WO2007129726A1 - 音声符号化装置及び音声符号化方法 - Google Patents

音声符号化装置及び音声符号化方法 Download PDF

Info

Publication number
WO2007129726A1
WO2007129726A1 PCT/JP2007/059580 JP2007059580W WO2007129726A1 WO 2007129726 A1 WO2007129726 A1 WO 2007129726A1 JP 2007059580 W JP2007059580 W JP 2007059580W WO 2007129726 A1 WO2007129726 A1 WO 2007129726A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
sound source
encoding
value
vector
Prior art date
Application number
PCT/JP2007/059580
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Morii
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2008514506A priority Critical patent/JPWO2007129726A1/ja
Priority to US12/299,986 priority patent/US20090164211A1/en
Publication of WO2007129726A1 publication Critical patent/WO2007129726A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/12Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/10Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a multipulse excitation
    • G10L19/107Sparse pulse excitation, e.g. by using algebraic codebook

Definitions

  • the present invention relates to a speech coding apparatus and speech coding method for performing fixed codebook search.
  • Non-patent document 1 describes a speech coding technique whose performance has been greatly improved by “CEL PJ (Code Excited Linear Prediction)”, a basic method that skillfully applies vector quantization by modeling speech utterance mechanisms.
  • CEL PJ Code Excited Linear Prediction
  • the target technology has also come out.
  • Patent Document 1 discloses that a coding distortion of a noisy code band is calculated when encoding with a CELP fixed excitation codebook, and the calculation result is noisy. While multiplying a fixed weighting value according to the degree of noise, the coding distortion of the non-noisy driving excitation vector is calculated, and the calculation result is multiplied by a fixed weighting value according to the degree of noise. However, it is described that the driving excitation code related to the multiplication result with the smaller value is selected.
  • a non-noisy (pulse-like) code vector tends to be selected because the distance from the input signal to be encoded tends to be smaller than a noisy code vector.
  • the technology described in Patent Document 1 divides the codebook into two parts, noise and non-noise, and calculates the distance for each. According to the result of the above, a weight (multiplication to the distance) is applied so that a non-noisy code envelope is easily selected. This encodes the noisy input speech and restores it. The sound quality of the synthesized speech can be improved.
  • Patent Document 1 Japanese Patent No. 3404016
  • Non-Patent Document 1 Salami, Laflamme, Adoul, "8kbit / s ACELP Coding of Speech with 10ms Speech-Frame: a Candidate for CCITT Standardization, ⁇ Proc. ICASSP94, pp. II-97n
  • the distance calculation result is weighted by multiplication, and the weight by multiplication does not affect the absolute value of the distance. This means that the same weight is applied both when the distance is long and when it is close, and it cannot be said that the tendency according to the noise and non-noise characteristics of the input signal to be encoded is fully utilized.
  • An object of the present invention is to provide a speech encoding apparatus and speech encoding method that can sufficiently utilize the tendency according to noise characteristics and non-noise characteristics of an input signal to be encoded to obtain good sound quality. It is.
  • the speech coding apparatus includes first coding means for coding vocal tract information in the input speech signal into spectral envelope information, and excitation information in the input speech signal as the adaptive codebook and fixed code.
  • a configuration having weighting means for performing weighting according to the number of pulses forming the sound source vector to the calculated value serving as a search reference is adopted.
  • the speech coding method converts the vocal tract information of the input speech signal into spectral envelope information.
  • FIG. 1 is a block diagram showing a configuration of a CELP coding apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the internal configuration of the distortion minimizing section shown in FIG.
  • FIG. 1 is a block diagram showing a configuration of CELP encoding apparatus 100 according to the embodiment of the present invention.
  • This CELP code encoder 100 encodes an audio signal S 11 composed of vocal tract information and sound source information by obtaining an LPC parameter (linear prediction coefficient) for the vocal tract information, and the sound source information is pre- By obtaining an index for identifying which of the stored speech models is used, that is, an index for identifying what excitation vector (code vector) is generated in the adaptive codebook 103 and the fixed codebook 104.
  • the sound source information is encoded.
  • each unit of CELP encoding apparatus 100 performs the following operation.
  • the LPC analysis unit 101 performs linear prediction analysis on the speech signal S11, obtains an LPC parameter that is spectrum envelope information, and outputs the LPC parameter to the LPC quantization unit 102 and the perceptual weighting unit 111.
  • the LPC quantization unit 102 quantizes the LPC parameters obtained by the LPC analysis unit 101, and obtains them.
  • the quantized LPC parameter is output to the LPC synthesis filter 109, and the quantized LPC parameter index is output to the outside of the CELP encoder 100.
  • adaptive codebook 103 stores past driving sound sources used in LPC synthesis filter 109, and stores them according to the adaptive codebook lag corresponding to the index instructed from distortion minimizing section 112.
  • a sound source vector for one subframe is generated from the driving sound source.
  • This excitation vector is output to multiplier 106 as an adaptive codebook vector.
  • Fixed codebook 104 stores a plurality of excitation vectors having a predetermined shape in advance, and uses the excitation vector corresponding to the index designated by distortion minimizing section 112 as a fixed codebook vector. Output to 107.
  • fixed codebook 104 is an algebraic codebook, and the configuration in the case where an algebraic codebook using two kinds of pulses is used will be described in the case where weighting is performed by addition.
  • An algebraic sound source is a sound source used in many standard codecs, and its position and polarity (
  • the adaptive codebook 103 is used to express a component with strong periodicity such as voiced sound, while the fixed codebook 104 is a component with weak periodicity such as white noise. Used to express
  • Gain codebook 105 is output from adaptive codebook vector gain (adaptive codebook gain) output from adaptive codebook 103 and from fixed codebook 104 in accordance with instructions from distortion minimizing section 112.
  • a fixed codebook vector gain (fixed codebook gain) is generated and output to multipliers 106 and 107, respectively.
  • Multiplier 106 multiplies the adaptive codebook gain output from gain codebook 105 by the adaptive codebook vector output from adaptive codebook 103 and outputs the result to adder 108.
  • Multiplier 107 multiplies the fixed codebook gain output from gain codebook 105 by the fixed codebook vector output from fixed codebook 104 and outputs the result to adder 108.
  • Adder 108 adds the adaptive codebook vector output from multiplier 106 and the fixed codebook vector output from multiplier 107, and uses the added excitation vector as the driving excitation. Output to LPC synthesis filter 109.
  • LPC synthesis filter 109 uses the quantized LPC parameters output from LPC quantization section 102 as filter coefficients, and uses the excitation code generated in adaptive codebook 103 and fixed codebook 104 as the driving excitation.
  • the synthesized signal is generated using the filtered filter function, that is, the LPC synthesis filter. This synthesized signal is output to adder 110.
  • the adder 110 calculates an error signal by subtracting the synthesized signal generated by the LPC synthesis filter 109 from the audio signal S 11, and outputs the error signal to the audibility weighting unit 111.
  • This error signal corresponds to coding distortion.
  • the perceptual weighting unit 111 performs perceptual weighting on the sign distortion output from the adder 110 and outputs the result to the distortion minimizing unit 112.
  • Distortion minimizing section 112 subframes each index of adaptive codebook 103, fixed codebook 104, and gain codebook 105 so that the code distortion output from perceptual weighting section 111 is minimized. Each index is obtained and output as an index key information to the outside of the CELP encoding apparatus 100. More specifically, a series of processes for generating a composite signal based on the adaptive codebook 103 and the fixed codebook 104 described above and obtaining the encoding distortion of this signal is closed-loop control (feedback control). The distortion minimizing section 112 searches for each codebook by changing the index to instruct each codebook in one subframe, and finally obtains each codebook that minimizes the coding distortion. Print the book index.
  • the driving sound source when the code distortion is minimized is the adaptive codebook 1 for each subframe.
  • Adaptive codebook 103 updates the stored driving sound source by this feedback.
  • the search for the excitation vector and the derivation of the code are performed by searching for the excitation vector that minimizes the coding distortion in Eq. (1) below.
  • E coding distortion
  • X coding target
  • p adaptive codebook vector gain
  • H auditory weight Attached synthesis filter
  • a adaptive codebook vector
  • q fixed codebook vector gain
  • s fixed codebook vector
  • E coding distortion
  • X coding target (perceptual weighted speech signal)
  • p optimal gain of adaptive codebook extraneous
  • H perceptual weighting synthesis filter
  • a adaptive codebook vector
  • q fixed codebook Vector gain
  • s Fixed codebook vector
  • y Target code for fixed codebook search
  • the function C can be calculated with a small amount of calculation if y H and HH are calculated in advance.
  • FIG. 2 is a block diagram showing an internal configuration of distortion minimizing section 112 shown in FIG.
  • adaptive codebook search section 201 uses perceptual weighting in perceptual weighting section 111.
  • the adaptive codebook 103 is searched using the distorted coding distortion.
  • the code of the adaptive codebook vector is output to the preprocessing unit 203 and the adaptive codebook 103 of the fixed codebook search unit 202.
  • Preprocessing section 203 of fixed codebook search section 202 calculates vector yH and matrix HH using coefficient H of the synthesis filter in perceptual weighting section 111.
  • yH is obtained by convolving the matrix H with the target vector y reversed, and then reversing the result.
  • HH is obtained by multiplying the matrices.
  • the additional value g is obtained from the y value and the fixed value G to be added as shown in the following equation (5).
  • the preprocessing unit 203 determines the polarity of the pulse in advance from the polarity (+ _) of the element of the vector yH. Specifically, the polarity of the pulse at each position is matched to the polarity of the value of yH at that position, and the polarity of the value of yH is stored in another array. After storing the polarity of each position in a separate array, all yH values are absolute values and converted to positive values. Also, the HH value is converted by multiplying the polarity according to the polarity of each stored position. The obtained yH and HH are output to the correlation value / sound source value adding sections 205 and 209 in the search loops 204 and 208, and the additional value g is output to the weight adding section 206.
  • the search loop 204 includes a correlation value / sound source value adding unit 205, a weight addition unit 206 and a magnitude determination unit 207, and the search loop 208 includes a correlation value / sound source value addition unit 209 and a magnitude determination unit 210. ing.
  • Correlation value / sound source power adding section 205 obtains function C by adding the values of yH and HH output from preprocessing section 203 for the case of two pulses, and weights the obtained function C. Outputs to appendix 206.
  • the weight addition unit 206 performs addition processing on the function C using the additional value g shown in the above equation (5).
  • the added function C is output to the magnitude determination unit 207.
  • the magnitude determination unit 207 compares the value of the function C value added in the weight addition unit 206 and overwrites and stores the numerator denominator of the function C when a larger function value is indicated. And thus, the largest function C in the entire search loop 204 is output to the magnitude determination unit 210 of the search loop 208.
  • the correlation value.sound source value adding unit 209 for the case of 3 pulses, is similar to the correlation value / sound source value adding unit 205 in the search loop 204, and the yH and HH output from the preprocessing unit 203.
  • the function C is obtained by adding the values, and the obtained function C is output to the magnitude determination unit 210.
  • the magnitude determination unit 210 compares the magnitudes of the values of the function C output from the correlation value / sound source value addition unit 209, including the function C output from the magnitude determination unit 207 of the search loop 204, Overwrites the numerator denominator of function C for large function values. Then, a search is made for a combination of pulse positions that is the largest in the entire search loop 208.
  • the size determination unit 210 combines the code of the position of each pulse and the code of the polarity into the code of the fixed codebook vector, and outputs this code to the fixed codebook 104 and the gain codebook search unit 211.
  • Gain codebook search section 211 searches for a gain codebook based on the code of a fixed codebook vector obtained by combining the code of the position and the polarity of each pulse output from magnitude determination section 210, The search result is output to gain codebook 105.
  • FIG. 3 a series of processing procedures using the above two search loops 204 and 208 are shown in FIG. 3 and FIG.
  • a candidate position of codebook 0 (number of pulses 2) is set, initialization is performed in ST302, and in ST303, it is confirmed that i0 is less than 20. If iO is less than 20, the position of the first pulse from codebook 0 is output, the values are extracted from yH and HH, and are set as correlation value syO and path shO, respectively (ST304). Repeat this calculation until iO reaches 20 (the number of pulse positions) (ST303 to ST306). In ST302 to ST309, f or no. The codebook search process is performed when there are two nores.
  • the size of the function C is compared (ST308), and the numerator and denominator of the function C showing the larger function value are stored (3 Ding 309) This calculation is repeated until 1 is 20 (the number of pulse position candidates) (ST305 to ST310).
  • ST312 confirms that iO is less than 10, and if iO is less than 10, it outputs the codebook 1 power, the position of the first pulse, and extracts the value from yH and HH.
  • the correlation value is syO and the value is shO respectively (ST313). This calculation is repeated until iO reaches 10 (number of pulse position candidates) (ST312 to ST315).
  • the position of the third pulse from the codebook 1 is output, the values are extracted from yH and HH, and added to the correlation values syl and ⁇ shl, The correlation value is sy2 and the path is sh2 (ST319).
  • the numerator and denominator of function C showing the maximum function value is compared with the function value consisting of correlation values sy2 and sh2 (ST 320), and the numerator and denominator of function C showing the larger function value are Store (ST321) This calculation is repeated until i2 reaches 8 (number of pulse position candidates) (ST317 to ST322).
  • the number of pulses of 3 is more easily selected than the number of pulses of 2 due to the effect of the additional value g .
  • weighting based on a clear criterion “number of pulses” can be realized.
  • additional processing as a weighting method, if the error from the target vector that is the target of the sign is large (unvoiced (noise) with distributed energy), weighting is performed. If has a relatively large meaning and the error is small (concentrated voiced), the weighting has a relatively small meaning. Therefore, a higher quality synthesized sound can be obtained. The reason is shown qualitatively as follows.
  • the target scale is voiced (non-noise)
  • a function value serving as a selection criterion has a high part and a low part.
  • the sound source vector is selected based on the magnitude of the function value alone, and there is no significant change in the addition processing of the fixed value of the present invention. Therefore, the sound source beta is selected based on the magnitude of the function value alone.
  • the effectiveness of the addition processing has been described as the weighting method, but the present invention is also effective when using multiplication. This is because if the corresponding part in Fig. 3 is replaced as shown in the following equation (6), the weighting process based on a clear criterion "number of pulses" can be realized.
  • two and three fixed codebook vector pulses are used, but this may be a combination of any number of pulses. This is because the present invention depends on the number of pulses.
  • the force S using two kinds of variations of the number of pulses which can be any number. This can be easily achieved by using a smaller number and a smaller value, and the search process can be the concatenation process shown in FIG.
  • the inventor used it to search for five types of fixed codebook vectors with 1 to 5 pulses it was confirmed by encoding and decoding experiments that good performance was obtained with the following numerical values. Yes.
  • the present invention is applied to a codebook in which the number of sets is divided.
  • fixed codebook vectors having different numbers of pulses may be mixed in the codebook. That This is because the set of fixed codebook vectors having a predetermined number of pulses does not need to be gathered because the additional processing of the present invention is used in the function value determination part.
  • an algebraic codebook is used as an example of the fixed codebook in this embodiment, but this is because a fixed codebook vector is directly stored in a conventional multipulse codebook or ROM. It is obvious that the present invention can be applied to a learning codebook in a written format. The number of multipulses itself is used in the same way as in the present invention, and even when all fixed codebook vectors have values, it is easy to extract information such as the number of amplitudes, etc. Yes, if you use it.
  • the present invention can be applied to any encoding / decoding method in which there is a codebook in which excitation vectors for which the number of powers used for CELP is known are stored. It is clear. This is because the present invention is only in the search of the fixed codebook vector, and does not depend on the presence / absence of the adaptive codebook and the analysis method of the spectrum envelope, whether it is LPC power, FFT or finole bank.
  • Each functional block used in the description of the present embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Here, it is sometimes called IC, system LSI, super LSI, or ultra LSI, depending on the difference in power integration.
  • circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • An FPGA Field Programmable Gate Array
  • reconfigurable 'processor that can reconfigure the connection and settings of circuit cells inside the LSI may be used.
  • the adaptive codebook used in the description of the present embodiment is sometimes called an adaptive excitation codebook.
  • the fixed codebook is sometimes called a fixed excitation codebook.
  • the speech coding apparatus and speech coding method according to the present invention can fully utilize the tendency according to the noise characteristics and non-noise characteristics of the input signal to be encoded, and can obtain good sound quality. For example, it can be applied to a mobile phone or the like in a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Mathematical Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

 符号化される入力信号の雑音性、非雑音性に応じた傾向を十分に利用し、良好な音質を得る音声符号化装置。この音声符号化装置では、固定符号帳探索部(202)の探索ループ(204)における重み付加部(206)は、符号化対象であるターゲットとスペクトル包絡情報とにより合成されたコードベクトルから算出される関数を、固定符号帳に格納されたコードベクトルの探索基準となる計算値とし、この計算値にコードベクトルを形成するパルス本数に応じた重みを加算する。

Description

音声符号化装置及び音声符号化方法
技術分野
[0001] 本発明は、固定符号帳探索を行う音声符号化装置及び音声符号化方法に関する 背景技術
[0002] 移動体通信においては、伝送帯域の有効利用のために音声や画像のディジタル 情報の圧縮符号ィ匕が必須である。その中でも携帯電話で広く利用された音声コーデ ック (符号化/復号化)技術に対する期待は大きぐ圧縮率の高い従来の高効率符 号化に対してさらなる音質の要求が強まっている。
[0003] 音声の発声機構をモデルィヒしてベクトル量子化を巧みに応用した基本方式「CEL PJ (Code Excited Linear Prediction)によって大きく性能を向上させた音声符号化技 術は、非特許文献 1に記載の代数的符号帳 (Algebraic Codebook)のような少数パル スによる固定音源の技術により、一段とその性能を向上させた。一方、雑音性や有声 /無声に適応した符号ィ匕により、さらに高品質を目指す技術も出てきている。
[0004] このような技術として、特許文献 1には、 CELPの固定音源符号帳による符号化の 際、雑音的なコードべ外ルの符号化歪みを計算し、その計算結果に対して雑音性 の度合いに応じた固定の重み付け値を乗算する一方、非雑音的な駆動音源ベクトル の符号化歪みを計算し、その計算結果に対して雑音性の度合いに応じた固定の重 み付け値を乗算し、値が小さい方の乗算結果に係る駆動音源符号を選択することが 記載されている。
[0005] 非雑音的(パルス的)なコードベクトルは、雑音的なコードベクトルと比較して符号化 の対象である入力信号との距離が小さくなる傾向にあるため選択される割合が大きく 、得られる合成音の音質がパルッシブになり主観的な音質が低下してしまうが、特許 文献 1に記載の技術は、符号帳を雑音性と非雑音性の 2つに分けて、それぞれの距 離計算の結果に応じて非雑音性のコードべ外ルが選ばれ易くなるように重み(距離 への乗算)を掛けるというものである。これにより、雑音的な入力音声を符号化し、復 号化した合成音声の音質を向上させることができる。
特許文献 1 :特許第 3404016号公報
非特許文献 1: Salami, Laflamme, Adoul,"8kbit/s ACELP Coding of Speech with 10m s Speech-Frame:a Candidate for CCITT Standardization ,ΙΕΕΕ Proc. ICASSP94,pp. II-97n
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上述した特許文献 1に記載の技術では、雑音性という尺度の開示が 不十分であるため、より良い性能を得る適当な重み付けを行うのは難しい。そのため 、特許文献 1に記載の技術では、「評価重み決定手段」を用いてより適当な重みが乗 ぜられるようにしてレ、るものの、これも開示が不十分であるためにどのようにすれば性 能が向上するのか不明である。
[0007] また、上述した特許文献 1に記載の技術では、距離の計算結果に対して乗算により 重みをつけており、乗算による重みというのはその距離の絶対値に影響しない。これ は、距離が遠い時にも近い時にも同じ重みが掛かるということであり、これは符号化さ れる入力信号の雑音性、非雑音性に応じた傾向を十分に利用しているとは言えない
[0008] 本発明の目的は、符号化される入力信号の雑音性、非雑音性に応じた傾向を十分 に利用し、良好な音質を得る音声符号化装置及び音声符号化方法を提供すること である。
課題を解決するための手段
[0009] 本発明の音声符号化装置は、入力音声信号のうち声道情報をスペクトル包絡情報 に符号ィヒする第 1符号化手段と、入力音声信号のうち音源情報を適応符号帳と固定 符号帳とにそれぞれ格納された音源べ外ルを用いて符号ィヒする第 2符号化手段と、 前記固定符号帳に格納された音源ベクトルを探索する探索手段と、を具備し、前記 探索手段は、音源べクトノレを形成するパルス本数に応じた重み付けを探索の基準と なる計算値に行う重み付け手段を有する構成を採る。
[0010] 本発明の音声符号化方法は、入力音声信号のうち声道情報をスペクトル包絡情報 に符号化する第 1符号化工程と、入力音声信号のうち音源情報を適応符号帳と固定 符号帳とにそれぞれ格納された音源べ外ルを用いて符号ィヒする第 2符号化工程と、 前記固定符号帳に格納された音源ベクトルを探索する探索工程と、を具備し、前記 探索工程は、音源べクトノレを形成するパルス本数に応じた重み付けを探索の基準と なる計算値に行うようにした。
発明の効果
[0011] 本発明によれば、符号化される入力信号の雑音性、非雑音性に応じた傾向を十分 に利用し、良好な音質を得ることができる。
図面の簡単な説明
[0012] [図 1]本発明の実施の形態に係る CELP符号ィヒ装置の構成を示すブロック図
[図 2]図 1に示した歪み最小化部の内部構成を示すブロック図
[図 3]2つの探索ループを用いた一連の処理の手順を示すフロー図
[図 4]2つの探索ループを用いた一連の処理の手順を示すフロー図
発明を実施するための最良の形態
[0013] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[0014] (実施の形態)
図 1は、本発明の実施の形態に係る CELP符号化装置 100の構成を示すブロック 図である。この CELP符号ィ匕装置 100は、声道情報と音源情報とからなる音声信号 S 11を、声道情報については、 LPCパラメータ(線形予測係数)を求めることにより符号 化し、音源情報については、予め記憶されている音声モデルのいずれを用いるかを 特定するインデックス、すなわち、適応符号帳 103および固定符号帳 104でどのよう な音源ベクトル (コードベクトル)を生成するかを特定するインデックスを求めることに より、音源情報を符号化する。
[0015] 具体的には、 CELP符号化装置 100の各部は以下の動作を行う。
[0016] LPC分析部 101は、音声信号 S 11に対して線形予測分析を施し、スペクトル包絡 情報である LPCパラメータを求め、 LPC量子化部 102及び聴感重み付け部 111に 出力する。
[0017] LPC量子化部 102は、 LPC分析部 101で得られる LPCパラメータを量子化し、得 られる量子化 LPCパラメータを LPC合成フィルタ 109に、量子化 LPCパラメータのィ ンデッタスを CELP符号ィ匕装置 100の外部へ出力する。
[0018] 一方、適応符号帳 103は、 LPC合成フィルタ 109で使用された過去の駆動音源を 記憶しており、歪み最小化部 112から指示されたインデックスに対応する適応符号帳 ラグに従って、記憶している駆動音源から 1サブフレーム分の音源ベクトルを生成す る。この音源ベクトルは、適応符号帳ベクトルとして乗算器 106に出力される。
[0019] 固定符号帳 104は、所定形状の音源ベクトルを複数個予め記憶しており、歪み最 小化部 112から指示されたインデックスに対応する音源ベクトルを、固定符号帳べク トルとして乗算器 107に出力する。ここで、固定符号帳 104は代数的符号帳であり、 2 種類の本数のパルスによる代数的符号帳を用いた場合の構成について、重み付け が加算によりなされる場合について説明する。
[0020] 代数的音源とは、多くの標準コーデックに採用されている音源であり、位置と極性(
+—)だけが情報の大きさ力 のインパルスを少数立てた音源である。例えば、 ARIB 規格書「RCR STD— 27K」の 5. 3節の「CS— ACELPJでの 5. 3. 1. 9章や、 5. 4 節の「ACELP」での 5. 4. 3. 7章等に記載されている。
[0021] なお、上記の適応符号帳 103は、有声音のように周期性の強い成分を表現するた めに使われ、一方、固定符号帳 104は、白色雑音のように周期性の弱い成分を表現 するために使われる。
[0022] ゲイン符号帳 105は、歪み最小化部 112からの指示に従って、適応符号帳 103か ら出力される適応符号帳ベクトル用のゲイン (適応符号帳ゲイン)、および固定符号 帳 104から出力される固定符号帳ベクトル用のゲイン(固定符号帳ゲイン)を生成し、 それぞれ乗算器 106、 107に出力する。
[0023] 乗算器 106は、ゲイン符号帳 105から出力された適応符号帳ゲインを、適応符号 帳 103から出力された適応符号帳ベクトルに乗じ、加算器 108に出力する。
[0024] 乗算器 107は、ゲイン符号帳 105から出力された固定符号帳ゲインを、固定符号 帳 104から出力された固定符号帳ベクトルに乗じ、加算器 108に出力する。
[0025] 加算器 108は、乗算器 106から出力された適応符号帳ベクトルと、乗算器 107から 出力された固定符号帳ベクトルとを加算し、加算後の音源ベクトルを駆動音源として LPC合成フィルタ 109に出力する。
[0026] LPC合成フィルタ 109は、 LPC量子化部 102から出力された量子化 LPCパラメ一 タをフィルタ係数とし、適応符号帳 103及び固定符号帳 104で生成される音源べタト ルを駆動音源としたフィルタ関数、すなわち、 LPC合成フィルタを用いて合成信号を 生成する。この合成信号は、加算器 110に出力される。
[0027] 加算器 110は、 LPC合成フィルタ 109で生成された合成信号を音声信号 S11から 減算することによって誤差信号を算出し、この誤差信号を聴感重み付け部 111に出 力する。なお、この誤差信号が符号化歪みに相当する。
[0028] 聴感重み付け部 111は、加算器 110から出力された符号ィ匕歪みに対して聴感的な 重み付けを施し、歪み最小化部 112に出力する。
[0029] 歪み最小化部 112は、聴感重み付け部 111から出力された符号ィ匕歪みが最小とな るような、適応符号帳 103、固定符号帳 104及びゲイン符号帳 105の各インデックス をサブフレームごとに求め、これらのインデックスを符号ィ匕情報として CELP符号化装 置 100の外部に出力する。より詳細には、上記の適応符号帳 103及び固定符号帳 1 04に基づいて合成信号を生成し、この信号の符号化歪みを求める一連の処理は閉 ループ制御(帰還制御)となっており、歪み最小化部 112は、各符号帳に指示するィ ンデッタスを 1サブフレーム内において様々に変化させることによって各符号帳を探 索し、最終的に得られる、符号化歪みを最小とする各符号帳のインデックスを出力す る。
[0030] なお、符号ィヒ歪みが最小となる際の駆動音源は、サブフレームごとに適応符号帳 1
03へフィードバックされる。適応符号帳 103は、このフィードバックにより、記憶されて いる駆動音源を更新する。
[0031] ここで、固定符号帳 104の探索方法について説明する。まず、音源ベクトルの探索 と符号の導出は以下の式(1)の符号化歪を最小化する音源べ外ルを探索すること により行われる。
[数 1]
Figure imgf000007_0001
E :符号化歪、 X:符号化ターゲット、 p :適応符号帳ベクトルのゲイン、 H :聴感重み 付け合成フィルタ、 a :適応符号帳ベクトル、 q :固定符号帳ベクトルのゲイン、 s :固定 符号帳ベクトル
[0032] 一般的に、適応符号帳ベクトルと固定符号帳ベクトルとはオープンループで (別々 のループで)探索されるので、固定符号帳 104の符号の導出は以下の式(2)の符号 化歪を最小化する固定符号帳べ外ルを探索することにより行われる。
[数 2]
Figure imgf000008_0001
E :符号化歪、 X:符号化ターゲット (聴感重み付け音声信号)、 p :適応符号帳べ外 ルの最適ゲイン、 H :聴感重み付け合成フィルタ、 a :適応符号帳ベクトル、 q :固定符 号帳ベクトルのゲイン、 s :固定符号帳ベクトル、 y:固定符号帳探索のターゲットべタト ル
[0033] ここで、ゲイン p、 qは音源の符号を探索した後で決定するので、ここでは最適ゲイン で探索を進めることとする。すると、上式(2)は以下の式(3)と書ける。
[数 3]
Figure imgf000008_0002
[0034] そして、この歪の式を最小化することは、以下の式 (4)の関数 Cを最大化することと 同値であることがわかる。
[数 4]
[0035] よって、代数的符号帳の音源のような少数ノ^レスからなる音源の探索の場合は、 y Hと HHを予め計算しておけば、少ない計算量で上記関数 Cを算出できる。
[0036] 図 2は、図 1に示した歪み最小化部 112の内部構成を示すブロック図である。図 2に おいて、適応符号帳探索部 201は、聴感重み付け部 111において聴感的な重み付 けが施された符号化歪みを用いて、適応符号帳 103の探索を行う。探索の結果、適 応符号帳ベクトルの符号を固定符号帳探索部 202の前処理部 203及び適応符号帳 103に出力する。
[0037] 固定符号帳探索部 202の前処理部 203は、聴感重み付け部 111における合成フィ ルタの係数 Hを用いて、ベクトル yH及びマトリクス HHを算出する。 yHはターゲットべ タトル yを逆順にしてマトリクス Hを畳み込み、更にその結果を逆順にすることにより求 める。 HHはマトリクス同士の掛け算により求める。また、 yのパヮと、付加する固定値 Gとから、以下の式(5)に示すように付加値 gを求める。
[数 5] g = W2 G . . · ( 5 )
[0038] さらに、前処理部 203は、ベクトル yHの要素の極性( + _)から、事前にパルスの 極性を決める。具体的には、各位置に立つパルスの極性を yHのその位置の値の極 性に合わせることとし、 yHの値の極性を別の配列に格納しておく。各位置の極性を 別の配列に格納した後、 yHの値は全て絶対値をとり正の値に変換しておく。また、 格納した各位置の極性に合わせて HHの値も極性を乗ずることによって変換しておく 。求めた yH及び HHを探索ループ 204、 208内の相関値 ·音源パヮ加算部 205、 20 9に、付加値 gを重み付加部 206に出力する。
[0039] 探索ループ 204は、相関値 ·音源パヮ加算部 205、重み付加部 206及び大小判定 部 207を備え、探索ループ 208は、相関値 ·音源パヮ加算部 209及び大小判定部 2 10を備えている。
[0040] 相関値 ·音源パヮ加算部 205は、パルス数 2本の場合について、前処理部 203から 出力された yHと HHの値を加算することにより関数 Cを求め、求めた関数 Cを重み付 加部 206に出力する。
[0041] 重み付加部 206は、上式(5)に示した付加値 gを用いて、関数 Cに付加処理を行い
、付加処理した関数 Cを大小判定部 207に出力する。
[0042] 大小判定部 207は、重み付加部 206において付加処理された関数 Cの値の大小 を比較し、より大きい関数値を示す場合の関数 Cの分子分母を上書き格納する。そし て、探索ループ 204全体で最も大きくなる関数 Cを探索ループ 208の大小判定部 21 0に出力する。
[0043] 相関値.音源パヮ加算部 209は、パルス数 3本の場合について、探索ループ 204 内の相関値 ·音源パヮ加算部 205と同様に、前処理部 203から出力された yHと HH の値を加算することにより関数 Cを求め、求めた関数 Cを大小判定部 210に出力する
[0044] 大小判定部 210は、探索ループ 204の大小判定部 207から出力された関数 Cを含 め、相関値 ·音源パヮ加算部 209から出力された関数 Cの値の大小を比較し、より大 きい関数値を示す場合の関数 Cの分子分母を上書き格納する。そして、探索ループ 208全体で最も大きくなるパルスの位置の組合せを探索する。大小判定部 210は、 各パルスの位置の符号と極性の符号を合わせて固定符号帳ベクトルの符号とし、こ の符号を固定符号帳 104及びゲイン符号帳探索部 211に出力する。
[0045] ゲイン符号帳探索部 211は、大小判定部 210から出力された各パルスの位置の符 号と極性の符号を合わせた固定符号帳ベクトルの符号に基づいて、ゲイン符号帳を 探索し、探索結果をゲイン符号帳 105に出力する。
[0046] ここで、上記 2つの探索ループ 204、 208を用いた一連の処理の手順を図 3及び図
4に詳細に示す。ここでは、代数的符号帳の条件を以下に示す。
[0047] (1)ビット数: 13ビット
(2)処理単位(サブフレーム長):40
(3)パルス本数: 2本と 3本
(4)付カ卩する固定値: G=— 0· 001
この条件のもと、例として以下のような 2つに分かれた代数的符号帳が設計できる。 (符号帳 0 (パルス数 2本)の候補位置) idOO〔20〕= { 0, 2, 4, 6, 8, 10, 12 , 14, 16, 18,
20, 22, 24, 26, 28, 30, 32, 34, 36, 38}ici01 [20] = { 1, 3, 5, 7, 9, 11 , 13, 15, 17, 19,
21, 23, 25, 27, 29, 31 , 33, 35, 37, 39} (符号帳 1 (ノヽ °ノレス数 3本) の候補位置) icil0〔10〕 = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36}icil l [10] = { 2 , 6, 10, 14, 18, 22, 26, 30, 34, 38}icil2 [ 8] = { 1 , 5, 11, 15, 21 , 25, 31 ,
35}
[0048] 上記 2つの候補位置でエントリ数は、(20 X 20 X 2 X 2) + (10 X 10 X 8 X 2 X 2 X 2) = 1600 + 6400 = 8000ぐ 8192となり、 13ビットの代数白勺符号帳となる。
[0049] 図 3において、 ST301では、符号帳 0 (パルス数 2本)の候補位置を設定し、 ST30 2で初期化を行い、 ST303では、 i0が 20未満であることを確認する。 iOが 20未満で ある場合、符号帳 0から 1つ目のパルスの位置を出力して yH及び HHから値を取り出 して、それぞれ相関値 syO、パヮ shOとする(ST304)。この計算を iOが 20 (パルス位 置候ネ甫数) ίこなるまで行う(ST303〜ST306)。なお、 ST302〜ST309で fま、ノヽ。ノレ ス数 2本の場合の符号帳探索処理となる。
[0050] 一方、 iOが 20未満において、 ilも 20未満である場合には、 ST305〜ST310の処 理が繰り返し行われる。この処理では、 1つの iOにおける計算において、符号帳 0か ら 2つ目のパルスの位置を出力して yH及び HHから値を取り出して相関値 syO、パヮ shOにそれぞれ加算し、相関値 syl、パヮ shlとする(ST307)。パヮ shlに付加値 g を付カ卩した値と相関値 sylとを用いて、関数 Cの大小比較を行い(ST308)、より大き い関数値を示す関数 Cの分子、分母を記憶する(3丁309)この計算ぉ1が20 (パル ス位置候補数)になるまで行う(ST305〜ST310)。
[0051] iO及び ilが共に 20以上となった場合、図 4の ST311に移行し、符号帳 1 (パノレス数 3本)の候補位置を設定する。なお、 ST310以降では、パルス数 3本の場合の符号 帳探索処理となる。
[0052] ST312では、 iOが 10未満であることを確認して、 iOが 10未満である場合、符号帳 1 力、ら 1つ目のパルスの位置を出力して yH及び HHから値を取り出して、それぞれ相 関値 syO、パヮ shOとする(ST313)。この計算を iOが 10 (パルス位置候補数)になる まで行う(ST312〜ST315)。
[0053] 一方、 iOが 10未満において、 ilも 10未満である場合には、 ST314〜ST318の処 理が繰り返し行われる。この処理では、一つの ilにおける計算において、符号帳 1か ら 2つ目のパルスの位置を出力して yH及び HHから値を取り出して相関値 syO、パヮ shOにそれぞれ加算し、相関値 syl、パヮ shlとする(ST316)。ただし、 ST314〜S T318の'操り返し処理における ST317におレヽて、 i2力 8未満の場合、 ST317〜ST3 22の処理が繰り返し行われる。
[0054] この処理では、一つの i2における計算において、符号帳 1から 3つ目のパルスの位 置を出力して yH及び HHから値を取り出して相関値 syl、ノ ヮ shlにそれぞれ加算し 、相関値 sy2、パヮ sh2とする(ST319)。 ST309において最大の関数値を示す関数 Cの分子、分母と、相関値 sy2及びパヮ sh2からなる関数値との大小比較を行い(ST 320)、より大きい関数値を示す関数 Cの分子、分母を記憶する(ST321)この計算を i2が 8 (パルス位置候補数)になるまで行う(ST317〜ST322)。 ST320では、付加 値 gの影響により、パルス数 2本よりもパルス数 3本の方が選ばれやすくなる。
[0055] iO及び ilが共に 10以上、かつ、 i2が 8以上となった場合、 ST323において探索処 理を終了する。
[0056] 以上により、「パルスの本数」という明確な基準に基づく重み付けが実現できる。ま た、重み付けの方法として、付加処理を適用したことにより、符号ィ匕対象であるターゲ ットベクトルとの誤差が大きレ、(エネルギーの分散した無声性 (雑音性)のある)場合に は、重み付けが相対的に大きな意味を持ち、誤差が小さい(エネルギーの集中した 有声性のある)場合には、重み付けが相対的に小さな意味を持つことになる。したが つて、より高品質な合成音が得られるようになる。その理由は、以下のように定性的に 示される。
[0057] ターゲットべ外ルが有声性 (非雑音性)の場合には、選択の基準となる関数値が高 い部分と低い部分が存在する傾向がある。この場合、関数値のみの大小で音源べク トルが選択されることが望ましぐ本発明の固定値の付加処理では大きな変化がない ので、関数値のみの大小で音源べタトノレが選択される。
[0058] 一方、入力が無声性 (雑音性)の場合には、関数値は全て低くなる。この場合、パ ノレスの本数が多い音源ベクトルが選ばれる方が望ましぐ本発明の固定値の付加処 理が相対的に大きな意味を持つので、パルスの本数が多い音源ベクトルが選ばれる
[0059] このように実施の形態によれば、パルス数という明確な尺度で重み処理を行うため に安定した性能を得ることができ、また、重み付けの方法として付加処理を適用する ことにより、関数値が大きい場合は相対的に小さくなり、関数値が小さい場合は相対 的に大きくなるので、無声性 (雑音性)の部分においてのみパルス数の多い音源べク トルを選択することができるので、音質向上を図ることができる。
[0060] なお、本実施の形態では、重み付けの方法として、特に付加処理にっレ、てその有 効性を説明したが、本発明は乗算を用レ、ても有効である。なぜなら、図 3の該当部分 を以下の式(6)に示すように置き換えれば、「パルス数」という明確な基準による重み 付け処理が実現できるからである。
[0061] [数 6] 図 3の発明に係る付加処理 : (syl*syl+g*shl)*hmax≥ ymax*shl
乗算を用いる場合 : (syl*syl * ( 1 + G) )*hmax≥ ymax*shl - · - ( 6 )
[0062] また、本実施の形態では、付加処理としてパルスの少ない符号帳の探索時に負の 値を加算する例を示したが、これは相対的なので、パルスの多い符号帳の探索時に 正の値を加算すれば全く同じ結果が得られることは明らかである。
[0063] また、本実施の形態では、固定符号帳ベクトルのパルスの本数として 2本と 3本を用 いたが、これは本数が何本の組み合わせであってもよい。本発明がパルスの本数に 依存してレ、なレ、からである。
[0064] また、本実施の形態では、パルス数のヴァリエーションとして 2種類を用いた力 S、これ は何種類であってもよレ、。本数の少なレ、方をより少なレ、値にすれば簡単に実現可能 であり、探索処理は図 3に示したものの連結処理でよい。発明者がパルス数 1本から パルス数 5本の 5種類の固定符号帳ベクトルの探索に用いたところ、以下の数値で良 好な性能が得られることを符号化 ·復号化実験により確認している。
[0065] 1本の固定値 0. 002
2本の固定値 _0. 001
3本の固定値 _0. 0007
4本の固定値 _0. 0005
5本の固定値 相対値なので不要
[0066] また、本実施の形態では、本数の集合が分かれている符号帳について適用したが 、パルスの本数が異なる固定符号帳ベクトルが符号帳内に混在していてもよレ、。それ は、本発明の付加処理が関数値の判定の部分で用いられるため、決められたパルス 数の固定符号帳ベクトルの集合がまとまつている必要はないからである。これに関連 してさらに言えることは、本実施の形態では、固定符号帳の例として代数的符号帳を 用いたが、これは従来からのマルチパルス符号帳や、 ROMに固定符号帳ベクトルが 直接書き込まれている形式の学習符号帳などにも適用できることは明らかである。マ ルチパルスは本数そのものが本発明に同様に用いられるし、全ての固定符号帳べク トルに値が入っている場合でも振幅が平均以上の本数等、本数という情報を抽出す ることは容易にでき、それを用いればょレ、からである。
[0067] また、本実施の形態では、 CELPに対して用いた力 本数のわかる音源ベクトルが 格納されている符号帳が存在する符号化/複号化方法であれば、本発明を適用で きることは明らかである。なぜなら、本発明の所在は固定符号帳ベクトルの探索内の みであり、適応符号帳の有無や、スペクトル包絡の分析方法が LPC力、 FFTかフィノレ タバンクかといつたことに依存しないからである。
[0068] なお、本実施の形態では、本発明をハードウェアで構成する場合を例にとって説明 したが、本発明はソフトウェアで実現することも可能である。
[0069] また、本実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であ る LSIとして実現される。これらは個別に 1チップ化されてもよいし、一部または全てを 含むように 1チップィ匕されてもよい。ここでは、 LSIとした力 集積度の違いにより、 IC、 システム LSI、スーパー LSI、ウルトラ LSIと呼称されることもある。
[0070] また、集積回路化の手法は LSIに限るものではなぐ専用回路または汎用プロセッ サで実現してもよい。 LSI製造後に、プログラムすることが可能な FPGA (Field Progra mmable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフ ィギユラブル'プロセッサーを利用してもよい。
[0071] さらには、半導体技術の進歩または派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用レ、て機能ブロックの集積化を行って もよレ、。バイオ技術の適用等が可能性としてありえる。
[0072] また、本実施の形態の説明に用いた適応符号帳は、適応音源符号帳と呼ばれるこ ともある。また、固定符号帳は、固定音源符号帳と呼ばれることもある。 [0073] 2006年 5月 10曰出願の特願 2006— 131851の曰本出願に含まれる明糸田書、図 面および要約書の開示内容は、すべて本願に援用される。
産業上の利用可能性
[0074] 本発明にかかる音声符号化装置及び音声符号化方法は、符号化される入力信号 の雑音性、非雑音性に応じた傾向を十分に利用し、良好な音質を得ることができ、例 えば、移動体通信システムにおける携帯電話等に適用できる。

Claims

請求の範囲
[1] 入力音声信号のうち声道情報をスペクトル包絡情報に符号化する第 1符号化手段 と、
入力音声信号のうち音源情報を適応符号帳と固定符号帳とにそれぞれ格納された 音源ベクトルを用いて符号化する第 2符号化手段と、
前記固定符号帳に格納された音源ベクトルを探索する探索手段と、
を具備し、
前記探索手段は、音源ベクトルを形成するパルス本数に応じた重み付けを探索の 基準となる計算値に行う重み付け手段を有する音声符号化装置。
[2] 前記重み付け手段は、ノ^レス本数が少ない音源ベクトルほど選択されにくくなるよ うに重み付けを行う請求項 1に記載の音声符号化装置。
[3] 前記重み付け手段は、加算による重み付けを行う請求項 1に記載の音声符号化装 置。
[4] 前記重み付け手段は、符号ィ匕対象であるターゲットとスぺ外ル包絡情報とにより合 成された音源ベクトルから算出されるコスト関数を探索の基準となる前記計算値とし、 前記ターゲットのパヮと、合成された前記音源ベクトルのパヮとを乗じた値に予め定め られた固定値を乗じた値を前記計算値に加算する請求項 3に記載の音声符号化装 置。
[5] 入力音声信号のうち声道情報をスペクトル包絡情報に符号化する第 1符号化工程 と、
入力音声信号のうち音源情報を適応符号帳と固定符号帳とにそれぞれ格納された 音源べ外ルを用いて符号化する第 2符号ィ匕工程と、
前記固定符号帳に格納された音源ベクトルを探索する探索工程と、
を具備し、
前記探索工程は、音源ベクトルを形成するパルス本数に応じた重み付けを探索の 基準となる計算値に行う音声符号化方法。
PCT/JP2007/059580 2006-05-10 2007-05-09 音声符号化装置及び音声符号化方法 WO2007129726A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008514506A JPWO2007129726A1 (ja) 2006-05-10 2007-05-09 音声符号化装置及び音声符号化方法
US12/299,986 US20090164211A1 (en) 2006-05-10 2007-05-09 Speech encoding apparatus and speech encoding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-131851 2006-05-10
JP2006131851 2006-05-10

Publications (1)

Publication Number Publication Date
WO2007129726A1 true WO2007129726A1 (ja) 2007-11-15

Family

ID=38667834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059580 WO2007129726A1 (ja) 2006-05-10 2007-05-09 音声符号化装置及び音声符号化方法

Country Status (3)

Country Link
US (1) US20090164211A1 (ja)
JP (1) JPWO2007129726A1 (ja)
WO (1) WO2007129726A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2099025A4 (en) * 2006-12-14 2010-12-22 Panasonic Corp AUDIO CODING DEVICE AND AUDIO CODING METHOD
CN100578620C (zh) * 2007-11-12 2010-01-06 华为技术有限公司 固定码书搜索方法及搜索器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034354A1 (en) * 1997-12-24 1999-07-08 Mitsubishi Denki Kabushiki Kaisha Sound encoding method and sound decoding method, and sound encoding device and sound decoding device
JP2002169595A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd 固定音源符号帳及び音声符号化/復号化装置
JP2002518694A (ja) * 1998-06-09 2002-06-25 松下電器産業株式会社 音声符号化装置及び音声復号化装置
JP2002196799A (ja) * 2000-12-26 2002-07-12 Mitsubishi Electric Corp 音声符号化装置及び音声符号化方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI98104C (fi) * 1991-05-20 1997-04-10 Nokia Mobile Phones Ltd Menetelmä herätevektorin generoimiseksi ja digitaalinen puhekooderi
US5396576A (en) * 1991-05-22 1995-03-07 Nippon Telegraph And Telephone Corporation Speech coding and decoding methods using adaptive and random code books
ATE192259T1 (de) * 1995-11-09 2000-05-15 Nokia Mobile Phones Ltd Verfahren zur synthetisierung eines sprachsignalblocks in einem celp-kodierer
EP1071081B1 (en) * 1996-11-07 2002-05-08 Matsushita Electric Industrial Co., Ltd. Vector quantization codebook generation method
FI113571B (fi) * 1998-03-09 2004-05-14 Nokia Corp Puheenkoodaus
US6173257B1 (en) * 1998-08-24 2001-01-09 Conexant Systems, Inc Completed fixed codebook for speech encoder
EP1959435B1 (en) * 1999-08-23 2009-12-23 Panasonic Corporation Speech encoder
CN1202514C (zh) * 2000-11-27 2005-05-18 日本电信电话株式会社 编码和解码语音及其参数的方法、编码器、解码器
JP4245288B2 (ja) * 2001-11-13 2009-03-25 パナソニック株式会社 音声符号化装置および音声復号化装置
CN101615396B (zh) * 2003-04-30 2012-05-09 松下电器产业株式会社 语音编码设备、以及语音解码设备
SG123639A1 (en) * 2004-12-31 2006-07-26 St Microelectronics Asia A system and method for supporting dual speech codecs
JP3981399B1 (ja) * 2006-03-10 2007-09-26 松下電器産業株式会社 固定符号帳探索装置および固定符号帳探索方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034354A1 (en) * 1997-12-24 1999-07-08 Mitsubishi Denki Kabushiki Kaisha Sound encoding method and sound decoding method, and sound encoding device and sound decoding device
JP2002518694A (ja) * 1998-06-09 2002-06-25 松下電器産業株式会社 音声符号化装置及び音声復号化装置
JP2002169595A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd 固定音源符号帳及び音声符号化/復号化装置
JP2002196799A (ja) * 2000-12-26 2002-07-12 Mitsubishi Electric Corp 音声符号化装置及び音声符号化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAURA T. ET AL.: "Onsei Yotai ni Motozuku Omomi Tsuki Yugami ni yoru CELP Ongen Tansaku", PROCEEDINGS OF THE 2001 IEICE GENERAL CONFERENCE JOHO.SYSTEM 1, vol. D-14-25, 7 March 2001 (2001-03-07), pages 195, XP003016947 *

Also Published As

Publication number Publication date
US20090164211A1 (en) 2009-06-25
JPWO2007129726A1 (ja) 2009-09-17

Similar Documents

Publication Publication Date Title
US6480822B2 (en) Low complexity random codebook structure
TW448417B (en) Speech encoder adaptively applying pitch preprocessing with continuous warping
CN101180676B (zh) 用于谱包络表示的向量量化的方法和设备
CN100369112C (zh) 可变速率语音编码
US6393390B1 (en) LPAS speech coder using vector quantized, multi-codebook, multi-tap pitch predictor and optimized ternary source excitation codebook derivation
EP1224662A1 (en) Variable bit-rate celp coding of speech with phonetic classification
WO2007047037A2 (en) An adaptive equalizer for a coded speech signal
WO2008072701A1 (ja) ポストフィルタおよびフィルタリング方法
AU2008222241A1 (en) Encoding device and encoding method
US7596491B1 (en) Layered CELP system and method
WO2008072671A1 (ja) 音声復号化装置およびパワ調整方法
WO2007105587A1 (ja) 固定符号帳探索装置および固定符号帳探索方法
CN100593195C (zh) 在语音编码系统中对增益信息进行编码的方法和装置
JP5388849B2 (ja) 音声符号化装置および音声符号化方法
JP6644848B2 (ja) ベクトル量子化装置、音声符号化装置、ベクトル量子化方法、及び音声符号化方法
WO2007129726A1 (ja) 音声符号化装置及び音声符号化方法
EP2099025A1 (en) Audio encoding device and audio encoding method
JPWO2008001866A1 (ja) 音声符号化装置及び音声符号化方法
EP2116996A1 (en) Encoding device and encoding method
JP3510168B2 (ja) 音声符号化方法及び音声復号化方法
JP2013068847A (ja) 符号化方法及び符号化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008514506

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12299986

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07743015

Country of ref document: EP

Kind code of ref document: A1