WO2007132106A1 - Procédé de pilotage d'un dispositif d'accouplement de deux crabots - Google Patents

Procédé de pilotage d'un dispositif d'accouplement de deux crabots Download PDF

Info

Publication number
WO2007132106A1
WO2007132106A1 PCT/FR2007/051183 FR2007051183W WO2007132106A1 WO 2007132106 A1 WO2007132106 A1 WO 2007132106A1 FR 2007051183 W FR2007051183 W FR 2007051183W WO 2007132106 A1 WO2007132106 A1 WO 2007132106A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
phase
clutch
dog
mobile
Prior art date
Application number
PCT/FR2007/051183
Other languages
English (en)
Inventor
Franck Guillemard
Sébastien BESNARD
Serge Belmont
Jérôme LAFFITE
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Priority to EP07731956A priority Critical patent/EP2021648A1/fr
Publication of WO2007132106A1 publication Critical patent/WO2007132106A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/08Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially
    • F16D11/10Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially with clutching members movable only axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/064Control of electrically or electromagnetically actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1021Electrical type
    • F16D2500/1023Electric motor
    • F16D2500/1025Electric motor with threaded transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/10462Dog-type clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3041Signal inputs from the clutch from the input shaft
    • F16D2500/30415Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3166Detection of an elapsed period of time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/506Relating the transmission
    • F16D2500/50638Shaft speed synchronising, e.g. using engine, clutch outside transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70404Force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7042Voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/047Smoothing ratio shift by preventing or solving a tooth butt situation upon engagement failure due to misalignment of teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0474Smoothing ratio shift by smoothing engagement or release of positive clutches; Methods or means for shock free engagement of dog clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H2061/2823Controlling actuator force way characteristic, i.e. controlling force or movement depending on the actuator position, e.g. for adapting force to synchronisation and engagement of gear clutch

Definitions

  • the invention relates to a method for controlling a coupling device of two claws.
  • the invention finds particular utility in the automotive sector in the context of close-ratio control of an integrated sequential gearbox either within a conventional traction chain or within a hybrid traction system including in one or more electric traction motors, or within any traction chain for which it is necessary to place between the energy source and the wheels a sequential gearbox making it possible to comply with the operating constraints related to the source of energy.
  • FIG. 1 shows an example of driving two shafts 1 and 2, the shaft 1 forming an input shaft of the gearbox and the shaft 2 forming an output shaft of the gearbox.
  • a pinion 3 is integral with the shaft 1 and a pinion 4 is mounted loosely on the output shaft 2.
  • an actuating device 5 allows, according to the report requested, to make integral the idler 4 of the tree 2 around which it turns, or on the contrary to separate it from this tree 2 to make it free.
  • the actuating device 5 comprises two claws 6 and 7.
  • the clutch 6 is integral with the idler gear 4 and the clutch 7 is integral in rotation with a shaft 2 around which the idler gear 4 rotates and free in translation along the clutch. axis of rotation of the shaft 2.
  • the clutch 6 has teeth 9 adapted to be interposed between teeth 10 of the clutch 7 so as to make the idle gear 4 of the shaft 2 around which it rotates.
  • the actuating device 5 also comprises a synchronization mechanism 11 generally comprising two cones 12 and 13 associated with each of the claws 6 and 7 and making it possible to cancel the difference in speed of rotation that can exist between the claws 6 and 7 when interconnection is desired to change gear and thus to avoid excessive shock between the gears 3 and 4.
  • a synchronization mechanism 11 generally comprising two cones 12 and 13 associated with each of the claws 6 and 7 and making it possible to cancel the difference in speed of rotation that can exist between the claws 6 and 7 when interconnection is desired to change gear and thus to avoid excessive shock between the gears 3 and 4.
  • shocks can lead to premature wear of jaw 6 and 7 and also to a loss approval for the driver of a vehicle equipped with such a gearbox in a shift phase.
  • the actuating device 5 further comprises a drive mechanism in translation of the clutch 7 to perform either a clutch or a clutch. To avoid overloading the figure, the steering mechanism is not shown. Arrows 14 nevertheless show the movement of the clutch 7 to obtain the interconnection.
  • the subject of the invention is a method for controlling a coupling device without a synchronization mechanism of two dog claws rotating about the same axis and each formed teeth, the claws being capable of meshing under the action of a mechanism allowing the displacement in translation of one of the jaw said movable dog relative to the other clutch said fixed clutch, the translation being along the axis of rotation of the jaw, characterized in that the method consists in linking the following phases:
  • the first phase it is possible to predetermine its duration from an average time required for the contactless approach of the mobile clutch relative to the fixed clutch. It is also possible to define the end of the first phase based on information received by a sensor measuring the translational movement of the mobile clutch.
  • the mechanism for translational movement of the movable clutch comprises an actuator.
  • the actuator is controlled to the maximum of its possibilities.
  • the duration of the second phase is predetermined from an average time required for a tooth of the mobile dog to move angularly around the axis of rotation of the jaw by an angle equivalent to an angular width of a tooth .
  • the method may comprise another phase following the third phase.
  • the mobile clutch is enslaved in the position taken by the mobile clutch end of the third phase.
  • the relative angular velocity of the two claws is brought substantially to a given value.
  • a mobile dog fitted with large teeth and a fixed clutch equipped with both large teeth identical to the teeth and in addition to small teeth of the same shape as the large teeth in a pair are used.
  • reduced size and formed in the recesses between large teeth the method being characterized in that during the third phase, it consists in momentarily increasing a torque applied to the fixed clutch so as to force the establishment of a contact between the teeth of the mobile dog and the large teeth of the fixed clutch and to avoid the establishment of contact between the teeth of the mobile clutch and the small teeth of the fixed clutch.
  • the momentary increase in torque can be followed by a momentary cancellation of the torque.
  • This cancellation of the torque facilitates the end of the stroke of the teeth of the mobile clutch.
  • the method according to the invention implements a mobile dog provided with large teeth and a fixed clutch provided with both large teeth identical to the teeth and in addition to small teeth of the same shape as the large teeth in a reduced size and arranged in the large interiors, the method being characterized in that the second phase only concerns the large teeth of the fixed clutch, in that the third phase is followed by a fourth phase during which the effort is reduced allowing translation of the mobile clutch when the top of the teeth of the mobile clutch is likely to touch the top of the small teeth of the fixed clutch, and in that the fourth phase is followed by a fifth phase identical to the third phase.
  • FIG. 1 schematically represents a device for dog clutch comprising a synchronization mechanism
  • - Figure 2 shows schematically a claw coupling device without synchronization mechanism
  • Figures 1 and 2 have been previously described to illustrate the prior art
  • Figure 3 schematically shows an example of a clutch coupling device to which the invention can be applied
  • FIG. 7 a represents, in chronogram form, a control voltage of a motor operating one of the claws
  • FIG. 7b shows the disposition of the teeth corresponding to the timing diagram of Figure 7a;
  • FIG. 8 schematically shows characteristics of an engine implemented in a mechanism for translational movement of the mobile clutch;
  • FIG. 9 represents the relative position of the jaw teeth during the different phases of a process according to the invention.
  • Figure 10 illustrates the method in the case where the fixed clutch is provided with large and small teeth;
  • FIG. 1 1 illustrates a variant of the method in the case where the fixed clutch is provided with large and small teeth.
  • FIG. 3 represents a jaw coupling device without a synchronization mechanism and taking up the various elements of the device of FIG. 2, namely the shafts 1 and 2, the pinions 3 and 4 and the dogs 6 and 7.
  • the shaft 1 is for example an input shaft of a gearbox and is connected to a traction motor 18 thermal or electrical.
  • the shaft 2 is for example an output shaft of the gearbox and is connected to the wheels of a vehicle equipped with the gearbox.
  • the drive mechanism in translation of the clutch 7 comprises an electric motor 20 and a barrel 21 driven by the electric motor 20 via a speed reducer 22.
  • the barrel 21 is hollowed by at least one track 23 in which a finger 24 can slide.
  • the track 23 has for example a helical shape around a shaft 25 of rotation of the barrel 21.
  • the finger 24 is integral with a fork 26 driving the clutch 7 in translation along the shaft 2.
  • the translational movement of the fork 26 is embodied by the arrow 27.
  • a curve 28 showing the relationship, defined by the profile of the track 23, between the rotation angle ⁇ of the shaft 25 and the displacement in translation of the finger 24 along an axis z parallel to the shaft 2.
  • the mechanism further comprises a first angular velocity sensor 30 of the rotation of the shaft 25 a second angular velocity sensor 31 of the rotation of the shaft 1 and a third angular velocity sensor 32 of the rotation of the shaft 2.
  • the sensors 30, 31 and 32 transmit to a computer 33 the rotational speeds of the shafts 1, 2 and 25.
  • the computer 33 allows in particular to control the motors 18 and 20.
  • FIGS. 4 and 5 respectively represent two examples of shape of the teeth 9 and 10 respectively belonging to the claws 6 and 7.
  • the teeth 9 and 10 are positioned regularly on the same mean radius around the axis of the shaft 2 in such a way that the teeth 10 of the clutch 7 can be inserted in recesses formed between the teeth 9 of the clutch 6.
  • each tooth 9 and 10 of each dog 6 and 7 are identical. It is quite possible to implement the invention in other geometric configurations of teeth and in particular in the case where the dog 7 is provided with large teeth 35 similar to the teeth 10 and the other clutch 6 is provided with both large teeth 36 identical to the teeth 35 and in addition to small teeth 37 of the same shape as the large teeth 36 in a reduced size and formed in the recesses formed between the large teeth 36 as shown in Figure 5.
  • Each tooth comprises two types of faces, flanks and a vertex.
  • Each tooth 10 has two flanks 40 and 41 whose normal axis is substantially perpendicular to the axis of translation of the claws 6 and 7.
  • the flanks 40 and 41 may be slightly inclined at an angle ⁇ f , as shown in FIG.
  • the angle ⁇ f is advantageously less than 10 °.
  • the flanks 42 and 43 teeth 9 are parallel to the corresponding flanks, respectively 40 and 41, of the teeth 10.
  • Each tooth 10 has a vertex 44 whose shape is substantially in a plane whose normal axis is parallel to the axis of translation of the claws 6 and 7.
  • the shape of the top 44 may for example be curved but for reasons of simplicity it is considered that the top 44 has two plane faces 44a and 44b symmetrical with respect to a plane of symmetry of the two sides 40 and 41. Both faces are inclined at an angle ⁇ d advantageously less than 15 °.
  • Each tooth 9 also has a vertex 45 similar to the apex 44.
  • the vertex 45 has two flat faces 45a and 45b.
  • the curved shape, modeled by the flat faces 44a, 44b, 45a and 45b produced in the event of contact of the crown-to-apex teeth, is an increase in the difference in angular velocity between jaws (in this case the surface promotes the angular movement between teeth) , or a decrease in angular velocity between jaw (in this case the surface opposes the angular movement between teeth).
  • FIG. 4 there is shown in bold line an envelope curve 46 of the possible positions of a point O situated in the middle of the vertex 44 of the tooth 10 during the contact of the teeth 9 and 10 during the interconnection.
  • the envelope 46 makes it possible to statistically predict the probability of having one of the three configurations a) b) and c) previously described.
  • the casing 46 is represented on an angular length c about the axis of rotation of the claws equal to 2 ⁇ / n, where n represents the total number of teeth of one of the claws.
  • first portion 46 (1) of the envelope 46 of length angular a one is in the first configuration a) of tooth-to-tooth-to-tooth contact with orientation of the tooth-crown surface promoting angular relative movement between jaws.
  • second portion 46 (2) of the envelope 46 of angular length b one is in the second configuration b) flank contact on the side of the teeth.
  • third portion 46 (3) of the casing 46 of angular length a it is found in the third configuration c) of tooth-to-tooth-to-tooth contact with orientation of the tooth-crown surface opposing the movement relative angular between jaw.
  • FIG. 6 presents various possible cases during the interconnection, obtained with a control of the motor 20 of the control mechanism in translation of the clutch 7. open-loop type, constantly feeding it to its maximum voltage. These cases are as much a source of dispersion in the times obtained by interconnection.
  • FIG. 6 represents different relative positions of the two claws 6 and 7. For each case, the positions chronologically follow one another from the top to the bottom of FIG. 6. Arrows show the relative movement of a tooth 10 with respect to a tooth 9 .
  • case # 2 the teeth fall directly into their respective recesses and then bear flank on the flank.
  • a tooth-to-tooth-to-tooth contact is first obtained opposing the relative angular movement between jaws.
  • the relative angle continues to increase resulting in an inversion of the movement (therefore the speed) of translation between teeth (ascent of the tooth 10).
  • the relative angle stabilizes and then decreases (thus the angular relative speed is reversed) so that the translation movement is reversed again (inversion of the translation speed).
  • the teeth fall into their respective hollow and then support flank on flank.
  • the method according to the invention consists in proposing a control of the motor 20 of the control mechanism in translation of the clutch 7 reducing the time of interconnection. The dispersion of the clutch time is also reduced.
  • the method eliminates the case No. 3 in seeking to avoid the opposition to the relative angular movement between dogs during tooth to tooth contact on tooth tip while minimizing at that time tooth to tooth support who is at the source of the effort of resistance. In this way the movement is only slightly disturbed, case no. 3 can no longer occur and we therefore return to case # 4.
  • the process generally consists in very strongly reducing for a given time ⁇ ti the force applied on the jaws in tooth-to-tooth contact on the tooth tip.
  • This reduction of effort is obtained by reducing the control setpoint of the motor 20.
  • the evolution over time of this setpoint is represented in FIG. 7a in the form of a voltage U and the corresponding translation of the mobile clutch 7 is represented. in Figure 7b.
  • the point O, middle of the vertex o 44 of a tooth 10 is at the coordinate X 0 .
  • U ma ⁇ This is the first phase of the process.
  • the point O reaches the dimension Xi corresponding to a possible contact tooth vertex on tooth tip. From time t i and up to a time t 2 , the voltage U is strongly reduced to a value U min . This is the second phase of the process. During this phase, the position of the point O evolves little and its dimension remains close to Xi. Then, from time t 2 , the voltage U is increased to reach the value U ma ⁇ again.
  • the end time ti of the first phase can be predefined.
  • a model for calculating this instant uses characteristics of the engine 0 20 represented diagrammatically in FIG. 8.
  • I represents the total inertia of the mechanism for driving in translation of the dog 7 brought back to the level of the engine 20, R la Motor resistance 20 and Ke the electromagnetic gain of the motor 20.
  • the inductance of the motor 20 is not taken into account. It is considered that the inductance has only a very small effect on the dynamic behavior. 20. Neither is the different friction of the mechanism considered. This friction is negligible compared to the electromagnetic torque of the motor 20.
  • the reduction ratio r between the motor angle and the position of the movable clutch 7, of the current i 0 flowing in the motor 20 is also taken into account.
  • the kinematic parameters are denoted by FIG. the following way: x, the current position of the point O in its translation, ⁇ m the angular speed of the motor 20 and ⁇ m the angular position of the motor 20.
  • a parameter ⁇ m is introduced related to the parameters of the engine 20:
  • This ti calculation model makes it possible to avoid any recourse to the angular speed sensor 30. It is also possible to use the sensor 30 to define the instant t-i. Similarly, the duration ⁇ ti of the second phase can be predefined.
  • the motor 20 of the drive mechanism in translation of the clutch 7 is modeled as previously by I, the total inertia of the drive mechanism in translation of the clutch 7 brought back to the motor 20, R the resistance of the motor 20 and Ke the electromagnetic gain of the motor 20.
  • I the total inertia of the drive mechanism in translation of the clutch 7 brought back to the motor 20
  • R the resistance of the motor 20
  • Ke the electromagnetic gain of the motor 20.
  • r the reduction ratio between the motor angle 20 and the movable clutch position 7 along the axis of the shaft 2
  • sliding coefficient of the tooth vertex on top of the tooth
  • rt the mean radius of positioning of the teeth 9 and 10 about the axis of the shaft 2
  • Jt the inertia of the traction motor 18 ⁇ m the angular speed of the motor shaft 20, ⁇ m the angular position of the motor shaft 20, i the current flowing in the motor 20, x the relative position in translation of the teeth of the movable clutch 7 along the axis of the shaft 2
  • the torque C is reflected on the teeth by a bearing force F n on the contact which itself generates a tangential force F t of resistance to angular movement between jaw
  • the inertia J t is that of the traction motor 18.
  • the shaft 2 in relation with the wheels is considered at almost constant speed, its inertia being very large compared to the inertia J t of the traction motor 18.
  • ⁇ ti involves the dynamic parameters of the mechanism allowing the translational movement of the mobile clutch 7 and also the initial angular differential speed ⁇ ⁇ n ⁇ between jaw claws .
  • the knowledge of the latter requires the use of two speed sensors 31 and 32 placed respectively on the shafts 1 and 2.
  • a simplified expression of ⁇ ti can be obtained by neglecting the resistive torque caused by the motor 20.
  • the duration ⁇ ti simply corresponds to the ratio between the angular width I of the tooth and the initial angular velocity ⁇ ⁇ n ⁇ between jaw : At ⁇ - (31)
  • FIG. 9 represents the relative position of the teeth of the clutch 6 and 7 during the different phases of the method as a function of the voltage U applied to the motor 20. It is in the situation that would have resulted in the case No. 3 in the absence of the process of the invention.
  • the point O of the tooth 10 is at the coordinate X 0 and the voltage U ma ⁇ is applied to the motor 20 until the moment ti. Between times t 0 and t i, the point O moves to the dimension Xi. Between times t 1 and t 2 , the voltage U is reduced to a value U min and the tooth 10 has an angular speed represented by the arrow 60. Although during this period, a tooth-to-tooth-to-tooth contact is first obtained opposing the relative angular movement between claws, the angular movement of the jaw does not reverse and the point O exceeds the top of a tooth 9 before the time t 2 . The decrease of the voltage U minimizes the contact force between the teeth 9 and 10. Between the instant t 2 and t 3 , the voltage U is again raised to the value U ma ⁇ and the tooth 10 can be inserting between two teeth 9. The point O thus passes from the dimension Xi to the dimension X 2 .
  • the time of interconnection will be shorter as the difference in angular velocity between jaw 6 and 7 will be large.
  • the most penalizing case is the case n ° 4 for which a large part of the time is linked to the existence of the tooth-to-tooth contact at first on the opposite side to the tooth. angular movement then on the face favoring the angular movement. The greater the difference in angular velocity, the shorter this time will be. In practice, it is not possible to increase the speed difference beyond a certain threshold essentially for reasons of mechanical strength of the teeth and also of approval.
  • This control method advantageously requires knowledge of the relative angular velocity difference between the claws 6 and 7. To do this, it is piloted before the first phase, the angular speed of the traction motor 18 to achieve a desired relative speed between the jaw 6 and 7. Then during the interconnection, (phase 1 to 4), it is no longer necessary to drive the traction motor. This presents the advantage of decorrelating the control of the traction motor 18 and the control of the mechanism allowing the translational movement of the mobile clutch 7.
  • the method makes it possible to reduce, on average, the interconnection time, even if in certain situations the process increases it.
  • the shortest clutch time is a priori obtained for a maximum motor voltage U permanently applied. Nevertheless, we note that the increase of the time of interconnection for cases n ° 1 and 2 remains moderate.
  • the main advantage of the method lies in the fact of limiting the differences between the interconnection times noted in the different cases.
  • the motor 20 is often provided with a local loop for regulating the dynamic current greater than the dynamics involved in the entire mechanism for translational movement of the mobile clutch 7.
  • the control method can still be applied without significant modification simply by adapting an algorithm operating the computer 33.
  • the current setpoint In the first phase of the process, the current setpoint must be set as high as possible in order to saturate the voltage control at full voltage.
  • the current set point is set to the value l mn to generate a sufficiently small contact force to limit the possible decrease in the movement, but large enough to avoid a detachment of the contact area between the tops of the teeth.
  • the current setpoint is again set to its maximum so as to saturate the control voltage again at full voltage.
  • the clutch 7 is provided with large teeth 35 similar to the teeth 10 and the other clutch 6 provided both large teeth 36 identical to the teeth 35 and in addition to small teeth 37 of the same shape as the large teeth 36 in a reduced size and formed in the hollow between large teeth 36.
  • a method according to the invention can still be applied in a simple way to facilitate only the relative angular movement between jaw in the contact phase large tooth 35 on large tooth 36. It is then always possible that the relative angular movement is slowed in the contact phase large tooth 35 on small tooth 37, causing an increase in interconnection time.
  • FIG. 11 illustrates another method making it possible to facilitate the interconnection of a device as illustrated in FIG. 5.
  • the method consists in reducing the force allowing the mobile dog 7 to be translated twice: once to facilitate the angular movement in contact phase large tooth on large tooth and once to facilitate the angular movement in contact phase large tooth on small tooth.
  • the control of the engine 20 is then broken down as follows:
  • a first phase the motor 20 is controlled under full voltage U ma ⁇ to minimize the time of interconnection.
  • the control voltage is limited to avoid case No. 3 of FIG. 6 when the apex of the large teeth 35 comes into contact with the apex of the large teeth 36.
  • the duration ⁇ ti of this second phase is calculated as above using the knowledge of the difference in angular velocity between jaw 6 and 7.
  • ⁇ t2 is calculated as ⁇ t1 by considering as the angular width, not the width I of the large tooth 36, but the sum of the half-width I / 2 of the large tooth 36 and the half-width 172 of the small tooth 37
  • the calculation of ⁇ t2 again requires the use of speed sensors 31 and 32 of shafts 1 and 8 to estimate the difference in angular velocity between claws 6 and 7.
  • the motor 20 is again commanded at full voltage U ma ⁇ to minimize the time of interconnection. Finally as soon as the point O has reached the dimension x3 (use of the angular position sensor 30), it is switched to a regulation in position of the motor 20 to stop the mobile clutch 7 in its position of interconnection.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Operated Clutches (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

Procédé de pilotage d'un dispositif d'accouplement de deux crabots L'invention concerne un procédé de pilotage d'un dispositif d'accouplement sans mécanisme de synchronisation de deux crabots tournant autour d'un même axe et formés chacun de dents (9, 10), les crabots étant susceptibles de s'engrener sous l'action d'un mécanisme permettant le déplacement en translation d'un des crabots dit crabot mobile par rapport à l'autre crabot dit crabot fixe, la translation se faisant le long de l'axe de rotation des crabots. Le procédé consiste à enchaîner les phases suivantes : lors d'une première phase d'approche sans contact du crabot mobile par rapport au crabot fixe, à appliquer un effort maximum (U<SUB>ma</SUB>

Description

Procédé de pilotage d'un dispositif d'accouplement de deux crabots
L'invention concerne un procédé de pilotage d'un dispositif d'accouplement de deux crabots. L'invention trouve une utilité particulière dans le secteur automobile dans le cadre du pilotage rapproché des rapports d'une boite de vitesses séquentielle intégrée soit au sein d'une chaîne de traction classique, soit au sein d'une chaîne de traction hybride incluant en plus du moteur thermique un ou plusieurs moteurs électriques de traction, soit au sein de toute chaîne de traction pour laquelle il est nécessaire de placer entre la source d'énergie et les roues une boite de vitesses séquentielle permettant de respecter les contraintes de fonctionnement liées à la source d'énergie.
Usuellement une boite de vitesses séquentielle est constituée de plusieurs arbres munis d'un ensemble de pignons permettant l'obtention de plusieurs rapports de vitesses et donc de couples entre l'arbre d'entrée de boite et l'arbre de sortie. La figure 1 représente un exemple d'entraînement de deux arbres 1 et 2, l'arbre 1 formant un arbre d'entrée de la boite de vitesses et l'arbre 2 formant un arbre de sortie de la boite de vitesses. Un pignon 3 est solidaire de l'arbre 1 et un pignon 4 est monté fou sur l'arbre de sortie 2. un dispositif d'actionnement 5 permet, suivant le rapport demandé, de rendre soit solidaire le pignon fou 4 de l'arbre 2 autour duquel il tourne, soit au contraire de le désolidariser de cet arbre 2 pour le rendre libre.
Le dispositif d'actionnement 5 comporte deux crabots 6 et 7. Le crabot 6 est solidaire du pignon fou 4 et le crabot 7 est solidaire en rotation d'un arbre 2 autour duquel tourne le pignon fou 4 et libre en translation le long de l'axe de rotation de l'arbre 2. Le crabot 6 comporte des dents 9 aptes à s'intercaler entre des dents 10 du crabot 7 de telle sorte de rendre solidaire le pignon fou 4 de l'arbre 2 autour duquel il tourne.
Le dispositif d'actionnement 5 comporte également un mécanisme de synchronisation 11 comprenant généralement deux cônes 12 et 13 associés à chacun des crabots 6 et 7 et permettant d'annuler la différence de vitesse de rotation pouvant exister entre les crabots 6 et 7 lorsqu'un crabotage est souhaité pour changer de rapport et donc permettant d'éviter tout choc excessif entre les pignons 3 et 4. De tels chocs peuvent mener à une usure prématurée des crabots 6 et 7 et également à une perte d'agrément pour le conducteur d'un véhicule équipé d'une telle boite de vitesses dans une phase de changement de rapport.
Le dispositif d'actionnement 5 comporte en outre un mécanisme de pilotage en translation du crabot 7 permettant d'effectuer soit un décrabotage, soit un crabotage. Pour ne pas surcharger la figure, le mécanisme de pilotage n'est pas représenté. Des flèches 14 montrent néanmoins le mouvement du crabot 7 pour obtenir le crabotage.
Avec l'intégration de calculateurs sur les sources d'énergie de traction qu'il s'agisse de moteur thermique ou électrique et également avec la mise en place de chaînes d'actionnement de changement de rapport automatisées, le conducteur n'agit plus directement sur les crabots qui sont manœuvres par une autre source d'énergie électrique ou hydraulique par exemple. Avec également l'implantation de capteurs de position et de vitesse permettant de connaître précisément et à tout instant la vitesse relative entre les deux crabots 6 et 7 en rotation comme en translation, le pilotage du changement de rapport devient plus facile.
Grâce à ces nouveaux moyens, on peut se passer de mécanisme de synchronisation mécanique utilisant les cônes 12 et 13 représentés sur la figure 1 . Il est effet tout à fait possible de reconstituer la synchronisation par la mise en place d'un algorithme de commande assurant la synchronisation entre le dispositif de changement de rapport et le moteur de traction concerné par le changement de rapport et la charge véhicule. Une telle simplification, représenté sur la figure 2, permet notamment de simplifier la boite de vitesses, de réduire sa taille et de limiter son coût. Or on a constaté que suivant le positionnement angulaire relatif des crabots 6 et 7 l'un par rapport à l'autre au moment du contact entre leurs dents respectives, il apparaît une forte dispersion dans la durée pour effectuer le crabotage. Pour le conducteur, cette dispersion est très sensible et est source d'inconfort et donc ressentie négativement par le conducteur. L'invention a pour objectif de résoudre ce problème en proposant un nouveau procédé de pilotage d'un dispositif d'accouplement à crabots permettant de réduire la durée de crabotage ainsi que de réduire la dispersion de cette durée.
A cet effet, l'invention a pour objet un procédé de pilotage d'un dispositif d'accouplement sans mécanisme de synchronisation de deux crabots tournant autour d'un même axe et formés chacun de dents, les crabots étant susceptibles de s'engrener sous l'action d'un mécanisme permettant le déplacement en translation d'un des crabots dit crabot mobile par rapport à l'autre crabot dit crabot fixe, la translation se faisant le long de l'axe de rotation des crabots, caractérisé en ce que le procédé consiste à enchaîner les phases suivantes :
- lors d'une première phase d'approche sans contact du crabot mobile par rapport au crabot fixe, à appliquer un effort maximum permettant la translation du crabot mobile,
- lors d'un seconde phase pendant laquelle le sommet des dentsdu crabot mobile est susceptible de toucher le sommet des dents du crabot fixe, à réduire l'effort permettant la translation du crabot mobile, et
- lors d'une troisième phase pendant laquelle un flanc des dents du crabot mobile est susceptible de toucher un flanc des dents du crabot fixe, à appliquer un effort maximum permettant la translation du crabot mobile.
Pour la première phase, il est possible de prédéterminer sa durée à partir d'un temps moyen nécessaire à l'approche sans contact du crabot mobile par rapport au crabot fixe. Il est également possible de définir la fin de la première phase en fonction d'une information reçue par un capteur mesurant le déplacement en translation du crabot mobile.
Avantageusement, le mécanisme permettant le déplacement en translation du crabot mobile comporte un actionneur. Lors de la première phase et de la troisième phase, l'actionneur est commandé au maximum de ses possibilités.
Avantageusement, la durée de la seconde phase est prédéterminée à partir d'un temps moyen nécessaire à une dent du crabot mobile pour se déplacer angulairement autour de l'axe de rotation des crabots d'un angle équivalent à une largeur angulaire d'une dent.
Le procédé peut comporter une autre phase suivant la troisième phase. Au cours de cette autre phase le crabot mobile est asservi dans la position prise par le crabot mobile en fin de troisième phase. Avantageusement, préalablement à la première phase, la vitesse angulaire relative des deux crabots est amenée sensiblement à une valeur donnée.
Dans une variante du procédé selon l'invention, on met en œuvre un crabot mobile muni de grandes dents et un crabot fixe muni à la fois de grandes dents identiques aux dents et en complément de petites dents de même forme que les grandes dents dans une taille réduite et ménagées dans les creux entre grandes dents, le procédé étant caractérisé en ce que pendant la troisième phase, il consiste à augmenter momentanément un couple appliqué sur le crabot fixe de façon à forcer l'établissement d'un contact entre les dents du crabot mobile et les grandes dents du crabot fixe et à éviter l'établissement d'un contact entre les dents du crabot mobile et les petites dents du crabot fixe.
L'augmentation momentanée du couple peut être suivie d'une annulation momentanée du couple. Cette annulation du couple permet de faciliter la fin de la course des dents du crabot mobile.
Selon une autre variante, le procédé selon l'invention met en œuvre un crabot mobile muni de grandes dents et un crabot fixe muni à la fois de grandes dents identiques aux dents et en complément de petites dents de même forme que les grandes dents dans une taille réduite et ménagées dans les creux entre grandes, le procédé étant caractérisé en ce que la deuxième phase ne concerne que les grandes dents du crabot fixe, en ce que la troisième phase est suivie d'une quatrième phase pendant laquelle on réduit l'effort permettant la translation du crabot mobile lorsque le sommet des dents du crabot mobile est susceptible de toucher le sommet des petites dents du crabot fixe, et en ce que la quatrième phase est suivie d'une cinquième phase identique à la troisième phase.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description illustrée par le dessin joint dans lequel : - la figure 1 représente schématiquement un dispositif d'accouplement à crabots comprenant un mécanisme de synchronisation ; - la figure 2 représente schématiquement un dispositif d'accouplement à crabots sans mécanisme de synchronisation ;
(les figures 1 et 2 ont été décrites précédemment pour illustrer l'art antérieur) - la figure 3 représente schématiquement un exemple de dispositif d'accouplement à crabots auquel l'invention peut être appliquée ;
- les figures 4 et 5 représentent des configurations possibles des dents des crabots avant crabotage ;
- la figure 6 représente différents cas possibles de positionnement relatif des dents des crabots au moment de l'entrée en contact des dents ;
- la figure 7a représente sous forme de chronogramme une tension de commande d'un moteur manœuvrant un des crabots ;
- la figure 7b représente la disposition des dents correspondant au chronogramme de la figure 7a ; - la figure 8 représente schématiquement des caractéristiques d'un moteur mis en œuvre dans un mécanisme permettant le déplacement en translation du crabot mobile ;
- la figure 9 représente la position relative des dents des crabots durant les différentes phases d'un procédé conforme à l'invention ; - la figure 10 illustre le procédé dans le cas où le crabot fixe est muni de grandes et de petites dents ; et
- la figure 1 1 illustre une variante du procédé dans le cas où le crabot fixe est muni de grandes et de petites dents.
Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures.
La figure 3 représente un dispositif d'accouplement à crabots sans mécanisme de synchronisation et reprenant les différents éléments du dispositif de la figure 2, à savoir les arbres 1 et 2, les pignons 3 et 4 et les crabots 6 et 7. L'arbre 1 est par exemple un arbre d'entrée d'une boîte de vitesses et est relié à un moteur de traction 18 thermique ou électrique. L'arbre 2 est par exemple un arbre de sortie de la boîte de vitesses et est relié aux roues d'un véhicule équipé de la boîte de vitesses. Le mécanisme de pilotage en translation du crabot 7 comprend un moteur électrique 20 et un barillet 21 entraîné par le moteur électrique 20 par l'intermédiaire d'un réducteur de vitesse 22. Le barillet 21 est creusé par au moins une piste 23 dans laquelle un doigt 24 peut coulisser. La piste 23 a par exemple une forme hélicoïdale autour d'un arbre 25 de rotation du barillet 21 . Le doigt 24 est solidaire d'une fourchette 26 entraînant le crabot 7 en translation le long de l'arbre 2. Le mouvement en translation de la fourchette 26 est matérialisé par la flèche 27. Sur la figure 3, on a représenté une courbe 28 montrant la relation, définie par le profil de la piste 23, entre l'angle de rotation θ de l'arbre 25 et le déplacement en translation du doigt 24 suivant un axe z parallèle à l'arbre 2. Le mécanisme comporte en outre un premier capteur de vitesse angulaire 30 de la rotation de l'arbre 25 un deuxième capteur de vitesse angulaire 31 de la rotation de l'arbre 1 et un troisième capteur de vitesse angulaire 32 de la rotation de l'arbre 2. Les capteurs 30, 31 et 32 transmettent à un calculateur 33 les vitesses de rotation des arbres 1 , 2 et 25. Le calculateur 33 permet notamment de piloter les moteurs 18 et 20.
Les figures 4 et 5 représentent respectivement deux exemples de forme des dents 9 et 10 appartenant respectivement aux crabots 6 et 7. Les dents 9 et 10 sont positionnés régulièrement sur le même rayon moyen autour de l'axe de l'arbre 2 de telle sorte que les dents 10 du crabot 7 puissent s'intercaler dans des creux ménagés entre les dents 9 du crabot 6.
On suppose que le nombre et la forme des dents 9 et 10 de chaque crabot 6 et 7 sont identiques. Il est tout à fait possible de mettre en œuvre l'invention dans d'autres configurations géométriques de dents et en particulier dans le cas ou le crabot 7 est muni de grandes dents 35 semblables aux dents 10 et l'autre crabot 6 est muni à la fois de grandes dents 36 identiques aux dents 35 et en complément de petites dents 37 de même forme que les grandes dents 36 dans une taille réduite et ménagées dans les creux formés entre les grandes dents 36 comme représenté sur la figure 5. Chaque dent comporte deux types de face, des flancs et un sommet. Chaque dent 10 comporte deux flancs 40 et 41 dont un axe normal est sensiblement perpendiculaire à l'axe de translation des crabots 6 et 7. Les flancs 40 et 41 peuvent être légèrement inclinés d'un angle θf, comme représenté sur la figure 4 afin de produire un effet s'opposant au décrabotage. L'angle θf est avantageusement inférieur à 10°. Les flancs 42 et 43 des dents 9 sont parallèles aux flancs correspondants, respectivement 40 et 41 , des dents 10. Chaque dent 10 comporte un sommet 44 dont la forme est sensiblement comprise dans un plan dont un axe normal est parallèle à l'axe de translation des crabots 6 et 7. La forme du sommet 44 peut par exemple être bombée mais pour des raisons de simplicité on considère que le sommet 44 comporte deux faces planes 44a et 44b symétriques par rapport à un plan de symétrie des deux flancs 40 et 41. Les deux faces sont inclinées d'un angle θd avantageusement inférieur à 15°. Chaque dent 9 comporte également un sommet 45 semblable au sommet 44. Comme précédemment, on peut également considérer que le sommet 45 comporte deux faces planes 45a et 45b. La forme bombée, modélisé par les faces planes 44a, 44b, 45a et 45b produit en cas de contact des dents sommet sur sommet soit une augmentation de la différence de vitesse angulaire entre crabots (dans ce cas la surface favorise le mouvement angulaire entre dents), soit une diminution de vitesse angulaire entre crabots (dans ce cas la surface s'oppose au mouvement angulaire entre dents).
Suivant la position et la vitesse angulaire relative initiale entre les deux crabots, plusieurs configurations géométriques de contact des dents en vis à vis sont possibles lors du crabotage : a) Contact sommet de dent sur sommet de dent avec orientation de la surface de sommet de dent favorisant le mouvement relatif angulaire entre crabots. c) Contact sommet de dent sur sommet de dent avec orientation de la surface de sommet de dent s'opposant au mouvement angulaire relatif entre crabots. b) Contact flanc sur flanc des dents. Dans ce cas, les dents se sont directement positionnées dans leur creux respectif.
Sur la figure 4, on a représenté en trait gras une courbe- enveloppe 46 des positions possibles d'un point O situé en milieu du sommet 44 de la dent 10 lors du contact des dents 9 et 10 pendant le crabotage. L'enveloppe 46 permet de prévoir statistiquement la probabilité d'avoir une des trois configurations a) b) et c) précédemment décrite. L'enveloppe 46 est représentée sur une longueur angulaire c autour de l'axe de rotation des crabots égale à 2ττ/n, n représentant le nombre total de dents d'un des crabots. Dans une première partie 46(1 ) de l'enveloppe 46 de longueur angulaire a, on se trouve dans la première configuration a) de contact sommet de dent sur sommet de dent avec orientation de la surface de sommet de dent favorisant le mouvement relatif angulaire entre crabots. Dans une deuxième partie 46(2) de l'enveloppe 46 de longueur angulaire b, on se trouve dans la deuxième configuration b) de contact flanc sur flanc des dents. Dans une troisième partie 46(3) de l'enveloppe 46 de longueur angulaire a, on se trouve dans la troisième configuration c) de contact sommet de dent sur sommet de dent avec orientation de la surface de sommet de dent s'opposant au mouvement relatif angulaire entre crabots. On constate que la probabilité b/c de configuration b) flanc sur flanc est très inférieure à la probabilité des deux autres configurations a) et c) puisque b représente le jeu entre la longueur angulaire des espaces entre dents et des largeur de dents, jeu que l'on souhaite limiter notamment pour des raisons de confort et d'agrément de la conduite du véhicule. En définissant le temps de crabotage comme le temps mis par les crabots pour atteindre la position où le contact entre dents 9 et 10 est effectif flanc sur flanc, il est bien évident que le temps le plus court sera obtenu si la configuration flanc sur flanc se présente en premier en phase de crabotage. Malheureusement, cette situation est la moins probable. Dans la plupart des cas, les crabots se retrouvent en configuration sommet de dent sur sommet de dent, ce qui génère non seulement un choc, mais également une perte de temps.
A titre d'illustration de ce qui précède une courbe-enveloppe 50 a également été représentée sur la figure 5. La figure 6 présente différents cas possibles lors du crabotage, obtenu avec une commande du moteur 20 du mécanisme de pilotage en translation du crabot 7 de type boucle ouverte, en l'alimentant constamment à sa tension maximale. Ces cas sont autant de source de dispersion dans les temps obtenus de crabotage. La figure 6 représente différentes positions relatives des deux crabots 6 et 7. Pour chaque cas, les positions se succèdent chronologiquement du haut vers le bas de la figure 6. Des flèches montrent le mouvement relatif d'une dent 10 par rapport à une dent 9.
Dans le cas n °1 , un contact sommet de dent sur sommet dent est obtenu favorisant l'augmentation de la vitesse angulaire entre crabots. Après ce contact, les dents tombent dans leur creux respectif puis se mettent en appui flanc sur flanc.
Dans le cas n °2, les dents tombent directement dans leur creux respectif puis se mettent en appui flanc sur flanc Comme expliqué précédemment le temps de crabotage est ici très court mais la probabilité d'occurrence du cas n °2 est très faible.
Dans le cas n °3, un contact sommet de dent sur sommet de dent est d'abord obtenu s'opposant au mouvement angulaire relatif entre crabots. Dans un premier temps, l'angle relatif continue d'augmenter se traduisant par une inversion du mouvement (donc de la vitesse) de translation entre dents (remontée de la dent 10). Dans un second temps, l'angle relatif se stabilise puis diminue (donc la vitesse relative angulaire s'inverse) de telle sorte que le mouvement de translation s'inverse à nouveau (inversion de la vitesse de translation). Enfin les dents tombent dans leur creux respectif puis se mettent en appui flanc sur flanc.
Dans le cas n °4, comme dans le cas n °3, un contact sommet de dent sur sommet de dent est obtenu s'opposant au mouvement angulaire relatif entre crabots. Mais cette fois ci, contrairement au cas n °3, le mouvement angulaire relatif entre crabots ne s'inverse pas. Dans un premier temps le mouvement de translation entre crabots s'inverse pour provoquer une remontée de la dent 10. Dans un second temps après passage en haut de la dent, le mouvement de translation s'inverse à nouveau pour provoquer une descente de la dent 10 sur la face opposée. Enfin, les dents tombent dans leur creux respectif puis se mettent en contact flanc sur flanc. Parmi l'ensemble de ces situations, le cas n °3 est celui qui aboutit au temps de crabotage le plus long. De plus on constate une dispersion importante du temps de crabotage suivant le cas rencontré, notamment entre le cas n °2 et le cas n °3.
Le procédé conforme à l'invention consiste à proposer une commande du moteur 20 du mécanisme de pilotage en translation du crabot 7 réduisant le temps de crabotage. La dispersion du temps de crabotage s'en trouve également réduite. Pour atteindre ce but, le procédé élimine le cas n °3 en cherchant à éviter l'opposition au mouvement angulaire relatif entre crabots lors d'un contact sommet de dent sur sommet de dent en minimisant à ce moment là l'appui dent sur dent qui est à la source de l'effort de résistance. De cette sorte le mouvement n'est que faiblement perturbé, le cas n °3 ne peut plus se produire et l'on revient donc au cas n °4.
Pour ce faire, le procédé consiste globalement à réduire très fortement pendant un temps donné Δti l'effort appliqué sur les crabots en 5 contact sommet de dent sur sommet de dent. Cette réduction d'effort est obtenue en réduisant la consigne de commande du moteur 20. L'évolution dans le temps de cette consigne est représentée sur la figure 7a sous la forme d'une tension U et la translation correspondante du crabot mobile 7 est représentée sur la figure 7b. A un instant initial, le point O, milieu du sommet o 44 d'une dent 10 est à la cote X0. A partir de l'instant initial et jusqu'à l'instant ti la tension U est maximale, elle est notée Umaχ. Il s'agit de la première phase du procédé. A l'instant t-i, le point O atteint la cote Xi correspondant à un contact possible sommet de dent sur sommet de dent. A partir de l'instant ti et jusqu'à un instant t2, la tension U est fortement réduite à une valeur Umιn. 5 II s'agit de la deuxième phase du procédé. Durant cette phase, la position du point O évolue peu et sa cote reste voisine de Xi. Ensuite, à partir de l'instant t2, on augmente la tension U pour atteindre de nouveau la valeur Umaχ.
L'instant ti de fin de la première phase peut être prédéfinie. Un modèle de calcul de cet instant fait intervenir des caractéristiques du moteur 0 20 représentées schématiquement sur la figure 8. Sur cette figure, Je représente l'inertie totale du mécanisme de pilotage en translation du crabot 7 ramenée au niveau du moteur 20, R la résistance du moteur 20 et Ke le gain électromagnétique du moteur 20. En première approche, on ne tient pas compte de l'inductance du moteur 20. On considère en effet que 5 l'inductance, n'influe que très peu sur le comportement dynamique du moteur 20. On ne tient pas compte non plus des différents frottements du mécanisme. Ces frottements sont négligeables devant le couple électromagnétique du moteur 20. On tient également compte du rapport r de réduction entre l'angle moteur et la position du crabot mobile 7, du courant i 0 circulant dans le moteur 20. Les paramètres cinématiques sont notés de la façon suivante : x, la position courante du point O dans sa translation, ωm la vitesse angulaire du moteur 20 et θm la position angulaire du moteur 20. On a :
J^ = KJ (1) dt U^ ~ Keωm
I = (2) R
(3)
A partir des équations (1 ) et (2) on peut écrire :
, *--.+ *-.„ =*. ". (4) dt R R On fixe les conditions initiales : ωm {t = 0) = 0 (5) et 0Jf = O) = O (6) et la condition pour t=ti : θm {t = h ) = ^ (7) r
Pour simplifier l'écriture, on introduit un paramètre τm lié aux paramètres du moteur 20 :
Figure imgf000013_0001
En résolvant l'équation différentielle (4) on obtient :
Figure imgf000013_0002
En intégrant l'équation (9) on obtient :
Figure imgf000013_0003
En appliquant l'équation (10) à l'instant t1 , on obtient :
Figure imgf000013_0004
L'exponentielle de l'équation (1 1 ) peut être approximée par son développement limité :
d'où
Figure imgf000013_0005
On obtient une formulation approchée de ti :
Figure imgf000014_0001
Ce modèle de calcul de ti permet d'éviter tout recours au capteur de vitesse angulaire 30. Il est également possible d'utiliser le capteur 30 pour définir l'instant t-i. De même, la durée Δti de la deuxième phase peut être prédéfinie.
Le moteur 20 du mécanisme de pilotage en translation du crabot 7 est modélisé comme précédemment par Je, l'inertie totale du mécanisme de pilotage en translation du crabot 7 ramenée au niveau du moteur 20, R la résistance du moteur 20 et Ke le gain électromagnétique du moteur 20. A ces paramètre on ajoute : r le rapport de réduction entre l'angle moteur 20 et la position crabot mobile 7 le long de l'axe de l'arbre 2, μ le coefficient de glissement sommet de dent sur sommet dent, rt le rayon moyen de positionnement des dents 9 et 10 autour de l'axe de l'arbre 2, Jt l'inertie du moteur de traction 18, ωm la vitesse angulaire de l'arbre du moteur 20, θm la position angulaire de l'arbre du moteur 20, i le courant circulant dans le moteur 20, x la position relative en translation des dents du crabot mobile 7 suivant l'axe de l'arbre 2, C le couple résistant sur le moteur 20 lié au contact sommet de dent sur sommet de dent, Fn l'effort normal suivant l'axe de l'arbre 2 sur les dents 9 de la part des dents 10 lors du contact sommet de dent sur sommet de dent, Ft l'effort tangentiel sur les dents 9 de la part des dents 10, effort perpendiculaire à l'effort Fn, Ct le couple résistant lié au contact sommet de dent sur sommet de dent sur le moteur de traction 18 et ωt la vitesse du moteur de traction 18.
Le fonctionnement général du moteur 20 s'exprime par les équations suivantes :
'. ^ = ZJ - C (15)
i = U~ - K>ω- (16)
R V ;
x = rθm (17)
C = rFn (18) Durant la deuxième phase, dans le cas du contact sommet de dent sur sommet de dent, les dents 9 et10 étant pratiquement plates (angle faible de bombée), on peut considérer que le moteur 20 est bloqué par un couple C. On a donc : ^L - O (1 9) dt
et <ym ≈ O (20)
La vitesse et l'accélération du moteur 20 étant nulles, on en déduit l'expression du couple C :
C = K ^≡- (21 ) e R
Umm, représentant la tension de commande appliquée au moteur 20 durant la deuxième phase.
Le couple C se traduit sur les dents par un effort d'appui Fn sur le contact qui génère lui-même un effort tangentiel Ft de résistance au mouvement angulaire entre crabots
Ft=μFn (22)
On déduit que :
F Eκ υ— (23)
R et donc :
Ct = rt £κe ¥≡± (24) r R
En écrivant que la vitesse et l'accélération du moteur 20 sont nulles, on en déduit l'expression du couple Ct.
En tenant compte du rayon moyen rt sur lequel sont placées les dents, on en déduit alors le couple généré par le moteur 20 à rencontre de l'inertie Jt dans le mouvement de rotation des crabots. Au rapport de réduction prêt entre pignons, l'inertie Jt est celle du moteur de traction 18. En effet, l'arbre 2, en relation avec les roues, est considéré à vitesse quasi constante, son inertie étant très grande par rapport à l'inertie Jt du moteur de traction 18. Autrement dit :
J, ^ = -C, (25) dt et C, = rtFt (26)
En définitive, tout revient à résoudre l'équation différentielle (25) régissant le mouvement du moteur de traction 18 pour lequel on suppose ici qu'aucun couple supplémentaire (autre que le couple de résistance généré par le moteur 20) n'est appliqué pendant Δt-i. En définissant Δωιm la différence de vitesse angulaire entre les deux crabots 6 et 7 à l'instant t-i, et I la largeur angulaire d'une dent 9 ou 10, on a durant la deuxième phase :
t {t) = -Ct {t - tι )+ Aωιm (27)
et Aθt {ή = ~Ct {t - tj + Aωιm {t - tλ ) (28)
On en déduit que :
-C1At1 2 + ACO1nAt1 - I = O (29)
Figure imgf000016_0001
L'expression de Δti fait intervenir les paramètres dynamiques du mécanisme permettant le déplacement en translation du crabot mobile 7 et également la vitesse différentielle angulaire initiale Δωιnι entre crabots. La connaissance de cette dernière nécessite l'usage des deux capteurs de vitesse 31 et 32 placés respectivement sur les arbres 1 et 2.
Une expression simplifiée de Δti peut être obtenue en négligeant le couple résistant provoqué par le moteur 20. Dans ce cas la durée Δti correspond tout simplement au rapport entre la largeur angulaire I de dent et la vitesse angulaire initiale Δωιnι entre crabots : At ≈ - (31 )
Δω,,
La figure 9 représente la position relative des dents des crabot 6 et 7 durant les différentes phases du procédé en fonction de la tension U appliquée au moteur 20. On se place dans la situation qu'aurait entraînée le cas n °3 en l'absence du procédé de l'invention.
A l'instant initial t=0, le point O de la dent 10 est à la cote X0 et on applique la tension Umaχ au moteur 20 jusqu'à l'instant t-i. Entre les instants t0 et t-i, le point O se déplace jusqu'à la cote Xi. Entre les instants ti et t2, la tension U est réduite à une valeur Umιn et la dent 10 possède une vitesse angulaire représentée par la flèche 60. Bien qu'au cours de cette période, un contact sommet de dent sur sommet de dent est d'abord obtenu s'opposant au mouvement angulaire relatif entre crabots, le mouvement angulaire des crabots ne s'inverse pas et le point O dépasse le sommet d'une dent 9 avant l'instant t2. La baisse de la tension U permet de minimiser l'effort de contact entre les dents 9 et 10. Entre les instant t2 et t3, la tension U est à nouveau portée à la valeur Umaχ et la dent 10 peut s'intercaler entre deux dents 9. Le point O passe ainsi de la cote Xi à la cote X2.
Dans ce procédé de pilotage, le temps de crabotage sera d'autant plus court que la différence de vitesse angulaire entre les crabots 6 et 7 sera grande. En effet, après application de ce procédé, le cas le plus pénalisant est le cas n °4 pour lequel une grande partie du temps est lié à l'existence du contact sommet de dent sur sommet de dent d'abord sur la face opposée au mouvement angulaire puis sur la face favorisant le mouvement angulaire. Plus la différence de vitesse angulaire sera importante et plus ce temps sera court. Dans la pratique, il n'est pas possible d'augmenter la différence de vitesse au-delà d'un certain seuil essentiellement pour des raisons de tenue mécanique des dents et également d'agrément.
Ce procédé de pilotage nécessite avantageusement la connaissance de la différence de vitesse angulaire relative entre les crabots 6 et 7. Pour ce faire, on pilote préalablement à la première phase, la vitesse angulaire du moteur de traction 18 pour atteindre une vitesse relative souhaitée entre les crabots 6 et 7. Ensuite pendant le crabotage, (phase 1 à 4), il n'est plus nécessaire de piloter le moteur de traction. Ceci présente l'avantage de décorreller le pilotage du moteur de traction 18 et le pilotage du mécanisme permettant le déplacement en translation du crabot mobile 7.
Le procédé permet de diminuer en moyenne le temps de crabotage, même si dans certaines situations le procédé l'augmente. Par exemple dans le cas n °1 et le cas n °2, le temps de crabotage le plus court est à priori obtenu pour une tension moteur U maximum appliquée en permanence. On constate néanmoins, que l'augmentation du temps de crabotage pour les cas n °1 et 2 reste modérée. Le principal avantage du procédé réside dans le fait de limiter les écarts entre les temps de crabotage relevés dans les différents cas.
Pour des raisons de protection et de précision, le moteur 20 est bien souvent pourvu d'une boucle locale de régulation de courant de dynamique plus importante que les dynamiques en jeu dans l'ensemble du mécanisme permettant le déplacement en translation du crabot mobile 7. Dans ce cas, le procédé de commande peut encore s'appliquer sans modification importante simplement en adaptant un algorithme faisant fonctionner le calculateur 33.
Dans la première phase du procédé, la consigne en courant doit être placée la plus grande possible afin de saturer la commande en tension à la pleine tension.
Dans la deuxième phase du procédé (de ti à t2), la consigne de courant est positionnée à la valeur lmιn pour générer un effort de contact suffisamment faible pour limiter la diminution possible du mouvement, mais suffisamment importante pour éviter un décollement de la surface de contact entre les sommets des dents. La vitesse du moteur 20 étant pratiquement nulle dans cette seconde phase, sous l'effet du contact sommet de dent sur sommet de dent, la tension au moteur se limite à Umιn=R.lmm- La tension du moteur reste donc pratiquement constante sur cette seconde phase du procédé. Dans la troisième phase du procédé (de t2 à t3), la consigne de courant est à nouveau placée à son maximum afin de saturer à nouveau la tension de commande à la pleine tension.
Dans la variante illustrée à la figure 5, le crabot 7 est muni de grandes dents 35 semblables aux dents 10 et l'autre crabot 6 muni à la fois de grandes dents 36 identiques aux dents 35 et en complément de petites dents 37 de même forme que les grandes dents 36 dans une taille réduite et ménagées dans les creux entre grandes dents 36. Un procédé conforme à l'invention peut encore s'appliquer de façon simple afin de ne faciliter que le mouvement angulaire relatif entre crabots en phase de contact grande dent 35 sur grande dent 36. Il est ensuite toujours possible que le mouvement angulaire relatif soit freiné en phase de contact grande dent 35 sur petite dent 37, provoquant une augmentation du temps de crabotage. Il est possible de palier ce problème en pilotant le moteur de traction 18 de façon à produire un couple augmentant la position angulaire relative des crabots 6 et 7 à partir du moment où la position relative en translation des crabots 6 et 7 a atteint la position xr, marquant le début des creux entre les grandes dents 35 et 36. Ce procédé est illustré sur la figure 10. Cette augmentation de couple dite sur-couple a pour objectif de provoquer un contact systématique flanc sur flanc, grande dent 35 contre grande dent 36, afin de positionner les dents 35 et 36 convenablement l'une contre l'autre et terminer le mouvement de crabotage. La valeur du couple doit résulter d'un compromis entre rapidité d'action pour obtenir le contact flanc sur flanc, minimisation de l'effort à appliquer au moteur 20 qui est directement lié à la valeur de ce couple et minimisation du choc entre flancs, source d'inconfort pour le conducteur. Notamment pour faciliter le crabotage, on peut annuler pendant le temps nécessaire à la fin du crabotage le sur-couple appliqué au moteur de traction 18 dès que la vitesse angulaire relative entre les crabots s'est annulée marquant le contact flanc sur flanc. Cette annulation du couple permet de faciliter la fin de la course des dents 35 du crabot mobile 7. Le sur-couple peut très bien se produire en phase de limitation de la tension U et/ou courant du moteur 20, sans que cela soit gênant.
La figure 1 1 illustre une autre méthode permettant de faciliter le crabotage d'un dispositif tel qu'illustré par la figure 5. Le procédé consiste à réduire l'effort permettant la translation du crabot mobile 7 à deux reprises : une fois pour faciliter le mouvement angulaire en phase de contact grande dent sur grande dent et une fois pour faciliter le mouvement angulaire en phase de contact grande dent sur petite dent. La commande du moteur 20 se décompose alors comme suit :
Dans une première phase, le moteur 20 est commandé sous pleine tension Umaχ pour minimiser le temps de crabotage. Dans une seconde phase lorsque la position x1 a été atteinte, on limite la tension de commande pour éviter le cas n °3 de la figure 6 lors du contact du sommet des grandes dents 35 contre le sommet des grandes dents 36. La durée Δti de cette seconde phase est calculée comme précédemment en utilisant la connaissance de la différence de vitesse angulaire entre crabots 6 et 7.
A l'issu du temps Δt-i, et si la cote x2 n'a pas été atteinte par le point O des dents 35 du crabot mobile 7, on commande à nouveau le moteur 20 en pleine tension Umaχ pour minimiser le temps de crabotage. Des que le point O a atteint la cote x2 et sans obligatoirement que le temps Δt1 ne se soit écoulé, on limite la commande du moteur pendant un temps Δt2. Δt2 se calcule comme Δt1 en considérant comme largeur angulaire, non pas la largeur I de la grande dent 36, mais la somme de la demi-largeur I/2 de la grande dent 36 et de la demi-largeur 172 de la petite dent 37. Le calcul de Δt2 nécessite à nouveau l'utilisation des capteurs de vitesses 31 et 32 des arbres 1 et 8 pour estimer la différence de vitesse angulaire entre crabots 6 et 7.
A l'issu du temps Δt2, on commande à nouveau le moteur 20 à pleine tension Umaχ pour minimiser le temps de crabotage. Enfin dès que la le point O a atteint la cote x3 (utilisation du capteur 30 de position angulaire), on commute vers une régulation en position du moteur 20 pour arrêter le crabot mobile 7 dans sa position de crabotage.

Claims

REVENDICATIONS
1 . Procédé de pilotage d'un dispositif d'accouplement sans mécanisme de synchronisation de deux crabots (6, 7) tournant autour d'un même axe (2) et formés chacun de dents (9, 10 ; 35, 36, 37), les crabots (6, 7) étant susceptibles de s'engrener sous l'action d'un mécanisme permettant le déplacement en translation d'un des crabots dit crabot mobile (7) par rapport à l'autre crabot dit crabot fixe (6), la translation se faisant le long de l'axe (8) de rotation des crabots, caractérisé en ce que le procédé consiste à enchaîner les phases suivantes : - lors d'une première phase d'approche sans contact du crabot mobile (7) par rapport au crabot fixe (6), à appliquer un effort maximum (Umaχ) permettant la translation du crabot mobile (7),
- lors d'un seconde phase pendant laquelle le sommet des dents (10, 35) du crabot mobile (7) est susceptible de toucher le sommet des dents (9, 36) du crabot fixe (6), à réduire l'effort (Umιn) permettant la translation du crabot mobile (7), et
- lors d'une troisième phase pendant laquelle un flanc (40) des dents (10, 35) du crabot mobile (7) est susceptible de toucher un flanc (42) des dents (9, 36) du crabot fixe (6), à appliquer un effort maximum (Umaχ) permettant la translation du crabot mobile (7).
2. Procédé selon la revendication 1 , caractérisé en ce que la durée de la première phase est prédéterminée à partir d'un temps moyen (t-i) nécessaire à l'approche sans contact du crabot mobile (7) par rapport au crabot fixe (6).
3. Procédé selon la revendication 1 , caractérisé en ce que la fin (t-i) de la première phase est définie en fonction d'une information reçue par un capteur (30) mesurant le déplacement en translation du crabot mobile (7).
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que le mécanisme permettant le déplacement en translation du crabot mobile (7) comporte un actionneur (20), et en ce que lors de la première phase et de la troisième phase, l'actionneur (20) est commandé au maximum (Umaχ) de ses possibilités.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la durée (Δt1 ) de la seconde phase est prédéterminée à partir d'un temps moyen nécessaire à une dent (10, 35) du crabot mobile (7) pour se déplacer angulairement autour de l'axe (8) de rotation des crabots d'un angle équivalent à une largeur angulaire (I ; I') d'une dent (10, 35).
6. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une autre phase suivant la troisième phase, autre phase pendant laquelle le crabot mobile (7) est asservi dans la position prise par le crabot mobile (7) en fin de troisième phase.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que préalablement à la première phase, la vitesse angulaire relative (Δωιnι) des deux crabots (6, 7) est amenée sensiblement à une valeur donnée.
8. Procédé selon l'une des revendications précédentes, mettant en œuvre un crabot mobile (7) muni de grandes dents (35) et un crabot fixe (6) muni à la fois de grandes dents (36) identiques aux dents (35) et en complément de petites dents (37) de même forme que les grandes dents (36) dans une taille réduite et ménagées dans les creux entre les grandes dents (36), le procédé étant caractérisé en ce que pendant la troisième phase, il consiste à augmenter momentanément un couple (Ct) appliqué sur le crabot fixe (6) de façon à forcer l'établissement d'un contact entre les dents (35) du crabot mobile (7) et les grandes dents (36) du crabot fixe (6) et à éviter l'établissement d'un contact entre les dents (35) du crabot mobile (7) et les petites dents (37) du crabot fixe (6).
9. Procédé selon la revendication 8, caractérisé en ce que l'augmentation momentanée du couple (Ct) est suivie d'une annulation momentanée du couple (Ct).
10. Procédé selon l'une des revendications précédentes, mettant en œuvre un crabot mobile (7) muni de grandes dents (35) et un crabot fixe (6) muni à la fois de grandes dents (36) identiques aux dents (35) et en complément de petites dents (37) de même forme que les grandes dents (36) dans une taille réduite et ménagées dans les creux entre grandes dents (36), le procédé étant caractérisé en ce que la deuxième phase ne concerne que les grandes dents (36) du crabot fixe (6), en ce que la troisième phase est suivie d'une quatrième phase pendant laquelle on réduit l'effort (Umιn) permettant la translation du crabot mobile (7) lorsque le sommet des dents (35) du crabot mobile (7) est susceptible de toucher le sommet des petites dents (37) du crabot fixe (6), et en ce que la quatrième phase est suivie d'une cinquième phase identique à la troisième phase.
PCT/FR2007/051183 2006-05-16 2007-04-26 Procédé de pilotage d'un dispositif d'accouplement de deux crabots WO2007132106A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07731956A EP2021648A1 (fr) 2006-05-16 2007-04-26 Procédé de pilotage d'un dispositif d'accouplement de deux crabots

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0604370 2006-05-16
FR0604370A FR2901334B1 (fr) 2006-05-16 2006-05-16 Procede de pilotage d'un dispositif d'accouplement de deux crabots

Publications (1)

Publication Number Publication Date
WO2007132106A1 true WO2007132106A1 (fr) 2007-11-22

Family

ID=36829814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/051183 WO2007132106A1 (fr) 2006-05-16 2007-04-26 Procédé de pilotage d'un dispositif d'accouplement de deux crabots

Country Status (3)

Country Link
EP (1) EP2021648A1 (fr)
FR (1) FR2901334B1 (fr)
WO (1) WO2007132106A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2394912A1 (fr) * 2010-06-10 2011-12-14 Messier-Bugatti-Dowty Dispositif de déplacement autonome pour aéronef
WO2013156195A1 (fr) * 2012-04-18 2013-10-24 Voith Patent Gmbh Procédé de mise en œuvre d'une étape de commutation
JP2014234853A (ja) * 2013-05-31 2014-12-15 アイシン精機株式会社 自動変速機用ドグクラッチ制御装置
JP2015028359A (ja) * 2013-07-30 2015-02-12 アイシン精機株式会社 自動変速機用ドグクラッチ制御装置
WO2015192865A1 (fr) * 2014-06-16 2015-12-23 Volvo Truck Corporation Procédé de commande d'un actionneur d'une transmission de véhicule
EP2789878B1 (fr) * 2013-04-12 2016-01-13 Yamaha Hatsudoki Kabushiki Kaisha Transmission automatique
WO2016198510A1 (fr) * 2015-06-09 2016-12-15 Borgwarner Torqtransfer Systems Ab Embrayage à crabots équipé d'un système de capteur
CN106515436A (zh) * 2015-09-11 2017-03-22 美国轮轴制造公司 被配置为增强离合器齿的啮合性能的离合器系统
CN110319189A (zh) * 2018-03-28 2019-10-11 赛峰起落架系统公司 接合两个齿轮元件的方法以及实现这种方法的驱动设备
CN110792765A (zh) * 2018-08-02 2020-02-14 郑州宇通客车股份有限公司 一种变速箱挡位位置自学习控制方法及系统
EP3647631A1 (fr) * 2018-10-30 2020-05-06 Ningbo Geely Automobile Research & Development Co. Ltd. Procédé et système d'enclenchement de vitesses
CN113614418A (zh) * 2019-03-22 2021-11-05 株式会社爱信 车辆用驱动装置以及控制装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012861B1 (fr) * 2013-11-05 2015-10-23 Renault Sas Procede de regulation d'un actionneur de passage de vitesses antichoc.
FR3019613B1 (fr) 2014-04-07 2016-03-25 Renault Sas Procede de commande d'un actionneur de passage de vitesses et actionneur de passage correspondant
DE102018220869A1 (de) * 2018-12-03 2020-06-04 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Ermitteln eines Stellwegbereiches zwischen zwei Schaltelementhälften eines formschlüssigen Schaltelementes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3904158A1 (de) * 1989-02-11 1990-08-16 Neuenstein Zahnradwerk Klauenkupplung
EP0608978A1 (fr) * 1993-01-23 1994-08-03 Eaton Corporation Dispositif d'avertissement de coups de béliers des roues dentées
US5997435A (en) * 1997-04-23 1999-12-07 Daimlerchrysler Ag Process for shifting a gear change transmission without synchronizing members
FR2787160A1 (fr) * 1998-12-11 2000-06-16 Luk Getriebe Systeme Gmbh Dispositif d'actionnement
EP1333202A1 (fr) * 2002-01-22 2003-08-06 VALEO EMBRAYAGES s.a.s. Procédé et dispositif de commande du passage des vitesses dans une boíte de vitesses de véhicule automobile
WO2004085887A1 (fr) * 2003-03-27 2004-10-07 Ricardo Uk Limited Actionneur de boite de vitesse et procede de commande

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3904158A1 (de) * 1989-02-11 1990-08-16 Neuenstein Zahnradwerk Klauenkupplung
EP0608978A1 (fr) * 1993-01-23 1994-08-03 Eaton Corporation Dispositif d'avertissement de coups de béliers des roues dentées
US5997435A (en) * 1997-04-23 1999-12-07 Daimlerchrysler Ag Process for shifting a gear change transmission without synchronizing members
FR2787160A1 (fr) * 1998-12-11 2000-06-16 Luk Getriebe Systeme Gmbh Dispositif d'actionnement
EP1333202A1 (fr) * 2002-01-22 2003-08-06 VALEO EMBRAYAGES s.a.s. Procédé et dispositif de commande du passage des vitesses dans une boíte de vitesses de véhicule automobile
WO2004085887A1 (fr) * 2003-03-27 2004-10-07 Ricardo Uk Limited Actionneur de boite de vitesse et procede de commande

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961170A1 (fr) * 2010-06-10 2011-12-16 Messier Bugatti Dispositif de deplacement autonome pour aeronef.
CN102336274A (zh) * 2010-06-10 2012-02-01 梅西耶-布加蒂公司 飞机用的独立驱动设备
US8633665B2 (en) 2010-06-10 2014-01-21 Messier-Bugatti-Dowty Independent drive device for an aircraft
EP2394912A1 (fr) * 2010-06-10 2011-12-14 Messier-Bugatti-Dowty Dispositif de déplacement autonome pour aéronef
WO2013156195A1 (fr) * 2012-04-18 2013-10-24 Voith Patent Gmbh Procédé de mise en œuvre d'une étape de commutation
EP2789878B1 (fr) * 2013-04-12 2016-01-13 Yamaha Hatsudoki Kabushiki Kaisha Transmission automatique
EP3006781A4 (fr) * 2013-05-31 2016-07-13 Aisin Seiki Dispositif de commande d'embrayage à griffes de transmission automatique
JP2014234853A (ja) * 2013-05-31 2014-12-15 アイシン精機株式会社 自動変速機用ドグクラッチ制御装置
JP2015028359A (ja) * 2013-07-30 2015-02-12 アイシン精機株式会社 自動変速機用ドグクラッチ制御装置
WO2015192865A1 (fr) * 2014-06-16 2015-12-23 Volvo Truck Corporation Procédé de commande d'un actionneur d'une transmission de véhicule
EP3155300B1 (fr) 2014-06-16 2017-12-27 Volvo Truck Corporation Procédé de commande d'un actionneur d'une transmission de véhicule
CN106415081A (zh) * 2014-06-16 2017-02-15 沃尔沃卡车集团 用于控制车辆变速器的促动器的方法
JP2017518469A (ja) * 2014-06-16 2017-07-06 ボルボトラックコーポレーション 車両用トランスミッションのアクチュエータを制御する方法
US9835250B2 (en) 2014-06-16 2017-12-05 Volvo Truck Corporation Method for controlling an actuator of a vehicle transmission
WO2016198510A1 (fr) * 2015-06-09 2016-12-15 Borgwarner Torqtransfer Systems Ab Embrayage à crabots équipé d'un système de capteur
CN106515436A (zh) * 2015-09-11 2017-03-22 美国轮轴制造公司 被配置为增强离合器齿的啮合性能的离合器系统
CN106515436B (zh) * 2015-09-11 2019-06-07 美国轮轴制造公司 被配置为增强离合器齿的啮合性能的离合器系统
CN110319189A (zh) * 2018-03-28 2019-10-11 赛峰起落架系统公司 接合两个齿轮元件的方法以及实现这种方法的驱动设备
CN110319189B (zh) * 2018-03-28 2021-07-09 赛峰起落架系统公司 接合两个齿轮元件的方法以及实现这种方法的驱动设备
CN110792765A (zh) * 2018-08-02 2020-02-14 郑州宇通客车股份有限公司 一种变速箱挡位位置自学习控制方法及系统
CN110792765B (zh) * 2018-08-02 2020-12-08 郑州宇通客车股份有限公司 一种变速箱挡位位置自学习控制方法及系统
EP3647631A1 (fr) * 2018-10-30 2020-05-06 Ningbo Geely Automobile Research & Development Co. Ltd. Procédé et système d'enclenchement de vitesses
CN112955680A (zh) * 2018-10-30 2021-06-11 宁波吉利汽车研究开发有限公司 用于齿轮啮合的方法和系统
US11434960B2 (en) 2018-10-30 2022-09-06 Ningbo Geely Automobile Research & Development Co. Method and system for gear engagement
CN113614418A (zh) * 2019-03-22 2021-11-05 株式会社爱信 车辆用驱动装置以及控制装置
EP3943785A4 (fr) * 2019-03-22 2022-05-18 Aisin Corporation Dispositif d'entraînement de véhicule et dispositif de commande

Also Published As

Publication number Publication date
FR2901334B1 (fr) 2009-03-06
EP2021648A1 (fr) 2009-02-11
FR2901334A1 (fr) 2007-11-23

Similar Documents

Publication Publication Date Title
WO2007132106A1 (fr) Procédé de pilotage d&#39;un dispositif d&#39;accouplement de deux crabots
EP2512855B1 (fr) Moyeu motorise comprenant des moyens de couplage et de decouplage
EP1896281B1 (fr) Procede pour piloter le couplage et le decouplage du premier moteur et du deuxieme moteur d&#39; un groupe motopropulseur hybride parallele
EP3710732B1 (fr) Procédé et système de commande d&#39;une transmission automatique sans embrayage pour véhicule automobile à propulsion hybride
EP3145783B1 (fr) Procédé de contrôle d&#39;un groupe motopropulseur d&#39;un véhicule, dispositif et véhicule correspondant
EP2512894A1 (fr) Procede et systeme d&#39;accouplement d&#39;une machine electrique sur un train roulant de vehicule, notamment d&#39;un vehicule automobile hybride
WO2008029041A1 (fr) Procede de pilotage d&#39;un dispositif d&#39;accouplement controle de deux crabots
EP1382476A1 (fr) Chaine de traction comportant un mecanisme de changement de rapport integre dans une roue et procédé de changement de rapport associé
EP1496292B1 (fr) Procédé de changement de rapport pour chaîne de traction comportant un mécanisme de changement de rapport pour chaque roue motrice
WO2015155429A1 (fr) Procede de commande d&#39;un actionneur de passage de vitesses et actionneur de passage correspondant
WO2008029042A1 (fr) Procede de pilotage d&#39;un dispositif d&#39;accouplement de deux crabots, a temps de crabotage reduit
FR3056160B1 (fr) Transmission pour vehicule automobile a propulsion electrique
EP1510717B1 (fr) Procédé pour sélectionner une loi de commande du système de pilotage d&#39;un embrayage en déterminant trois points de fonctionnement
EP1509707A1 (fr) Dispositif de transmission, pour vehicule terrestre, notamment voiturette
EP1050643B1 (fr) Serrure comprenant un actionneur électrique en particulier pour ouvrant de véhicule automobile
WO2002061272A1 (fr) Demarreur de vehicule automobile comportant un pignon de lanceur a denture helicoïdale
FR3058696A1 (fr) Dispositif de pilotage d&#39;une boite de vitesses robotisee pour vehicule automobile a propulsion hybride
EP2089640B1 (fr) Procede de changement de rapport a crabotage optimise dans une boite de vitesses, et boite de vitesses notamment pour vehicule hybride
EP1333202A1 (fr) Procédé et dispositif de commande du passage des vitesses dans une boíte de vitesses de véhicule automobile
FR2968609A1 (fr) Dispositif generateur de valeur de pedale de vehicule automobile
WO2011036394A1 (fr) Dispositif de synchronisation et de solidarisation des arbres primaires d&#39;une boite de vitesses a double embrayage
FR2904864A1 (fr) Dispositif de passage de la marche arriere pour boite de vitesses pilotee
FR3096312A1 (fr) Procédé de pilotage d’une chaîne de transmission
FR3104257A1 (fr) Procede de diagnostic d’un systeme de couplage a crabots d’une boite de vitesses
FR2990388A3 (fr) &#34;installation de reglage manuel du couple resistant d&#39;un moteur electrique de traction comportant un dispositif de commande sequentielle du couple resistant&#34;

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07731956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007731956

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE