WO2007130541A2 - Fibrous structure product with high bulk - Google Patents

Fibrous structure product with high bulk Download PDF

Info

Publication number
WO2007130541A2
WO2007130541A2 PCT/US2007/010777 US2007010777W WO2007130541A2 WO 2007130541 A2 WO2007130541 A2 WO 2007130541A2 US 2007010777 W US2007010777 W US 2007010777W WO 2007130541 A2 WO2007130541 A2 WO 2007130541A2
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous structure
mils
product
caliper
plies
Prior art date
Application number
PCT/US2007/010777
Other languages
English (en)
French (fr)
Other versions
WO2007130541A3 (en
Inventor
Jeffrey Glen Sheehan
Markus Wilhelm Altmann
Osman Polat
Ward William Ostendorf
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to MX2008014069A priority Critical patent/MX2008014069A/es
Priority to CA002651116A priority patent/CA2651116A1/en
Publication of WO2007130541A2 publication Critical patent/WO2007130541A2/en
Publication of WO2007130541A3 publication Critical patent/WO2007130541A3/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/002Tissue paper; Absorbent paper
    • D21H27/004Tissue paper; Absorbent paper characterised by specific parameters
    • D21H27/005Tissue paper; Absorbent paper characterised by specific parameters relating to physical or mechanical properties, e.g. tensile strength, stretch, softness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/067Wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2554/00Paper of special types, e.g. banknotes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2555/00Personal care
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/12Pulp from non-woody plants or crops, e.g. cotton, flax, straw, bagasse
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/22Agents rendering paper porous, absorbent or bulky
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24446Wrinkled, creased, crinkled or creped
    • Y10T428/24455Paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Definitions

  • the present invention relates to fibrous structure products, more specifically multi-ply fibrous structure products having multiple enhanced attributes and methods of making the same.
  • Cellulosic fibrous structures are a staple of everyday life. Cellulosic fibrous structures are used as consumer products for paper towels, toilet tissue, facial tissue, napkins, and the like. The large demand for such paper products has created a demand for improved versions of the products and the methods of their manufacture.
  • These attributes include softness, absorbency, strength, flexibility, and bulk. Consumers may especially prefer fibrous structure products having higher bulk, including those having relatively higher caliper (thickness). These attributes may communicate to the consumer that the product will be durable and strong, that the product will be useful for a variety of cleaning tasks, that the product will last and perform throughout the cleaning process and retain its physical integrity during use, that the product will be absorbent, and/or based on this performance, that the product has good value.
  • the improvement of one attribute may compromise the quality of another attribute.
  • increasing bulk of a fibrous structure may increase the absorbency while also increasing the stiffness of the product thereby decreasing the softness. Therefore, providing a product with improved bulk and therefore an improved impression of strength and durability without sacrificing the softness and flexibility of the product is difficult.
  • the present invention unexpectedly provides a fibrous structure product with enhanced bulk and strength impression, providing a thick, high bulk quality cloth-like appearance. This is accomplished while also providing an aesthetically pleasing flexible fibrous structure product having softness impression.
  • the present invention provides a fibrous structure that exhibits a particular range of bulk and caliper under high load as described herein, which unexpectedly provides a product with enhanced durability and strength impression without sacrificing flexibility or softness attributes.
  • the present invention relates to a multiply fibrous structure product comprising: two or more plies of fibrous structure wherein the fibrous structure has a High Load Caliper of from 17 mils to about 45 mils.
  • the present invention further relates to a multiply fibrous structure product comprising: two or more plies of fibrous structure wherein the fibrous structure has a High Load Caliper of from about 17 mils to about 45 mils; a basis weight is from about 26 lbs/3000 ft 2 to about 50 lbs/3000 ft 2 ; and a Flex Modulus of from about 0.1 to about 0.8.
  • the present invention further relates to a fibrous structure product comprising: a single ply of fibrous structure having a High Load Caliper of from 18 mils to about 45 mils; a basis weight of from about 26 lbs/3000 ft. 2 to about 40 lbs/3000 ft. 2 ; and a Flex Modulus of from about 0.1 to about 0.8.
  • FIG. 1 is a fragmentary plan view of a multi-ply fibrous structure product displaying an embodiment of the present invention having domes formed during the paper making process, in a regular arrangement, and an embossment pattern on the first ply made according to the present invention.
  • FIG. 2 is a cross sectional view of a portion of the multi-ply fibrous structure product shown in FIG. 1 as taken along line 4-4.
  • paper product refers to any formed, fibrous structure products, traditionally, but not necessarily, comprising cellulose fibers.
  • the paper products of the present invention include tissue-towel paper products.
  • tissue-towel paper product refers to products comprising paper tissue or paper towel technology in general, including, but not limited to, conventional felt-pressed or conventional wet-pressed tissue paper, pattern densif ⁇ ed tissue paper, starch substrates, and high bulk, uncompacted tissue paper.
  • tissue-towel paper products include toweling, facial tissue, bath tissue, table napkins, and the like.
  • Ply or “Plies”, as used herein, means an individual fibrous structure or sheet of fibrous structure, optionally to be disposed in a substantially contiguous, face-to-face relationship with other plies, forming a multi-ply fibrous structure. It is also contemplated that a single fibrous structure can effectively form two "plies” or multiple "plies", for example, by being folded on itself. In one embodiment, the ply has an end use as a tissue- towel paper product. A ply may comprise one or more wet-laid layers, air-laid layers, and/or combinations thereof. If more than one layer is used, it is not necessary for each layer to be made from the same fibrous structure. Further, the layers may or may not be homogenous within a layer.
  • the actual makeup of a tissue paper ply is generally determined by the desired benefits of the final tissue-towel paper product, as would be known to one of skill in the art.
  • the fibrous structure may comprise one or more plies of non-woven materials in addition to the wet-laid and/or air-laid plies.
  • the term "fibrous structure”, as used herein, means an arrangement of fibers produced in any papermaking machine known in the art to create a ply of paper.
  • Fiber means an elongate particulate having an apparent length greatly exceeding its apparent width. More specifically, and as used herein, fiber refers to such fibers suitable for a papermaking process.
  • Basis Weight is the weight per unit area of a sample reported in lbs/3000 ft 2 or g/m 2 .
  • Machine Direction means the direction parallel to the flow of the fibrous structure through the papermaking machine and/or product manufacturing equipment.
  • Cross Machine Direction or “CD”, as used herein, means the direction perpendicular to the machine direction in the same plane of the fibrous structure and/or fibrous structure product comprising the fibrous structure.
  • Sheet Caliper or “Caliper”, as used herein, means the macroscopic thickness of a product sample under load.
  • Densified means a portion of a fibrous structure product that is characterized by having a relatively high-bulk field of relatively low fiber density and an array of densified zones of relatively high fiber density.
  • the high-bulk field is alternatively characterized as a field of pillow regions.
  • the densified zones are alternatively referred to as knuckle regions.
  • the densified zones may be discretely spaced within the high-bulk field or may be interconnected, either fully or partially, within the high-bulk field.
  • Non-densified means a portion of a fibrous structure product that exhibits a lesser density than another portion of the fibrous structure product.
  • Binder Density means the apparent density of an entire fibrous structure product rather than a discrete area thereof.
  • “Laminating” refers to the process of firmly uniting superimposed layers of paper with or without adhesive, to form a multi-ply sheet.
  • “Non-naturally occurring” as used herein means that the fiber is not found in nature in that form. In other words, some chemical processing of materials needs to occur in order to obtain the non-naturally occurring fiber.
  • a wood pulp fiber is a naturally occurring fiber, however, if the wood pulp fiber is chemically processed, such as via a lyocell-type process, a solution of cellulose is formed. The solution of cellulose may then be spun into a fiber. Accordingly, this spun fiber would be considered to be a non-naturally occurring fiber since it is not directly obtainable from nature in its present form.
  • Naturally occurring fiber means that a fiber and/or a material is found in nature in its present form.
  • An example of a naturally occurring fiber is a wood pulp fiber.
  • the fibrous structure has a High Load Caliper of from about 17 mils to about 45 mils; in another embodiment from about 18 mils to about 30 mils; in another embodiment from about about 19 mils to about 28 mils, and in another embodiment from about about 20 mils to about 25 mils.
  • the fibrous structure product has a Flex Modulus from about 0.1 to about 0.8; in another embodiment from about 0.2 to about 0.75; and in another embodiment from about 0.3 to about 0.7.
  • the fibrous structure product has a basis weight of greater than about 26 lbs/3000 ft 2 , in another embodiment from about 26 lbs/3000 ft 2 to about 50 lbs/3000 ft 2 .
  • the basis weight is about 27 lbs/3000 ft 2 to about 40 lbs/3000 ft 2 ; in another embodiment the basis weight is about 30 lbs/3000 ft 2 and about 40 lbs/3000 ft 2 ' and in another embodiment the basis weight is about 32 lbs/3000 ft 2 to about 37 lbs/3000 ft 2 , measured by the Basis Weight Method described herein.
  • the fibrous structure product has a Wet Caliper of greater than about 18 or greater than about 25 mils; in another embodiment from about 18, 22, 27, 28 mils to about 30, 32, 35, 40mils, or any combination of these ranges, as measured by the Wet Caliper Test Method as disclosed herein.
  • the fibrous structure product exhibits a sheet caliper or loaded caliper of at least about 29, in another embodiment from about 30 mils to about 50 mils, and/or from about 33 mils to about 45 mils, as measured by the Sheet Caliper Test Method disclosed herein.
  • the fibrous structure product exhibits a wet burst strength of greater than about 270 grams, in another embodiment from about 29Og, 30Og, 315g to about 36Og, 380g, 400g, or any combination of these ranges.
  • FIG. 1 A nonlimiting example of an embossed multi-ply fibrous structure product 100 in accordance with the present invention is shown in FIG. 1.
  • FIG. 1 a fragmentary plan view of a ply of multi-ply fibrous structure 100 comprising two plies of fibrous structure wherein at least one of the plies of the paper product has a plurality of domes 101 formed by a resin coated woven belt during the papermaking process and ordered in a regular arrangement. The domes may also be ordered in a random arrangement.
  • the exemplary multi-ply fibrous structure 100 further comprises a non geometric foreground pattern 103 of embossments 102 on the first ply (or may also be on the second ply according to the present invention.
  • the embossments 102 form a latticework, defining a plurality of unembossed cells 104; wherein each cell comprises a plurality of domes 101 formed during the papermaking process.
  • the multi-ply fibrous structure product 100 in accordance with cross section 4-4 of
  • FIG. 1 is shown in FIG. 2.
  • the multi-ply fibrous structure product 100 comprises a first ply 201 and a second ply 202 that are bonded together by an adhesive 203 along the adjacent inside first-ply surface 207 and inside second-ply surface 209 at first-ply bond sites 206.
  • the multi-ply fibrous structure product 100 further comprises embossments 102.
  • the cells 104 are not adhered to the adjacent ply.
  • the cells 104 exhibit an embossment height, a, of from about 300 ujm to about 1500 um.
  • the embossment height a extends in the Z-direction which is perpendicular to the plane formed in the machine direction and the cross machine direction of the multi-ply fibrous structure product 100.
  • the multi-ply fibrous structure product 100 comprises an embossment height a from about 300, 600, or 700 u_m to about 1,500 ⁇ n, and in another embodiment from about 800 iyn or to about 1,000 or 1,500 urn as measured by the GFM MikroCAD optical profiler instrument described according to U.S. Application Nos. 2006/0005916A1, 2006/0013998A1.
  • the bond sites 206 may be densified or non-densified.
  • the extensibility of the second ply 202 as compared to the first ply 201 constrains the first ply from being elongated substantially in the cross machine direction plane of the paper product.
  • Suitable means of embossing include those disclosed in U.S. Patent Nos. 3,323,983, 5,468,323, 5,693,406, 5,972,466, 6,030,690 and 6,086,715.
  • the embossments on the multi-ply fibrous structure product 100 may be arranged to form a non geometric foreground pattern 103 or, in some embodiments, a curved latticework.
  • the curved latticework of embossments can form an outline of a foreground pattern of unembossed cells in the latticework.
  • the lines that substantially describe each segment of the outline of the foreground pattern of embossments that form the latticework can be, but are not limited to, curved, wavy, snaking, S-waves, and sinusoidal.
  • the latticework may form regular or irregular patterns.
  • the embossments may be arranged to form one or more non-geometric foreground patterns of unembossed cells wherein no two cells are defined by the same embossments.
  • the present invention is equally applicable to all types of consumer paper products such as paper towels, toilet tissue, facial tissue, napkins, and the like.
  • the present invention contemplates the use of a variety of paper making fibers, such as, natural fibers, synthetic fibers, as well as any other suitable fibers, starches, and combinations thereof.
  • Paper making fibers useful in the present invention include cellulosic fibers commonly known as wood pulp fibers.
  • Applicable wood pulps include chemical pulps, such as Kraft, sulfite and sulfate pulps, as well as mechanical pulps including, groundwood, thermomechanical pulp, chemically modified, and the like. Chemical pulps may be used in tissue towel embodiments since they are known to those of skill in the art to impart a superior tactical sense of softness to tissue sheets made therefrom.
  • Pulps derived from deciduous trees (hardwood) and/or coniferous trees (softwood) can be utilized herein. Such hardwood and softwood fibers can be blended or deposited in layers to provide a stratified web. Exemplary layering embodiments and processes of layering are disclosed in U.S. Patent Nos. 3,994,771 and 4,300,981. Additionally, fibers derived from wood pulp such as cotton linters, bagesse, and the like, can be used. Additionally, fibers derived from recycled paper, which may contain any of all of the categories as well as other non-fibrous materials such as fillers and adhesives used to manufacture the original paper product may be used in the present web.
  • fibers and/or filaments made from polymers may be used in the present invention.
  • suitable hydroxyl polymers include polyvinyl alcohol, starch, starch derivatives, chitosan, chitosan derivatives, cellulose derivatives, gums, arabinans, galactans, and combinations thereof.
  • other synthetic fibers such as rayon, polyethylene, and polypropylene fibers can be used within the scope of the present invention. Further, such fibers may be latex bonded.
  • the paper is produced by forming a predominantly aqueous slurry comprising about 95% to about 99.9% water.
  • the non-aqueous component of the slurry used to make the fibrous structure comprises from about 5% to about 80% of eucalpyptus fibers by weight of the slurry.
  • the non-aqueous component comprises from about 8% to about 60% of eucalpyptus fibers by weight of the slurry, and in yet another embodiment from about 12% to about 40% of eucalpyptus fibers by weight of the non-aqueous component of the slurry.
  • the aqueous slurry can be pumped to the headbox of the papermaking process.
  • the present invention may comprise a co-formed fibrous structure.
  • a co-formed fibrous structure comprises a mixture of at least two different materials wherein at least one of the materials comprises a non-naturally occurring fiber, such as a polypropylene fiber, and at least one other material, different from the first material, comprising a solid additive, such as another fiber and/or a particulate.
  • a co-formed fibrous structure comprises solid additives, such as naturally occurring fibers, such as wood pulp fibers, and non-naturally occurring fibers, such as polypropylene fibers.
  • Synthetic fibers useful herein include any material, such as, but not limited to polymers, those selected from the group consisting of polyesters, polypropylenes, polyethylenes, polyethers, polyamides, poly hydroxy alkanoates, polysaccharides, and combinations thereof.
  • the material of the polymer segment may be selected from the group consisting of poly(ethylene terephthalate), poly(butylene terephthalate), poly(l,4-cyclohexylenedimethylene terephthalate), isophthalic acid copolymers (e.g., terephthalate cyclohexylene-dimethylene isophthalate copolymer), ethylene glycol copolymers (e.g., ethylene terephthalate cyclohexylene-dimethylene copolymer), polycaprolactone, poly(hydroxyl ether ester), poly(hydroxyl ether amide), polyesteramide, poly(lactic acid), polyhydroxybutyrate, and combinations thereof.
  • the synthetic fibers can be a single component (i.e., single synthetic material or a mixture to make up the entire fiber), bi-component (i.e., the fiber is divided into regions, the regions including two or more different synthetic materials or mixtures thereof and may include co-extruded fibers) and combinations thereof. It is also possible to use bicomponent fibers, or simply bicomponent or sheath polymers.
  • suitable bicomponent fibers are fibers made of copolymers of polyester (polyethylene terephthalate)/polyester (polyethylene terephthalate) otherwise known as "CoPET/PET" fibers, which are commercially available from Fiber Innovation Technology, Inc., Johnson City, TN.
  • bicomponent fibers can be used as a component fiber of the structure, and/or they may be present to act as a binder for the other fibers present.
  • Any or all of the synthetic fibers may be treated before, during, or after the process of the present invention to change any desired properties of the fibers. For example, in certain embodiments, it may be desirable to treat the synthetic fibers before or during the papermaking process to make them more hydrophilic, more wettable, etc.
  • the fibrous structure may comprise any tissue-towel paper product known in the industry. Embodiment of these substrates may be made according U.S. Patents: 4,191,609 issued March 4, 1980 to Trokhan; 4,300,981 issued to Carstens on November 17, 1981; 4,191,609 issued to Trokhan on March 4, 1980; 4,514,345 issued to Johnson et al.
  • the tissue-towel substrates may be manufactured via a wet-laid making process where the resulting web is through-air-dried or conventionally dried.
  • the substrate may be foreshortened by creping or by wet microcontraction. Creping and/or wet microcontraction are disclosed in commonly assigned U.S. Patents: 6,048,938 issued to Neal et al. on April 11, 2000; 5,942,085 issued to Neal et al. on August 24, 1999; 5,865,950 issued to Vinson et al. on February 2, 1999; 4,440,597 issued to Wells et al. on April 3, 1984; 4,191,756 issued to Sawdai on May 4, 1980; and 6,187,138 issued to Neal et al. on February 13, 2001.
  • tissue paper and methods for making such paper are known in the art, for example U.S. Patent 6,547,928 issued to Barnholtz et al. on April 15, 2003.
  • One suitable tissue paper is pattern densif ⁇ ed tissue paper which is characterized by having a relatively high-bulk field of relatively low fiber density and an array of densif ⁇ ed zones of relatively high fiber density.
  • the high-bulk field is alternatively characterized as a field of pillow regions.
  • the densified zones are alternatively referred to as knuckle regions.
  • the densif ⁇ ed zones may be discretely spaced within the high-bulk field or may be interconnected, either fully or partially, within the high-bulk field.
  • Uncompacted, non pattern-densif ⁇ ed tissue paper structures are also contemplated within the scope of the present invention and are described in U.S. Patent 3,812,000 issued to Joseph L. Salvucci, Jr. et al. on May 21, 1974; and U.S. Patent 4,208,459, issued to Henry E. Becker, et al. on Jun. 17, 1980.
  • Uncreped tissue paper as defined in the art are also contemplated. The techniques to produce uncreped tissue in this manner are taught in the prior art. For example, Wendt, et al. in European Patent Application 0 677 612A2, published October 18, 1995; Hyland, et al. in European Patent Application 0 617 164 Al, published September 28, 1994; and Farrington, et al. in U.S. Patent 5,656,132 issued August 12, 1997.
  • Uncreped tissue paper in one embodiment, refers to tissue paper which is non- compressively dried, by through air drying. Resultant through air dried webs are pattern densified such that zones of relatively high density are dispersed within a high bulk field, including pattern densified tissue wherein zones of relatively high density are continuous and the high bulk field is discrete.
  • the techniques to produce uncreped tissue in this manner are taught in the prior art. For example, Wendt, et. al. in European Patent Application 0 677 612A2, published Oct. 18, 1995; Hyland, et. al. in European Patent Application 0 617 164 Al, published Sep. 28, 1994; and Farrington, et. al. in U.S. Pat. No. 5,656,132 published Aug. 12, 1997. Other materials are also intended to be within the scope of the present invention as long as they do not interfere or counteract any advantage presented by the instant invention.
  • the substrate which comprises the fibrous structure of the present invention may be cellulosic, non-cellulosic, or a combination of both.
  • the substrate may be conventionally dried using one or more press felts or through-air dried. If the substrate which comprises the paper according to the present invention is conventionally dried, it may be conventionally dried using a felt which applies a pattern to the paper as taught by commonly assigned U.S. Pat. No. 5,556,509 issued Sep. 17, 1996 to Trokhan et al. and PCT Application WO 96/00812 published Jan. 11, 1996 in the name of Trokhan et al.
  • the substrate which comprises the paper according to the present invention may also be through air dried. A suitable through air dried substrate may be made according to commonly assigned U.S. Pat. No. 4,191,609. Plurality of Domes
  • At least one ply of fibrous structure comprises a plurality of domes formed during the papermaking process wherein the ply comprises from about 10 to about 1000 (i.e.; about 1.55 to about 155 domes per square centimeter) domes per square inch of the ply. In another embodiment the ply comprises from about 25 to about 500 domes per square inch of the ply or product; in another embodiment the ply comprises from about 50 to about 300 and in another embodiment the ply comprises from about 120 to about 200 or from about 130 to about 160 domes per square inch of the ply.
  • the fibrous structure is through air dried on a belt having a patterned framework.
  • the belt according to the present invention may be made according to any of commonly assigned U.S. Pat. No. 4,637,859 issued Jan. 20, 1987 to Trokhan; U.S. Pat. No. 4,514,345 issued Apr. 30, 1985 to Johnson et al.; U.S. Pat. No. 5,328,565 issued JuI 12, 1994 to Rasch et al.; and U.S. Pat. No. 5,334,289 issued Aug. 2, 1994 to Trokhan et al.
  • the belts that result from the belt making techniques disclosed in the referenced patents provide advantages over conventional belts in the art and are herein referred to as resin coated woven belts.
  • the patterned framework of the belt imprints a pattern comprising an essentially continuous network onto the paper and further has deflection conduits dispersed within the pattern.
  • the deflection conduits extend between opposed first and second surfaces of the framework. The deflection conduits allow domes to form in the paper.
  • the fibrous ' substrate is a through air dried paper made according to the foregoing patents and has a plurality of domes formed during the papermaking process which are dispersed throughout an essentially continuous network region.
  • the domes extend generally perpendicular to the paper and increase its caliper.
  • the domes generally correspond in geometry, and during papermaking in position, to the deflection conduits of the belt described above.
  • these shapes include, but are not limited to those described as a bow-tie pattern or snowflake pattern. Further examples of these shapes include, but are not limited to, circles, ovals, diamonds, triangles, hexagons, and various quadrilaterals.
  • the domes protrude outwardly from the plane of the paper due to molding into the deflection conduits during the papermaking process. By molding into the deflection conduits during the papermaking process, the regions of the paper comprising the domes are deflected in the Z-direction. If the fibrous structure has domes, or other prominent features in the topography, the domes, or other prominent feature, may be arranged in a variety of different configurations. These configurations include, but are not limited to: regular arrangements, random arrangements, multiple regular arrangements, and combinations thereof.
  • the fibrous structure product according to the present invention having domes may be made according to commonly assigned U.S. Pat. No.: 4,528,239 issued JuI. 9, 1985 to Trokhan; U.S. Pat. No. 4,529,480 issued JuI. 16, 1985 to Trokhan; U.S. Pat. No. 5,275,700 issued Jan. 4, 1994 to Trokhan; U.S. Pat. No. 5,364,504 issued Nov. 15, 1985 to Smurkoski et al.; U.S. Pat. No. 5,527,428 issued Jun. 18, 1996 to Trokhan et al.; U.S. Pat. No. 5,609,725 issued Mar. 11, 1997 to Van Phan; U.S. Pat. No. 5,679,222 issued Oct.
  • the fibrous structure is made using the papermaking belt as disclosed in US 5,334,289, issued on Aug. 2, 1994, Paul Trokhan and Glenn Boutilier.
  • the backside textured papermaking belt is generally comprised of two primary elements: a framework and a reinforcing structure. It may be an endless belt which has a paper-contacting side and a textured backside, opposite the paper-contacting side, which contacts the machinery employed in the papermaking process.
  • the framework may be a cured polymeric photosensitive resinous framework which has a first surface which defines the paper-contacting side of the belt, a second surface opposite the first surface, and conduits extending between the first and second surfaces.
  • the first surface of the framework has a paper side network formed therein which surrounds and defines the openings of the conduits.
  • the second surface of the framework has a backside network with passageways therein which are distinct from the conduits.
  • the passageways provide surface texture irregularities in the backside network of the second surface.
  • the reinforcing structure is positioned between the first surface of the framework and at least a portion of the second surface of the framework and serves to strengthen the framework.
  • the reinforcing structure has a paper-facing side and a machine-facing side opposite the paper-facing side.
  • the reinforcing structure also has interstices and a reinforcing component comprised of a plurality of structural components.
  • a first portion of the reinforcing component has a first opacity
  • a second portion of the reinforcing component has a second opacity which is less than the first opacity.
  • the first opacity is sufficient to substantially prevent curing of the photosensitive resinous material which comprises the framework when the photosensitive resinous material is in its uncured state and the first portion of the reinforcing component is positioned between the photosensitive resinous material and an actinic light source.
  • the second opacity is sufficient to permit curing of the photosensitive resinous material.
  • the first portion defines a first projected area. The position of the passageways in the backside network of the framework relative to the reinforcing structure is such that the passageways are positioned predominately within the first projected area.
  • the plies of the multi-ply fibrous structure may be the same substrate respectively or the plies may comprise different substrates combined to create desired consumer benefits.
  • the fibrous structures comprise two plies of tissue substrate.
  • the fibrous structure comprises a first ply, a second ply, and at least one inner ply.
  • the fibrous structure product has a plurality of embossments.
  • the embossment pattern is applied only to the first ply, and therefore, each of the two plies serve different objectives and are visually distinguishable.
  • the embossment pattern on the first ply provides, among other things, improved aesthetics regarding thickness and quilted appearance, while the second ply, being unembossed, is devised to enhance functional qualities such as absorbency, thickness and strength.
  • the fibrous structure product is a two ply product wherein both plies comprise a plurality of embossments.
  • Suitable means of embossing include those disclosed in U.S. Patent Nos.: 3,323,983 issued to Palmer on September 8, 1964; 5,468,323 issued to McNeil on November 21, 1995;
  • Suitable means of laminating the plies include but are not limited to those methods disclosed in commonly assigned U.S. Patent Nos.: 6,113,723 issued to McNeil et al. on September 5, 2000; 6,086,715 issued to McNeil on July 11, 2000; 5,972,466 issued to Trokhan on October 26, 1999; 5,858,554 issued to Neal et al. on January 12, 1999; 5,693,406 issued to Wegele et al. on December 2, 1997; 5,468,323 issued to McNeil on November 21, 1995; 5,294,475 issued to McNeil on March 15, 1994.
  • the fibrous structure product may be in roll form.
  • the fibrous structure product When in roll form, the fibrous structure product may be wound about a core or may be wound without a core.
  • the multi-ply fibrous structure product herein may optionally comprise one or more ingredients that may be added to the aqueous papermaking furnish or the embryonic web. These optional ingredients may be added to impart other desirable characteristics to the product or improve the papermaking process so long as they are compatible with the other components of the fibrous structure product and do not significantly and adversely effect the functional qualities of the present invention.
  • the listing of optional chemical ingredients is intended to be merely exemplary in nature, and are not meant to limit the scope of the invention. Other materials may be included as well so long as they do not interfere or counteract the advantages of the present invention.
  • a cationic charge biasing species may be added to the papermaking process to control the zeta potential of the aqueous papermaking furnish as it is delivered to the papermaking process. These materials are used because most of the solids in nature have negative surface charges, including the surfaces of cellulosic fibers and fines and most inorganic fillers.
  • the cationic charge biasing species is alum.
  • charge biasing may be accomplished by use of relatively low molecular weight cationic synthetic polymer, in one embodiment having a molecular weight of no more than about 500,000 and in another embodiment no more than about 200,000, or even about 100,000. The charge densities of such low molecular weight cationic synthetic polymers are relatively high.
  • charge densities range from about 4 to about 8 equivalents of cationic nitrogen per kilogram of polymer.
  • An exemplary material is Cypro 514®, a product of Cytec, Inc. of Stamford, Conn. High surface area, high anionic charge microparticles for the purposes of improving formation, drainage, strength, and retention may also be included herein. See, for example, U.S. Pat. No. 5,221,435, issued to Smith on Jun. 22, 1993. If permanent wet strength is desired, cationic wet strength resins may be optionally added to the papermaking furnish or to the embryonic web.
  • From about 2 to about 50 lbs./ton of dry paper fibers of the cationic wet strength resin may be used, in another embodiment from about 5 to about 30 lbs./ton , and in another embodiment from about 10 to about 25 lbs./ton.
  • the cationic wet strength resins useful in this invention include without limitation cationic water soluble resins. These resins impart wet strength to paper sheets and are well known to the paper making art. These resin may impart either temporary or permanent wet strength to the sheet.
  • Such resins include the following Hercules products. KYMENE® resins obtainable from Hercules Inc., Wilmington, Del. may be used, including KYMENE® 736 which is a polyethyleneimine (PEI) wet strength polymer. It is believed that the PEI imparts wet strength by ionic bonding with the pulps carboxyl sites.
  • KYMENE® 557LX is polyamide epichlorohydrin (PAE) wet strength polymer.
  • the PAE contains cationic sites that lead to resin retention by forming an ionic bond with the carboxyl sites on the pulp.
  • the polymer contains 3-azetidinium groups which react to form covalent bonds with the pulps' carboxyl sites as well as with the polymer backbone.
  • the product must undergo curing in the form of heat or undergo natural aging for the reaction of the azentidinium group.
  • KYMENE® 450 is a base activated epoxide polyamide epichlorohydrin polymer. It is theorized that like 557LX the resin attaches itself ionically to the pulps' carboxyl sites. The epoxide group is much more reactive than the azentidinium group.
  • KYMENE® 2064 is also a base activated epoxide polyamide epichlorohydrin polymer. It is theorized that KYMENE® 2064 imparts its wet strength by the same mechanism as KYMENE® 450. KYMENE® 2064 differs in that the polymer backbond contains more epoxide functional groups than does KYMENE® 450.
  • Both KYMENE® 450 and KYMENE® 2064 require curing in the form of heat or natural aging to fully react all the epoxide groups, however, due to the reactiveness of the epoxide group, the majority of the groups (80-90%) react and impart wet strength off the paper machine. Mixtures of the foregoing may be used.
  • Other suitable types of such resins include urea-formaldehyde resins, melamine formaldehyde resins, polyamide-epichlorohydrin resins, polyethyleneimine resins, polyacrylamide resins, dialdehyde starches, and mixtures thereof.
  • Other suitable types of such resins are described in US Pat. No. 3,700,623, issued Oct. 24, 1972; US Pat. No. 3.772,076, issued Nov. 13, 1973; US Pat. No. 4,557,801, issued Dec. 10, 1985 and US Pat. No. 4,391,878, issued July 5, 1983.
  • the cationic wet strength resin may be added at any point in the processes, where it will come in contact with the paper fibers prior to forming the wet web.
  • surfactants may be used to treat the paper webs of the present invention.
  • the level of surfactant if used, in one embodiment, from about 0.01% to about 2.0% by weight, based on the dry fiber weight of the tissue web.
  • the surfactants have alkyl chains with eight or more carbon atoms.
  • Exemplary anionic surfactants include linear alkyl sulfonates and alkylbenzene sulfonates.
  • Exemplary nonionic surfactants include alkylglycosides including alky lglyco side esters such as Crodesta SL40® which is available from Croda, Inc. (New York, N. Y.); alkylglycoside ethers as described in U.S.
  • chemical softening agents may be used.
  • the chemical softening agents comprise quaternary ammonium compounds including, but not limited to, the well-known dialkyldimethylammonium salts (e.g., ditallowdimethylammonium chloride, ditallowdimethylammonium methyl sulfate (“DTDMAMS”), di(hydrogenated tallow)dimethyl ammonium chloride, etc.).
  • dialkyldimethylammonium salts e.g., ditallowdimethylammonium chloride, ditallowdimethylammonium methyl sulfate (“DTDMAMS”), di(hydrogenated tallow)dimethyl ammonium chloride, etc.
  • these softening agents include mono or diester variations of the before mentioned dialkyldimethylammonium salts and ester quaternaries made from the reaction of fatty acid and either methyl diethanol amine and/or triethanol amine, followed by quaternization with methyl chloride or dimethyl sulfate.
  • Another class of papermaking-added chemical softening agents comprises organo- reactive polydimethyl siloxane ingredients, including the amino functional polydimethyl siloxane.
  • the fibrous structure product of the present invention may further comprise a diorganopolysiloxane-based polymer.
  • These diorganopolysiloxane-based polymers useful in the present invention span a large range of viscosities; from about 10 to about 10,000,000 centistokes (cSt) at 25 0 C.
  • Some diorganopolysiloxane-based polymers useful in this invention exhibit viscosities greater than 10,00O 5 OOO centistokes (cSt) at 25 0 C and therefore are characterized by manufacturer specific penetration testing. Examples of this characterization are GE silicone materials SE 30 and SE 63 with penetration specifications of 500-1500 and 250-600 (tenths of a millimeter) respectively.
  • diorganopolysiloxane polymers of the present invention are diorganopolysiloxane polymers comprising repeating units, where said units correspond to the formula (R2 SiO) n , where R is a monovalent radical containing from 1 to 6 carbon atoms, in one embodiment selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, amyl, hexyl, vinyl, allyl, cyclohexyl, amino alkyl, phenyl, fluoroalkyl and mixtures thereof.
  • R is a monovalent radical containing from 1 to 6 carbon atoms, in one embodiment selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, amyl, hexyl, vinyl, allyl, cyclohexyl, amino al
  • the diorganopoylsiloxane polymers which may be employed in the present invention may contain one or more of these radicals as substituents on the siloxane polymer backbone.
  • the diorganopolysiloxane polymers may be terminated by triorganosilyl groups of the formula (R ⁇ Si) where R * is a monovalent radical selected from the group consisting of radicals containing from 1-6 carbon atoms, hydroxyl groups, alkoxyl groups, and mixtures thereof.
  • the silicone polymer is a higher viscosity polymers, e.g., poly(dimethylsiloxane), herein referred to as PDMS or silicone gum, having a viscosity of at least 100,000 cSt.
  • Silicone gums optionally useful herein, corresponds to the formula:
  • R is a methyl group
  • Fluid diorganopolysiloxane polymers that are commercially available, include SE 30 silicone gum and SF96 silicone fluid available from the General Electric Company. Similar materials can also be obtained from Dow Corning and from Wacker Silicones.
  • An additional fluid diorganosiloxane-based polymer optionally for use in the present invention is a dimethicone copolyol.
  • the dimethicone copolyol can be further characterized as polyalkylene oxide modified polydimethysiloxanes, such as manufactured by the Witco Corporation under the trade name Silwet. Similar materials can be obtained from Dow Corning, Wacker Silicones and Goldschmidt Chemical Corporation as well as other silicone manufacturers. Silicones useful herein are further disclosed in US 5,059,282; 5,164,046; 5,246,545; 5,246,546; 5,552,345; 6,238,682; 5,716,692.
  • coloring agents such as print elements, perfumes, dyes, and mixtures thereof, may be included in the fibrous structure product of the present invention.
  • TAD through-air-dried
  • differential density structure formed by the following process.
  • TAD structures are generally described in U.S. Patent No. 4,528,239.
  • a Fourdrinier, through-air-dried papermaking machine is used.
  • a slurry of papermaking fibers is pumped to the headbox at a consistency of about 0.15%.
  • the slurry consists of about 70% Northern Softwood Kraft fibers, about 30% unrefined Eucalyptus fibers, a cationic polyamine-epichlorohydrin wet burst strength resin at a concentration of about 25 lbs per ton of dry fiber, and carboxymethyl cellulose at a concentration of about 5 lbs per ton of dry fiber, as well as DTDMAMS at a concentration of about 6 lbs per ton of dry fiber.
  • Dewatering occurs through the Fourdrinier wire and is assisted by vacuum boxes.
  • the embryonic wet web is transferred from the Fourdrinier wire at a fiber consistency of about 20% at the point of transfer, to a TAD carrier fabric.
  • the wire speed is about 620 feet per minute.
  • the carrier fabric speed is about 600 feet per minute. Since the wire speed is faster than the carrier fabric, wet shortening of the web occurs at the transfer point. Thus, the wet web foreshortening is about 3%.
  • the sheet side of the carrier fabric consists of a continuous, patterned network of photopolymer resin, the pattern containing about 150 deflection conduits or domes per square inch.
  • the deflection conduits or domes are arranged in a regular configuration, and the polymer network covers about 25% of the surface area of the carrier fabric.
  • the polymer resin is supported by and attached to a woven support member.
  • the photopolymer network rises about 18 mils above the support member.
  • the consistency of the web is about 60% after the action of the TAD dryers operating about a 400 0 F, before transfer onto the Yankee dryer.
  • An aqueous solution of creping adhesive is applied to the Yankee surface by spray applicators before the location of the sheet transfer.
  • the fiber consistency is increased to an estimated 95.5% before creping the web with a doctor blade.
  • the doctor blade has a bevel angle of about 25 degrees and is positioned with respect to the Yankee dryer to provide an impact angle of about 81 degrees.
  • the Yankee dryer is operated at about 360 0 F, and Yankee hoods are operated at about 350 0 F.
  • the dry, creped web is passed between two calendar rolls and rolled on a reel operated at 560 feet per minute so that there is about 7% foreshortening of the web by crepe.
  • the paper described above is then subjected to a knob-to-rubber impression embossing process as follows.
  • An emboss roll is engraved with a nonrandom pattern of protrusions.
  • the emboss roll is mounted, along with a backside impression roll, in an apparatus with their respective axes being generally parallel to one another.
  • the emboss roll comprises embossing protrusions which are frustaconical in shape.
  • the backside impression roll is made of ValcoatTM material from Valley Roller Company, Mansfield, Texas.
  • the paper web is passed through the nip to create an embossed ply.
  • the resulting paper has an embossment height of from about 600 ⁇ m to about 950 ⁇ m, a High Load Caliper of about 20 mils, a Basis weight of about 34 lbs./3,000 ft. 2 to about 36 lbs./3,000 ft., and a Flex Modulus of about 0.6.
  • Example 2
  • One fibrous structure useful in achieving the fibrous structure paper products of the present invention is a through-a ⁇ r-dried (TAD), differential density structure formed by the following process.
  • TAD through-a ⁇ r-dried
  • a Fourdrinier, through-air-dried papermaking machine is used.
  • a slurry of papermaking fibers is pumped to the headbox at a consistency of about 0.15%.
  • the slurry consists of about 70% Northern Softwood Kraft fibers, about 20% unrefined Eucalyptus fibers, and about 10% of bi component fibers of copolymers of polyester (polyethylene terephthalate)/polyester (polyethylene terephthalate) such as "CoPET/PET” fibers, which are commercially available from Fiber Innovation Technology, Inc., Johnson City, TN.
  • the slurry further comprises a cationic polyamine-epichlorohydrin wet burst strength resin at a concentration of about 25 lbs per ton of dry fiber, and carboxymethyl cellulose at a concentration of about 5 lbs per ton of dry fiber, as well as DTDMAMS at a concentration of about 6 lbs per ton of dry fiber. Dewatering occurs through the Fourdrinier wire and is assisted by vacuum boxes.
  • the embryonic wet web is transferred from the Fourdrinier wire at a fiber consistency of about 24% at the point of transfer, to a TAD carrier fabric.
  • the wire speed is about 620 feet per minute.
  • the carrier fabric speed is about 600 feet per minute. Since the wire speed is faster than the carrier fabric, wet shortening of the web occurs at the transfer point. Thus, the wet web foreshortening is about 3%.
  • the sheet side of the carrier fabric consists of a continuous, patterned network of photopolymer resin, the pattern containing about 150 deflection conduits or domes per square inch.
  • the deflection conduits or domes are arranged in a regular configuration, and the polymer network covers about 25% of the surface area of the carrier fabric.
  • the polymer resin is supported by and attached to a woven support member.
  • the photopolymer network rises about 18 mils above the support member.
  • the consistency of the web is about 72% after the action of the TAD dryers operating about a 35O°F, before transfer onto the Yankee dryer.
  • An aqueous solution of creping adhesive is applied to the Yankee surface by spray applicators before location of sheet transfer.
  • the fiber consistency is increased to an estimated 97% before creping the web with a doctor blade.
  • the doctor blade has a bevel angle of about 25 degrees and is positioned with respect to the Yankee dryer to provide an impact angle of about 81 degrees.
  • the Yankee dryer is operated at about 500 0 F, and Yankee hoods are operated at about 380 0 F.
  • the dry, creped web is passed between two calendar rolls and rolled on a reel operated at 560 feet per minute so that there is about 7% foreshortening of the web by crepe.
  • the paper described above is then subjected to a knob-to-rubber impression embossing process, as follows.
  • An emboss roll is engraved with a nonrandom pattern of protrusions.
  • the emboss roll is mounted, along with a backside impression roll, in an apparatus with their respective axes being generally parallel to one another.
  • the emboss roll comprises embossing protrusions which are frustaconical in shape.
  • the backside impression roll is made of ValcoatTM material from Valley Roller Company, Mansfield, .Texas.
  • the paper web is passed through the nip to create an embossed ply.
  • the resulting paper has an embossment height of from about 600 ⁇ m to about 950 ⁇ m, a High Load Caliper of about 22 mils, a Basis Weight of about 35 lbs/3000 ft. 2 and a Flex Modulus of about 0.5.
  • the Flex Modulus is a measurement of the bending stiffness of the fibrous structure product herein.
  • the following procedure can be used to determine the bending stiffness of paper product.
  • the Kawabata Evaluation System-2, Pure Bending Tester i.e.; KES-FB2, manufactured by a Division of Instrumentation, Kato Tekko Company, Ltd. of Kyoto, Japan
  • KES-FB2 Pure Bending Tester
  • Samples of the paper product to be tested are cut to approximately 20x20 cm in the machine and cross machine direction.
  • the sample width is measured to 0.01 inches (0.025 cm).
  • the outer ply i.e.; the ply that is facing outwardly on a roll of the paper sample
  • inner ply as presented on the roll are identified and marked.
  • the sample is placed in the jaws of the KES-FB2 Auto A such that the sample is first bent with the outer ply undergoing compression and the inner ply undergoing tension. In the orientation of the KES-FB2 the outer ply is right facing and the inner ply is left facing. The distance between the front moving jaw and the rear stationary jaw is 1 cm.
  • the sample is secured in the instrument in the following manner. First the front moving chuck and the rear stationary chuck are opened to accept the sample. The sample is inserted midway between the top and bottom of the jaws such that the machine direction of the sample is parallel to the jaws (i.e.; vertical in the KES-FB2 holder).
  • the rear stationary chuck is then closed by uniformly tightening the upper and lower thumb screws until the sample is snug, but not overly tight.
  • the jaws on the front stationary chuck are then closed in a similar fashion.
  • the sample is adjusted for squareness in the chuck, then the front jaws are tightened to insure the sample is held securely.
  • the distance (d) between the front chuck and the rear chuck is 1 cm.
  • the output of the instrument is load cell voltage (Vy) and curvature voltage (Vx).
  • Vy load cell voltage
  • Vx curvature voltage
  • M bending moment normalized for sample width
  • Vy is the load cell voltage
  • Sy is the instrument sensitivity in gf*cm/V
  • d is the distance between the chucks
  • W is the sample width in centimeters.
  • the sensitivity switch of the instrument is set at 5 ⁇ l. Using this setting the instrument is calibrated using two 50 gram weights. Each weight is suspended from a thread. The thread is wrapped around the bar on the bottom end of the rear stationary chuck and hooked to a pin extending from the front and back of the center of the shaft. One weight thread is wrapped around the front and hooked to the back pin. The other weight thread is wrapped around the back of the shaft and hooked to the front pin. Two pulleys are secured to the instrument on the right and left side.
  • the top of the pulleys are horizontal to the center pin. Both weights are then hung over the pulleys (one on the left and one on the right) at the same time.
  • the full scale voltage is set at 10 V.
  • the radius of the center shaft is 0.5 cm.
  • the resultant full scale sensitivity (Sy) for the Moment axis is 100 gf*0.5 cm/lOV (5 gf*cm/V).
  • the output for the Curvature axis is calibrated by starting the measurement motor and manually stopping the moving chuck when the indicator dial reaches the stop .
  • the output voltage (Vx) is adjusted to 0.5 volts.
  • the resultant sensitivity (Sx) for the curvature axis is 2/(volts*cm).
  • the curvature (K) is obtained in the following manner:
  • Sx is the sensitivity of the curvature axis
  • Vx is the output voltage
  • the moving chuck is cycled from a curvature of 0 cm “ ' to +2.5 cm “l to -2.5 cm “ ' to 0 cm “ ' at a rate of 0.5 cm " ' /sec. Each sample is cycled once.
  • the output voltage of the instrument is recorded in a digital format using a personal computer. At the start of the test there is no tension on the sample. As the test begins the load cell begins to experience a load as the sample is bent. The initial rotation is clockwise when viewed from the top down on the instrument.
  • Basis Weight Method Basis weight is measured by preparing one or more samples of a certain area (3000 ft 2 or m 2 ) and weighing the sample(s) of a fibrous structure according to the present invention and/or a fibrous structure product comprising such fibrous structure on a top loading balance with a minimum resolution of 0.01 g. The balance is protected from air drafts and other disturbances using a draft shield. Weights are recorded when the readings on the balance become constant. The average weight (lbs or g) is calculated and the average area of the samples (3000 ft 2 or m 2 ).
  • the basis weight (lbs/3000 ft 2 or g/m 2 ) is calculated by dividing the average weight (lbs or g) by the average area of the samples (3000 ft 2 or m 2 ). This method is herein referred to as the Basis Weight Method.
  • Sheet Caliper or Loaded Caliper Test Method Samples are conditioned at 23+/- 1 0 C and 50% relative humidity for two hours prior to testing.
  • Sheet Caliper or Loaded Caliper of a sample of fibrous structure product is determined by cutting a sample of the fibrous structure product such that it is larger in size than a load foot loading surface where the load foot loading surface has a circular surface area of about 3.14 in 2 .
  • the sample is confined between a horizontal flat surface and the load foot loading surface.
  • the load foot loading surface applies a confining pressure to the sample of 14.7 g/cm 2 (about 0.21 psi).
  • the caliper is the resulting gap between the flat surface and the load foot loading surface.
  • Such measurements can be obtained on a VIR Electronic Thickness Tester Model II available from Thwing- Albert Instrument Company, Philadelphia, PA.
  • the caliper measurement is repeated and recorded at least five (5) times so that an average caliper can be calculated. The result is reported in mils.
  • Samples are conditioned at 23+/-1 0 C and 50% relative humidity for two hours prior to testing.
  • Wet Caliper of a sample of fibrous structure product is determined by cutting a sample of the fibrous structure product such that it is larger in size than a load foot loading surface where the load foot loading surface has a circular surface area of about 3.14 in 2 .
  • Each sample is wetted by submerging the sample in a distilled water bath for 30 seconds. The caliper of the wet sample is measured within 30 seconds of removing the sample from the bath.
  • the sample is then confined between a horizontal flat surface and the load foot loading surface.
  • the load foot loading surface applies a confining pressure to the sample of 14.7 g/cm 2 (about 0.21 psi).
  • the caliper is the resulting gap between the flat surface and the load foot loading surface. Such measurements can be obtained on a VIR Electronic Thickness Tester Model II available from Thwing-Albert Instrument Company, Philadelphia, PA. The caliper measurement is repeated and recorded at least five (5) times so that an average caliper can be calculated. The result is reported in mils.
  • Tester equipped with a 2000 g load cell and compression fixture.
  • the compression fixture consisted of the following; load cell adaptor plate, 2000 gram overload protected load cell, load cell adaptor/foot mount 1.128 inch diameter presser foot, #89-14 anvil, 89-157 leveling plate, anvil mount, and a grip pin, all available from Thwing-Albert Instrument Company, Philadelphia, Pa.
  • the compression foot is one square inch in area.
  • the instrument is run under the control of Thwing-Albert Motion Analysis Presentation Software (MAP Vl, 1,6,9). A single sheet of a conditioned sample is cut to a diameter of approximately two inches. Samples are conditioned for a minimum of 2 hours at 23+/-l°C and 50 ⁇ 2% relative humidity. Testing is carried out under the same temperature and humidity conditions.
  • the sample must be less than 2.5-inch diameter (the diameter of the anvil) to prevent interference of the fixture with the sample. Care should be taken to avoid damage to the center portion of the sample, which will be under test. Scissors or other cutting tools may be used.
  • the sample is centered on the compression table under the compression foot.
  • the compression and relaxation data are obtained using a crosshead speed of 0.1 inches/minute.
  • the deflection of the load cell is obtained by running the test without a sample being present. This is generally known as the Steel-to-Steel data.
  • the Steel-to-Steel data are obtained at a crosshead speed of 0.005 in/min. Crosshead position and load cell data are recorded between the load cell range of 5 grams and 1500 grams for both the compression and relaxation portions of the test.
  • crosshead position values are collected by the MAP software, by defining fifteen traps (Trapl to Trap 15) at load settings of 10, 25, 50, 75, 100, 125, 150, 200, 300, 400, 500, 600, 750, 1000, 1250.
  • crosshead position values are collected by the MAP software, by defining fifteen return traps (Return Trapl to Return Trap 15) at load settings of 1250, 1000, 750, 500, 400, 300, 250, 200, 150, 125, 100, 75, 50, 25, 10.
  • the thirty-first trap is the trap at max load (1500 g). Again values are obtained for both the Steel-to-Steel and the sample. Steel-to-Steel values are obtained for each batch of testing. If multiple days are involved in the testing, the values are checked daily. The Steel-to-Steel values and the sample values are an average of four replicates (1500 g).
  • Caliper values are obtained by subtracting the average Steel-to-Steel crosshead trap values from the sample crosshead trap value at each trap point. For example, the values from two, three, or four individual replicates on each sample are averaged and used to obtain plots of the Caliper versus Load and Caliper versus Log(lO) Load.
  • the Compression Slope is defined as the absolute value of the initial slope of the caliper versus Log(10)Load. The value is calculated by taking four data pairs from the compression direction of the curve that is, the caliper at 500, 600, 750, 1,000 or 750, 1,000, 1250, 1500, g/sq in at the start of the test. The pressure is converted to the Log(lO) of the pressure. A least square regression is then obtained using the four pairs of caliper (y-axis) and Log(lO) pressure (x-axis). The absolute value of the slope of the regression line is the Compression Slope. The units of the Compression Slope are mils/(log(10)g/sq in). For simplicity the Compression Slope is reported here without units. High Load Caliper is the average caliper at 1,500 g/sq. inch.
  • Weight is a measure of the ability of a fibrous structure and/or a fibrous structure product incorporating a fibrous structure to absorb energy, when wet and subjected to deformation normal to the plane of the fibrous structure and/or fibrous structure product.
  • Wet burst strength may be measured using a Thwing- Albert Burst Tester Cat. No. 177 equipped with a 2000 g load cell commercially available from Thwing-Albert Instrument Company, Philadelphia, PA.
  • Wet burst strength is measured by taking two (2) muki-ply fibrous structure product samples.
PCT/US2007/010777 2006-05-03 2007-05-03 Fibrous structure product with high bulk WO2007130541A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MX2008014069A MX2008014069A (es) 2006-05-03 2007-05-03 Producto de estructura fibrosa de alto volumen.
CA002651116A CA2651116A1 (en) 2006-05-03 2007-05-03 Fibrous structure product with high bulk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US79724506P 2006-05-03 2006-05-03
US60/797,245 2006-05-03

Publications (2)

Publication Number Publication Date
WO2007130541A2 true WO2007130541A2 (en) 2007-11-15
WO2007130541A3 WO2007130541A3 (en) 2008-02-07

Family

ID=38663007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/010777 WO2007130541A2 (en) 2006-05-03 2007-05-03 Fibrous structure product with high bulk

Country Status (4)

Country Link
US (1) US20070256802A1 (es)
CA (1) CA2651116A1 (es)
MX (1) MX2008014069A (es)
WO (1) WO2007130541A2 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050311A2 (en) * 2006-10-27 2008-05-02 The Procter & Gamble Company Clothlike non-woven fibrous structures and processes for making same
US7744723B2 (en) * 2006-05-03 2010-06-29 The Procter & Gamble Company Fibrous structure product with high softness
USD630441S1 (en) 2007-05-02 2011-01-11 The Procter & Gamble Company Paper product
US8152959B2 (en) * 2006-05-25 2012-04-10 The Procter & Gamble Company Embossed multi-ply fibrous structure product

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100314058A1 (en) * 2009-06-12 2010-12-16 Matthew Todd Hupp Sanitary tissue products comprising design elements
US8753751B1 (en) 2013-01-31 2014-06-17 Kimberly-Clark Worldwide, Inc. Absorbent tissue
US8834677B2 (en) 2013-01-31 2014-09-16 Kimberly-Clark Worldwide, Inc. Tissue having high improved cross-direction stretch
US9206555B2 (en) 2013-01-31 2015-12-08 Kimberly-Clark Worldwide, Inc. Tissue having high strength and low modulus
US8702905B1 (en) 2013-01-31 2014-04-22 Kimberly-Clark Worldwide, Inc. Tissue having high strength and low modulus
USD738635S1 (en) * 2013-09-26 2015-09-15 First Quality Tissue, Llc Paper product with surface pattern
CN104074092A (zh) * 2014-06-17 2014-10-01 广东华凯特种纤维板科技有限公司 一种采用棉短绒为原料应用于乳胶纤维板生产的生产方法
US10765570B2 (en) 2014-11-18 2020-09-08 The Procter & Gamble Company Absorbent articles having distribution materials
EP3023084B1 (en) 2014-11-18 2020-06-17 The Procter and Gamble Company Absorbent article and distribution material
US10517775B2 (en) 2014-11-18 2019-12-31 The Procter & Gamble Company Absorbent articles having distribution materials
US11000428B2 (en) 2016-03-11 2021-05-11 The Procter & Gamble Company Three-dimensional substrate comprising a tissue layer
US20170282487A1 (en) * 2016-04-04 2017-10-05 The Procter & Gamble Company Layered Fibrous Structures with Inter-Layer Voids
US20170282524A1 (en) * 2016-04-04 2017-10-05 The Procter & Gamble Company Layered Fibrous Structures with Different Common Intensive Properties
USD850123S1 (en) * 2017-03-10 2019-06-04 Cascades Canada Ulc Tissue sheet with an embossing pattern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162327A (en) * 1999-09-17 2000-12-19 The Procter & Gamble Company Multifunctional tissue paper product
WO2004005015A2 (en) * 2002-07-10 2004-01-15 Kimberly-Clark Worldwide, Inc. Multi-ply wiping products
US20050178513A1 (en) * 2004-02-17 2005-08-18 Russell Matthew A. Deep-nested embossed paper products

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE516549A (es) * 1952-06-11
US3329556A (en) * 1963-10-23 1967-07-04 Clupak Inc Non-woven fabric and method of mechanically working same
US3260778A (en) * 1964-01-23 1966-07-12 Richard R Walton Treatment of materials
US3301746A (en) * 1964-04-13 1967-01-31 Procter & Gamble Process for forming absorbent paper by imprinting a fabric knuckle pattern thereon prior to drying and paper thereof
US3426405A (en) * 1966-07-11 1969-02-11 Richard Rhodes Walton Confining device for compressive treatment of materials
US3554862A (en) * 1968-06-25 1971-01-12 Riegel Textile Corp Method for producing a fiber pulp sheet by impregnation with a long chain cationic debonding agent
US3726750A (en) * 1971-05-20 1973-04-10 Kimberly Clark Co Composite cellulosic laminate and method of forming same
US3812000A (en) * 1971-06-24 1974-05-21 Scott Paper Co Soft,absorbent,fibrous,sheet material formed by avoiding mechanical compression of the elastomer containing fiber furnished until the sheet is at least 80%dry
US3806406A (en) * 1971-12-20 1974-04-23 Beloit Corp Tissue former including a yankee drier having raised surface portions
US3821068A (en) * 1972-10-17 1974-06-28 Scott Paper Co Soft,absorbent,fibrous,sheet material formed by avoiding mechanical compression of the fiber furnish until the sheet is at least 80% dry
US4072557A (en) * 1974-12-23 1978-02-07 J. M. Voith Gmbh Method and apparatus for shrinking a travelling web of fibrous material
CA1052157A (en) * 1975-05-05 1979-04-10 Thomas J. Flautt (Jr.) Two-ply tissue product
US4144122A (en) * 1976-10-22 1979-03-13 Berol Kemi Ab Quaternary ammonium compounds and treatment of cellulose pulp and paper therewith
US4090385A (en) * 1977-01-26 1978-05-23 Bird Machine Company, Inc. Material treating apparatus
US4157938A (en) * 1977-04-21 1979-06-12 The Procter & Gamble Company Method and apparatus for continuously expelling an atomized stream of water from a moving fibrous web
GB1573037A (en) * 1977-05-05 1980-08-13 Farmaceutici Italia Anthracyclines
US4102737A (en) * 1977-05-16 1978-07-25 The Procter & Gamble Company Process and apparatus for forming a paper web having improved bulk and absorptive capacity
US4309246A (en) * 1977-06-20 1982-01-05 Crown Zellerbach Corporation Papermaking apparatus and method
US4196045A (en) * 1978-04-03 1980-04-01 Beloit Corporation Method and apparatus for texturizing and softening non-woven webs
US4191609A (en) * 1979-03-09 1980-03-04 The Procter & Gamble Company Soft absorbent imprinted paper sheet and method of manufacture thereof
US4448638A (en) * 1980-08-29 1984-05-15 James River-Dixie/Northern, Inc. Paper webs having high bulk and absorbency and process and apparatus for producing the same
US4440597A (en) * 1982-03-15 1984-04-03 The Procter & Gamble Company Wet-microcontracted paper and concomitant process
US5102501A (en) * 1982-08-18 1992-04-07 James River-Norwalk, Inc. Multiple layer fibrous web products of enhanced bulk and method of manufacturing same
US4637859A (en) * 1983-08-23 1987-01-20 The Procter & Gamble Company Tissue paper
US4528239A (en) * 1983-08-23 1985-07-09 The Procter & Gamble Company Deflection member
US4514345A (en) * 1983-08-23 1985-04-30 The Procter & Gamble Company Method of making a foraminous member
US4529480A (en) * 1983-08-23 1985-07-16 The Procter & Gamble Company Tissue paper
US4586606B1 (en) * 1983-10-28 1998-01-06 Int Paper Co Nonwoven fabric
FR2574829B1 (fr) * 1984-12-17 1987-01-09 Du Pin Cellulose Procede et dispositif pour l'elimination du liquide d'une couche obtenue notamment par un procede papetier
US4849054A (en) * 1985-12-04 1989-07-18 James River-Norwalk, Inc. High bulk, embossed fiber sheet material and apparatus and method of manufacturing the same
US4940513A (en) * 1988-12-05 1990-07-10 The Procter & Gamble Company Process for preparing soft tissue paper treated with noncationic surfactant
US5098519A (en) * 1989-10-30 1992-03-24 James River Corporation Method for producing a high bulk paper web and product obtained thereby
US5098522A (en) * 1990-06-29 1992-03-24 The Procter & Gamble Company Papermaking belt and method of making the same using a textured casting surface
US5275700A (en) * 1990-06-29 1994-01-04 The Procter & Gamble Company Papermaking belt and method of making the same using a deformable casting surface
US5126015A (en) * 1990-12-12 1992-06-30 James River Corporation Of Virginia Method for simultaneously drying and imprinting moist fibrous webs
US5129988A (en) * 1991-06-21 1992-07-14 Kimberly-Clark Corporation Extended flexible headbox slice with parallel flexible lip extensions and extended internal dividers
US5501768A (en) * 1992-04-17 1996-03-26 Kimberly-Clark Corporation Method of treating papermaking fibers for making tissue
TW244342B (es) * 1992-07-29 1995-04-01 Procter & Gamble
KR100290989B1 (ko) * 1992-08-26 2001-06-01 데이비드 엠 모이어 반연속적 패턴을 갖는 초지용 벨트 및 그로부터 제조된 종이
US5620776A (en) * 1992-12-24 1997-04-15 James River Corporation Of Virginia Embossed tissue product with a plurality of emboss elements
US5399412A (en) * 1993-05-21 1995-03-21 Kimberly-Clark Corporation Uncreped throughdried towels and wipers having high strength and absorbency
US5411636A (en) * 1993-05-21 1995-05-02 Kimberly-Clark Method for increasing the internal bulk of wet-pressed tissue
US5607551A (en) * 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
US5397435A (en) * 1993-10-22 1995-03-14 Procter & Gamble Company Multi-ply facial tissue paper product comprising chemical softening compositions and binder materials
US5904811A (en) * 1993-12-20 1999-05-18 The Procter & Gamble Company Wet pressed paper web and method of making the same
KR100339664B1 (ko) * 1993-12-20 2002-11-27 더 프록터 앤드 갬블 캄파니 습식압착된페이퍼웹및그의제조방법
CA2142805C (en) * 1994-04-12 1999-06-01 Greg Arthur Wendt Method of making soft tissue products
US5601871A (en) * 1995-02-06 1997-02-11 Krzysik; Duane G. Soft treated uncreped throughdried tissue
US5591309A (en) * 1995-02-06 1997-01-07 Kimberly-Clark Corporation Papermaking machine for making uncreped throughdried tissue sheets
US5593545A (en) * 1995-02-06 1997-01-14 Kimberly-Clark Corporation Method for making uncreped throughdried tissue products without an open draw
US5629052A (en) * 1995-02-15 1997-05-13 The Procter & Gamble Company Method of applying a curable resin to a substrate for use in papermaking
US5693403A (en) * 1995-03-27 1997-12-02 Kimberly-Clark Worldwide, Inc. Embossing with reduced element height
CA2255654C (en) * 1996-05-23 2004-11-02 The Procter & Gamble Company Multiple ply tissue paper
US5906711A (en) * 1996-05-23 1999-05-25 Procter & Gamble Co. Multiple ply tissue paper having two or more plies with different discrete regions
USD392108S (en) * 1996-09-30 1998-03-17 Georgia-Pacific Corporation Portion of a sheet of paper toweling
US6419789B1 (en) * 1996-10-11 2002-07-16 Fort James Corporation Method of making a non compacted paper web containing refined long fiber using a charge controlled headbox and a single ply towel made by the process
US6355139B1 (en) * 1997-04-16 2002-03-12 Kimberly-Clark Worldwide, Inc. Processed tissue webs
US6030690A (en) * 1997-04-23 2000-02-29 The Procter & Gamble Company High pressure embossing and paper produced thereby
USD419307S (en) * 1997-10-22 2000-01-25 Fort James Corporation Embossed paper product
US6177360B1 (en) * 1997-11-06 2001-01-23 International Business Machines Corporation Process for manufacture of integrated circuit device
US5942085A (en) * 1997-12-22 1999-08-24 The Procter & Gamble Company Process for producing creped paper products
USD426709S (en) * 1998-01-14 2000-06-20 Scott Paper Limited Surface pattern for a paper product
USD422150S (en) * 1998-07-29 2000-04-04 Irving Tissue Surface pattern for a paper towel or toilet tissue
USD423232S (en) * 1998-10-13 2000-04-25 Irving Tissue, Inc. Paper towel
USD438017S1 (en) * 1998-10-13 2001-02-27 Irving Tissue, Inc. Paper toweling
US20040045685A1 (en) * 1998-11-24 2004-03-11 The Procter & Gamble Company Process for the manufacture of multi-ply tissue
US6423180B1 (en) * 1998-12-30 2002-07-23 Kimberly-Clark Worldwide, Inc. Soft and tough paper product with high bulk
USD440773S1 (en) * 1999-04-27 2001-04-24 Scott Paper Limited Surface pattern for a paper product
USD441541S1 (en) * 1999-08-26 2001-05-08 Potlatch Corporation Paper towel
CA95674S (en) * 1999-09-03 2002-10-24 Fort James France Embossed paper product
USD426959S (en) * 1999-10-25 2000-06-27 Kimberly-Clark Worldwide, Inc. Embossed tissue
USD436740S1 (en) * 1999-10-25 2001-01-30 Kimberly-Clark Worldwide, Inc. Embossed tissue
USD441540S1 (en) * 1999-10-25 2001-05-08 Kimberly-Clark Worldwide, Inc. Embossed tissue
USD426960S (en) * 1999-10-25 2000-06-27 Kimberly-Clark Worldwide, Inc. Embossed tissue
US7118796B2 (en) * 1999-11-01 2006-10-10 Fort James Corporation Multi-ply absorbent paper product having impressed pattern
USD442786S1 (en) * 2000-04-07 2001-05-29 Kimberly-Clark Worldwide, Inc. Continuous sheet material
USD443146S1 (en) * 2000-04-07 2001-06-05 Kimberly-Clark Worldwide, Inc. Continuous sheet material
US6576091B1 (en) * 2000-10-24 2003-06-10 The Procter & Gamble Company Multi-layer deflection member and process for making same
US6576090B1 (en) * 2000-10-24 2003-06-10 The Procter & Gamble Company Deflection member having suspended portions and process for making same
US6610173B1 (en) * 2000-11-03 2003-08-26 Kimberly-Clark Worldwide, Inc. Three-dimensional tissue and methods for making the same
USD453421S1 (en) * 2001-03-14 2002-02-12 Potlatch Corporation Embossed paper
USD472057S1 (en) * 2001-05-24 2003-03-25 Pittards Plc Pattern for fabrics and the like
USD458033S1 (en) * 2001-05-24 2002-06-04 Pittards Plc Pattern for leather or other fabrics
US8034215B2 (en) * 2004-11-29 2011-10-11 The Procter & Gamble Company Patterned fibrous structures
US7749355B2 (en) * 2005-09-16 2010-07-06 The Procter & Gamble Company Tissue paper
US7744723B2 (en) * 2006-05-03 2010-06-29 The Procter & Gamble Company Fibrous structure product with high softness
US20090136722A1 (en) * 2007-11-26 2009-05-28 Dinah Achola Nyangiro Wet formed fibrous structure product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162327A (en) * 1999-09-17 2000-12-19 The Procter & Gamble Company Multifunctional tissue paper product
WO2004005015A2 (en) * 2002-07-10 2004-01-15 Kimberly-Clark Worldwide, Inc. Multi-ply wiping products
US20050178513A1 (en) * 2004-02-17 2005-08-18 Russell Matthew A. Deep-nested embossed paper products

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7744723B2 (en) * 2006-05-03 2010-06-29 The Procter & Gamble Company Fibrous structure product with high softness
USRE42968E1 (en) * 2006-05-03 2011-11-29 The Procter & Gamble Company Fibrous structure product with high softness
US8152959B2 (en) * 2006-05-25 2012-04-10 The Procter & Gamble Company Embossed multi-ply fibrous structure product
WO2008050311A2 (en) * 2006-10-27 2008-05-02 The Procter & Gamble Company Clothlike non-woven fibrous structures and processes for making same
WO2008050311A3 (en) * 2006-10-27 2008-06-19 Procter & Gamble Clothlike non-woven fibrous structures and processes for making same
USD630441S1 (en) 2007-05-02 2011-01-11 The Procter & Gamble Company Paper product

Also Published As

Publication number Publication date
CA2651116A1 (en) 2007-11-15
MX2008014069A (es) 2008-11-14
WO2007130541A3 (en) 2008-02-07
US20070256802A1 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
USRE42968E1 (en) Fibrous structure product with high softness
US20070256802A1 (en) Fibrous structure product with high bulk
US7741234B2 (en) Embossed fibrous structure product with enhanced absorbency
US9458574B2 (en) Fibrous structures
US7374638B2 (en) High bulk strong absorbent single-ply tissue-towel paper product
US6162327A (en) Multifunctional tissue paper product
US7435313B2 (en) Process for producing deep-nested embossed paper products
CA2611122C (en) Improved process for producing deep-nested embossed paper products
US20090188636A1 (en) Soft tissue paper having a polyhydroxy compound applied onto a surface thereof
US20090136722A1 (en) Wet formed fibrous structure product
US20110212299A1 (en) Fibrous structure product with high wet bulk recovery
US7967950B2 (en) High bulk strong absorbent single-ply tissue-towel paper product

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/014069

Country of ref document: MX

Ref document number: 2651116

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07794529

Country of ref document: EP

Kind code of ref document: A2