明 細 書 Specification
電解水生成装置およびそれに用いられる隔膜付き電極セット Electrolyzed water generating device and electrode set with diaphragm used therefor
技術分野 Technical field
[0001] 本発明は、イオン透過性隔膜の両側に陽極と陰極とを配置した電解槽に電解質を 含む水溶液を供給し電気分解して電解水を生成するバッチ式の電解水生成装置お よびそれに用レ、られる隔膜付き電極セットに関する。 [0001] The present invention relates to a batch-type electrolyzed water generating apparatus for supplying an aqueous solution containing an electrolyte to an electrolytic cell in which an anode and a cathode are arranged on both sides of an ion-permeable diaphragm and generating electrolyzed water by electrolysis. The present invention relates to a diaphragm electrode set.
背景技術 Background art
[0002] 電解水生成装置は、水に少量の塩素系電解物質を溶かした水溶液 (被電解水)を 電気分解することにより、酸性の電解水とアルカリ性の電解水とを生成する装置であ る。電解水生成装置を用いて電解水を生成するには、まず、電解槽内を隔膜で仕切 ることにより陽極槽と陰極槽とに分け、陽極槽内に陽極板を配置し、陰極槽に陰極板 を配置する。そして、陽極槽及び陰極槽内に少量の塩素系電解物質を溶かした水溶 液水を供給した後、陽極と陰極との間に直流を流す。すると、被電解水が電気分解さ れて、陽極槽から有効塩素を含む酸性の電解水を、陰極槽から水酸化ナトリウムを 含むアルカリ性の電解水を得ることができる(例えば、特許文献 1参照)。このとき、電 解条件にもよるが、 pH (水素イオン濃度)が 2. 0〜3. 5の酸性電解水を、水素イオン 濃度が 10. 5〜: 12. 0のアルカリ性電解水を得ることができる。なお、有効塩素とは、 殺菌効果のある塩素系物質をいい、酸性電解水中には、 HCIO (次亜塩素酸)、 Cl〇 (次亜塩素酸イオン)などの有効塩素が含まれてレ、る。 An electrolyzed water generating apparatus is an apparatus that generates acidic electrolyzed water and alkaline electrolyzed water by electrolyzing an aqueous solution (electrolyzed water) in which a small amount of a chlorine-based electrolytic substance is dissolved in water. . In order to generate electrolyzed water using the electrolyzed water generating device, first, the electrolytic cell is divided into a positive electrode cell and a negative electrode cell by partitioning the cell with a diaphragm, an anode plate is disposed in the positive electrode cell, and a negative electrode is disposed in the negative electrode cell. Place the board. Then, after supplying an aqueous solution of a small amount of chlorinated electrolyte in the anode and cathode tanks, a direct current is passed between the anode and cathode. Then, the electrolyzed water is electrolyzed, so that acidic electrolyzed water containing effective chlorine can be obtained from the anode tank, and alkaline electrolyzed water containing sodium hydroxide can be obtained from the cathode tank (see, for example, Patent Document 1). . At this time, depending on the electrolysis conditions, obtain acidic electrolyzed water having a pH (hydrogen ion concentration) of 2.0 to 3.5, and alkaline electrolyzed water having a hydrogen ion concentration of 10.5 to 12.0. Can do. Effective chlorine refers to chlorine-based substances that have a bactericidal effect, and acidic electrolyzed water contains effective chlorine such as HCIO (hypochlorous acid) and ClO (hypochlorite ion). The
[0003] ここで、被電解水として水に 0. 2%以下の NaClを溶力 た水溶液を用レ、、生成し た酸性電解水の pHが 2. 2〜2. 7で、有効塩素濃度 20〜60mgZkgを含む場合に は、生成した強酸性電解水は厚生労働省から食品添加物として認可される。 [0003] Here, as an electrolyzed water, an aqueous solution containing 0.2% or less of NaCl in water is used, and the generated acidic electrolyzed water has a pH of 2.2 to 2.7 and an effective chlorine concentration. When it contains 20-60mgZkg, the strong acid electrolyzed water produced is approved by the Ministry of Health, Labor and Welfare as a food additive.
[0004] ところで、従来の電解水生成装置の中には、小型で可搬型に構成され、どこでも手 軽に電解水を生成することができるバッチ式電解水生成装置も知られている。例えば 、特開 2003— 159591号公報(特許文献 1)には、電解槽内にイオン透過性の隔膜 を固定する隔膜固定板を配置し、この隔膜固定板で電解槽を 2つの槽に仕切った各 槽内にそれぞれ電極(陽極板、陰極板)を配置した電解水生成装置が記載されてい
る。 [0004] By the way, among conventional electrolyzed water generators, there are known batch-type electrolyzed water generators that are compact and portable, and can easily generate electrolyzed water anywhere. For example, in Japanese Patent Application Laid-Open No. 2003-159591 (Patent Document 1), a diaphragm fixing plate for fixing an ion-permeable diaphragm is arranged in an electrolytic cell, and the electrolytic cell is divided into two cells by this diaphragm fixing plate. An electrolyzed water generating device is described in which electrodes (anode plate and cathode plate) are arranged in each tank. The
[0005] 電解槽を仕切る隔膜固定板は、例えば、ポリフエ二レンサルファイド素材を用いて 射出成形法により製造されている。この理由は、ポリフエ二レンサルファイドが耐熱性 、耐薬品に優れる材料であり、かつ強度、剛性が高いため、射出成形法で寸法安定 性に優れる隔膜固定板を製造できるからである。また、ポリフエ二レンサルファイドに ガラス繊維を添加した素材 (ガラス繊維強化ポリフエ二レンサルファイド)を用いて、射 出成形法により、更に高強度、高剛性、寸法安定性に優れた (変形しにくい)隔膜固 定板も製造されている。 [0005] The diaphragm fixing plate for partitioning the electrolytic cell is manufactured by, for example, an injection molding method using a polyphenylene sulfide material. The reason is that polyphenylene sulfide is a material excellent in heat resistance and chemical resistance, and has high strength and rigidity, so that a diaphragm fixing plate excellent in dimensional stability can be manufactured by an injection molding method. In addition, using a material in which glass fiber is added to polyphenylene sulfide (glass fiber reinforced polysulfide sulfide), it is superior in strength, rigidity, and dimensional stability by the injection molding method. A diaphragm fixing plate is also manufactured.
[0006] また、従来の電解水生成装置では、電極板の極性をそのまま固定して電気分解を 継続すると陰極側の電極板に炭酸カルシウム、炭酸マグネシウムなどの塩基性化合 物の析出物からなるスケールが付着し、次第に電解効率が低減する。このため、電 解効率が低減した場合には電極板の極性を切り替えてから電気分解を行う洗浄モー ドにより電極板に付着したスケールを溶解させて電極を洗浄し、低下した電気分解効 率を回復している(例えば、特許文献 2)。 [0006] Further, in the conventional electrolyzed water generator, when the electrolysis is continued while the polarity of the electrode plate is fixed as it is, the scale is composed of precipitates of basic compounds such as calcium carbonate and magnesium carbonate on the electrode plate on the cathode side. As a result, the electrolysis efficiency gradually decreases. For this reason, when the electrolysis efficiency is reduced, the electrode is washed by dissolving the scale attached to the electrode plate in the washing mode in which the polarity of the electrode plate is switched and then performing electrolysis, and the reduced electrolysis efficiency is obtained. It has recovered (for example, Patent Document 2).
特許文献 1 :特開 2003 159591号公報 Patent Document 1: JP 2003 159591 A
特許文献 2 :特開平 11 314089号公報 Patent Document 2: JP-A-11 314089
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0007] し力 ながら、ガラス繊維強化ポリフエ二レンサルファイド素材を用いて射出成形法 により製造された隔膜固定板の使用や洗浄モードの使用には以下の問題がある。 [0007] However, the use of a diaphragm fixing plate manufactured by an injection molding method using a glass fiber reinforced polyethylene sulfide material and the use of a cleaning mode have the following problems.
[0008] 射出成形法の問題は、射出成形の難しさと成形費用がかさむ点である。ガラス繊維 強化ポリフエ二レンサルファイド素材を用いて製造された隔膜固定板は、優れた特性 (高強度、高剛性、寸法安定性)を有するが、その特性を実現するためには、射出成 形時に、ガラス繊維を隔膜固定板中に均質に分散させること、緻密な射出成形体を 作製すること力 S条件となる。この条件を満足するためには、高度な射出成形技術が必 要となる。そのため、射出成形法で隔膜固定板を製造する製造メーカは限られてしま う。また、高強度、高剛性のガラス繊維強化ポリフエ二レンサルファイド素材を用いると 、金型や成型機の摩耗劣化が早くなる。そのため金型の寿命が短くなり成型機のメン
テナンスも頻繁に行う必要があるため、隔膜固定板の製造価格が上昇する。従って、 ガラス繊維強化ポリフエ二レンサルファイド素材を用いる場合には、製造メーカが限 定され、製造価格が上昇するため、手軽で安価に隔膜固定板の製造委託をすること ができなくなる。また、ガラス繊維強化ポリフエ二レンサルファイド素材を用いて射出 成形法で製造された隔膜固定板は長期安定性に欠ける場合がある。これは、ガラス 繊維は強酸性の電解水に侵されるため、この隔膜固定板を長期間使用するとガラス 繊維が徐々に溶解し、隔膜固定板中にクラックが入って損傷する場合があるからであ る。 [0008] A problem of the injection molding method is that the injection molding is difficult and the molding cost is high. Diaphragm fixation plates manufactured using glass fiber reinforced polyphenylene sulfide materials have excellent properties (high strength, high rigidity, dimensional stability). The glass fiber is uniformly dispersed in the diaphragm fixing plate, and a force S is required to produce a dense injection-molded body. In order to satisfy this condition, advanced injection molding technology is required. Therefore, the number of manufacturers that manufacture diaphragm fixing plates by injection molding is limited. In addition, when a high-strength, high-rigidity glass fiber reinforced polyethylene sulfide material is used, wear deterioration of the mold and molding machine is accelerated. Therefore, the life of the mold is shortened and the molding machine Tenancy needs to be performed frequently, which increases the manufacturing cost of the diaphragm fixing plate. Therefore, when using a glass fiber reinforced polyphenylene sulfide material, the number of manufacturers is limited and the manufacturing price increases, making it impossible to outsource the manufacture of diaphragm fixing plates easily and inexpensively. In addition, a diaphragm fixing plate manufactured by an injection molding method using a glass fiber reinforced polyethylene sulfide material may lack long-term stability. This is because glass fibers are corroded by strongly acidic electrolyzed water, so if this diaphragm fixing plate is used for a long period of time, the glass fibers will gradually dissolve, and the diaphragm fixing plate may be cracked and damaged. The
[0009] 一方、洗浄モードを用いて低下した電解効率を回復するときの問題は、スケールの 付着と共に得られる電解水の性能が徐々に低下することや、洗浄モードでスケール を溶解する期間は電解水を生成することができないことなどがあげられる。そのため スケールの付着を低減することによる電解水性能の低下の低減や洗浄モードの使用 回数を減らすことが望まれる。 [0009] On the other hand, the problem when recovering the reduced electrolysis efficiency using the cleaning mode is that the performance of the electrolyzed water obtained along with the adhesion of the scale gradually decreases, and the period during which the scale is dissolved in the cleaning mode is electrolyzed. For example, water cannot be generated. Therefore, it is desirable to reduce the decrease in electrolyzed water performance by reducing the adhesion of scale and to reduce the number of times the cleaning mode is used.
[0010] 本発明は、上記説明した従来技術の問題点を解決することを出発点としてなされた ものであり、その目的は、繰り返し電気分解水を製造する場合において安定した特性 の電解水を長期間にわたって得ることができる電解水生成装置およびそれに用いら れる隔膜付き電極セットを提供することである。 [0010] The present invention has been made starting from solving the above-described problems of the prior art, and its purpose is to prolong electrolyzed water having stable characteristics when repeatedly producing electrolyzed water. It is to provide an electrolyzed water generating device that can be obtained over a period of time and an electrode set with a diaphragm used therefor.
課題を解決するための手段 Means for solving the problem
[0011] 上記目的を達成するための本発明の電解水生成装置は、以下の構成を有する。す なわち、電解質を含む水溶液を電気分解して酸性電解水とアルカリ性電解水とを生 成する電解水生成装置であって、電解槽を陽極部と陰極部とに分離するイオン透過 性の隔膜と、前記隔膜を固定する隔膜保持板と、前記隔膜の両側に離れてそれぞ れ配置されている 2つの電極と、前記隔膜保持板上の両側に配置されている、前記 隔膜と前記電極との間隔を予め決められた間隔に保持するための間隔保持手段で あって、第 1表面で前記隔膜と接触し前記第 1表面と反対側の第 2表面で前記 2つの 電極に接触する間隔保持手段と、前記隔膜の両側に離れてそれぞれ配置されてい る 2つの電極を前記間隔保持手段にそれぞれ弾性により押しつけて固定するクリップ と、を有することを特徴とする。
[0012] ここで例えば、前記隔膜保持板は、前記隔膜の周囲部分を保持する隔膜保持枠と[0011] An electrolyzed water generating device of the present invention for achieving the above object has the following configuration. In other words, an electrolyzed water generating device that electrolyzes an aqueous solution containing an electrolyte to produce acidic electrolyzed water and alkaline electrolyzed water, and an ion-permeable diaphragm that separates the electrolytic cell into an anode part and a cathode part A diaphragm holding plate for fixing the diaphragm, two electrodes disposed on both sides of the diaphragm, and the diaphragm and the electrodes disposed on both sides of the diaphragm holding plate. A distance maintaining means for maintaining the distance between the first surface and the diaphragm on the first surface, and the second surface on the opposite side of the first surface. And a clip for elastically pressing and fixing the two electrodes respectively disposed on both sides of the diaphragm against the gap holding means. [0012] Here, for example, the diaphragm holding plate includes a diaphragm holding frame that holds a peripheral portion of the diaphragm.
、前記間隔保持手段が配置されている開口部とを有することが好ましい。 It is preferable to have an opening in which the interval holding means is disposed.
[0013] ここで例えば、前記間隔保持手段は、前記開口部に格子目状に配置されているリ ブであることが好ましい。 [0013] Here, for example, it is preferable that the interval holding means is a rib arranged in a lattice pattern in the opening.
[0014] ここで例えば、前記リブの格子目状の交差部には予め決められた高さを有するボス が配置され、前記隔膜と前記電極との間隔は、前記リブから前記ボスまでの高さによ つて決められることが好ましレ、。 [0014] Here, for example, a boss having a predetermined height is arranged at the lattice-shaped intersection of the rib, and the distance between the diaphragm and the electrode is the height from the rib to the boss. It is preferable to be decided by
[0015] ここで例えば、前記リブの前記電極に接触する部分の面積の割合が前記電極の面 積の 15%以下となるように設定されていることが好ましい。 [0015] Here, for example, it is preferable that the ratio of the area of the rib in contact with the electrode is set to be 15% or less of the area of the electrode.
[0016] ここで例えば、前記隔膜保持板と前記間隔保持手段とは耐蝕性のポリプロピレン素 材を用いる成形加工により一体に作製されることが好ましい。 Here, for example, it is preferable that the diaphragm holding plate and the gap holding means are integrally manufactured by molding using a corrosion-resistant polypropylene material.
[0017] ここで例えば、前記隔膜保持板は前記クリップを固定するためのクリップ固定溝を 有し、前記クリップは、クリップ基部とテーパ形状のクリップ先端部とを有し、前記クリツ プは前記クリップ基部を前記クリップ固定溝にはめ込むことによって前記間隔保持手 段に固定されることが好ましい。 Here, for example, the diaphragm holding plate has a clip fixing groove for fixing the clip, the clip has a clip base portion and a tapered clip tip portion, and the clip is the clip. It is preferable that the base is fixed to the gap holding means by fitting into the clip fixing groove.
[0018] ここで例えば、前記隔膜と、前記隔膜保持板と、前記 2つの電極と、前記クリップと がー体にされて、前記電解槽を陽極部と陰極部に分離する隔膜付き電極セットが形 成されることが好ましい。 [0018] Here, for example, there is an electrode set with a diaphragm that separates the electrolytic cell into an anode part and a cathode part by forming the diaphragm, the diaphragm holding plate, the two electrodes, and the clip. Preferably it is formed.
[0019] ここで例えば、前記隔膜付き電極セットはテーパ形状を有し、前記電解槽は、前記 テーパー形状の隔膜付き電極セットを固定するテーパ形状の溝を有する第 1固定部 と、前記クリップ先端部を固定するテーパ形状の溝を有する第 2固定部とを有すること が好ましい。 [0019] Here, for example, the electrode set with a diaphragm has a tapered shape, and the electrolytic cell has a first fixing portion having a tapered groove for fixing the electrode set with the tapered diaphragm, and the tip of the clip It is preferable to have a second fixing part having a tapered groove for fixing the part.
[0020] ここで例えば、前記隔膜付き電極セットの前記第 1固定部と接触する部分には、前 記陽極部と陰極部の電解水が互いに混合しなレ、ように密閉する耐蝕性のパッキンが 配置されてレ、ることが好ましレ、。 [0020] Here, for example, the portion of the electrode set with a diaphragm that comes into contact with the first fixing portion is a corrosion-resistant packing that is sealed so that the electrolytic water of the anode portion and the cathode portion is not mixed with each other. Les are arranged, les, preferably.
[0021] ここで例えば、前記クリップが複数使用されていることが好ましい。 [0021] Here, for example, a plurality of the clips are preferably used.
[0022] ここで例えば、前記パッキンは三元フッ素ゴムを含むフッ素化合物によって形成さ れていることが好ましい。
[0023] また、本発明の電解水生成装置に用いる隔膜付き電極セットは、電解質を含む水 溶液を電気分解して酸性電解水とアルカリ性電解水とを生成する電解水生成装置に 用いる隔膜付き電極セットであって、電解槽を陽極部と陰極部とに分離するイオン透 過性の隔膜と、前記隔膜を固定する隔膜保持板と、前記隔膜の両側に離れてそれ ぞれ配置されている 2つの電極と、前記隔膜保持板上の両側に配置されている、前 記隔膜と前記電極との間隔を予め決められた間隔に保持するための間隔保持手段 であって、第 1表面で前記隔膜と接触し前記第 1表面と反対側の第 2表面で前記 2つ の電極に接触する間隔保持手段と、前記隔膜の両側に離れてそれぞれ配置されて レ、る 2つの電極を前記間隔保持手段にそれぞれ弾性により押しつけて固定するクリツ プと、を有し、前記隔膜と、前記隔膜保持板と、前記 2つの電極と、前記クリップとが 一体となって、電解槽を陽極部と陰極部に分離する隔膜付き電極セットが形成されて レ、ることを特徴とする。 Here, for example, the packing is preferably formed of a fluorine compound containing ternary fluororubber. In addition, the electrode set with a diaphragm used in the electrolyzed water generating apparatus of the present invention is an electrode with a diaphragm used in an electrolyzed water generating apparatus that electrolyzes a water solution containing an electrolyte to generate acidic electrolyzed water and alkaline electrolyzed water. The ion-permeable diaphragm that separates the electrolytic cell into an anode part and a cathode part, a diaphragm holding plate that fixes the diaphragm, and two sides of the diaphragm are arranged separately from each other. A distance holding means disposed on both sides of the diaphragm holding plate for holding the gap between the electrode and the electrode at a predetermined distance, wherein the diaphragm on the first surface A distance holding means that contacts the two electrodes on a second surface opposite to the first surface, and two distance electrodes arranged on both sides of the diaphragm, respectively. Press and fix each elastically The diaphragm, the diaphragm holding plate, the two electrodes, and the clip are integrated to form an electrode set with a diaphragm that separates the electrolytic cell into an anode part and a cathode part. It is characterized by being.
発明の効果 The invention's effect
[0024] 本発明によれば、繰り返し電気分解水を製造する場合において安定した特性の電 解水を長期間にわたって得ることができる電解水生成装置およびそれに用いられる 隔膜付き電極セットを提供することができる。 [0024] According to the present invention, there is provided an electrolyzed water generating device capable of obtaining electrolyzed water having stable characteristics over a long period of time when producing electrolyzed water repeatedly, and an electrode set with a diaphragm used therefor. it can.
[0025] 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明ら かになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ 参照番号を付す。 [0025] Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
図面の簡単な説明 Brief Description of Drawings
[0026] 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、そ の記述と共に本発明の原理を説明するために用いられる。 [0026] The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
[図 1A]隔膜付き電極セットの全体構成を説明する斜視図である。 FIG. 1A is a perspective view illustrating the overall configuration of an electrode set with a diaphragm.
[図 1B]図 1Aの隔膜付き電極セットの正面図と断面図である。 1B is a front view and a cross-sectional view of the electrode set with a diaphragm in FIG. 1A.
[図 1C]図 1Bの断面図の中央付近の部分拡大図である。 FIG. 1C is a partially enlarged view around the center of the cross-sectional view of FIG. 1B.
[図 2A]第 2隔膜保持板に O—リングを取り付ける工程を説明する図である。 FIG. 2A is a diagram illustrating a process of attaching an O-ring to a second diaphragm holding plate.
[図 2B]第 2隔膜保持板に隔膜を取付けた後、第 2隔膜保持板に第 1隔膜保持板を重 ねる工程を説明する図である。
園 2C]第 1隔膜保持板と第 2隔膜保持板とを重ね合わせた状態を説明する図である 園 2D]第 1隔膜保持板と第 2隔膜保持板とを重ねた状態で、電極槽との接触部に電 解水漏止用のパッキングを設置した状態を説明する図である。 FIG. 2B is a diagram illustrating a process of attaching the first diaphragm holding plate to the second diaphragm holding plate after attaching the diaphragm to the second diaphragm holding plate. Fig. 2C] is a diagram for explaining a state in which the first diaphragm holding plate and the second diaphragm holding plate are overlapped. Garden 2D] In a state in which the first diaphragm holding plate and the second diaphragm holding plate are overlapped, It is a figure explaining the state which installed the packing for electrolytic water leakage in the contact part.
[図 2E]2つの隔膜保持板の両側に陰極板と陽極板を設置後、陰極板と陽極板をタリ ップで固定する工程を説明する図である。 FIG. 2E is a diagram for explaining a process of fixing the cathode plate and the anode plate with a tap after installing the cathode plate and the anode plate on both sides of the two diaphragm holding plates.
園 3]隔膜付き電極セットを設置する前の電解槽の構成を説明する図である。 3] It is a diagram illustrating the configuration of the electrolytic cell before installing the electrode set with a diaphragm.
園 4]隔膜付き電極セットを設置した電解槽の構成を説明する図である。 4] It is a diagram illustrating the configuration of an electrolytic cell in which an electrode set with a diaphragm is installed.
[図 5]電解水生成装置の全体構成を説明する図である。 FIG. 5 is a diagram illustrating the overall configuration of the electrolyzed water generating device.
園 6]電解水生成装置内部の電解槽とピッチャーの位置関係を説明する図である。 園 7]電解槽と駆動部の接続関係および電解槽で生成した電解水を駆動部が取り出 す動作を説明する図であり、駆動部が多段中空パイプを伸ばして電解槽の開閉弁と ピッチャー開閉部を開いた状態(陽極部)と、駆動部が多段中空パイプを縮めて電解 槽の開閉弁とピッチャー開閉部を閉じた状態(陰極部)を説明する図である。 6] It is a diagram for explaining the positional relationship between the electrolytic cell and the pitcher inside the electrolyzed water generator. 7] A diagram for explaining the connection between the electrolytic cell and the drive unit and the operation in which the drive unit takes out the electrolyzed water generated in the electrolytic cell. The drive unit extends the multistage hollow pipe and opens the open / close valve and the pitcher of the electrolytic cell. It is a figure explaining the state (cathode part) which opened and closed the opening / closing part (anode part), and the state where the drive part shrunk the multistage hollow pipe and closed the opening / closing valve and the pitcher opening / closing part of the electrolytic cell.
園 8]駆動部とピッチャーとの接続関係および電解槽で生成した電解水を各ピッチャ 一に移送する動作を説明する図であり、駆動部が多段中空パイプを伸ばして電解槽 の開閉弁とピッチャー開閉部とを開いた状態(陰極部)と、駆動部が多段中空パイプ を縮めて電解槽の開閉弁とピッチャー開閉部を閉じた状態(陽極部)を説明する図で ある。 8] A diagram illustrating the connection relationship between the drive unit and the pitcher and the operation of transferring the electrolyzed water generated in the electrolytic cell to each pitcher, where the drive unit extends the multistage hollow pipe and opens and closes the electrolytic cell open / close valve and pitcher. FIG. 6 is a diagram for explaining a state in which an opening / closing part is opened (cathode part) and a state in which a driving part shrinks a multistage hollow pipe to close an opening / closing valve and a pitcher opening / closing part of an electrolytic cell (anode part).
符号の説明 Explanation of symbols
10 電解水生成装置 10 Electrolyzed water generator
11 - 1 ピッチャー(陰極水) 11-1 Pitcher (cathode water)
11 - 2 ピッチャー(陽極水) 11-2 Pitcher (anodic water)
12 本体上蓋 12 Top cover
13 目盛 13 scale
14 固定部 14 Fixed part
15 電解槽
陰極部 15 Electrolyzer Cathode part
筐体部 Case
クリップ固定部 Clip fixing part
電解水取出口 Electrolyzed water outlet
電解水取出口 Electrolyzed water outlet
電解水取出口の開閉弁 Electrolyzed water outlet opening / closing valve
電解水取出口の開閉弁 Electrolyzed water outlet opening / closing valve
多段中空パイプ (ピッチャ -開閉部の開閉パイプ) 多段中空パイプ (ピッチャ -開閉部の開閉パイプ) 駆動部 Multistage hollow pipe (Pitcher-Opening / closing pipe for opening / closing section) Multistage hollow pipe (Pitcher-Opening / closing pipe for opening / closing section) Drive section
第 1シャフト 1st shaft
第 2シャフト 2nd shaft
第 3シャフト 3rd shaft
第 4シャフト 4th shaft
隔膜付き電極セット Electrode set with diaphragm
クリップ clip
a 陽極板a Anode plate
b 陰極板 b Cathode plate
隔膜 Diaphragm
パッキン Packing
a 第 1隔膜保持板a 1st diaphragm holding plate
b 第 2隔膜保持板b Second diaphragm holding plate
a 陽極端子a Anode terminal
b 陰極端子b Cathode terminal
- 1, 109-2 格子目状リブ -1, 109-2 lattice ribs
逆止弁 Check valve
球溝 Ball groove
- 1, 112-2 ボス
113 溝 -1, 112-2 boss 113 groove
114 1 , 114- 2 電極支持台 114 1, 114-2 Electrode support base
115 〇一リング 115 ○ One ring
117 テフロン (登録商標)精密球 117 Teflon (registered trademark) precision sphere
118 逆止弁カバー 118 Check valve cover
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 本実施形態の隔膜付き電極セット及びそれを用いる電解水生成装置について説 明する。以下の説明では、電解水生成装置の一例として、 2リットルの原料水溶液 (水 に少量の NaClを溶力 た被電解水)を電解槽で電気分解し、陽極部から有効塩素 を含む強酸性電解水(陽極水)を、陰極部から強アルカリ性電解水(陰極水)を生成 するバッチ式の電解水生成装置を用いて説明する。 [0028] The electrode set with a diaphragm of the present embodiment and the electrolyzed water generating apparatus using the same will be described. In the following explanation, as an example of an electrolyzed water generator, a 2 liter raw material aqueous solution (electrolyzed water in which a small amount of NaCl is dissolved in water) is electrolyzed in an electrolytic cell, and a strong acid electrolysis containing effective chlorine from the anode part. Water (anode water) will be described using a batch-type electrolyzed water generator that generates strong alkaline electrolyzed water (cathode water) from the cathode.
[0029] しかし、本発明はこれに限定されるものではなレ、。例えば、本発明の電解槽の隔膜 付き電極セットを用いて電気分解するものであれば、連続式の電解水生成装置であ つてもよレ、。また、以下に示す構成は一例であり、本発明の技術的思想を満足するも のであれば、その構成や配置は適時変更が可能である。 [0029] However, the present invention is not limited to this. For example, if the electrolysis is performed using the electrode set with a diaphragm of the electrolytic cell of the present invention, a continuous electrolyzed water generator may be used. In addition, the configuration shown below is an example, and the configuration and arrangement thereof can be changed in a timely manner as long as the technical idea of the present invention is satisfied.
[0030] [特徴] [0030] [Features]
まず、本実施形態の隔膜付き電極セットの特徴について説明する。隔膜付き電極 セットの一例を図 1A (斜視図)、図 1B (正面図、断面図)図 1C (部分拡大図)に示す First, the characteristics of the electrode set with a diaphragm of this embodiment will be described. An example of an electrode set with a diaphragm is shown in Fig. 1A (perspective view), Fig. 1B (front view, cross-sectional view), and Fig. 1C (partially enlarged view).
[0031] 本実施形態の隔膜付き電極セットは、電解槽に設置して、電解槽を陽極部と陰極 部に分離するものであり、電解槽を陽極部と陰極部とに分離するイオン透過性の隔 膜を両側から挟んで固定する隔膜保持板に、隔膜の両側に離れてそれぞれ配置さ れている 2つの電極を弾性素材で作られたクリップでその弾性により押しつけて電極 間の距離を一定に保ちながら固定する点が特徴である。 [0031] The electrode set with a diaphragm of the present embodiment is installed in an electrolytic cell and separates the electrolytic cell into an anode part and a cathode part, and ion permeability that separates the electrolytic cell into an anode part and a cathode part. The two electrodes placed on both sides of the diaphragm are pressed against each other by a clip made of an elastic material, and the distance between the electrodes is kept constant. It is characterized by the fact that it is fixed while being maintained.
[0032] 隔膜保持板は、隔膜の周囲部分を保持する隔膜保持枠と隔膜保持枠以外の部分 である開口部とからなり、開口部には、隔膜と電極との間隔を予め決められた間隔に 保持する間隔保持部が配置されている。隔膜保持板の開口部に形成された間隔保 持部は、図 1Cに示すように格子目状リブ(109— 1, 109— 2)と格子目状リブの交差
部の上に形成されたボス(112— 1 , 112— 2)と力 なり、クリップ 101が 2つの電極( 102a, 102b)をクリップで挟んで隔膜保持板に弾性により押しつける構造となってい る。そのため、クリップで 2つの電極を挟んで隔膜保持板に押しつけると、各電極が対 応するボスと接触し、格子目状リブが対応する隔膜表面に接触する。その結果、 2つ の電極は隔膜保持板の間隔保持部と隔膜とを介して互いに固定されるため、 2つの 電極間の距離は一定に保たれる。 [0032] The diaphragm holding plate includes a diaphragm holding frame that holds a peripheral portion of the diaphragm and an opening that is a part other than the diaphragm holding frame, and the opening has a predetermined gap between the diaphragm and the electrode. An interval holding unit is provided for holding the gap. As shown in Fig. 1C, the gap holding part formed in the opening of the diaphragm holding plate is the intersection of the grid-like ribs (109-1, 109-2) and the grid-like ribs. In this structure, the clip 101 is elastically pressed against the diaphragm holding plate with the two electrodes (102a, 102b) sandwiched between the clips. Therefore, when the two electrodes are sandwiched and pressed against the diaphragm holding plate, each electrode comes into contact with the corresponding boss, and the lattice-shaped rib comes into contact with the corresponding diaphragm surface. As a result, since the two electrodes are fixed to each other via the gap holding portion of the diaphragm holding plate and the diaphragm, the distance between the two electrodes is kept constant.
[0033] 本実施形態の隔膜付き電極セットを用いる電解水生成装置は、上記の構成にした ことで、 2つの電極間の距離が電気分解の間に安定して一定に保持され、電極間の 距離が不安定な場合に発生するスケールの付着を抑制することができるため、電解 水を繰り返し製造しても常に安定した性能の電解水を得ることができ、電解効率を回 復するための洗浄モードを行うまでの期間(時間間隔)を長くすることができる。例え ば、 2リットルの電解水の製造を洗浄モード無しに 100回繰り返し行っても、得られる 酸性電解水の有効塩素量は、 40〜60ppmと常に安定しており、電解水の性能劣化 は認められなかった。 [0033] The electrolyzed water generating apparatus using the diaphragm-equipped electrode set according to the present embodiment has the above-described configuration, so that the distance between the two electrodes is stably maintained constant during the electrolysis, Since the adhesion of scale that occurs when the distance is unstable can be suppressed, it is possible to always obtain electrolyzed water with stable performance even when electrolyzed water is repeatedly produced, and cleaning to recover electrolysis efficiency. The period (time interval) until the mode is performed can be increased. For example, even if the production of 2 liters of electrolyzed water is repeated 100 times without washing mode, the effective amount of chlorine in the obtained acidic electrolyzed water is always stable at 40 to 60 ppm, and performance degradation of the electrolyzed water is recognized. I couldn't.
[0034] また、隔膜保持板は、ガラス繊維強化ポリフエ二レンサルファイド素材に比べて、耐 薬品性および成形性に優れるポリプロピレン素材を用レ、て射出成形法により一体成 形されたものであるので、成形加工が容易となり、金型や成型機の損傷を低減するこ とができる。また、製造メーカの委託先を増やすこともできる。なお、弾性を有するポリ プロピレン素材は、ガラス繊維強化ポリフエ二レンサルファイド素材に比べてやや強 度、剛性が低い(柔らかい)が、本実施形態の隔膜付き電極セットでは、クリップを用 レ、て 2つの電極を間隔保持部に弾性により押しつけて一定間隔に固定する構造およ び隔膜保持板を伸縮自在のパッキンを介して隔膜保持板に押しつけて固定する構 造とすることで隔膜保持板の変形を低減してレヽる。 [0034] Further, the diaphragm holding plate is integrally formed by an injection molding method using a polypropylene material that is superior in chemical resistance and moldability as compared with a glass fiber reinforced polyethylene sulfide material. Therefore, the molding process becomes easy, and damage to the mold and the molding machine can be reduced. In addition, the number of manufacturers can be increased. The elastic polypropylene material is slightly lower in strength and rigidity (soft) than the glass fiber reinforced polyethylene sulfide material, but the diaphragm electrode set of this embodiment uses clips. Deformation of the diaphragm holding plate by pressing one electrode elastically against the gap holding section to fix it at a fixed interval and a structure holding the diaphragm holding plate against the diaphragm holding plate via an elastic packing Reduce the amount.
[0035] [隔膜付き電極セット:図 1A、図 1B、図 1C] [0035] [Electrode set with diaphragm: FIG. 1A, FIG. 1B, FIG. 1C]
以下、本実施形態の隔膜付き電極セットについて説明し、次に、本実施形態の隔 膜付き電極セットを用いる電解水生成装置について説明する。 Hereinafter, the electrode set with a diaphragm of the present embodiment will be described, and then the electrolyzed water generating apparatus using the electrode set with the diaphragm of the present embodiment will be described.
[0036] 図 1A、図 IBに、本実施形態の隔膜付き電極セット 100の全体構成の一例を示す 。図 1Aは、隔膜付き電極セット 100の全体構成を説明する斜視図であり、図 1Bは、
図 1Aの隔膜付き電極セットの正面図と断面図である。なお、図 1Bの断面図では、図 を見やすくするため隔膜は省略してある(図 1C参照)。隔膜付き電極セット 100は、 後述の電解槽 15の固定部 14に設置して、電解槽 15を陽極部 16と陰極部 17に分離 するものであり、クリップ 101、陽極端子 107aを有する陽極板 102a、陰極端子 107b を有する陰極板 102b、隔膜 103、パッキン 104、第 1隔膜保持板 105a,第 2隔膜保 持板 105bなどから構成されている。 FIG. 1A and FIG. IB show an example of the entire configuration of the electrode set 100 with a diaphragm of the present embodiment. FIG. 1A is a perspective view illustrating the overall configuration of the electrode set 100 with a diaphragm, and FIG. 1B is a front view and a sectional view of the electrode set with a diaphragm of FIG. 1A. FIG. In the cross-sectional view of Fig. 1B, the diaphragm is omitted to make it easier to see (see Fig. 1C). The electrode set 100 with a diaphragm is installed in a fixing part 14 of an electrolytic cell 15 described later, and separates the electrolytic cell 15 into an anode part 16 and a cathode part 17, and an anode plate 102a having a clip 101 and an anode terminal 107a. The cathode plate 102b having the cathode terminal 107b, the diaphragm 103, the packing 104, the first diaphragm holding plate 105a, the second diaphragm holding plate 105b, and the like.
[0037] 第 1隔膜保持板 105a (図 2B参照)と第 2隔膜保持板 105b (図 2A参照)は、類似の 形状を有するものであり、隔膜 103の周囲部分を保持する隔膜保持枠 120— 1、 120 —2と開口部 121— 1, 121— 2と力、らなる。第 1および第 2隔膜保持板 105a、 105b は、耐薬品性および成形性に優れるポリプロピレン素材を用いて射出成形法により 一体成形されたものであり、その間に隔膜 103を挟んで組み合わることにより隔膜 10 3が固定される。開口部 121— 1 , 121— 2には、隔膜 103間と各電極との間隔を予 め決められた間隔に保持する間隔保持部 122— 1、 122— 2が配置されてレ、る。 [0037] The first diaphragm holding plate 105a (see FIG. 2B) and the second diaphragm holding plate 105b (see FIG. 2A) have similar shapes, and the diaphragm holding frame 120—which holds the peripheral portion of the diaphragm 103— 1, 120-2 and the opening 121-1, 1, 121-2 and force. The first and second diaphragm holding plates 105a and 105b are integrally molded by an injection molding method using a polypropylene material having excellent chemical resistance and moldability, and the diaphragm 103 is sandwiched therebetween to combine the diaphragms. 10 3 is fixed. In the openings 121-1 and 121-2, gap holding parts 122-1 and 122-2 are arranged to hold the gap between the diaphragm 103 and each electrode at a predetermined gap.
[0038] 図 1Cは、図 1Bの断面図の隔膜付き電極セット 100の中央付近の部分拡大図であ る。間隔保持部 122— 1、 122— 2は、図 1Cに示すように格子目状リブ 109— 1、 10 9— 2と格子目状リブの交差部(図 2B参照)の上に形成されたボス 112— 1 , 112 - 2 と力 なる。クリップ 101で挟んで 2つの電極を挟むと 2つの電極 102a、 102bがクリツ プ 101のバネ機構により隔膜保持板 105a、 105bに押しつけられ、電極 102a、 102 bは対応するボス 112— 1 , 112— 2と接触し、格子目状リブ 109— 1、 109— 2が隔 膜 103と接触する。その結果、 2つの電極 102a、 102bは、間隔保持部 122— 1、 12 2— 2と隔膜 103とを介してクリップ 101により押しつけられて固定されるため、 2つの 電極間の距離は一定に保たれる。 FIG. 1C is a partially enlarged view of the vicinity of the center of the electrode set 100 with a diaphragm in the cross-sectional view of FIG. 1B. As shown in Fig. 1C, the interval holding parts 122-1 and 122-2 are bosses formed on the intersections of the lattice ribs 109-1, 10 9-2 and the lattice ribs (see Fig. 2B). 112— 1, 112-2 and power. When the two electrodes are sandwiched between the clip 101, the two electrodes 102a and 102b are pressed against the diaphragm holding plates 105a and 105b by the spring mechanism of the clip 101, and the electrodes 102a and 102b correspond to the corresponding bosses 112-1 and 112— 2 and the ribs 109-1 and 109-2 come into contact with the diaphragm 103. As a result, the two electrodes 102a and 102b are pressed and fixed by the clip 101 via the gap holding portions 122-1, 122-2 and the diaphragm 103, so that the distance between the two electrodes is kept constant. Be drunk.
[0039] 図 1Cの例では、隔膜 103、陽極板 102aおよび陰極板 102bの厚さは 0. 5mmであ り、電極間の距離が 5. 5mmに一定に保たれている。隔膜 103は、隔膜付き電極セッ ト 100の中央部に配置され、隔膜 103の周辺部に配置される 0—リング 115 (図 2A 参照)によって平面状にかつ隙間から電解水が漏れないように保持されている。 In the example of FIG. 1C, the thickness of the diaphragm 103, the anode plate 102a, and the cathode plate 102b is 0.5 mm, and the distance between the electrodes is kept constant at 5.5 mm. The diaphragm 103 is arranged at the center of the electrode set 100 with the diaphragm, and is held in a flat shape by the 0-ring 115 (see FIG. 2A) arranged around the diaphragm 103 so that the electrolytic water does not leak from the gap. Has been.
[0040] 次に、上記説明した隔膜付き電極セット 100を構成する各部品について説明する。 [0040] Next, each part constituting the electrode set with diaphragm 100 described above will be described.
[0041] [隔膜保持板図 2A、図 2B]
第 1および第 2隔膜保持板 105a、 105bは、図 2Aおよび図 2Bに示す類似する形 状を有するものであり、互いに重ね合わることにより隔膜付き電極セット 100が形成さ れる。各隔膜保持板の大きさは、 2リットルの原料水溶液を電気分解する場合、例え ば、縦(電極槽の深さ方向)が約 100mm、横(電極槽の幅方向)が約 130mmである 。各隔膜保持板は、耐薬品性および成形性に優れるポリプロピレン素材を用いて射 出成形法により一体成形される。 [0041] [diaphragm holding plate 2A, 2B] The first and second diaphragm holding plates 105a and 105b have similar shapes shown in FIGS. 2A and 2B, and the electrode set 100 with a diaphragm is formed by overlapping each other. The size of each diaphragm holding plate is, for example, about 100 mm in the vertical direction (depth direction of the electrode tank) and about 130 mm in the horizontal direction (width direction of the electrode tank) when electrolyzing a 2 liter raw material aqueous solution. Each diaphragm holding plate is integrally formed by injection molding using a polypropylene material having excellent chemical resistance and moldability.
[0042] 第 2隔膜保持板 105bは、図 2Aに示すように、隔膜を保持する枠 120— 1、〇_リン グ 115,〇_リングを保持する溝 113,電極を支持する電極支持台 114一 1、隔膜を 保持する帯状の格子目状リブ 109— 1、格子目状リブ 109— 1の交差部の電極に接 触する側に配置されるボス 112— 1、陰極部上方から供給される原料水溶液を陽極 部に供給する逆止弁 110 ,テフロン (登録商標)精密球 117を保持する球溝 111より 構成される。第 1隔膜保持板 105aは、図 2Bに示すように、隔膜を保持する枠 120— 2、電極を支持する電極支持台 114 2、隔膜を保持する帯状の格子目状リブ 109 2、格子目状リブ 109— 2の交差部の電極に接触する側に配置されるボス 112— 2 、逆止弁カバー 118,テフロン (登録商標)精密球 117より構成される。 [0042] As shown in FIG. 2A, the second diaphragm holding plate 105b includes a frame 120-1, a ring for holding the diaphragm 120, a groove 113 for holding the ring, and an electrode support 114 for supporting the electrode. 1. Strip-shaped grid-shaped rib 109-1 holding the diaphragm, boss 112-1, which is arranged on the side of the grid-shaped rib 109-1 that contacts the electrode at the intersection, supplied from above the cathode section It comprises a check valve 110 for supplying the raw material aqueous solution to the anode part and a spherical groove 111 for holding a Teflon (registered trademark) precision sphere 117. As shown in FIG. 2B, the first diaphragm holding plate 105a includes a frame 120-2 for holding the diaphragm, an electrode support 1142 for supporting the electrode, a strip-like lattice-like rib 109 2 for holding the diaphragm, and a lattice-like shape. The rib 109-2 includes a boss 112-2 arranged on the side in contact with the electrode, a check valve cover 118, and a Teflon (registered trademark) precision ball 117.
[0043] 間鬲保持咅 122— 1、 122— 2は、格子目状リブ 109— 1、 109— 2とボス 112— 1、 [0043] Intermittent holding rods 122-1 and 122-2 consist of lattice-like ribs 109-1, 109-2 and boss 112-1,
112— 2により構成され、図 2A、 2Bに示すように開口部 121— 1 , 121— 2に配置さ れ、隔膜 103を平面上に保持し、かつ、 2つの電極(陽極板と陰極板) 102a、 102b 間の距離を一定に保つ。ただし、間隔保持部 122— 1、 122— 2が対応する電極(陽 極板と陰極板) 102a, 102bに接触する部分の面積の割合が大きいと電極の実際に 利用できる有効面積が減少し、各電極で発生した水素や塩素ガスが格子目状リブ上 に滞留する割合が増加して電気分解の効率が低下する。そのため、本実施形態で は、リブ部の全面積は、電極の全面積の 15%以下となるように設定して、電気分解を 高効率としている。一例を示せば、格子目状リブ 109— 1、 109— 2は、図に示すよう な格子目状の形状で開口部 121— 1, 121— 2に配置され、その幅は lmm程度、高 さは 1. 5mm程度であり、ボス 112— 1、 112— 2は、円柱状の形状を有し、直径と高 さは、例えば、約 lmmである。 112-2, as shown in Figs. 2A and 2B, arranged in openings 121-1 and 121-2, holding diaphragm 103 on a flat surface, and two electrodes (anode plate and cathode plate) Keep the distance between 102a and 102b constant. However, if the ratio of the area of the part in contact with the electrodes (anode plate and cathode plate) 102a, 102b corresponding to the spacing holding parts 122-1, 122-2 is large, the effective area of the electrode that can actually be used decreases. The rate at which hydrogen and chlorine gas generated at each electrode stays on the grid-like ribs increases and the efficiency of electrolysis decreases. Therefore, in the present embodiment, the total area of the rib portion is set to be 15% or less of the total area of the electrode, so that electrolysis is highly efficient. As an example, the lattice-like ribs 109-1, 109-2 are arranged in the openings 121-1, 121-2 in the shape of a lattice as shown in the figure, and the width is about lmm and the height is high. Is about 1.5 mm, and the bosses 112-1 and 112-2 have a cylindrical shape, and the diameter and height are, for example, about 1 mm.
[0044] 逆止弁 110、球溝 111、テフロン (登録商標)精密球 117および逆止弁カバー 118
は陰極部から供給される原料供給水を陽極部に一定方向に供給するものであり、供 給された原料供給水の逆流を防止するものである。すなわち、逆止弁 110の球溝 11 1はテフロン (登録商標)精密球 117を保持し、その上に逆止弁カバー 118を配置す ることによってテフロン (登録商標)精密球 117の動きを制御している。電極支持台 11 4- 1 , 114- 2はそれぞれ陰極板 102bと陽極板 102aを保持する台である。 [0044] Check valve 110, ball groove 111, Teflon precision ball 117, and check valve cover 118 Is to supply the raw material supply water supplied from the cathode part to the anode part in a certain direction, and to prevent back flow of the supplied raw material supply water. In other words, the ball groove 11 1 of the check valve 110 holds the Teflon (registered trademark) precision ball 117, and the check valve cover 118 is disposed thereon to control the movement of the Teflon (registered trademark) precision ball 117. is doing. The electrode support tables 114-1 and 114-2 are tables for holding the cathode plate 102b and the anode plate 102a, respectively.
[0045] [0—リング] [0045] [0—Ring]
0—リング 115は、図 2Aに示す形状を有し、耐蝕性の三元フッ素ゴムによって作製 されたものである。〇_リング 115は 0—リング用の溝 113に設置され、第 1および第 2隔膜保持板 105a, 105bを組み合わせて隔膜付き電極セット 100が形成されたとき に隔膜 103を密閉保持する。 The 0-ring 115 has the shape shown in FIG. 2A and is made of corrosion-resistant ternary fluororubber. 〇_Ring 115 is installed in 0-ring groove 113, and the diaphragm 103 is hermetically held when the diaphragm electrode set 100 is formed by combining the first and second diaphragm holding plates 105a and 105b.
[0046] [隔膜] [0046] [diaphragm]
隔膜 103は、不織布よりなるイオン透過性の薄膜である。隔膜 103の大きさは、 2リ ットルの原料水溶液を電気分解する場合、例えば、縦が 100mm、横が 130mm、厚 さが 0. 5mmである。 The diaphragm 103 is an ion-permeable thin film made of a nonwoven fabric. The size of the diaphragm 103 is, for example, 100 mm in length, 130 mm in width, and 0.5 mm in thickness when electrolyzing a 2-liter raw material aqueous solution.
[0047] [陽極板と陰極板] [0047] [Anode plate and cathode plate]
陽極板 102aと陰極板 102bは、図 1Aに示すような陽極端子 107aと陰極端子 107 bを有するチタン製の薄板である。陽極板 102aと陰極板 102bの電極部分の大きさ は、それぞれ 2リットルの原料水溶液を電気分解する場合、例えば、縦 (電解水の深 さ方向)が約 90mm、横が約 100mm (電解水の幅方向)、厚さが 0. 5mmである。な お本実施形態の例は、電極間の間隔が 5. 5mm、電極と隔膜との間隔がそれぞれ 2 . 75mmとなるように配置される。 The anode plate 102a and the cathode plate 102b are thin titanium plates having an anode terminal 107a and a cathode terminal 107b as shown in FIG. 1A. The electrode portions of the anode plate 102a and the cathode plate 102b are about 90 mm in length (electrolyzed water depth direction) and about 100 mm in width (electrolyzed water depth), for example, when electrolyzing 2 liters of raw material aqueous solution. The width is 0.5mm. In the example of this embodiment, the distance between the electrodes is 5.5 mm, and the distance between the electrodes and the diaphragm is 2.75 mm.
[0048] [クリップ] [0048] [Clip]
クリップ 101は図 2Eに示すようなクリップ基部 101aとクリップ先端部 101bを有し、ク リップ基部 101aの幅は電極間の距離と同じあるいはやや短めであることが好ましい。 クリップ 101は弾性材料であるポリプロピレン素材を用いて射出成形法により形成さ れる。クリップ 101は弾性を有するため 2つの電極間の距離を一定に保持するもので ある。すなわち、クリップ 101は隔膜の両側に離れてそれぞれ配置されている 2つの 電極を間隔保持部にそれぞれクリップの弾性により押しつけて固定することができる
。また、クリップ 101は後述する図 3のクリップ固定部 19にはめ込められることにより、 2つの電極を間隔保持部により強く押しつけて固定することができる。なお、図 2Eに 示すクリップ 101の数およびその形状は一例であり、電解槽 15の大きさによりその数 とその形状を適時変化することができる。 The clip 101 has a clip base 101a and a clip tip 101b as shown in FIG. 2E, and the width of the clip base 101a is preferably the same as or slightly shorter than the distance between the electrodes. The clip 101 is formed by an injection molding method using a polypropylene material which is an elastic material. Since the clip 101 has elasticity, the distance between the two electrodes is kept constant. In other words, the clip 101 can be fixed by pressing the two electrodes, which are respectively arranged on both sides of the diaphragm, against the distance holding part by the elasticity of the clip. . Further, the clip 101 is fitted into the clip fixing portion 19 shown in FIG. 3 to be described later, so that the two electrodes can be firmly pressed and fixed by the spacing holding portion. The number and shape of the clips 101 shown in FIG. 2E are merely examples, and the number and shape can be changed as appropriate depending on the size of the electrolytic cell 15.
[0049] [隔膜付き電極セットの製造工程:図 2A〜2E] [0049] [Manufacturing process of electrode set with diaphragm: FIGS. 2A to 2E]
次に、上記説明した各部品を用いて隔膜付き電極セット 100を製造する工程につ いて図 2A〜2Eを用いて説明する。 Next, the process of manufacturing the electrode set with diaphragm 100 using each of the above-described components will be described with reference to FIGS.
[0050] まず、図 2Aに示すように、第 2隔膜保持板 105bの 0—リング用の溝 113に〇—リン グ 115をはめ込む。次に、図 2Bに示すように、第 2隔膜保持板 105bに隔膜 103を図 に示すように取付ける。続いて、テフロン (登録商標)精密球 117を球溝 111にのせ てから第 2隔膜保持板 105bに第 1隔膜保持板 105aを図の矢印方向に移動して重 ねて図 2Cに示すように隔膜付き電極セット 100を組み立てる。次に、図 2Dに示すよ うに第 1隔膜保持板 105aと第 2隔膜保持板 105bとを組み合わせた状態で電解槽と 接触する部分に電解水漏止用のパッキン 104を設置する。次に、図 2Eに示すように 第 1隔膜保持板 105aと第 2隔膜保持板 105bの両側に陰極板 102bと陽極板 102a を電極支持台 114— 1、 114— 2上に配置する。その後、クリップ 101で 2つの電極を 挟んで隔膜保持板に弾性により押しつけて固定する。すなわち、クリップ基部 101a をクリップ固定溝 120a、 120bにはめ込み、陰極板 102bと陽極板 102aにクリップ先 端部 101bを弾性により押しつけて固定する。その結果、図 1Aに示す隔膜付き電極 セット 100を製造することができる。 First, as shown in FIG. 2A, the O-ring 115 is fitted into the 0-ring groove 113 of the second diaphragm holding plate 105b. Next, as shown in FIG. 2B, the diaphragm 103 is attached to the second diaphragm holding plate 105b as shown in the figure. Next, after placing the Teflon (registered trademark) precision sphere 117 in the spherical groove 111, the first diaphragm holding plate 105a is moved and overlapped with the second diaphragm holding plate 105b as shown in FIG. 2C. Assemble electrode set 100 with diaphragm. Next, as shown in FIG. 2D, an electrolytic water leakage packing 104 is installed in a portion in contact with the electrolytic cell in a state where the first diaphragm holding plate 105a and the second diaphragm holding plate 105b are combined. Next, as shown in FIG. 2E, the cathode plate 102b and the anode plate 102a are disposed on the electrode support bases 114-1, 114-2 on both sides of the first diaphragm holding plate 105a and the second diaphragm holding plate 105b. After that, the clip 101 is sandwiched between the two electrodes and is elastically pressed against the diaphragm holding plate. That is, the clip base 101a is fitted into the clip fixing grooves 120a and 120b, and the clip tip end 101b is elastically pressed and fixed to the cathode plate 102b and the anode plate 102a. As a result, the electrode set with diaphragm 100 shown in FIG. 1A can be manufactured.
[0051] [電解槽の構造:図 3、 4] [0051] [Electrolytic cell structure: Fig. 3 and 4]
次に、上記説明した隔膜付き電極セット 100を電解槽 15に配置する方法について 図 3,図 4を用いて説明する。 Next, a method for disposing the electrode set with diaphragm 100 described above in the electrolytic cell 15 will be described with reference to FIGS.
[0052] 図 3は隔膜付き電極セット 100を設置する前の電解槽 15の構成を説明する図であ り、図 4は、隔膜付き電極セット 100を設置した電解槽 15の構成を説明する図である 。なお、以下の説明では、電解槽 15の大きさに一例として、電解槽 15の大きさが 2リ ットノレ、陽極部 16が 1750ml、陰極部が 250mlの場合を例に説明する。ここで、電解 槽 15の大きさの一例を示せば、長さが約 140mm、高さが約 100mm、幅が約 130m
m (陽極部)、約 37mm (陽極部)である。 FIG. 3 is a diagram for explaining the configuration of the electrolytic cell 15 before installing the electrode set 100 with a diaphragm, and FIG. 4 is a diagram for explaining the configuration of the electrolytic cell 15 with the electrode set 100 with a membrane installed. Is. In the following description, as an example of the size of the electrolytic cell 15, a case where the size of the electrolytic cell 15 is 2 liters, the anode part 16 is 1750 ml, and the cathode part is 250 ml will be described as an example. Here, an example of the size of the electrolytic cell 15 is about 140 mm in length, about 100 mm in height, and about 130 m in width. m (anode part), approximately 37 mm (anode part).
[0053] 図 3に示すように、電解槽 15の両端部の壁側にはテーパ形状を有する固定部 14 がそれぞれ配置され、電解槽 15の中央部の底部にはクリップ固定部 19が 2つの配 置されている。なお、クリップ固定部 19の数はクリップの数に応じて変更することがで きる。そこで、固定部 14に隔膜付き電極セット 100をはめ込むことにより電解槽 15は 陽極部 16と陰極部 15とに分割される。 As shown in FIG. 3, a fixed portion 14 having a taper shape is disposed on the wall side of both ends of the electrolytic cell 15, and two clip fixed portions 19 are provided at the bottom of the central portion of the electrolytic cell 15. It is in place. The number of clip fixing portions 19 can be changed according to the number of clips. Therefore, the electrolytic cell 15 is divided into the anode portion 16 and the cathode portion 15 by fitting the electrode set 100 with a diaphragm into the fixed portion 14.
[0054] 図 4は、電解槽 15を隔膜付き電極セット 100で陽極部 16と陰極部 17に仕切った状 態を示している。隔膜付き電極セット 100は、 2つの固定部 14の間に耐蝕性の三元 フッ素ゴム製のパッキン 104を介して固定される。このとき、パッキン 104は収縮して 隔膜付き電極セット 100を固定部 14に密着固定するため、その隙間からの電解水の 漏れを防止する。また、電解槽 15内には図 3に示すようにクリップ固定部 19が配置さ れ、 2つの電極間の距離を一定に保持するクリップ固定部 19を動かないように固定 する。この結果、隔膜付き電極セット 100は固定部 14とクリップ固定部 19によって位 置ずれしないように固定されているため、隔膜付き電極セット 100に外部から力が働 いても電極間の距離はほぼ一定に保持される。 FIG. 4 shows a state in which the electrolytic cell 15 is partitioned into an anode part 16 and a cathode part 17 by an electrode set 100 with a diaphragm. The electrode set 100 with a diaphragm is fixed between two fixing portions 14 through a corrosion-resistant ternary fluororubber packing 104. At this time, the packing 104 contracts and tightly fixes the electrode set 100 with a diaphragm to the fixing portion 14, thereby preventing leakage of electrolyzed water from the gap. Further, as shown in FIG. 3, a clip fixing portion 19 is disposed in the electrolytic cell 15, and the clip fixing portion 19 that keeps the distance between the two electrodes constant is fixed so as not to move. As a result, the diaphragm electrode set 100 is fixed by the fixing portion 14 and the clip fixing portion 19 so as not to be displaced, so that the distance between the electrodes is almost constant even if an external force is applied to the diaphragm electrode set 100. Retained.
[0055] なお、陽極部 16と陰極部 17の底部にはそれぞれ電解水取出口 20、 21が配置さ れている。電解水取出口 20、 21は電解槽 15に原料水溶液が供給され、電解槽 15 で原料水溶液を電気分解して電解水を生成する際には、電解水取出口の開閉弁 22 , 23 (図 7参照)によって閉じられている。また、電解槽 15において供給された原料水 溶液の電気分解によって電解水の生成が終了すると、生成した電解水は、電解水取 出口の開閉弁 22, 23を開くことにより陽極水用ピッチャー 11— 2と陰極水用ピッチャ -11 - 1に供給される。この生成した電極水を陽極水用ピッチャー 11 - 2と陰極水 用ピッチャー 11— 1に供給する方法にっレ、ては後述する。 [0055] Electrolyzed water outlets 20 and 21 are arranged at the bottoms of the anode portion 16 and the cathode portion 17, respectively. The electrolyzed water outlets 20 and 21 are supplied with an aqueous raw material solution into the electrolytic cell 15, and when the electrolytic aqueous solution is electrolyzed in the electrolytic cell 15 to generate electrolyzed water, the electrolyzed water outlet open / close valves 22 and 23 7). In addition, when the generation of electrolyzed water is completed by electrolysis of the raw water solution supplied in the electrolyzer 15, the generated electrolyzed water is opened by the open / close valves 22 and 23 at the electrolyzed water outlet, and the pitcher for anodic water 11— 2 and cathodic water pitcher -11-1. A method of supplying the generated electrode water to the anodic water pitcher 11-2 and the cathodic water pitcher 11-1 will be described later.
[0056] 上記説明した方法により製造された隔膜付き電極セット 100を図 3に示す固定部 14 とクリップ固定部 19にはめ込むことにより、図 4に示す電解槽 15が完成する。次に、 上記説明した隔膜付き電極セット 100を用いた電解水の製造方法について説明する [0056] The electrode set 100 with a diaphragm manufactured by the above-described method is fitted into the fixing portion 14 and the clip fixing portion 19 shown in Fig. 3 to complete the electrolytic cell 15 shown in Fig. 4. Next, a method for producing electrolyzed water using the electrode set with diaphragm 100 described above will be described.
[0057] [電解水生成装置:図 5、図 6]
図 5は、電解水生成装置 10の全体構成を説明する図であり、図 6は、電解水生成 装置内部の電解槽とピッチャーの位置関係を説明する図である。図 6に示されるよう に電解水生成装置 10の上部の本体上蓋 12の下には電解槽 15が配置され、電解槽 15の下部に陰極水用と陽極水用ピッチャー 11— 1, 11— 2が配置されている。 目盛 13は電解槽 15中の電解水量を示す。 [0057] [Electrolyzed water generator: Fig. 5 and Fig. 6] FIG. 5 is a diagram illustrating the overall configuration of the electrolyzed water generating apparatus 10, and FIG. 6 is a diagram illustrating the positional relationship between the electrolytic cell and the pitcher inside the electrolyzed water generating apparatus. As shown in FIG. 6, an electrolytic cell 15 is disposed below the upper lid 12 of the upper body of the electrolyzed water generator 10, and a pitcher for cathodic water and an anodic water is disposed below the electrolytic cell 15. Is arranged. The scale 13 indicates the amount of electrolyzed water in the electrolytic cell 15.
[0058] 本電解水生成装置 10で電解水を生成する場合には、まず、図 4の電解槽 15の陰 極部 17に原料水溶液が供給される。すると、陰極部 17から逆止弁 110 (図 2A)を経 由して陽極部 16に原料水溶液が供給される。 When electrolyzed water is generated by the electrolyzed water generating apparatus 10, first, the raw material aqueous solution is supplied to the negative electrode portion 17 of the electrolyzer 15 of FIG. Then, the raw material aqueous solution is supplied from the cathode portion 17 to the anode portion 16 via the check valve 110 (FIG. 2A).
[0059] 次に、電解槽 15内で電気分解により各種用途に応じた pHや有効塩素量の異なる 電解水を生成する。本電解水生成装置で所望の pHや有効塩素量を得るためには、 例えば、電気分解時間を変化させて行えばよい。一例を示せば、 pHが 3. 5の酸性 電解水を製造する場合には、電解槽に 2リットルの原料水溶液 (少量の塩化ナトリウム を含む)を入れて、 2分間電気分解を行えばよぐ pHが 2. 5のより強酸性電解水を製 造する場合には、 10分間電気分解を行えばよい。 [0059] Next, electrolyzed water with different pH and effective chlorine content according to various uses is generated in the electrolytic cell 15 by electrolysis. In order to obtain a desired pH and effective chlorine content in the electrolyzed water generator, for example, the electrolysis time may be changed. For example, when producing acidic electrolyzed water with a pH of 3.5, place 2 liters of raw material aqueous solution (including a small amount of sodium chloride) in the electrolyzer and electrolyze for 2 minutes. When producing more strongly acidic electrolyzed water with a pH of 2.5, electrolysis may be performed for 10 minutes.
[0060] 電気分解終了後に、生成した陽極水と陰極水の混合を防ぐため、ただちに駆動部 [0060] Immediately after the electrolysis, in order to prevent mixing of the generated anode water and cathode water, the drive unit
(ACソレノイド)が作動して、電解水取出口 20, 21に設置された電解水取出口の開 閉弁 22, 23が開くとともにピッチャー開閉部に開閉パイプ 24, 25が伸びてピッチャ — 11— 1 , 11— 2の各ピッチャー開閉部を開く。そして、生成した各電解水を密閉性 の良い各ピッチャーに移送して保持する。この詳細は図 7, 8を用いて後述する。 (AC solenoid) is activated to open and close the electrolyzed water outlet valves 22 and 23 at the electrolyzed water outlets 20 and 21, and the open / close pipes 24 and 25 extend to the pitcher opening and closing part. Open each pitcher opening and closing part of 1 and 11-2. Then, each generated electrolyzed water is transferred to and held by each pitcher with good sealing properties. Details of this will be described later with reference to FIGS.
[0061] [電解槽からピッチャーへの電解水の供給:図 7、 8] [0061] [Supply of electrolyzed water from the electrolytic cell to the pitcher: FIGS. 7 and 8]
次に、図 7と図 8を用いて電解槽 15で生成した電極水(陽極水と陰極水)を陽極水 用ピッチャー 11 _ 2と陰極水用ピッチャー 11 _ 1とに供給する工程について説明す る。 Next, a process for supplying the electrode water (anode water and cathode water) generated in the electrolytic cell 15 to the anode water pitcher 11 _ 2 and the cathode water pitcher 11 _ 1 will be described with reference to FIGS. The
[0062] 図 7は、電解槽 15と駆動部 26との接続関係および電解槽 15で生成した電解水(陽 極水と陰極水)を駆動部 26が取り出す動作を説明する図である。なお図 7では説明 をわ力 やすくするため隔膜付き電極セット 100を除いている。 FIG. 7 is a diagram for explaining the connection relationship between the electrolytic cell 15 and the drive unit 26 and the operation in which the drive unit 26 takes out electrolyzed water (positive water and cathode water) generated in the electrolytic cell 15. In FIG. 7, the electrode set with diaphragm 100 is omitted for ease of explanation.
[0063] 図 7の陰極部(左側)は、駆動部 26が多段中空パイプを縮めて開閉弁 23を電解槽 15の下方向に移動し電解水取出口 21が閉じた状態を示している。この状態におい
て、多段中空パイプ (ピッチャー開閉部の開閉パイプ) 25はピッチャー 11— 1の上方 に保持されているためピッチャー開閉部 2 (図 8の陽極部参照)は閉じた状態となって いる。そこで、多段中空パイプ 24, 25を縮めた状態にして、原料水溶液が電解槽 15 内に注入される。続いて、電解槽 15で電気分解が行われ、陽極部 16と陰極部 17で 各電解水が生成する。一方、図 7の陽極部 16 (右側)は、駆動部 26が多段中空パイ プを伸ばして開閉弁 22を電解槽 15の上方向に移動して電解水取出口 20を開いた 状態を示している。この状態において、ピッチャー 11 _ 2の上方に配置される多段中 空パイプ (ピッチャー開閉部の開閉パイプ) 24は、下方向に移動しピッチャー開閉部 2 (図 8の陰極部参照)を開いた状態にする。このように駆動部が多段中空パイプを伸 ばす状態において、電解槽 15で生成した陽極水は電解水取出口 20からピッチャー 開閉部 2を介してピッチャー 11 - 2に供給される。 The cathode part (left side) of FIG. 7 shows a state in which the driving part 26 contracts the multistage hollow pipe, moves the on-off valve 23 downward in the electrolytic cell 15, and the electrolytic water outlet 21 is closed. In this state Since the multi-stage hollow pipe (opening / closing pipe of the pitcher opening / closing section) 25 is held above the pitcher 11-1, the pitcher opening / closing section 2 (see the anode section in FIG. 8) is closed. Therefore, the aqueous raw material solution is injected into the electrolytic cell 15 with the multistage hollow pipes 24 and 25 being contracted. Subsequently, electrolysis is performed in the electrolytic cell 15, and electrolyzed water is generated in the anode part 16 and the cathode part 17. On the other hand, the anode part 16 (right side) in FIG. 7 shows a state in which the driving part 26 extends a multistage hollow pipe, moves the on-off valve 22 upward in the electrolytic cell 15, and opens the electrolytic water outlet 20. Yes. In this state, the multistage hollow pipe (opening / closing pipe of the pitcher opening / closing part) 24 arranged above the pitcher 11 _ 2 is moved downward to open the pitcher opening / closing part 2 (see the cathode part in FIG. 8). To. In this state where the drive unit extends the multistage hollow pipe, the anodic water generated in the electrolytic cell 15 is supplied from the electrolytic water outlet 20 to the pitcher 11-2 via the pitcher opening / closing unit 2.
[0064] [駆動部とピッチャーの接続関係:図 8] [0064] [Connection between drive unit and pitcher: Fig. 8]
図 8は、駆動部 26とピッチャー 11— 1, 11— 2との接続関係および電解槽 15で生 成した電解水を各ピッチャーに移送する動作を説明する図である。 FIG. 8 is a diagram for explaining the connection relationship between the drive unit 26 and the pitchers 11-1 and 11-2 and the operation of transferring the electrolyzed water generated in the electrolytic cell 15 to each pitcher.
[0065] 図 8の陽極部(右側)は、駆動部 26が多段中空パイプを縮め開閉弁 22を電解槽 15 の下方向に移動し電解水取出口 20を閉じた状態を示している。この状態において、 多段中空パイプ (ピッチャー開閉部の開閉パイプ) 24はピッチャー 1の上方に保持さ れているためピッチャー開閉部 2を閉じた状態にする。このように駆動部が多段中空 パイプを縮めて電解水取出口 20を閉じた状態(電解水取出口 20も同様に閉じた状 態)にした後で、原料水溶液が電解槽 15に注入される。続いて、電解槽 15で電気分 解が行われ、陽極部と陰極部で各電解水が生成する。一方、図 8の陰極部 17 (左側 )は、電解水生成後に駆動部 26が多段中空パイプを伸ばして開閉弁 23を電解槽 15 の上方向に移動して電解水取出口 21を開いた状態を示している。この状態におい て、ピッチャー 11 - 2の上方に配置されるピッチャー開閉部の開閉パイプ(多段中空 パイプ) 25は、下方向に移動しピッチャー開閉部 2を開いた状態にする。その結果、 電解槽 15で生成した電解水(陰極水)は、開かれた電解水取出口 21からピッチャー 開閉部 2を介してピッチャー 11— 1に供給される。なお、電解槽 15で生成した電解水 (陽極水)も、同様の方法により、ピッチャー 11— 2に供給される。
[0066] 次に、図 7及び図 8で説明した駆動部 26について詳しく説明する。駆動部 26は図 8 に示すように陰極水の制御と陽極水の制御を行う同じ構造の 2系統(多段中空パイプ 24, 25)がある力 以下の説明では、主に陰極水の制御(多段中空パイプ 25)を例 に取り説明する。駆動部 26は、駆動部 26,多段中空パイプ 25、第 1シャフト 27,第 2 シャフト 28,第 3シャフト 29,第 4シャフト 30から構成されている。多段中空パイプ 25 は第 1端部 25aと反対側の第 2端部 25bとを有し、第 1端部 25aは開閉弁 23に接続さ れており、駆動部は第 1端部 25aと第 2端部 25b間の長さを変更可能である。また、多 段中空パイプの第 1端部 25aは第 3シャフト 29と接続され、多段中空パイプの第 2端 部 25b (ピッチャー開閉部の開閉パイプ)は第 4シャフト 30と接続され、第 3シャフト 29 は第 2シャフト 28と接続され、第 2シャフト 28は第 1シャフト 27と接続され、第 1シャフト 27は駆動部 26と接続されている。駆動部 26は、第 3シャフト 29と第 4シャフト 30との 距離を変えることにより多段中空パイプ 25の長さを変更することができる。なお、電解 水取出口の開閉弁 23とピッチャー開閉部の開閉パイプ 25とは同一直線上に配置さ れている。 The anode part (right side) in FIG. 8 shows a state in which the drive part 26 has shrunk the multistage hollow pipe, moved the on-off valve 22 downward in the electrolytic cell 15, and closed the electrolytic water outlet 20. In this state, the multistage hollow pipe (opening / closing pipe of the pitcher opening / closing section) 24 is held above the pitcher 1, so that the pitcher opening / closing section 2 is closed. Thus, after the drive unit shrinks the multi-stage hollow pipe to close the electrolyzed water outlet 20 (the electrolytic water outlet 20 is also closed), the aqueous raw material solution is injected into the electrolytic cell 15. . Subsequently, electrolysis is performed in the electrolytic cell 15, and each electrolyzed water is generated in the anode part and the cathode part. On the other hand, in the cathode part 17 (left side) in FIG. 8, the drive part 26 extends the multistage hollow pipe after the electrolyzed water is generated, moves the on-off valve 23 upwardly in the electrolyzer 15 and opens the electrolyzed water outlet 21. Is shown. In this state, the opening / closing pipe (multi-stage hollow pipe) 25 of the pitcher opening / closing section disposed above the pitcher 11-2 moves downward to open the pitcher opening / closing section 2. As a result, the electrolyzed water (cathode water) generated in the electrolyzer 15 is supplied to the pitcher 11-1 from the opened electrolyzed water outlet 21 via the pitcher opening / closing part 2. Note that the electrolyzed water (anodic water) generated in the electrolyzer 15 is also supplied to the pitcher 11-2 by the same method. Next, the drive unit 26 described with reference to FIGS. 7 and 8 will be described in detail. As shown in Fig. 8, the drive unit 26 has two systems (multi-stage hollow pipes 24, 25) having the same structure for controlling cathodic water and anodic water. A hollow pipe 25) will be explained as an example. The drive unit 26 includes a drive unit 26, a multistage hollow pipe 25, a first shaft 27, a second shaft 28, a third shaft 29, and a fourth shaft 30. The multi-stage hollow pipe 25 has a first end 25a and a second end 25b opposite to the first end 25a. The first end 25a is connected to the on-off valve 23, and the drive unit is connected to the first end 25a and the second end 25b. The length between the two end portions 25b can be changed. The first end 25a of the multi-stage hollow pipe is connected to the third shaft 29, and the second end 25b of the multi-stage hollow pipe (the open / close pipe of the pitcher opening / closing section) is connected to the fourth shaft 30 and the third shaft. 29 is connected to the second shaft 28, the second shaft 28 is connected to the first shaft 27, and the first shaft 27 is connected to the drive unit 26. The drive unit 26 can change the length of the multistage hollow pipe 25 by changing the distance between the third shaft 29 and the fourth shaft 30. The open / close valve 23 for the electrolytic water outlet and the open / close pipe 25 for the pitcher opening / closing section are arranged on the same straight line.
[0067] このため、駆動部 26力 S図 7の左側のように第 3シャフト 29と第 4シャフト 30とを互レヽ に接触させる(多段中空パイプを縮める)ように駆動すると電解水取出口の開閉弁 23 は下部方向に移動し、同時に、ピッチャー開閉部の開閉パイプ 25が上部方向に移 動するため、電解水取出口 21とピッチャー開閉部 2とは閉じた状態となる。一方、図 7 の右側のように駆動部 26が第 3シャフト 29と第 4シャフト 30とを互いに離れる(多段中 空パイプを伸ばす)ように駆動すると電解水取出口の開閉弁 22は上部方向に移動し 、同時に、ピッチャー開閉部の開閉パイプ 24が下部方向に移動するため、電解水取 出口 20とピッチャー開閉部 2とは開いた状態となる。 [0067] For this reason, when the drive unit 26 force S is driven so that the third shaft 29 and the fourth shaft 30 are in contact with each other as shown on the left side of FIG. The opening / closing valve 23 moves downward, and at the same time, the opening / closing pipe 25 of the pitcher opening / closing section moves upward, so that the electrolytic water outlet 21 and the pitcher opening / closing section 2 are closed. On the other hand, when the drive unit 26 drives the third shaft 29 and the fourth shaft 30 away from each other (extends the multistage hollow pipe) as shown on the right side of FIG. 7, the open / close valve 22 of the electrolyzed water outlet is directed upward. At the same time, since the opening / closing pipe 24 of the pitcher opening / closing section moves downward, the electrolytic water outlet 20 and the pitcher opening / closing section 2 are opened.
[0068] 次に、図 8を用いて駆動部 26が電解槽 15で生成した電解水をピッチャに供給する 動作について説明するが、その前に図 8の陽極部を用いて、駆動部 26が原料水溶 液を電解槽に注入する前に行う動作を説明する。駆動部 26は、第 3シャフト 29と第 4 シャフト 30とを互いに接するまで駆動(多段中空パイプを縮める)する。この動作によ り電解水取出口の開閉弁 22とピッチャー開閉部の開閉パイプ 24は最も接近し、電解 水取出口の開閉弁 22は電解槽 15の下方向に移動して電解水取出口 20を閉じ、開
閉パイプ 24はピッチャー開閉部 2の上方向に移動して開口部 3を閉じる。 Next, the operation in which the drive unit 26 supplies the electrolyzed water generated in the electrolytic cell 15 to the pitcher will be described with reference to FIG. 8. Before that, the drive unit 26 uses the anode unit in FIG. The operation performed before pouring the raw material aqueous solution into the electrolytic cell will be described. The drive unit 26 drives (shrinks the multistage hollow pipe) until the third shaft 29 and the fourth shaft 30 contact each other. As a result of this operation, the open / close valve 22 of the electrolytic water outlet and the open / close pipe 24 of the pitcher opening / closing section are closest to each other, and the open / close valve 22 of the electrolytic water outlet moves downward in the electrolytic cell 15 to move the electrolytic water outlet 20 Close and open The closed pipe 24 moves upward in the pitcher opening / closing part 2 and closes the opening 3.
[0069] 次に、図 8の陰極部を用いて、駆動部 26が電解槽 15の陰極部で生成した電解水 をピッチャー 11—1に供給する際に行う動作を説明する。駆動部 26は、第 3シャフト 2 9と第 4シャフト 30とを互いに最も離れるまで移動(多段中空パイプを伸ばす)する。こ の動作より電解水取出口の開閉弁 23とピッチャー開閉部の開閉パイプ 25とは最も離 れ、電解水取出口の開閉弁 23は電解槽 15の上方向に移動して電解水取出口 21を 開き、ピッチャー開閉部の開閉パイプ 25は下方向に移動しピッチャー開閉部 2の連 結部 2bに接触して開口部 3を開く。そこで、陰極部と陽極部に接続された各駆動部 が電解槽 15への原料水溶液の供給前に多段中空パイプを縮める動作を行い、陰極 部と陽極部で生成した陰極水と陽極水とを各ピッチャーに供給する前に多段中空パ イブを伸ばす動作を行うことにより、電解水生成装置で電解水を生成し、生成した電 解水をピッチャーで貯水することができる。 Next, the operation performed when the drive unit 26 supplies the electrolyzed water generated at the cathode part of the electrolytic cell 15 to the pitcher 11-1 using the cathode part of FIG. The drive unit 26 moves the third shaft 29 and the fourth shaft 30 until they are farthest from each other (extends the multistage hollow pipe). Due to this operation, the open / close valve 23 for the electrolytic water outlet and the open / close pipe 25 of the pitcher opening / closing part are farthest from each other, and the open / close valve 23 for the electrolytic water outlet moves upward in the electrolytic cell 15 to move the electrolytic water outlet 21 The opening / closing pipe 25 of the pitcher opening / closing part moves downward, contacts the connecting part 2b of the pitcher opening / closing part 2, and opens the opening 3. Therefore, each drive unit connected to the cathode part and the anode part performs an operation of shrinking the multistage hollow pipe before supplying the raw material aqueous solution to the electrolytic cell 15, and the cathode water and the anode water generated in the cathode part and the anode part are reduced. By performing the operation of extending the multistage hollow pipe before supplying to each pitcher, the electrolyzed water can be generated by the electrolyzed water generating device, and the generated electrolyzed water can be stored by the pitcher.
[0070] [隔膜付き電極セットの性能] [0070] [Performance of electrode set with diaphragm]
最後に、上記説明した隔膜付き電極セット 100を用いる電解水生成装置 10の性能 について説明する。 Finally, the performance of the electrolyzed water generating apparatus 10 using the above-described electrode set with a diaphragm 100 will be described.
[0071] 本電解水生成装置 10の性能は、電気分解を繰り返し行ったときの得られる電解水 の特性から評価した。具体的には、電解槽に 2リットルの原料水溶液を入れ、 10分間 の電気分解を行って電解水を生成した。そして、得られた陽極電解水の有効塩素量 を調べた。本条件では、本電解水生成装置 10が正常に動作すると、酸性電解水の p Hは 2. 4〜2. 6、有効塩素量は 40〜60ppmが得られる。そこで、上記 pHと有効塩 素量を目標値に設定し、上記目標値に達しない場合、例えば、 pH = 2. 7以上、有 効塩素量 =40ppm未満に低下した場合を、本電解水生成装置 10の性能が低下し たと判断し、この低下するまでに何回、電解水を繰り返して製造することができるか否 か調べた。 [0071] The performance of the electrolyzed water generator 10 was evaluated from the characteristics of electrolyzed water obtained when electrolysis was repeated. Specifically, 2 liters of raw material aqueous solution was placed in the electrolytic cell, and electrolysis was performed for 10 minutes to generate electrolyzed water. Then, the effective chlorine content of the obtained anodic electrolyzed water was examined. Under this condition, when the electrolyzed water generating apparatus 10 operates normally, the pH of the acidic electrolyzed water is 2.4 to 2.6 and the effective chlorine content is 40 to 60 ppm. Therefore, when the above pH and effective chlorine content are set to the target values and the above target values are not reached, for example, when pH = 2.7 or more and effective chlorine content = less than 40 ppm, this electrolyzed water is generated. It was judged that the performance of the apparatus 10 was deteriorated, and it was examined whether or not the electrolyzed water could be repeatedly produced before the decrease.
[0072] その結果、上記条件で 100回連続して電解水を生成しても上記目標値を達成する 電解水が得られることがわかった。また、電極には、スケールの付着が見られなかつ た。以上の結果から、上記説明した隔膜付き電極セット構造を有する本電解水生成 装置は、繰り返し電解水を生成しても所望の特性を有する電解水を安定に製造でき
ること力 s分力つた。なお、本電解水生成装置 10では電解水の性能が低下したと判断 された場合には、洗浄モードにて電極に付着したスケールを除去すれば電解水の性 能を回復することができる。ここで、洗浄モードとは、電解効率が低減した場合には電 極板の極性を切り替えてから電気分解を行うことにより電極板に付着したスケールを 溶解させて電極を洗浄し、低下した電気分解効率を回復する処理のことである。 As a result, it was found that electrolyzed water that achieves the target value can be obtained even when electrolyzed water is generated 100 times continuously under the above conditions. In addition, no adhesion of scale was observed on the electrode. From the above results, the electrolyzed water generating device having the above-described electrode set structure with a diaphragm can stably produce electrolyzed water having desired characteristics even when electrolyzed water is repeatedly generated. Power of s. When it is determined that the performance of the electrolyzed water in the electrolyzed water generating apparatus 10 is deteriorated, the performance of the electrolyzed water can be recovered by removing the scale attached to the electrodes in the cleaning mode. Here, the cleaning mode means that when the electrolysis efficiency is reduced, the polarity of the electrode plate is switched and then the electrolysis is performed to dissolve the scale attached to the electrode plate to clean the electrode and to reduce the electrolysis. A process that restores efficiency.
[0073] なお、上記説明で使用した構成は、一例であり、本発明の技術的思想を満足する ものであれば、その構成や配置は適時変更が可能である。例えば、開閉弁の代わり に逆止弁などを使用してもよい。また、吸着剤の形状は、適時、変更することができる It should be noted that the configuration used in the above description is an example, and the configuration and arrangement can be changed as appropriate as long as the technical idea of the present invention is satisfied. For example, a check valve may be used instead of the on-off valve. Also, the shape of the adsorbent can be changed at any time.
[0074] 本発明は上記実施の形態に制限されるものではなぐ本発明の精神及び範囲から 離脱することなぐ様々な変更及び変形が可能である。従って、本発明の範囲を公に するために、以下の請求項を添付する。
[0074] The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.