WO2007129740A1 - Reagent supplement device - Google Patents

Reagent supplement device Download PDF

Info

Publication number
WO2007129740A1
WO2007129740A1 PCT/JP2007/059613 JP2007059613W WO2007129740A1 WO 2007129740 A1 WO2007129740 A1 WO 2007129740A1 JP 2007059613 W JP2007059613 W JP 2007059613W WO 2007129740 A1 WO2007129740 A1 WO 2007129740A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
container
storage unit
unit
reagent storage
Prior art date
Application number
PCT/JP2007/059613
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Sakagami
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Publication of WO2007129740A1 publication Critical patent/WO2007129740A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system

Definitions

  • the present invention relates to a reagent replenishing device for replenishing a reagent to an automatic analyzer.
  • an automatic analyzer In an automatic analyzer, a collected sample such as blood or urine and a reagent according to a test item are dispensed into reaction containers, respectively, and the reaction of a reaction solution composed of the sample and the reagent is measured. Reagents necessary for analysis are stored in a reagent container with an identification label, for example. This reagent container is arranged on a rotating table in the reagent storage of the automatic analyzer. In the analyzer, when a test request is made, the reagent container containing the reagent used for the test is moved to the sorting position while being identified by an identification label or the like.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-37171
  • the reagent storage for replenishment and the reagent transport device are useful for automatic analyzers that consume a large amount of reagent and are not necessarily used for automatic analyzers that consume a small amount of reagent. Absent.
  • an automatic analyzer that consumes a small amount of reagent may be an obstacle. Therefore, it is desirable to install a device for replenishing the reagent according to the automatic analyzer that consumes a large amount of reagent.
  • the reagent transporting unit is configured to transport the reagent container in the vertical direction and the horizontal direction with respect to the reagent disk, there is a possibility that bubbles may be generated in the reagent.
  • bubbles may be generated in the reagent, for example, it is determined whether the tip of the probe is in contact with the liquid level of the reagent.
  • the liquid level detection mechanism is used, the surface of the bubble is erroneously detected as the liquid level of the reagent. As a result, the reagent cannot be aspirated and the air is absorbed.
  • the present invention has been made in view of the above, and provides a reagent replenishing device capable of automatically replenishing a reagent to an automatic analyzer as necessary, and generates bubbles in the reagent. It is an object of the present invention to provide a reagent replenishing device that can supply a reagent to an automatic analyzer without any problems.
  • the reagent replenishing device includes a reagent storage unit that stores a reagent container containing a reagent for replenishment, and the reagent And a transport unit that transports the reagent container in the storage unit to the reagent storage unit of the automatic analyzer, and the reagent storage unit and the transport unit are detachably provided to the automatic analyzer.
  • a reagent replenishing device includes a reagent storage unit that stores a reagent container containing a reagent for replenishment, and a reagent container in a reagent storage unit of an automatic analyzer. And a transport unit for transporting the reagent container in the reagent storage unit to the reagent storage unit, and the reagent storage unit and the transport unit are detachably provided to the automatic analyzer. It is characterized by.
  • the reagent replenishing device according to claim 3 of the present invention is characterized in that, in claim 1 or 2, the transport unit transports the reagent container on a substantially flush surface.
  • a reagent replenishing device includes a reagent storage unit that stores a reagent container containing a reagent for replenishment, and a transport unit that transports the reagent container in the reagent storage unit to the reagent storage unit of the automatic analyzer.
  • the reagent storage unit and the transport unit are detachably attached to the automatic analyzer, so that the automatic analyzer with a large amount of reagent consumption can be automatically replenished as necessary. Can do.
  • a reagent storage unit that stores a reagent container containing a reagent for replenishment, and a reagent container in the reagent storage unit of the automatic analyzer are transported to the outside of the reagent storage unit, while a reagent storage unit A reagent storage unit and a transport unit that can be attached to and detached from the automatic analyzer. In addition, it is possible to automatically replenish reagents as needed and collect empty reagent containers.
  • the transport unit transports the reagent container on a substantially flush surface, the reagent container is not moved up and down, so that a situation in which bubbles are generated in the reagent in the reagent container can be prevented.
  • FIG. 1 is a plan view showing an example of an automatic analyzer to which a reagent replenishing device according to the present invention is applied.
  • FIG. 2 is a plan view showing a state in which the reagent replenishing device according to the present invention is applied to an automatic analyzer.
  • FIG. 3 is a block diagram showing a control system of the automatic analyzer and the reagent replenishing device. Explanation of symbols
  • FIG. 1 is a plan view showing an example of an automatic analyzer to which a reagent replenishing device according to the present invention is applied.
  • the automatic analyzer 1 measures the amount of various components contained in a sample by measuring the optical change of the reaction solution consisting of the sample and reagent, for example, a supernatant liquid (serum) in which unnecessary substances in blood are precipitated. To do.
  • the automatic analyzer 1 includes a reagent storage unit 2, a reaction unit 3, and a sample transfer unit 4.
  • the reagent storage unit 2 has a circular table 21.
  • the table 21 is rotatably provided around the center 21a, and is rotated by a driving means (not shown).
  • the table 21 holds a plurality of reagent containers 22 containing reagents in the circumferential direction.
  • the reagent container 22 moves around the center 21 a as the table 21 rotates.
  • the reagent storage unit 2 has a case (not shown) that covers the periphery of the table 21, and cools the reagent in the reagent container 22 by cooling the inside of the case to a predetermined temperature.
  • the reagent storage unit 2 includes a first reagent storage unit 2A and a second reagent storage unit 2B arranged in the horizontal direction in order to store the first reagent and the second reagent, respectively.
  • the reagent container 22 is affixed with an identification code label having various information such as the type, amount, and lot number of the stored reagent.
  • the reagent storage unit 2 (1A, 2B) is provided with an identification code reader (not shown) for reading the identification code of the reagent container 22.
  • the reagent container 22 has a fan-shaped outer shape in plan view, and is a synthetic resin container in which the fan shapes are connected in the vertical direction, and has an opening on the upper surface thereof. The opening of the reagent container 22 is sealed with a stopper when not in use, and the stopper is removed when the reagent container 22 is stored in the reagent storage section 2 (and the reagent storage section 8 described later).
  • the reaction unit 3 has a cylindrical container holding unit 31.
  • the container holding part 31 is rotatably provided around the center 31a, and is rotated by a driving means (not shown).
  • the container holding part 31 has a plurality of recesses (not shown) along its circumferential direction. Each recess holds a reaction container 32 for mixing the reagent and the specimen.
  • the container holding part 31 has a light shielding member (not shown) between the recesses adjacent in the circumferential direction, and shields between the adjacent reaction containers 32.
  • the container holding part 31 is provided with openings (not shown) penetrating in the radial direction in the respective recesses, and the reaction container 32 is exposed through the openings.
  • the reaction unit 3 has a case (not shown) that covers the periphery of the container holding unit 31 and keeps the case in a constant temperature bath at a predetermined temperature (for example, 37 ° C.), thereby maintaining the inside of the reaction vessel 32. Keep the reaction mixture of the reagent and sample warm.
  • a predetermined temperature for example, 37 ° C.
  • the reaction vessel 32 is a bottomed rectangular tube-like vessel having an open top, and is a material that transmits 80% or more of light contained in analysis light described later (for example, glass containing heat-resistant glass, Synthetic resin such as cyclic olefin and polystyrene).
  • the reaction vessel 32 is used as a photometric region in which the lower peripheral wall transmits the analysis light. This photometric region defines the thickness of the reaction liquid in the direction in which the light for measuring the optical characteristics of the reaction liquid is transmitted between the peripheral walls.
  • the reaction unit 3 is provided with an analysis optical system 33.
  • the analysis optical system 33 includes a light emitting unit 331, a spectroscopic unit 332, and a light receiving unit 333.
  • the light emitting unit 331 emits analysis light (for example, 340 to 800 nm) for analyzing the reaction liquid in the reaction vessel 32. This analysis light passes through the opening of the container holding part 31 in the reaction part 3 and passes through the reaction solution in the photometric region of the reaction container 32.
  • the spectroscopic unit 332 splits the analysis light transmitted through the reaction solution toward the light receiving unit 333.
  • the light receiving unit 333 receives the analysis light spectrally separated by the spectroscopic unit 332.
  • the reaction section 3 is provided with a stirring mechanism and a cleaning mechanism.
  • the stirring mechanism is for mixing the reagent in the reaction vessel 32 and the sample uniformly. Examples include a contact type in which a stirring bar is inserted into the reaction vessel 32 and a non-contact type using ultrasonic waves. When a stir bar is used, a washing unit for washing the stir bar outside the reaction unit 3 is required.
  • the cleaning mechanism is for cleaning the inside of the reaction vessel 32. For example, the reaction solution in the reaction vessel 32 is sucked and discharged, and then the cleaning solution is repeatedly injected into the reaction vessel 32 and discharged. Thereafter, the inside of the reaction vessel 32 is dried and wiped off.
  • the sample transport unit 4 transports the rack 41 that holds the sample container 42.
  • the rack 41 holds a plurality of sample containers 42 containing samples.
  • the sample container 42 is, for example, a container having an open top such as a test tube.
  • the sample transfer unit 4 is composed of a belt conveyor, for example, and transfers a rack 41 placed on the belt in a predetermined direction. Note that the rack 41 is placed in the sample transport section 4 in a state where a plurality of sample containers 42 are arranged in the transport direction. In the present embodiment, two sample transfer sections 4 are provided in parallel, and the rack 41 is circulated together.
  • a reagent dispensing mechanism 5 is provided between the reagent storage unit 2 and the reaction unit 3.
  • the reagent dispensing mechanism 5 is provided between the first reagent dispensing mechanism 5A provided between the first reagent storage unit 2A and the reaction unit 3, and between the second reagent storage unit 2B and the reaction unit 3.
  • a second reagent dispensing mechanism 5B has an arm 51 and a probe 52.
  • the arm 51 is provided with a base end attached to the upper end of a central shaft 511 erected in the vertical direction and extending in the horizontal direction. The arm 51 rotates around the central axis 511 by the rotation of the central axis 511 driven by the driving means 53.
  • the arm 51 moves to a predetermined position of the reagent storage unit 2 or a predetermined position of the reaction unit 3 by rotation. Further, the arm 51 moves in the vertical direction by the vertical movement of the central shaft 511 driven by the driving means 53.
  • the probe 52 dispenses a reagent and is attached to the tip of the arm 51 with the tip facing downward. That is, the reagent dispensing mechanism 5 moves the probe 52 by moving the position of the tip of the arm 51 and moving up and down, and aspirates the reagent from the reagent container 22 in the reagent storage unit 2 by the probe 52, Is poured into the reaction vessel 32 of the reaction section 3.
  • the predetermined position of the reagent storage unit 2 is a position of an opening provided in the upper surface of the case of the reagent storage unit 2 although not clearly shown in the drawing.
  • the reagent The position of the opening of the reagent container 22 matches with the rotation of the table 21 of the storage unit 2 stopped. Therefore, when the tip of the arm 51 moves to a predetermined position in the reagent storage 2, the probe 52 is located at the opening of the reagent container 22 through the opening hole of the case of the reagent storage 2, and the probe 52 The reagent can be aspirated from the reagent container 22.
  • the predetermined position of the reaction unit 3 is a position of an opening provided in the upper surface of the case of the reaction unit 3 although not clearly shown in the drawing.
  • the position of the opening of the reaction vessel 32 coincides with the opening hole of the case of the reaction unit 3 in a state where the rotation of the container holding unit 31 of the reaction unit 3 is stopped. Therefore, when the tip of the arm 51 moves to a predetermined position of the reaction unit 3, the probe 52 is located at the opening of the reaction vessel 32 through the opening hole of the case of the reaction unit 3. Reagent can be injected into reaction vessel 32.
  • another predetermined position where the probe 52 is moved by the reagent dispensing mechanism 5 is a washing position.
  • a cleaning unit that sucks and discharges the cleaning liquid is provided at this cleaning position to clean the probe 52.
  • a sample dispensing mechanism 6 is provided between the reaction unit 3 and the sample transfer unit 4.
  • the sample dispensing mechanism 6 has an arm 61 and a probe 62 and is movable.
  • the arm 61 is provided with a base end attached to the upper end of a central shaft 611 erected in the vertical direction and extending in the horizontal direction.
  • the arm 61 rotates around the central axis 611 by the rotation of the central axis 611 driven by the driving means 63.
  • the arm 61 moves to a predetermined position of the reaction unit 3 or a predetermined position of the sample transfer unit 4 by rotation. Further, the arm 61 moves in the vertical direction by the vertical movement of the central shaft 611 driven by the driving means 63.
  • the probe 62 dispenses a sample, and is attached to the distal end portion of the arm 61 with the distal end directed downward. That is, the sample dispensing mechanism 6 moves the probe 62 by moving the position of the tip of the arm 61 and moving up and down, and aspirates the sample from the sample container 42 in the sample transfer unit 4 by the probe 62. The sample is injected into the reaction container 32 of the reaction unit 3.
  • the predetermined position of the sample transport unit 4 is not clearly shown in the figure, but the opening of the predetermined sample container 42 in the rack 41 in a state where the transport of the rack 41 is stopped in the sample transport unit 4. Position. Therefore, when the distal end of the arm 61 moves to a predetermined position of the sample transfer section 4, the probe 62 is at the opening position of the predetermined sample container 42, and the sample is removed from the sample container 42 by the probe 62. Can suck.
  • the predetermined position of the reaction unit 3 is the same as described above.
  • the probe 62 When the tip of the arm 61 moves to a predetermined position in the reaction unit 3, the probe 62 is located at the position of the opening of the reaction vessel 32 through the opening hole of the case of the reaction unit 3, and the probe 62 Thus, the specimen can be injected into the reaction container 32. Furthermore, another predetermined position where the probe 62 is moved by the specimen dispensing mechanism 6 is a washing position. Although not clearly shown in the drawing, a cleaning unit for sucking and discharging the cleaning liquid is provided at this cleaning position.
  • the reagent in the predetermined reagent container 22 stored in the first reagent storage unit 2A is aspirated by the first reagent dispensing mechanism 5A and injected into the predetermined reaction container 32 in the reaction unit 3.
  • the specimen dispensing mechanism 6 sucks the specimen in the predetermined specimen container 42 held in the rack 41 in the specimen transfer section 4 and injects it into the reaction container 32.
  • the reagent in the predetermined reagent container 22 stored in the second reagent storage unit 2B is aspirated by the second reagent dispensing mechanism 5B and injected into the reaction container 32.
  • the reagent in the reaction vessel 32 and the specimen are stirred and mixed by the stirring mechanism.
  • the probes 52 and 62 of the reagent dispensing mechanism 5 and the specimen dispensing mechanism 6 and the stirring rod of the stirring mechanism are washed in each washing section after dispensing and stirring.
  • the above operation is repeated at a constant cycle.
  • the container holding unit 31 of the reaction unit 3 rotates counterclockwise in one cycle (one reaction vessel per lap) / 4 minutes, and rotates clockwise for one reaction vessel in four cycles. Then, when the container holding unit 31 rotates, when the reaction container 32 containing the stirred reaction liquid crosses the analysis light in the analysis optical system 33, the absorbance of the reaction liquid is measured. The absorbance is measured until the reaction container 32 that has been measured is washed and dried (for example, 18 seconds). Washed & dried reaction vessel 32 is used again for analysis
  • FIG. 2 is a plan view showing a state in which the reagent replenishing device according to the present invention is applied to an automatic analyzer.
  • the reagent replenishing device 100 is detachably attached to the automatic analyzer 1 described above.
  • the reagent replenishing device 100 includes a reagent storage unit 8, a transport unit 9, and a recovery unit 10.
  • the reagent storage unit 8 is disposed on the side of the automatic analyzer 1.
  • the reagent storage unit 8 has the same configuration as the reagent storage unit 2 of the automatic analyzer 1, and has a circular table 81. .
  • the table 81 is rotatably provided around the center 81a and is rotated by driving means (not shown). In this table 81, a plurality of reagent containers 22 containing reagents are held in the circumferential direction.
  • the reagent container 22 moves around the center 81a as the table 81 rotates.
  • the reagent storage unit 8 has a case (not shown) that covers the periphery of the table 81, and cools and stores the reagent in the reagent container 22 by cooling the inside of the case to a predetermined temperature.
  • the reagent storage unit 8 is provided with a lid (not shown) that can be opened and closed so that the operator can place the reagent container 22 for replenishment.
  • the reagent storage unit 8 is provided with a mechanism (not shown) that allows the operator to place a reagent container 22 that has been previously opened by the operator or to automatically open the container. It may be placed.
  • the reagent storage unit 8 is provided with an identification code reader (not shown) that reads the identification code of the reagent container 22.
  • the transport unit 9 transports the reagent container 22 in the reagent storage unit 8 to the reagent storage unit 2 (2A, 2B) of the automatic analyzer 1, and the reagent in the reagent storage unit 2 (2A, 2B).
  • the container 22 is for transporting outside the reagent storage unit 2 (collection unit 10), and includes a first transport mechanism 91, a second transport mechanism 92, and a third transport mechanism 93.
  • the first transport mechanism 91 is for transporting the reagent container 22 in the reagent storage unit 8 to the outside of the reagent storage unit 8 (second transport mechanism 92).
  • the first transport mechanism 91 is disposed in the vicinity of the reagent storage unit 8 and has an arm 911 and a pressing member 912.
  • the arm 911 is disposed above the reagent storage unit 8 and extends in the horizontal direction. This arm 911 moves horizontally so as to be close to or away from the automatic analyzer 1 in the direction of arrow A in FIG. Further, the arm 911 moves up and down by the drive of the drive means 913.
  • the pressing member 912 extends downward from the arm 911.
  • the pressing member 912 is formed so as to engage with the side portion of the reagent container 22.
  • the first transport mechanism 91 moves the pressing member 912 by the horizontal movement and vertical movement of the arm 911, and the pressing container 912 moves the reagent container 22 in the reagent storage unit 8 to the outside of the reagent storage unit 8. Extrude and transfer to the second transport mechanism 92.
  • the case of the reagent storage unit 8 is provided with an opening through which the pressing member 912 is inserted and the reagent container 22 is pushed out. This opening is opened and closed by a shirt driven by driving means (not shown).
  • the second transport mechanism 92 is for transporting the reagent container 22 between the reagent storage unit 8 side and the reagent storage unit 2 side.
  • the second transport mechanism 92 is disposed on the automatic analyzer 1 side and has a circular table 921.
  • the table 921 has a horizontal upper surface, and is driven in the direction of arrow B in FIG. 2 by driving the driving means 922, and is in the reagent storage unit 8 side and the reagent storage unit 2 side (the first reagent storage unit 2A and the second reagent). Move horizontally to the position between storage unit 2B). Further, the table 921 rotates around the center of the circular shape by driving of the driving means 922.
  • a positioning portion (not shown) for positioning the reagent container 22 may be provided on the upper surface of the tape nozzle 921. This positioning part includes a partition plate for regulating the direction of the reagent container 22, for example.
  • the third transport mechanism 93 is for transporting the reagent container 22 located outside the reagent storage unit 2 (second transport mechanism 92) to the inside of the reagent storage unit 2.
  • the third transport mechanism 93 is arranged near the reagent storage unit 2 (2A, 2B) on the automatic analyzer 1 side, and includes an arm 931 and a pressing member 932.
  • the arm 931 is disposed above the reagent storage unit 2 (2A, 2B) and extends in the horizontal direction.
  • the arm 931 is moved horizontally in the direction of arrow C in FIG. 2 in the direction in which the first reagent storage unit 2A and the second reagent storage unit 2B are arranged by driving of the driving means 933. Further, the arm 931 moves up and down by the drive of the drive means 933.
  • the pressing member 932 is formed so as to engage with the side portion of the reagent container 22. That is, the third transport mechanism 93 moves the pressing member 932 by moving the arm 931 horizontally and vertically, and stores the reagent container 22 in the reagent storage unit 2 (2A, 2B) by the pressing member 932. Extrude outside part 2 (position between first reagent storage 2A and second reagent storage 2B). On the other hand, the third transport mechanism 93 moves the pressing member 932 by the horizontal movement and vertical movement of the arm 931, and moves the reagent container 22 to the second transport mechanism 92 (the first reagent storage unit 2A and the second reagent by the pressing member 932).
  • reagent storage unit 2 Push it into the inside of reagent storage 2 (2A, 2B) from the position between storage 2B.
  • the case of the reagent storage unit 2 is provided with an opening through which the pressing member 932 is inserted and the reagent container 22 is inserted and removed. This opening is opened and closed by a shirt driven by driving means (not shown).
  • the collection unit 10 is an opening hole for introducing the reagent container 22.
  • This collection unit 10 In the dynamic analyzer 1, the table 921 of the second transport mechanism 92 is provided at a position between the first reagent storage unit 2A and the second reagent storage unit 2B. The collection unit 10 is opened and closed by moving the table 921.
  • the transport unit 9 described above moves the reagent container 22 in a substantially horizontal direction.
  • the upper surface of the table 81 of the reagent storage unit 8 is almost flush with the upper surface of the table 921 of the second transport mechanism 92.
  • the upper surface of the table 21 of the reagent storage unit 2 is substantially flush with the upper surface of the table 921 of the second transport mechanism 92.
  • FIG. 3 is a block diagram showing a control system of the automatic analyzer and the reagent replenishing device.
  • the automatic analyzer 1 includes the reagent storage unit 2, the reaction unit 3, the sample transfer unit 4, the reagent dispensing mechanism 5, and the sample dispensing mechanism 6 connected to the analysis control unit 11. These are all controlled by the analysis control unit 11.
  • Various information of the reagent container 22 read by an identification code reader (not shown) provided in the reagent storage unit 2 (2A, 2B) is stored in a memory (not shown) in the analysis control unit 11. .
  • the reagent shortage detection means 7 connected to the analysis control unit 11 detects a reagent shortage in each reagent container 22 held in the reagent storage unit 2.
  • the shortage of reagents can be detected by, for example, comparing various information of the reagent container 22 with the past reagent usage amount and calculating the current reagent remaining amount.
  • the reagent replenishing device 100 the reagent storage unit 8 and the transport unit 9 (the first transport mechanism 91, the second transport mechanism 92, and the third transport mechanism 93) described above are connected to the replenishment control unit 101.
  • the control unit 101 performs overall control.
  • the replenishment control unit 101 is connected to the analysis control unit 11 of the automatic analyzer 1. That is, the replenishment control unit 101 inputs and outputs signals with the analysis control unit 11.
  • the analysis control unit 11 and the replenishment control unit 101 are detachably provided via an interface.
  • the operator stores in advance the reagent container 22 containing the reagent that is predicted to run out of reagents. Prediction of reagent shortage is performed by the analysis control unit 11.
  • the analysis item (actual result) analyzed in the past is stored in the memory (not shown) of the analysis control unit 11. Further, the past usage amount (actual result) of the reagent for each day (am'pm), week, month, season, and year is calculated and stored in the memory (not shown) of the analysis control unit 11.
  • the analysis control unit 11 determines the remaining amount of reagent up to the previous day and the predetermined period (for example, 1 day, 1 week, 1 month).
  • the required amount of reagent is calculated from the estimated number of analysis items according to the reagent usage record, and the amount of reagent currently stored in the reagent storage unit 8 is predicted, and this is predicted by an external output means (not shown). Notify the operator. The operator sees this notification, and stores in advance the reagent container 22 containing the reagent predicted to run out of reagents in the reagent storage unit 8.
  • the analysis control unit 11 determines the input and the remaining reagent amount up to the previous day.
  • the required amount of the reagent for a predetermined period is obtained from the amount of reagent, the reagent shortage is predicted from the amount of reagent currently stored in the reagent storage unit 8, and this is notified to the operator by an external output means (not shown). Good.
  • the analysis control unit 11 uses the input and the remaining amount of reagent up to the previous day.
  • the necessary amount of reagent for a predetermined period may be obtained, and the reagent amount capacity currently stored in the reagent storage unit 8 may be predicted, and the operator may be notified of this by external output means (not shown).
  • the identification code is read by an identification code reader (not shown) provided in the reagent storage unit 8.
  • the read information on the reagent container 22 is stored in a memory (not shown) of the replenishment control unit 101 and a memory (not shown) of the analysis control unit 11.
  • the analysis control unit 11 compares the reagent stored in the reagent storage unit 8 with the reagent actually used in the analysis. As a result of comparison, if an analysis item using a reagent other than the reagent stored in the reagent storage unit 8 is generated, the reagent may be insufficient, and this is notified to the operator by an external output means (not shown). It may be.
  • the reagent replenishing device 100 described above will be described.
  • the reagent container 22 in the reagent storage 2 (2A, 2B) becomes empty (including a small amount that cannot be used for analysis). That is, a reagent shortage is detected by the reagent shortage detection means 7 of the automatic analyzer 1.
  • the replenishment control unit 101 rotates the table 21 of the reagent storage unit 2 via the analysis control unit 11 to move the corresponding empty reagent container 22 to the position of the opening, and releases the opening with a shirter.
  • the empty reagent container 22 is moved into the reagent storage section 2 by the third transport mechanism 93. Extrude outside.
  • the second transport mechanism 92 is at a position where the collection unit 10 is released (a position near the reagent storage unit 8). For this reason, the empty reagent container 22 pushed out of the reagent storage unit 2 is put into the collection unit 10. After the empty reagent container 22 is taken out of the reagent storage unit 2, the replenishment control unit 101 closes the opening of the reagent storage unit 2 with a shutter via the analysis control unit 11 (collection operation).
  • the replenishment control unit 101 rotates the table 81 of the reagent storage unit 8 to store the reagent corresponding to the shortage.
  • the replenishing reagent container 22 is moved to the position of the opening, the opening is released with a shirter, and the reagent container 22 is pushed out of the reagent storage unit 8 by the first transport mechanism 91.
  • the second transport mechanism 92 is in a position near the reagent storage unit 8. Therefore, the replenishment reagent container 22 pushed out of the reagent storage unit 8 is delivered to the upper surface of the table 921 of the second transport mechanism 92.
  • the opening is closed with a shirter.
  • the replenishment control unit 101 moves the table 921 of the second transport mechanism 92 to a position between the first reagent storage unit 2A and the second reagent storage unit 2B, and further rotates the table 921 to store the reagent. Reorient the refill reagent container 22 to enter Part 2 (2A or 2B).
  • the replenishment control unit 101 opens the opening of the reagent storage unit 2 (2 A or 2B) into which the reagent container 22 for replenishment should be pushed via the analysis control unit 11 with a shatter, and the third transport mechanism 93 Push the reagent container 22 for replenishment on the table 921 of the second transport mechanism 92 into the reagent storage 2 (2A or 2B). Finally, after the replenishment reagent container 22 is pushed in, the replenishment control unit 101 closes the opening of the reagent storage unit 2 with a shirter via the analysis control unit 11 (replenishment operation).
  • the sample transfer unit 4 transfers the standard sample and recreates the absorbance-concentration relationship curve (calibration curve) using the standard sample as necessary.
  • Reagent replenishment is not limited to the case where reagent shortage is detected by the reagent shortage detection means 7, but an operator can input the reagent externally. This may be performed when a reagent replenishment instruction is input by force means (not shown).
  • the positioning portion (not shown) for positioning the reagent container 22 is provided on the upper surface of the table 921 of the second transport mechanism 92, the operator directly attaches the reagent container to the upper surface of the table 921. It is also possible to replenish the reagent storage unit 2 with 22 placed.
  • a detecting means for detecting that the reagent container 22 is placed on the upper surface of the table 921 and an identification code reader for reading the identification code of the placed reagent container 22 are provided.
  • the analysis controller 11 of the automatic analyzer 1 informs the operator which reagent is insufficient by the detection of the reagent shortage detection means 7, the replenishment controller 101 detects the empty reagent.
  • the container 22 is collected.
  • the replenishment control unit 101 replenishes the reagent container 22 to the reagent storage unit 2 by the second transport mechanism 92 and the third transport mechanism 93.
  • the reagent replenishing device 100 described above is provided in the reagent storage unit 8 for storing the reagent container 22 containing the reagent for replenishment and the reagent storage unit 2 (2A, 2B) of the automatic analyzer 1.
  • the reagent container 22 is transported to the outside of the reagent storage unit 2 and collected, while the reagent container 22 in the reagent storage unit 8 is transported to the reagent storage unit 2 and has a transport unit 9 for reagent storage.
  • the part 8 and the transport part 9 are detachably attached to the automatic analyzer 1. As a result, the amount of reagent consumed is high, and it is possible to automatically replenish the automatic analyzer with the reagent as needed, and to collect the empty reagent container.
  • the transport unit 9 moves the reagent container 22 on a substantially flush surface, the reagent container 22 is not moved up and down, so that a situation in which bubbles are generated in the reagent in the reagent container 22 is prevented. And become possible.
  • the reagent replenishing apparatus is useful for replenishing reagents to the automatic analyzer, and in particular, automatically replenishing reagents to the automatic analyzer as necessary. Suitable for

Abstract

An automatic analyzer is supplemented automatically with reagent, as required, and the reagent is supplied to the automatic analyzer without bubbling. The reagent supplement device has a reagent storage section (8) for storing a reagent container (22) containing reagent for supplement, and a conveyance section (9) for conveying the reagent container (22) at the reagent containing section (2)(2A, 2B) of the automatic analyzer (1) to the outside of the reagent containing section (2) and collecting the reagent container (22) on one hand, and conveying the reagent container (22) at the reagent storage section (8) to the reagent containing section (2), wherein the reagent storage section (8) and the conveyance section (9) are provided to be able to be attached to and removed from the automatic analyzer (1). Consequently, an automatic analyzer consuming a large quantity of reagent can be supplemented automatically with reagent, as required. Since the conveyance section (9) moves the reagent container (22) on a substantially flush plane and does not moves the reagent container (22) up and down, the reagent in the reagent container (22) can be prevented from bubbling.

Description

明 細 書  Specification
試薬補充装置  Reagent replenisher
技術分野  Technical field
[0001] 本発明は、 自動分析装置に対して試薬を補充する試薬補充装置に関するものであ る。  [0001] The present invention relates to a reagent replenishing device for replenishing a reagent to an automatic analyzer.
背景技術  Background art
[0002] 自動分析装置では、採取した血液や尿などの検体と、検査項目に従った試薬とを 反応容器にそれぞれ分注し、検体と試薬とからなる反応液の反応を測定する。分析 に必要な試薬は、例えば識別ラベルを貼付した試薬容器に収容してある。この試薬 容器は、 自動分析装置の試薬格納庫内の回転テーブルの上に配設してある。分析 装置では、検査要求があった場合に検査に用レ、る試薬を収容した試薬容器を識別 ラベルなどによって識別しつつ分取位置まで移動する。  In an automatic analyzer, a collected sample such as blood or urine and a reagent according to a test item are dispensed into reaction containers, respectively, and the reaction of a reaction solution composed of the sample and the reagent is measured. Reagents necessary for analysis are stored in a reagent container with an identification label, for example. This reagent container is arranged on a rotating table in the reagent storage of the automatic analyzer. In the analyzer, when a test request is made, the reagent container containing the reagent used for the test is moved to the sorting position while being identified by an identification label or the like.
[0003] ところで、近年では、 自動分析装置での分析速度の向上に伴って試薬の消費量が 多くなり、試薬の補充のために頻繁に試薬容器を交換する必要がある。そこで、従来 では、補充用の試薬を保管する補充用試薬保管庫と、分析に使用する試薬を有する 試薬ディス外こ対して補充用試薬保管庫から試薬容器を搬送する試薬搬送手段とを 備えて、試薬不足を解消してオペレータの負担を軽減するようにした自動分析装置 力 sある (例えば、特許文献 1参照)。  [0003] Incidentally, in recent years, the amount of reagent consumption increases as the analysis speed of an automatic analyzer increases, and it is necessary to frequently replace the reagent container to replenish the reagent. Therefore, conventionally, a replenishing reagent storage for storing a replenishing reagent and a reagent transporting means for transporting a reagent container from the replenishing reagent storage to a reagent disc having a reagent used for analysis are provided. In addition, there is an automatic analyzer that eliminates reagent shortages and reduces the burden on the operator (see, for example, Patent Document 1).
[0004] 特許文献 1 :特開 2005— 37171号公報  [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2005-37171
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、上記補充用試薬保管庫および試薬搬送装置は、試薬の消費量が多レ、自 動分析装置に有用であって、試薬の消費量が少ない自動分析装置には必ず用いる ものではない。特に、補充用試薬保管庫および試薬搬送装置を試薬ディスクの上に 跨ぐように設けた構成では、試薬の消費量が少ない自動分析装置では邪魔になるこ ともある。したがって、試薬の消費量が多い自動分析装置に応じて試薬を補充する 装置を設置することが望まれている。 [0006] また、上記試薬搬送手段では、試薬ディスクに対して垂直方向および水平方向に 試薬容器を搬送する構成であるため、試薬に泡が発生するおそれがある。試薬に泡 が発生してレ、ると、例えばプローブの先端が試薬の液面に接したか否かを判定する 液面検知機構を用いた場合に泡の表面を試薬の液面として誤検知してしまい、試薬 を吸引できず空気を吸弓 Iしてしまうことになる。 [0005] However, the reagent storage for replenishment and the reagent transport device are useful for automatic analyzers that consume a large amount of reagent and are not necessarily used for automatic analyzers that consume a small amount of reagent. Absent. In particular, in a configuration in which the reagent storage for replenishment and the reagent transport device are provided so as to straddle the reagent disk, an automatic analyzer that consumes a small amount of reagent may be an obstacle. Therefore, it is desirable to install a device for replenishing the reagent according to the automatic analyzer that consumes a large amount of reagent. [0006] Further, since the reagent transporting unit is configured to transport the reagent container in the vertical direction and the horizontal direction with respect to the reagent disk, there is a possibility that bubbles may be generated in the reagent. When bubbles are generated in the reagent, for example, it is determined whether the tip of the probe is in contact with the liquid level of the reagent. When the liquid level detection mechanism is used, the surface of the bubble is erroneously detected as the liquid level of the reagent. As a result, the reagent cannot be aspirated and the air is absorbed.
[0007] 本発明は、上記に鑑みてなされたものであって、必要に応じて自動分析装置に試 薬を自動で補充することができる試薬補充装置を提供し、また試薬に泡を発生させる ことなく自動分析装置に試薬を供給することができる試薬補充装置を提供することを 目的とする。 [0007] The present invention has been made in view of the above, and provides a reagent replenishing device capable of automatically replenishing a reagent to an automatic analyzer as necessary, and generates bubbles in the reagent. It is an object of the present invention to provide a reagent replenishing device that can supply a reagent to an automatic analyzer without any problems.
課題を解決するための手段  Means for solving the problem
[0008] 上述した課題を解決し、 目的を達成するために、本発明の請求項 1に係る試薬補 充装置は、補充用の試薬を収容した試薬容器を保管する試薬保管部と、前記試薬 保管部にある試薬容器を自動分析装置の試薬格納部に搬送する搬送部とを有し、 前記試薬保管部および搬送部を自動分析装置に対して着脱可能に設けたことを特 徴とする。 [0008] In order to solve the above-described problems and achieve the object, the reagent replenishing device according to claim 1 of the present invention includes a reagent storage unit that stores a reagent container containing a reagent for replenishment, and the reagent And a transport unit that transports the reagent container in the storage unit to the reagent storage unit of the automatic analyzer, and the reagent storage unit and the transport unit are detachably provided to the automatic analyzer.
[0009] 本発明の請求項 2に係る試薬補充装置は、補充用の試薬を収容した試薬容器を保 管する試薬保管部と、 自動分析装置の試薬格納部にある試薬容器を当該試薬格納 部の外部に搬送する一方で前記試薬保管部にある試薬容器を前記試薬格納部に 搬送する搬送部とを有し、前記試薬保管部および搬送部を自動分析装置に対して 着脱可能に設けたことを特徴とする。  [0009] A reagent replenishing device according to claim 2 of the present invention includes a reagent storage unit that stores a reagent container containing a reagent for replenishment, and a reagent container in a reagent storage unit of an automatic analyzer. And a transport unit for transporting the reagent container in the reagent storage unit to the reagent storage unit, and the reagent storage unit and the transport unit are detachably provided to the automatic analyzer. It is characterized by.
[0010] 本発明の請求項 3に係る試薬補充装置は、上記請求項 1または 2において、前記 搬送部は試薬容器をほぼ面一な面上で搬送することを特徴とする。  [0010] The reagent replenishing device according to claim 3 of the present invention is characterized in that, in claim 1 or 2, the transport unit transports the reagent container on a substantially flush surface.
発明の効果  The invention's effect
[0011] 本発明に係る試薬補充装置は、補充用の試薬を収容した試薬容器を保管する試 薬保管部と、試薬保管部にある試薬容器を自動分析装置の試薬格納部に搬送する 搬送部とを有し、試薬保管部および搬送部を自動分析装置に対して着脱可能に設 けたことにより、試薬の消費量が多い自動分析装置に対して必要に応じて試薬を自 動で補充することができる。 [0012] また、補充用の試薬を収容した試薬容器を保管する試薬保管部と、 自動分析装置 の試薬格納部にある試薬容器を当該試薬格納部の外部に搬送する一方で、試薬保 管部にある試薬容器を試薬格納部に搬送する搬送部とを有し、試薬保管部および 搬送部を自動分析装置に対して着脱可能に設けたことにより、試薬の消費量が多い 自動分析装置に対して必要に応じて試薬を自動で補充し、さらに空いた試薬容器を 回収すること力 Sできる。 A reagent replenishing device according to the present invention includes a reagent storage unit that stores a reagent container containing a reagent for replenishment, and a transport unit that transports the reagent container in the reagent storage unit to the reagent storage unit of the automatic analyzer. The reagent storage unit and the transport unit are detachably attached to the automatic analyzer, so that the automatic analyzer with a large amount of reagent consumption can be automatically replenished as necessary. Can do. [0012] In addition, a reagent storage unit that stores a reagent container containing a reagent for replenishment, and a reagent container in the reagent storage unit of the automatic analyzer are transported to the outside of the reagent storage unit, while a reagent storage unit A reagent storage unit and a transport unit that can be attached to and detached from the automatic analyzer. In addition, it is possible to automatically replenish reagents as needed and collect empty reagent containers.
[0013] また、搬送部は試薬容器をほぼ面一な面上で搬送するため、試薬容器を上下移動 させないので、試薬容器内の試薬に泡を発生させる事態を防止することができる。 図面の簡単な説明  [0013] Further, since the transport unit transports the reagent container on a substantially flush surface, the reagent container is not moved up and down, so that a situation in which bubbles are generated in the reagent in the reagent container can be prevented. Brief Description of Drawings
[0014] [図 1]図 1は、本発明に係る試薬補充装置が適用される自動分析装置の一例を示す 平面図である。  FIG. 1 is a plan view showing an example of an automatic analyzer to which a reagent replenishing device according to the present invention is applied.
[図 2]図 2は、本発明に係る試薬補充装置を自動分析装置に適用した状態の平面図 である。  FIG. 2 is a plan view showing a state in which the reagent replenishing device according to the present invention is applied to an automatic analyzer.
[図 3]図 3は、 自動分析装置および試薬補充装置の制御系を示すブロック図である。 符号の説明  FIG. 3 is a block diagram showing a control system of the automatic analyzer and the reagent replenishing device. Explanation of symbols
[0015] 1 自動分析装置 [0015] 1 Automatic analyzer
11 分析制御部  11 Analysis control unit
2 試薬格納部  2 Reagent storage
2A 第一試薬格納部  2A First reagent storage
2B 第二試薬格納部  2B Second reagent storage
21 テーブル  21 tables
21a 中心  21a center
2 δ式 谷 ¾S  2 δ Formula Valley ¾S
3 反応部  3 Reaction part
31 容器保持部  31 Container holder
31a 中心  31a center
32 反応容器  32 reaction vessel
33 分析光学系 331 発光部 33 Analytical optics 331 Light emitting part
332 分光部  332 Spectrometer
333 受光部  333 Receiver
4 検体移送部  4 Sample transport section
41 ラック  41 racks
42 検体容器  42 Sample container
5 試薬分注機構 5 Reagent dispensing mechanism
5A 第一試薬分注機構5A First reagent dispensing mechanism
5B 第二試薬分注機構5B Second reagent dispensing mechanism
51 アーム 51 arm
511 中心軸  511 Center axis
52 プローブ  52 Probe
53 駆動手段  53 Drive means
6 検体分注機構 6 Sample dispensing mechanism
61 アーム 61 arms
611 中心軸  611 Center axis
62 プローブ  62 Probe
63 駆動手段  63 Drive means
7 試薬不足検出手段 7 Reagent shortage detection means
100 試薬補充装置100 reagent replenisher
101 補充制御部101 Refill control unit
8 試薬保管部 8 Reagent storage
81 テープノレ  81 Tape Nore
81a 中心  81a center
9 搬送部  9 Transport section
91 第一搬送機構 91 First transport mechanism
911 アーム 911 arm
912 押圧部材 913 駆動手段 912 Press member 913 Drive means
92 第二搬送機構  92 Second transport mechanism
921 テープノレ  921 Tape Nore
922 駆動手段  922 Drive means
93 第三搬送機構  93 Third transport mechanism
931 アーム  931 arm
932 押圧部材  932 Pressing member
933 駆動手段  933 Drive means
10 回収部  10 Collection department
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下に添付図面を参照して、本発明に係る試薬補充装置の好適な実施の形態を 詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。  Hereinafter, preferred embodiments of a reagent replenishing device according to the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.
[0017] 図 1は本発明に係る試薬補充装置が適用される自動分析装置の一例を示す平面 図である。 自動分析装置 1は、例えば血液の不要物質を沈殿させた上澄み液 (血清) である検体と試薬とからなる反応液の光学的変化を測定することによって検体中に含 まれる各種成分量を測定する。図 1に示すように自動分析装置 1は、試薬格納部 2, 反応部 3および検体移送部 4を備えている。  FIG. 1 is a plan view showing an example of an automatic analyzer to which a reagent replenishing device according to the present invention is applied. The automatic analyzer 1 measures the amount of various components contained in a sample by measuring the optical change of the reaction solution consisting of the sample and reagent, for example, a supernatant liquid (serum) in which unnecessary substances in blood are precipitated. To do. As shown in FIG. 1, the automatic analyzer 1 includes a reagent storage unit 2, a reaction unit 3, and a sample transfer unit 4.
[0018] 試薬格納部 2は、円形状のテーブル 21を有している。テーブル 21は、中心 21aの 周りに回転可能に設けてあり、駆動手段(図示せず)によって回転される。このテープ ル 21には、試薬を収容された試薬容器 22が周方向に複数保持してある。試薬容器 22は、テーブル 21の回転に伴って中心 21aの周りに移動する。また、試薬格納部 2 は、テーブル 21の周囲を覆うケース(図示せず)を有し、当該ケース内を所定の温度 に冷却することで試薬容器 22内の試薬を冷却保存する。この試薬格納部 2は、第一 試薬と第二試薬とをそれぞれ格納するため、水平方向に並ぶ第一試薬格納部 2Aと 第二試薬格納部 2Bとを有している。なお、試薬容器 22には、収納してある試薬の種 類,量,ロット番号などの諸情報を有する識別コードラベルが貼付してある。一方、試 薬格納部 2 (1A, 2B)には、試薬容器 22の識別コードを読み取る識別コードリーダ( 図示せず)が設けてある。 [0019] ここで、試薬容器 22は、平面視で扇形状の外形を呈し、この扇形状を上下方向に 連ねた合成樹脂製の容器であり、その上面に開口を有している。試薬容器 22の開口 は、未使用時に栓で封止してあり、試薬格納部 2 (および後述の試薬保管部 8)に収 容する際には栓が外される。 The reagent storage unit 2 has a circular table 21. The table 21 is rotatably provided around the center 21a, and is rotated by a driving means (not shown). The table 21 holds a plurality of reagent containers 22 containing reagents in the circumferential direction. The reagent container 22 moves around the center 21 a as the table 21 rotates. The reagent storage unit 2 has a case (not shown) that covers the periphery of the table 21, and cools the reagent in the reagent container 22 by cooling the inside of the case to a predetermined temperature. The reagent storage unit 2 includes a first reagent storage unit 2A and a second reagent storage unit 2B arranged in the horizontal direction in order to store the first reagent and the second reagent, respectively. The reagent container 22 is affixed with an identification code label having various information such as the type, amount, and lot number of the stored reagent. On the other hand, the reagent storage unit 2 (1A, 2B) is provided with an identification code reader (not shown) for reading the identification code of the reagent container 22. Here, the reagent container 22 has a fan-shaped outer shape in plan view, and is a synthetic resin container in which the fan shapes are connected in the vertical direction, and has an opening on the upper surface thereof. The opening of the reagent container 22 is sealed with a stopper when not in use, and the stopper is removed when the reagent container 22 is stored in the reagent storage section 2 (and the reagent storage section 8 described later).
[0020] 反応部 3は、筒状の容器保持部 31を有している。容器保持部 31は、中心 31aの周 りに回転可能に設けてあり、駆動手段(図示せず)によって回転される。容器保持部 3 1は、その周方向に沿って複数の凹部(図示せず)を有している。各凹部には、試薬 と検体とを混合する反応容器 32がそれぞれ保持されている。容器保持部 31は、周 方向で隣接する各凹部の間に遮光部材(図示せず)を有し、隣接する反応容器 32の 間を遮光してある。さらに、容器保持部 31は、径方向に貫通する開口(図示せず)が 各凹部に設けられており、当該開口を介して反応容器 32を表出している。この反応 部 3は、容器保持部 31の周囲を覆うケース(図示せず)を有し、当該ケース内を恒温 槽として所定の温度(例えば 37°C)に保温することで反応容器 32内の試薬と検体と が反応した反応液を保温する。  The reaction unit 3 has a cylindrical container holding unit 31. The container holding part 31 is rotatably provided around the center 31a, and is rotated by a driving means (not shown). The container holding part 31 has a plurality of recesses (not shown) along its circumferential direction. Each recess holds a reaction container 32 for mixing the reagent and the specimen. The container holding part 31 has a light shielding member (not shown) between the recesses adjacent in the circumferential direction, and shields between the adjacent reaction containers 32. Furthermore, the container holding part 31 is provided with openings (not shown) penetrating in the radial direction in the respective recesses, and the reaction container 32 is exposed through the openings. The reaction unit 3 has a case (not shown) that covers the periphery of the container holding unit 31 and keeps the case in a constant temperature bath at a predetermined temperature (for example, 37 ° C.), thereby maintaining the inside of the reaction vessel 32. Keep the reaction mixture of the reagent and sample warm.
[0021] ここで、反応容器 32は、上部が開口した有底の四角筒状の容器であり、後述する 分析光に含まれる光の 80%以上を透過する素材 (例えば耐熱ガラスを含むガラス, 環状ォレフィンやポリスチレンなどの合成樹脂)で形成してある。そして、反応容器 32 は、その周壁下部が分析光を透過させる測光領域として用いられる。この測光領域 は、周壁間によつて反応液の光学的特性を測定する光が透過する方向における反 応液の厚みを規定してレ、る。  [0021] Here, the reaction vessel 32 is a bottomed rectangular tube-like vessel having an open top, and is a material that transmits 80% or more of light contained in analysis light described later (for example, glass containing heat-resistant glass, Synthetic resin such as cyclic olefin and polystyrene). The reaction vessel 32 is used as a photometric region in which the lower peripheral wall transmits the analysis light. This photometric region defines the thickness of the reaction liquid in the direction in which the light for measuring the optical characteristics of the reaction liquid is transmitted between the peripheral walls.
[0022] また、反応部 3には、分析光学系 33が設けてある。分析光学系 33は、発光部 331 と分光部 332と受光部 333とで構成してある。発光部 331は、反応容器 32内の反応 液を分析するための分析光(例えば 340〜800nm)を出射する。この分析光は、反 応部 3において容器保持部 31の開口を通過し、反応容器 32の測光領域にある反応 液を透過する。分光部 332は、反応液を透過した分析光を受光部 333に向けて分光 する。受光部 333は、分光部 332で分光された分析光を受光する。  [0022] Further, the reaction unit 3 is provided with an analysis optical system 33. The analysis optical system 33 includes a light emitting unit 331, a spectroscopic unit 332, and a light receiving unit 333. The light emitting unit 331 emits analysis light (for example, 340 to 800 nm) for analyzing the reaction liquid in the reaction vessel 32. This analysis light passes through the opening of the container holding part 31 in the reaction part 3 and passes through the reaction solution in the photometric region of the reaction container 32. The spectroscopic unit 332 splits the analysis light transmitted through the reaction solution toward the light receiving unit 333. The light receiving unit 333 receives the analysis light spectrally separated by the spectroscopic unit 332.
[0023] なお、図には明示しないが、反応部 3には、攪拌機構および洗浄機構が設けられて いる。攪拌機構は、反応容器 32内の試薬と検体とを均一に混合させるためのもので あり、例として反応容器 32に攪拌棒を挿入する接触式のものや、超音波を用いた非 接触のものが挙げられる。攪拌棒を用いる場合には、反応部 3の外部に当該攪拌棒 を洗浄する洗浄部を要する。洗浄機構は、反応容器 32内を洗浄するためのものであ り、例えば反応容器 32内の反応液を吸引して排出し、その後当該反応容器 32に洗 浄液を繰り返し注入して排出し、さらにその後当該反応容器 32内を乾燥させて拭き 取るものである。 [0023] Although not shown in the figure, the reaction section 3 is provided with a stirring mechanism and a cleaning mechanism. The stirring mechanism is for mixing the reagent in the reaction vessel 32 and the sample uniformly. Examples include a contact type in which a stirring bar is inserted into the reaction vessel 32 and a non-contact type using ultrasonic waves. When a stir bar is used, a washing unit for washing the stir bar outside the reaction unit 3 is required. The cleaning mechanism is for cleaning the inside of the reaction vessel 32. For example, the reaction solution in the reaction vessel 32 is sucked and discharged, and then the cleaning solution is repeatedly injected into the reaction vessel 32 and discharged. Thereafter, the inside of the reaction vessel 32 is dried and wiped off.
[0024] 検体移送部 4は、検体容器 42を保持したラック 41を移送するものである。ラック 41 には、検体を収容した検体容器 42を複数並べて保持してある。検体容器 42は、例え ば試験管などの上部が開口した容器である。検体移送部 4は、例えばベルトコンベア などからなり、ベルト上に載置したラック 41を所定方向に移送する。なお、ラック 41は 、複数の検体容器 42が搬送方向に沿って並んだ状態で検体移送部 4に置かれる。 なお、本実施の形態では、検体移送部 4を 2つ並列して設けてあり、共働してラック 4 1を循環させる。  The sample transport unit 4 transports the rack 41 that holds the sample container 42. The rack 41 holds a plurality of sample containers 42 containing samples. The sample container 42 is, for example, a container having an open top such as a test tube. The sample transfer unit 4 is composed of a belt conveyor, for example, and transfers a rack 41 placed on the belt in a predetermined direction. Note that the rack 41 is placed in the sample transport section 4 in a state where a plurality of sample containers 42 are arranged in the transport direction. In the present embodiment, two sample transfer sections 4 are provided in parallel, and the rack 41 is circulated together.
[0025] ところで、試薬格納部 2と反応部 3との間には、試薬分注機構 5が設けてある。ここで の試薬分注機構 5は、第一試薬格納部 2Aと反応部 3との間に設けた第一試薬分注 機構 5Aと、第二試薬格納部 2Bと反応部 3との間に設けた第二試薬分注機構 5Bとが ある。この試薬分注機構 5は、アーム 51とプローブ 52とを有している。アーム 51は、 垂直方向に立設した中心軸 511の上端に基端部が取り付けてあつて水平方向に延 在して設けてある。このアーム 51は、駆動手段 53の駆動による中心軸 511の回転に よって当該中心軸 511の周りに回転する。アーム 51は、回転によって先端部が試薬 格納部 2の所定位置や、反応部 3の所定位置に移動する。また、アーム 51は、駆動 手段 53の駆動による中心軸 511の上下移動によって上下方向に移動する。プロ一 ブ 52は、試薬を分注するものであり、先端を下方に向けてアーム 51の先端部に取り 付けてある。すなわち、試薬分注機構 5は、アーム 51の先端部の位置移動および上 下移動によってプローブ 52を移動させ、当該プローブ 52によって試薬格納部 2にあ る試薬容器 22から試薬を吸引し、当該試薬を反応部 3の反応容器 32に注入する。  Meanwhile, a reagent dispensing mechanism 5 is provided between the reagent storage unit 2 and the reaction unit 3. Here, the reagent dispensing mechanism 5 is provided between the first reagent dispensing mechanism 5A provided between the first reagent storage unit 2A and the reaction unit 3, and between the second reagent storage unit 2B and the reaction unit 3. And a second reagent dispensing mechanism 5B. This reagent dispensing mechanism 5 has an arm 51 and a probe 52. The arm 51 is provided with a base end attached to the upper end of a central shaft 511 erected in the vertical direction and extending in the horizontal direction. The arm 51 rotates around the central axis 511 by the rotation of the central axis 511 driven by the driving means 53. The arm 51 moves to a predetermined position of the reagent storage unit 2 or a predetermined position of the reaction unit 3 by rotation. Further, the arm 51 moves in the vertical direction by the vertical movement of the central shaft 511 driven by the driving means 53. The probe 52 dispenses a reagent and is attached to the tip of the arm 51 with the tip facing downward. That is, the reagent dispensing mechanism 5 moves the probe 52 by moving the position of the tip of the arm 51 and moving up and down, and aspirates the reagent from the reagent container 22 in the reagent storage unit 2 by the probe 52, Is poured into the reaction vessel 32 of the reaction section 3.
[0026] なお、試薬格納部 2の所定位置とは、図には明示しないが試薬格納部 2のケースの 上面に設けた開口孔の位置である。この試薬格納部 2のケースの開口孔には、試薬 格納部 2のテーブル 21の回転を止めた状態において試薬容器 22の開口の位置が 一致する。よって、アーム 51の先端部が試薬格納部 2の所定位置に移動した場合に は、試薬格納部 2のケースの開口孔を通して試薬容器 22の開口の位置にプローブ 5 2があり、当該プローブ 52によって試薬容器 22から試薬を吸引できる。また、反応部 3の所定位置とは、図には明示しないが反応部 3のケースの上面に設けた開口孔の 位置である。この反応部 3のケースの開口孔には、反応部 3の容器保持部 31の回転 を止めた状態において反応容器 32の開口の位置が一致する。よって、アーム 51の 先端部が反応部 3の所定位置に移動した場合には、反応部 3のケースの開口孔を通 して反応容器 32の開口の位置にプローブ 52があり、当該プローブ 52によって反応 容器 32に試薬を注入できる。さらに、試薬分注機構 5によってプローブ 52が移動す る別の所定位置として、洗浄位置がある。この洗浄位置には、図には明示しないがプ ローブ 52を洗浄するために洗浄液の吸引と排出とを行う洗浄部が設けてある。 Note that the predetermined position of the reagent storage unit 2 is a position of an opening provided in the upper surface of the case of the reagent storage unit 2 although not clearly shown in the drawing. In the opening of the case of the reagent storage section 2, the reagent The position of the opening of the reagent container 22 matches with the rotation of the table 21 of the storage unit 2 stopped. Therefore, when the tip of the arm 51 moves to a predetermined position in the reagent storage 2, the probe 52 is located at the opening of the reagent container 22 through the opening hole of the case of the reagent storage 2, and the probe 52 The reagent can be aspirated from the reagent container 22. In addition, the predetermined position of the reaction unit 3 is a position of an opening provided in the upper surface of the case of the reaction unit 3 although not clearly shown in the drawing. The position of the opening of the reaction vessel 32 coincides with the opening hole of the case of the reaction unit 3 in a state where the rotation of the container holding unit 31 of the reaction unit 3 is stopped. Therefore, when the tip of the arm 51 moves to a predetermined position of the reaction unit 3, the probe 52 is located at the opening of the reaction vessel 32 through the opening hole of the case of the reaction unit 3. Reagent can be injected into reaction vessel 32. Further, another predetermined position where the probe 52 is moved by the reagent dispensing mechanism 5 is a washing position. Although not clearly shown in the drawing, a cleaning unit that sucks and discharges the cleaning liquid is provided at this cleaning position to clean the probe 52.
[0027] また、反応部 3と検体移送部 4との間には、検体分注機構 6が設けてある。この検体 分注機構 6は、アーム 61とプローブ 62とを有してレヽる。アーム 61は、垂直方向に立 設した中心軸 611の上端に基端部が取り付けてあつて水平方向に延在して設けてあ る。このアーム 61は、駆動手段 63の駆動による中心軸 611の回転によって当該中心 軸 611の周りに回転する。アーム 61は、回転によって先端部が反応部 3の所定位置 や、検体移送部 4の所定位置に移動する。また、アーム 61は、駆動手段 63の駆動に よる中心軸 611の上下移動によって上下方向に移動する。プローブ 62は、検体を分 注するものであり、先端を下方に向けてアーム 61の先端部に取り付けてある。すなわ ち、検体分注機構 6は、アーム 61の先端部の位置移動および上下移動によってプロ ーブ 62を移動させ、当該プローブ 62によって検体移送部 4にある検体容器 42から 検体を吸引し、当該検体を反応部 3の反応容器 32に注入する。  A sample dispensing mechanism 6 is provided between the reaction unit 3 and the sample transfer unit 4. The sample dispensing mechanism 6 has an arm 61 and a probe 62 and is movable. The arm 61 is provided with a base end attached to the upper end of a central shaft 611 erected in the vertical direction and extending in the horizontal direction. The arm 61 rotates around the central axis 611 by the rotation of the central axis 611 driven by the driving means 63. The arm 61 moves to a predetermined position of the reaction unit 3 or a predetermined position of the sample transfer unit 4 by rotation. Further, the arm 61 moves in the vertical direction by the vertical movement of the central shaft 611 driven by the driving means 63. The probe 62 dispenses a sample, and is attached to the distal end portion of the arm 61 with the distal end directed downward. That is, the sample dispensing mechanism 6 moves the probe 62 by moving the position of the tip of the arm 61 and moving up and down, and aspirates the sample from the sample container 42 in the sample transfer unit 4 by the probe 62. The sample is injected into the reaction container 32 of the reaction unit 3.
[0028] なお、検体移送部 4の所定位置とは、図には明示しないが検体移送部 4においてラ ック 41の移送を停止した状態で当該ラック 41にある所定の検体容器 42の開口の位 置である。よって、アーム 61の先端部が検体移送部 4の所定位置に移動した場合に は、所定の検体容器 42の開口の位置にプローブ 62があり、当該プローブ 62によつ て検体容器 42から検体を吸引できる。また、反応部 3の所定位置とは、上記と同様で あって、アーム 61の先端部が反応部 3の所定位置に移動した場合に、反応部 3のケ ースの開口孔を通して反応容器 32の開口の位置にプローブ 62があり、当該プロ一 ブ 62によって反応容器 32に検体を注入できる。さらに、検体分注機構 6によってプロ ーブ 62が移動する別の所定位置として、洗浄位置がある。この洗浄位置には、図に は明示しないがプローブ 62を洗浄するために洗浄液の吸引と排出とを行う洗浄部が 設けてある。 It should be noted that the predetermined position of the sample transport unit 4 is not clearly shown in the figure, but the opening of the predetermined sample container 42 in the rack 41 in a state where the transport of the rack 41 is stopped in the sample transport unit 4. Position. Therefore, when the distal end of the arm 61 moves to a predetermined position of the sample transfer section 4, the probe 62 is at the opening position of the predetermined sample container 42, and the sample is removed from the sample container 42 by the probe 62. Can suck. The predetermined position of the reaction unit 3 is the same as described above. When the tip of the arm 61 moves to a predetermined position in the reaction unit 3, the probe 62 is located at the position of the opening of the reaction vessel 32 through the opening hole of the case of the reaction unit 3, and the probe 62 Thus, the specimen can be injected into the reaction container 32. Furthermore, another predetermined position where the probe 62 is moved by the specimen dispensing mechanism 6 is a washing position. Although not clearly shown in the drawing, a cleaning unit for sucking and discharging the cleaning liquid is provided at this cleaning position.
[0029] 上述した自動分析装置 1の動作を説明する。先ず、第一試薬分注機構 5Aによって 第一試薬格納部 2Aに格納した所定の試薬容器 22の試薬を吸引し、反応部 3にある 所定の反応容器 32に注入する。次いで、検体分注機構 6によって検体移送部 4にあ るラック 41に保持した所定の検体容器 42の検体を吸引し、上記反応容器 32に注入 する。次いで、第二試薬分注機構 5Bによって第二試薬格納部 2Bに格納した所定の 試薬容器 22の試薬を吸引し、上記反応容器 32に注入する。ここで、攪拌機構によつ て上記反応容器 32内の試薬と検体とを攪拌混合する。なお、試薬分注機構 5および 検体分注機構 6のプローブ 52, 62、攪拌機構の攪拌棒は、分注や攪拌の後に各洗 浄部で洗浄される。  [0029] The operation of the above-described automatic analyzer 1 will be described. First, the reagent in the predetermined reagent container 22 stored in the first reagent storage unit 2A is aspirated by the first reagent dispensing mechanism 5A and injected into the predetermined reaction container 32 in the reaction unit 3. Next, the specimen dispensing mechanism 6 sucks the specimen in the predetermined specimen container 42 held in the rack 41 in the specimen transfer section 4 and injects it into the reaction container 32. Next, the reagent in the predetermined reagent container 22 stored in the second reagent storage unit 2B is aspirated by the second reagent dispensing mechanism 5B and injected into the reaction container 32. Here, the reagent in the reaction vessel 32 and the specimen are stirred and mixed by the stirring mechanism. Note that the probes 52 and 62 of the reagent dispensing mechanism 5 and the specimen dispensing mechanism 6 and the stirring rod of the stirring mechanism are washed in each washing section after dispensing and stirring.
[0030] 上記動作は、一定の周期で繰り返される。反応部 3の容器保持部 31は、 1周期で反 時計方向に(1周 1反応容器) /4分回転し、 4周期で時計方向に 1反応容器分回 転する。そして、容器保持部 31の回転に際して、攪拌混合された反応液がある上記 反応容器 32が分析光学系 33における分析光を横切る時、当該反応液の吸光度を 測定する。吸光度は、測定を終了した反応容器 32が洗浄'乾燥されるまでの間(例え ば 18秒間)で測定される。洗浄'乾燥された反応容器 32は、再び分析に使用される  [0030] The above operation is repeated at a constant cycle. The container holding unit 31 of the reaction unit 3 rotates counterclockwise in one cycle (one reaction vessel per lap) / 4 minutes, and rotates clockwise for one reaction vessel in four cycles. Then, when the container holding unit 31 rotates, when the reaction container 32 containing the stirred reaction liquid crosses the analysis light in the analysis optical system 33, the absorbance of the reaction liquid is measured. The absorbance is measured until the reaction container 32 that has been measured is washed and dried (for example, 18 seconds). Washed & dried reaction vessel 32 is used again for analysis
[0031] 図 2は本発明に係る試薬補充装置を自動分析装置に適用した状態の平面図であ る。試薬補充装置 100は、上述した自動分析装置 1に対して着脱可能に設けてある 。図 2に示すように試薬補充装置 100は、試薬保管部 8,搬送部 9および回収部 10を 備えている。 FIG. 2 is a plan view showing a state in which the reagent replenishing device according to the present invention is applied to an automatic analyzer. The reagent replenishing device 100 is detachably attached to the automatic analyzer 1 described above. As shown in FIG. 2, the reagent replenishing device 100 includes a reagent storage unit 8, a transport unit 9, and a recovery unit 10.
[0032] 試薬保管部 8は、 自動分析装置 1の側部に配置してある。試薬保管部 8は、自動分 析装置 1の試薬格納部 2と同様の構成であって、円形状のテーブル 81を有している 。テーブル 81は、中心 81aの周りに回転可能に設けてあり、駆動手段(図示せず)に よって回転される。このテーブル 81には、試薬を収容された試薬容器 22が周方向に 複数保持してある。試薬容器 22は、テーブル 81の回転に伴って中心 81aの周りに移 動する。また、試薬保管部 8は、テーブル 81の周囲を覆うケース(図示せず)を有し、 当該ケース内を所定の温度に冷却することで試薬容器 22内の試薬を冷却保存する 。この試薬保管部 8には、オペレータが補充用の試薬容器 22を載置できるように開 閉可能な蓋(図示せず)が設けてある。また、試薬保管部 8には、オペレータが予め 開栓した試薬容器 22を載置してもよぐあるいは自動で開栓する機構(図示せず)を 設けておいて栓をした試薬容器 22を載置してもよい。なお、試薬保管部 8には、試薬 容器 22の識別コードを読み取る識別コードリーダ(図示せず)が設けてある。 The reagent storage unit 8 is disposed on the side of the automatic analyzer 1. The reagent storage unit 8 has the same configuration as the reagent storage unit 2 of the automatic analyzer 1, and has a circular table 81. . The table 81 is rotatably provided around the center 81a and is rotated by driving means (not shown). In this table 81, a plurality of reagent containers 22 containing reagents are held in the circumferential direction. The reagent container 22 moves around the center 81a as the table 81 rotates. The reagent storage unit 8 has a case (not shown) that covers the periphery of the table 81, and cools and stores the reagent in the reagent container 22 by cooling the inside of the case to a predetermined temperature. The reagent storage unit 8 is provided with a lid (not shown) that can be opened and closed so that the operator can place the reagent container 22 for replenishment. In addition, the reagent storage unit 8 is provided with a mechanism (not shown) that allows the operator to place a reagent container 22 that has been previously opened by the operator or to automatically open the container. It may be placed. The reagent storage unit 8 is provided with an identification code reader (not shown) that reads the identification code of the reagent container 22.
[0033] 搬送部 9は、試薬保管部 8にある試薬容器 22を自動分析装置 1の試薬格納部 2 (2 A, 2B)に搬送し、また試薬格納部 2 (2A, 2B)にある試薬容器 22を当該試薬格納 部 2の外部(回収部 10)に搬送するためのものであり、第一搬送機構 91と第二搬送 機構 92と第三搬送機構 93とを有している。  [0033] The transport unit 9 transports the reagent container 22 in the reagent storage unit 8 to the reagent storage unit 2 (2A, 2B) of the automatic analyzer 1, and the reagent in the reagent storage unit 2 (2A, 2B). The container 22 is for transporting outside the reagent storage unit 2 (collection unit 10), and includes a first transport mechanism 91, a second transport mechanism 92, and a third transport mechanism 93.
[0034] 第一搬送機構 91は、試薬保管部 8にある試薬容器 22を当該試薬保管部 8の外部 ( 第二搬送機構 92)に搬送するためのものである。第一搬送機構 91は、試薬保管部 8 の近傍に配置してあり、アーム 911と押圧部材 912とを有している。アーム 911は、試 薬保管部 8の上方に配置してあり、水平方向に延在して設けてある。このアーム 911 は、駆動手段 913の駆動により図 2の矢印 A方向であって自動分析装置 1に対して 近接または離反するように水平移動する。また、アーム 911は、駆動手段 913の駆動 により上下方向に移動する。押圧部材 912は、アーム 911から下方に延在して設け てある。押圧部材 912は、試薬容器 22の側部に係合するように形成してある。すなわ ち、第一搬送機構 91は、アーム 911の水平移動および上下移動によって押圧部材 9 12を移動させ、当該押圧部材 912によって試薬保管部 8にある試薬容器 22を試薬 保管部 8の外部に押し出して第二搬送機構 92に受け渡す。なお、図には明示しない が、試薬保管部 8のケースには、押圧部材 912が揷入されるとともに試薬容器 22が 押し出されるための開口が設けてある。この開口は駆動手段(図示せず)によって駆 動されるシャツタによって開閉する。 [0035] 第二搬送機構 92は、試薬保管部 8側と試薬格納部 2側との間で試薬容器 22を搬 送するためのものである。第二搬送機構 92は、 自動分析装置 1側に配置してあり、円 形状のテーブル 921を有している。テーブル 921は、水平な上面を有し、駆動手段 9 22の駆動により図 2の矢印 B方向であって試薬保管部 8側と試薬格納部 2側(第一試 薬格納部 2Aと第二試薬格納部 2Bとの間の位置)とに水平移動する。また、テーブル 921は、駆動手段 922の駆動により円形状の中心の周りに回転する。なお、テープ ノレ 921の上面には、試薬容器 22の位置決めをする位置決め部(図示せず)が設けて あってもよレ、。この位置決め部は、例えば試薬容器 22の向きを規制する仕切り板な どがある。 The first transport mechanism 91 is for transporting the reagent container 22 in the reagent storage unit 8 to the outside of the reagent storage unit 8 (second transport mechanism 92). The first transport mechanism 91 is disposed in the vicinity of the reagent storage unit 8 and has an arm 911 and a pressing member 912. The arm 911 is disposed above the reagent storage unit 8 and extends in the horizontal direction. This arm 911 moves horizontally so as to be close to or away from the automatic analyzer 1 in the direction of arrow A in FIG. Further, the arm 911 moves up and down by the drive of the drive means 913. The pressing member 912 extends downward from the arm 911. The pressing member 912 is formed so as to engage with the side portion of the reagent container 22. That is, the first transport mechanism 91 moves the pressing member 912 by the horizontal movement and vertical movement of the arm 911, and the pressing container 912 moves the reagent container 22 in the reagent storage unit 8 to the outside of the reagent storage unit 8. Extrude and transfer to the second transport mechanism 92. Although not clearly shown in the figure, the case of the reagent storage unit 8 is provided with an opening through which the pressing member 912 is inserted and the reagent container 22 is pushed out. This opening is opened and closed by a shirt driven by driving means (not shown). [0035] The second transport mechanism 92 is for transporting the reagent container 22 between the reagent storage unit 8 side and the reagent storage unit 2 side. The second transport mechanism 92 is disposed on the automatic analyzer 1 side and has a circular table 921. The table 921 has a horizontal upper surface, and is driven in the direction of arrow B in FIG. 2 by driving the driving means 922, and is in the reagent storage unit 8 side and the reagent storage unit 2 side (the first reagent storage unit 2A and the second reagent). Move horizontally to the position between storage unit 2B). Further, the table 921 rotates around the center of the circular shape by driving of the driving means 922. A positioning portion (not shown) for positioning the reagent container 22 may be provided on the upper surface of the tape nozzle 921. This positioning part includes a partition plate for regulating the direction of the reagent container 22, for example.
[0036] 第三搬送機構 93は、試薬格納部 2の外部 (第二搬送機構 92)にある試薬容器 22 を当該試薬格納部 2の内部に搬送するためのものである。第三搬送機構 93は、 自動 分析装置 1側であって試薬格納部 2 (2A, 2B)の近傍に配置してあり、アーム 931と 押圧部材 932とを有している。アーム 931は、試薬格納部 2 (2A, 2B)の上方に配置 してあり、水平方向に延在して設けてある。このアーム 931は、駆動手段 933の駆動 により図 2の矢印 C方向であって第一試薬格納部 2Aと第二試薬格納部 2Bとが並ぶ 方向に水平移動する。また、アーム 931は、駆動手段 933の駆動により上下方向に 移動する。押圧部材 932は、試薬容器 22の側部に係合するように形成してある。す なわち、第三搬送機構 93は、アーム 931の水平移動および上下移動によって押圧 部材 932を移動させ、当該押圧部材 932によって試薬格納部 2 (2A, 2B)にある試 薬容器 22を試薬格納部 2の外部 (第一試薬格納部 2Aと第二試薬格納部 2Bとの間 の位置)に押し出す。一方、第三搬送機構 93は、アーム 931の水平移動および上下 移動によって押圧部材 932を移動させ、当該押圧部材 932によって試薬容器 22を 第二搬送機構 92 (第一試薬格納部 2Aと第二試薬格納部 2Bとの間の位置)から試 薬格納部 2 (2A, 2B)の内部に押し入れる。なお、図には明示しないが、試薬格納部 2のケースには、押圧部材 932が揷入されるとともに試薬容器 22が出し入れされるた めの開口が設けてある。この開口は駆動手段(図示せず)によって駆動されるシャツタ によって開閉する。  The third transport mechanism 93 is for transporting the reagent container 22 located outside the reagent storage unit 2 (second transport mechanism 92) to the inside of the reagent storage unit 2. The third transport mechanism 93 is arranged near the reagent storage unit 2 (2A, 2B) on the automatic analyzer 1 side, and includes an arm 931 and a pressing member 932. The arm 931 is disposed above the reagent storage unit 2 (2A, 2B) and extends in the horizontal direction. The arm 931 is moved horizontally in the direction of arrow C in FIG. 2 in the direction in which the first reagent storage unit 2A and the second reagent storage unit 2B are arranged by driving of the driving means 933. Further, the arm 931 moves up and down by the drive of the drive means 933. The pressing member 932 is formed so as to engage with the side portion of the reagent container 22. That is, the third transport mechanism 93 moves the pressing member 932 by moving the arm 931 horizontally and vertically, and stores the reagent container 22 in the reagent storage unit 2 (2A, 2B) by the pressing member 932. Extrude outside part 2 (position between first reagent storage 2A and second reagent storage 2B). On the other hand, the third transport mechanism 93 moves the pressing member 932 by the horizontal movement and vertical movement of the arm 931, and moves the reagent container 22 to the second transport mechanism 92 (the first reagent storage unit 2A and the second reagent by the pressing member 932). Push it into the inside of reagent storage 2 (2A, 2B) from the position between storage 2B. Although not clearly shown in the figure, the case of the reagent storage unit 2 is provided with an opening through which the pressing member 932 is inserted and the reagent container 22 is inserted and removed. This opening is opened and closed by a shirt driven by driving means (not shown).
[0037] 回収部 10は、試薬容器 22を投入するための開口穴である。この回収部 10は、 自 動分析装置 1において、第一試薬格納部 2Aと第二試薬格納部 2Bとの間の位置で あって、第二搬送機構 92のテーブル 921が移動する位置に設けてある。回収部 10 は、テーブル 921の移動によって開閉する。 [0037] The collection unit 10 is an opening hole for introducing the reagent container 22. This collection unit 10 In the dynamic analyzer 1, the table 921 of the second transport mechanism 92 is provided at a position between the first reagent storage unit 2A and the second reagent storage unit 2B. The collection unit 10 is opened and closed by moving the table 921.
[0038] ところで、上述した搬送部 9は、試薬容器 22をほぼ水平方向に移動させる。すなわ ち、試薬保管部 8のテーブル 81の上面から第二搬送機構 92のテーブル 921の上面 に至りほぼ面一としてある。さらに、試薬格納部 2のテーブル 21の上面から第二搬送 機構 92のテーブル 921の上面に至りほぼ面一としてある。  By the way, the transport unit 9 described above moves the reagent container 22 in a substantially horizontal direction. In other words, the upper surface of the table 81 of the reagent storage unit 8 is almost flush with the upper surface of the table 921 of the second transport mechanism 92. Furthermore, the upper surface of the table 21 of the reagent storage unit 2 is substantially flush with the upper surface of the table 921 of the second transport mechanism 92.
[0039] 図 3は自動分析装置および試薬補充装置の制御系を示すブロック図である。図 3に 示すように自動分析装置 1は、上述した試薬格納部 2,反応部 3,検体移送部 4,試 薬分注機構 5および検体分注機構 6が分析制御部 11に接続してあり、それぞれ分析 制御部 11によって統括的に制御される。また、試薬格納部 2 (2A, 2B)に設けた識 別コードリーダ(図示せず)で読み取った試薬容器 22の諸情報は、分析制御部 11内 のメモリ(図示せず)に記憶される。また、分析制御部 11に接続された試薬不足検出 手段 7は、試薬格納部 2に保持した各試薬容器 22における試薬不足を検出する。試 薬不足は、例えば試薬容器 22の諸情報と、過去の試薬使用量とを比較して現在の 試薬残量を算出することで検出できる。一方、試薬補充装置 100は、上述した試薬 保管部 8および搬送部 9 (第一搬送機構 91,第二搬送機構 92,第三搬送機構 93) が補充制御部 101に接続してあり、それぞれ補充制御部 101によって統括的に制御 される。また、補充制御部 101は、自動分析装置 1の分析制御部 11と接続してある。 すなわち、補充制御部 101は、分析制御部 11と相互に信号の入出力を行う。これら 分析制御部 11と補充制御部 101とは、インターフェースを介して着脱可能に設けて ある。  FIG. 3 is a block diagram showing a control system of the automatic analyzer and the reagent replenishing device. As shown in FIG. 3, the automatic analyzer 1 includes the reagent storage unit 2, the reaction unit 3, the sample transfer unit 4, the reagent dispensing mechanism 5, and the sample dispensing mechanism 6 connected to the analysis control unit 11. These are all controlled by the analysis control unit 11. Various information of the reagent container 22 read by an identification code reader (not shown) provided in the reagent storage unit 2 (2A, 2B) is stored in a memory (not shown) in the analysis control unit 11. . The reagent shortage detection means 7 connected to the analysis control unit 11 detects a reagent shortage in each reagent container 22 held in the reagent storage unit 2. The shortage of reagents can be detected by, for example, comparing various information of the reagent container 22 with the past reagent usage amount and calculating the current reagent remaining amount. On the other hand, in the reagent replenishing device 100, the reagent storage unit 8 and the transport unit 9 (the first transport mechanism 91, the second transport mechanism 92, and the third transport mechanism 93) described above are connected to the replenishment control unit 101. The control unit 101 performs overall control. Further, the replenishment control unit 101 is connected to the analysis control unit 11 of the automatic analyzer 1. That is, the replenishment control unit 101 inputs and outputs signals with the analysis control unit 11. The analysis control unit 11 and the replenishment control unit 101 are detachably provided via an interface.
[0040] ここで、試薬保管部 8には、試薬不足になると予測された試薬を収容した試薬容器 22をオペレータが予め保管しておく。試薬不足の予測は、分析制御部 11で行われ る。分析制御部 11のメモリ(図示せず)には、過去に分析した分析項目(実績)が記 憶される。さらに、分析制御部 11のメモリ(図示せず)には、 日(午前'午後),週,月, 季節,年ごとでの過去の試薬の使用量 (実績)が算出されて記憶される。そして、分 析制御部 11では、前日までの試薬残量と、所定期間(例えば 1日, 1週間, 1ヶ月)の 試薬使用実績とに応じた分析項目数推定値から試薬の必要量を求め、現在試薬保 管部 8に保管されている試薬量力 試薬不足を予想し、これを外部出力手段(図示 せず)によってオペレータに告知する。オペレータは、この告知を見て、試薬不足に なると予測された試薬を収容した試薬容器 22を試薬保管部 8に予め保管しておく。 [0040] Here, in the reagent storage unit 8, the operator stores in advance the reagent container 22 containing the reagent that is predicted to run out of reagents. Prediction of reagent shortage is performed by the analysis control unit 11. The analysis item (actual result) analyzed in the past is stored in the memory (not shown) of the analysis control unit 11. Further, the past usage amount (actual result) of the reagent for each day (am'pm), week, month, season, and year is calculated and stored in the memory (not shown) of the analysis control unit 11. The analysis control unit 11 then determines the remaining amount of reagent up to the previous day and the predetermined period (for example, 1 day, 1 week, 1 month). The required amount of reagent is calculated from the estimated number of analysis items according to the reagent usage record, and the amount of reagent currently stored in the reagent storage unit 8 is predicted, and this is predicted by an external output means (not shown). Notify the operator. The operator sees this notification, and stores in advance the reagent container 22 containing the reagent predicted to run out of reagents in the reagent storage unit 8.
[0041] また、オペレータが外部入力手段(図示せず)によって所定期間(例えば 1日)の予 想検体数を入力することにより、分析制御部 11では、当該入力と前日までの試薬残 量とから所定期間の試薬の必要量を求め、現在試薬保管部 8に保管されている試薬 量から試薬不足を予想し、これを外部出力手段(図示せず)によってオペレータに告 知するようにしてもよい。  [0041] In addition, when the operator inputs the number of predicted samples for a predetermined period (for example, one day) by an external input means (not shown), the analysis control unit 11 determines the input and the remaining reagent amount up to the previous day. The required amount of the reagent for a predetermined period is obtained from the amount of reagent, the reagent shortage is predicted from the amount of reagent currently stored in the reagent storage unit 8, and this is notified to the operator by an external output means (not shown). Good.
[0042] さらに、オペレータが外部入力手段(図示せず)によって所定期間(例えば 1日)の 予想項目数を入力することにより、分析制御部 11では、当該入力と前日までの試薬 残量とから所定期間の試薬の必要量を求め、現在試薬保管部 8に保管されている試 薬量力 試薬不足を予想し、これを外部出力手段(図示せず)によってオペレータに 告知するようにしてもよい。  [0042] Further, when the operator inputs the expected number of items for a predetermined period (for example, 1 day) by an external input means (not shown), the analysis control unit 11 uses the input and the remaining amount of reagent up to the previous day. The necessary amount of reagent for a predetermined period may be obtained, and the reagent amount capacity currently stored in the reagent storage unit 8 may be predicted, and the operator may be notified of this by external output means (not shown).
[0043] なお、試薬保管部 8に試薬容器 22が保管された場合、その識別コードが試薬保管 部 8に設けた識別コードリーダ(図示せず)で読み取られる。そして、読み取られた試 薬容器 22の諸情報は、補充制御部 101のメモリ(図示せず)および分析制御部 11の メモリ(図示せず)に記憶される。ここで、分析制御部 11では、試薬保管部 8に保管し てある試薬と、実際に分析で使用した試薬とを比較する。そして、比較した結果、試 薬保管部 8に保管してある試薬以外を用いる分析項目が生じた場合には試薬不足と なり得るのでこれを外部出力手段(図示せず)によってオペレータに告知するようにし てもよい。  When the reagent container 22 is stored in the reagent storage unit 8, the identification code is read by an identification code reader (not shown) provided in the reagent storage unit 8. The read information on the reagent container 22 is stored in a memory (not shown) of the replenishment control unit 101 and a memory (not shown) of the analysis control unit 11. Here, the analysis control unit 11 compares the reagent stored in the reagent storage unit 8 with the reagent actually used in the analysis. As a result of comparison, if an analysis item using a reagent other than the reagent stored in the reagent storage unit 8 is generated, the reagent may be insufficient, and this is notified to the operator by an external output means (not shown). It may be.
[0044] 上述した試薬補充装置 100の動作を説明する。 自動分析装置 1の動作に際し試薬 格納部 2 (2A, 2B)にある試薬容器 22が空(分析に用いることができない少量を含む )になる。すなわち、 自動分析装置 1の試薬不足検出手段 7によって試薬不足が検出 される。この場合、補充制御部 101は、分析制御部 11を介して試薬格納部 2のテー ブル 21を回転させて該当する空の試薬容器 22を開口の位置に移動させ、当該開口 をシャツタで解放させて、空の試薬容器 22を第三搬送機構 93によって試薬格納部 2 の外部に押し出す。このとき、第二搬送機構 92は、回収部 10を解放する位置 (試薬 保管部 8近傍の位置)にある。このため、試薬格納部 2の外部に押し出された空の試 薬容器 22は、回収部 10に投入される。なお、空の試薬容器 22を試薬格納部 2の外 部に出した後、補充制御部 101は、分析制御部 11を介して試薬格納部 2の開口をシ ャッタで閉塞する(回収動作)。 [0044] The operation of the reagent replenishing device 100 described above will be described. During the operation of the automatic analyzer 1, the reagent container 22 in the reagent storage 2 (2A, 2B) becomes empty (including a small amount that cannot be used for analysis). That is, a reagent shortage is detected by the reagent shortage detection means 7 of the automatic analyzer 1. In this case, the replenishment control unit 101 rotates the table 21 of the reagent storage unit 2 via the analysis control unit 11 to move the corresponding empty reagent container 22 to the position of the opening, and releases the opening with a shirter. The empty reagent container 22 is moved into the reagent storage section 2 by the third transport mechanism 93. Extrude outside. At this time, the second transport mechanism 92 is at a position where the collection unit 10 is released (a position near the reagent storage unit 8). For this reason, the empty reagent container 22 pushed out of the reagent storage unit 2 is put into the collection unit 10. After the empty reagent container 22 is taken out of the reagent storage unit 2, the replenishment control unit 101 closes the opening of the reagent storage unit 2 with a shutter via the analysis control unit 11 (collection operation).
[0045] 一方、 自動分析装置 1の試薬不足検出手段 7によって試薬不足が検出された場合 、補充制御部 101は、試薬保管部 8のテーブル 81を回転させて不足に該当する試 薬を収容している補充用の試薬容器 22を開口の位置に移動させ、当該開口をシャツ タで解放させて、当該試薬容器 22を第一搬送機構 91によって試薬保管部 8の外部 に押し出す。このとき、第二搬送機構 92は、試薬保管部 8近傍の位置にある。このた め、試薬保管部 8の外部に押し出された補充用の試薬容器 22は、第二搬送機構 92 のテーブル 921の上面に受け渡される。なお、補充用の試薬容器 22を試薬保管部 8 の外部に出した後は、その開口をシャツタで閉塞する。次いで、補充制御部 101は、 第二搬送機構 92のテーブル 921を第一試薬格納部 2Aと第二試薬格納部 2Bとの間 の位置に移動させ、さらに当該テーブル 921を回転させて、試薬格納部 2 (2Aまたは 2B)に入れるために補充用の試薬容器 22の向きを変える。次いで、補充制御部 101 は、分析制御部 11を介して補充用の試薬容器 22を押し入れるべき試薬格納部 2 (2 Aまたは 2B)の開口をシャツタで解放させて、第三搬送機構 93によって第二搬送機 構 92のテーブル 921にある補充用の試薬容器 22を試薬格納部 2 (2Aまたは 2B)に 押し入れる。最後に、補充用の試薬容器 22を押し入れた後、補充制御部 101は、分 析制御部 11を介して試薬格納部 2の開口をシャツタで閉塞する (補充動作)。  On the other hand, when the reagent shortage detection means 7 of the automatic analyzer 1 detects a reagent shortage, the replenishment control unit 101 rotates the table 81 of the reagent storage unit 8 to store the reagent corresponding to the shortage. The replenishing reagent container 22 is moved to the position of the opening, the opening is released with a shirter, and the reagent container 22 is pushed out of the reagent storage unit 8 by the first transport mechanism 91. At this time, the second transport mechanism 92 is in a position near the reagent storage unit 8. Therefore, the replenishment reagent container 22 pushed out of the reagent storage unit 8 is delivered to the upper surface of the table 921 of the second transport mechanism 92. After the replenishing reagent container 22 is taken out of the reagent storage unit 8, the opening is closed with a shirter. Next, the replenishment control unit 101 moves the table 921 of the second transport mechanism 92 to a position between the first reagent storage unit 2A and the second reagent storage unit 2B, and further rotates the table 921 to store the reagent. Reorient the refill reagent container 22 to enter Part 2 (2A or 2B). Next, the replenishment control unit 101 opens the opening of the reagent storage unit 2 (2 A or 2B) into which the reagent container 22 for replenishment should be pushed via the analysis control unit 11 with a shatter, and the third transport mechanism 93 Push the reagent container 22 for replenishment on the table 921 of the second transport mechanism 92 into the reagent storage 2 (2A or 2B). Finally, after the replenishment reagent container 22 is pushed in, the replenishment control unit 101 closes the opening of the reagent storage unit 2 with a shirter via the analysis control unit 11 (replenishment operation).
[0046] そして、補充された試薬のロットが以前の試薬と同じ場合にそのまま当該試薬を使 用して分析を行う。一方、ロットが異なる場合など必要に応じ、検体移送部 4において 標準検体を移送して当該標準検体を用いて吸光度と濃度との関係線 (検量線)を作 成し直す。  [0046] Then, when the replenished reagent lot is the same as the previous reagent, the reagent is used as it is for analysis. On the other hand, if the lot is different, the sample transfer unit 4 transfers the standard sample and recreates the absorbance-concentration relationship curve (calibration curve) using the standard sample as necessary.
[0047] なお、上記回収動作と、補充動作にて試薬容器 22を第二搬送機構 92のテーブル 921に受け渡すまでの動作とは、同時に行うことができる。また、試薬の補充は、試薬 不足検出手段 7によって試薬不足が検出された場合に限らず、オペレータが外部入 力手段(図示せず)によって試薬の補充指示を入力した場合に行ってもよい。 It should be noted that the recovery operation and the operation until the reagent container 22 is transferred to the table 921 of the second transport mechanism 92 in the replenishment operation can be performed simultaneously. Reagent replenishment is not limited to the case where reagent shortage is detected by the reagent shortage detection means 7, but an operator can input the reagent externally. This may be performed when a reagent replenishment instruction is input by force means (not shown).
[0048] また、第二搬送機構 92のテーブル 921の上面には、試薬容器 22の位置決めをす る位置決め部(図示せず)が設けてあるため、オペレータがテーブル 921の上面に直 接試薬容器 22を置いて試薬格納部 2に補充させることも可能である。この場合、図に は明示しないがテーブル 921の上面に試薬容器 22が置かれたことを検知する検知 手段と、置かれた試薬容器 22の識別コードを読み取る識別コードリーダとを設けてお く。そして、 自動分析装置 1の分析制御部 11によって、試薬不足検出手段 7の検出 によって、オペレータに対してどの試薬が不足していることを告知されたとき、補充制 御部 101は、空の試薬容器 22の回収動作を行う。次いで、補充制御部 101は、第二 搬送機構 92および第三搬送機構 93によって試薬容器 22を試薬格納部 2に補充す る。  [0048] Since the positioning portion (not shown) for positioning the reagent container 22 is provided on the upper surface of the table 921 of the second transport mechanism 92, the operator directly attaches the reagent container to the upper surface of the table 921. It is also possible to replenish the reagent storage unit 2 with 22 placed. In this case, although not shown in the figure, a detecting means for detecting that the reagent container 22 is placed on the upper surface of the table 921 and an identification code reader for reading the identification code of the placed reagent container 22 are provided. Then, when the analysis controller 11 of the automatic analyzer 1 informs the operator which reagent is insufficient by the detection of the reagent shortage detection means 7, the replenishment controller 101 detects the empty reagent. The container 22 is collected. Next, the replenishment control unit 101 replenishes the reagent container 22 to the reagent storage unit 2 by the second transport mechanism 92 and the third transport mechanism 93.
[0049] このように、上述した試薬補充装置 100は、補充用の試薬を収容した試薬容器 22 を保管する試薬保管部 8と、 自動分析装置 1の試薬格納部 2 (2A, 2B)にある試薬容 器 22を当該試薬格納部 2の外部に搬送して回収する一方で試薬保管部 8にある試 薬容器 22を試薬格納部 2に搬送する搬送部 9とを有しており、試薬保管部 8および 搬送部 9を自動分析装置 1に対して着脱可能に設けてある。この結果、試薬の消費 量が多レ、自動分析装置に対して必要に応じて試薬を自動で補充し、さらに空レ、た試 薬容器を回収することが可能になる。  As described above, the reagent replenishing device 100 described above is provided in the reagent storage unit 8 for storing the reagent container 22 containing the reagent for replenishment and the reagent storage unit 2 (2A, 2B) of the automatic analyzer 1. The reagent container 22 is transported to the outside of the reagent storage unit 2 and collected, while the reagent container 22 in the reagent storage unit 8 is transported to the reagent storage unit 2 and has a transport unit 9 for reagent storage. The part 8 and the transport part 9 are detachably attached to the automatic analyzer 1. As a result, the amount of reagent consumed is high, and it is possible to automatically replenish the automatic analyzer with the reagent as needed, and to collect the empty reagent container.
[0050] また、搬送部 9は、試薬容器 22をほぼ面一な面上で移動させるため、試薬容器 22 を上下移動させないので、試薬容器 22内の試薬に泡を発生させる事態を防止するこ とが可能になる。  [0050] Further, since the transport unit 9 moves the reagent container 22 on a substantially flush surface, the reagent container 22 is not moved up and down, so that a situation in which bubbles are generated in the reagent in the reagent container 22 is prevented. And become possible.
産業上の利用可能性  Industrial applicability
[0051] 以上のように、本発明に係る試薬補充装置は、 自動分析装置に対して試薬を補充 するために有用であり、特に、必要に応じて自動分析装置に試薬を自動で補充する ことに適している。 [0051] As described above, the reagent replenishing apparatus according to the present invention is useful for replenishing reagents to the automatic analyzer, and in particular, automatically replenishing reagents to the automatic analyzer as necessary. Suitable for

Claims

請求の範囲 The scope of the claims
[1] 補充用の試薬を収容した試薬容器を保管する試薬保管部と、  [1] A reagent storage unit for storing a reagent container containing a reagent for replenishment;
前記試薬保管部にある試薬容器を自動分析装置の試薬格納部に搬送する搬送部 と  A transport unit for transporting the reagent container in the reagent storage unit to the reagent storage unit of the automatic analyzer;
を有し、前記試薬保管部および搬送部を自動分析装置に対して着脱可能に設け たことを特徴とする試薬補充装置。  And a reagent replenishing device, wherein the reagent storage unit and the transport unit are detachably attached to the automatic analyzer.
[2] 補充用の試薬を収容した試薬容器を保管する試薬保管部と、  [2] a reagent storage unit for storing a reagent container containing a reagent for replenishment;
自動分析装置の試薬格納部にある試薬容器を当該試薬格納部の外部に搬送する 一方で前記試薬保管部にある試薬容器を前記試薬格納部に搬送する搬送部と を有し、前記試薬保管部および搬送部を自動分析装置に対して着脱可能に設け たことを特徴とする試薬補充装置。  A transport unit that transports the reagent container in the reagent storage unit of the automatic analyzer to the outside of the reagent storage unit, while transporting the reagent container in the reagent storage unit to the reagent storage unit, and the reagent storage unit And a reagent replenishing device, wherein the transport unit is detachably attached to the automatic analyzer.
[3] 前記搬送部は試薬容器をほぼ面一な面上で搬送することを特徴とする請求項 1ま たは 2に記載の試薬補充装置。 [3] The reagent replenishing device according to [1] or [2], wherein the transport unit transports the reagent container on a substantially flush surface.
PCT/JP2007/059613 2006-05-09 2007-05-09 Reagent supplement device WO2007129740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-130462 2006-05-09
JP2006130462A JP2007303879A (en) 2006-05-09 2006-05-09 Reagent replenishing apparatus

Publications (1)

Publication Number Publication Date
WO2007129740A1 true WO2007129740A1 (en) 2007-11-15

Family

ID=38667848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059613 WO2007129740A1 (en) 2006-05-09 2007-05-09 Reagent supplement device

Country Status (2)

Country Link
JP (1) JP2007303879A (en)
WO (1) WO2007129740A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318499B2 (en) * 2009-06-17 2012-11-27 Abbott Laboratories System for managing inventories of reagents
JP5340975B2 (en) * 2010-01-29 2013-11-13 株式会社日立ハイテクノロジーズ Automatic analyzer
JP6559951B2 (en) * 2014-12-24 2019-08-14 キヤノンメディカルシステムズ株式会社 Automatic analyzer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285175A (en) * 1990-03-30 1991-12-16 Shimadzu Corp Automatic apparatus for analysis
JP2867619B2 (en) * 1990-05-31 1999-03-08 株式会社島津製作所 Reagent dispensing device
JP2865814B2 (en) * 1990-06-11 1999-03-08 株式会社東芝 Automatic chemical analyzer
JP2002005942A (en) * 2000-06-23 2002-01-09 Teruaki Ito Specimen processing unit and specimen processing system
JP2003262642A (en) * 2002-03-07 2003-09-19 Hitachi High-Technologies Corp Autoanalyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285175A (en) * 1990-03-30 1991-12-16 Shimadzu Corp Automatic apparatus for analysis
JP2867619B2 (en) * 1990-05-31 1999-03-08 株式会社島津製作所 Reagent dispensing device
JP2865814B2 (en) * 1990-06-11 1999-03-08 株式会社東芝 Automatic chemical analyzer
JP2002005942A (en) * 2000-06-23 2002-01-09 Teruaki Ito Specimen processing unit and specimen processing system
JP2003262642A (en) * 2002-03-07 2003-09-19 Hitachi High-Technologies Corp Autoanalyzer

Also Published As

Publication number Publication date
JP2007303879A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP7035130B2 (en) Automatic analyzer
JP3553540B2 (en) Automatic chemical analysis method and apparatus
US5434083A (en) Method and apparatus for automatically analyzing a plurality of test items
US5580524A (en) Assay or reaction apparatus with agitating device
JP5178830B2 (en) Automatic analyzer
JP4122768B2 (en) Automatic analyzer and rack transport method
US7341691B2 (en) Automatic analyzing apparatus
JP2007303882A (en) Autoanalyzer
US20050175503A1 (en) Automatic analyzer
WO2007139212A1 (en) Automatic analyzer
JP2007303937A (en) Autoanalyzer
EP0301743B1 (en) Analyzer with wash station separate from incubator
JP4068772B2 (en) Automatic analyzer
WO2007129740A1 (en) Reagent supplement device
JP2007303884A (en) Autoanalyzer
JP2008224244A (en) Washer and autoanalyzer
JP2010204129A (en) Automatic analyzer and rack conveying method
JP4871152B2 (en) Automatic analyzer
JP2007303881A (en) Reagent container carrier
JP5258090B2 (en) Automatic analyzer
JP2007309742A (en) Autoanalyzer
CN220723523U (en) Reagent library and automatic analyzer
JPH04350562A (en) Automatic analyser
EP3508859A1 (en) Sample measurement device and sample measurement method
JPS61262639A (en) Automatic analyser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743048

Country of ref document: EP

Kind code of ref document: A1