)、フィラメント体 72 (図 8)では、真ん中のフィラメントコイル 64 (発光部 64A)を、両側のフィラメントコイル 62, 66 (発光部 62A, 66A)に対して、相 対的に、反射鏡 18(図 1)の光軸 Rに沿ってずらした力 これに限らず、 3個のフィラメ
ントコイル 62, 64, 66 (発光部 62A, 64A, 66A)全てを相互に、光軸 Rに沿ってず らすこととしても構わない。図 10は、そのようにして構成したフィラメント体 73を示す図 である。なお、図 10に示すフィラメント体 73は、フィラメントコイルの配置関係が異なる 以外は、図 7に示したフィラメント体 60と基本的に同じなので、同様の構成部分につ いては、同じ符号を付して、その説明については省略する。 In the filament body 60 (FIG. 7) and the filament body 72 (FIG. 8), the filament coil 64 (light emitting portion 64A) in the middle is relative to the filament coils 62 and 66 (light emitting portions 62A and 66A) on both sides. The force shifted along the optical axis R of the reflecting mirror 18 (FIG. 1) It is also possible to shift all of the coil 62, 64, 66 (the light emitters 62A, 64A, 66A) along the optical axis R from each other. FIG. 10 is a view showing a filament body 73 configured as described above. The filament 73 shown in FIG. 10 is basically the same as the filament 60 shown in FIG. 7 except that the arrangement relationship of the filament coils is different. The explanation is omitted.
<実施の形態 2 > Embodiment 2
実施の形態 2では、第 1発光部と第 3発光部とは、その軸心が略平行になるように配 すると共に、第 2発光部を、第 1および第 3発光部に対して、相対的に傾けて配するこ ととした。 In the second embodiment, the first light emitting unit and the third light emitting unit are arranged such that their axial centers are substantially parallel, and the second light emitting unit is relative to the first and third light emitting units. They were inclined to distribute.
[0056] 図 11は、実施の形態 2のフィラメント体 74を示す模式図であり、図 7に準じて描いた ものである。 FIG. 11 is a schematic view showing a filament body 74 of the second embodiment, and is drawn according to FIG.
フィラメント体 74を構成する第 1〜第 3フィラメントコイル 62, 64, 66 (第 1〜第 3発光 部 62A, 64A, 66A)は、その軸心が同一平面 P3上にある。そして、フィラメント体 74 では、第 1フィラメントコイル 62 (第 1発光部 62A)と第 3フィラメントコイル 66 (第 3発光 部 66A)を、その軸心 CXが反射鏡 18 (図 1)の光軸 Rと略平行になるように配し、第 2 フィラメントコイル 64 (第 2発光部 64A)を、その軸心 CXが光軸 Rに対して傾くように 配している。 The axial centers of the first to third filament coils 62, 64, 66 (first to third light emitting portions 62A, 64A, 66A) constituting the filament body 74 are on the same plane P3. In the filament body 74, the first filament coil 62 (the first light emitting portion 62A) and the third filament coil 66 (the third light emitting portion 66A), and the axial center CX thereof is the optical axis R of the reflecting mirror 18 (FIG. 1). And the second filament coil 64 (the second light emitting portion 64A) is disposed such that its axial center CX is inclined with respect to the optical axis R.
[0057] 傾ける向きは、言うまでも無ぐ隣接する第 1、第 3発光部 62A, 66Aとサポート線 7 6, 78で接続されている端部が、第 1、第 3発光部 62A, 66Aの接続側端部と接近す るような向き(当該対応する端部間の間隔が狭くなる向き)である。すなわち、第 2発 光部 64Aの端部 64Cと、これとサポート線 78を介して電気的に接続されている第 3 発光部 66Aの端部 66Cとが接近し、かつ、第 2発光部 64Aの端部 64Dと、これとサ ポート線 76を介して電気的に接続されている第 1発光部 62Aの端部 62Dとが接近す る向きに傾けるのである。 [0057] The direction in which the end is connected by the support wires 76 and 78 to the adjacent first and third light emitting units 62A and 66A by the direction of inclination is the first and third light emitting units 62A and 66A. (A direction in which the distance between the corresponding ends becomes narrow) so as to approach the connection end of the That is, the end 64C of the second light emitting part 64A and the end 66C of the third light emitting part 66A electrically connected thereto via the support wire 78 approach each other, and the second light emitting part 64A Of the first light emitting portion 62A, which is electrically connected to the end 64D of the first light emitting portion 62A via the support wire 76, is inclined in the direction in which the end 64D of the first light emitting portion 62A approaches.
[0058] 換言すると、第 2発光部 64Aの隣接する第 1、第 3発光部 62A, 66Aとサポート線 で接続されていない端部を、第 1、第 3発光部 62A, 66Aの対応する端部から遠ざけ る向きに(当該対応する端部間の間隔が広くなる向きに)傾ける。すなわち、端部 62 Cと端部 64Cとが遠ざかり、かつ、端部 66Dと端部 64Dとが遠ざかる向きに傾けるの
である。 In other words, an end portion of the second light emitting portion 64A not connected to the adjacent first and third light emitting portions 62A and 66A by the support wire is a corresponding end of the first and third light emitting portions 62A and 66A. Tilt in the direction away from the part (in the direction in which the distance between the corresponding ends becomes wider). That is, the end 62C and the end 64C move away from each other, and the end 66D and the end 64D move away from each other. It is.
[0059] 上記の構成力もなるフィラメント体 74によれば、光軸 Rと発光部 62Aの軸心 CXの間 隔 D3、光軸 Rと発光部 66Aの軸心 CXの間隔 D4が比較フィラメント体 202 (図 35)と 同じであれば、端部間(62C— 64C間、 64C— 66C間)距離が長くなるので、アーク 放電が発生しにくくなり、逆に、端部間(62C— 64C間、 64D— 66D間)距離が同じ であれば、傾けた分 (光軸 Rと直交する方向における、端部 64Cと端部 64Dの変位 分に略相当する分)、間隔 D3, D4をより縮小することになり、もって集光効率がさら に向上することとなる。 According to the filament body 74 which also has the above configuration, the distance D3 between the optical axis R and the axial center CX of the light emitting portion 62A, and the distance D4 between the optical axis R and the axial center CX of the light emitting portion 66A are comparative filament bodies 202. If it is the same as (Fig. 35), the distance between the ends (between 62C and 64C and between 64C and 66C) becomes longer, so arcing is less likely to occur, and conversely, between the ends (between 62C and 64C, 64D-66D) If the distance is the same, the distances D3 and D4 are further reduced by the amount of inclination (approximately equivalent to the displacement of the end 64C and the end 64D in the direction orthogonal to the optical axis R). As a result, the light collection efficiency will be further improved.
[0060] (変形例) (Modification)
図 11に示した例では、真ん中のフィラメントコイル 64 (発光部 64A)を光軸 Rに対し て傾け、両側のフィラメントコイル 62, 66 (発光部 62A, 66A)を光軸 Rに略平行とし た力 これとは反対に、図 12に示すように、真ん中のフィラメントコイル 64 (発光部 64 A)は光軸 Rと略平行に配し、両側のフィラメントコイル 62, 66 (発光部 62A, 66A)を 光軸 Rに対し、同じ向きに、同程度傾けるようにしても構わない。なお、図 12に示すフ イラメント体 80は、フィラメントコイルの配置関係が異なる以外は、図 11に示したフイラ メント体 74と基本的に同じなので、同様の構成部分については、同じ符号を付して、 その説明につ 、ては省略する。 In the example shown in FIG. 11, the middle filament coil 64 (light emitting portion 64A) is inclined to the optical axis R, and the filament coils 62 and 66 (light emitting portions 62A and 66A) on both sides are substantially parallel to the optical axis R. Force In contrast to this, as shown in FIG. 12, the middle filament coil 64 (light emitting part 64 A) is disposed substantially parallel to the optical axis R, and the filament coils 62 and 66 on both sides (light emitting parts 62A and 66A) You may make it incline to the same direction in the same direction with respect to the optical axis R. Since the filament body 80 shown in FIG. 12 is basically the same as the filament body 74 shown in FIG. 11 except that the arrangement relationship of the filament coil is different, the same components are designated by the same reference numerals. The explanation is omitted.
<実施の形態 3 > Embodiment 3
図 13は、実施の形態 3のフィラメント体 82を示す模式図であり、図 7に準じて描いた ものである。 FIG. 13 is a schematic view showing a filament body 82 of the third embodiment, which is drawn according to FIG.
[0061] フィラメント体 82では、第 2フィラメントコイル 64 (第 2発光部 64A)を、その軸心 CX が反射鏡 18 (図 1)の光軸 Rと略重なるように配すると共に、第 1フィラメントコイル 62 ( 第 1発光部 62A)と第 3フィラメントコイル 66 (第 3発光部 66A)を、第 2フィラメントコィ ル 64 (第 2発光部 64A)を挟むように光軸 Rと直交する方向両側に分け、その軸心 C Xを第 2フィラメントコイル 64 (第 2発光部 64A)の軸心と略直角に立体交差させて配 することとしている。 In the filament body 82, the second filament coil 64 (second light emitting portion 64A) is disposed such that the axial center CX thereof substantially overlaps the optical axis R of the reflecting mirror 18 (FIG. 1), and the first filament The coil 62 (first light emitting portion 62A) and the third filament coil 66 (third light emitting portion 66A) are disposed on both sides in the direction orthogonal to the optical axis R so as to sandwich the second filament coil 64 (second light emitting portion 64A). In the second embodiment, the axis CX is arranged to intersect with the axis of the second filament coil 64 (second light emitting portion 64A) substantially perpendicularly.
[0062] 上記の構成カゝらなるフィラメント体 82によれば、コイル間隔 Dl, D2が比較フィラメン ト体 202 (図 35)と同じであれば、端部間(62C— 64C間、 64D— 66D間)距離が長
くなるので、アーク放電が発生しにくくなり、逆に、端部間(62C— 64C間、 64D— 66 D間)距離が同じであれば、コイル間隔 Dl, D2をより縮小することになり、もって集光 効率がさらに向上することとなる。 According to the filament body 82 having the above configuration, if the coil spacing D1, D2 is the same as the comparative filament body 202 (FIG. 35), the end portions (between 62C-64C, 64D-66D) are obtained. Distance) long distance Arcs are less likely to occur, and conversely, if the distance between the ends (between 62C and 64C and between 64D and 66D) is the same, the coil intervals Dl and D2 will be further reduced. Thus, the light collection efficiency will be further improved.
[0063] 比較フィラメント体 202を用いたハロゲン電球と狭角の反射ミラーとを組み合わせた 場合、ビームスポットが略楕円形状になるのに対して、実施の形態 3のフィラメント体 8 2を用いたハロゲン電球と狭角の反射ミラーとを組み合わせた場合には、ビームスポ ットが略円形になることが分力つた。 When the halogen bulb using the comparison filament body 202 is combined with the narrow-angle reflection mirror, the beam spot has a substantially elliptical shape, while the halogen using the filament body 82 of the third embodiment. When a light bulb and a narrow-angle reflecting mirror were combined, it was necessary for the beam spot to be approximately circular.
比較フィラメント体 202を用いたハロゲン電球と狭角の反射ミラーとを組み合わせた 場合の配光分布を図 36に、配光曲線を図 37に、実施の形態 3のフィラメント体 82を 用いたハロゲン電球と狭角の反射ミラーとを組み合わせた場合の配光分布を図 14に 、配光曲線を図 15にそれぞれ示す。 36 shows the light distribution when the halogen bulb using the comparison filament body 202 is combined with the narrow-angle reflecting mirror, FIG. 37 shows the light distribution curve, and the halogen bulb using the filament body 82 of the third embodiment. The light distribution distribution in the case where the reflection mirror and the narrow angle reflection mirror are combined is shown in FIG.
[0064] したがって、狭角の反射鏡があれば、比較フィラメント体 202を用いたハロゲン電球 とフィラメント体 82を用いたハロゲン電球とを使 、分けることで、略楕円形をしたビー ムスポットとすることもできるし、略円形のビームスポットとすることもでき、経済的に、 照射する対象に合わせて、ビーム形状を変えることが可能となる。 Therefore, if there is a narrow-angle reflecting mirror, a halogen bulb using the comparative filament body 202 and a halogen bulb using the filament body 82 are used and divided into a substantially elliptical beam spot. The beam spot can also be made to be a substantially circular beam spot, and it becomes possible to change the beam shape according to the object to be irradiated economically.
(変形例 1) (Modification 1)
上記フィラメント体 82 (図 13)では、真ん中のフィラメントコイル 64 (発光部 64A)を 光軸 Rと平行に配し、両側のフィラメントコイル 62, 66 (発光部 62A, 66A)を光軸 Rと 直交させて配した力 フィラメントコイル 62, 64, 66の光軸 Rに対する関係をこの逆に しても構わない。 In the filament body 82 (FIG. 13), the center filament coil 64 (light emitting portion 64A) is disposed parallel to the optical axis R, and the filament coils 62, 66 (light emitting portions 62A, 66A) on both sides are orthogonal to the optical axis R The relationship between the force filament coils 62, 64 and 66 with respect to the optical axis R may be reversed.
[0065] 図 16は、そのようにして構成したフィラメント体 84を示す図である。 [0065] FIG. 16 is a view showing a filament body 84 configured as described above.
(変形例 2) (Modification 2)
上記フィラメント体 82 (図 13)、フィラメント体 84 (図 16)では、 3個のフィラメントコィ ノレ 62, 64, 66 (発光咅 64A, 66A)を、光軸 Rと直交する方向に間隔をお ヽて 配した力 これに限らず、光軸 Rの方向に間隔をおいて配することしても構わない。 In the filament body 82 (Fig. 13) and the filament body 84 (Fig. 16), the three filament cores 62, 64, 66 (light emitting rods 64A, 66A) are spaced in the direction orthogonal to the optical axis R. Not limited to this, the force may be spaced apart in the direction of the optical axis R.
[0066] 図 17は、そのようにして構成したフィラメント体 86を示す図である。図 17において、 左部に示すのはフィラメント体 86の正面図でありを、右部に示すのは同右側面図で ある。
<実施の形態 4 > [0066] FIG. 17 is a view showing a filament body 86 configured as described above. In FIG. 17, the left side shows a front view of the filament body 86, and the right side shows a right side view. Embodiment 4
実施の形態 3では、第 2フィラメントコイル 64 (発光部 64A)の軸心 CXと第 1、第 3フ イラメントコイル 62, 66 (第1、第3発光部62八. 66A)の軸心 CXとを立体交差させる こととした力 実施の形態 4のフィラメント体 90では、平面交差させることとしている。 In the third embodiment, the axial center CX of the second filament coil 64 (light emitting portion 64A) and the axial center CX of the first and third filament coils 62, 66 (first and third light emitting portions 628 and 66A). In the filament body 90 according to the fourth embodiment, the plane intersection is performed.
[0067] 図 18に示すのは、フィラメント体 90の模式図であり、図 7に準じて描いたものである フィラメント体 90では、第 1〜第 3フィラメントコイル 62, 64, 66 (第 1〜第 3発光部 6 2A, 64A, 66A)の軸心 CXは、同一平面 P4上に存している。 [0067] FIG. 18 is a schematic view of the filament body 90 and is drawn according to FIG. 7. In the filament body 90, the first to third filament coils 62, 64, 66 The axial center CX of the third light emitting unit 62A, 64A, 66A) exists on the same plane P4.
そして、真ん中の第 2フィラメントコイル 64 (第 2発光部 64A)は、その軸心 CXが反 射鏡 18 (図 1)の光軸 Rと略重なるように配されており、両側にある第 1、第 3フィラメン トコイル 62, 66 (第1、第3発光部62八, 66A)は、その軸心 CXが光軸 Rと略直交す るように配されている。 The second filament coil 64 (second light emitting unit 64A) in the middle is disposed such that its axial center CX substantially overlaps the optical axis R of the reflecting mirror 18 (FIG. 1), and The third filament coils 62 and 66 (first and third light emitting units 628 and 66A) are disposed such that their axial centers CX are substantially orthogonal to the optical axis R.
[0068] 上記の構成力もなるフィラメント体 90によれば、サポート線で接続されて 、な ヽ端部 間(62C— 64C間、 66D— 64D間)の距離を長くすることができるので、アーク放電 が発生しにくくなる。 According to the filament body 90 which also has the above-described configuration power, since the distance between the end portions of the ridges (between 62C and 64C and between 66D and 64D) can be increased by the support wire, the arc discharge can be performed. Is less likely to occur.
(変形例) (Modification)
図 18に示した例では、真ん中のフィラメントコイル 64 (発光部 64A)を光軸 Rに平行 に(軸心 CXを光軸 Rに重ねて)配することとしたが、これに限らず、両側の第 1、第 3フ イラメントコイル 62, 66 (第1、第3発光部62八, 66A)を、その軸心 CXが光軸 Rと略 平行となるように配することとしても構わな 、。 In the example shown in FIG. 18, the middle filament coil 64 (the light emitting portion 64A) is disposed parallel to the optical axis R (the axial center CX is superimposed on the optical axis R), but the invention is not limited thereto. The first and third filament coils 62 and 66 (the first and third light emitting units 628 and 66A) may be disposed such that their axial center CX is substantially parallel to the optical axis R. ,.
[0069] 図 19に示すのは、そのようにして構成したフィラメント体 96を示す模式図である。な お、図 19に示すフィラメント体 96は、フィラメントコイルの配置関係が異なる以外は、 図 18に示したフィラメント体 90と基本的に同じなので、同様の構成部分については、 同じ符号を付して、その説明については省略する。 [0069] FIG. 19 is a schematic view showing a filament body 96 configured as described above. Since the filament body 96 shown in FIG. 19 is basically the same as the filament body 90 shown in FIG. 18 except that the arrangement relationship of the filament coil is different, the same components are indicated by the same reference numerals. The explanation is omitted.
比較フィラメント体 202を用いたハロゲン電球と広角の反射ミラーとを組み合わせた 場合、ビームスポットが略円形状になるのに対して、上記フィラメント体 90またはフイラ メント体 96を用いたハロゲン電球と広角の反射ミラーとを組み合わせた場合には、ビ 一ムスポットが略楕円形状になることが分力つた。
[0070] 比較フィラメント体 202を用いたハロゲン電球と広角の反射ミラーとを組み合わせた 場合の配光分布を図 38に、配光曲線を図 39に、実施の形態 3のフィラメント体 90ま たはフィラメント体 96を用いたハロゲン電球と広角の反射ミラーとを組み合わせた場 合の配光分布を図 20に、配光曲線を図 21にそれぞれ示す。 When the halogen bulb using the comparison filament body 202 and the wide-angle reflecting mirror are combined, the beam spot becomes substantially circular, while the wide-angle type with the halogen bulb using the filament body 90 or 96 is used. When combined with a reflecting mirror, it was necessary that the beam spot be approximately elliptical. The light distribution distribution when the halogen bulb using the comparison filament body 202 is combined with the wide-angle reflecting mirror is shown in FIG. 38, the light distribution curve is shown in FIG. 39, and the filament body 90 of Embodiment 3 or The light distribution distribution when the halogen bulb using the filament body 96 is combined with the wide-angle reflection mirror is shown in FIG. 20, and the light distribution curve is shown in FIG.
したがって、広角の反射鏡があれば、比較フィラメント体 202を用いたハロゲン電球 とフィラメント体 90又は 96を用いたハロゲン電球とを使い分けることで、略円形をした ビームスポットとすることもできるし、略楕円のビームスポットとすることもでき、経済的 に、照射する対象に合わせて、ビーム形状を変えることが可能となる。 Therefore, if there is a wide-angle reflector, the beam spot can be made approximately circular by selectively using the halogen bulb using the comparison filament body 202 and the halogen bulb using the filament body 90 or 96. It can be an elliptical beam spot, and it is possible to change the beam shape economically according to the object to be irradiated.
<実施の形態 5 > Fifth Preferred Embodiment
実施の形態 1〜4のハロゲン電球では、それぞれ、フィラメント体を 3個のフィラメント コイルで構成した力 実施の形態 5のハロゲン電球では、フィラメント体を 2個のフイラ メントコイルで構成することとした。 In the halogen bulbs of the first to fourth embodiments, the filament body is configured of three filament coils. In the halogen bulb of the fifth embodiment, the filament body is configured of two filament coils.
[0071] 実施の形態 5のハロゲン電球は、フィラメント体の構成が異なる以外は、バルブ内に 封入されるハロゲン物質、希ガス等を含め、基本的に実施の形態 1〜4のハロゲン電 球と構成が同じなので、以下、当該異なる部分を中心に説明する。また、言うまでもな ぐ実施の形態 5のハロゲン電球を実施の形態 1の照明器具 12(図 1)に装着して、照 明装置を構成することができる。 The halogen bulb of the fifth embodiment is basically the halogen bulb of the first to fourth embodiments, including a halogen substance sealed in the bulb, a rare gas and the like except that the configuration of the filament body is different. Since the configuration is the same, the following description will be focused on the different portions. Further, it goes without saying that the halogen bulb of the fifth embodiment can be mounted on the lighting fixture 12 (FIG. 1) of the first embodiment to constitute a lighting device.
[0072] 実施の形態 5におけるフィラメント体 300を図 22に示す。図 22の上部に示すのは、 フィラメント体 300を反射鏡の前方力 その光軸方向に見た平面図を模式的に表し たものであり、図 22の下部に示すのは、同正面図を模式的に表したものであって、い ずれも図 7に準じて描 、たものである。 Filament body 300 in the fifth embodiment is shown in FIG. The upper portion of FIG. 22 schematically shows a plan view of the filament body 300 viewed in the direction of the optical axis of the reflecting mirror, and the lower portion of FIG. 22 shows the same front view. It is a schematic representation, and both are drawn according to FIG.
フィラメント体 300は、第 1フィラメントコイル 302と第 2フィラメントコイル 304を有する 。両フィラメントコイル 302, 304は、いずれも、実施の形態 1と同様にして(図 5)作製 されるものである。ただし、フィラメント体を構成するフィラメントコイルの個数が減る分 、 1個当たりのフィラメントコイルのフィラメント線が長くなるので、扁平率を大きくして、 1ターン当たりのフィラメント線を長くし、もって、光軸方向の短縮ィ匕を図っている。フィ ラメントコイル 302, 304の扁平率は、一例として「4」にしている。また、フィラメントコィ ル 302, 304の寸法の一例を示すと、短軸 SX方向の幅は約 0.35mmで、発光部 30
2A, 304八の軸心じ 方向の長さは約4.5111111でぁる。 The filament body 300 has a first filament coil 302 and a second filament coil 304. Both filament coils 302 and 304 are produced in the same manner as in Embodiment 1 (FIG. 5). However, as the number of filament coils constituting the filament body decreases, the filament wire of one filament coil becomes longer, so the flatness ratio is increased and the filament wire per turn is lengthened, thus, the optical axis We are trying to shorten the direction. The flat ratio of the filament coils 302 and 304 is set to "4" as an example. In addition, as an example of the dimensions of the filament coil 302, 304, the width in the minor axis SX direction is about 0.35 mm, and the light emitting portion 30 The length in the axial direction of 2A, 304 is about 4.5111111.
[0073] 両フィラメントコイル 302, 304の各々は、その軸心 CXが反射鏡 18(図 1)の光軸と 略平行となり、かつ同一平面 P5上に略存するように配されている。また、コイル間隔 D5は、例えば、 2mmに設定されている。 Each of the two filament coils 302 and 304 is disposed such that its axial center CX is substantially parallel to the optical axis of the reflecting mirror 18 (FIG. 1) and substantially on the same plane P5. In addition, the coil interval D5 is set to, for example, 2 mm.
そして、実施の形態 1 (図 7、図 8、図 10)と同様の考えに基づき、第 1フィラメントコィ ル 302 (第 1発光部 302A)に対し、第 2フィラメントコイル 304 (第 2発光部 304A)を 相対的に光軸 Rの方向にずらしている。このようにすることにより、集光効率の低下を 最小限に抑制しつつ、アーク放電に起因する断線の防止が図られる。その理由(メカ 二ズム)は、実施の形態 1の場合と同様なので、その説明については省略する。 Then, based on the same idea as in Embodiment 1 (FIG. 7, FIG. 8 and FIG. 10), the second filament coil 304 (second light emitting portion 304A) is compared to the first filament coil 302 (first light emitting portion 302A). ) Is relatively shifted in the direction of the optical axis R. By doing so, it is possible to prevent the disconnection due to the arc discharge while minimizing the decrease in the light collection efficiency. The reason (mechanism) is the same as in the case of the first embodiment, and thus the description thereof is omitted.
[0074] また、実施の形態 5のフィラメント体 300では、第 1フィラメントコイル 302(第 1発光部 302A)と第 2フィラメントコイル 304 (第 2発光部 304A)を、光軸 Rに対して対称に配 置せず、両フィラメントコイル 302, 304の光軸 R力ゝらの距離 D6, D7を異ならせてい る。具体的には、例えば、 D6を 0.5mmに、 D7を 1.5mmに設定している。このように 、両フィラメントコイル 302, 304を配置した理由について、以下に説明する。 Further, in the filament body 300 according to the fifth embodiment, the first filament coil 302 (the first light emitting portion 302A) and the second filament coil 304 (the second light emitting portion 304A) are symmetrical with respect to the optical axis R. Not disposed, the distances D6 and D7 of the optical axes R of the filament coils 302 and 304 are different from each other. Specifically, for example, D6 is set to 0.5 mm, and D7 is set to 1.5 mm. The reason for arranging both filament coils 302 and 304 in this way will be described below.
[0075] 第 1フィラメントコイル 302と第 2フィラメントコイル 304光軸 Rに対して対称に配置し たフィラメント体 (すなわち、 D6 = D7 = lmm)を有するハロゲン電球(以下、「第 1電 球」と言う。)を反射鏡に組み込んでスポットライト照明として用いた場合、照射面にお けるスポットライトの中心部が暗くなり、その周囲が明るくなるといったいわゆるドーナ ッッ状のスポット形状になることが判明した。すなわち、配光曲線において、そのピー クが 2箇所に現れる双峰性が出現することが判明した。また、この傾向は、反射鏡に おけるビームの開きが狭角となる程、顕著に現れることが認められた。このようなスポ ット形状は、対象物を文字通りスポット的に浮かび上がらせるためのスポット照明とし て、好ましくない場合がある。 [0075] A halogen bulb (hereinafter referred to as "first bulb") having filament bodies (ie, D6 = D7 = 1 mm) arranged symmetrically with respect to the first filament coil 302 and the second filament coil 304 optical axis R When it was incorporated into a reflecting mirror and used as spotlight illumination, it became clear that the center of the spotlight on the illuminated surface would be dark and the periphery would be bright, with a so-called donut shaped spot shape. . That is, in the light distribution curve, it was found that bimodality in which the peak appears in two places appears. It was also found that this tendency is more pronounced as the beam divergence at the reflector becomes narrower. Such spot shapes may not be desirable as spot lighting to literally cause the object to spot up.
[0076] そこで、図 22に示す例では、上記したように、両フィラメントコイル 302, 304 (両発 光部 302A, 304A)の光軸 Rからの距離を異ならせることとした。ここで、図 22に示す フィラメント体 300 (D6 = 0.5mm, D7= l.5mm)を有する実施例に係るハロゲン電 球を「第 2電球」と称することとする。 Therefore, in the example shown in FIG. 22, as described above, the distances from the optical axis R of the two filament coils 302 and 304 (both light emitting portions 302A and 304A) are made different. Here, the halogen bulb according to the embodiment having the filament body 300 (D6 = 0.5 mm, D7 = 1.5 mm) shown in FIG. 22 is referred to as a “second light bulb”.
上記第 1電球と第 2電球をそれぞれ、ビームの開き (ビーム角)が狭角(約 10° )の
反射鏡と組み合わせて照明装置を構成し、照明装置力 距離 lm離れた照射面にお ける配光特性 (配光曲線)について調査した。 The first light bulb and the second light bulb each have a narrow beam angle (about 10 °). The lighting device was configured in combination with a reflector, and the light distribution characteristics (light distribution curve) on the irradiated surface separated by the lighting device power distance lm were investigated.
[0077] 調査結果を図 23に示す。図 23において、第 1電球に係るものは一点鎖線で、第 2 電球に係るものは実線で表した。 The investigation results are shown in FIG. In FIG. 23, those related to the first light bulb are indicated by alternate long and short dashed lines, and those related to the second light bulb are indicated by solid lines.
第 1電球について見ると、配光曲線のピークが 2箇所に現れる双峰性が認められる 。すなわち、既述したように、中央部が暗くその周囲が明るいスポットライトになってい る。 Looking at the first bulb, it can be seen that the peaks of the light distribution curve appear bimodal in two places. That is, as described above, the central area is dark and the surrounding area is bright.
これに対し、第 2電球では、双峰性が解消されて配光曲線のピークは単一になって いる。すなわち、最も明るい部分を中心としたほぼ対称性のある良好な配光特性のス ポットライトになっている。これは、光軸 Rからの第 1発光部 302Aの距離 D6と第 2発 光部 304Aの距離 D7を異ならせることにより、光軸 Rに近い方の第 1発光部 302Aの 配光曲線の形状に及ぼす影響が光軸 Rから遠い方の第 2発光部 304Aの配光曲線 の形状に及ぼす影響よりも支配的になるためであると考えられる。 On the other hand, in the second bulb, bimodality is eliminated and the peak of the light distribution curve is single. In other words, it is a spot light with good light distribution characteristics with almost symmetry centered on the brightest part. This is because the shape of the light distribution curve of the first light emitting portion 302A closer to the optical axis R by making the distance D6 of the first light emitting portion 302A from the optical axis R different from the distance D7 of the second light emitting portion 304A. It is considered that the influence on the above becomes more dominant than the influence on the shape of the light distribution curve of the second light emitting part 304A far from the optical axis R.
[0078] (変形例 1) (Modification 1)
上記した例では、両発光部 302A, 304Aのサポート線 306で接続されていない側 の端部 302D, 304D間の距離を当該端部間でアーク放電が生じない距離にすると 共に、両発光部 302A, 304Aを光軸 Rと交差する方向に近づける目的のために、両 発光部 302A, 304Aを光軸 Rと略平行に配置した状態のまま、両発光部 302A, 30 4Aを相対的に光軸 R方向にずらすこととした。 In the above-described example, the distance between the end 302D, 304D on the side not connected by the support wire 306 of both light emitting parts 302A, 304A is a distance where arcing does not occur between the ends, and both light emitting parts 302A. , 304A in a direction intersecting with the optical axis R, the two light emitting units 302A, 304A are relatively aligned with the optical axis while the two light emitting units 302A, 304A are disposed substantially parallel to the optical axis R. We decided to shift in the R direction.
[0079] し力しながら、フィラメントコイル 2個でフィラメント体を構成するハロゲン電球におい て、上記目的を達成するための両発光部の配置形態は、これに限らず、例えば、以 下のようにすることもできる。すなわち、仮に両発光部 302A, 304Aの両軸心 CXが 光軸 R (バルブ中心軸 B)と平行で、かつ、両発光部 302A, 304Aの一端部同士と他 端部同士とを光軸 R (バルブ中心軸 B)方向に揃えた仮想状態から、第 1発光部 302 Aと第 2発光部 304Aとを、光軸 R (バルブ中心軸 B)に対して傾けることとしても構わ ない。傾ける向きは、サポート線で接続されている端部 302Cと端部 304C同士が近 づき、サポート線 306で接続されていない端部 302Dと端部 304D同士が遠ざかる向 きである。
[0080] この場合、図 24に示す変形例 1—1に係るフィラメント体 320のように、第 1発光部 3 02Aと第 2発光部 304Aとを、両軸心 CX間の間隔 (光軸 Rと直交する方向の距離)が 、反射鏡 18 (図 1)の反射面 20A (図 1)力 遠ざかるほど狭くなる向きに傾けることが できる。 [0079] In the case of a halogen bulb in which a filament assembly is formed by two filament coils while being forced, the arrangement of the two light emitting units for achieving the above purpose is not limited to this, and, for example, as shown below. You can also That is, it is assumed that both axial centers CX of both light emitting units 302A and 304A are parallel to the optical axis R (bulb central axis B), and one end and the other end of both light emitting units 302A and 304A It is also possible to incline the first light emitting portion 302A and the second light emitting portion 304A with respect to the optical axis R (bulb central axis B) from the virtual state aligned in the (valve central axis B) direction. The direction of inclination is such that the end 302C and the end 304C connected by the support wire approach each other, and the end 302D and the end 304D not connected by the support wire 306 move away from each other. In this case, as in the filament body 320 according to the modified example 1-1 shown in FIG. 24, the distance between the first light emitting unit 302A and the second light emitting unit 304A and the axial center CX (optical axis R (A distance in a direction orthogonal to that of the reflecting surface) can be inclined in a direction in which the reflecting surface 20A (FIG. 1) of the reflecting mirror 18 (FIG. 1) becomes narrower as it gets farther.
あるいは、図 25に示す変形例 1—2に係るフィラメント体 324のように、第 1発光部 3 02Aと第 2発光部 304Aとを、両軸心 CX間の間隔 (光軸 Rと直交する方向の距離)が 、反射鏡 18 (図 1)の反射面 20A (図 1)力 遠ざかるほど広くなる向きに傾けることが できる。 Alternatively, as in the filament body 324 according to the modified example 1-2 shown in FIG. 25, the distance between the first light emitting unit 302A and the second light emitting unit 304A and the axial center CX (direction orthogonal to the optical axis R) The distance (d) of the reflecting surface 20A (FIG. 1) of the reflecting mirror 18 (FIG. 1) can be inclined to be wider as it gets farther.
[0081] 上記の構成からなるフィラメント体 320, 324において、サポート線 322, 326で接 続されていない端部 302Dと端部 304D間の距離 D8を、ハロゲン電球の点灯の際お よび点灯中にアーク放電が生じない程度に離間すると、端部 302Dと端部 304Dを 基点としてそれぞれ第 1発光部 302Aと第 2発光部 304Aとが、光軸 Rに対して傾斜 する分、発光領域が全体として光軸 Rに集中することとなる。したがって、仮に、端部 302Dと端部 304D間を上記と同じ距離 D8に設定し、第 1発光部 302Aと第 2発光部 304Aとを光軸 Rと略平行に配したとした状態 (仮想状態)よりも、フィラメント体 320, 324方が、集光効率が高くなるのである。 In the filament bodies 320 and 324 having the above-described configuration, the distance D8 between the end 302D and the end 304D not connected by the support wires 322 and 326 is determined during and during lighting of the halogen bulb. When they are separated to such an extent that arcing does not occur, the first light emitting portion 302A and the second light emitting portion 304A are inclined with respect to the optical axis R with respect to the end 302D and the end 304D, respectively. It will concentrate on the optical axis R. Therefore, temporarily, the distance between the end 302D and the end 304D is set to the same distance D8 as described above, and the first light emitting portion 302A and the second light emitting portion 304A are arranged substantially parallel to the optical axis R (virtual state The light collection efficiency is higher in the filament bodies 320 and 324 than in the case of).
[0082] (変形例 2) (Modification 2)
また、第 1フィラメントコイル 302 (第 1発光部 302A)と第 2フィラメントコイル 304 (第 2発光部 304A)とを、両軸心 CXが略同一平面内で略直交するように配することとし ても構わない。 In addition, the first filament coil 302 (the first light emitting unit 302A) and the second filament coil 304 (the second light emitting unit 304A) are disposed such that the axes CX are substantially orthogonal in the same plane. I don't care.
そのように構成したフィラメント体 310を図 26に示す。図 26の上部に示すのは、フィ ラメント体 310の正面図を模式的に表したものであり、下部に示すのは、同下面図を 模式的に表したものである。 A filament body 310 so configured is shown in FIG. The upper part of FIG. 26 schematically shows a front view of the filament body 310, and the lower part shows a schematic view of the lower surface.
[0083] フィラメント体 310において、第 1フィラメントコイル 302 (第 1発光部 302A)は、その 軸心 CXが光軸 Rと略平行となり、かつ光軸 Rを内包する位置に配される力 好ましく は、図 26に示すように、その軸心 CXが光軸 Rに略重なる位置に配される。 In the filament body 310, the first filament coil 302 (the first light emitting portion 302A) preferably has a force such that the axial center CX thereof is substantially parallel to the optical axis R and is disposed at a position including the optical axis R. As shown in FIG. 26, the axial center CX is disposed at a position approximately overlapping the optical axis R.
第 2フィラメントコイル 304 (第 2発光部 304A)は、その軸心 CXが光軸 Rと略直交し 、かつ、長軸 LX (不図示)が光軸 Rと略直交する姿勢で配されている。また、第 2フィ
ラメントコイル 304は、軸心 CX方向、第 2発光部 304Aの略真中の位置で、軸心 CX が光軸 Rと略直交している。 The second filament coil 304 (the second light emitting portion 304A) is disposed in a posture in which the axial center CX is substantially orthogonal to the optical axis R, and the major axis LX (not shown) is substantially orthogonal to the optical axis R . In addition, the second The axial coil CX is substantially orthogonal to the optical axis R at a position substantially in the center of the second light emitting unit 304A in the axial center CX direction.
[0084] このように、少なくとも一方の発光部 (本例では、第 2発光部 304A)を、その軸心 CThus, at least one of the light emitting units (in this example, the second light emitting unit 304A) has its axis C.
Xが光軸 Rと略直交する姿勢で配したフィラメント体を用いたハロゲン電球と狭角の反 射ミラーとを組み合わせると、ビームスポットが略楕円形状になる。 When a halogen bulb using a filament body in which X is disposed substantially orthogonal to the optical axis R is combined with a narrow-angle reflecting mirror, the beam spot has a substantially elliptical shape.
フィラメント体 310を用いたハロゲン電球と狭角の反射ミラーとを組み合わせた場合 の配光分布を図 27に示す。 The light distribution when the halogen bulb using the filament 310 is combined with a narrow angle reflection mirror is shown in FIG.
[0085] なお、フィラメント体 300 (図 22)を用いたハロゲン電球と反射ミラーとを組み合わせ た場合のビームスポットは、略円形になる。 The beam spot when the halogen bulb using the filament body 300 (FIG. 22) and the reflection mirror are combined is substantially circular.
したがって、狭角の反射鏡があれば、フィラメント体 310を用いたハロゲン電球とフィ ラメント体 300を用いたハロゲン電球とを使 、分けることで、略楕円形をしたビームス ポットとすることもできるし、略円形のビームスポットとすることもでき、経済的に、照射 する対象に合わせて、ビーム形状を変えることが可能となる。 Therefore, if there is a narrow-angle reflecting mirror, it is possible to make a beam spot having a substantially elliptical shape by using a halogen bulb using the filament 310 and a halogen bulb using the filament 300, and separating them. The beam spot can be a substantially circular beam spot, and it becomes possible to economically change the beam shape according to the object to be irradiated.
<実施の形態 6 > Embodiment 6
実施の形態 5のハロゲン電球では、一端部同士がサポート線で電気的に接続され てなる 2個のフィラメントコイルでフィラメント体を構成した。そして、ハロゲン電球への 通電状態で、フィラメントコイル各々の一部が発光することとなる関係上、フィラメント 体は、発光部を 2個有することとなった。 In the halogen bulb of the fifth embodiment, the filament body is constituted by two filament coils of which one ends are electrically connected by a support wire. Then, the filament body has two light emitting parts because a part of each of the filament coils emits light when the halogen bulb is energized.
[0086] これに対し、実施の形態 6では、フィラメントコイル 1個を、その長手方向(コイル軸心 方向)ほぼ中央部で屈曲させ、非発光部を含む屈曲部分から当該フィラメントコイル の一端部に至る間に第 1発光部が、他端部に至る間に第 2発光部が存する構成とし た。なお、実施の形態 6に係るハロゲン電球は、実施の形態 2〜5に係るハロゲン電 球と同様、フィラメント体およびその支持構造が異なる以外は、バルブ内に封入され るハロゲン物質、希ガス等を含め、実施の形態 1 (各変形例を含む)に係るハロゲン電 球と基本的に同様の構成である。したがって、以下、上記異なる部分を中心に説明 することとする。また、言うまでもなぐ実施の形態 5のハロゲン電球を実施の形態 1の 照明器具 12(図 1)に装着して、照明装置を構成することができる。 On the other hand, in the sixth embodiment, one filament coil is bent at substantially the center in the longitudinal direction (coil axis direction), and from the bent portion including the non-light emitting portion to one end of the filament coil. The first light emitting unit was configured to extend all the way, and the second light emitting unit was configured to extend to the other end. The halogen bulb according to the sixth embodiment is the same as the halogen bulbs according to the second to fifth embodiments, except that the filament body and its supporting structure are different, except that the halogen substance sealed in the bulb, the rare gas, etc. The configuration is basically the same as that of the halogen bulb according to Embodiment 1 (including each variation). Therefore, hereinafter, the description will be made focusing on the above different parts. Further, it goes without saying that the halogen bulb of the fifth embodiment can be mounted on the lighting apparatus 12 (FIG. 1) of the first embodiment to constitute a lighting device.
[0087] (第 1実施例)
図 28は、実施の形態 6のハロゲン電球における第 1実施例に係るフィラメント体 502 およびその支持構造の概略構成を示す斜視図である。 First Example FIG. 28 is a perspective view showing a schematic configuration of a filament body 502 and a supporting structure thereof according to a first example of the halogen bulb in the sixth embodiment.
フィラメント体 502は、フィラメントコイル 62, 64, 66 (図 4、図 6)と同様にして作成さ れた(図 5) 1個のフィラメントコイル 504を、その中央部で屈曲させ、屈曲状態で保持 したものである。すなわち、フィラメントコイル 504もフィラメントコイル 62, 64, 66と同 様、フィラメント線が、短軸と長軸とを有する扁平な横断面の筒状に卷回されてなる一 重のコイルである。フィラメントコイル 504は、中央部を基点(屈曲中心)として短軸方 向に屈曲されている。 The filament body 502 is produced in the same manner as the filament coils 62, 64, 66 (FIG. 4, FIG. 6) (FIG. 5). One filament coil 504 is bent at its central portion and held in a bent state. It is That is, the filament coil 504 is also a single coil in which a filament wire is wound in a cylindrical shape of a flat cross section having a short axis and a long axis in the same manner as the filament coils 62, 64, 66. The filament coil 504 is bent in the short axis direction with the central portion as a base point (flexion center).
[0088] フィラメントコイル 504の一端部部分は内部リード線 506のコイル支持部 506Aで支 持され、他端部部分は内部リード線 508のコイル支持部 508Aで支持されている。な お、符号 512, 514で示すのはステムガラスである。 One end portion of the filament coil 504 is supported by the coil support portion 506A of the inner lead wire 506, and the other end portion is supported by the coil support portion 508A of the inner lead wire 508. Reference numerals 512 and 514 denote stem glasses.
そして、フィラメントコイル 504の長手方向中央部(屈曲部)が、支持部材であるサボ ート線 510で懸架支持されている。フィラメントコイル 504は、コイル支持部 506A, 5 08 Aで支持されている部分では発光しない (非発光部)のは、実施の形態 1〜実施 の形態 5の場合と同様である。なお、内部リード線 506, 508、サポート線 510は、タ ングステン製である。 And, a longitudinal central portion (bent portion) of the filament coil 504 is suspended and supported by a support wire 510 which is a support member. The filament coil 504 does not emit light at the portion supported by the coil support portions 506A and 508A (non-light emitting portion) is the same as in the case of the first to fifth embodiments. The internal lead wires 506 and 508 and the support wire 510 are made of tungsten.
[0089] 図 29の上部に示すのは、内部リード線 506, 508、サポート線 510に取り付けられ た状態のフィラメントコイル 504を、光軸 R (図 1)方向から見た平面図を模式的に表し たものであり、図 29の下部に示すのは、同正面図を模式的に表したものであり、図 7 と同様な態様で描いたものである。なお、図 29の下部に示す図では、サポート線 51 0を、フィラメントコイル 504を直接懸架する部分で切断した切断端面で表して 、る。 図 29では、また、上部の平面図および下部の正面図の両方において、フィラメントコ ィル 504における発光部(504A1, 504A2)を実線で、非発光部(504C)を二点鎖 線 ?^kし 7こ。 [0089] The upper part of FIG. 29 schematically shows a plan view of the filament coil 504 attached to the inner lead wires 506 and 508 and the support wire 510 as viewed from the optical axis R (FIG. 1) direction. FIG. 29 is a schematic view of the front view, and is drawn in the same manner as FIG. 7. In the drawing shown in the lower part of FIG. 29, the support wire 510 is represented by a cut end face cut at a portion where the filament coil 504 is directly suspended. In FIG. 29, the light emitting portion (504A1, 504A2) of the filament coil 504 is a solid line and the non-light emitting portion (504C) is a two-dot chain line in both the top plan view and the bottom plan view. Seven.
[0090] フィラメントコイル 504は、上記したように屈曲している関係上、そのコイル軸心も同 一平面内で同様に屈曲している。そして、フィラメントコイル 504は、そのコイル軸心 が光軸 R (バルブ中心軸 B)と略同一平面上に在るように配されている。 [0090] The filament coil 504 is similarly bent in the same plane because of the bending relationship as described above. The filament coil 504 is disposed such that its coil axis is on substantially the same plane as the optical axis R (bulb center axis B).
また、フィラメントコイル 504の屈曲部において、導電性を有するサポート線 510に
支持されて接触して 、る数巻き (数ターン)部は、電気的に短絡状態となるため通電 状態においても発光しない。発光しない範囲は、屈曲部の態様、屈曲の程度 (屈曲 角度)、サポート線の形状等に拠るが、少なくとも屈曲部の一部は非発光部となる。す なわち、フィラメント体 504では、非発光部を含む屈曲部からフィラメントコイル 504の 一端部に至る間に第 1発光部 504A1が、他端部に至る間に第 2発光部 504A2が存 することとなる。 In addition, in the bent portion of the filament coil 504, the conductive support wire 510 is used. Since the several turns (several turns) are electrically shorted, the light does not emit light even in the energized state. The range in which light is not emitted depends on the mode of the bent portion, the degree of bending (bending angle), the shape of the support wire, etc., but at least a part of the bent portion becomes a non-light emitting portion. That is, in the filament body 504, the first light emitting portion 504A1 exists between the bent portion including the non-light emitting portion and one end of the filament coil 504, and the second light emitting portion 504A2 exists between the other end. It becomes.
[0091] 上記の構成力もなるフィラメント体 502において、第 1発光部 504A1における非発 光部 504B1側端部 504D1と第 2発光部 504A2における非発光部 504B2側端部 5 04D2との間の距離 D9を、ハロゲン電球の点灯の際および点灯中に、当該端部間 でアーク放電が生じない程度に離間した場合に、端部 504D1と端部 504D2を基点 としてそれぞれ第 1発光部 504A1と第 2発光部 504A2とが、光軸 Rに対して傾斜す る分、発光領域が全体として光軸 Rに集中することとなる結果、集光効率が高くなる のは、前述した実施の形態 5の変形例 1—1(図 24),変形例 1—2 (図 25)の場合と同 様である。 In the filament body 502 also having the above configuration, the distance D9 between the non-light emitting portion 504B1 side end portion 504D1 of the first light emitting portion 504A1 and the non-light emitting portion 504B2 side end portion 504D2 of the second light emitting portion 504A2. Of the first light emitting portion 504A1 and the second light emitting portion with the end portion 504D1 and the end portion 504D2 as base points, respectively, when the halogen bulb is lighted and during lighting when the arc light is separated between the end portions. Since the light emitting region is concentrated on the optical axis R as a whole since the portion 504A2 is inclined with respect to the optical axis R, the light collection efficiency is improved as a modification of the fifth embodiment described above. This is the same as in the case of 1-1 (Fig. 24) and modification 1-2 (Fig. 25).
[0092] (第 2実施例) Second Embodiment
上記第 1実施例に係るフィラメント体 502では、実施の形態 5の変形例 1 1に係る フィラメント体 320 (図 24)と同様、第 1発光部 504A1と第 2発光部 504A2間の光軸 R (中心軸 B)と直交する方向の間隔が、反射鏡 18の光照射開口部側に近づくほど 狭くなる(言い換えれば、反射鏡 18の光照射開口部からに遠ざかるほど広くなる)な るようにしていて、図 29に示すように、第 1発光部 504A1と第 2発光部 504Aとが「ノヽ 」状をなすようにしている力 これとは反対に、実施の形態 5の変形例 1 2に係るフィ ラメント体 324 (図 25)と同様、逆「ハ」字状をなすようにしても構わな!/、。 In the filament body 502 according to the first embodiment, as in the filament body 320 (FIG. 24) according to the modification 11 of the fifth embodiment, the optical axis R between the first light emitting portion 504A1 and the second light emitting portion 504A2 The distance in the direction orthogonal to the central axis B) is narrowed as it approaches the light irradiation opening side of the reflecting mirror 18 (in other words, it becomes wider as it gets farther from the light irradiation opening of the reflecting mirror 18). 29, the force causing the first light emitting portion 504A1 and the second light emitting portion 504A to have a “nodular” shape. Conversely, according to the modification 12 of the fifth embodiment. As with the filament body 324 (Fig. 25), it may be in the shape of a reverse "!"
[0093] そのように構成した、実施の形態 6の第 2実施例に係るフィラメント体 520を図 30に 示す。図 30は、フィラメント体 520の正面図を模式的に表したものであり、図 29の下 部の図と同様な態様で描いたものである。フィラメント体 520 (図 30)は、第 1発光部 5 04A1と第 2発光部 504A2の開く向きが異なる以外は、フィラメント体 502 (図 28)と 同様な構成である。したがって、図 30に示すフィラメント体 520では、フィラメント体 50 2と実質的に同様な構成部分に同符号を付して、その説明については省略する。な
お、フィラメント体 520を支持するサポート線 522や、内部リード線 (不図示)は、タン ダステン線を適宜屈曲加工することにより実現することができる。 A filament assembly 520 according to the second example of the sixth embodiment, configured as described above, is shown in FIG. FIG. 30 schematically shows a front view of the filament body 520, and is drawn in the same manner as the lower part of FIG. The filament 520 (FIG. 30) has the same configuration as the filament 502 (FIG. 28) except that the opening directions of the first light emitting unit 504A1 and the second light emitting unit 504A2 are different. Accordingly, in the filament body 520 shown in FIG. 30, constituent parts substantially the same as the filament body 502 are denoted by the same reference numerals, and the description thereof will be omitted. The The support wire 522 for supporting the filament body 520 and the internal lead wire (not shown) can be realized by appropriately bending a tandasten wire.
[0094] (第 3実施例) Third Embodiment
図 31は、実施の形態 6のハロゲン電球における第 3実施例に係るフィラメント体 400 およびその支持構造の概略構成を示す斜視図である。 FIG. 31 is a perspective view showing a schematic configuration of a filament body 400 according to a third example of the halogen bulb in Embodiment 6 and a supporting structure thereof.
フィラメント体 400は、フィラメントコイル 62, 64, 66 (図 4)と同様の方法で作製され た(図 5) 1個のフィラメントコイル 402を、その中央部で屈曲させ、屈曲状態で保持し たものである。すなわち、フィラメントコイル 402も、フィラメントコイル 62, 64, 66と同 様、フィラメント線が、短軸 SXと長軸 LX (図 6)を有する扁平な横断面の筒状に卷回 されてなる一重巻きのコイルである。なお、図 31では、便宜上、フィラメントコイル 402 の全体的な形状を大まかに扁平な横断面を有する筒状体として捉え、フィラメントコィ ル 402を当該筒状体の外形で表すこととした。 Filament body 400 is manufactured in the same manner as filament coils 62, 64, 66 (FIG. 4) (FIG. 5). One filament coil 402 is bent at its central portion and held in a bent state It is. That is, in the filament coil 402 as well as in the filament coils 62, 64, 66, the filament wire is wound in a flat cross-section tube having a short axis SX and a long axis LX (FIG. 6). Is a coil of In FIG. 31, for the sake of convenience, the entire shape of the filament coil 402 is roughly regarded as a tubular body having a flat cross section, and the filament coil 402 is represented by the outer shape of the tubular body.
[0095] フィラメントコイル 402の長手方向中央部(屈曲部 402C)力 支持部材であるサボ ート線 412で懸架支持されている。そして、フィラメントコイル 402の一端部部分は内 部リード線 404のコイル支持部 404Aで支持され、他端部部分は内部リード線 406の コイル支持部 406Aで支持されている。なお、サポート線 412、内部リード線 404, 40 6は、一例として、タングステン製である。また、符号 408, 410で示すのはステムガラ スである。 A longitudinal central portion (a bending portion 402C) of the filament coil 402 is suspended and supported by a support wire 412 which is a force supporting member. The one end portion of the filament coil 402 is supported by the coil support portion 404A of the inner lead wire 404, and the other end portion is supported by the coil support portion 406A of the inner lead wire 406. The support wire 412 and the internal lead wires 404 and 406 are made of tungsten as an example. Also, reference numerals 408 and 410 denote stem glass.
[0096] フィラメントコイル 402は、コイル支持部 404A, 406Aで支持されている部分では発 光しない(非発光部 402B1, 402B2)のは、これまでの実施の形態と同様である。ま た、フィラメントコイル 402の屈曲部において、導電性を有するサポート線 412に支持 されて接触して 、る数巻き (数ターン)部は、電気的に短絡状態となるため通電状態 においても発光しないのも、第 1実施例 (図 28、図 29)および第 2実施例(図 30)と同 様である。すなわち、フィラメント体 402でも、非発光部を含む屈曲部 402C力ゝらフイラ メントコイル 402の一端部に至る間に第 1発光部 402A1が、他端部に至る間に第 2 発光部 402A2が存することとなる。さらに言うと、第 1発光部 402A1と第 2発光部 40 2A2の一端部同士力 導体であるサポート線 412ないし非発光部となるフィラメント 線部分で、電気的に接続されていると言える。なお、フィラメント体 402は、光軸 R (不
図示)が屈曲部 402Cを通過するように配される。 The filament coil 402 does not emit light at portions supported by the coil support portions 404A and 406A (non-light emitting portions 402B1 and 402B2), which are the same as the embodiments described above. In addition, several turns (several turns), which are supported by conductive support wires 412 at the bends of the filament coil 402, do not emit light even in the energized state because they become electrically shorted. The same is true for the first embodiment (FIGS. 28 and 29) and the second embodiment (FIG. 30). That is, even in the filament body 402, the first light emitting portion 402A1 exists between one end of the bent portion 402C including the non-light emitting portion and one end of the filament coil 402, and the second light emitting portion 402A2 exists between the other end. It will be. Furthermore, it can be said that the first light emitting part 402A1 and the second light emitting part 402A2 are electrically connected to each other at the support wire 412 which is a force conductor between the one end parts of the first light emitting part 402A2 and the filament wire part which becomes the non light emitting part. The filament body 402 has an optical axis R (not (Shown) is disposed to pass through the bending portion 402C.
[0097] そして、フィラメントコイル 402は、(a)長手方向中央部(屈曲部 402C)での長軸 LX [0097] And, the filament coil 402 has (a) a long axis LX at the longitudinal central portion (the bending portion 402C).
(以下「中央長軸 LXc」と言う。)と、第 1発光部 402A1のコイル支持部 404Aに近い 側の端部(以下、「第 1端部」と言う。)での長軸 LX (以下「第 1端部長軸 LXbl」と言う 。)および第 2発光部 402A2のコイル支持部 406Aに近い側の端部(以下、「第 2端 部」と言う。)での長軸 LX (以下「第 2端部長軸 LXb2」と言う。)とが略同一平面上に 存し、かつ、(b)中央長軸 LXclと直交する向き(矢印 Aの向き)に見て、全体的に逆「 V」字状になるように、当該長手方向中央部を基点(中心)として屈曲されて 、る。 (Hereinafter referred to as “central long axis LXc”) and the long axis LX (hereinafter referred to as “first end”) of the end closer to the coil support portion 404A of the first light emitting portion 402A1 (hereinafter referred to as “first end”) Long axis LX (hereinafter referred to as “first end long axis LXbl”) and an end (hereinafter referred to as “second end”) of the second light emitting section 402A2 on the side closer to the coil support section 406A The second end portion long axis LXb2 ”) is substantially on the same plane, and (b) viewed in a direction (direction of arrow A) orthogonal to the central long axis LXcl The central portion in the longitudinal direction is bent as a base point (center) so as to be in a letter shape.
[0098] 上記の構成力もなるフィラメント体 400において、第 1端部と第 2端部間の距離を、 ハロゲン電球の点灯の際および点灯中にアーク放電が生じない程度に離間すると、 第 1端部と第 2端部を基点としてそれぞれ第 1発光部 402A1と第 2発光部 402A2と 力 光軸 Rに対して傾斜している分、発光領域が全体として光軸 Rに集中することとな る結果、集光効率が高くなるのは、前述した実施の形態 5の変形例 1 1(図 24),変形 例 1— 2 (図 25)の場合と同様である。 When the distance between the first end and the second end of the filament 400 having the above-described configuration is separated to the extent that arc discharge does not occur during and during lighting of the halogen bulb, the first end is separated. The light emitting area is concentrated on the optical axis R as a whole by the inclination with respect to the first light emitting part 402A1 and the second light emitting part 402A2 and the force optical axis R with the part and the second end as a base point As a result, the reason that the light collection efficiency is high is the same as in the case of the modification 1 1 (FIG. 24) and the modification 1-2 (FIG. 25) of the fifth embodiment.
[0099] (第 4実施例) Fourth Embodiment
図 32は、実施の形態 6のハロゲン電球における第 4実施例に係るフィラメント体 420 およびその支持構造の概略構成を示す斜視図であり、図 31と同様に描いたものであ る。 FIG. 32 is a perspective view showing a schematic configuration of a filament body 420 and a supporting structure thereof according to a fourth example of the halogen bulb in the sixth embodiment, and is drawn in the same manner as FIG.
フィラメント体 420は、フィラメントコイルの上記屈曲態様 (a)、(b)の内の(a)が異な つている以外は、基本的に、第 3実施例のフィラメント体 400 (図 31)と同様の構成で ある。したがって、図 32において、フィラメント体 400およびその支持構造(図 31)と 実質的に同様の構成部材については、同じ符号を付して、その詳細な説明について は省略することとし、以下、上記異なる部分について説明する。 The filament body 420 is basically the same as the filament body 400 (FIG. 31) of the third embodiment except that the bending mode (a) of the filament coil and (a) in (b) are different. It is a configuration. Therefore, in FIG. 32, the structural members substantially the same as the filament body 400 and its supporting structure (FIG. 31) will be assigned the same reference numerals and the detailed description thereof will be omitted. I will explain the part.
[0100] フィラメント体 420を構成するフィラメントコイル 402は、(c)長手方向中央部(屈曲 部 402C)での長軸 LX (中央長軸 LXc)と、第 1発光部 402A1のコイル支持部 404A に近い側の端部 (第 1端部)での長軸 LX (第 1端部長軸 LXbl)および第 2発光部 40 2A2のコイル支持部 406Aに近 、側の端部(第 2端部)での長軸 LX (第 2端部長軸 L Xb2)とが、直交 (立体交差)し、かつ (b)中央長軸 LXcと直交する向き (矢印 Aの向き
)に見て、全体的に逆「V」字状になるように、当該長手方向中央部を基点(中心)とし て屈曲されている。 The filament coil 402 constituting the filament body 420 includes (c) the long axis LX (central long axis LXc) at the longitudinal central portion (the bending portion 402C) and the coil support portion 404A of the first light emitting portion 402A1. At the near end (first end) the long axis LX (first end long axis LXbl) and at the end near the coil support 406A of the second light emitting section 402A2 (second end) The direction in which the major axis LX (second end major axis L Xb2) is orthogonal (crossover) and (b) orthogonal to the central major axis LXc (the direction of arrow A ), It is bent with the longitudinal central portion as a base point (center) so as to form an inverted “V” shape as a whole.
[0101] なお、第 1実施例〜第 4実施例において、サポート線 510 (図 28、図 29)、サポート 線 522 (図 30)、サポート線 412 (図 31、図 32)は、実施の形態 1〜実施の形態 5の 場合とは異なり、フィラメントコイル間を電気的に接続する機能は必要なぐフィラメン トコイルを機械的に支持できれば構わないため、絶縁性部材、例えばセラミック材料 やガラス材料で形成することも可能である。この場合であっても、フィラメントコイル 50 4、 402の屈曲部の内側では、隣接する巻き線同士 (ターン同士)が接触するほどに コイルピッチが狭くなるので、当該コイルピッチが狭くなり接触する部分で短絡が生じ る。その結果、当該短絡部分は発光せず、非発光部が形成されることとなる。この場 合、第 1実施例 (図 28,図 29)と第 2実施例(図 30)にあっては、第 1発光部 504A1と 第 2発光部 504A2の一端部同士が、第 3実施例 (図 31)と第 4実施例(図 32)にあつ ては、第 1発光部 402A1と第 2発光部 402A2の一端部同士が、それぞれ、非発光 部となるフィラメント線部分で、電気的に接続されていると言える。 In the first to fourth embodiments, the support wire 510 (FIG. 28, FIG. 29), the support wire 522 (FIG. 30), and the support wire 412 (FIG. 31, FIG. 32) are embodiments. Unlike the case of the first to fifth embodiments, the function of electrically connecting the filament coils is not limited as long as the required filament coil can be mechanically supported. Therefore, it is formed of an insulating member such as a ceramic material or a glass material. It is also possible. Even in this case, the coil pitch becomes narrower as the adjacent windings (turns) contact with each other on the inner side of the bent portion of the filament coil 50 4 or 402, so that the coil pitch becomes narrow and the portion to be in contact Causes a short circuit. As a result, the short circuit portion does not emit light and a non-emission portion is formed. In this case, in the first embodiment (FIGS. 28 and 29) and the second embodiment (FIG. 30), one end portions of the first light emitting portion 504A1 and the second light emitting portion 504A2 are the third embodiment. In FIG. 31 and the fourth embodiment (FIG. 32), one end portions of the first light emitting portion 402A1 and the second light emitting portion 402A2 are electrically connected to each other by a filament wire portion to be a non-light emitting portion. It can be said that it is connected.
<実施の形態 7 > Embodiment 7
図 33は、実施の形態 7に係る反射鏡付きハロゲン電球 100の概略構成を示す縦断 面図である。 FIG. 33 is a longitudinal cross-sectional view showing a schematic configuration of a reflecting-mirror-equipped halogen lamp 100 according to the seventh embodiment.
[0102] 反射鏡付きハロゲン電球 100は、反射鏡一体型のハロゲン電球である力 これに用 いているハロゲン電球 102は、主として口金が異なる以外は、実施の形態 1に係るハ ロゲン電球 14 (図 2)と基本的に同じ構成なので、共通部分には、同じ符号を付して、 その説明については省略する。なお、フィラメント体は、実施の形態 1のものに限らず 、実施の形態 2〜6のものとすることもできる。 [0102] The halogen bulb 100 with a reflector is a reflector-integrated type halogen bulb. The halogen bulb 102 used in this is mainly the halogen bulb 14 according to Embodiment 1 except for the base. Since the configuration is basically the same as 2), the same reference numerals are given to the common parts and the description thereof is omitted. The filament body is not limited to that of the first embodiment, but may be of the second to sixth embodiments.
[0103] 反射鏡 104は、硬質ガラスまたは石英ガラス等力もなり、漏斗状をした基体 106を 有する。基体 106において回転楕円面または回転放物面等に形成された凹面部分 106Aには、反射面を構成する多層干渉膜 108が形成されている。多層干渉膜 108 は、アルミニウムやクロム等の金属膜の他、二酸化ケイ素 ば) )、二酸化チタン (Ti The reflecting mirror 104 is also made of hard glass or quartz glass and has a funnel-shaped substrate 106. A multilayer interference film 108 which constitutes a reflection surface is formed on the concave portion 106A formed on the base 106 with a spheroidal surface or a paraboloid of revolution. The multilayer interference film 108 may be a metal film such as aluminum or chromium, silicon dioxide)), titanium dioxide (Ti
2 2
O )、フッ化マグネシウム (MgF)、硫ィ匕亜鉛 (ZnS)等で形成することができる。反射 O 2), magnesium fluoride (MgF), zinc sulfate (ZnS) or the like. Reflection
2 2
鏡 104の開口径 (ミラ一径)は 100mmである。なお、反射面には必要に応じてファセ
ットを形成してもよ ヽ。 The aperture diameter (mirror diameter) of the mirror 104 is 100 mm. In addition, if necessary, the reflective surface You may also
[0104] 反射鏡 104は、基体 106の開口部に設けられた前面ガラス 110を有する。前面ガラ ス 110は、基体 106に公知の止め金具 112によって係止されている。なお、止め金具 112に代えて、接着剤で固着してもよい。あるいは、両方を併用しても構わない。もつ とも、前面ガラスは、反射鏡付きハロゲン電球の必須の構成部材ではなぐ無くても構 わない。 The reflecting mirror 104 has a front glass 110 provided at the opening of the base 106. The front glass 110 is locked to the base 106 by known fasteners 112. In place of the stoppers 112, an adhesive may be used to fix them. Alternatively, both may be used in combination. Of course, the front glass can be one of the essential components of halogen lamps with reflectors.
[0105] 基体 106のネック部 106Bは、ハロゲン電球 102の口金 114の端子部 116, 118と は反対側に設けられた基体受け部 122と嵌合された上、接着剤 124で固着されてい る。 The neck portion 106 B of the base 106 is fitted with a base receiving portion 122 provided on the opposite side to the terminal portions 116 and 118 of the base 114 of the halogen lamp 102, and is fixed with an adhesive 124. .
なお、基体 106の口金 114への取り付けに先立って、バルブ 26が、口金 114に取 り付けられている。 The valve 26 is attached to the base 114 prior to the attachment of the base 106 to the base 114.
[0106] 以上、本発明を実施の形態に基づいて説明してきた力 本発明は、上記した形態 に限らないことは勿論であり、例えば、以下の形態とすることもできる。 As described above, the present invention has been described based on the embodiment. The present invention is, of course, not limited to the above-described embodiment, and may be, for example, the following embodiment.
(1)フィラメントコイルは、上記したトラック形状に限らず、他の扁平形状でも構わない 。要は、互いに直交する長軸と短軸を有する扁平な横断面をした筒状に卷回されて いれば構わない。また、扁平率も整数に限らず、任意の小数をとり得る。 (1) The filament coil is not limited to the track shape described above, and may have other flat shapes. The point is that it may be wound in a tubular shape having a flat cross section having a major axis and a minor axis orthogonal to each other. In addition, the aspect ratio is not limited to an integer, and can take an arbitrary fraction.
ここで、本発明において「短軸と長軸とを有する扁平な横断面」とは、以下に記すよう な形状のものを含む。当該形状について図 34を参照しながら説明する。なお、図 34 では、短軸に符号「SX」を、長軸に符号「LX」を、また、短軸および長軸の両軸と略 直交する中心軸 (すなわち、コイル軸心)に符号「CX」をそれぞれ付している。 Here, in the present invention, "a flat cross section having a short axis and a long axis" includes those having the following shapes. The shape will be described with reference to FIG. In FIG. 34, the minor axis is denoted by “SX”, the major axis is denoted by “LX”, and the minor axis and the major axis are both substantially orthogonal to the central axis (ie, coil axis). "CX" is attached respectively.
[0107] (i)同図(a)に示すように、コイル軸心 CX方向力 見て、上記したトラック形状のもの 、つまり二つの平行な線分とそれらの各々の両端を略半円で結んだもの。 (I) As shown in the same figure (a), looking at the coil axial center CX direction force, the track shape described above, that is, two parallel line segments and their respective ends in a substantially semicircle It was tied.
(ii)同図 (b)に示すように、コイル軸心 CX方向から見て、円形を押し潰した形状の もの。 (ii) As shown in (b) of the figure, the one having a shape in which the circular shape is crushed when viewed from the direction of the coil axis CX.
(iii)同図(c)に示すように、コイル軸心 CX方向力も見て、略楕円形状のもの (iii) As shown in (c) of the figure, the coil axial center CX direction force is also viewed to have a substantially elliptical shape
(iv)同図(d)に示すように、コイル軸心 CX方向力 見て、略長方形のもの。但し、 四隅は、加工上、丸みを帯びる。 (iv) As shown in (d) of the figure, the coil axial center CX direction force is substantially rectangular. However, the four corners are rounded on processing.
[0108] (V)その他、コイル軸心 CX方向から見て、上記 (i)〜(iv)に類似した形状のもの。例
えば上記 (i)において、同図(e)に示すように、二つの平行な線分が内方向に湾曲し ていても上記 (i)に類似した形状として含む。また、ここでは、加工ばらつきによる上 記 (i)〜 (iv)の変形形状も含む。 (V) Others, having a shape similar to the above (i) to (iv) when viewed from the coil axis CX direction. Example For example, in (i) above, as shown in (e) of the same figure, even if two parallel line segments are curved in the inward direction, they are included as shapes similar to the above (i). Moreover, the deformed shape of said (i)-(iv) by process variation is also included here.
(2)また、本発明は、フィラメント体の発光部を扁平な筒状に卷回された一重のコイル 状をしたものとした力 これに限らず、円筒状に卷回された一重のコイル状をしたもの としても構わない。要は、コイル軸心が略直線状をしているものであれば、その横断 面形状は問わな 、のである。 (2) Further, in the present invention, the force of the light emitting portion of the filament body in the form of a single layer coil wound in a flat cylindrical shape is not limited thereto, and the present invention is not limited to this. It does not matter if you The point is that as long as the coil axis is substantially linear, the cross-sectional shape is arbitrary.
(3)上記実施の形態 1では、反射鏡を備える照明器具とハロゲン電球とで照明装置 を構成したが、これに限らず、反射鏡を有しない照明器具と反射鏡付きハロゲン電球 とで照明装置を構成することとしても構わない。具体的には、例えば、図 1に示す照 明装置における反射鏡 18とハロゲン電球 14の代わりに、図 33に示す反射鏡付きハ ロゲン電球 100を取り付けて、照明装置を構成することとしても構わない。 (3) In the first embodiment, the lighting apparatus is configured by the lighting apparatus including the reflecting mirror and the halogen bulb, but the invention is not limited thereto, and the lighting apparatus includes the lighting apparatus without the reflecting mirror and the halogen bulb with the reflecting mirror. It does not matter as it constitutes. Specifically, for example, a halogen lamp 100 with a reflector shown in FIG. 33 may be attached instead of the reflector 18 and the halogen lamp 14 in the illuminator shown in FIG. Absent.
(4)上記実施の形態では、管球の一例としてハロゲン電球を示した力 本発明は、ハ ロゲン電球以外の管球にも適用可能である。要は、フィラメント体に電流を流して白 熱発光させる光源であれば構わな 、のである。 (4) In the above-described embodiment, the force showing a halogen bulb as an example of the bulb The present invention is also applicable to a bulb other than a halogen bulb. The point is that any light source may be used as long as it emits white heat by passing an electric current through the filament body.
産業上の利用可能性 Industrial applicability
本発明に係る管球は、例えば、反射鏡に組み込まれて使用される管球として好適 に利用可能である。
The tube according to the present invention can be suitably used, for example, as a tube incorporated and used in a reflecting mirror.