WO2007129695A1 - Biaxially oriented polyarylene sulfide film - Google Patents

Biaxially oriented polyarylene sulfide film Download PDF

Info

Publication number
WO2007129695A1
WO2007129695A1 PCT/JP2007/059481 JP2007059481W WO2007129695A1 WO 2007129695 A1 WO2007129695 A1 WO 2007129695A1 JP 2007059481 W JP2007059481 W JP 2007059481W WO 2007129695 A1 WO2007129695 A1 WO 2007129695A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyarylene sulfide
biaxially oriented
capacitor
thermoplastic resin
Prior art date
Application number
PCT/JP2007/059481
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Ohkura
Yasuyuki Imanishi
Tetsuya Machida
Ryo Miyamoto
Mitsugu Shimizu
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2008514491A priority Critical patent/JP5239855B2/en
Publication of WO2007129695A1 publication Critical patent/WO2007129695A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a biaxially oriented polyarylene sulfide film having excellent heat resistance, dimensional stability, electrical properties and planar properties, a biaxially oriented polyarylene sulfide film for capacitors, and a metallized biaxial
  • the present invention relates to an oriented polyarylene sulfide film and a capacitor using them. Furthermore, the present invention forms a high-quality biaxially oriented polyarylene sulfide film with little variation in physical properties within the film surface, or fine fine protrusions on the surface, and is excellent in heat resistance and electrical characteristics, and is used in a capacitor.
  • the present invention relates to a biaxially oriented polyarylene sulfide film suitable for miniaturization and large capacity without impairing processing suitability, a metallized polyarylene sulfide film using the same, and a capacitor using the same.
  • the present invention relates to a polyarylene sulfide film, a metallized film, and a capacitor using the same.
  • a film capacitor is generally formed by a method of winding a film such as a biaxially oriented polyethylene terephthalate film or a biaxially oriented polypropylene film and a metal foil film such as an aluminum foil, or on the surface of the film. It is manufactured by a method of winding or laminating after forming a deposited film of aluminum, zinc or the like.
  • capacitors have also been miniaturized and surface-mounted, and heat resistance and thinning have been demanded. For this reason, capacitors using polyphenylene sulfide (PPS) film with excellent heat resistance and dielectric properties are manufactured, and polyester film and polypropylene film are used. Is used in high-performance circuits that have a high guaranteed operating temperature.
  • PPS Finolem is susceptible to tearing, causing film breakage during processing and shortage of self-healing properties at the time of dielectric breakdown due to low withstand voltage, and its use as a capacitor film is limited. The current situation is that you can build a place.
  • Patent Document 1 A biaxially oriented polyester film (hereinafter sometimes abbreviated as a PPS film) is disclosed in Patent Document 1 and the like.
  • Patent Document 2 proposes that a capacitor having excellent heat resistance, frequency characteristics, temperature characteristics, and the like can be provided by using a PPS film as a capacitor dielectric.
  • the range of manufacturing conditions is narrow in the manufacturing process, that is, the process of winding, cutting, molding, etc. If these controls are insufficient, defective products due to low voltage breakdown increase. There is a drawback.
  • the above capacitors often suffer from short-circuiting without self-healing (self-healing) when low-voltage breakdown occurs, which further increases the defect rate and has low reliability during use. To.
  • Patent Documents 3 to 5 propose using a PPS laminated film in which a polyester resin or a polyolefin resin is laminated on at least one side of a PPS film as a capacitor.
  • these conventional PPS laminated films do not have sufficient adhesion between the polyester and polyolefin resin layers and the PPS layer, and are often easily peeled off during the capacitor manufacturing process. Things were hard to get.
  • films laminated with resins other than PPS, such as polyester and polyolefin could not be substantially self-collected, and trimming edges and non-product films could not be used again as film raw materials.
  • Patent Document 6 proposes a PPS laminated film obtained by laminating an amorphous polyester resin composition in order to improve SH properties.
  • an amorphous polyester resin layer is formed on the PPS layer in-line and off-line, but the glass transition temperature Tg is at most 90 ° C, especially when used at high temperatures of 100 ° C or higher.
  • Tg glass transition temperature
  • Patent Document 7 in order to improve the SH property, the entire part in the thickness direction of the film is substantially A PPS film composed of PPS and having a surface layer that is more amorphous than the inner layer has been proposed.
  • the surface of the PPS film is melted and amorphousized by frame treatment, etc., or an amorphous PPS resin is laminated, but in any case, the surface becomes flat when the film becomes thin, for example, 3 ⁇ m or less.
  • productivity deteriorates
  • SH property is also insufficient.
  • Patent Document 8 a force is proposed for a PPS film in which a ceramic layer is provided on at least one side of a PPS film.
  • a ceramic layer is provided on at least one side of a PPS film.
  • sufficient self-recovery characteristics (SH property) are required unless the deposited layer is as thick as lOOnm. Since it could not be obtained, there were cases in which poor productivity and surface roughness due to the loss of heat of vapor deposition of the film caused problems.
  • Patent Documents 9 and 10 have been proposed in order to improve the characteristics of an insulator, particularly a capacitor, as a dielectric.
  • Patent Document 9 describes a PPS that has a melt specific resistance of 1 ⁇ 10 9 ⁇ 'cm or more by washing with pressurized ion exchanged water at 100 ° C or higher after polymerization and further acid cleaning, and biaxial stretching. By doing so, the film can be used to prevent the breakdown voltage from increasing and the capacitor usage rate from decreasing.
  • Patent Document 10 discloses a film having a high volume resistivity at a high temperature by stretching a PPS produced without using a polymerization aid. However, even with these methods, the SH performance was not improved, and the reliability of the capacitor was sometimes insufficient. In addition, there were cases where film forming stability and film flatness were inferior due to a narrow range of conditions for film formation.
  • Patent Documents 11 to 13 propose a blend of PPS and polyetherimide
  • Patent Document 13 proposes a blend of PPS and polyarylate.
  • the force to improve the tear resistance of the film by simply blending PPS and polyetherimide with a twin-screw extruder Simply disperse the two types of polymers and disperse the polyetherimide The long diameter is controlled to be 30 ⁇ m or less, and no mention is made of improvements in electrical characteristics and capacitor characteristics.
  • Patent Document 13 aims to improve the slipperiness of the film by a simple blend of PPS and polyarylate, and does not mention dispersion diameter control but mentions improvement of electrical characteristics and capacitor characteristics.
  • PPS there is no mention of the SH characteristics that have been proposed to improve the withstand voltage by increasing the glass transition temperature of the PPS film to 95 ° C or higher by compatibilizing monoterimide. Even if the performance of such small low-voltage capacitors can be improved by increasing the glass transition temperature and improving the heat-resistant temperature, for example, high-capacity capacitors that are used under high temperature and high voltage, such as inverter capacitors for hybrid cars. In some cases, the performance was insufficient when used in a wound condenser.
  • Patent Document 1 Japanese Patent Laid-Open No. 54-142275
  • Patent Document 2 Japanese Patent Laid-Open No. 57-187327
  • Patent Document 3 Japanese Patent Application No. 2 _ 168861
  • Patent Document 4 JP-A-4 219236
  • Patent Document 5 JP-A-5-318665
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2000-218738
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2002-20508
  • Patent Document 8 Japanese Unexamined Patent Publication No. 63-189458
  • Patent Document 9 Japanese Patent Application Laid-Open No. 62-158312
  • Patent Document 10 JP-A-7-312325
  • Patent Document 11 Japanese Patent Laid-Open No. 62-158312
  • Patent Document 12 Japanese Patent Laid-Open No. 2001-261959
  • Patent Document 13 JP-A-11266266
  • an object of the present invention is to provide a biaxially oriented polyarylene sulfide film having excellent heat resistance, dimensional stability, electrical characteristics, and planarity. Especially when used as a capacitor, it has high electrical characteristics and excellent self-healing (SH), so it forms a highly reliable capacitor even when used at high temperature and high voltage. It is to provide a polyarylene sulfide film, a metallized film, and a capacitor using the same. More specifically, such as capacitors for inverters in high-speed railways and hybrid cars that require high reliability at high temperature and high voltage as well as small capacitor applications such as chip capacitors where PPS films have been used in the past. The object is to provide a capacitor film that can also be used as a large-capacity winding capacitor used under high temperature and high voltage, this metallized film, and a capacitor using the same.
  • the present invention provides a film made of a thermoplastic resin including polyarylene sulfide and another thermoplastic resin A different from the polyarylene sulfide, wherein the thermoplastic resin A is dispersed.
  • the average phase diameter of the dispersed phase is 50 to 500 nm
  • the glass transition temperature of the film is observed to be 85 ° C or higher and lower than 95 ° C, and 95 ° C or higher and 130 ° C or lower.
  • a biaxially oriented polymer characterized in that the elongation at break in the longitudinal and width directions of the film is not more than 80% and the dielectric breakdown voltage at 150 ° C is not less than 300 V // 1 m. It is an Allensulfide Film.
  • biaxially oriented polyarylene sulfide film of the present invention is
  • thermoplastic resin A When the sum of the contents of polyarylene sulfide and thermoplastic resin A is 100 parts by weight, the content of polyarylene sulfide is 70 to 99.5 parts by weight, and the content of thermoplastic resin A Is 0.5 to 30 parts by weight,
  • the polyarylene sulfide is a polyphenylene sulfide
  • Thermoplastic resin A is an amorphous resin, and its glass transition temperature is 150 ° C or higher and lower than the melting point of the porous lens sulfide,
  • thermoplastic resin A is at least one polymer selected from the group consisting of polyarylate, polyphenylene ether, polyetherimide, polyethersulfone and polysulfone,
  • thermoplastic resin A force containing a silicon atom composed of a siloxane bond at the interface of the dispersed phase.
  • Polyarylene sulfide and thermoplastic resin A and epoxy group, amino group, isocyanate Melt-forming a resin composition obtained by kneading a raw material containing 0.05 to 3 parts by weight of a compatibilizer having at least one group selected from the group consisting of nate groups;
  • the volume resistivity at 150 ° C and DC 500V is 1.0 x 1014 ⁇ 'cm or more.
  • the melting specific resistance of the resin composition constituting the film at 310 ° C is 1.0 ⁇ 10 9 ⁇ ⁇ ⁇ m to l. 0 ⁇ 10 ⁇ ⁇ 'cm,
  • the average value of breakdown voltage measured at 30 locations in an atmosphere of 23 ° C and 65% RH is 350 V / ⁇ m or more, and the standard deviation of the breakdown voltage is 30V / ⁇ m or less.
  • the center line average roughness Ra is 30 nm or more and lOOnm or less, the maximum height Rmax is 700 nm or less, and the number of protrusions having a protrusion height of 50 nm or more in the region of 50 / im x 50 / im is 250 or more.
  • the friction coefficient is 0.2 or more and 0.6 or less
  • the heat setting temperature of the first stage is (previous stretching temperature + 5 ° C) to 240 ° C and the maximum heat setting temperature of the second stage is (Temperature + 20 ° C) or higher (melting point of the polyarylene sulfide constituting the film _ 5 ° C) or lower,
  • a biaxially oriented film for capacitors that is a biaxially oriented film as described above,
  • a capacitor comprising the above metallized film wound or laminated
  • Each of them is preferred and includes a mode.
  • a biaxially oriented polyarylene sulfide film having excellent heat resistance, dimensional stability, electrical characteristics, and planarity can be obtained, and particularly when used as a capacitor.
  • High electrical properties and excellent self-healing (SH) characteristics make it possible to form a large and small capacitor with high reliability even when used at high temperatures and voltages, and to use this. You can get the capacitor you had.
  • the biaxially oriented polyarylene sulfide film of the present invention the biaxially oriented polyarylene sulfide film for capacitors, the metallized biaxially oriented polyarylene sulfide film, and the capacitor using these are described. To do.
  • the biaxially oriented polyarylene film of the present invention has excellent heat resistance, dimensional stability, electrical properties, and planarity, and particularly has high electrical properties and excellent self-healing properties (SH property) when used for capacitors. By doing so, a highly reliable capacitor can be formed even when used at high temperature and high voltage.
  • SH property self-healing properties
  • the present invention includes a polyarylene sulfide and another thermoplastic resin A different from the polyarylene sulfide, and the thermoplastic resin A forms a dispersed phase,
  • the average dispersed diameter of the dispersed phase is 50 to 500 nm, and the glass transition temperature of the film is observed at 85 ° C or higher and lower than 95 ° C, while not observed at 95 ° C or higher and 130 ° C or lower; and
  • the breaking elongation in the longitudinal direction and the width direction of the film is preferably 80% or less, and the dielectric breakdown voltage at 150 ° C. is preferably 300 V // im or more.
  • polyarylene sulfide forms a continuous phase (sea phase or matrix), and other thermoplastic resin A forms a dispersed phase (island phase or domain), and the average dispersed diameter of the dispersed phase is determined.
  • the average value should be 50-500 nm.
  • the preferred range of the average value of the dispersion diameter is 60 to 300 nm, and more preferably 70 to 200 nm.
  • Heat resistance of polyarylene sulfide by forming a continuous phase It is possible to largely reflect the excellent chemical resistance and mechanical properties on the film.
  • by setting the average dispersion diameter in the above range it is excellent in flatness, and it is possible to impart SH properties to the film when used as a capacitor dielectric.
  • the average value of the average dispersed diameter of the dispersed phase is less than 50 nm, the effect of improving SH property when used as a dielectric of the capacitor of the present invention is insufficient.
  • the average value of the average dispersion diameter is larger than 500 nm, the heat resistance and flatness of the film are deteriorated, and the film is easily broken during stretching.
  • the average dispersion diameter of the dispersed phase is: (a) a direction parallel to the longitudinal direction and perpendicular to the film surface, (i) a direction parallel to the width direction and perpendicular to the film surface, (u) This is the number average of dispersed particle diameters observed on a plane cut in a direction parallel to the film plane.
  • Phase shape index 1 (number average value of lb + number average value of le) / 2
  • shape finger U (number average value of Id + number average value of lf) / 2
  • shape index K (la Number average value + lc number average value) / 2
  • the average dispersed diameter of the dispersed phase is (I + J + K) / 3.
  • a sample was prepared by an ultrathin section method, and observed using a transmission electron microscope under the condition of an applied voltage lOOkV, and a photograph was taken at 20,000 times.
  • the average dispersion diameter of any 100 dispersed particles is calculated by importing it into an image analyzer as an image and performing image processing as necessary.
  • the shape of the dispersed phase of the thermoplastic resin A is preferably a spherical or elongated island shape, an oval shape, or a fiber shape.
  • the aspect ratio of the dispersed phase is preferably in the range of 1-20.
  • a more preferable range of the aspect ratio of the dispersed phase is 1 to 10 and a more preferable range is:! To 5.
  • the aspect ratio means the ratio of the average major axis / average minor axis of the dispersed phase.
  • the aspect ratio can be measured using a technique such as a transmission electron microscope or a scanning electron microscope.
  • a sample is prepared by an ultrathin section method, and using a transmission electron microscope,
  • the aspect ratio can be calculated by observing under a pressure of lOOkV, taking a picture at 20,000 times, capturing the obtained picture as an image into an image analyzer, and performing image processing. (Details of the measurement method will be described later).
  • the glass transition temperature (Tg) of the biaxially oriented polyarylene film is observed at 85 ° C or more and less than 95 ° C, but not at 95 ° C or more and 130 ° C or less. Preferred. When Tg is less than 85 ° C, the heat resistance of the film may be lowered. If Tg is observed to be 95 ° C or higher and 130 ° C or lower, the SH property may be insufficient when the film is used as a capacitor dielectric.
  • the biaxially oriented polyarylene sulfide film of the present invention needs to have a breaking elongation of 80% or less in both the longitudinal direction and the width direction. 30% or more and 80% or less is preferable, 35% or more and less than 65%, more preferably 40% or more and less than 55%.
  • the breaking elongation of the film is 30. If it is less than / o, it will break easily when the film is slit, or it will be broken during processing such as bending, and if it is used especially for capacitors, it will break easily when manufacturing a wound capacitor. It becomes difficult.
  • the biaxially oriented polyarylene sulfide film of the present invention has a breaking strength in the longitudinal direction and the width direction of 230 MPa or more and 500 MPa or less, more preferably 250 MPa or more and 450 MPa or less, and further preferably 270 MPa or more and 400 MPa or less. If the breaking strength of the film is less than 230 MPa, warping may occur easily during processing such as bending, and the withstand voltage at high temperatures may be low.
  • a wound capacitor is manufactured. In this case, it is easy to break, making it difficult to process, or causing low voltage breakdown. On the other hand, in order to obtain a film exceeding 500 MPa, it is necessary to make the draw ratio at the time of film formation extremely high, which is not preferable because the film is easily broken during the film forming process.
  • the biaxially oriented polyarylene sulfide film of the present invention preferably has a hang ratio in the longitudinal direction and in the width direction of 3 GPa or more and less than 7 GPa, more preferably 3.2 GPa. a or more and less than 6 GPa, more preferably 3.5 GPa or more and less than 5 GPa. If any of the Young's modulus in the longitudinal and width directions of the film is less than 3 GPa, the withstand voltage at high temperatures may be low. This is preferable because it may be insufficient and the capacitor may be inferior in reliability.
  • the biaxially oriented polyarylene sulfide film of the present invention has an elongation of 2% and an elongation at break of 5% in the elongation-stress curve at 23 ° C in the longitudinal and width directions of the film.
  • Is preferably always 0 or more in any direction.
  • the differential coefficient in the direction of force is more preferably 0.1 (MPaZ%) or more, more preferably 0.5 (MPa / Q /.) Or more.
  • the differential coefficient When the differential coefficient is negative, the heat resistance, dimensional stability, electrical characteristics, planar characteristics, etc., as well as the decrease in film strength, or the difference in dielectric breakdown voltage between 150 ° C and 23 ° C It may be unfavorable because it becomes large or the SH property becomes poor. The cause of this is not necessarily clear, but the degree of relaxation of the amorphous molecular chains that make up the film is large. Especially at the glass transition point of polyarylene sulfide, the mobility of the polyarylene sulfide molecular chains increases. I think that is due to this. Also, if the derivative always exceeds 10 (MPa /%), the elongation of the film will be less than 30%, which may be undesirable.
  • the dielectric breakdown voltage force at 150 ° C. of the biaxially oriented polyarylene sulfide film is preferably 3 ⁇ 400 V // im or more, more preferably 400 V / ⁇ or more. 1
  • the dielectric breakdown resistance at 50 ° C is less than 300VZ ⁇ m
  • the resistance of the capacitor element at high temperature above the glass transition temperature of the film for example, at 95 ° C or higher.
  • the voltage may be low.
  • the upper limit of the withstand voltage of the biaxially oriented polyarylene sulfide film is not particularly set, but when it is 1000 V / zm or more, the SH property does not function when the capacitor is used, which may lead to penetration failure. is there.
  • the dielectric breakdown voltage at 23 ° C V (23) (V / zm) in order to reduce the fluctuation of withstand voltage due to temperature and increase the self-healing property (SH property) ) And 15 Dielectric breakdown voltage V (150) (V // im) at 0 ° C is
  • V (150) / V (23) ⁇ 0.9, and even more preferably V (150) / V (23) ⁇ 0.95.
  • the biaxially oriented polyarylene sulfide film of the present invention preferably has V (23) of 350 V / Zm or more and a standard deviation of 30 VZ ⁇ m or less.
  • V (23) 350 V / Zm or more
  • a standard deviation of 30 VZ ⁇ m or less When the standard deviation exceeds 30V / zm, the physical property variation in the film increases, and when a single capacitor is used, low voltage breakdown occurs, and continuous concentrated breakdown is likely to occur immediately at the breakdown location, and the SH property is improved. Does not function and impairs reliability.
  • the standard deviation of the preferable dielectric breakdown voltage is 25 V / ⁇ m or less, more preferably 20 VZ ⁇ m or less.
  • the molecular chain orientation in the film is controlled by highly orienting the polyarylene sulfide molecular chains in the stretching process during film formation, and further controlling the temperature of the subsequent heat setting process. It is considered that the structure can be fixed while keeping the chain tension high and the above-mentioned preferable characteristics are exhibited.
  • the stretching temperature is changed in both the longitudinal direction and the width direction (Tg (polyarylene). Rufido glass transition temperature)) to (Tg + 40), preferably (Tg + 5 ° C) to (Tg + 20 ° C), the draw ratio is 3 times or more in both the longitudinal direction and the width direction, preferably 3.
  • the area magnification is 11 times or more, preferably 13 times or more, more preferably 14 times or more
  • the heat setting temperature after stretching is 170 to (Tm (melting point of polyarylene sulfide) —5 ° C ) ° C, preferably 200-250 ° C
  • one-stage heat setting more preferably, heat setting after stretching is performed in two or more steps with different temperatures
  • the heat setting temperature of the first stage is (Previous stretching temperature + 5 ° C) to 240 ° C, preferably (Previous stretching temperature + 30 ° C) to 220 ° C.
  • the maximum value is (the first stage heat setting temperature + 20V) to (Tm_5 ° C), and after heat setting, the maximum value of the heat setting temperature in the latter stage is 8% or less, preferably 2 to 5% in the width direction. It can be made within the scope of the present invention by appropriately adjusting below.
  • the volume resistivity of the biaxially oriented polyarylene film at 150 ° C and DC 500V is preferably 1. OX 10 14 Q'cm or more, more preferably 1.0 X 1 0 5 Q 'cm or more. If the volume resistivity at 150 ° C and DC 500V is less than 1.0 X 10 4 ⁇ 'cm, when manufacturing a capacitor using this film, it is above the glass transition temperature of the film, that is, above 95 ° C. Capacitor leakage current at high temperatures may increase and stability at high temperatures may be poor.
  • volume resistivity of the biaxially oriented polyarylene sulfide film there is no specific upper limit for the volume resistivity of the biaxially oriented polyarylene sulfide film, but if it exceeds 1.0 X 10 16 Q'cm, the casting process using the electrostatic application method becomes difficult during melt film formation. There is a case.
  • the biaxially oriented polyarylene sulfide film of the present invention has a center line average roughness Ra of 30 nm or more and lOOnm or less, a maximum height Rmax of 700 nm or less, and a protrusion in 50 ⁇ mD (50 ⁇ m x 50 ⁇ m region)
  • the number of protrusions having a height of 50 nm or more is preferably 250 or more. If Ra is less than 30 nm, sufficient slipperiness cannot be imparted to the film, and wrinkles may occur during film formation, or wrinkles may occur during the manufacture of wound capacitors, making processing difficult. Become.
  • Ra is lOOnm or more
  • a deposited film such as aluminum or zinc is formed on the surface of the film having a large surface roughness, unevenness in the deposited film thickness occurs, or when a winding capacitor is used, it is between the films.
  • air is used, resulting in instability of electrical characteristics, lowering of withstand voltage, concentration of electric field during use, melting or burning of the film and metal thin film layer, and use as a film for capacitors In addition, it is difficult to improve the performance of capacitors.
  • the biaxially oriented polyarylene sulfide film of the present invention has a vapor deposited film such as aluminum or zinc deposited on the surface of the film having a large surface roughness.
  • a vapor deposited film such as aluminum or zinc deposited on the surface of the film having a large surface roughness.
  • the lower limit of Rmax is not particularly limited, but is set to 300 nm from the viewpoint of imparting appropriate slipperiness.
  • the biaxially oriented polyarylene sulfide film of the present invention has a fineness of fine protrusions insufficient when the number of protrusions having a protrusion height of 50 nm or more in a 50 ⁇ m mouth is less than 250, making the winding capacitor one. At times, air intervenes between the films, resulting in instability of electrical characteristics and a decrease in withstand voltage, electric field concentration during use, and film or metal thin film layer melting or burning. When used as a capacitor film, it may be difficult to improve the performance of the capacitor.
  • the upper limit of the number of protrusions with a height of 50 nm or more in the 50 ⁇ port is not particularly limited, but is 600 from the viewpoint of obtaining a high-performance capacitor.
  • the biaxially oriented polyarylene sulfide film of the present invention preferably has a friction coefficient of 0.2 or more and 0.8 or less. More preferably, it is 0.25 or more and 0.6 or less, and further preferably 0.3 or more and less than 0.5. If the coefficient of friction is less than 0.2, sufficient slipperiness cannot be imparted to the film, so that wrinkles may occur when the film is formed, or wrinkles may occur when a wound capacitor is manufactured. Processing becomes difficult. On the other hand, when the coefficient of friction exceeds 0.8, when a deposited film such as aluminum or zinc is formed on the surface of the film having a large surface roughness, the thickness of the deposited film may be uneven or the winding capacitor may be the same. Sometimes air intervenes between the films, resulting in unstable electrical characteristics and lowering of withstand voltage, electric field concentration during use, and film and metal thin film layer melting or burning. When used as a capacitor, it is difficult to improve the performance of the capacitor.
  • the biaxially oriented polyarylene sulfide film of the present invention achieves the above-mentioned friction coefficient range and surface roughness of the film in order to impart slipperiness to the film and improve processability.
  • Particles can be included.
  • the particles include inert particles such as inorganic particles such as titanium oxide, calcium carbonate, silica, and alumina zirconia, and organic particles such as silicon particles, crosslinked attalinole particles and crosslinked polystyrene particles, and acetic acid during polymerization of the polymer. It is also possible to deposit particles during the polymer polymerization process using calcium or lithium acetate.
  • the average particle size of the particles is more preferably 1/3 or less, more preferably 2/3 or less of the preferred film thickness.
  • coarse particles having a particle diameter of 2 zm or more or a film thickness or more are not included.
  • film formation may be inferior in stability, or particles may fall out of the film during use of the capacitor, resulting in an insulation defect and impairing the reliability of the capacitor.
  • inert particles such as inorganic particles and organic particles are made into a slurry in the solvent during PPS polymerization and dispersed with a medium stirring type dispersion device such as a sand grinder or an ultrasonic dispersion device, and then classified with a wet classification device.
  • the present invention may form a fine protrusion structure on the surface depending on the dispersion state of the thermoplastic resin A.
  • the above friction coefficient range is achieved without substantially adding particles.
  • the protrusion height tends to decrease. Therefore, when the average dispersion diameter is less than 200 nm, the inorganic or organic particles described above are added in order to impart the necessary processability. May need to be added
  • the content of sulfide is 70 to 99.5 parts by weight and the content of thermoplastic resin A is 0.5 to 30 parts by weight.
  • the content of polyarylene sulfide is 80 to 98 parts by weight. More preferably, the content of thermoplastic resin A is 2 to 20 parts by weight, the content of polyarylene sulfide is 90 to 97 parts by weight, and the content of thermoplastic resin A is 3 to 10 parts by weight. More preferably.
  • thermoplastic resin A which is different from polyarylene sulfide, exceeds 30 parts by weight, the heat resistance, mechanical properties, and electrical properties of the biaxially oriented polyarylene sulfide may be impaired. May be inferior in film forming property.
  • the content of the thermoplastic resin A is less than 0.5 parts by weight, it becomes difficult to provide excellent planar characteristics and SH properties when used as a dielectric of a capacitor.
  • the polyarylene sulfide referred to in the present invention is a homopolymer or copolymer having one (Ar-S)-repeating unit.
  • Ar includes structural units represented by the following formulas (A) to (K).
  • Rl and R2 are substituents selected from hydrogen, an alkyl group, an alkoxy group, and a halogen group, and R1 and R2 may be the same or different.
  • the structural formula represented by the above formula (A) is preferable, and typical examples thereof include polyphenylenesulfide, polyphenylenesulfonesulfone, polyphenol. Examples thereof include dirensulfide ketones, random copolymers thereof, block copolymers, and mixtures thereof.
  • polyphenylene sulfide is preferably exemplified from the viewpoint of film properties and economy, and p represented by the following structural formula as the main structural unit of the polymer Phenylene and preferably Rensurufuido units 80 mole 0/0 or more, more preferably 90 mol 0/0 than on, more preferably a resin containing more than 95 mol%. If the p-phenylene sulfide component is less than 80 mol%, the crystallinity and thermal transition temperature of the polymer are low, which may impair the heat resistance, dimensional stability, mechanical properties, and dielectric properties of PPS. .
  • the PPS resin less than 20 mole 0/0 of the repeating unit, preferably is less than 10 mole 0/0, contains units containing other sulfides bond copolymerizable with Les, be There is no problem.
  • the repeating unit of less than 20 mol%, preferably less than 10 mol% of the repeating unit include, for example, a trifunctional unit, an ether unit, a sulfone unit, a ketone unit, a meta bond unit, an aryl unit having a substituent such as an alkyl group, Examples include biphenyl units, terfylene units, vinylene units, carbonate units, and the like, and specific examples include the following structural units. One or more of these can coexist.
  • the structural unit may be either a random type or a block type copolymerization method.
  • Cost as substantially p- phenylene Rensurufuido PPS consists only or trifunctional component 1 mole 0/0 following the added PPS films feedstock consisting of 99 mol% or more p- phenylene Rensurufuido, film From the viewpoints of film properties, particularly film performance at high temperatures. In this case, the melting point of the obtained PPS resin is 280 to 290. C, glass transition temperature 90-95. Observed in C.
  • the melt viscosity of the PPS resin and the PPS resin composition is not particularly limited as long as melt kneading is possible.
  • the melt viscosity is 100 at a temperature of 315 ° C and a shear rate of 1, OOO (lZsec). It is preferably in the range of ⁇ 2000 Pa ⁇ s, more preferably in the range of 200 to 1, OOOPa ′ s.
  • PPS as used in the present invention can be obtained by various methods, for example, a method for obtaining a polymer having a relatively small molecular weight described in JP-B-45-3368, or JP-B-52-12240 and JP-A It can be produced by a method for obtaining a polymer having a relatively large molecular weight described in JP-A-61-7332.
  • the obtained PPS resin is subjected to crosslinking / polymerization by heating in air, heat treatment under an inert gas atmosphere such as nitrogen or under reduced pressure, an organic solvent, hot water, an acid aqueous solution, and the like. It can also be used after various treatments such as washing, activation with functional group-containing compounds such as acid anhydrides, amines, isocyanates and functional disulfide compounds.
  • a method for producing a PPS resin is exemplified, but the present invention is not particularly limited thereto.
  • sodium sulfide and ⁇ -dichlorobenzene are reacted in an amide polar solvent such as N-methyl-2-pyrrolidone (NMP) at high temperature and high pressure.
  • NMP N-methyl-2-pyrrolidone
  • a copolymer component such as trihalobenzene may be included.
  • a polymerization reaction is carried out at 230 to 280 ° C with addition of caustic potash or alkali metal carbonate as a polymerization degree adjusting agent.
  • the polymer After polymerization, the polymer is cooled, and the polymer is filtered through a filter as a water slurry to obtain a granular polymer. This is stirred in an aqueous solution such as acetic acid or acetate for 30 to 100 ° C for 10 to 60 minutes, washed with ion exchanged water at 30 to 80 ° C several times, and dried to obtain PPS powder.
  • This powder polymer is washed with NMP at an oxygen partial pressure of 10 torr or less, preferably 5 torr or less, then washed several times with ion exchange water at 30 to 80 ° C., and dried under a reduced pressure of 5 torr or less.
  • the resulting polymer is a substantially linear PPS polymer, enabling stable stretch film formation.
  • a specific method for crosslinking / high molecular weight by heating PPS resin is as follows: in an oxidizing gas atmosphere such as air or oxygen, or a mixed gas of the oxidizing gas and an inert gas such as nitrogen or argon Examples of the method include heating in a heating container at a predetermined temperature until a desired melt viscosity is obtained.
  • the heat treatment temperature is usually selected from 170 to 280 ° C, more preferably from 200 to 270 ° C
  • the heat treatment time is usually selected from 0.5 to 100 hours, more preferably.
  • a force of 2 to 50 hours By controlling both of these, a target viscosity level can be obtained.
  • the heat treatment apparatus may be a normal hot air drier, or a rotary type or a heating device with a stirring blade.
  • a heating device with a rotary type or a stirring blade is required. It is preferable to use it.
  • the heat treatment temperature is 150 to 280 under an inert gas atmosphere such as nitrogen or under reduced pressure.
  • C preferably 200 to 270 ° C.
  • calorie heat time is 0.5 to: 100 hours, preferably 2 to 50 hours.
  • the heat treatment apparatus may be a normal hot air dryer, or a rotary type or a heating apparatus with a stirring blade, but in order to treat the efficiency and force more uniformly, a heating apparatus with a rotary type or a stirring blade may be used. preferable.
  • the PPS resin used in the present invention preferably has a small amount of excess metal components or metal ions, or oligomers or impurities, and specific methods for that include acid aqueous solution washing treatment, hot water washing treatment, organic Examples of the solvent cleaning treatment and the entrainer treatment can be given. These treatments may be used in combination of two or more methods.
  • the alkaline earth metal salt treatment before and after the washing treatment can be exemplified as a specific method for introducing alkaline earth metal such as Ca into the PPS.
  • the organic solvent cleaning treatment of the PPS resin includes the following methods.
  • the organic solvent does not have the action of decomposing PPS resin.
  • N-methylpyrrolidone, dimethylformamide, nitrogen-containing polar solvents such as dimethylacetamide, sulfoxides such as dimethyl sulfoxide, dimethylsulfone, sulfone solvents, acetone, methylethyl Ketone solvents such as ketones, jetylketones, and acetophenones
  • ether solvents such as dimethyl ether, dipropyl ether, tetrahydrofuran, chloroform, methylene chloride, trichloroethylene, ethylene dichloride, dichloroethane, tetrachloroethane, Halogen-based solvents such as benzene, methanol, ethanol, propanol, butanol, pentaanol, ethylene glycol, propylene glycol, phenol
  • Phenol-based solvents Do, benzene, and aromatic hydrocarbon solvents such as toluene and xylene.
  • aromatic hydrocarbon solvents such as toluene and xylene.
  • N-methylpyrrolidone, acetone, dimethylformamide and black mouth form are particularly preferably used.
  • These organic solvents are used alone or as a mixture of two or more.
  • a method of washing with an organic solvent there is a method of immersing a PPS resin in an organic solvent, and it is possible to appropriately stir or heat as necessary.
  • Any temperature can be selected in the range of room temperature to 300 ° C, with no particular restriction on the washing temperature when washing PPS resin with organic solvent. The higher the cleaning temperature, the higher the cleaning efficiency tends to be. However, a sufficient effect is usually obtained at a temperature of room temperature to 150 ° C.
  • the PPS resin that has been subjected to organic solvent washing is preferably washed several times with water or warm water in order to remove the remaining organic solvent.
  • the water used is preferably distilled water or deionized water in order to exhibit a preferable chemical modification effect of the PPS resin by hot water washing.
  • the operation of the hot water treatment is usually performed by adding a predetermined amount of PPS resin to a predetermined amount of water and heating and stirring at normal pressure or in a pressure vessel.
  • the ratio of PPS resin to water is preferably larger, but usually a bath ratio of 200 g or less of PPS resin is selected per liter of water.
  • the following method can be exemplified as a specific method for the acid aqueous solution cleaning treatment of the PPS resin. That is, there is a method of immersing the PPS resin in an acid or an aqueous solution of the acid, and it is possible to appropriately stir or heat as necessary.
  • the acid used is PP s No particular limitation as long as it does not have the effect of decomposing the resin, aliphatic saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid and butyric acid, and halogen-substituted aliphatic saturated carboxylic acids such as black Acids, aliphatic unsaturated monocarboxylic acids such as acrylic acid and crotonic acid, aromatic carboxylic acids such as benzoic acid and salicylic acid, dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, phthalic acid and fumaric acid, sulfuric acid, phosphorus Examples include inorganic acidic compounds such as acid, hydrochloric acid, carbonic acid and silicic acid.
  • acetic acid and hydrochloric acid are preferably used. It is preferable to wash the acid-treated PPS resin several times with water or warm water in order to remove residual acid or salt.
  • the water used for washing is preferably distilled water or deionized water in the sense that it does not impair the effects of preferred chemical modification of the PPS resin by acid treatment.
  • the acid aqueous solution cleaning treatment is performed, the acid terminal component of the PPS resin increases, and when mixed with another thermoplastic resin A, the dispersibility increases and the average dispersed diameter of the dispersed phase is reduced. This is preferable because it is easily formed.
  • the acid aqueous solution washing treatment may be preferable because the amount of metal in the PPS is reduced, and electrical insulation at high temperature and high voltage can be improved.
  • PPS obtained by introducing an alkaline earth metal such as Ca into PPS may be used.
  • Introducing an alkaline earth metal may be preferable because it can improve the extrusion stability during film formation for a long period of time, such as suppressing the generation of gel-like substances.
  • a method for introducing a strong alkaline earth metal there are a method of adding an alkaline earth metal salt after removing residual oligomers and residual salts by washing with an organic solvent or washing with hot water or hot water.
  • Alkaline earth metals are preferably introduced into the PPS in the form of alkaline earth metal ions such as acetates, hydroxides and carbonates. It is preferable to remove excess alkaline earth metal salt by washing with warm water.
  • the alkaline earth metal ion concentration at the time of introduction of the above alkaline earth metal ions is preferably at least 0.001 mmol, more preferably at least 0 mmol, relative to PPSlg.
  • the temperature is preferably 50 ° C or higher, more preferably 75 ° C or higher, and particularly preferably 90 ° C or higher. Although there is no upper temperature limit, 280 ° C or less is usually preferred from the viewpoint of operability.
  • the bath ratio (the weight of the cleaning solution with respect to the dry PPS weight) is preferably 0.5 or more, more preferably 3 or more, and even more preferably 5 or more.
  • a specific method for the PPS resin entrainer treatment includes PPS resin or PPS.
  • a medium inert to the resin composition is fed to the extruder and sucked from the vent of the extruder after melt kneading.
  • impurities such as oligomers, metals and metal salt components contained in the resin together with the medium can be recovered, and oligomers and ionic metal components in the PPS resin or PPS resin composition can be reduced.
  • the medium inert to PPS include the organic solvent and supercritical carbon dioxide gas in the organic solvent washing process described above.
  • a medium inert to the resin composition a medium having no action such as decomposing the thermoplastic resin A can be appropriately selected.
  • the thermoplastic resin A is a polyetherimide
  • ethylene glycol is used.
  • propylene glycol is used as the extruder used in this treatment.
  • Thermoplastic resin A is preferably an amorphous resin with a glass transition temperature Tg of 150 ° C or higher and a melting point (Tm) of polyarylene sulfide of 170 ° C or higher (Tm-20) ° C or lower.
  • the amorphous resin is more preferably 180 ° C or more (Tm-50) ° C or less, and most preferably an amorphous resin. If the Tg of thermoplastic resin A is less than 150 ° C, it may be difficult to obtain the effect of improving heat resistance and electrical characteristics when this film is used as a capacitor dielectric. In addition, when Tg of thermoplastic resin A is higher than the melting point (Tm) of polyarylene sulfide, or when the thermoplastic resin shows crystallinity in the film, it may be inferior in SH property when used as a capacitor dielectric. .
  • the thermoplastic resin A is a polymer selected from the group consisting of polyarylate, polyphenylene ether, polyetherimide, polyethersulfone and polysulfone, or at least one from the viewpoint of the mixing of polyarylene sulfide and the manifestation of the effects of the present invention. It is preferred to have a blend containing seeds, especially in the case of polyetherimides. It is excellent in electrical properties when it is made into a biaxially oriented polyary 1 film because of its excellent dispersibility and the small amount of impurities and metal components.
  • the polyetherimide is not particularly limited, but, for example, as shown by the following general formula, it is possible to preferably enumerate a polymer which is a structural unit containing an ether bond as a polyimide constituent component.
  • R1 is a divalent organic group selected from the group consisting of a divalent aromatic or aliphatic group having 2 to 30 carbon atoms and an alicyclic group
  • R2 Is a divalent organic group similar to R.
  • Rl and R2 include aromatic groups represented by the following formula groups:
  • the most preferable polyarylene sulfide resin in the present invention is PPS composed of p_phenylene sulfide, or 1 mol% or less of a trifunctional component and 99 mol% or more of p-phenylene sulfide is added. It is a PPS resin that also has strength, and usually has a melting point of 280-290. C.
  • the glass transition temperature of the thermoplastic resin A is preferably not higher than the melting point (Tm) of the polyarylene sulfide, it is preferable to use a polyetherimide having a temperature of 280 ° C or lower, more preferably 260 ° C or lower.
  • Phenoxy) phenyl propane dianhydride and m-phenylene diamine Mines or condensates with p-phenylenediamine are preferred.
  • a polyetherimide having this structural unit is available from GI Plastics under the trade name "Ultem” (registered trademark).
  • Ultem 100 0” and “Ultem 1010” can be mentioned as poly-terimide having a structural unit (former formula) including a unit derived from m-phenylenediamine.
  • “Unoretem CRS5000” can be mentioned as a polyetherimide having a structural unit containing the unit derived from p-phenylenediamine (the latter formula).
  • thermoplastic resin A contained in the biaxially oriented polyarylene sulfide film of the present invention include polysulfone having a sulfonic group in the molecular skeleton and polyetherolsulfone.
  • Polysulfone and polyethersulfone can be used by using various known ones.
  • the terminal group of polyether sulfone includes a chlorine atom, an alkoxy group or a phenolic hydroxyl group.
  • preferred examples of the thermoplastic resin A include polyphenylene ether and polyarylate whose molecular structure is similar to that of polyarylene sulfide.
  • the timing of mixing the polyarylene sulfide and the other thermoplastic resin A is not particularly limited, but before the melt extrusion, a mixture of the polyarylene sulfide and the other thermoplastic resin A is added.
  • a method of pre-melting and kneading (pelletizing) to form a master chip and a method of mixing and melt-kneading during melt extrusion.
  • a twin screw extruder Preferred examples include a method of pre-kneading into a master chip using a high shear mixer with shearing stress.
  • the mixed master chip raw material is put into a normal single-screw extruder to form a melt film, and sheeting is directly performed without forming a master chip in a state where high shear is applied. May be.
  • a method of pre-melting and kneading (pelletizing) a mixture of the respective resins before melt extrusion to form a master chip is preferable, in which case the weight fraction of polyarylene sulfide and thermoplastic resin A is It is preferable to prepare a blend raw material of 99Zl to 70/30.
  • the melting point (Tm) of the PPS resin is preferred in the kneading section where a three-screw or two-screw type screw is preferred from the viewpoint of reducing poor dispersion.
  • a resin temperature range of +5 to Tm + 120 (° C) is preferred.
  • the preferred temperature range is 13 ⁇ 41 + 10 to 13 ⁇ 41 + 90 (°, and the preferred temperature range is 13 ⁇ 41 + 10 to 13 ⁇ 41 + 70 (°.
  • the temperature range of the kneading part should be in the preferred range.
  • the effect of increasing the shear stress and immediately reducing the defective dispersion can be increased, and the dispersion diameter of the dispersed phase can be controlled within the preferred range of the present invention, with a residence time of 0.5 to 5 minutes.
  • the dispersion diameter of the dispersed phase that is easily subjected to high shear stress can be controlled within the preferred range of the present invention, and the ratio of (screw shaft length / screw shaft diameter) of the twin screw extruder is 20-60. Is preferably in the range of 30-50.
  • a kneading part such as a needing paddle in order to increase the kneading force in the twin screw, and preferably two or more, more preferably three or more kneading parts are provided.
  • a kneading part such as a needing paddle in order to increase the kneading force in the twin screw, and preferably two or more, more preferably three or more kneading parts are provided.
  • the compatibilizer in order to control the dispersion diameter of the thermoplastic resin A domain, has one or more groups selected from an epoxy group, an amino group, and an isocyanate group. The compound is preferably added in an amount of 0.:!
  • force and such compatibilizers include bisphenol 8-resorcinol, hydride quinone, pyrotechnicol, bisphenol, saligenin, 1, 3, 5-trihydroxybenzene.
  • Bisphenol 3 trihydroxydidiphenyldimethylmethane, 4,4'-dihydroxybiphenylenolate, 1,5 dihydroxynaphthalene, cashew phenol, 2. 2. 5.
  • Glycidyl ethers of bisphenols such as xanthine, those using halogenated bisphenol instead of bisphenol, glycidyl ether compounds such as diglycidyl ether of butanediol, glycidyl ester compounds such as glycidyl phthalate, N Glycidylamine compounds such as glycidyl dilin etc.
  • Jill epoxy resin epoxidized polyolefin, linear epoxy compounds such Epokishii spoon soybean, hexene-dioxide to Bierushikuro, such as a non glycidioxypropyl Honoré epoxy resin of a cyclic system such as dicyclopenta diene-dioxide and the like.
  • Other examples include novolac type epoxy resins.
  • the novolac type epoxy resin has two or more epoxy groups and is usually obtained by reacting novolak type phenol resin with epichlorohydrin.
  • a novolac type phenol resin is obtained by a condensation reaction of phenols with formaldehyde.
  • the most preferred compatibilizer for use in the biaxially oriented polyarylene sulfide film of the present invention include alkoxysilanes having one or more functional groups selected from an epoxy group, an amino group, and an isocyanate group.
  • alkoxysilanes having one or more functional groups selected from an epoxy group, an amino group, and an isocyanate group.
  • powerful compounds include epoxy group-containing alkoxysilane compounds such as ⁇ - (3,4_epoxycyclohexyleno) ethinoretrimethoxysilane, ⁇ -ureidopropyltriethoxysilane, and ⁇ -ureidopropinoretrimethoxy.
  • Silane ureido group-containing alkoxysilane compounds such as ⁇ _ (2-ureidoethyl) aminopropyltrimethoxysilane, ⁇ -isocyanate propyltriethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanine
  • ⁇ _ (2-ureidoethyl) aminopropyltrimethoxysilane
  • ⁇ -isocyanate propyltriethoxysilane ⁇ -isocyanatopropyltrimethoxysilane
  • ⁇ -isocyanine Such as topropylmethyldimethoxysilane, ⁇ -isocyanate propylmethyl methoxysilane, ⁇ -isocyanate propylethyldimethoxysilane, ⁇ -isocyanate propylethyl methoxysilane, —isocyanane propyltrichlorosi
  • Amino group containing alkoxysilane compounds ⁇ _ (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ aminopropyltrimethoxysilane, etc.
  • Examples include alkoxysilane compounds.
  • ⁇ -isocyanatopropyltriethoxysilane ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatepropylmethyldimethoxysilane, ⁇ -isocyanatepropylmethyljetoxysilane, ⁇ -isocyanate
  • an alkoxysilane compound containing an isocyanate group such as propylethyldimethoxysilane, ⁇ -isocyanatepropylethyloxysilane, or ⁇ isocyanatepropyltrichlorosilane is used, a biaxially oriented polyarylene sulfide film is formed. It becomes easy to control the average dispersed diameter of the dispersed phase within the preferable range of the present invention.
  • an alkoxysilane-derived alcohol may be generated during kneading or extrusion.
  • a twin-screw extruder having at least two kneading parts, once with polyphenylene sulfide and thermoplastic resin ⁇
  • a preferred method is to melt and knead the compatibilizer and then melt and knead it once or more.
  • 0.02 part or more of water is added to 100 parts by weight of the total of the polyurethane sulfide and the thermoplastic resin A. More preferably, it may be preferable to add 0.1 to 5 parts.
  • hydrolysis of the alkoxysilane compound is promoted, and the amount of alcohol generated from the resulting resin composition can be reduced. It is possible to remove as much as possible the impure substances and oligomers in the polyarylene sulfide, thermoplastic resin A, alcohol generated from the reaction of the compatibilizing agent, etc., as much as possible.
  • the method of adding water is not particularly limited, but a method of side-feeding water using a liquid feed device such as a gear pump or plunger pump from the middle of the extruder, or once melt-kneading and then melt-kneading once more. In this case, a method of blending water or side feeding from the middle of the extruder is a preferable method.
  • the resin composition constituting the film has a melt specific resistance at 310 ° C of 1.0 X 10 9 Q 'cm to l. 0 X 10 ". ⁇ 'cm Power is preferable from the viewpoint of obtaining a film excellent in electrical insulation particularly at high temperature and high voltage.
  • the PPS resin used in the present invention is deionized or deoxidized. Specific examples of methods that are preferably treated with metal components include acid aqueous solution washing treatment, hot water washing treatment, organic solvent washing treatment, and entrainer treatment.
  • the treatment may be a combination of two or more methods, but it is more preferable to use PPS that has at least an acid aqueous solution cleaning treatment to reduce the amount of metal.
  • mass -It is also preferable to perform an entrainer treatment at the time of chip formation, and the above range can be achieved by combining these methods, and it is melted from the viewpoint of the electrical characteristics of the film, particularly the high temperature characteristics when a single capacitor is used.
  • a higher specific resistance is preferable, while a melting specific resistance is preferred.
  • the resistance is not particularly limited, but is preferably 1. ⁇ ⁇ ⁇ ⁇ ⁇ 'cm or less from the viewpoint of electrostatic castability during film formation.
  • a plasticizer In the film of the present invention, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, an ultraviolet stabilizer, a lubricant, an antistatic agent, an increase agent are used as long as the effects of the present invention are not impaired.
  • Whitening agents, coloring agents, conductive agents and fungicides may be added.
  • the biaxially oriented polyarylene sulfide film of the present invention preferably has a thickness of 00 x m or less depending on the application. In the case of a condenser, it is 0.5 to 20 111, more preferably 1 to 10 zm. In the case of a film for electrical insulation, the viewpoint power such as workability, etc., is more preferably in the range of 10 to 300 ⁇ , and still more preferably in the range of 20 to 200 ⁇ .
  • the biaxially oriented polyarylene sulfide film of the present invention includes a polyarylene sulfide film and other polymer layers, for example, a layer made of polyester, polyolefin, polyamide, polyimide, polyvinylidene chloride, or an acrylic polymer. These may be used by further laminating directly or via a layer such as an adhesive.
  • the biaxially oriented polyarylene sulfide film of the present invention is subjected to any processing such as heat treatment, molding, surface treatment, lamination, coating, printing, embossing and etching, as necessary. Motole.
  • the biaxially oriented polyarylene sulfide film of the present invention is a process such as a dielectric for capacitors, motors, transformers, and other electrical insulating materials and molding materials, circuit board materials, circuit / optical members, etc. Used for films, protective films, lithium-ion battery materials, fuel cell materials, diaphragms, etc. In particular, since it has excellent electrical insulation performance at high temperatures, it can be preferably used for capacitors, electrical insulation materials, circuit boards and the like. Furthermore, when used as a capacitor dielectric, it has excellent SH characteristics, so it can be used as a capacitor with high safety and heat resistance.
  • the polyarylene sulfide film is made of poly (rho) _phenylene sulfide and thermoplastic resin ⁇ made by GI Plastics Co., Ltd.
  • thermoplastic resin ⁇ made by GI Plastics Co., Ltd.
  • An example of the production of a biaxially oriented polyphenylenediamine film composed of the polyetherimide “Ultem 1010” will be described.
  • the present invention It is not limited to the description.
  • the PPS and PEI into a twin-screw kneading extruder to prepare a blend raw material having a weight fraction of PPS and PEI of 99Zl to 70Z30.
  • the mixing and kneading method of the resin composition of the blend raw material is not particularly limited, and various mixing and kneading means can be used.
  • each may be separately fed to a melt extruder and mixed, or only the powder raw material may be dry premixed using a mixer such as a Henschel mixer, ball mixer, blender or tumbler, Then, melt kneading with a melt kneader.
  • the blended raw material is put into an extruder together with PPS and these recovered raw materials, and the desired composition is used as the raw material from the viewpoint of film quality and film formability.
  • the desired composition is used as the raw material from the viewpoint of film quality and film formability.
  • various filters for example, filters made of materials such as sintered metal, porous ceramic, sand and wire mesh.
  • a gear pump may be provided as necessary to improve the quantitative supply.
  • PPS pellets or granules and PEI pellets are mixed at a constant ratio, supplied to a vent type twin-screw kneading extruder, and melt-kneaded to obtain a blended chip. It is preferable to use a high-shear mixer with high shear stress, such as a twin-screw extruder, and from the viewpoint of reducing poorly dispersed products, equipped with a three- or two-screw type screw
  • the residence time is preferably in the range of 1 to 5 minutes. Further, in the kneading part, it is preferable that the resin temperature range is 290 to 405 ° C, and a more preferable temperature range is 295 to 355 ° C.
  • the resin temperature range of the kneading part By setting the resin temperature range of the kneading part to a preferable range, the effect of increasing the shear stress and immediately reducing the defective dispersion is enhanced, and the dispersion diameter of the dispersed phase is reduced.
  • the preferred range of the invention can be controlled. Further, it is preferable to set the screw rotation speed to 100 to 500 rotations / minute, and more preferably 200 to 400 rotations / minute. By setting the screw rotation speed within a preferred range, a high shear stress is easily applied, and the dispersion diameter of the dispersed phase can be controlled within the preferred range of the present invention. Further, the ratio of (screw shaft length Z screw shaft diameter) of the twin screw extruder is preferably in the range of 20-60, more preferably in the range of 30-50.
  • a twin screw it is preferable to provide a kneading part with a needing paddle to increase the kneading force.
  • Two or more kneading parts are provided, and a normal feed screw is provided between each kneading part. It is more preferable to use a screw shape.
  • blend chips made of PPS and PEI obtained by the above pelletizing operation, and optionally mixed PPS, raw materials mixed with the collected raw materials after film formation and particles are mixed appropriately at a certain ratio.
  • it After drying at 180 ° C for 3 hours or more under reduced pressure of lOmmHg or less, it is put into an extruder heated to a temperature of 300 to 350 ° C, preferably 320 to 340 ° C. Thereafter, the molten polymer that has passed through the extruder is passed through a filter, and then the molten polymer is discharged into a sheet form using a die of a T die.
  • This sheet-like material is closely attached to a cooling drum having a surface temperature of 20 to 70 ° C. to be cooled and solidified to obtain a substantially non-oriented unstretched polyphenylene sulfide phenol.
  • the unstretched polyphenylene sulfide film is biaxially stretched to be biaxially oriented.
  • Stretching methods include sequential biaxial stretching (stretching that combines stretching in each direction, such as stretching in the longitudinal direction after stretching in the longitudinal direction), and simultaneous biaxial stretching (longitudinal and width directions). Can be used at the same time), or a combination thereof.
  • the unstretched polyphenylene sulfide film is heated with a heating roll group, and the stretching ratio is 3 to 5 times in the longitudinal direction (MD direction), preferably 3.3 to 4.7 from the viewpoint of improving the electrical characteristics. Double, more preferably 3.5 to 4.5 times, stretching in one or more stages (MD stretching) .
  • the stretching temperature is Tg (PPS glass transition temperature) to (Tg + 50) ° C, preferably (Tg + 5) to (Tg + 50) ° C, more preferably (Tg + 5) to (Tg + 40). ) ° C range. Then, it is cooled with a cooling roll group at 20 to 50 ° C.
  • a stretching method in the width direction (TD direction) following MD stretching for example, a method using a tenter is common.
  • the film is gripped at both ends with a clip, guided to a tenter, and stretched in the width direction (TD stretching).
  • the stretching temperature is properly preferred to Ding ⁇ ⁇ ⁇ + 60) in the preferred instrument (Tg + 5) ⁇ (Tg + 50).
  • C more preferably (Tg + 10) to (Tg + 40).
  • the draw ratio is 3 to 5 times, preferably 3.3 to 4.7 times, and more preferably 3.5 to 4.5 times from the viewpoint of improving electrical characteristics.
  • the stretched film is heat-set under tension.
  • the preferred heat fixation temperature is 170 to 275 ° C, preferably 200 to 250 ° C
  • the heat fixation time is 1 second to 1000 seconds, preferably 1 second to 60 seconds, more preferably. 1 to 30 seconds.
  • the heat setting after stretching is carried out in two or more steps with different temperatures, and the heat setting temperature of the first step is (previous stretching temperature + 5 ° C) to 240 ° C.
  • the maximum value of the heat setting temperature of the latter stage is 200 ° C or higher or (the heat setting temperature of the first stage + 5 ° C) or higher and (the melting point of the polyarylene sulfide constituting the film is 5 ° C or lower). More preferably, the heat setting temperature of the first stage is (the previous stretching temperature + 5 ° C) to 220 ° C, and the maximum value of the heat setting temperature of the second stage is 230 ° C or higher (or the heat of the first stage). (Fixing temperature + 30 ° C.) or higher and (the melting point of polyarylene sulfide constituting the film is 5 ° C.) or lower.
  • heat fixation at the first stage is 1 second to 1000 seconds, preferably 1 second to 60 seconds, more preferably 1 second to 30 seconds, and heat fixation at the highest temperature of the subsequent stage is 1 second to
  • the time is 1000 seconds, preferably 1 second to 60 seconds, more preferably 1 second to 10 seconds, and the entire heat setting time is 2000 seconds, preferably 120 seconds, more preferably 30 seconds.
  • the film is relaxed in the width direction at a temperature zone of 40 to the melting point of polyarylene sulfide, more preferably the stretching temperature or more and the heat setting temperature or less (in the case of multistage heat setting, the highest heat setting temperature or less).
  • the relaxation rate is preferably 0.1 to 8%, more preferably 1.5 to 6%, and even more preferably 2 to 5%.
  • the relaxation treatment is carried out in the above temperature range for 1 second to 100 seconds, preferably 1 second to 60 seconds, more preferably 1 second to 10 seconds.
  • the metallized film of the present invention has a metal layer formed on at least one side of a strong biaxially oriented film, and uses a metal thin film formed by a method such as vacuum evaporation or sputtering. can do.
  • metals include, but are not limited to, aluminum, zinc, tin, titanium, nickel oleore, or alloys thereof.
  • the film capacitor 1 of the present invention can be manufactured with a known method such as a winding method or a lamination method. As a conductor of such a capacitor, it is possible to use the above metallized film.
  • the metal foil and the laminated film of the present invention are alternately stacked by rolling the foil or inserting a tab in the middle of winding.
  • a capacitor element or a capacitor mother element is obtained by winding the dielectric body and the electrode alternately so that the electrode can be drawn to the outside.
  • the metallization method is preferably a vapor deposition method.
  • the metal to be deposited is preferably a metal containing aluminum as a main component.
  • the adhesion between the metal thin film and the film can be improved by a treatment such as corona discharge treatment or plasma treatment on the surface of the film to be metallized beforehand.
  • a non-metalized part so-called margin
  • a non-metallized band can also be provided using a laser beam or the like.
  • the metallized film is slit into a narrow tape shape with a margin at one end, and two sheets are stacked, or double-sided metallized film and non-metallized film are stacked. It is a common practice to move individual elements individually. There is also a method of winding a single composite film in which a second dielectric is provided on a double-sided metallized film by a coating method or the like.
  • the capacitor is wound around a large-diameter drum or flat plate. Get the mother element.
  • the film can be heated to a temperature of 100 ° C. or higher and below the melting point of the film.
  • the external electrode mounting process by metal spraying, conductive resin, etc.
  • resin or oil impregnation process when using a lead type capacitor, lead wire mounting process, exterior process, Obtainable.
  • the capacitor In the case of multilayer capacitors, pressure is applied in the thickness direction of the film, such as heat treatment of a large-diameter drum or mother element wound on a flat plate, tightening with a ring, or pressing with a parallel plate. Mold. In this case, the temperature range is from room temperature to the melting point of the film. Thereafter, the capacitor can be obtained through an external electrode attaching step (metal spraying, using a conductive resin), individual element cutting step, and if necessary, a resin or oil impregnation step.
  • an external electrode attaching step metal spraying, using a conductive resin
  • individual element cutting step if necessary, a resin or oil impregnation step.
  • the shape of the capacitor of the present invention may be any of the above.
  • the capacitor of the present invention can be developed for both AC and DC applications.
  • the characteristic value measuring method and the effect evaluating method of the present invention are as follows.
  • thermoplastic resin A is polyamide, dyeing with phosphotungstic acid is used.
  • the thermoplastic resin A is polyetherimide, dyeing is unnecessary.
  • the cut surface was observed with a transmission electron microscope (H-7100FA model, manufactured by Hitachi) under the condition of an applied voltage of lOOkV, and a photograph was taken at 20,000 times.
  • the obtained photographs were loaded into an image analyzer as images, 100 arbitrary dispersed phases were selected, and image processing was performed.
  • the size of each dispersed phase was determined as follows.
  • (u) The maximum length (le) in the film longitudinal direction and the maximum length (If) in the width direction were determined.
  • the shape index of the dispersed phase 1 (average value of lb + average value of le) / 2
  • shape index 3 ⁇ 4J (average value of Id + average value of lf) / 2
  • shape index K (average of la Value + lc average value) / 2
  • the average dispersion diameter of the dispersed phase was (I + J + K) Z3.
  • the average major axis L and the minimum minor axis D were determined from I, J, and K, and the aspect ratio of the dispersed phase was L / D.
  • the glass transition temperature of the raw material chips of polyarylene sulfide and thermoplastic resin A was measured in accordance with JIS K7121-1987.
  • the melting temperature using a differential scanning calorimeter DSC (RDC220) manufactured by Seiko Instruments Inc. and a disk station (SSC / 5200) manufactured by Seiko Instruments Inc. as a data analyzer, a 5 mg sample was obtained from room temperature on an aluminum tray. The temperature was raised to 20 ° C at a rate of 20 ° C / min, melted and held at 340 ° C for 5 minutes, rapidly solidified, held for 5 minutes, and then heated from room temperature at a rate of 20 ° C / min. . At that time, the peak temperature of the endothermic peak of melting observed was defined as the melting temperature (Tm).
  • Tm melting temperature
  • the measurement was performed under the conditions of an environmental temperature of 150 ° C according to the circular plate electrode method specified in JIS C2151—1990. After applying 500 V DC voltage at 150 ° C using a superinsulator (SM-5E type, manufactured by Toa Denpa Co., Ltd.), the sample was formed by vacuum-depositing aluminum on both sides of the film and forming electrodes 1 It calculated
  • SM-5E type manufactured by Toa Denpa Co., Ltd.
  • Dielectric breakdown voltage (withstand voltage) of film According to the method specified in JIS C2151-1990, the measurement was performed under the conditions of ambient temperature 23 ° C and 150 ° C. The measurement was performed using a 100 cm thick, 10 cm square aluminum foil electrode on the cathode, and a brass electrode with a diameter of 25 mm and a weight of 500 g on the anode, and a high voltage DC power supply (Kasuga Electric) The pressure was increased at a rate of 100 VZ seconds using TFV4—LC), and the dielectric breakdown was considered when 10 mA or more flowed. This measurement was repeated 30 times, and the average of the values divided by the film thickness was taken as the dielectric breakdown voltage of the film. The breakdown voltage at 23 ° C and 150 ° C was V (23) and V ( 150). For V (23), the standard deviation in the value measured 30 times was obtained.
  • the film was cut in a direction parallel to the longitudinal direction and perpendicular to the film surface, and a sample was prepared by an ultrathin section method.
  • it may be dyed with osmic acid, ruthenic acid, phosphotungstic acid or the like.
  • the thermoplastic resin A is polyamide, dyeing with phosphotungstic acid is preferably used.
  • the melt specific resistance (P) was determined according to the following formula.
  • V Applied voltage (V)
  • Aluminum was evaporated on one side of the film so that the surface resistance was 10 ⁇ .
  • vapor deposition was performed in a stripe shape having a margin portion running in the longitudinal direction (repetition of a vapor deposition portion width of 80 mm and a margin portion width of 10 mm).
  • a slit was put in the center of each vapor deposition part and the margin part of this vapor deposition film, and it was scraped off in the form of a tape having a total width of 45 mm having a 5 mm margin part on the left or right.
  • the obtained tape was overlapped and wound for each of the left margin and the right margin to obtain a wound body having a capacitance of 5 ⁇ F.
  • the two films were shifted and wound so that the vapor deposition part protruded 5 mm from the margin part in the width direction.
  • the core material was removed from these wound bodies and pressed as it was for 5 minutes at a temperature and pressure of 200 ° C, 25 kg / cm 2 .
  • metallicon was sprayed on both end surfaces to form external electrodes, and lead wires were welded to the metallicon to obtain capacitor elements.
  • the obtained element was heat-treated at 220 ° C. for 2 hours, and then packaged with a powder epoxy resin (average package thickness: 0.5 mm) to prepare a capacitor.
  • a capacitor element was prepared in the same manner as (a) above, and the shape of the element was confirmed visually.
  • Capacitor element film is slightly displaced or deformed, but there is no problem in the subsequent process.
  • Place 30 capacitors in a 150 ° C oven equip each capacitor with a switch that stops the charging voltage when broken, connect it in parallel with the DC power generator, and continue to apply m voltage for 1000 hours,
  • the destroyed capacitor element was regarded as a defective withstand voltage element, and the defect rate (%) was judged according to the following criteria. ⁇ and ⁇ are acceptable.
  • the base length was 10 mm
  • the base diameter was 1. Omm
  • the preheating time was set to 5 minutes
  • the measurement was performed at 310 ° C.
  • Peak Thresh ref (Threshold threshold): ZERO
  • the measurement conditions of the microscopic Raman by the laser Raman scattering method are as follows.
  • Microprobe Objective lens ⁇
  • Nd_YAG (wavelength 1064nm, output: 1W)
  • Diffraction grating Spectrograph 300g / mm Suritsu: 100 / im
  • the film used for measurement was sampled and embedded in an epoxy resin, and then the film cross section was taken out with a microtome.
  • the film cross section was adjusted to be parallel to the film longitudinal direction or width direction, and the average value was obtained by measuring 5 samples for each of the longitudinal direction and width direction with the central point of each sample as the measurement point. .
  • the orientation parameter of the lens was determined.
  • Measurement was performed using an Instron type tensile tester according to the method prescribed in ASTM-D882-97. The measurement was performed under the following conditions, and was performed with 10 samples in each of the longitudinal direction and the width direction. Breaking elongation, breaking strength, and Young's modulus are the average of elongation in the tensile test in the lower direction, higher in the higher direction, and removing the highest and lowest 2 measurements each for the remaining 6 measurements. Value. Also, for each of the data sampling points (excluding the sampling points at both ends), the differential coefficient is obtained for each of the longitudinal and width directions, and the two measurements at the center of the permutation of elongation. The average value of the minimum values of each measurement in the section of elongation 2% and (elongation at break (%)-5%) was taken, and the smaller value was compared with both, and the value of the lower one was the minimum derivative ⁇ min .
  • Measuring device Orientec Co., Ltd. film strong elongation automatic measuring device "Tensilon AMFZ RTA-100"
  • ⁇ (N) ⁇ S (N + 1)-S (N) ⁇ / ⁇ E (N + 1) — E (N) ⁇
  • the amount of water remaining in the system per mole of the alkali metal sulfide charged was 1.06 mol including the water consumed for the hydrolysis of NMP.
  • the amount of hydrogen sulfide scattered was 0.02 mol per mol of the alkali metal sulfide charged.
  • a PPS resin was prepared in the same manner as in Reference Example 1 except that the cleaning process in Reference Example 1 was as follows.
  • the content was taken out, diluted with 26,300 g of NMP, the solvent and solid matter were filtered off with a sieve (80 mesh), and the resulting particles were washed 4 times with 31,900 g of NMP and filtered. This was washed 5 times with 56, OOOg of ion-exchanged water and filtered, then washed twice with 0.05% by weight acetic acid aqueous solution 70, OOOg and filtered. After washing with 70,000 g of ion-exchanged water 5 times and filtering, the obtained hydrous PPS particles were dried with hot air at 80 ° C and dried under reduced pressure at 120 ° C.
  • the obtained PP S had a melt viscosity of 200 Pa's (310 ° C, shear rate of 1,000 / s), a glass transition temperature force of S93 ° C, and a melting point of 285 ° C.
  • a PPS resin was prepared in the same manner as in Reference Example 1 except that a calcium acetate aqueous solution was used instead of the acetic acid aqueous solution in the cleaning process of the reference example.
  • the obtained PPS resin had a melt viscosity of 210 Pa's (310 ° C, shear rate of 1,000 / s), a glass transition temperature of 93 ° C, and a melting point of 285 ° C.
  • silica spherical fine particles with an average particle size of 0.55 ⁇ (“Chihoster KEP-50” manufactured by Nippon Shokubai Co., Ltd.) were added and the same with a vent.
  • NMP N methyl _ 2_pyrrolidone
  • dewatering 89 8 mol% of over-dichlorobenzene finished into the system as the main component monomer, 10 mol 0/0 as a secondary component monomers m- dichlorobenzene, and 0. 2 Monore 0/0 1, 2, 4 - the trichloroacetic port benzene was added with 5 liters of NMP, after nitrogen 3 kg / cm 2 Caro pressure sealed at 170 ° C, the temperature was raised, and polymerized for 4 hours at 260 ° C. After completion of the polymerization, the mixture was cooled, the polymer was precipitated in distilled water, and a small polymer was collected with a wire mesh having a 150 mesh opening.
  • This polymer was washed 5 times with distilled water at 90 ° C and then dried at 120 ° C under reduced pressure to obtain a copolymerized PPS composition in the form of white particles having a melting point of 50 ° C.
  • PPS-1 resin prepared in Reference Example 1 was dried at 180 ° C for 3 hours under a reduced pressure of ImmHg.
  • Polyetherimide as thermoplastic resin A (“Ultem 10 10" manufactured by GE Plastics) (PEI) Were dried separately under reduced pressure of ImmHg at 120 ° C for 3 hours.
  • the polymer melted by the extruder was filtered through a filter set at a temperature of 320 ° C, melt-extruded from a die of a T die set at a temperature of 320 ° C, and then cast at a surface temperature of 25 ° C. While applying an electrostatic charge to the film, it was closely cooled and solidified to produce an unstretched polyresin film film.
  • This unstretched polyphenylene sulfide film is composed of a plurality of heated roll groups. Using a longitudinal stretching machine, the film was stretched at a magnification of 3.8 times in the longitudinal direction of the film at a film temperature of 103 ° C and a stretching speed of 3000 0% / min. Then, grip both ends of this film with clips and guide it to a tenter, and stretch it in the width direction of the film at a stretching temperature of 105 ° C, a stretching speed of 1 100% / min, and a stretching ratio of 3.8 times.
  • Table 1 shows the measurement, evaluation results, and capacitor characteristics of the resulting biaxially oriented polyphenylene sulfide film, and the characteristics of the biaxially oriented polyphenylene sulfide film.
  • the insulation characteristics and withstand voltage were excellent, and the capacitor was in good condition.
  • the raw material prepared by dry blending 90 parts by weight of PPS-1 resin and 10 parts by weight of particle master chip prepared in Reference Example 1 was dried at 180 ° C for 7 hours under a reduced pressure of ImmHg, and then the melting part was adjusted to 320 ° C. It was fed to a heated full flight single screw extruder.
  • the measurement, evaluation results, and capacitor characteristics of the obtained biaxially oriented polyphenylene sulfide film are as shown in Table 1.
  • This biaxially oriented polyphenylene sulfide film is an example. Compared to 1, the volume resistivity was almost the same, but it was inferior to the dielectric breakdown voltage at high temperature. Furthermore, in terms of capacitor characteristics, the SH property was low and the high-temperature heat resistance was low and insufficient.
  • thermoplastic resin A As shown in Table 1.
  • Both the biaxially oriented polyphenylene sulfide films of Examples 2 and 4 were excellent in capacitor performance with high dielectric breakdown voltage at high temperatures.
  • thermoplastic resin A The amount of PEI and compatibilizer added to thermoplastic resin A was changed as shown in Table 1, and the longitudinal stretch was stretched 3.4 times at a film temperature of 105 ° C and the transverse stretch was 3.6 times at 106 ° C.
  • a biaxially oriented polyphenylene sulfide film having a thickness of 3.8 zm and a capacitor using the same were prepared in the same manner as in Example 1 except that the drawing was performed. Compared with Example 1, the film formation stability was slightly inferior, and tearing occurred during film formation.
  • the biaxially oriented polysulfide film of this example has a slightly lower withstand voltage and a slightly lower withstand voltage in terms of capacitor characteristics, but it is sufficiently high compared to Comparative Example 1 and is problematic in practical use. There was no level. (Example 5)
  • the capacitor used was created.
  • the biaxially oriented polyimide film of this example had excellent withstand voltage and good capacitor characteristics.
  • Biaxially oriented polyphenylene sulfide film having a thickness of 3.5 zm and the same as in Example 1 except that polyphenylene ether (YPX-100A manufactured by Mitsubishi Gas Chemical Co., Ltd.) (PPE) is used as thermoplastic resin A.
  • PPE polyphenylene ether
  • a capacitor was made using Second of this example The axially oriented polyphenylene sulfide film had excellent withstand voltage and good capacitor characteristics.
  • Biaxially oriented polyphenylene sulfide film having a thickness of 3.7 xm as in Example 1 except that polyethersulfone ("RADEL" A_200A) (P ES) manufactured by Amoco is used as thermoplastic resin A And the capacitor which used it was made.
  • the biaxially oriented polyphenylene sulfide film of this example had excellent withstand voltage and good capacitor characteristics.
  • ⁇ -isocyanatopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., “ ⁇ 9007”) is bisphenol type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., described as “Epicord 1004, C2”), and longitudinal stretching is performed at the film temperature.
  • a biaxially oriented polyethylene sulfide film with a thickness of 3.8 ⁇ and a 3.8 ⁇ -thick biaxially oriented film are the same as in Example 1 except that the film is stretched 3.5 times at 103 ° C and stretched 3.6 times at 105 ° C.
  • Capacitors used were prepared.Slightly inferior in film formation stability compared to Example 1 and tearing occurred during film formation.
  • the biaxially oriented polyphenylene sulfide film of this example had a little withstand voltage. The power is slightly lower and the withstand voltage is slightly inferior even in the capacitor characteristics. This is a sufficiently high level compared to the comparative example, and there is no problem in practical use.
  • PPS-1 resin prepared in Reference Example 1 was dried at 180 ° C for 3 hours under a reduced pressure of ImmHg.
  • Polyetherimide as thermoplastic resin A ("Ultem 10 10" manufactured by GE Plastics) (PEI) Were dried separately under reduced pressure of ImmHg at 120 ° C for 3 hours.
  • PEI thermoplastic resin A
  • y-isocyanate propyltriethoxysilane (KBE9007, manufactured by Shin-Etsu Chemical Co., Ltd.) 2.
  • the resulting PPS / PEI (70/30 parts by weight) blend chip raw material 17 parts by weight, PPS-3 resin prepared in Reference Example 3 73 parts by weight and particle master chip 10 parts by weight were drive-lensed and used as raw materials
  • a biaxially oriented polyphenylene sulfide film having a thickness of 3 and a capacitor using the same were prepared in the same manner as in Example 1 except that the film was extruded as.
  • the stretched film-forming property is good, the melt specific resistance is somewhat low, and the volume resistivity is also low compared to Example 1, but the obtained biaxially oriented polyphenylene sulfide film of this example is excellent in withstand voltage, The capacitor characteristics were also good.
  • thermoplastic resin A Except that the amount of PEI added to thermoplastic resin A was changed as shown in Table 1, the force of film formation was the same as in Example 1. .
  • Example 1 In the same manner as in Example 1, except that the amount of the thermoplastic resin A— isocyanate propyltriethoxysilane added was changed to 0.05 parts by weight as shown in Table 1, a thickness of 3.7 zm was obtained. An axially oriented polyphenylene sulfide film and a capacitor using the same were prepared. The average dispersion diameter of PEI was as large as 650 nm, and this film had insufficient low SH characteristics and insufficient capacitor properties with low high-temperature withstand voltage. (Examples 12, 14, 15)
  • a biaxially oriented polyester film and a capacitor using the same were prepared in the same manner as in Example 11 except that the film forming conditions and the film thickness were changed as shown in Table 2.
  • the measurement, evaluation results, and capacitor characteristics of the obtained biaxially oriented polyphenylene sulfide film are as shown in Table 2, both of which have high dielectric breakdown due to high temperature and room temperature withstand voltage. Capacitor characteristics with very little variation in measured voltage values were also very good.
  • PPS-1 resin prepared in Reference Example 1 was dried at 180 ° C for 3 hours under a reduced pressure of ImmHg.
  • Polyetherimide as thermoplastic resin A (“Ultem 10 10" manufactured by GE Plastics) (PEI) Were dried separately under reduced pressure of ImmHg at 120 ° C for 3 hours.
  • PEI thermoplastic resin A
  • y-isocyanate propyltriethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., "KBE9007
  • a biaxially oriented polyimide film having a thickness of 3.4 xm and a capacitor using the same were prepared in the same manner as in Example 11.
  • the stretched film-forming property was good, and even when the film was formed for a long time, it was stable with few generated gas and eyes.
  • the obtained biaxially oriented polyphenylene sulfide film has excellent withstand voltage and is a capacitor. One characteristic was also good.
  • a biaxially oriented polyethylene film and a capacitor using the same were prepared in the same manner as in Comparative Example 3 except that the film forming conditions and film thickness were changed as shown in Table 2.
  • the characteristics and capacitor characteristics of the obtained biaxially oriented polyester film are as shown in Table 2.
  • the SH characteristics of the capacitor characteristics were improved and there was no problem in practical use.
  • thermoplastic resin A was nylon 610 resin (nylon resin "Amilan CM2001” manufactured by Toray Industries, Inc.) (polyamide (PA)) and the film forming conditions were changed as shown in Table 2, Example 6 and Similarly, a biaxially oriented polyester film and a capacitor using the same were prepared.
  • the characteristics and capacitor characteristics of the obtained biaxially oriented polyphenylene sulfide film are as shown in Table 2. This biaxially oriented polyphenylene sulfide film has a slightly lower dielectric breakdown voltage, but the capacitor characteristics. In SH, the SH characteristics were improved and there was no problem in practical use.
  • the thickness of 3.5 / m was the same as in Example 11 except that 73 parts by weight of PPS-4 resin was used instead of PPS-3 resin and the film forming conditions were changed as shown in Table 2.
  • a biaxially oriented polyphenylene sulfide film and a capacitor using the same were prepared. This capacitor had good SH characteristics for its withstand voltage at high temperatures.
  • a biaxially oriented polyphenylene sulfide film having a thickness of 3.5 ⁇ m and a capacitor using the same were prepared in the same manner as in Example 11 except that the film forming conditions were changed as shown in Table 2.
  • the film of Comparative Example 6 and its capacitor had extremely low withstand voltage at high temperatures.
  • the film of Comparative Example 7 had a higher withstand voltage than Comparative Example 6, the film elongation exceeded 80%, and the SH property when using a single capacitor was insufficient.
  • the polymer melted by the extruder is filtered through a filter set at a temperature of 320 ° C, melt-extruded from a die of a T die set at a temperature of 320 ° C, and then cast at a surface temperature of 25 ° C. While applying an electrostatic charge to the film, it was closely cooled and solidified to produce an unstretched polyphenylene sulfide film.
  • This unstretched polyphenylene sulfide film was used in the longitudinal direction of the film at a temperature of 103 ° C using a longitudinal stretching machine composed of a plurality of heated roll groups and utilizing the peripheral speed difference of the rolls. 3. Stretched at a magnification of 8 times. After that, both ends of this film are gripped with clips and guided to a tenter, and stretched in the width direction of the film at a stretching temperature of 105 ° C and a stretching ratio of 3.8 times.
  • a biaxially oriented polyester film and a capacitor using the same were prepared in the same manner as in Example 18 except that the amount of PEI added to the thermoplastic resin (A) was changed as shown in Table 3. did.
  • the biaxially oriented polyphenylene sulfide film of Example 19 was excellent in voltage resistance and capacitor characteristics.
  • the biaxially oriented polyphenylene sulfide film of Example 20 was excellent in withstand voltage, and was slightly inferior in heat resistance in terms of capacitor characteristics, but at a level where there was no problem in practical use.
  • a biaxially oriented polyester film and a capacitor using the same were prepared in the same manner as in Example 18 except that the PPS resin (PPS-2) prepared in Reference Example 2 was used as the PPS resin.
  • the biaxially oriented polysulfide film of this example was excellent in withstand voltage, had poor capacitor characteristics, and was slightly inferior in heat resistance, but was problematic in practical use.
  • the biaxially oriented polyphenylene sulfide in this example had excellent withstand voltage and good capacitor characteristics.
  • a biaxially oriented polyurethane film and the same were used in the same manner as in Example 18 except that polyphenylene ether (YPX-100A manufactured by Mitsubishi Gas Chemical Company) (PPE) was used as the thermoplastic resin (A).
  • PPE polyphenylene ether
  • a capacitor was created.
  • the biaxially oriented polyester film of this example had excellent withstand voltage and good capacitor characteristics.
  • the polymer melted by the extruder is filtered through a filter set at a temperature of 320 ° C, and then melt-extruded from a die of a T die set at a temperature of 320 ° C, and then cast at a surface temperature of 25 ° C.
  • An electrostatic charge was applied to the drum, and it was closely cooled and solidified to produce an unstretched polyphenylene sulfide film.
  • a biaxially oriented polyphenylene sulfide film and a capacitor using the unstretched polyphenylene sulfide film were prepared.
  • the evaluation results and capacitor characteristics of the obtained biaxially oriented polyphenylene sulfide film are as shown in Table 3.
  • This biaxially oriented polyphenylene sulfide film has a surface protrusion height that is preferred in the present invention. It was out of range, and the withstand voltage and heat resistance when using a single capacitor was slightly low, but it was a problem.
  • the biaxially oriented polyarylene sulfide film of the present invention is to provide a biaxially oriented polyarylene sulfide film having excellent heat resistance, dimensional stability, electrical properties and planarity, particularly for capacitors. When used, it has high electrical characteristics and excellent self-healing property (SH property), so that it can be suitably used as a highly reliable film for a capacitor even when used at high temperature and high voltage. Furthermore, in the biaxially oriented polyarylene sulfide film of the present invention, a capacitor using a film can be suitably used as a small-sized and high-capacity high-performance capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a biaxially oriented polyarylene sulfide film which is excellent in heat resistance, dimensional stability, electrical characteristics and planarity. In particular, the polyarylene sulfide film has high electrical characteristics and excellent self-healing (SH) property, and thus it enables to obtain a capacitor exhibiting high reliability during use at high temperature and high voltage when the polyarylene sulfide film is used in a capacitor. Also disclosed are a metallized film of such a polyarylene sulfide film, and a capacitor using the metallized film. Specifically disclosed is a biaxially stretched film characterized by containing a polyarylene sulfide and a thermoplastic resin A other than polyarylene sulfide, and having a dispersion phase composed of the thermoplastic resin A and having an average dispersion diameter of 50-500 nm. The biaxially stretched film is further characterized in that a glass transition temperature of the film is observed within the range of not less than 85˚C but less than 95˚C, but no glass transition temperature of the film is observed within the range of not less than 95˚C but not more than 130˚C.

Description

明 細 書  Specification
二軸配向ポリアリーレンスルフイドフイルム 技術分野  Biaxially oriented polyarylene sulfide film Technology
[0001] 本発明は、優れた耐熱性、寸法安定性、電気特性および平面特性を有する二軸配 向ポリアリーレンスルフイドフイルム、コンデンサー用二軸配向ポリアリーレンスルフィ ドフィルム、金属化二軸配向ポリアリーレンスルフイドフイルムおよびこれらを用いたコ ンデンサ一に関するものである。さらに、本発明は、フィルム面内の物性バラツキが少 ない高品位な二軸配向ポリアリーレンスルフイドフイルム、あるいは表面に緻密な微 細突起を形成し、耐熱性、電気特性に優れ、コンデンサーの加工適正を損なうことな ぐ小型化'大容量ィ匕に適した二軸配向ポリアリーレンスルフイドフイルム、およびこれ らを用いた金属化ポリアリーレンスルフイドフイルムおよびそれを用いたコンデンサー に関する。  [0001] The present invention relates to a biaxially oriented polyarylene sulfide film having excellent heat resistance, dimensional stability, electrical properties and planar properties, a biaxially oriented polyarylene sulfide film for capacitors, and a metallized biaxial The present invention relates to an oriented polyarylene sulfide film and a capacitor using them. Furthermore, the present invention forms a high-quality biaxially oriented polyarylene sulfide film with little variation in physical properties within the film surface, or fine fine protrusions on the surface, and is excellent in heat resistance and electrical characteristics, and is used in a capacitor. The present invention relates to a biaxially oriented polyarylene sulfide film suitable for miniaturization and large capacity without impairing processing suitability, a metallized polyarylene sulfide film using the same, and a capacitor using the same.
[0002] 詳しくは、高温での耐電圧等の電気特性に優れているためコンデンサー、モーター 、トランス等の電気絶縁材料、回路基板材料、リチウムイオン電池材料、燃料電池材 料、振動板などに使用することができ、特にコンデンサー用として用いると高い電気 特性を有し、 自己回復性 (セルフヒール性、 SH性)も向上することにより、高温'高電 圧で使用しても信頼性の高いコンデンサーを形成しうるポリアリーレンスルフイドフィ ルム、金属化フィルムおよびこれを用いたコンデンサーに関する。  [0002] Specifically, because it has excellent electrical characteristics such as withstand voltage at high temperatures, it is used for electrical insulation materials such as capacitors, motors, transformers, circuit board materials, lithium ion battery materials, fuel cell materials, diaphragms, etc. Capacitors that are highly reliable even when used at high temperature and high voltage due to their high electrical characteristics and improved self-healing (self-healing, SH), especially when used for capacitors. The present invention relates to a polyarylene sulfide film, a metallized film, and a capacitor using the same.
背景技術  Background art
[0003] フィルムコンデンサ一は、一般に二軸配向ポリエチレンテレフタレートフィルム、二 軸配向ポリプロピレンフィルム等のフィルムとアルミニウム箔等の金属箔膜とを重ね合 わせて卷回する方法や、あるいは前記フィルムの表面にアルミニウム、亜鉛等の蒸着 膜を形成させた後に卷回したり積層する方法により製造されている。  [0003] A film capacitor is generally formed by a method of winding a film such as a biaxially oriented polyethylene terephthalate film or a biaxially oriented polypropylene film and a metal foil film such as an aluminum foil, or on the surface of the film. It is manufactured by a method of winding or laminating after forming a deposited film of aluminum, zinc or the like.
最近では、電気あるいは電子回路の小型化要求に伴レ、、コンデンサーについてもそ の小型化や面実装化が進められており、耐熱性向上や薄物化が要求されている。こ のため、耐熱性、誘電特性に優れているポリフエ二レンスルフイド(PPS)フィルムを用 いたコンデンサーなどが製造され、ポリエステルフィルムやポリプロピレンフィルムで は対応できない使用保証温度が高い高性能回路に使用されており、近年、電話交 換機ゃ液晶バックライト用電源回路等で需要が高まっている。しかし、 PPSフイノレム は、引裂に弱く加工時にフィルム切れが生じやすぐまた耐電圧が低ぐ絶縁破壊時 の自己修復特性に欠ける等の問題があり、コンデンサー用フィルムとしての使用が制 限され大きな巿場は築けてレ、なレ、のが現状である。 Recently, along with demands for miniaturization of electrical or electronic circuits, capacitors have also been miniaturized and surface-mounted, and heat resistance and thinning have been demanded. For this reason, capacitors using polyphenylene sulfide (PPS) film with excellent heat resistance and dielectric properties are manufactured, and polyester film and polypropylene film are used. Is used in high-performance circuits that have a high guaranteed operating temperature. In recent years, demand for telephone switches and power supply circuits for liquid crystal backlights has increased. However, PPS Finolem is susceptible to tearing, causing film breakage during processing and shortage of self-healing properties at the time of dielectric breakdown due to low withstand voltage, and its use as a capacitor film is limited. The current situation is that you can build a place.
[0004] 二軸配向ポリフエ二レンスルフイドフイルム(以下、 PPSフィルムと略称することがある 。)は、特許文献 1等で開示されている。また、 PPSフィルムをコンデンサーの誘電体 に用い、耐熱性、周波数特性、温度特性等に優れたコンデンサーを提供できること が特許文献 2等で提案されている。しかし、上記のようなコンデンサ一は、その製造ェ 程、すなわち捲回や裁断、成形等の工程において製造条件の範囲が狭ぐこれらの 管理が不十分だと低電圧破壊による不良品が増加するという欠点がある。さらに、上 記コンデンサ一は低電圧破壊が生じたときに自己回復(セルフヒール)せずショート することが多ぐさらに不良率を増加させたり、使用時の信頼性が低い等の欠点があ つに。  [0004] A biaxially oriented polyester film (hereinafter sometimes abbreviated as a PPS film) is disclosed in Patent Document 1 and the like. Patent Document 2 proposes that a capacitor having excellent heat resistance, frequency characteristics, temperature characteristics, and the like can be provided by using a PPS film as a capacitor dielectric. However, in the case of the capacitor as described above, the range of manufacturing conditions is narrow in the manufacturing process, that is, the process of winding, cutting, molding, etc. If these controls are insufficient, defective products due to low voltage breakdown increase. There is a drawback. In addition, the above capacitors often suffer from short-circuiting without self-healing (self-healing) when low-voltage breakdown occurs, which further increases the defect rate and has low reliability during use. To.
[0005] この問題を解決するために、特許文献 3〜5で、 PPSフィルムの少なくとも片面にポ リエステル樹脂やポリオレフイン樹脂を積層してなる PPS積層フィルムをコンデンサー に用いることが提案されている。しかしながら、これら従来の PPS積層フィルムはポリ エステル、ポリオレフイン樹脂層と PPS層の接着性が十分でなくコンデンサー製造過 程において剥離しやすい場合が多ぐ 自己回復性 (SH性)についても十分な品質の ものが得られ難かった。また、ポリエステルやポリオレフインなど PPS以外の樹脂を積 層したフィルムは実質的に自己回収ができず、トリミングエッジや製品外フィルムを再 度フィルム原料として使用することはできなかった。  [0005] In order to solve this problem, Patent Documents 3 to 5 propose using a PPS laminated film in which a polyester resin or a polyolefin resin is laminated on at least one side of a PPS film as a capacitor. However, these conventional PPS laminated films do not have sufficient adhesion between the polyester and polyolefin resin layers and the PPS layer, and are often easily peeled off during the capacitor manufacturing process. Things were hard to get. In addition, films laminated with resins other than PPS, such as polyester and polyolefin, could not be substantially self-collected, and trimming edges and non-product films could not be used again as film raw materials.
[0006] 特許文献 6では、 SH性を向上させるために非晶性ポリエステル樹脂組成物を積層 してなる PPS積層フィルムが提案されている。本手法はインライン、オフラインで非晶 性ポリエステル樹脂層を PPS層の上に形成するものであるが、ガラス転移温度 Tgが 高々 90°Cであり、 100°C以上の高温で使用する場合、特に湿度の高い環境下で使 用する場合の耐熱性や信頼性が低下するという問題点があった。  [0006] Patent Document 6 proposes a PPS laminated film obtained by laminating an amorphous polyester resin composition in order to improve SH properties. In this method, an amorphous polyester resin layer is formed on the PPS layer in-line and off-line, but the glass transition temperature Tg is at most 90 ° C, especially when used at high temperatures of 100 ° C or higher. There was a problem that heat resistance and reliability when used in a high humidity environment decreased.
[0007] 特許文献 7では、 SH性を向上させるために、フィルムの厚み方向全部分が実質的 に PPSで構成され、表層部が内層部より非晶性である PPSフィルムが提案されてい る。本手法は、 PPSフィルム表面をフレーム処理等により溶融させ非晶化させる、もし くは非晶性 PPS樹脂を積層するものであるが、何れの場合でもフィルムが例えば 3 μ m以下と薄くなると平面性が悪化し、生産性が悪化する場合があるという問題点があ り、さらに SH性も不十分であった。 [0007] In Patent Document 7, in order to improve the SH property, the entire part in the thickness direction of the film is substantially A PPS film composed of PPS and having a surface layer that is more amorphous than the inner layer has been proposed. In this method, the surface of the PPS film is melted and amorphousized by frame treatment, etc., or an amorphous PPS resin is laminated, but in any case, the surface becomes flat when the film becomes thin, for example, 3 μm or less. However, there is a problem that productivity deteriorates, and SH property is also insufficient.
[0008] 特許文献 8では、 PPSフィルムの少なくとも片面にセラミック層が設けられた PPSフ イルムが提案されている力 例えば lOOnmもの厚さの蒸着層でないと十分な自己回 復特性(SH性)が得られないため生産性の悪さやフィルムの蒸着熱負けによる面荒 れなどが問題となる場合があった。  [0008] In Patent Document 8, a force is proposed for a PPS film in which a ceramic layer is provided on at least one side of a PPS film. For example, sufficient self-recovery characteristics (SH property) are required unless the deposited layer is as thick as lOOnm. Since it could not be obtained, there were cases in which poor productivity and surface roughness due to the loss of heat of vapor deposition of the film caused problems.
[0009] 一方、絶縁体、特にコンデンサーの誘電体としての特性を向上させるため、たとえ ば特許文献 9や 10が提案されている。特許文献 9は、重合後に 100°C以上の加圧ィ オン交換水で水洗し更に酸洗浄することにより、溶融比抵抗を 1 X 109 Ω ' cm以上と する PPSとし、これを 2軸延伸することにより絶縁破壊電圧の向上やコンデンサー使 用率の低下を抑制できるフィルムとしている。特許文献 10は、重合助剤を用いないで 製造した PPSを延伸することにより高温での体積固有抵抗が高いフィルムとしている 。し力しながらこれらの手法によっても SH性については改善されず、コンデンサ一信 頼性については不十分となる場合があった。また、製膜可能な条件範囲が狭ぐ製 膜安定性やフィルム平面性について劣る場合があった。 On the other hand, Patent Documents 9 and 10 have been proposed in order to improve the characteristics of an insulator, particularly a capacitor, as a dielectric. Patent Document 9 describes a PPS that has a melt specific resistance of 1 × 10 9 Ω'cm or more by washing with pressurized ion exchanged water at 100 ° C or higher after polymerization and further acid cleaning, and biaxial stretching. By doing so, the film can be used to prevent the breakdown voltage from increasing and the capacitor usage rate from decreasing. Patent Document 10 discloses a film having a high volume resistivity at a high temperature by stretching a PPS produced without using a polymerization aid. However, even with these methods, the SH performance was not improved, and the reliability of the capacitor was sometimes insufficient. In addition, there were cases where film forming stability and film flatness were inferior due to a narrow range of conditions for film formation.
[0010] また、ポリマーブレンドもしくはァロイにより、ポリフエ二レンスルフイドフイルムの特性 を改良しょうとする提案もあった(特許文献 11〜: 13)。特許文献 11では PPSとポリエ 一テルイミド、特許文献 13では PPSとポリアリレートとのブレンドが提案されている。し 力、しながら、特許文献 11では単に PPSとポリエーテルイミドを 2軸押出機でブレンド することによりフィルムの耐引き裂き性を向上させるとしている力 単に 2種のポリマー をブレンドしポリエーテルイミドの分散長径が 30 μ m以下となるよう制御したことに留 まり、電気特性やコンデンサー特性の改善については言及されていない。また、特許 文献 13では PPSとポリアリレートの単純ブレンドによりフィルムの滑り性を改善するこ とを目的としており、分散径制御については言及されておらず電気特性やコンデンサ 一特性の改善については言及されていない。一方、特許文献 12では PPSにポリエ 一テルイミドを相溶化させることによって、 PPSフィルムのガラス転移温度を 95°C以上 と向上させることにより耐電圧を向上させることが提案されている力 SH性について は言及されておらず、チップコンデンサーのような小型の低圧コンデンサーの性能向 上はガラス転移温度の上昇分耐熱温度が向上することにより図れたとしても、例えば ハイブリッドカーのインバーター用コンデンサーのような高温'高電圧下で使用される 大容量の捲回コンデンサーに用いる場合には性能が不十分な場合があった。 [0010] In addition, there has been a proposal to improve the properties of a polyphenylene sulfide film by using a polymer blend or alloy (Patent Documents 11 to 13). Patent Document 11 proposes a blend of PPS and polyetherimide, and Patent Document 13 proposes a blend of PPS and polyarylate. However, in Patent Document 11, the force to improve the tear resistance of the film by simply blending PPS and polyetherimide with a twin-screw extruder Simply disperse the two types of polymers and disperse the polyetherimide The long diameter is controlled to be 30 μm or less, and no mention is made of improvements in electrical characteristics and capacitor characteristics. Patent Document 13 aims to improve the slipperiness of the film by a simple blend of PPS and polyarylate, and does not mention dispersion diameter control but mentions improvement of electrical characteristics and capacitor characteristics. Not. On the other hand, in Patent Document 12, PPS There is no mention of the SH characteristics that have been proposed to improve the withstand voltage by increasing the glass transition temperature of the PPS film to 95 ° C or higher by compatibilizing monoterimide. Even if the performance of such small low-voltage capacitors can be improved by increasing the glass transition temperature and improving the heat-resistant temperature, for example, high-capacity capacitors that are used under high temperature and high voltage, such as inverter capacitors for hybrid cars. In some cases, the performance was insufficient when used in a wound condenser.
[0011] また、卷回コンデンサ一としてカ卩ェする際に適した滑り性を付与するため、予めフィ ルム中に滑剤や粒子などを添加するが、使用中にフィルムから粒子脱落が起こり、絶 縁欠点が生じコンデンサーとしての信頼性を損なうことが問題となる場合がある。 特許文献 1:特開昭 54— 142275号公報 [0011] Also, in order to provide a slipperiness suitable for caring as a winding capacitor, a lubricant or particles are added in advance to the film. There may be a problem that an edge defect occurs and the reliability as a capacitor is impaired. Patent Document 1: Japanese Patent Laid-Open No. 54-142275
特許文献 2 :特開昭 57— 187327号公報  Patent Document 2: Japanese Patent Laid-Open No. 57-187327
特許文献 3:特願平 2 _ 168861号公報  Patent Document 3: Japanese Patent Application No. 2 _ 168861
特許文献 4 :特開平 4 219236号公報  Patent Document 4: JP-A-4 219236
特許文献 5 :特開平 5— 318665号公報  Patent Document 5: JP-A-5-318665
特許文献 6 :特開 2000— 218738号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2000-218738
特許文献 7:特開 2002— 20508号公報  Patent Document 7: Japanese Unexamined Patent Application Publication No. 2002-20508
特許文献 8 :特開昭 63— 189458号公報  Patent Document 8: Japanese Unexamined Patent Publication No. 63-189458
特許文献 9 :特開昭 62— 158312号公報  Patent Document 9: Japanese Patent Application Laid-Open No. 62-158312
特許文献 10 :特開平 7— 312325号公報  Patent Document 10: JP-A-7-312325
特許文献 11 :特開昭 62— 158312号公報  Patent Document 11: Japanese Patent Laid-Open No. 62-158312
特許文献 12 :特開 2001— 261959号公報  Patent Document 12: Japanese Patent Laid-Open No. 2001-261959
特許文献 13 :特開平 1一 266146号公報  Patent Document 13: JP-A-11266266
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明の課題は、上記問題を解決するために、優れた耐熱性、寸法安定性、電気特 性および平面性を有する二軸配向ポリアリーレンスルフイドフイルムを提供することで ある。特にコンデンサー用として用いると高い電気特性と優れた自己回復性(SH性) を具備することにより、高温 '高電圧で使用しても信頼性の高いコンデンサーを形成 しうるポリアリーレンスルフイドフイルム、この金属化フィルムおよびこれを用いたコンデ ンサーを提供することである。より具体的には、従来 PPSフィルムが多く用いられてき たチップコンデンサーのような小型コンデンサー用途だけでなぐ高温'高電圧での 高い信頼性が求められる高速鉄道やハイブリッドカーのインバーター用コンデンサー のような高温 ·高電圧下で使用される大容量の捲回コンデンサー用としても使用しう るコンデンサー用フィルム、この金属化フィルムおよびそれを用いたコンデンサーを 提供することである。 [0012] In order to solve the above problems, an object of the present invention is to provide a biaxially oriented polyarylene sulfide film having excellent heat resistance, dimensional stability, electrical characteristics, and planarity. Especially when used as a capacitor, it has high electrical characteristics and excellent self-healing (SH), so it forms a highly reliable capacitor even when used at high temperature and high voltage. It is to provide a polyarylene sulfide film, a metallized film, and a capacitor using the same. More specifically, such as capacitors for inverters in high-speed railways and hybrid cars that require high reliability at high temperature and high voltage as well as small capacitor applications such as chip capacitors where PPS films have been used in the past. The object is to provide a capacitor film that can also be used as a large-capacity winding capacitor used under high temperature and high voltage, this metallized film, and a capacitor using the same.
課題を解決するための手段 Means for solving the problem
上記課題を達成するための本発明は、ポリアリーレンスルフイドと、ポリアリーレンス ルフイドとは異なる他の熱可塑性樹脂 Aとを含む熱可塑性樹脂からなるフィルムであ つて、熱可塑性樹脂 Aが分散相を形成し、該分散相の平均分散径が 50〜500nmで あり、該フィルムのガラス転移温度が 85°C以上 95°C未満に観察され、かつ 95°C以 上 130°C以下には観察されず、フィルムの長手方向および幅方向の破断伸度がい ずれも 80%以下であり、 150°Cの絶縁破壊電圧が 300V/ /1 m以上であることを特 徴とする二軸配向ポリアリーレンスルフイドフイルムである。  In order to achieve the above object, the present invention provides a film made of a thermoplastic resin including polyarylene sulfide and another thermoplastic resin A different from the polyarylene sulfide, wherein the thermoplastic resin A is dispersed. The average phase diameter of the dispersed phase is 50 to 500 nm, the glass transition temperature of the film is observed to be 85 ° C or higher and lower than 95 ° C, and 95 ° C or higher and 130 ° C or lower. A biaxially oriented polymer characterized in that the elongation at break in the longitudinal and width directions of the film is not more than 80% and the dielectric breakdown voltage at 150 ° C is not less than 300 V // 1 m. It is an Allensulfide Film.
また、本発明の二軸配向ポリアリ一レンスルフイドフイルムは、 In addition, the biaxially oriented polyarylene sulfide film of the present invention is
(1)ポリアリーレンスルフイドと熱可塑性樹脂 Aの含有量の和を 100重量部としたとき にポリアリーレンスルフイドの含有量が 70〜99. 5重量部、熱可塑性樹脂 Aの含有量 が 0. 5〜30重量部であること、  (1) When the sum of the contents of polyarylene sulfide and thermoplastic resin A is 100 parts by weight, the content of polyarylene sulfide is 70 to 99.5 parts by weight, and the content of thermoplastic resin A Is 0.5 to 30 parts by weight,
(2)ポリアリーレンスルフイドがポリフエ二レンスルフイドであること、  (2) The polyarylene sulfide is a polyphenylene sulfide,
(3)熱可塑性樹脂 Aが非晶性樹脂であり、そのガラス転移温度が 150°C以上かつポ リアリーレンスルフイドの融点以下であること、  (3) Thermoplastic resin A is an amorphous resin, and its glass transition temperature is 150 ° C or higher and lower than the melting point of the porous lens sulfide,
(4)熱可塑性樹脂 Aがポリアリレート、ポリフエ二レンエーテル、ポリエーテルイミド、ポ リエーテルスルホンおよびポリスルホンからなる群力、ら選ばれる少なくとも 1種のポリマ 一であること、  (4) The thermoplastic resin A is at least one polymer selected from the group consisting of polyarylate, polyphenylene ether, polyetherimide, polyethersulfone and polysulfone,
(5)熱可塑性樹脂 A力 なる分散相の界面にシロキサン結合からなるシリコン原子を 含むこと、  (5) thermoplastic resin A force containing a silicon atom composed of a siloxane bond at the interface of the dispersed phase.
(6)ポリアリーレンスルフイドと熱可塑性樹脂 Aおよび、エポキシ基、アミノ基、イソシァ ナート基からなる群から選ばれる少なくとも 1種の基を有する相溶化剤を 0. 05〜3重 量部含む原材料を混練してなる樹脂組成物を溶融製膜してなること、 (6) Polyarylene sulfide and thermoplastic resin A and epoxy group, amino group, isocyanate Melt-forming a resin composition obtained by kneading a raw material containing 0.05 to 3 parts by weight of a compatibilizer having at least one group selected from the group consisting of nate groups;
(7) 150°C、直流 500V印加における体積固有抵抗が 1. 0 X 1014 Ω ' cm以上であ ること、  (7) The volume resistivity at 150 ° C and DC 500V is 1.0 x 1014 Ω 'cm or more.
(8)フィルムを構成する樹脂組成物の 310°Cにおける溶融比抵抗が 1. 0 Χ 109 Ω · ο m〜l . 0 Χ 10η Ω ' cmであること、 (8) The melting specific resistance of the resin composition constituting the film at 310 ° C is 1.0 Χ 10 9 Ω · ο m to l. 0 Χ 10 η Ω 'cm,
(9) 23°Cでの絶縁破壊電圧 V (23) (V/ μ m)と 150°Cでの絶縁破壊電圧 V (150) (V/ μ m)が  (9) The breakdown voltage V (23) (V / μm) at 23 ° C and the breakdown voltage V (150) (V / μm) at 150 ° C
V(150) /V (23)≥0. 85  V (150) / V (23) ≥0.85
であること、 Being
(10)フィルムの長手方向および幅方向における 23°Cでの伸度—応力曲線において 、伸度 2%と (破断点伸度— 5%)の区間における微分係数が長手方向、幅方向とも 常に 0以上であること、  (10) Elongation at 23 ° C in the longitudinal and width directions of the film—Stress curve, the differential coefficient between the elongation of 2% and (elongation at break—5%) is always in the longitudinal and width directions. Be 0 or more,
( 11 ) 23°C 65 %RH雰囲気下で 30箇所測定した絶縁破壊電圧の平均値が 350 V/ β m以上、該絶縁破壊電圧の標準偏差が 30V/ β m以下であること、 (11) The average value of breakdown voltage measured at 30 locations in an atmosphere of 23 ° C and 65% RH is 350 V / βm or more, and the standard deviation of the breakdown voltage is 30V / βm or less.
(12)中心線平均粗さ Raが 30nm以上 lOOnm以下、最大高さ Rmaxが 700nm以下 、 50 /i m X 50 /i mの領域に突起高さ 50nm以上の突起個数が 250個以上であるこ と、  (12) The center line average roughness Ra is 30 nm or more and lOOnm or less, the maximum height Rmax is 700 nm or less, and the number of protrusions having a protrusion height of 50 nm or more in the region of 50 / im x 50 / im is 250 or more.
(13)実質的に粒子を含まないこと、  (13) substantially free of particles,
(14)摩擦係数が 0. 2以上 0. 6以下であること、  (14) The friction coefficient is 0.2 or more and 0.6 or less,
(15)上記のポリアリーレンスルフイドフイルムの製造方法であって、面積倍率が 11倍 以上になるよう長手方向および幅方向に延伸し、延伸後の熱固定を温度の異なる 2 段以上の工程で行う製造方法であって、その 1段目の熱固定温度を(直前の延伸温 度 + 5°C)以上 240°C以下、後段の熱固定温度の最高値を(1段目の熱固定温度 + 20°C)以上(フィルムを構成するポリアリーレンスルフイドの融点 _ 5°C)以下とするポ リアリーレンスルフイドフイルムの製造方法、  (15) A method for producing the above polyarylene sulfide film, which is stretched in the longitudinal direction and the width direction so that the area magnification becomes 11 times or more, and the heat setting after stretching is performed in two or more steps at different temperatures. The heat setting temperature of the first stage is (previous stretching temperature + 5 ° C) to 240 ° C and the maximum heat setting temperature of the second stage is (Temperature + 20 ° C) or higher (melting point of the polyarylene sulfide constituting the film _ 5 ° C) or lower,
(16)上記に記載の二軸配向フィルムであるコンデンサー用二軸配向フィルム、 (16) A biaxially oriented film for capacitors that is a biaxially oriented film as described above,
(17)上記に記載の二軸配向ポリアリーレンスルフイドフイルムの少なくとも片面に金 属層を形成してなる金属化フィルム、 (17) Gold on at least one side of the biaxially oriented polyarylene sulfide film described above A metallized film formed from a metal layer,
(18)上記に記載の金属化フィルムを捲回あるいは積層してなることを特徴とするコン デンサ一  (18) A capacitor comprising the above metallized film wound or laminated
をそれぞれ好ましレ、様態として含んでレ、る。  Each of them is preferred and includes a mode.
発明の効果  The invention's effect
[0014] 本発明によれば、以下説明の通り、優れた耐熱性、寸法安定性、電気特性および 平面性を有する二軸配向ポリアリーレンスルフイドフイルムが得られ、特にコンデンサ 一用として用いると高い電気特性と優れた自己回復性 (SH性)を具備することにより 、高温 '高電圧で使用しても信頼性の高い大型 ·小型コンデンサーを形成しうるポリア リーレンスルフイドフイルムおよびこれを用いたコンデンサーを得ることができる。 発明を実施するための最良の形態  [0014] According to the present invention, as described below, a biaxially oriented polyarylene sulfide film having excellent heat resistance, dimensional stability, electrical characteristics, and planarity can be obtained, and particularly when used as a capacitor. High electrical properties and excellent self-healing (SH) characteristics make it possible to form a large and small capacitor with high reliability even when used at high temperatures and voltages, and to use this. You can get the capacitor you had. BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明の二軸配向ポリアリーレンスルフイドフイルム、コンデンサー用二軸配 向ポリアリーレンスルフイドフイルム、金属化二軸配向ポリアリーレンスルフイドフイルム およびこれらを用いたコンデンサーについて説明する。 Hereinafter, the biaxially oriented polyarylene sulfide film of the present invention, the biaxially oriented polyarylene sulfide film for capacitors, the metallized biaxially oriented polyarylene sulfide film, and the capacitor using these are described. To do.
本発明の二軸配向ポリアリーレンフィルムは、優れた耐熱性、寸法安定性、電気特性 および平面性を有し、特にコンデンサー用として用いると高い電気特性と優れた自己 回復性 (SH性)を具備することにより、高温 '高電圧で使用しても信頼性の高いコン デンサ一を形成しうる。力、かる特性を発現させるために、本発明は、ポリアリーレンス ノレフイドと、ポリアリーレンスルフイドとは異なる他の熱可塑性樹脂 Aとを含み、熱可塑 性樹脂 Aが分散相を形成し、その分散相の平均分散径が 50〜500nmであり、かつ フィルムのガラス転移温度が 85°C以上 95°C未満に観察される一方で 95°C以上 130 °C以下には観察されないこと、そしてフィルムの長手方向および幅方向の破断伸度 がいずれも 80%以下であり、 150°Cの絶縁破壊電圧が 300V/ /i m以上であること が好ましい。本発明では、ポリアリーレンスルフイドが連続相(海相あるいはマトリックス )を形成し、他の熱可塑性樹脂 Aが分散相(島相あるいはドメイン)を形成し、その分 散相の平均分散径の平均値は 50〜500nmであることが必要である。分散径の平均 値の好ましレヽ範囲は 60〜300nmであり、さらに好ましくは 70〜200nmである。ポリ ァリ一レンスルフイドが連続相を形成することによりポリアリ一レンスルフイドの耐熱性 、耐薬品性、機械特性の優れた特性をフィルムに大きく反映させることが可能となる。 また、平均分散径を上記の範囲にすることにより、平面性に優れ、コンデンサーの誘 電体として用いた場合に SH性をフィルムに付与することが可能となる。分散相の平 均分散径の平均値が 50nm未満であると、本発明のコンデンサーの誘電体として用 レ、た場合の SH性向上効果が不十分となる。また、平均分散径の平均値が 500nmよ り大きいと、フィルムの耐熱性や平面性が悪化し、また、延伸時にフィルム破れが発 生しやすくなる。 The biaxially oriented polyarylene film of the present invention has excellent heat resistance, dimensional stability, electrical properties, and planarity, and particularly has high electrical properties and excellent self-healing properties (SH property) when used for capacitors. By doing so, a highly reliable capacitor can be formed even when used at high temperature and high voltage. In order to develop such strength and characteristics, the present invention includes a polyarylene sulfide and another thermoplastic resin A different from the polyarylene sulfide, and the thermoplastic resin A forms a dispersed phase, The average dispersed diameter of the dispersed phase is 50 to 500 nm, and the glass transition temperature of the film is observed at 85 ° C or higher and lower than 95 ° C, while not observed at 95 ° C or higher and 130 ° C or lower; and The breaking elongation in the longitudinal direction and the width direction of the film is preferably 80% or less, and the dielectric breakdown voltage at 150 ° C. is preferably 300 V // im or more. In the present invention, polyarylene sulfide forms a continuous phase (sea phase or matrix), and other thermoplastic resin A forms a dispersed phase (island phase or domain), and the average dispersed diameter of the dispersed phase is determined. The average value should be 50-500 nm. The preferred range of the average value of the dispersion diameter is 60 to 300 nm, and more preferably 70 to 200 nm. Heat resistance of polyarylene sulfide by forming a continuous phase It is possible to largely reflect the excellent chemical resistance and mechanical properties on the film. In addition, by setting the average dispersion diameter in the above range, it is excellent in flatness, and it is possible to impart SH properties to the film when used as a capacitor dielectric. When the average value of the average dispersed diameter of the dispersed phase is less than 50 nm, the effect of improving SH property when used as a dielectric of the capacitor of the present invention is insufficient. On the other hand, if the average value of the average dispersion diameter is larger than 500 nm, the heat resistance and flatness of the film are deteriorated, and the film is easily broken during stretching.
[0016] ここでレ、う分散相の平均分散径とは、(ァ)長手方向に平行かつフィルム面に垂直な 方向、(ィ)幅方向に平行かつフィルム面に垂直な方向、(ゥ)フィルム面に対して平 行な方向に切断した面に対して観察される分散粒子径を数平均したものである。 (ァ )の切断面に現れる分散相のフィルム厚み方向の最大長さ(la)と長手方向の最大長 さ(lb)、(ィ)の切断面に現れる分散相のフィルム厚さ方向の最大長さ(k)と幅方向 の最大長さ(Id)、(ゥ)の切断面に現れる分散相のフィルム長手方向の最大長さ(le) と幅方向の最大長さ (If)を求め、分散相の形状指数 1= (lbの数平均値 +leの数平 均値) /2、形状指 U= (Idの数平均値 +lfの数平均値) /2、形状指数 K= (laの数 平均値 +lcの数平均値) /2とし、分散相の平均分散径を (I+J+K) /3とする。  [0016] Here, the average dispersion diameter of the dispersed phase is: (a) a direction parallel to the longitudinal direction and perpendicular to the film surface, (i) a direction parallel to the width direction and perpendicular to the film surface, (u) This is the number average of dispersed particle diameters observed on a plane cut in a direction parallel to the film plane. Maximum length (la) and maximum length (lb) in the film thickness direction of the disperse phase appearing on the cut surface of (a), and maximum length (lb) of the disperse phase appearing on the cut surface of (i) Find the maximum length (le) and the maximum length (If) in the film longitudinal direction of the disperse phase appearing on the cut surface of (k) and the width direction (Id) and (u). Phase shape index 1 = (number average value of lb + number average value of le) / 2, shape finger U = (number average value of Id + number average value of lf) / 2, shape index K = (la Number average value + lc number average value) / 2, and the average dispersed diameter of the dispersed phase is (I + J + K) / 3.
[0017] 測定は、サンプルを超薄切片法で作製し、透過型電子顕微鏡を用いて、加圧電圧 lOOkVの条件下で観察し、 2万倍で写真を撮影して、得られた写真をィメ—ジアナラ ィザ一に画像として取り込み、必要に応じて、画像処理を行うことにより、任意の 100 個の分散粒子の平均分散径を計算する。  [0017] For the measurement, a sample was prepared by an ultrathin section method, and observed using a transmission electron microscope under the condition of an applied voltage lOOkV, and a photograph was taken at 20,000 times. The average dispersion diameter of any 100 dispersed particles is calculated by importing it into an image analyzer as an image and performing image processing as necessary.
[0018] 熱可塑性樹脂 Aの分散相の形状は、球状もしくは細長い島状、小判状、あるいは 繊維状であることが好ましい。分散相のアスペクト比は、 1〜20の範囲であることが好 ましレ、。さらに好ましい分散相のアスペクト比の範囲は 1〜: 10であり、より好ましい範 囲は:!〜 5である。これら島成分のアスペクト比を上記範囲にすることにより、平面性 に優れた二軸配向ポリアリ一レンスルフイドフイルムを得やすいので好ましい。ここで、 アスペクト比は、分散相の平均長径/平均短径の比を意味するものである。該ァスぺ タト比は、透過型電子顕微鏡や走査型電子顕微鏡などの手法を用いて測定すること ができる。例えば、サンプルを超薄切片法で作製し、透過型電子顕微鏡を用いて、 加圧電圧 lOOkVの条件下で観察し、 2万倍で写真を撮影して、得られた写真をィメ ージアナライザーに画像として取り込み、画像処理を行うことにより、アスペクト比を計 算することができる(測定法の詳細は後述する)。 [0018] The shape of the dispersed phase of the thermoplastic resin A is preferably a spherical or elongated island shape, an oval shape, or a fiber shape. The aspect ratio of the dispersed phase is preferably in the range of 1-20. A more preferable range of the aspect ratio of the dispersed phase is 1 to 10 and a more preferable range is:! To 5. By setting the aspect ratio of these island components in the above range, it is preferable because a biaxially oriented polyarylene sulfide film having excellent planarity can be easily obtained. Here, the aspect ratio means the ratio of the average major axis / average minor axis of the dispersed phase. The aspect ratio can be measured using a technique such as a transmission electron microscope or a scanning electron microscope. For example, a sample is prepared by an ultrathin section method, and using a transmission electron microscope, The aspect ratio can be calculated by observing under a pressure of lOOkV, taking a picture at 20,000 times, capturing the obtained picture as an image into an image analyzer, and performing image processing. (Details of the measurement method will be described later).
[0019] 本発明では、二軸配向ポリアリーレンフィルムのガラス転移温度 (Tg)は 85°C以上 9 5°C未満に観察される一方で 95°C以上 130°C以下には観察されないことが好ましい 。 Tgが 85°C未満の場合は、フィルムの耐熱性が低くなる場合がある。また、 Tgが 95 °C以上 130°C以下に観測される場合は、フィルムをコンデンサーの誘電体として用い る場合に SH性が不十分となる場合がある。  [0019] In the present invention, the glass transition temperature (Tg) of the biaxially oriented polyarylene film is observed at 85 ° C or more and less than 95 ° C, but not at 95 ° C or more and 130 ° C or less. Preferred. When Tg is less than 85 ° C, the heat resistance of the film may be lowered. If Tg is observed to be 95 ° C or higher and 130 ° C or lower, the SH property may be insufficient when the film is used as a capacitor dielectric.
[0020] 本発明の二軸配向ポリアリーレンスルフイドフイルムは長手方向および幅方向の 破断伸度がいずれも 80%以下が必要である。 30%以上 80%以下が好ましぐより好 ましくは 35%以上 65%未満、さらに好ましくは 40%以上 55%未満である。フィルム の破断伸度が 30。/o未満の場合は、フィルムスリット時に破断しやすかつたり、折り曲 げなどの加工時にヮレが生じやすぐ特にコンデンサー用とした場合、捲回コンデン サーを製造する際に破断し易くなり加工が困難となる。他方、フィルムの破断伸度が 80%より大きい場合は、コンデンサー用とした場合に低電圧破壊を生じたり、 SH性 が不十分となり信頼性の劣ったコンデンサ一となる場合があるため好ましくない。 本発明の二軸配向ポリアリーレンスルフイドフイルムは長手方向および幅方向の破断 強度がいずれも 230MPa以上 500MPa以下、より好ましくは 250MPa以上 450MP a以下、さらに好ましくは 270MPa以上 400MPa以下である。フィルムの破断強度が 230MPa未満の場合、折り曲げなどの加工時にヮレが生じやすくなる場合があったり 高温での耐電圧が低くなる場合があり、特にコンデンサー用とした場合、捲回コンデ ンサーを製造する際に破断し易くなり加工が困難となったり、低電圧破壊を生じやす ぐ SH性が不十分となり信頼性の劣ったコンデンサーとなり好ましくない場合がある。 他方、 500MPaを超えるフィルムを得るためには、製膜時の延伸倍率を極めて高倍 率にする必要があり、製膜工程の延伸時にフィルム破れが発生しやすくなるため好ま しくない場合がある。  [0020] The biaxially oriented polyarylene sulfide film of the present invention needs to have a breaking elongation of 80% or less in both the longitudinal direction and the width direction. 30% or more and 80% or less is preferable, 35% or more and less than 65%, more preferably 40% or more and less than 55%. The breaking elongation of the film is 30. If it is less than / o, it will break easily when the film is slit, or it will be broken during processing such as bending, and if it is used especially for capacitors, it will break easily when manufacturing a wound capacitor. It becomes difficult. On the other hand, when the elongation at break of the film is more than 80%, it is not preferable because it may cause low-voltage breakdown when used for a capacitor, or may become a capacitor with poor reliability due to insufficient SH characteristics. The biaxially oriented polyarylene sulfide film of the present invention has a breaking strength in the longitudinal direction and the width direction of 230 MPa or more and 500 MPa or less, more preferably 250 MPa or more and 450 MPa or less, and further preferably 270 MPa or more and 400 MPa or less. If the breaking strength of the film is less than 230 MPa, warping may occur easily during processing such as bending, and the withstand voltage at high temperatures may be low. Especially when it is used for capacitors, a wound capacitor is manufactured. In this case, it is easy to break, making it difficult to process, or causing low voltage breakdown. On the other hand, in order to obtain a film exceeding 500 MPa, it is necessary to make the draw ratio at the time of film formation extremely high, which is not preferable because the film is easily broken during the film forming process.
[0021] 本発明の二軸配向ポリアリーレンスルフイドフイルムは長手方向および幅方向のャ ング率がいずれも 3GPa以上 7GPa未満であることが好ましぐより好ましくは 3. 2GP a以上 6GPa未満、さらに好ましくは 3. 5GPa以上 5GPa未満である。フィルムの長手 方向および幅方向におけるヤング率のいずれ力が 3GPa未満である場合は、高温で の耐電圧が低くなる場合があり、特にコンデンサー用とした場合、低電圧破壊を生じ やすぐ SH性が不十分となり信頼性の劣ったコンデンサ一となる場合があるので好 ましくなレ、。他方、フィルムの長手方向および幅方向におけるヤング率が 7GPaを超 える場合は、製膜時の延伸倍率を極めて高倍率にする必要があり、製膜工程の延伸 時にフィルム破れが発生しやすくなり好ましくない場合がある。 [0021] The biaxially oriented polyarylene sulfide film of the present invention preferably has a hang ratio in the longitudinal direction and in the width direction of 3 GPa or more and less than 7 GPa, more preferably 3.2 GPa. a or more and less than 6 GPa, more preferably 3.5 GPa or more and less than 5 GPa. If any of the Young's modulus in the longitudinal and width directions of the film is less than 3 GPa, the withstand voltage at high temperatures may be low. This is preferable because it may be insufficient and the capacitor may be inferior in reliability. On the other hand, when the Young's modulus in the longitudinal direction and the width direction of the film exceeds 7 GPa, it is necessary to make the stretch ratio during film formation extremely high, and film tearing is likely to occur during stretching in the film forming process. There may not be.
[0022] 本発明の二軸配向ポリアリーレンスルフイドフイルムは、フィルムの長手方向および 幅方向における 23°Cでの伸度-応力曲線において、伸度 2%と (破断点伸度—5% )の区間における微分係数が何れの方向も常に 0以上であることが好ましい。いずれ 力、の方向の微分係数が 0. l (MPaZ%)以上であることがより好ましぐ更に好ましく は 0. 5 (MPa/Q/。)以上である。微分係数が負となる場合は、フィルムの強度が低下 するだけでなぐ耐熱性、寸法安定性、電気特性、平面特性などが低下したり、 150 °Cと 23°Cの絶縁破壊電圧の差が大きくなつたり、 SH性が不良になるため好ましくな い場合がある。この原因は必ずしも明らかではないが、フィルムを構成する非晶分子 鎖の弛緩の程度が大きぐ特にポリアリーレンスルフイドのガラス転移点以上ではポリ ァリーレンスルフイド分子鎖の運動性が高くなることに起因するものと考えている。ま た、微分係数が常に 10 (MPa/%)を越える場合は、フィルムの伸度が 30%未満と なり、好ましくない場合がある。  [0022] The biaxially oriented polyarylene sulfide film of the present invention has an elongation of 2% and an elongation at break of 5% in the elongation-stress curve at 23 ° C in the longitudinal and width directions of the film. ) Is preferably always 0 or more in any direction. In any case, the differential coefficient in the direction of force is more preferably 0.1 (MPaZ%) or more, more preferably 0.5 (MPa / Q /.) Or more. When the differential coefficient is negative, the heat resistance, dimensional stability, electrical characteristics, planar characteristics, etc., as well as the decrease in film strength, or the difference in dielectric breakdown voltage between 150 ° C and 23 ° C It may be unfavorable because it becomes large or the SH property becomes poor. The cause of this is not necessarily clear, but the degree of relaxation of the amorphous molecular chains that make up the film is large. Especially at the glass transition point of polyarylene sulfide, the mobility of the polyarylene sulfide molecular chains increases. I think that is due to this. Also, if the derivative always exceeds 10 (MPa /%), the elongation of the film will be less than 30%, which may be undesirable.
[0023] 本発明では、二軸配向ポリアリーレンスルフイドフイルムの 150°Cの絶縁破壊電圧 力 ¾00V/ /i m以上であることが好ましぐより好ましくは 400V/ μ ΐη以上である。 1 50°Cの絶縁破壊抵抗が 300VZ β m未満であると、本フィルムを用いてコンデンサ 一素子を製造する場合、フィルムのガラス転移温度以上、例えば 95°C以上での高温 のコンデンサー素子の耐電圧が低くなる場合がある。二軸配向ポリアリーレンスルフ イドフイルム耐電圧の上限は特に設けなレ、が、 1000V/ z m以上となる場合には、コ ンデンサ一とした場合に SH性が機能せず貫通破壊に至る場合がある。  In the present invention, the dielectric breakdown voltage force at 150 ° C. of the biaxially oriented polyarylene sulfide film is preferably ¾00 V // im or more, more preferably 400 V / μΐη or more. 1 When the dielectric breakdown resistance at 50 ° C is less than 300VZ β m, when manufacturing a single capacitor element using this film, the resistance of the capacitor element at high temperature above the glass transition temperature of the film, for example, at 95 ° C or higher. The voltage may be low. The upper limit of the withstand voltage of the biaxially oriented polyarylene sulfide film is not particularly set, but when it is 1000 V / zm or more, the SH property does not function when the capacitor is used, which may lead to penetration failure. is there.
[0024] さらに、特にコンデンサー用として用いたとき、温度による耐電圧の変動を少なくし、 自己回復性(SH性)を高めるため、 23°Cでの絶縁破壊電圧 V (23) (V/ z m)と 15 0°Cでの絶縁破壊電圧 V (150) (V/ /i m)が [0024] Furthermore, when used especially for capacitors, the dielectric breakdown voltage at 23 ° C V (23) (V / zm) in order to reduce the fluctuation of withstand voltage due to temperature and increase the self-healing property (SH property) ) And 15 Dielectric breakdown voltage V (150) (V // im) at 0 ° C is
V(150) /V (23)≥0. 85  V (150) / V (23) ≥0.85
であることが好ましい。より好ましくは V (150) /V (23)≥0. 9であり、更に好ましくは V (150) /V (23)≥0. 95である。  It is preferable that More preferably, V (150) / V (23) ≥0.9, and even more preferably V (150) / V (23) ≥0.95.
[0025] また、本発明の二軸配向ポリアリーレンスルフイドフイルムは、 V (23)が 350V/ Z m以上かつその標準偏差は 30VZ μ m以下であることが好ましい。標準偏差が 30V / z mを超える場合、フィルム面内の物性バラツキが多くなり、コンデンサ一とした場 合に、低電圧破壊が起こりやすぐさらに該破壊箇所で連続集中破壊が起こりやすく 、 SH性が機能せず信頼性を損なう。上記観点から、好ましい絶縁破壊電圧の標準 偏差は 25V/ μ m以下、さらに好ましくは 20VZ β m以下である。  [0025] The biaxially oriented polyarylene sulfide film of the present invention preferably has V (23) of 350 V / Zm or more and a standard deviation of 30 VZ μm or less. When the standard deviation exceeds 30V / zm, the physical property variation in the film increases, and when a single capacitor is used, low voltage breakdown occurs, and continuous concentrated breakdown is likely to occur immediately at the breakdown location, and the SH property is improved. Does not function and impairs reliability. From the above viewpoint, the standard deviation of the preferable dielectric breakdown voltage is 25 V / μm or less, more preferably 20 VZ β m or less.
[0026] 本発明では、製膜時の延伸工程にてポリアリーレンスルフイド分子鎖を高度に配向 させ、さらに引き続き実施する熱固定工程の温度を制御することにより、フィルム内の 分子鎖配向を高く保ち、分子鎖緊張を保持して構造を固定でき、上述の好ましい特 性が発現するものと考えてレ、る。  [0026] In the present invention, the molecular chain orientation in the film is controlled by highly orienting the polyarylene sulfide molecular chains in the stretching process during film formation, and further controlling the temperature of the subsequent heat setting process. It is considered that the structure can be fixed while keeping the chain tension high and the above-mentioned preferable characteristics are exhibited.
[0027] 分子鎖配向を保ち分子鎖緊張を保持して構造を固定するためには、詳細は後述 するが、たとえば、延伸工程では延伸温度を長手方向および幅方向ともに (Tg (ポリ ァリーレンスルフイドのガラス転移温度))〜(Tg + 40)、好ましくは (Tg + 5°C)〜(Tg + 20°C)、延伸倍率は長手方向および幅方向ともに 3倍以上、好ましくは 3. 5倍以 上、面積倍率は 11倍以上、好ましくは 13倍以上、より好ましくは 14倍以上とし、延伸 後の熱固定温度を 170〜(Tm (ポリアリーレンスルフイドの融点)—5°C) °C、好ましく は 200〜250°Cの 1段熱固定、より好ましい条件としては延伸後の熱固定を温度の 異なる 2段以上の工程で行レ、、その 1段目の熱固定温度を(直前の延伸温度 + 5°C) 〜240°C、好ましくは(直前の延伸温度 + 30°C)〜220°Cとし、後段の熱固定温度の 最高値を(1段目の熱固定温度 + 20V)〜 (Tm_ 5°C)とし、熱固定後に幅方向に 8 %以下、好ましくは 2〜5%の弛緩処理を後段の熱固定温度の最高値未満で適宜調 節して行うことにより本発明の範囲にすることができる。  [0027] In order to maintain the molecular chain orientation and to maintain the molecular chain tension and to fix the structure, details will be described later. For example, in the stretching process, the stretching temperature is changed in both the longitudinal direction and the width direction (Tg (polyarylene). Rufido glass transition temperature)) to (Tg + 40), preferably (Tg + 5 ° C) to (Tg + 20 ° C), the draw ratio is 3 times or more in both the longitudinal direction and the width direction, preferably 3. 5 times or more, the area magnification is 11 times or more, preferably 13 times or more, more preferably 14 times or more, and the heat setting temperature after stretching is 170 to (Tm (melting point of polyarylene sulfide) —5 ° C ) ° C, preferably 200-250 ° C, one-stage heat setting, more preferably, heat setting after stretching is performed in two or more steps with different temperatures, and the heat setting temperature of the first stage is (Previous stretching temperature + 5 ° C) to 240 ° C, preferably (Previous stretching temperature + 30 ° C) to 220 ° C. The maximum value is (the first stage heat setting temperature + 20V) to (Tm_5 ° C), and after heat setting, the maximum value of the heat setting temperature in the latter stage is 8% or less, preferably 2 to 5% in the width direction. It can be made within the scope of the present invention by appropriately adjusting below.
[0028] 本発明では、二軸配向ポリアリーレンフィルムの 150°C、直流 500V印加における 体積固有抵抗は 1. O X 1014 Q ' cm以上であることが好ましぐより好ましくは 1. 0 X 1 0 5 Q ' cm以上である。 150°C、直流 500V印加における体積固有抵抗が 1. 0 X 10 4 Ω ' cm未満であると、本フィルムを用いてコンデンサーを製造する場合、フィルムの ガラス転移温度以上、即ち 95°C以上の高温でのコンデンサーの漏れ電流が大きくな り高温での安定性が悪い場合がある。二軸配向ポリアリーレンスルフイドフイルムの体 積固有抵抗の上限は特に設けないが、 1 . 0 X 1016 Q ' cm以上となると、溶融製膜時 に静電印加方式によるキャスト工程が困難になる場合がある。 [0028] In the present invention, the volume resistivity of the biaxially oriented polyarylene film at 150 ° C and DC 500V is preferably 1. OX 10 14 Q'cm or more, more preferably 1.0 X 1 0 5 Q 'cm or more. If the volume resistivity at 150 ° C and DC 500V is less than 1.0 X 10 4 Ω 'cm, when manufacturing a capacitor using this film, it is above the glass transition temperature of the film, that is, above 95 ° C. Capacitor leakage current at high temperatures may increase and stability at high temperatures may be poor. There is no specific upper limit for the volume resistivity of the biaxially oriented polyarylene sulfide film, but if it exceeds 1.0 X 10 16 Q'cm, the casting process using the electrostatic application method becomes difficult during melt film formation. There is a case.
本発明の二軸配向ポリアリーレンスルフイドフイルムは中心線平均粗さ Raが 30nm 以上 lOOnm以下、最大高さ Rmaxが 700nm以下、 50 μ mD中(50 μ m X 50 μ m の領域)に突起高さ 50nm以上の突起個数が 250個以上であることが好ましい。 Ra が 30nm未満の場合、フィルムに十分な滑り性を付与することが出来ず、フィルム製 膜時に卷き皺が発生したり、卷回コンデンサーを製造する際に皺が発生し、加工が 困難となる。他方、 Raが lOOnm以上の場合、表面の荒れが大きぐフィルムの表面 にアルミニウム、亜鉛等の蒸着膜を形成させた際、蒸着膜厚みムラが生じたり、卷回 コンデンサ一としたときフィルム間に空気介在が生じ、電気特性の不安定化、耐電圧 の低下を招いたり、また使用時に電界集中が発生したり、フィルムおよび金属薄膜層 の溶失または焼失が起こり、コンデンサー用フィルムとして使用した場合にコンデン サ一の高性能化が困難となる。さらに本発明の二軸配向ポリアリーレンスルフイドフィ ルムは Rmaxが 700nm以上の場合、表面の荒れが大きぐフィルムの表面にアルミ 二ゥム、亜鉛等の蒸着膜を形成させた際、蒸着膜厚みムラが生じたり、卷回コンデン サ一としたときフィルム間に空気介在が生じ、電気特性の不安定化、耐電圧の低下を 招いたり、また使用時に電界集中が発生したり、フィルムおよび金属薄膜層の溶失ま たは焼失が起こり、コンデンサー用フィルムとして使用した場合にコンデンサーの高 性能化が困難となる場合がある。 Rmaxの下限は特に制限されないが、適度な滑り性 を付与する観点から 300nmとするものである。さらに本発明の二軸配向ポリアリーレ ンスルフイドフイルムは 50 μ m口中に突起高さ 50nm以上の突起個数が 250個未満 である場合、微細突起の緻密さが不十分となり、卷回コンデンサ一としたときフィルム 間に空気介在が生じ、電気特性の不安定化、耐電圧の低下を招いたり、また使用時 に電界集中が発生したり、フィルムおよび金属薄膜層の溶失または焼失が起こり、コ ンデンサー用フィルムとして使用した場合にコンデンサーの高性能化が困難となる場 合がある。 50 μ ΐη口中に突起高さ 50nm以上の突起個数の上限は特に制限されな いが、高性能なコンデンサーを得る観点から 600個とするものである。 The biaxially oriented polyarylene sulfide film of the present invention has a center line average roughness Ra of 30 nm or more and lOOnm or less, a maximum height Rmax of 700 nm or less, and a protrusion in 50 μmD (50 μm x 50 μm region) The number of protrusions having a height of 50 nm or more is preferably 250 or more. If Ra is less than 30 nm, sufficient slipperiness cannot be imparted to the film, and wrinkles may occur during film formation, or wrinkles may occur during the manufacture of wound capacitors, making processing difficult. Become. On the other hand, when Ra is lOOnm or more, when a deposited film such as aluminum or zinc is formed on the surface of the film having a large surface roughness, unevenness in the deposited film thickness occurs, or when a winding capacitor is used, it is between the films. When air is used, resulting in instability of electrical characteristics, lowering of withstand voltage, concentration of electric field during use, melting or burning of the film and metal thin film layer, and use as a film for capacitors In addition, it is difficult to improve the performance of capacitors. Furthermore, when the Rmax is 700 nm or more, the biaxially oriented polyarylene sulfide film of the present invention has a vapor deposited film such as aluminum or zinc deposited on the surface of the film having a large surface roughness. When thickness unevenness occurs or when a wound capacitor is used, air intervenes between the films, resulting in instability of electrical characteristics and a decrease in withstand voltage, electric field concentration during use, film and metal When the thin film layer is melted or burnt out, it may be difficult to improve the performance of the capacitor when used as a capacitor film. The lower limit of Rmax is not particularly limited, but is set to 300 nm from the viewpoint of imparting appropriate slipperiness. Furthermore, the biaxially oriented polyarylene sulfide film of the present invention has a fineness of fine protrusions insufficient when the number of protrusions having a protrusion height of 50 nm or more in a 50 μm mouth is less than 250, making the winding capacitor one. At times, air intervenes between the films, resulting in instability of electrical characteristics and a decrease in withstand voltage, electric field concentration during use, and film or metal thin film layer melting or burning. When used as a capacitor film, it may be difficult to improve the performance of the capacitor. The upper limit of the number of protrusions with a height of 50 nm or more in the 50 μΐη port is not particularly limited, but is 600 from the viewpoint of obtaining a high-performance capacitor.
[0030] 本発明の二軸配向ポリアリーレンスルフイドフイルムは摩擦係数が 0. 2以上 0. 8以 下であることが好ましい。より好ましくは 0. 25以上 0. 6以下、さらに好ましくは 0. 3以 上 0. 5未満である。摩擦係数が 0. 2未満の場合、フィルムに十分な滑り性を付与す ることが出来ず、フィルム製膜時に卷き皺が発生したり、捲回コンデンサーを製造す る際に皺が発生し、加工が困難となる。他方、摩擦係数が 0. 8を超える場合、表面の 荒れが大きぐフィルムの表面にアルミニウム、亜鉛等の蒸着膜を形成させた際、蒸 着膜厚みムラが生じたり、捲回コンデンサ一としたときフィルム間に空気介在が生じ、 電気特性の不安定化、耐電圧の低下を招いたり、また使用時に電界集中が発生した り、フィルムおよび金属薄膜層の溶失または焼失が起こり、コンデンサー用フィルムと して使用した場合にコンデンサーの高性能化が困難となる。 [0030] The biaxially oriented polyarylene sulfide film of the present invention preferably has a friction coefficient of 0.2 or more and 0.8 or less. More preferably, it is 0.25 or more and 0.6 or less, and further preferably 0.3 or more and less than 0.5. If the coefficient of friction is less than 0.2, sufficient slipperiness cannot be imparted to the film, so that wrinkles may occur when the film is formed, or wrinkles may occur when a wound capacitor is manufactured. Processing becomes difficult. On the other hand, when the coefficient of friction exceeds 0.8, when a deposited film such as aluminum or zinc is formed on the surface of the film having a large surface roughness, the thickness of the deposited film may be uneven or the winding capacitor may be the same. Sometimes air intervenes between the films, resulting in unstable electrical characteristics and lowering of withstand voltage, electric field concentration during use, and film and metal thin film layer melting or burning. When used as a capacitor, it is difficult to improve the performance of the capacitor.
[0031] 本発明の二軸配向ポリアリーレンスルフイドフイルムは、フィルムに滑り性を付与した り、加工適性を向上するために、上記のフィルムの摩擦係数範囲および表面粗さを 達成するように粒子を含有させることができる。粒子としては例えば酸化チタン、炭酸 カルシウム、シリカ、アルミナゃジルコニァなどの無機粒子やシリコン粒子、架橋アタリ ノレ粒子や架橋ポリスチレン粒子などの有機粒子などの不活性粒子を例示でき、また ポリマーの重合時に酢酸カルシウムや酢酸リチウムなどを使用し、ポリマーの重合過 程で粒子を析出させることも可能である。粒子の平均粒径はフィルム厚み以下である ことが好ましぐフィルム厚みの 2/3以下であることがより好ましぐ 1/3以下であるこ とが更に好ましい。また、本発明では粒径 2 z m以上もしくはフィルム厚み以上の粗 大な粒子を含まないことが好ましい。粗大粒子を含んでいる場合、製膜の安定性に 劣る場合があったり、コンデンサー使用中にフィルムから粒子脱落が起こり、絶縁欠 点が生じコンデンサーとしての信頼性を損なう場合がある。このため、無機粒子や有 機粒子などの不活性粒子は PPS重合時の溶媒中でスラリーとしサンドグラインダーな どの媒体攪拌型分散装置や超音波分散装置で分散し、その後湿式分級装置で分 級したりフィルターで濾過し粗大粒子を除去するのが好ましい。 [0032] 本発明は熱可塑性樹脂 Aの分散状態により表面に微細な突起構造を形成する場 合があり、この場合は粒子を実質的に添加しなくとも上記の摩擦係数の範囲を達成 する場合がある。熱可塑性樹脂 Aの平均分散径が小さくなるほど、突起高さは小さく なる傾向があるため、平均分散径が 200nmより小さくなる場合には必要な加工適性 を付与させるために上記の無機または有機粒子を添加することが必要な場合がある [0031] The biaxially oriented polyarylene sulfide film of the present invention achieves the above-mentioned friction coefficient range and surface roughness of the film in order to impart slipperiness to the film and improve processability. Particles can be included. Examples of the particles include inert particles such as inorganic particles such as titanium oxide, calcium carbonate, silica, and alumina zirconia, and organic particles such as silicon particles, crosslinked attalinole particles and crosslinked polystyrene particles, and acetic acid during polymerization of the polymer. It is also possible to deposit particles during the polymer polymerization process using calcium or lithium acetate. The average particle size of the particles is more preferably 1/3 or less, more preferably 2/3 or less of the preferred film thickness. In the present invention, it is preferable that coarse particles having a particle diameter of 2 zm or more or a film thickness or more are not included. When coarse particles are included, film formation may be inferior in stability, or particles may fall out of the film during use of the capacitor, resulting in an insulation defect and impairing the reliability of the capacitor. For this reason, inert particles such as inorganic particles and organic particles are made into a slurry in the solvent during PPS polymerization and dispersed with a medium stirring type dispersion device such as a sand grinder or an ultrasonic dispersion device, and then classified with a wet classification device. It is preferable to remove coarse particles by filtering with a filter. [0032] The present invention may form a fine protrusion structure on the surface depending on the dispersion state of the thermoplastic resin A. In this case, the above friction coefficient range is achieved without substantially adding particles. There is. As the average dispersion diameter of the thermoplastic resin A decreases, the protrusion height tends to decrease. Therefore, when the average dispersion diameter is less than 200 nm, the inorganic or organic particles described above are added in order to impart the necessary processability. May need to be added
[0033] 二軸配向ポリアリーレンスルフイドフイルムにおいて、ポリアリーレンスルフイドとポリ ァリーレンスルフイドとは異なる他の熱可塑性樹脂 Aの含有量の和を 100重量部とし たときにポリアリーレンスルフイドの含有量が 70〜99. 5重量部、熱可塑性樹脂 Aの 含有量が 0. 5〜30重量部であることが好ましぐポリアリーレンスルフイドの含有量が 80〜98重量部、熱可塑性樹脂 Aの含有量が 2〜20重量部であることがより好ましく 、ポリアリーレンスルフイドの含有量が 90〜97重量部、熱可塑性樹脂 Aの含有量が 3 〜10重量部であることがさらに好ましい。ポリアリーレンスルフイドとは異なる熱可塑 性樹脂 Aの含有量が 30重量部を越えると、二軸配向ポリアリーレンスルフイドの耐熱 性、機械特性、電気特性が損なわれる場合があり、また延伸性が悪く製膜性に劣る 場合がある。熱可塑性樹脂 Aの含有量が 0. 5重量部未満であると、優れた平面特性 やコンデンサーの誘電体として用いた場合の SH性を付与することが困難となる。 [0033] In the biaxially oriented polyarylene sulfide film, when the sum of the contents of the thermoplastic resin A different from the polyarylene sulfide and the polyarylene sulfide is 100 parts by weight, It is preferable that the content of sulfide is 70 to 99.5 parts by weight and the content of thermoplastic resin A is 0.5 to 30 parts by weight. The content of polyarylene sulfide is 80 to 98 parts by weight. More preferably, the content of thermoplastic resin A is 2 to 20 parts by weight, the content of polyarylene sulfide is 90 to 97 parts by weight, and the content of thermoplastic resin A is 3 to 10 parts by weight. More preferably. If the content of thermoplastic resin A, which is different from polyarylene sulfide, exceeds 30 parts by weight, the heat resistance, mechanical properties, and electrical properties of the biaxially oriented polyarylene sulfide may be impaired. May be inferior in film forming property. When the content of the thermoplastic resin A is less than 0.5 parts by weight, it becomes difficult to provide excellent planar characteristics and SH properties when used as a dielectric of a capacitor.
[0034] 本発明でいうポリアリーレンスルフイドとは、一(Ar— S)—の繰り返し単位を有する ホモポリマーあるいはコポリマーである。 Arとしては下記の式 (A)〜式(K)などで表 される構成単位などが挙げられる。  [0034] The polyarylene sulfide referred to in the present invention is a homopolymer or copolymer having one (Ar-S)-repeating unit. Ar includes structural units represented by the following formulas (A) to (K).
[0035] [化 1] [0035] [Chemical 1]
Figure imgf000016_0001
(Rl , R2は、水素、アルキル基、アルコキシ基、ハロゲン基から選ばれた置換基であ り、 R1と R2は同一でも異なっていてもよレヽ。 )
Figure imgf000016_0001
(Rl and R2 are substituents selected from hydrogen, an alkyl group, an alkoxy group, and a halogen group, and R1 and R2 may be the same or different.)
本発明に用いるポリアリ -レンスルフイドの繰り返し単位としては、上記の式 (A)で 表される構造式が好ましぐこれらの代表的なものとして、ポリフエ二レンスルフイド、ポ リフエ二レンスルフイドスルホン、ポリフエ二レンスルフイドケトン、これらのランダム共重 合体、ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましいポリアリ —レンスルフイドとしては、フィルム物性と経済性の観点から、ポリフエ二レンスルフイド (PPS)が好ましく例示され、ポリマーの主要構成単位として下記構造式で示される p フエ二レンスルフイド単位を好ましくは 80モル0 /0以上、より好ましくは 90モル0 /0以 上、更に好ましくは 95モル%以上含む樹脂である。力かる p フエ二レンスルフイド成 分が 80モル%未満では、ポリマーの結晶性や熱転移温度などが低ぐ PPSの特徴 である耐熱性、寸法安定性、機械特性および誘電特性などを損なうことがある。 As the repeating unit of polyarylensulfide used in the present invention, the structural formula represented by the above formula (A) is preferable, and typical examples thereof include polyphenylenesulfide, polyphenylenesulfonesulfone, polyphenol. Examples thereof include dirensulfide ketones, random copolymers thereof, block copolymers, and mixtures thereof. As a particularly preferred polyarylsulfide, polyphenylene sulfide (PPS) is preferably exemplified from the viewpoint of film properties and economy, and p represented by the following structural formula as the main structural unit of the polymer Phenylene and preferably Rensurufuido units 80 mole 0/0 or more, more preferably 90 mol 0/0 than on, more preferably a resin containing more than 95 mol%. If the p-phenylene sulfide component is less than 80 mol%, the crystallinity and thermal transition temperature of the polymer are low, which may impair the heat resistance, dimensional stability, mechanical properties, and dielectric properties of PPS. .
[化 2]
Figure imgf000017_0001
[Chemical 2]
Figure imgf000017_0001
[0038] 上記 PPS樹脂において、繰り返し単位の 20モル0 /0未満、好ましくは 10モル0 /0未満 であれば、共重合可能な他のスルフイド結合を含有する単位が含まれてレ、ても差し 支えない。繰り返し単位の 20モル%未満、好ましくは 10モル%未満の繰り返し単位 としては、例えば、 3官能単位、エーテル単位、スルホン単位、ケトン単位、メタ結合 単位、アルキル基などの置換基を有するァリール単位、ビフヱニル単位、ターフェ二 レン単位、ビニレン単位およびカーボネート単位などが例として挙げられ、具体例とし て、下記の構造単位を挙げることができる。これらのうち一つまたは二つ以上共存さ せて構成することができる。この場合、該構成単位は、ランダム型またはブロック型の いずれの共重合方法であってもよい。 In [0038] the PPS resin, less than 20 mole 0/0 of the repeating unit, preferably is less than 10 mole 0/0, contains units containing other sulfides bond copolymerizable with Les, be There is no problem. Examples of the repeating unit of less than 20 mol%, preferably less than 10 mol% of the repeating unit include, for example, a trifunctional unit, an ether unit, a sulfone unit, a ketone unit, a meta bond unit, an aryl unit having a substituent such as an alkyl group, Examples include biphenyl units, terfylene units, vinylene units, carbonate units, and the like, and specific examples include the following structural units. One or more of these can coexist. In this case, the structural unit may be either a random type or a block type copolymerization method.
[0039] [化 3]  [0039] [Chemical 3]
Figure imgf000017_0002
[0040] 実質的に p—フエ二レンスルフイドのみからなる PPS、もしくは 3官能成分が 1モル0 /0 以下添加され 99モル%以上が p—フエ二レンスルフイドからなる PPSがフィルム原料 としてコスト、製膜性、特に高温でのフィルム性能などの観点から最も好ましい。なお 、この場合、得られる PPS樹脂の融点は 280〜290。C、ガラス転移温度は 90〜95。C に観察される。
Figure imgf000017_0002
[0040] Cost as substantially p- phenylene Rensurufuido PPS consists only or trifunctional component 1 mole 0/0 following the added PPS films feedstock consisting of 99 mol% or more p- phenylene Rensurufuido, film From the viewpoints of film properties, particularly film performance at high temperatures. In this case, the melting point of the obtained PPS resin is 280 to 290. C, glass transition temperature 90-95. Observed in C.
[0041] PPS樹脂および PPS樹脂組成物の溶融粘度は、溶融混練が可能であれば特に限 定されなレ、が、温度 315°Cで剪断速度 1, OOO (lZsec)のもとで、 100〜2000Pa . s の範囲であることが好ましぐさらに好ましくは 200〜1 , OOOPa' sの範囲である。  [0041] The melt viscosity of the PPS resin and the PPS resin composition is not particularly limited as long as melt kneading is possible. However, the melt viscosity is 100 at a temperature of 315 ° C and a shear rate of 1, OOO (lZsec). It is preferably in the range of ˜2000 Pa · s, more preferably in the range of 200 to 1, OOOPa ′ s.
[0042] 本発明でいう PPSは種々の方法、例えば、特公昭 45— 3368号公報に記載される 比較的分子量の小さな重合体を得る方法、あるいは、特公昭 52— 12240号公報や 特開昭 61— 7332号公報に記載される比較的分子量の大きい重合体を得る方法な どによって製造することができる。  [0042] PPS as used in the present invention can be obtained by various methods, for example, a method for obtaining a polymer having a relatively small molecular weight described in JP-B-45-3368, or JP-B-52-12240 and JP-A It can be produced by a method for obtaining a polymer having a relatively large molecular weight described in JP-A-61-7332.
[0043] 本発明において、得られた PPS樹脂を、空気中加熱による架橋/高分子量化、窒 素などの不活性ガス雰囲気下あるいは減圧下での熱処理、有機溶媒、熱水および 酸水溶液などによる洗浄、酸無水物、ァミン、イソシァネートおよび官能基ジスルフィ ド化合物などの官能基含有化合物による活性化など、種々の処理を施した上で使用 することも可能である。  [0043] In the present invention, the obtained PPS resin is subjected to crosslinking / polymerization by heating in air, heat treatment under an inert gas atmosphere such as nitrogen or under reduced pressure, an organic solvent, hot water, an acid aqueous solution, and the like. It can also be used after various treatments such as washing, activation with functional group-containing compounds such as acid anhydrides, amines, isocyanates and functional disulfide compounds.
[0044] 次に、 PPS樹脂の製造法を例示するが、本発明では特にこれに限定されない。例 えば、硫化ナトリウムと ρ—ジクロ口ベンゼンを N—メチルー 2—ピロリドン(NMP)など のアミド系極性溶媒中で、高温高圧下で反応させる。必要に応じて、トリハロベンゼン などの共重合成分を含ませることも可能である。重合度調整剤として苛性カリやカル ボン酸アルカリ金属塩などを添カ卩し 230〜280°Cで重合反応させる。重合後にポリマ 一を冷却し、ポリマーを水スラリーとしてフィルタ一—で濾過後、粒状ポリマーを得る。 これを酢酸もしくは酢酸塩などの水溶液中で 30〜: 100°C、 10〜60分攪拌処理し、ィ オン交換水にて 30〜80°Cで数回洗浄、乾燥して PPS粉末を得る。この粉末ポリマー を酸素分圧 10トール以下、好ましくは 5トール以下で NMPにて洗浄後、 30〜80°C のイオン交換水で数回洗浄し、 5ト―ル以下の減圧下で乾燥する。力、くして得られた ポリマーは、実質的に線状の PPSポリマーであるので、安定した延伸製膜が可能に なる。もちろん必要に応じて、他の高分子化合物や酸化珪素、酸化マグネシウム、炭 酸カルシウム、酸化チタン、酸化アルミニウム、架橋ポリエステル、架橋ポリスチレン、 マイ力、タルクおよびカオリンなどの無機や有機化合物や熱分解防止剤、熱安定剤 および酸化防止剤などを添加してもよレ、。 [0044] Next, a method for producing a PPS resin is exemplified, but the present invention is not particularly limited thereto. For example, sodium sulfide and ρ-dichlorobenzene are reacted in an amide polar solvent such as N-methyl-2-pyrrolidone (NMP) at high temperature and high pressure. If necessary, a copolymer component such as trihalobenzene may be included. A polymerization reaction is carried out at 230 to 280 ° C with addition of caustic potash or alkali metal carbonate as a polymerization degree adjusting agent. After polymerization, the polymer is cooled, and the polymer is filtered through a filter as a water slurry to obtain a granular polymer. This is stirred in an aqueous solution such as acetic acid or acetate for 30 to 100 ° C for 10 to 60 minutes, washed with ion exchanged water at 30 to 80 ° C several times, and dried to obtain PPS powder. This powder polymer is washed with NMP at an oxygen partial pressure of 10 torr or less, preferably 5 torr or less, then washed several times with ion exchange water at 30 to 80 ° C., and dried under a reduced pressure of 5 torr or less. The resulting polymer is a substantially linear PPS polymer, enabling stable stretch film formation. Become. Of course, if necessary, other polymer compounds, inorganic and organic compounds such as silicon oxide, magnesium oxide, calcium carbonate, titanium oxide, aluminum oxide, cross-linked polyester, cross-linked polystyrene, My power, talc and kaolin and thermal decomposition prevention You may add chemicals, heat stabilizers and antioxidants.
[0045] PPS樹脂の加熱による架橋/高分子量化する場合の具体的方法としては、空気や 酸素などの酸化性ガス雰囲気下あるいは前記酸化性ガスと窒素やアルゴンなどの不 活性ガスとの混合ガス雰囲気下で、加熱容器中で所定の温度において希望する溶 融粘度が得られるまで加熱を行う方法を例示することができる。加熱処理温度は、通 常 170〜280°Cが選択され、より好ましくは 200〜270°Cであり、また、加熱処理時 間は、通常 0. 5〜: 100時間が選択され、より好ましくは 2〜50時間である力 この両 者を制御することにより目標とする粘度レベルを得ることができる。加熱処理の装置は 、通常の熱風乾燥機でもまた回転式あるいは攪拌翼つきの加熱装置であってもよレヽ 力 効率よくし力も均一に処理するためには、回転式あるいは攪拌翼つきの加熱装 置を用いることが好ましい。  [0045] A specific method for crosslinking / high molecular weight by heating PPS resin is as follows: in an oxidizing gas atmosphere such as air or oxygen, or a mixed gas of the oxidizing gas and an inert gas such as nitrogen or argon Examples of the method include heating in a heating container at a predetermined temperature until a desired melt viscosity is obtained. The heat treatment temperature is usually selected from 170 to 280 ° C, more preferably from 200 to 270 ° C, and the heat treatment time is usually selected from 0.5 to 100 hours, more preferably. A force of 2 to 50 hours By controlling both of these, a target viscosity level can be obtained. The heat treatment apparatus may be a normal hot air drier, or a rotary type or a heating device with a stirring blade. In order to efficiently treat the force efficiently and uniformly, a heating device with a rotary type or a stirring blade is required. It is preferable to use it.
[0046] PPS樹脂を窒素などの不活性ガス雰囲気下あるいは減圧下で熱処理する場合の 具体的方法としては、窒素などの不活性ガス雰囲気下あるいは減圧下で、加熱処理 温度 150〜280。C、好ましくは 200〜270°C、カロ熱時間は 0. 5〜: 100時間、好ましく は 2〜50時間加熱処理する方法を例示することができる。加熱処理の装置は、通常 の熱風乾燥機でもまた回転式あるいは攪拌翼つきの加熱装置でもよいが、効率よぐ し力もより均一に処理するためには回転式あるいは攪拌翼つきの加熱装置を用いる ことが好ましい。 本発明で用いられる PPS樹脂は、過剰の金属成分もしくは金属ィ オン、もしくはオリゴマーや不純物が少ないことが好ましぐそのための具体的方法と しては、酸水溶液洗浄処理、熱水洗浄処理、有機溶剤洗浄処理、およびェントレー ナー処理などを例示することができ、これらの処理は 2種以上の方法を組み合わせて 用いてもよい。本発明では PPS中に Caなどのァリカリ土類金属を導入しても良ぐ具 体的方法として上記洗浄処理前後のアルカリ土類金属塩処理などを例示できる。  [0046] As a specific method for heat-treating the PPS resin under an inert gas atmosphere such as nitrogen or under reduced pressure, the heat treatment temperature is 150 to 280 under an inert gas atmosphere such as nitrogen or under reduced pressure. C, preferably 200 to 270 ° C., calorie heat time is 0.5 to: 100 hours, preferably 2 to 50 hours. The heat treatment apparatus may be a normal hot air dryer, or a rotary type or a heating apparatus with a stirring blade, but in order to treat the efficiency and force more uniformly, a heating apparatus with a rotary type or a stirring blade may be used. preferable. The PPS resin used in the present invention preferably has a small amount of excess metal components or metal ions, or oligomers or impurities, and specific methods for that include acid aqueous solution washing treatment, hot water washing treatment, organic Examples of the solvent cleaning treatment and the entrainer treatment can be given. These treatments may be used in combination of two or more methods. In the present invention, the alkaline earth metal salt treatment before and after the washing treatment can be exemplified as a specific method for introducing alkaline earth metal such as Ca into the PPS.
[0047] PPS樹脂の有機溶剤洗浄処理の具体的方法としては、以下の方法を例示すること ができる。すなわち、有機溶剤としては、 PPS樹脂を分解する作用などを有していな レ、ものであれば特に制限はなぐ例えば、 N—メチルピロリドン、ジメチルホルムアミド 、ジメチルァセトアミドなどの含窒素極性溶媒、ジメチルスルホキシド、ジメチルスルホ ンなどのスルホキシド 'スルホン系溶媒、アセトン、メチルェチルケトン、ジェチルケト ン、ァセトフエノンなどのケトン系溶媒、ジメチルェ一テル、ジプロピルエーテル、テト ラヒドロフランなどのェ一テル系溶媒、クロ口ホルム、塩化メチレン、トリクロロエチレン 、 2塩化エチレン、ジクロロェタン、テトラクロロェタン、クロ口ベンゼンなどのハロゲン 系溶媒、メタノ一ノレ、 ェタノ一ノレ、プロパノ一ノレ、ブタノ一ノレ、 ペンタノ一ノレ、エチレン グリコ一ノレ、プロピレングリコ一ノレ、フエノーノレ、クレゾ一ノレ、ポリエチレングリコ一ノレな どのアルコール.フエノール系溶媒、ベンゼン、トルエンおよびキシレンなどの芳香族 炭化水素系溶媒などが挙げられる。これらの有機溶媒の中で、 N—メチルピロリドン、 アセトン、ジメチルホルムアミドおよびクロ口ホルムが特に好ましく用いられる。また、こ れらの有機溶媒は、 1種類または 2種類以上の混合で使用される。 [0047] Specific examples of the organic solvent cleaning treatment of the PPS resin include the following methods. In other words, the organic solvent does not have the action of decomposing PPS resin. For example, N-methylpyrrolidone, dimethylformamide, nitrogen-containing polar solvents such as dimethylacetamide, sulfoxides such as dimethyl sulfoxide, dimethylsulfone, sulfone solvents, acetone, methylethyl Ketone solvents such as ketones, jetylketones, and acetophenones, ether solvents such as dimethyl ether, dipropyl ether, tetrahydrofuran, chloroform, methylene chloride, trichloroethylene, ethylene dichloride, dichloroethane, tetrachloroethane, Halogen-based solvents such as benzene, methanol, ethanol, propanol, butanol, pentaanol, ethylene glycol, propylene glycol, phenol, crezo, polyethylene glycol Which alcohol. Phenol-based solvents Do, benzene, and aromatic hydrocarbon solvents such as toluene and xylene. Among these organic solvents, N-methylpyrrolidone, acetone, dimethylformamide and black mouth form are particularly preferably used. These organic solvents are used alone or as a mixture of two or more.
[0048] 有機溶媒による洗浄の方法としては、有機溶媒中に PPS樹脂を浸漬せしめるなど の方法があり、必要に応じて適宜攪拌または加熱することも可能である。有機溶媒で PPS樹脂を洗浄する際の洗浄温度について特に制限はなぐ常温〜 300°Cの範囲 で任意の温度を選択することができる。洗浄温度が高くなるほど、洗浄効率が高くな る傾向があるが、通常は常温〜 150°Cの温度で十分効果が得られる。また、有機溶 媒洗浄を施された PPS樹脂は残留している有機溶媒を除去するため、水または温水 で数回洗浄することが好ましい。  [0048] As a method of washing with an organic solvent, there is a method of immersing a PPS resin in an organic solvent, and it is possible to appropriately stir or heat as necessary. Any temperature can be selected in the range of room temperature to 300 ° C, with no particular restriction on the washing temperature when washing PPS resin with organic solvent. The higher the cleaning temperature, the higher the cleaning efficiency tends to be. However, a sufficient effect is usually obtained at a temperature of room temperature to 150 ° C. In addition, the PPS resin that has been subjected to organic solvent washing is preferably washed several times with water or warm water in order to remove the remaining organic solvent.
[0049] PPS樹脂の熱水洗浄処理の具体的方法としては、以下の方法を例示することがで きる。すなわち、熱水洗浄による PPS樹脂の好ましいィ匕学変性の効果を発現するた めに、使用する水は蒸留水あるいは脱イオン水であることが好ましい。熱水処理の操 作は、通常、所定量の水に所定量の PPS樹脂を投入し、常圧であるいは圧力容器 内で加熱し攪拌することにより行われる。 PPS樹脂と水との割合は、水の方が多い方 が好ましいが、通常、水 1リットルに対し、 PPS樹脂 200g以下の浴比が選択される。  [0049] As a specific method of the hot water washing treatment of the PPS resin, the following method can be exemplified. That is, the water used is preferably distilled water or deionized water in order to exhibit a preferable chemical modification effect of the PPS resin by hot water washing. The operation of the hot water treatment is usually performed by adding a predetermined amount of PPS resin to a predetermined amount of water and heating and stirring at normal pressure or in a pressure vessel. The ratio of PPS resin to water is preferably larger, but usually a bath ratio of 200 g or less of PPS resin is selected per liter of water.
[0050] PPS樹脂の酸水溶液洗浄処理の具体的方法としては、以下の方法を例示すること ができる。すなわち、酸または酸の水溶液に PPS樹脂を浸漬せしめるなどの方法が あり、必要に応じて適宜攪拌または加熱することも可能である。用いられる酸は、 PP s樹脂を分解する作用を有しないものであれば特に制限はなぐギ酸、酢酸、プロピ オン酸および酪酸などの脂肪族飽和モノカルボン酸、クロ口酢酸ゃジクロ口酢酸など のハロゲン置換脂肪族飽和カルボン酸、アクリル酸やクロトン酸などの脂肪族不飽和 モノカルボン酸、安息香酸やサリチル酸などの芳香族カルボン酸、シユウ酸、マロン 酸、コハク酸、フタル酸およびフマル酸などのジカルボン酸、硫酸、リン酸、塩酸、炭 酸および珪酸などの無機酸性化合物などが挙げられる。中でも酢酸と塩酸が好ましく 用いられる。酸処理を施された PPS樹脂は、残留している酸または塩などを除去する ため、水または温水で数回洗浄することが好ましい。また、洗浄に用いられる水は、 酸処理により PPS樹脂の好ましいィ匕学的変性の効果を損なわない意味で、蒸留水ま たは脱イオン水であることが好ましい。酸水溶液洗浄処理を施すと、 PPS樹脂の酸末 端成分が増加して、他の熱可塑性樹脂 Aと混合する場合に分散混合性が高まり、分 散相の平均分散径が小さくなる効果が得られやすくなるので好ましい。また、酸水溶 液洗浄処理により、 PPS中の金属量が減少し、特に高温'高電圧下での電気絶縁性 を向上させることができるので好ましい場合がある。 [0050] The following method can be exemplified as a specific method for the acid aqueous solution cleaning treatment of the PPS resin. That is, there is a method of immersing the PPS resin in an acid or an aqueous solution of the acid, and it is possible to appropriately stir or heat as necessary. The acid used is PP s No particular limitation as long as it does not have the effect of decomposing the resin, aliphatic saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid and butyric acid, and halogen-substituted aliphatic saturated carboxylic acids such as black Acids, aliphatic unsaturated monocarboxylic acids such as acrylic acid and crotonic acid, aromatic carboxylic acids such as benzoic acid and salicylic acid, dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, phthalic acid and fumaric acid, sulfuric acid, phosphorus Examples include inorganic acidic compounds such as acid, hydrochloric acid, carbonic acid and silicic acid. Of these, acetic acid and hydrochloric acid are preferably used. It is preferable to wash the acid-treated PPS resin several times with water or warm water in order to remove residual acid or salt. The water used for washing is preferably distilled water or deionized water in the sense that it does not impair the effects of preferred chemical modification of the PPS resin by acid treatment. When the acid aqueous solution cleaning treatment is performed, the acid terminal component of the PPS resin increases, and when mixed with another thermoplastic resin A, the dispersibility increases and the average dispersed diameter of the dispersed phase is reduced. This is preferable because it is easily formed. In addition, the acid aqueous solution washing treatment may be preferable because the amount of metal in the PPS is reduced, and electrical insulation at high temperature and high voltage can be improved.
[0051] 本発明においては、 PPS中に Caなどのァリカリ土類金属を導入した PPSを用いて も良い。アルカリ土類金属を導入するとゲル状物の発生を抑制するなど長時間製膜 時の押出し安定性が向上ができ好ましい場合がある。力かるアルカリ土類金属を導 入する方法としては、有機溶剤洗浄や、温水または熱水洗浄で残留オリゴマーや残 留塩を除いた後にアルカリ土類金属塩を添加する方法が挙げられる。アルカリ土類 金属は、酢酸塩、水酸化物、炭酸塩などのアルカリ土類金属イオンの形で PPS中に 導入するのが好ましい。また過剰のアルカリ土類金属塩は温水洗浄などにより取り除 く方が好ましい。上記アルカリ土類金属イオン導入の際のアルカリ土類金属イオン濃 度としては PPSlgに対して 0. OOlmmol以上が好ましぐ 0. Olmmol以上がより好 ましレ、。温度としては、 50°C以上が好ましぐ 75°C以上がより好ましぐ 90°C以上が 特に好ましい。上限温度は特にないが、操作性の観点から通常 280°C以下が好まし レ、。浴比(乾燥 PPS重量に対する洗浄液重量)としては 0. 5以上が好ましぐ 3以上 力 り好ましぐ 5以上が更に好ましい。  [0051] In the present invention, PPS obtained by introducing an alkaline earth metal such as Ca into PPS may be used. Introducing an alkaline earth metal may be preferable because it can improve the extrusion stability during film formation for a long period of time, such as suppressing the generation of gel-like substances. As a method for introducing a strong alkaline earth metal, there are a method of adding an alkaline earth metal salt after removing residual oligomers and residual salts by washing with an organic solvent or washing with hot water or hot water. Alkaline earth metals are preferably introduced into the PPS in the form of alkaline earth metal ions such as acetates, hydroxides and carbonates. It is preferable to remove excess alkaline earth metal salt by washing with warm water. The alkaline earth metal ion concentration at the time of introduction of the above alkaline earth metal ions is preferably at least 0.001 mmol, more preferably at least 0 mmol, relative to PPSlg. The temperature is preferably 50 ° C or higher, more preferably 75 ° C or higher, and particularly preferably 90 ° C or higher. Although there is no upper temperature limit, 280 ° C or less is usually preferred from the viewpoint of operability. The bath ratio (the weight of the cleaning solution with respect to the dry PPS weight) is preferably 0.5 or more, more preferably 3 or more, and even more preferably 5 or more.
[0052] PPS樹脂のェントレーナー処理の具体的方法としては、 PPS樹脂もしくは PPSを含 む樹脂組成物を溶融押出する際に、樹脂組成物に対して不活性な媒体を押出機に フィードして、溶融混練後に該押出機のベントから吸引する。これにより、媒体と一緒 に樹脂に含まれるオリゴマーや金属や金属塩成分などの不純物を回収でき、 PPS樹 脂中もしくは PPS樹脂組成物中のオリゴマーやイオン'金属成分を削減できる。 PPS に対して不活性な媒体としては前述の有機溶媒洗浄処理での有機溶媒や超臨界炭 酸ガスなどが挙げられる。樹脂組成物に対して不活性な媒体としては、熱可塑性樹 脂 Aを分解するなどの作用を持たない媒体を適宜選ぶことができ、たとえば熱可塑性 樹脂 Aがポリエーテルイミドの場合は、エチレングリコールやプロピレングリコールなど が挙げられる。本処理に用いる押出機としては樹脂成分と媒体の接触機会を高めィ オンもしくは金属成分を媒体中に分散させやすくするため混練能力の高レ、 2軸押出 機を用いることが好ましい。 [0052] A specific method for the PPS resin entrainer treatment includes PPS resin or PPS. When the resin composition is melt extruded, a medium inert to the resin composition is fed to the extruder and sucked from the vent of the extruder after melt kneading. As a result, impurities such as oligomers, metals and metal salt components contained in the resin together with the medium can be recovered, and oligomers and ionic metal components in the PPS resin or PPS resin composition can be reduced. Examples of the medium inert to PPS include the organic solvent and supercritical carbon dioxide gas in the organic solvent washing process described above. As a medium inert to the resin composition, a medium having no action such as decomposing the thermoplastic resin A can be appropriately selected. For example, when the thermoplastic resin A is a polyetherimide, ethylene glycol is used. And propylene glycol. As the extruder used in this treatment, it is preferable to use a twin-screw extruder having a high kneading ability in order to increase the contact opportunity between the resin component and the medium and to easily disperse the ion or metal component in the medium.
本発明の二軸配向ポリアリ一レンスルフイドフイルムに含有されるポリアリ一レンスル フイドとは異なる熱可塑性樹脂 Aとしては、例えば、ポリアミド、ポリエーテルイミド、ポ リエーテルスルホン、ポリスルホン、ポリフエ二レンエーテル、ポリエステル、ポリアリレ ート、ポリアミドイミド、ポリカーボネート、ポリオレフイン、ポリエーテルエーテルケトン 等の各種ポリマーおよびこれらのポリマーの少なくとも一種を含むブレンド物を用いる ことができる。熱可塑性樹脂 Aは、そのガラス転移温度 Tgが 150°C以上かつポリアリ 一レンスルフイドの融点 (Tm)以下の非晶性樹脂であることが好ましぐ 170°C以上( Tm— 20) °C以下の非晶性榭脂であることが更に好ましぐ 180°C以上 (Tm— 50) °C 以下の非晶性樹脂であることが最も好ましい。熱可塑性樹脂 Aの Tgが 150°C未満の 場合、本フィルムをコンデンサー誘電体として用いる場合の耐熱性や電気特性向上 の効果が得られにくい場合がある。また、熱可塑性樹脂 Aの Tgがポリアリーレンスル フイドの融点 (Tm)以上の場合や、熱可塑性樹脂がフィルム中で結晶性を示す場合 、コンデンサー誘電体として用いる場合の SH性に劣る場合がある。 熱可塑性樹脂 Aは、ポリアリ—レンスルフイドの混合性および本発明の効果発現の観点から、ポリア リレート、ポリフエ二レンエーテル、ポリエーテルイミド、ポリエーテルスルホンおよびポ リスルホンからなる群から選ばれるポリマーもしくは少なくとも 1種を含むブレンド物で あることが好ましぐ特にポリエーテルイミドの場合にポリアリーレンスルフイドへの分 散性に優れ、不純物や金属成分量が少ないためか二軸配向ポリアリー 1 フィルムとした場合に電気特性に優れており好ましい。 Examples of the thermoplastic resin A different from the polyarylenesulfide contained in the biaxially oriented polyarylenesulfide film of the present invention include polyamide, polyetherimide, polyethersulfone, polysulfone, polyphenylene ether, Various polymers such as polyester, polyarylate, polyamideimide, polycarbonate, polyolefin, polyetheretherketone, and blends containing at least one of these polymers can be used. Thermoplastic resin A is preferably an amorphous resin with a glass transition temperature Tg of 150 ° C or higher and a melting point (Tm) of polyarylene sulfide of 170 ° C or higher (Tm-20) ° C or lower. The amorphous resin is more preferably 180 ° C or more (Tm-50) ° C or less, and most preferably an amorphous resin. If the Tg of thermoplastic resin A is less than 150 ° C, it may be difficult to obtain the effect of improving heat resistance and electrical characteristics when this film is used as a capacitor dielectric. In addition, when Tg of thermoplastic resin A is higher than the melting point (Tm) of polyarylene sulfide, or when the thermoplastic resin shows crystallinity in the film, it may be inferior in SH property when used as a capacitor dielectric. . The thermoplastic resin A is a polymer selected from the group consisting of polyarylate, polyphenylene ether, polyetherimide, polyethersulfone and polysulfone, or at least one from the viewpoint of the mixing of polyarylene sulfide and the manifestation of the effects of the present invention. It is preferred to have a blend containing seeds, especially in the case of polyetherimides. It is excellent in electrical properties when it is made into a biaxially oriented polyary 1 film because of its excellent dispersibility and the small amount of impurities and metal components.
[0054] ポリエーテルイミドは、特に限定されないが、例えば、下記一般式で示されるように、 ポリイミド構成成分にエーテル結合を含有する構造単位であるポリマーを好ましく挙 げ'ること力 Sできる。  [0054] The polyetherimide is not particularly limited, but, for example, as shown by the following general formula, it is possible to preferably enumerate a polymer which is a structural unit containing an ether bond as a polyimide constituent component.
[0055] [化 4]  [0055] [Chemical 4]
Figure imgf000023_0001
Figure imgf000023_0001
[0056] ただし、上記式中 R1は、 2〜30個の炭素原子を有する 2価の芳香族または脂肪族 基、脂環族基からなる群より選択された 2価の有機基であり、 R2は、前記 Rと同様の 2 価の有機基である。  [0056] However, in the above formula, R1 is a divalent organic group selected from the group consisting of a divalent aromatic or aliphatic group having 2 to 30 carbon atoms and an alicyclic group, and R2 Is a divalent organic group similar to R.
上記 Rl、 R2としては、例えば、下記式群に示される芳香族基  Examples of Rl and R2 include aromatic groups represented by the following formula groups:
[0057] [化 5] [0057] [Chemical 5]
Figure imgf000024_0001
Figure imgf000024_0001
[0058] を挙げることができる。 [0058] can be mentioned.
[0059] 本発明で最も好ましいポリアリーレンスルフイド樹脂は、上記の通り p_フエ二レンス ルフイドからなる PPS、もしくは 3官能成分が 1モル%以下添加され 99モル%以上が p—フエ二レンスルフイド力もなる PPS樹脂であり、通常その融点は 280〜290。Cであ る。本発明では、熱可塑性樹脂 Aのガラス転移温度がポリアリーレンスルフイドの融点 (Tm)以下であることが好ましいことから 280°C以下、より好ましくは 260°C以下のポリ エーテルイミドを用いると本発明の効果が得やすぐポリアリ一レンスルフイドとの相溶 性、溶融成形性等の観点から、下記式で示される構造単位を有する、 2, 2_ビス [4 - (2, 3—ジカルボキシフエノキシ)フエニル Ίプロパン二無水物と m—フエ二レンジァ ミン、または p—フエ二レンジァミンとの縮合物が好ましい。 [0059] As described above, the most preferable polyarylene sulfide resin in the present invention is PPS composed of p_phenylene sulfide, or 1 mol% or less of a trifunctional component and 99 mol% or more of p-phenylene sulfide is added. It is a PPS resin that also has strength, and usually has a melting point of 280-290. C. In the present invention, since the glass transition temperature of the thermoplastic resin A is preferably not higher than the melting point (Tm) of the polyarylene sulfide, it is preferable to use a polyetherimide having a temperature of 280 ° C or lower, more preferably 260 ° C or lower. As soon as the effects of the present invention are obtained, 2, 2_bis [4- (2,3-dicarboxyl) having a structural unit represented by the following formula from the viewpoint of compatibility with polyarylene sulfide, melt moldability, etc. Phenoxy) phenyl propane dianhydride and m-phenylene diamine Mines or condensates with p-phenylenediamine are preferred.
[0060] [化 6] [0060] [Chemical 6]
Figure imgf000025_0001
Figure imgf000025_0001
[0061] この構造単位を有するポリエーテルイミドは、 "ウルテム"(登録商標)の商標名で、 ジーィ一プラスチックス社より入手可能である。例えば、 m—フエ二レンジァミン由来 の単位を含む構造単位(前者の式)を有するポリエ-テルイミドとして、 "ウルテム 100 0"および"ウルテム 1010"が挙げられる。また、 p—フエ二レンジァミン由来の単位を 含む構造単位(後者の式)を有するポリエーテルイミドとして、 "ゥノレテム CRS5000" が挙げられる。 [0061] A polyetherimide having this structural unit is available from GI Plastics under the trade name "Ultem" (registered trademark). For example, “Ultem 100 0” and “Ultem 1010” can be mentioned as poly-terimide having a structural unit (former formula) including a unit derived from m-phenylenediamine. In addition, as a polyetherimide having a structural unit containing the unit derived from p-phenylenediamine (the latter formula), “Unoretem CRS5000” can be mentioned.
[0062] 本発明の二軸配向ポリアリーレンスルフイドフイルムに含まれる熱可塑性樹脂 Aとし て用いられる他の例として、分子骨格にスルホン基を含むポリスルホンやポリエーテ ノレスルホンが挙げられる。ポリスルホンやポリエーテルスルホンは、公知のものを種々 使用すること力 Sできる。ポリアリ一レンスルフイドとの混合性の観点から、ポリエーテル スルホンの末端基として、塩素原子、アルコキシ基あるいはフヱノール性水酸基が挙 げられる。また、熱可塑性樹脂 Aとして、ポリアリ一レンスルフイドと分子構造が近似す るポリフエ二レンェ一テルやポリアリレートなども好ましく例示される。  [0062] Other examples of the thermoplastic resin A contained in the biaxially oriented polyarylene sulfide film of the present invention include polysulfone having a sulfonic group in the molecular skeleton and polyetherolsulfone. Polysulfone and polyethersulfone can be used by using various known ones. From the viewpoint of miscibility with polyarylene sulfide, the terminal group of polyether sulfone includes a chlorine atom, an alkoxy group or a phenolic hydroxyl group. In addition, preferred examples of the thermoplastic resin A include polyphenylene ether and polyarylate whose molecular structure is similar to that of polyarylene sulfide.
[0063] 本発明において、ポリアリーレンスルフイドと他の熱可塑性樹脂 Aを混合する時期は 、特に限定されないが、溶融押出前に、ポリアリーレンスルフイドとその他の熱可塑性 樹脂 Aの混合物を予備溶融混練 (ペレタイズ)してマスターチップ化する方法や、溶 融押出時に混合して溶融混練させる方法などがある。中でも、二軸押出機などのせ ん断応力のかかる高せん断混合機を用いて予備混練してマスターチップ化する方法 などが好ましく例示される。その場合、通常の一軸押出機に該混合されたマスターチ ップ原料を投入して溶融製膜してもょレ、し、高せん断を付加した状態でマスターチッ プ化せずに直接にシーティングしてもよい。特に、溶融押出前に、それぞれの樹脂の 混合物を予備溶融混練 (ペレタイズ)してマスターチップ化する方法が好ましく例示さ れ、その場合、ポリアリーレンスルフイドと熱可塑性樹脂 Aの重量分率が 99Zl〜70 /30のブレンド原料を作成することが好ましい。二軸押出機で混合する場合、分散 不良物を低減させる観点から、 3条ニ軸タイプまたは 2条ニ軸タイプのスクリューを装 備したものが好ましぐ混練部では PPS樹脂の融点(Tm) + 5〜Tm+ 120 (°C)の樹 脂温度範囲が好ましい。さらに好ましぃ温度範囲は1¾1+ 10〜1¾1 + 90 (° でぁり、 ょり好ましぃ温度範囲は1¾1+ 10〜1¾1+ 70 (° でぁる。混練部の温度範囲を好ま しい範囲にすることは、せん断応力を高めやすぐ分散不良物も低減できる効果が高 くなり、分散相の分散径を本発明の好ましい範囲に制御することができる。そのときの 滞留時間は 0. 5〜5分の範囲が好ましい。また、スクリュー回転数を 100〜500回転 /分とすることが好ましぐさらに好ましくは 200〜400回転/分の範囲である。スクリ ユー回転数を好ましい範囲に設定することで、高いせん断応力が付加され易ぐ分散 相の分散径を本発明の好ましい範囲に制御することができる。また、二軸押出機の( スクリュー軸長さ/スクリュー軸径)の比率は 20〜60の範囲であることが好ましぐさ らに好ましくは 30〜50の範囲である。さらに、二軸スクリューにおいて、混練力を高 めるためにニーデイングパドルなどによる混練部を設けることは好ましぐその混練部 を好ましくは 2箇所以上、さらに好ましくは 3箇所以上設けたスクリュー形状にする。こ の際、原料の混合順序には特に制限はなぐ全ての原材料を配合後上記の方法に より溶融混練する方法、一部の原材料を配合後上記の方法により溶融混練し更に残 りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後単軸あるレヽ は 2軸の押出機により溶融混練中にサイドフィーダ一を用いて残りの原材料を混合す る方法など、いずれの方法を用いてもよい。また、プラスチック成形加工学会誌「成形 加工」第 15卷第 6号、 382〜385頁(2003年)に記載された超臨界流体を利用する 方法なども好ましく例示することができる。 [0064] 本発明におレ、ては、熱可塑性樹脂 Aドメインの分散径を制御するために、相溶化 剤として、エポキシ基、アミノ基、イソシァネート基から選択される一種以上の基を有 する化合物をポリアリーレンスルフイドと熱可塑性樹脂 Aの合計 100重量部に対し、 0 .:!〜 5重量部添カ卩することが好ましい。より好ましくは 0. 2〜3重量部添加することで あり、さらに好ましくは 0. 3〜2重量部添加することである。相溶化剤の添加量が 0. 1 重量部未満であると、ポリアリーレンスルフイドと熱可塑性樹脂 Aの相溶性が不良とな り、本発明の効果が得られにくかったりすることがある。また、相溶化剤の添加量が 5 重量部を超えると、ポリアリーレンスルフイドと熱可塑性樹脂 Aの反応性が高まりすぎ て、溶融粘度が増加してフィルム押出成形がしに《なったりすることがある。 [0063] In the present invention, the timing of mixing the polyarylene sulfide and the other thermoplastic resin A is not particularly limited, but before the melt extrusion, a mixture of the polyarylene sulfide and the other thermoplastic resin A is added. There are a method of pre-melting and kneading (pelletizing) to form a master chip, and a method of mixing and melt-kneading during melt extrusion. Above all, a twin screw extruder Preferred examples include a method of pre-kneading into a master chip using a high shear mixer with shearing stress. In that case, the mixed master chip raw material is put into a normal single-screw extruder to form a melt film, and sheeting is directly performed without forming a master chip in a state where high shear is applied. May be. In particular, a method of pre-melting and kneading (pelletizing) a mixture of the respective resins before melt extrusion to form a master chip is preferable, in which case the weight fraction of polyarylene sulfide and thermoplastic resin A is It is preferable to prepare a blend raw material of 99Zl to 70/30. When mixing with a twin screw extruder, the melting point (Tm) of the PPS resin is preferred in the kneading section where a three-screw or two-screw type screw is preferred from the viewpoint of reducing poor dispersion. A resin temperature range of +5 to Tm + 120 (° C) is preferred. Furthermore, the preferred temperature range is 1¾1 + 10 to 1¾1 + 90 (°, and the preferred temperature range is 1¾1 + 10 to 1¾1 + 70 (°. The temperature range of the kneading part should be in the preferred range. The effect of increasing the shear stress and immediately reducing the defective dispersion can be increased, and the dispersion diameter of the dispersed phase can be controlled within the preferred range of the present invention, with a residence time of 0.5 to 5 minutes. In addition, it is preferable to set the screw rotation speed to 100 to 500 rotations / minute, more preferably 200 to 400 rotations / minute, by setting the screw rotation speed to a preferable range. The dispersion diameter of the dispersed phase that is easily subjected to high shear stress can be controlled within the preferred range of the present invention, and the ratio of (screw shaft length / screw shaft diameter) of the twin screw extruder is 20-60. Is preferably in the range of 30-50. In addition, it is preferable to provide a kneading part such as a needing paddle in order to increase the kneading force in the twin screw, and preferably two or more, more preferably three or more kneading parts are provided. In this case, there is no particular restriction on the mixing order of the raw materials, and all the raw materials are mixed and then melt-kneaded by the above method, and some raw materials are mixed and melt-kneaded by the above method and further mixed. A method of blending the remaining raw materials and melt-kneading, or a method of mixing a part of raw materials using a side feeder during melt-kneading with a twin-screw extruder using a single-screw extruder, etc. In addition, a method using a supercritical fluid described in Journal of Plastics Processing, Journal of Molding Processing, 15-15, 382-385 (2003) is also preferred. Can be illustrated. [0064] In the present invention, in order to control the dispersion diameter of the thermoplastic resin A domain, the compatibilizer has one or more groups selected from an epoxy group, an amino group, and an isocyanate group. The compound is preferably added in an amount of 0.:! To 5 parts by weight with respect to 100 parts by weight of the total of polyarylene sulfide and thermoplastic resin A. More preferably, 0.2 to 3 parts by weight is added, and still more preferably 0.3 to 2 parts by weight. When the amount of the compatibilizer is less than 0.1 part by weight, the compatibility between the polyarylene sulfide and the thermoplastic resin A becomes poor, and the effects of the present invention may not be obtained. If the amount of the compatibilizer added exceeds 5 parts by weight, the reactivity between the polyarylene sulfide and the thermoplastic resin A will be too high, and the melt viscosity will increase and the film will be extruded. Sometimes.
[0065] 力、かる相溶化剤の具体例としては、ビスフエノ一ル八、レゾルシノ一ル、ハイド口キノ ン、ピロ力テコ一ル、ビスフエノ一ル 、サリゲニン、 1, 3, 5—トリヒドロキシベンゼン、 ビスフエノ一ル3、トリヒドロキシ一ジフエニルジメチルメタン、 4, 4 '—ジヒドロキシビフ ェニノレ、 1 , 5 ジヒドロキシナフタレン、カシュ一フエノーノレ、 2. 2. 5. 5. ーテトラキス (4—ヒドロキシフエニル)へキサンなどのビスフエノール類のグリシジルエーテル、ビス フエノールの替わりにハロゲン化ビスフエノールを用いたもの、ブタンジオールのジグ リシジルェ テルなどのグリシジルェ テル系エポキシ化合物、フタル酸グリシジル エステル等のグリシジルエステル系化合物、 N グリシジルァ二リン等のグリシジルァ ミン系化合物等々のグリシジルエポキシ樹脂、エポキシ化ポリオレフイン、エポキシィ匕 大豆油等の線状エポキシ化合物、ビエルシクロへキセンジオキサイド、ジシクロペンタ ジェンジオキサイド等の環状系の非グリシジノレエポキシ樹脂などが挙げられる。また その他ノボラック型エポキシ樹脂も挙げられる。ノボラック型エポキシ樹脂はエポキシ 基を 2個以上有し、通常ノボラック型フエノール樹脂にェピクロルヒドリンを反応させて 得られるものである。また、ノボラック型フエノール樹脂はフエノール類とホルムアルデ ヒドとの縮合反応により得られる。原料のフヱノ一ル類としては特に制限はないがフエ ノーノレ、 o_クレゾール、 m_クレゾール、 p_クレゾール、ビスフエノーノレ A、レゾルシ ノール、 p—ターシャリーブチルフエノール、ビスフエノール F、ビスフエノール Sおよび これらの縮合物が挙げられる。  [0065] Specific examples of force and such compatibilizers include bisphenol 8-resorcinol, hydride quinone, pyrotechnicol, bisphenol, saligenin, 1, 3, 5-trihydroxybenzene. Bisphenol 3, trihydroxydidiphenyldimethylmethane, 4,4'-dihydroxybiphenylenolate, 1,5 dihydroxynaphthalene, cashew phenol, 2. 2. 5. 5.-tetrakis (4-hydroxyphenyl) Glycidyl ethers of bisphenols such as xanthine, those using halogenated bisphenol instead of bisphenol, glycidyl ether compounds such as diglycidyl ether of butanediol, glycidyl ester compounds such as glycidyl phthalate, N Glycidylamine compounds such as glycidyl dilin etc. Jill epoxy resin, epoxidized polyolefin, linear epoxy compounds such Epokishii spoon soybean, hexene-dioxide to Bierushikuro, such as a non glycidioxypropyl Honoré epoxy resin of a cyclic system such as dicyclopenta diene-dioxide and the like. Other examples include novolac type epoxy resins. The novolac type epoxy resin has two or more epoxy groups and is usually obtained by reacting novolak type phenol resin with epichlorohydrin. A novolac type phenol resin is obtained by a condensation reaction of phenols with formaldehyde. There are no particular restrictions on the starting phenols, but phenol, o_cresol, m_cresol, p_cresol, bisphenolol A, resorcinol, p-tertiary butylphenol, bisphenol F, bisphenol S and these These condensates can be mentioned.
[0066] 本発明の二軸配向ポリアリーレンスルフイドフイルムに用いられる相溶化剤の最も好 ましい例として、エポキシ基、アミノ基、イソシァネート基から選択される一種以上の官 能基を有するアルコキシシランが挙げられる。力かる化合物の具体例としては、 γ β - (3, 4_エポキシシクロへキシノレ)ェチノレトリメトキシシランなどのエポキシ基含有 アルコキシシラン化合物、 γ—ウレイドプロピルトリエトキシシラン、 γ—ウレイドプロピ ノレトリメトキシシシラン、 γ _ (2—ゥレイドエチル)ァミノプロピルトリメトキシシランなど のウレイド基含有アルコキシシラン化合物、 Ί—イソシァネートプロピルトリエトキシシ ラン、 γ—イソシァネ一トプロピルトリメトキシシラン、 γ—イソシァネ一トプロピルメチ ルジメトキシシラン、 γ—イソシァネートプロピルメチルジェトキシシラン、 γ—イソシァ ネートプロピルェチルジメトキシシラン、 γ—イソシァネートプロピルェチルジェトキシ シラン、 —イソシアナネ一トプロピルトリクロロシランなどのイソシァネ一ト基含有ァ ルコキシシラン化合物、 γ _ (2—アミノエチル)ァミノプロピルメチルジメトキシシラン 、 γ— (2—アミノエチル)ァミノプロピルトリメトキシシラン、 γ アミノプロピルトリメトキ シシランなどのアミノ基含有アルコキシシラン化合物などが挙げられる。中でも、 γ - イソシァネ一トプロピルトリエトキシシラン、 γ—イソシァネ一トプロピルトリメトキシシラ ン、 γ—イソシァネートプロピルメチルジメトキシシラン、 γ—イソシァネートプロピルメ チルジェトキシシラン、 γ—イソシァネートプロピルェチルジメトキシシラン、 γ—イソ シァネートプロピルェチルジェトキシシラン、 γ イソシアナネートプロピルトリクロロシ ランなどのイソシァネート基含有アルコキシシランィ匕合物を用いると、二軸配向ポリア リーレンスルフイドフイルムの分散相の平均分散径を本発明の好ましい範囲に制御し やすくなる。 [0066] The most preferred compatibilizer for use in the biaxially oriented polyarylene sulfide film of the present invention. Preferable examples include alkoxysilanes having one or more functional groups selected from an epoxy group, an amino group, and an isocyanate group. Specific examples of powerful compounds include epoxy group-containing alkoxysilane compounds such as γβ- (3,4_epoxycyclohexyleno) ethinoretrimethoxysilane, γ -ureidopropyltriethoxysilane, and γ -ureidopropinoretrimethoxy. Silane, ureido group-containing alkoxysilane compounds such as γ_ (2-ureidoethyl) aminopropyltrimethoxysilane, Ί -isocyanate propyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-isocyanine Such as topropylmethyldimethoxysilane, γ-isocyanate propylmethyl methoxysilane, γ-isocyanate propylethyldimethoxysilane, γ-isocyanate propylethyl methoxysilane, —isocyanane propyltrichlorosilane, etc. Amino group containing alkoxysilane compounds, γ_ (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ aminopropyltrimethoxysilane, etc. Examples include alkoxysilane compounds. Among them, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatepropylmethyldimethoxysilane, γ-isocyanatepropylmethyljetoxysilane, γ-isocyanate When an alkoxysilane compound containing an isocyanate group such as propylethyldimethoxysilane, γ-isocyanatepropylethyloxysilane, or γisocyanatepropyltrichlorosilane is used, a biaxially oriented polyarylene sulfide film is formed. It becomes easy to control the average dispersed diameter of the dispersed phase within the preferable range of the present invention.
本発明において相溶化剤としてアルコキシシランを用いる場合、混練時もしくは押 出時などにアルコキシシラン由来のアルコールが発生する場合がある。フィルム製膜 用の原料としてアルコールの発生量の少ない樹脂組成物を得るためには、ニーディ ング部を少なくとも 2力所有する二軸押出機を使用して、一度ポリフエ二レンスルフイド と熱可塑性樹脂 Αと相溶化剤を溶融混練した後に、さらに一回以上溶融混練する手 法が好ましい方法として挙げられる。また、 2回目以降の溶融混練する際に、ポリフエ 二レンスルフイドと熱可塑性樹脂 Aの合計 100重量部に対して、水を 0. 02部以上、 より好ましくは 0. 1〜5部添加することが好ましい場合がある。この方法により、アルコ キシシラン化合物の加水分解が促進され、得られる樹脂組成物から発生するアルコ 一ル量を低減することができる。ポリアリーレンスルフイドや熱可塑性樹脂 A中の不純 物やオリゴマー、相溶化剤の反応に由来して発生するアルコールなどを、混練して得 られる製膜用原料チップ中力 なるべく除去することが製膜安定上好ましぐそのた めに溶融混練時に押出機の混練ゾーン以降に真空ベントを設けることが好ましい。 水の添加方法としては、特に限定しないが、押出機の途中からギアポンプ、プランジ ヤーポンプなどの送液装置を使用して水をサイドフィードする手法や、一度溶融混練 した後に、さらに一回以上溶融混練する際に、水を配合もしくは押出機の途中からサ イドフイードする手法が好ましい方法として挙げられる。 In the present invention, when alkoxysilane is used as a compatibilizing agent, an alkoxysilane-derived alcohol may be generated during kneading or extrusion. In order to obtain a resin composition with a small amount of alcohol generated as a raw material for film formation, using a twin-screw extruder having at least two kneading parts, once with polyphenylene sulfide and thermoplastic resin Α A preferred method is to melt and knead the compatibilizer and then melt and knead it once or more. In addition, at the time of the second and subsequent melt-kneading, 0.02 part or more of water is added to 100 parts by weight of the total of the polyurethane sulfide and the thermoplastic resin A. More preferably, it may be preferable to add 0.1 to 5 parts. By this method, hydrolysis of the alkoxysilane compound is promoted, and the amount of alcohol generated from the resulting resin composition can be reduced. It is possible to remove as much as possible the impure substances and oligomers in the polyarylene sulfide, thermoplastic resin A, alcohol generated from the reaction of the compatibilizing agent, etc., as much as possible. For favorable film stability, it is preferable to provide a vacuum vent after the kneading zone of the extruder during melt kneading. The method of adding water is not particularly limited, but a method of side-feeding water using a liquid feed device such as a gear pump or plunger pump from the middle of the extruder, or once melt-kneading and then melt-kneading once more. In this case, a method of blending water or side feeding from the middle of the extruder is a preferable method.
[0068] エポキシ基、アミノ基、イソシァネート基から選択される一種以上の官能基を有する アルコキシシランを用いた場合、ポリアリーレンスルフイドと熱可塑性樹脂 Aの間にシ ロキサン結合を形成しやすぐ分散相の界面近傍にシロキサン結合が存在しやすい 。TEM— EDX法などを用いて分散相の界面近傍にシリコン原子を検出することがで きる。本発明では、熱可塑性樹脂 A力 なる分散相の界面にシロキサン結合に起因 するシリコン(Si)原子を含むことが好ましレ、。  [0068] When an alkoxysilane having one or more functional groups selected from an epoxy group, an amino group, and an isocyanate group is used, a siloxane bond is easily formed between the polyarylene sulfide and the thermoplastic resin A. Siloxane bonds are likely to exist near the interface of the dispersed phase. Silicon atoms can be detected near the interface of the dispersed phase using the TEM-EDX method. In the present invention, it is preferable that the interface of the dispersed phase, which is the thermoplastic resin A force, contains silicon (Si) atoms due to siloxane bonds.
[0069] 本発明の二軸配向ポリアリーレンスルフイドフイルムは、フィルムを構成する樹脂組 成物の 310°Cにおける溶融比抵抗が 1. 0 X 109 Q ' cm〜l . 0 X 10" Ω ' cmである こと力 特に高温、高電圧下での電気絶縁性に優れたフィルムを得るという観点から 好ましレ、。上記の通り、本発明で用いられる PPS樹脂は、脱イオン処理もしくは脱金 属成分処理をしていることが好ましぐその具体的方法としては、酸水溶液洗浄処理 、熱水洗浄処理、有機溶剤洗浄処理、およびェントレーナー処理などを例示すること ができ、これらの処理は 2種以上の方法を組み合わせて用いてもょレ、が、少なくとも 酸水溶液洗浄処理を行い金属量を減少させた PPSを用いることがより好ましい。熱 可塑性樹脂 Aとして金属'イオン量の少ないものを選択することや、マスターチップ作 成時にェントレーナー処理を行うことも好ましい。これらの手法を組み合わせることに より上記範囲を達成することができる。フィルムの電気特性、特にコンデンサ一とした 場合の高温特性という観点からは溶融比抵抗が高い方が好ましい。一方、溶融比抵 抗については特に上限はないが、製膜時の静電キャスト性から 1. Ο Χ ΙΟ^ Ω ' cm以 下であることが好ましい。 [0069] In the biaxially oriented polyarylene sulfide film of the present invention, the resin composition constituting the film has a melt specific resistance at 310 ° C of 1.0 X 10 9 Q 'cm to l. 0 X 10 ". Ω 'cm Power is preferable from the viewpoint of obtaining a film excellent in electrical insulation particularly at high temperature and high voltage.As described above, the PPS resin used in the present invention is deionized or deoxidized. Specific examples of methods that are preferably treated with metal components include acid aqueous solution washing treatment, hot water washing treatment, organic solvent washing treatment, and entrainer treatment. The treatment may be a combination of two or more methods, but it is more preferable to use PPS that has at least an acid aqueous solution cleaning treatment to reduce the amount of metal. Choose things, mass -It is also preferable to perform an entrainer treatment at the time of chip formation, and the above range can be achieved by combining these methods, and it is melted from the viewpoint of the electrical characteristics of the film, particularly the high temperature characteristics when a single capacitor is used. A higher specific resistance is preferable, while a melting specific resistance is preferred. The resistance is not particularly limited, but is preferably 1. Ο Χ ΙΟ ^ Ω 'cm or less from the viewpoint of electrostatic castability during film formation.
[0070] なお、本発明のフィルム中には、本発明の効果を阻害しない範囲であれば、可塑 剤、耐候剤、酸化防止剤、熱安定剤、紫外線安定剤、滑剤、帯電防止剤、増白剤、 着色剤、導電剤防鲭剤などを添加してもかまわない。 [0070] In the film of the present invention, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, an ultraviolet stabilizer, a lubricant, an antistatic agent, an increase agent are used as long as the effects of the present invention are not impaired. Whitening agents, coloring agents, conductive agents and fungicides may be added.
[0071] 本発明の二軸配向ポリアリーレンスルフイドフイルムの厚さは、用途等により異なる 力 00 x m以下が好ましレ、。コンデンサー用途の場合は、 0. 5〜20 111カ 子ましく、 より好ましくは 1〜: 10 z mである。電気絶縁用フィルムなどの場合は、作業性などの 観点力、ら、より好ましくは 10〜300 μ πιの範囲であり、さらに好ましくは 20〜200 μ πι の範囲である。 [0071] The biaxially oriented polyarylene sulfide film of the present invention preferably has a thickness of 00 x m or less depending on the application. In the case of a condenser, it is 0.5 to 20 111, more preferably 1 to 10 zm. In the case of a film for electrical insulation, the viewpoint power such as workability, etc., is more preferably in the range of 10 to 300 μπι, and still more preferably in the range of 20 to 200 μπι.
[0072] 本発明の二軸配向ポリアリ一レンスルフイドフイルムは、これにポリアリ一レンスルフ イドやその他のポリマー層、例えば、ポリエステル、ポリオレフイン、ポリアミド、ポリイミ ド、ポリ塩化ビニリデンまたはアクリル系ポリマーからなる層を直接、あるいは接着剤な どの層を介して、さらに積層させて用いてもよい。  [0072] The biaxially oriented polyarylene sulfide film of the present invention includes a polyarylene sulfide film and other polymer layers, for example, a layer made of polyester, polyolefin, polyamide, polyimide, polyvinylidene chloride, or an acrylic polymer. These may be used by further laminating directly or via a layer such as an adhesive.
[0073] また、本発明の二軸配向ポリアリーレンスルフイドフイルムは、必要に応じて、熱処 理、成形、表面処理、ラミネート、コーティング、印刷、エンボス加工およびエッチング などの任意の加工を行ってもょレ、。  [0073] Further, the biaxially oriented polyarylene sulfide film of the present invention is subjected to any processing such as heat treatment, molding, surface treatment, lamination, coating, printing, embossing and etching, as necessary. Motole.
[0074] 本発明の二軸配向ポリアリーレンスルフイドフイルムは、コンデンサー用誘電体、モ 一ター、トランスなどの電気絶縁材料や成形材料、回路基板材料、回路 ·光学部材な どの工程'離型フィルムや保護フィルム、リチウムイオン電池材料、燃料電池材料、振 動板などに用いられる。特に、高温での電気絶縁性能に優れているため、コンデンサ 一、電気絶縁材料、回路基板などに好ましく用いることができる。更にコンデンサー 誘電体として用いると SH性に優れているため、安全性が高く耐熱性に優れたコンデ ンサ一とする事ができ好ましレ、。  [0074] The biaxially oriented polyarylene sulfide film of the present invention is a process such as a dielectric for capacitors, motors, transformers, and other electrical insulating materials and molding materials, circuit board materials, circuit / optical members, etc. Used for films, protective films, lithium-ion battery materials, fuel cell materials, diaphragms, etc. In particular, since it has excellent electrical insulation performance at high temperatures, it can be preferably used for capacitors, electrical insulation materials, circuit boards and the like. Furthermore, when used as a capacitor dielectric, it has excellent SH characteristics, so it can be used as a capacitor with high safety and heat resistance.
[0075] 次いで、本発明の二軸配向ポリアリーレンスルフイドフイルムを製造する方法につい て、ポリアリーレンスルフイドとしてポリ一 ρ_フエ二レンスルフイドと熱可塑性樹脂 Αと してジーィ一プラスチック社製のポリエーテルイミド"ウルテム 1010"からなる二軸配 向ポリフエ二レンフイドフイルムの製造を例にとって説明する。もちろん、本発明は、下 記の記載に限定されない。 [0075] Next, regarding the method for producing the biaxially oriented polyarylene sulfide film of the present invention, the polyarylene sulfide film is made of poly (rho) _phenylene sulfide and thermoplastic resin Α made by GI Plastics Co., Ltd. An example of the production of a biaxially oriented polyphenylenediamine film composed of the polyetherimide “Ultem 1010” will be described. Of course, the present invention It is not limited to the description.
[0076] ポリフエ二レンスルフイド(PPS)とポリエーテルイミド(PEI)を混合する場合、溶融押 出前に、それぞれの樹脂の混合物を予備溶融混練 (ペレタイズ)してマスターチップ 化する方法が好ましく例示される。  [0076] When polyphenylene sulfide (PPS) and polyetherimide (PEI) are mixed, a method of pre-melting and kneading (pelletizing) a mixture of the respective resins before melt extrusion is preferably exemplified. .
[0077] 本発明では、まず、上記 PPSと PEIを二軸混練押出機に投入し、 PPSと PEIの重量 分率が 99Zl〜70Z30のブレンド原料を作成することが好ましレ、。ブレンド原料の 樹脂組成物の混合'混鍊方法は、特に限定されることはなく各種混合 *混鍊手段が 用レ、られる。例えば、各々別々に溶融押出機に供給して混合してもよいし、また、予 め紛体原料のみをヘンシェルミキサー、ボールミキサー、ブレンダーあるいはタンブラ 一等の混合機を利用して乾式予備混合し、その後、溶融混鍊機にて溶融混練するこ とでもよレ、。その後、前記ブレンド原料を必要に応じて PPS、これらの回収原料と共 に押出機に投入して、 目的とする組成としたものを原料とすることが、フィルムの品質 と製膜性の観点で好ましい。上記原料を作成する場合、フィルム中への異物混入を 可能な限り低減させるために、溶融押出工程で樹脂をフィルトレーシヨンすることも好 ましく行うことができる。この押出機内で異物や変質ポリマーを除去するために各種 のフィルター、例えば、焼結金属、多孔性セラミック、サンドおよび金網などの素材か らなるフィルターを用いることが好ましい。また、必要に応じて、定量供給性を向上さ せるためにギアポンプを設けてもよい。  [0077] In the present invention, first, it is preferable to introduce the PPS and PEI into a twin-screw kneading extruder to prepare a blend raw material having a weight fraction of PPS and PEI of 99Zl to 70Z30. The mixing and kneading method of the resin composition of the blend raw material is not particularly limited, and various mixing and kneading means can be used. For example, each may be separately fed to a melt extruder and mixed, or only the powder raw material may be dry premixed using a mixer such as a Henschel mixer, ball mixer, blender or tumbler, Then, melt kneading with a melt kneader. After that, if necessary, the blended raw material is put into an extruder together with PPS and these recovered raw materials, and the desired composition is used as the raw material from the viewpoint of film quality and film formability. preferable. When preparing the above raw material, it is also preferable to fill-trace the resin in the melt extrusion process in order to reduce the contamination of the film as much as possible. In order to remove foreign substances and denatured polymer in this extruder, it is preferable to use various filters, for example, filters made of materials such as sintered metal, porous ceramic, sand and wire mesh. In addition, a gear pump may be provided as necessary to improve the quantitative supply.
[0078] 上記の好ましレ、二軸配向ポリフエ二レンスルフイドフイルムの製造法のより具体的な 条件は、以下のとおりである。  [0078] More specific conditions for the method for producing the preferred and biaxially oriented polyphenylene sulfide film are as follows.
[0079] まず、 PPSのペレットまたは顆粒と PEIのペレットとを、一定の割合で混合して、ベン ト式の二軸混練押出機に供給し、溶融混練してブレンドチップを得る。二軸押出機な どのせん断応力のかかる高せん断混合機を用いることが好ましぐさらに、分散不良 物を低減させる観点から、 3条ニ軸タイプまたは 2条ニ軸タイプのスクリューを装備し たものが好ましく、そのときの滞留時間は 1〜5分の範囲が好ましい。また、混練部で は 290〜405°Cの樹脂温度範囲であることが好ましぐさらに好ましい温度範囲は 29 5〜355°Cである。混練部の樹脂温度範囲を好ましい範囲にすることにより、せん断 応力を高めやすぐ分散不良物も低減できる効果が高くなり、分散相の分散径を本 発明の好ましい範囲に制御することができる。また、スクリュー回転数を 100〜500回 転/分とすることが好ましぐさらに好ましくは 200〜400回転/分の範囲である。ス クリュー回転数を好ましい範囲に設定することで、高いせん断応力が付加され易ぐ 分散相の分散径を本発明の好ましい範囲に制御することができる。また、二軸押出 機の(スクリュー軸長さ Zスクリュー軸径)の比率は 20〜60の範囲であることが好まし く、さらに好ましくは 30〜50の範囲である。さらに、二軸スクリューにおいて、混練力 を高めるためにニーデイングパドルなどによる混練部を設けることは好ましぐその混 練部を 2箇所以上設けて、各混練部の間を通常のフィードスクリューとしたスクリュー 形状にすることはさらに好ましい。 [0079] First, PPS pellets or granules and PEI pellets are mixed at a constant ratio, supplied to a vent type twin-screw kneading extruder, and melt-kneaded to obtain a blended chip. It is preferable to use a high-shear mixer with high shear stress, such as a twin-screw extruder, and from the viewpoint of reducing poorly dispersed products, equipped with a three- or two-screw type screw The residence time is preferably in the range of 1 to 5 minutes. Further, in the kneading part, it is preferable that the resin temperature range is 290 to 405 ° C, and a more preferable temperature range is 295 to 355 ° C. By setting the resin temperature range of the kneading part to a preferable range, the effect of increasing the shear stress and immediately reducing the defective dispersion is enhanced, and the dispersion diameter of the dispersed phase is reduced. The preferred range of the invention can be controlled. Further, it is preferable to set the screw rotation speed to 100 to 500 rotations / minute, and more preferably 200 to 400 rotations / minute. By setting the screw rotation speed within a preferred range, a high shear stress is easily applied, and the dispersion diameter of the dispersed phase can be controlled within the preferred range of the present invention. Further, the ratio of (screw shaft length Z screw shaft diameter) of the twin screw extruder is preferably in the range of 20-60, more preferably in the range of 30-50. Furthermore, in a twin screw, it is preferable to provide a kneading part with a needing paddle to increase the kneading force. Two or more kneading parts are provided, and a normal feed screw is provided between each kneading part. It is more preferable to use a screw shape.
[0080] PPSと PEIを混合する上で、 PPSと PEIの混合組成物あるいは相溶化剤が添加さ れると、分散不良物が低減できて相溶性が高まることがある。  [0080] In mixing PPS and PEI, if a mixed composition of PPS and PEI or a compatibilizer is added, poor dispersion may be reduced and compatibility may be increased.
[0081] その後、上記ペレタイズ作業により得られた、 PPSと PEIからなるブレンドチップ、必 要に応じて PPSや製膜後の回収原料や粒子を混合した原料を一定の割合で適宜混 合して、 180°Cで 3時間以上 lOmmHg以下の減圧で乾燥した後、 300〜350°Cの 温度、好ましくは 320〜340°Cに加熱された押出機に投入する。その後、押出機を 経た溶融ポリマーをフィルターに通過させた後、その溶融ポリマーを Tダイの口金を 用いてシート状に吐出する。このシート状物を表面温度 20〜70°Cの冷却ドラム上に 密着させて冷却固化し、実質的に無配向状態の未延伸ポリフエ二レンスルフイドフィ ノレムを得る。  [0081] After that, blend chips made of PPS and PEI obtained by the above pelletizing operation, and optionally mixed PPS, raw materials mixed with the collected raw materials after film formation and particles are mixed appropriately at a certain ratio. After drying at 180 ° C for 3 hours or more under reduced pressure of lOmmHg or less, it is put into an extruder heated to a temperature of 300 to 350 ° C, preferably 320 to 340 ° C. Thereafter, the molten polymer that has passed through the extruder is passed through a filter, and then the molten polymer is discharged into a sheet form using a die of a T die. This sheet-like material is closely attached to a cooling drum having a surface temperature of 20 to 70 ° C. to be cooled and solidified to obtain a substantially non-oriented unstretched polyphenylene sulfide phenol.
[0082] 次に、この未延伸ポリフエ二レンスルフイドフイルムを二軸延伸し、二軸配向させる。  [0082] Next, the unstretched polyphenylene sulfide film is biaxially stretched to be biaxially oriented.
延伸方法としては、逐次二軸延伸法 (長手方向に延伸した後に幅方向に延伸を行う 方法などの一方向ずつの延伸を組み合わせた延伸法)、同時二軸延伸法 (長手方 向と幅方向を同時に延伸する方法)、又はそれらを組み合わせた方法を用いることが できる。  Stretching methods include sequential biaxial stretching (stretching that combines stretching in each direction, such as stretching in the longitudinal direction after stretching in the longitudinal direction), and simultaneous biaxial stretching (longitudinal and width directions). Can be used at the same time), or a combination thereof.
[0083] ここでは、最初に長手方向、次に幅方向の延伸を行う逐次二軸延伸法を用いる。  Here, a sequential biaxial stretching method in which stretching in the longitudinal direction first and then in the width direction is used.
[0084] 未延伸ポリフヱニレンスルフイドフイルムを加熱ロール群で加熱し、延伸倍率は電気 特性向上させる観点から長手方向(MD方向)に 3〜5倍、好ましくは 3. 3〜4. 7倍、 さらに好ましくは 3. 5〜4. 5倍に 1段もしくは 2段以上の多段で延伸する(MD延伸) 。延伸温度は、 Tg (PPSのガラス転移温度)〜(Tg + 50) °C、好ましくは (Tg + 5)〜( Tg + 50) °C、さらに好ましくは(Tg + 5)〜(Tg + 40) °Cの範囲である。その後 20〜5 0°Cの冷却ロール群で冷却する。 [0084] The unstretched polyphenylene sulfide film is heated with a heating roll group, and the stretching ratio is 3 to 5 times in the longitudinal direction (MD direction), preferably 3.3 to 4.7 from the viewpoint of improving the electrical characteristics. Double, more preferably 3.5 to 4.5 times, stretching in one or more stages (MD stretching) . The stretching temperature is Tg (PPS glass transition temperature) to (Tg + 50) ° C, preferably (Tg + 5) to (Tg + 50) ° C, more preferably (Tg + 5) to (Tg + 40). ) ° C range. Then, it is cooled with a cooling roll group at 20 to 50 ° C.
[0085] MD延伸に続く幅方向(TD方向)の延伸方法としては、例えば、テンターを用いる 方法が一般的である。このフィルムの両端部をクリップで把持して、テンターに導き、 幅方向の延伸を行う(TD延伸)。延伸温度は丁§§ + 60)でが好ましぐより好ま しくは (Tg + 5)〜(Tg + 50)。C、さらに好ましくは (Tg + 10)〜(Tg + 40)。Cの範囲 である。延伸倍率は電気特性向上させる観点から 3〜5倍、好ましくは 3. 3〜4. 7倍 、さらに好ましくは 3. 5〜4. 5倍の範囲である。 [0085] As a stretching method in the width direction (TD direction) following MD stretching, for example, a method using a tenter is common. The film is gripped at both ends with a clip, guided to a tenter, and stretched in the width direction (TD stretching). The stretching temperature is properly preferred to Ding § ~ § + 60) in the preferred instrument (Tg + 5) ~ (Tg + 50). C, more preferably (Tg + 10) to (Tg + 40). The range of C. The draw ratio is 3 to 5 times, preferably 3.3 to 4.7 times, and more preferably 3.5 to 4.5 times from the viewpoint of improving electrical characteristics.
[0086] 次に、この延伸フィルムを緊張下で熱固定する。 1段熱固定の場合の好ましい熱固 定温度は 170〜275°C、好ましくは 200〜250°Cであり、熱固定時間は 1秒〜 1000 秒間、好ましくは 1秒〜 60秒、より好ましくは 1秒〜 30秒である。より好ましい条件とし ては延伸後の熱固定を温度の異なる 2段以上の工程で行レ、、その 1段目の熱固定温 度を(直前の延伸温度 + 5°C)〜240°Cとし、後段の熱固定温度の最高値を 200°C 以上もしくは(1段目の熱固定温度 + 5°C)以上、 (フィルムを構成するポリアリーレン スルフイドの融点 5°C)以下とすることが好ましぐ更に好ましくは 1段目の熱固定温 度を(直前の延伸温度 + 5°C)〜220°Cとし、後段の熱固定温度の最高値を 230°C 以上もしくは(1段目の熱固定温度 + 30°C)以上、 (フィルムを構成するポリアリーレン スルフイドの融点 5°C)以下とすることが好ましい。多段熱固定の場合は 1段目の熱 固定を 1秒〜 1000秒間、好ましくは 1秒〜 60秒、更に好ましくは 1秒〜 30秒とし、後 段の最高温度での熱固定を 1秒〜 1000秒間、好ましくは 1秒〜 60秒、更に好ましく は 1秒〜 10秒とし、熱固定全体の時間が 2000秒、好ましくは 120秒、更に好ましくは 30秒を越えなレ、ようにする。  Next, the stretched film is heat-set under tension. In the case of one-stage heat fixation, the preferred heat fixation temperature is 170 to 275 ° C, preferably 200 to 250 ° C, and the heat fixation time is 1 second to 1000 seconds, preferably 1 second to 60 seconds, more preferably. 1 to 30 seconds. As a more preferable condition, the heat setting after stretching is carried out in two or more steps with different temperatures, and the heat setting temperature of the first step is (previous stretching temperature + 5 ° C) to 240 ° C. It is preferable that the maximum value of the heat setting temperature of the latter stage is 200 ° C or higher or (the heat setting temperature of the first stage + 5 ° C) or higher and (the melting point of the polyarylene sulfide constituting the film is 5 ° C or lower). More preferably, the heat setting temperature of the first stage is (the previous stretching temperature + 5 ° C) to 220 ° C, and the maximum value of the heat setting temperature of the second stage is 230 ° C or higher (or the heat of the first stage). (Fixing temperature + 30 ° C.) or higher and (the melting point of polyarylene sulfide constituting the film is 5 ° C.) or lower. In the case of multi-stage heat fixation, heat fixation at the first stage is 1 second to 1000 seconds, preferably 1 second to 60 seconds, more preferably 1 second to 30 seconds, and heat fixation at the highest temperature of the subsequent stage is 1 second to The time is 1000 seconds, preferably 1 second to 60 seconds, more preferably 1 second to 10 seconds, and the entire heat setting time is 2000 seconds, preferably 120 seconds, more preferably 30 seconds.
[0087] さらにこのフィルムを 40〜ポリアリーレンスルフイドの融点、より好ましくは延伸温度 以上熱固定温度以下(多段熱固定の場合は最も高い熱固定温度以下)の温度ゾー ンで幅方向に弛緩処理する。弛緩率は、 0. 1〜8%であることが好ましぐより好まし くは 1. 5〜6%、さらに好ましくは 2〜5%の範囲である。弛緩処理は 1秒〜 100秒、好 ましくは 1秒〜 60秒、更に好ましくは 1秒〜 10秒かけて上記温度範囲で行う。 [0088] 本発明の金属化フィルムは、力かる二軸配向フィルムの少なくとも片面に金属層を 形成したものであって、たとえば真空蒸着やスパッタリング法等の方法で金属薄膜を 形成せしめたものを使用することができる。かかる金属としては、アルミニウム、亜鉛、 錫、チタン、ニッケノレ、或いはそれらの合金などがあるが、これらに限定されるもので はない。 [0087] Further, the film is relaxed in the width direction at a temperature zone of 40 to the melting point of polyarylene sulfide, more preferably the stretching temperature or more and the heat setting temperature or less (in the case of multistage heat setting, the highest heat setting temperature or less). Process. The relaxation rate is preferably 0.1 to 8%, more preferably 1.5 to 6%, and even more preferably 2 to 5%. The relaxation treatment is carried out in the above temperature range for 1 second to 100 seconds, preferably 1 second to 60 seconds, more preferably 1 second to 10 seconds. [0088] The metallized film of the present invention has a metal layer formed on at least one side of a strong biaxially oriented film, and uses a metal thin film formed by a method such as vacuum evaporation or sputtering. can do. Examples of such metals include, but are not limited to, aluminum, zinc, tin, titanium, nickel oleore, or alloys thereof.
[0089] 本発明のフィルムコンデンサ一は、捲回法または積層法等の公知の方法で製造す ること力 Sできる。かかるコンデンサーの導電体としては、上記金属化フィルムを使用す ること力 Sできる。  [0089] The film capacitor 1 of the present invention can be manufactured with a known method such as a winding method or a lamination method. As a conductor of such a capacitor, it is possible to use the above metallized film.
次に本発明のコンデンサーの製造方法について述べる。コンデンサーの内部電極と して金属箔が用レ、られる場合は金属箔と本発明の積層フィルムを箔はみだし捲回法 や捲回途中でタブを揷入する方法などによって交互に重ね合わせて卷き取るなどし て誘電体と電極を交互に重ね合わされ、かつ外部に電極が引き出せるような構造と なるように捲回してコンデンサー素子あるいはコンデンサー母素子を得る。  Next, a method for manufacturing the capacitor of the present invention will be described. When a metal foil is used as the internal electrode of the capacitor, the metal foil and the laminated film of the present invention are alternately stacked by rolling the foil or inserting a tab in the middle of winding. For example, a capacitor element or a capacitor mother element is obtained by winding the dielectric body and the electrode alternately so that the electrode can be drawn to the outside.
また、コンデンサーの内部電極として金属薄膜が用いられる場合は、まず上述した本 発明のフィルムを金属化する。金属化の方法は蒸着による方法が好ましい。蒸着す る金属はアルミニウムを主たる成分とする金属が好ましい。金属化する際、予め金属 化する側のフィルム表面にコロナ放電処理、プラズマ処理などの処理によって金属 薄膜とフィルムとの密着力を向上させることもできる。金属化する際、あるいは金属化 後に対向電極が短絡しないようにテープマスク、オイルマージン、あるいはレーザー ビーム等により非金属化部分(いわゆるマージン)を設けるのが常法であるが全面に 蒸着した後に放電、レーザー光線などを用いて非金属化帯を設けることもできる。そ の後、一方の端にマージン部分がくるように細幅のテープ状にスリットすることもある。 次にコンデンサー素子を製造する。捲回型コンデンサーを得る場合は、金属化フィ ルムを一方の端にマージン部分がくるように細幅のテープ状にスリットして 2枚重ねて 、あるいは両面金属化フィルムと非金属化フィルムを重ねて個々の素子を個別に卷 いていくのが常法である。また、両面金属化フィルムにコーティング法などで第 2の誘 電体を設けた 1枚の複合フィルムを捲回する方法もある。  When a metal thin film is used as the internal electrode of the capacitor, the above-described film of the present invention is first metallized. The metallization method is preferably a vapor deposition method. The metal to be deposited is preferably a metal containing aluminum as a main component. At the time of metallization, the adhesion between the metal thin film and the film can be improved by a treatment such as corona discharge treatment or plasma treatment on the surface of the film to be metallized beforehand. It is usual to provide a non-metalized part (so-called margin) with a tape mask, oil margin, or laser beam so that the counter electrode is not short-circuited during or after metallization. A non-metallized band can also be provided using a laser beam or the like. After that, it may be slit into a narrow tape shape with a margin at one end. Next, a capacitor element is manufactured. When obtaining a wound type capacitor, the metallized film is slit into a narrow tape shape with a margin at one end, and two sheets are stacked, or double-sided metallized film and non-metallized film are stacked. It is a common practice to move individual elements individually. There is also a method of winding a single composite film in which a second dielectric is provided on a double-sided metallized film by a coating method or the like.
[0090] 積層型コンデンサーの場合は大径のドラム、あるいは平板に捲回してコンデンサー 母素子を得る。 捲回型コンデンサーを製造する場合は、上記のようにして得たコンデ ンサー母素子をプレス成形するのが一般的である。このとき、 100°C以上フィルムの 融点以下の温度に加熱することもできる。その後、外部電極の取り付け工程 (金属溶 射、導電性樹脂等による)、必要なら樹脂または油含浸工程、リード付きタイプのコン デンサ一とするときはリード線の取り付け工程、外装工程を経てコンデンサーを得るこ とができる。 [0090] In the case of a multilayer capacitor, the capacitor is wound around a large-diameter drum or flat plate. Get the mother element. When manufacturing a wound capacitor, it is common to press-mold the capacitor mother element obtained as described above. At this time, the film can be heated to a temperature of 100 ° C. or higher and below the melting point of the film. After that, the external electrode mounting process (by metal spraying, conductive resin, etc.), if necessary, resin or oil impregnation process, when using a lead type capacitor, lead wire mounting process, exterior process, Obtainable.
積層型コンデンサーの場合は、大径のドラム、あるいは平板に捲回した母素子を熱 処理する、あるいはリング等で締め付ける、あるいは平行平板等でプレスするなどフィ ルムの厚さ方向に圧力をカ卩えて成形する。その際の温度範囲は常温からフィルムの 融点以下である。この後、外部電極の取り付け工程 (金属溶射、導電性樹脂による) 、個々の素子切り出し工程、必要なら樹脂または油含浸工程を経てコンデンサーを 得ること力 sできる。  In the case of multilayer capacitors, pressure is applied in the thickness direction of the film, such as heat treatment of a large-diameter drum or mother element wound on a flat plate, tightening with a ring, or pressing with a parallel plate. Mold. In this case, the temperature range is from room temperature to the melting point of the film. Thereafter, the capacitor can be obtained through an external electrode attaching step (metal spraying, using a conductive resin), individual element cutting step, and if necessary, a resin or oil impregnation step.
[0091] また、本発明のコンデンサーの形状は上記いずれであっても良い。また、本発明の コンデンサ一は交流および直流のいずれの用途にも展開可能である。  [0091] The shape of the capacitor of the present invention may be any of the above. In addition, the capacitor of the present invention can be developed for both AC and DC applications.
[0092] 本発明の特性値の測定方法ならびに効果の評価方法は次の通りである。  [0092] The characteristic value measuring method and the effect evaluating method of the present invention are as follows.
(1)分散相の平均分散径、アスペクト比  (1) Average dispersion diameter and aspect ratio of dispersed phase
フィルムを(ァ)長手方向に平行かつフィルム面に垂直な方向、(ィ)幅方向に平行 かつフィルム面に垂直な方向、(ゥ)フィルム面に対して平行な方向に切断し、サンプ ルを超薄切片法で作成した。分散相のコントラストを明確にするために、オスミウム酸 やルテニウム酸、リンタングステン酸などで染色してもよい。熱可塑性樹脂 Aがポリア ミドの場合では、リンタングステン酸による染色を用いる。一方、熱可塑性樹脂 Aがポ リエーテルイミドの場合では、染色は不要である。切断面を透過型電子顕微鏡(日立 製 H— 7100FA型)を用いて、加圧電圧 lOOkVの条件下で観察し、 2万倍で写真を 撮影した。得られた写真をイメージアナライザーに画像として取り込み、任意の 100 個の分散相を選択し、画像処理を行うことにより、次に示すようにしてそれぞれの分 散相の大きさを求めた。 (ァ)の切断面に現れる各分散相のフィルム厚み方向の最大 長さ(la)と長手方向の最大長さ(lb)、(ィ)の切断面に現れる各分散相のフィルム厚 さ方向の最大長さ(lc)と幅方向の最大長さ(Id)、(ゥ)の切断面に現れる各分散相の フィルム長手方向の最大長さ(le)と幅方向の最大長さ(If)を求めた。次いで、分散相 の形状指数 1= (lbの平均値 +leの平均値) /2、形状指 ¾J= (Idの平均値 +lfの平 均値) /2、形状指数 K= (laの平均値 +lcの平均値) /2とした場合、分散相の平均 分散径を (I+J + K) Z3とした。さらに、 I、 J、 Kの中から、最大値を平均長径 Lと最小 値を平均短径 Dを決定し、分散相のアスペクト比を L/Dとした。 Cut the film in the direction (a) parallel to the longitudinal direction and perpendicular to the film surface, (ii) parallel to the width direction and perpendicular to the film surface, and (u) parallel to the film surface. Prepared by ultrathin section method. In order to clarify the contrast of the dispersed phase, it may be stained with osmic acid, ruthenic acid, phosphotungstic acid, or the like. When thermoplastic resin A is polyamide, dyeing with phosphotungstic acid is used. On the other hand, when the thermoplastic resin A is polyetherimide, dyeing is unnecessary. The cut surface was observed with a transmission electron microscope (H-7100FA model, manufactured by Hitachi) under the condition of an applied voltage of lOOkV, and a photograph was taken at 20,000 times. The obtained photographs were loaded into an image analyzer as images, 100 arbitrary dispersed phases were selected, and image processing was performed. The size of each dispersed phase was determined as follows. The maximum length (la) and maximum length (lb) in the film thickness direction of each disperse phase appearing on the cut surface of (a), and the maximum length (lb) of the disperse phase appearing on the cut surface of (i) The maximum length (lc) and the maximum length in the width direction (Id), (u) The maximum length (le) in the film longitudinal direction and the maximum length (If) in the width direction were determined. Next, the shape index of the dispersed phase 1 = (average value of lb + average value of le) / 2, shape index ¾J = (average value of Id + average value of lf) / 2, shape index K = (average of la Value + lc average value) / 2, the average dispersion diameter of the dispersed phase was (I + J + K) Z3. Furthermore, the average major axis L and the minimum minor axis D were determined from I, J, and K, and the aspect ratio of the dispersed phase was L / D.
(2)フィルムのガラス転移温度および融点  (2) Glass transition temperature and melting point of the film
JIS K7121— 1987に準じて測定した。示差走查熱量計セイコーインスツルメンッ 社製 DSC (RDC220)、データ解析装置として同社製ディスクステーション(SSC/5 200)を用いて、試料 5mgをアルミニウム製受皿上 350°Cで 5分間溶融保持し、急冷 固化した後、室温から昇温速度 20°C/分で昇温した。なお、ガラス転移温度 (Tg)は 下記式により算出した。  Measured according to JIS K7121—1987. Using a DSC (RDC220) DSC (RDC220) differential scoring calorimeter and a disk station (SSC / 5 200) as a data analyzer, 5 mg of the sample is kept melted at 350 ° C for 5 minutes on an aluminum pan. Then, after rapid solidification, the temperature was raised from room temperature at a heating rate of 20 ° C / min. The glass transition temperature (Tg) was calculated by the following formula.
ガラス転移温度 = (補外ガラス転移開始温度 +補外ガラス転移終了温度) /2Glass transition temperature = (extrapolated glass transition start temperature + extrapolated glass transition end temperature) / 2
(3)ポリアリーレンスルフイドおよび熱可塑性樹脂 Aのガラス転移温度および融解温 度 (3) Glass transition temperature and melting temperature of polyarylene sulfide and thermoplastic resin A
上記(2)と同様にして JIS K7121— 1987に準じてポリアリーレンスルフイドおよび 熱可塑性樹脂 Aの原料チップのガラス転移温度を測定した。  In the same manner as (2) above, the glass transition temperature of the raw material chips of polyarylene sulfide and thermoplastic resin A was measured in accordance with JIS K7121-1987.
融解温度についても示差走査熱量計セイコーインスツルメンッ社製 DSC (RDC22 0)、データ解析装置として同社製ディスクステーション(SSC/5200)を用いて、試 料 5mgをアルミニウム製受皿上で室温から 340°Cまで昇温速度 20°C/分で昇温し、 340°Cで 5分間溶融保持し、急冷固化して 5分間保持した後、室温から昇温速度 20 °C /分で昇温した。そのとき、観測される融解の吸熱ピークのピーク温度を融解温度 (Tm)とした。  Regarding the melting temperature, using a differential scanning calorimeter DSC (RDC220) manufactured by Seiko Instruments Inc. and a disk station (SSC / 5200) manufactured by Seiko Instruments Inc. as a data analyzer, a 5 mg sample was obtained from room temperature on an aluminum tray. The temperature was raised to 20 ° C at a rate of 20 ° C / min, melted and held at 340 ° C for 5 minutes, rapidly solidified, held for 5 minutes, and then heated from room temperature at a rate of 20 ° C / min. . At that time, the peak temperature of the endothermic peak of melting observed was defined as the melting temperature (Tm).
(4)フィルムの体積固有抵抗  (4) Volume resistivity of film
JIS C2151— 1990に規定された円平板電極法に準じて、環境温度 150°Cの条 件で測定した。フィルムの両面にアルミニウムを真空蒸着し電極を形成させたものを 測定用試料として、超絶縁計 (東亜電波 (株)製、 SM— 5E型)により 150°Cでの 500 V直流電圧印加後 1分後の抵抗値から求めた。  The measurement was performed under the conditions of an environmental temperature of 150 ° C according to the circular plate electrode method specified in JIS C2151—1990. After applying 500 V DC voltage at 150 ° C using a superinsulator (SM-5E type, manufactured by Toa Denpa Co., Ltd.), the sample was formed by vacuum-depositing aluminum on both sides of the film and forming electrodes 1 It calculated | required from the resistance value after a minute.
(5)フィルムの絶縁破壊電圧(耐電圧) JIS C2151— 1990に規定された方法に準じて、環境温度 23°Cおよび 150°Cの 条件で測定した。測定は、陰極に厚さ 100 /i m、 10cm角のアルミ箔電極、陽極に、 径 25mm、重さ 500gの真鍮製の電極を用レ、、この間にフィルムを挟み、高電圧直流 電源 (春日電機社製 TFV4— LC)を用いて 100VZ秒の速度で昇圧し、 10mA以上 流れたときに絶縁破壊したと見なした。この測定を 30回測定し、フィルムの厚みで割 り返した値の平均値をフィルムの絶縁破壊電圧とし、 23°Cおよび 150°Cでの絶縁破 壊電圧を各々 V (23)および V (150)とした。 V (23)については 30回測定した値に おける標準偏差を求めた。 (5) Dielectric breakdown voltage (withstand voltage) of film According to the method specified in JIS C2151-1990, the measurement was performed under the conditions of ambient temperature 23 ° C and 150 ° C. The measurement was performed using a 100 cm thick, 10 cm square aluminum foil electrode on the cathode, and a brass electrode with a diameter of 25 mm and a weight of 500 g on the anode, and a high voltage DC power supply (Kasuga Electric) The pressure was increased at a rate of 100 VZ seconds using TFV4—LC), and the dielectric breakdown was considered when 10 mA or more flowed. This measurement was repeated 30 times, and the average of the values divided by the film thickness was taken as the dielectric breakdown voltage of the film. The breakdown voltage at 23 ° C and 150 ° C was V (23) and V ( 150). For V (23), the standard deviation in the value measured 30 times was obtained.
(6)分散径界面のシリコン原子の検出 (6) Detection of silicon atoms at the dispersion diameter interface
フィルムを長手方向に平行かつフィルム面に垂直な方向に切断し、サンプルを超薄 切片法で作成した。分散相のコントラストを明確にするために、オスミウム酸やルテニ ゥム酸、リンタングステン酸などで染色してもよい。熱可塑性樹脂 Aがポリアミドの場合 では、リンタングステン酸による染色が好適に使用される。切断面を電界放出型電子 顕微鏡 JE〇L$iJEM2100F、 EDX iEOL衡 ED— 2300T) )を用いて、加圧電圧 200kV、試料吸収電流 10_9A、 EDX線分析 20秒/ポイント、ビーム径 lnmの条件 下で TEM— EDX法により分散相の界面を評価した。任意に 10個の分散相につい て評価して検出できたものを〇、できないものを Xとした。 The film was cut in a direction parallel to the longitudinal direction and perpendicular to the film surface, and a sample was prepared by an ultrathin section method. In order to clarify the contrast of the dispersed phase, it may be dyed with osmic acid, ruthenic acid, phosphotungstic acid or the like. In the case where the thermoplastic resin A is polyamide, dyeing with phosphotungstic acid is preferably used. Using a field emission electron microscope JE〇L $ iJEM2100F, EDX iEOL Equilibrium ED—2300T)), pressurization voltage 200kV, sample absorption current 10 _9 A, EDX line analysis 20 sec / point, beam diameter lnm Under the conditions, the interface of the dispersed phase was evaluated by the TEM-EDX method. Arbitrary evaluation was made for 10 dispersed phases, and X was the one that could not be detected.
(7)溶融比抵抗  (7) Melt specific resistance
対向面積 15cm2 (3cm X 5cm)、電極間距離 0. 5cmの一対の銅製平行平板電極 を挿入したガラス容器内に、被測定物質 (フィルム) 300gを入れた後、この容器を加 熱したシリコンバス中に浸す。被測定物質を窒素ガス雰囲気下 310°Cで 2時間溶融 貯留し、直流高圧発生装置から両電極間に直流 5KVの電圧を印加する。この時の 電流計および電圧計の指示値及び電極面積、電極間距離により、次式に従い溶融 比抵抗(P )を求めた。 300 g of the substance to be measured (film) is placed in a glass container with a pair of copper parallel plate electrodes with a facing area of 15 cm 2 (3 cm x 5 cm) and a distance between electrodes of 0.5 cm. Soak in the bath. The substance to be measured is melted and stored at 310 ° C for 2 hours in a nitrogen gas atmosphere, and a DC voltage of 5 KV is applied between the electrodes from the DC high-voltage generator. Based on the indicated values of the ammeter and voltmeter, the electrode area, and the distance between the electrodes, the melt specific resistance (P) was determined according to the following formula.
p =V X S/ (I X D) p = V X S / (I X D)
P:溶融比抵抗(Ω ' cm)  P: Melt specific resistance (Ω 'cm)
V:印加電圧 (V)  V: Applied voltage (V)
S :電極の面積(cm2) I :測定電流 (A) S: Electrode area (cm 2 ) I: Measurement current (A)
D :電極間距離(cm)  D: Distance between electrodes (cm)
測定回数; 3回測定し、平均値を算出する。  Number of measurements: Measure three times and calculate the average value.
(8)コンデンサー特性 (8) Capacitor characteristics
(a)コンデンサーの作成  (a) Creating a capacitor
フィルムの片面に表面抵抗値が 10 Ωとなるようにアルミニウムを蒸着した。その際、 長手方向に走るマージン部を有するストライプ状に蒸着した (蒸着部の幅 80mm、マ 一ジン部の幅 10mmの繰り返し)。この蒸着フィルムの各蒸着部中央とマージン部の 中央に刃を入れてスリットし、左もしくは右に 5mmマージン部を有する全幅 45mmの テープ状にして卷き取った。得られたテープを左マージンおよび右マージンのもの各 夂づっ重ね合わせ捲回し、静電容量 5 x Fの捲回体を得た。その際、幅方向に蒸 着部がマージン部より 5mmはみ出すように 2枚のフィルムをずらして捲回した。これら の捲回体から芯材を抜いて、そのまま 200°C、 25kg/cm2の温度、圧力で 5分間プ レスした。さらに両端面にメタリコンを溶射して外部電極とし、メタリコンにリード線を溶 接してコンデンサー素子を得た。得られた素子を 220°Cで 2時間熱処理した後、粉体 エポキシ樹脂による外装を施し (平均外装厚み 0· 5mm)、コンデンサーを作成した。Aluminum was evaporated on one side of the film so that the surface resistance was 10 Ω. At that time, vapor deposition was performed in a stripe shape having a margin portion running in the longitudinal direction (repetition of a vapor deposition portion width of 80 mm and a margin portion width of 10 mm). A slit was put in the center of each vapor deposition part and the margin part of this vapor deposition film, and it was scraped off in the form of a tape having a total width of 45 mm having a 5 mm margin part on the left or right. The obtained tape was overlapped and wound for each of the left margin and the right margin to obtain a wound body having a capacitance of 5 × F. At that time, the two films were shifted and wound so that the vapor deposition part protruded 5 mm from the margin part in the width direction. The core material was removed from these wound bodies and pressed as it was for 5 minutes at a temperature and pressure of 200 ° C, 25 kg / cm 2 . Further, metallicon was sprayed on both end surfaces to form external electrodes, and lead wires were welded to the metallicon to obtain capacitor elements. The obtained element was heat-treated at 220 ° C. for 2 hours, and then packaged with a powder epoxy resin (average package thickness: 0.5 mm) to prepare a capacitor.
(b) 150°C直流耐電圧の評価 (ステップアップ直流絶縁破壊電圧テスト) (b) Evaluation of 150 ° C DC withstand voltage (Step-up DC breakdown voltage test)
予め 150°Cに加熱したオーブン (TABAI ESPEC社製 PR— 4S)にコンデンサー 素子を 2時間投入しておき、 2KV電源 (ハイデン研究所製:型式 HD2K2P— PS)に コンデンサー素子のリード線を接続し、常温でスタート電圧: 400Vで 100V毎ステツ プアップを行レ、各ステップが終了毎に LCRメータ(安藤電気株式会社製 TYPE AG — 4311)で IVAC X lkHzを課電し容量を測定した。また、各ステップでの保持時間 は 10分とした。  Put the capacitor element in an oven (PRAI-4S made by TABAI ESPEC) for 2 hours in advance, and connect the lead wire of the capacitor element to a 2KV power source (made by HEIDEN Laboratory: model HD2K2P-PS). At a normal temperature, start voltage was set to 400V and stepped up every 100V. After each step was completed, IVAC X lkHz was applied with an LCR meter (TYPE AG — 4311, manufactured by Ando Electric Co., Ltd.), and the capacity was measured. The retention time at each step was 10 minutes.
フィルム各水準に対しコンデンサー素子 12個でテストを行い、電圧印加前の容量 に対し、容量が 10%以上低下する直前のステップの印加電圧値の平均値を直流耐 電圧とした。  A test was conducted with 12 capacitor elements for each level of the film, and the average value of the applied voltage in the step immediately before the capacity decreased by 10% or more relative to the capacity before the voltage application was defined as the DC withstand voltage.
(c)セルフヒール性(SH性)の評価  (c) Evaluation of self-healing (SH)
上記直流耐電圧評価において、容量が 10%以上低下した直後のステップにおい て絶縁破壊を起こしているコンデンサー素子を SH性不良とし、不良率(%)を以下の 基準により判断した。〇が合格である。 In the DC withstand voltage evaluation described above, in the step immediately after the capacity decreased by 10% or more. The capacitor element causing dielectric breakdown was determined to be SH defective, and the defect rate (%) was judged according to the following criteria. ○ is a pass.
〇:不良率 10%未満  ○: Defect rate less than 10%
△:不良率 10%以上 50%未満  △: Defect rate 10% or more, less than 50%
X:不良率 50%以上  X: Defect rate 50% or more
(d)コンデンサー素子加工性  (d) Capacitor element processability
下記基準で判断した。上記(a)と同様にしてコンデンサー素子を作成し、 目視により 素子の形状を確認した。 Judgment was made based on the following criteria. A capacitor element was prepared in the same manner as (a) above, and the shape of the element was confirmed visually.
〇:コンデンサー素子のフィルムのずれ、変形がなぐ後の工程に全く支障がないレ ベノレ  ◯: Revenor that does not hinder the process after the capacitor element film has been displaced or deformed.
△:コンデンサー素子のフィルムのずれ、変形は若干あるが後の工程で問題がない レべノレ  Δ: Capacitor element film is slightly displaced or deformed, but there is no problem in the subsequent process.
X:コンデンサー素子のフィルムのずれ、変形が大きぐ後の工程に支障を来すレべ ル  X: Level that interferes with the subsequent process of large displacement and deformation of the capacitor element film
(e)室温直流耐電圧の評価  (e) Evaluation of room temperature DC withstand voltage
室温条件下にて、直流 3kV耐圧試験器 (春日電機製)で印加電圧昇圧速度 100V /秒で測定し、電圧昇圧中に電流が 10mA以上の電流が流れ、電圧昇圧が止まつ た時の電圧を耐電圧とし、 20個の平均値を求めフィルムの厚み当たりの電圧(V/ μ m)で言平価した。 Measured at room temperature under a DC 3kV withstand voltage tester (manufactured by Kasuga Denki) at an applied voltage boost rate of 100V / sec. During the voltage boost, a current of 10mA or more flows, and the voltage when the voltage boost stops Was the withstand voltage, and the average value of 20 pieces was obtained and averaged with the voltage per film thickness (V / μm).
(e)コンデンサー素子の耐熱性の評価  (e) Evaluation of heat resistance of capacitor elements
30個のコンデンサーを 150°Cのオーブン中に置き、各コンデンサーに破壊時に荷 電電圧を停止するスィッチを装備し、直流電源発生器と並列に接続し m の電圧を 1000時間印加し続けて、破壊したコンデンサー素子を耐電圧不良素子と し不良率(%)を以下の基準によって判断した。◎および〇が合格である。  Place 30 capacitors in a 150 ° C oven, equip each capacitor with a switch that stops the charging voltage when broken, connect it in parallel with the DC power generator, and continue to apply m voltage for 1000 hours, The destroyed capacitor element was regarded as a defective withstand voltage element, and the defect rate (%) was judged according to the following criteria. ◎ and ○ are acceptable.
◎:不良率 5%未満  ◎: Defect rate less than 5%
〇:不良率 5%以上 10%未満  ○: Defect rate 5% or more, less than 10%
△:不良率 10%以上 20%未満  △: Defect rate 10% or more, less than 20%
X:不良率 20%以上 (9)溶融粘度 X: Defect rate 20% or more (9) Melt viscosity
フローテスター CFT— 500 (島津製作所製)を用いて、 口金長さを 10mm、口金径 を 1. Ommとして、予熱時間を 5分に設定して、 310°Cで測定した。  Using a flow tester CFT-500 (manufactured by Shimadzu Corporation), the base length was 10 mm, the base diameter was 1. Omm, the preheating time was set to 5 minutes, and the measurement was performed at 310 ° C.
(10)中心線平均粗さ Ra、最大高さ Rmax、突起個数  (10) Centerline average roughness Ra, maximum height Rmax, number of protrusions
原子間力顕微鏡を用いて、下記の条件で場所を変えて 20視野測定を行った。得ら れた画像について、三次元面粗さ(Roughness Analysis)を算出し、中心線平均粗さ Ra、最大突起高さ Rmaxを測定した。条件は下記のとおりであり、突起高さのしきい 値を、 50nmに設定してしきい値以上の高さを有する突起の個数を求め、計測した。 測定装置 : NanoScope III AFM (Digital Instruments社製)  Using an atomic force microscope, 20 fields of view were measured at different locations under the following conditions. For the obtained image, the three-dimensional surface roughness (Roughness Analysis) was calculated, and the centerline average roughness Ra and the maximum protrusion height Rmax were measured. The conditions were as follows. The threshold of the protrusion height was set to 50 nm, and the number of protrusions having a height equal to or higher than the threshold was determined and measured. Measuring device: NanoScope III AFM (manufactured by Digital Instruments)
カンチレバー:シリコン単結晶 Cantilever: Silicon single crystal
走查モード :タッピングモード Running mode: Tapping mode
走查範囲 : 50 μ mO Scaffolding range: 50 μmO
走査速度 :0. 5Hz Scanning speed: 0.5Hz
Peak Thresh ref (しきい値の基準): ZERO  Peak Thresh ref (Threshold threshold): ZERO
Peak Threshold (ピーク高さのしきい値): 50nm Peak Threshold: 50nm
(11)摩擦係数  (11) Friction coefficient
フィルムを幅 1/2インチのテープ状にスリットしたものテープ走行試験器を用いて ステンレス製ガイドピン (表面粗度; Raで lOOnm)上を走行させる(走行速度 250m /分、巻き付け角 60° 出側張力 90g、走行回数 1回)。このとき、入側の張力を Tiと して、次の式、 M k= 2. 201og (90/Ti)により求めた。  The film was slit into a 1/2 inch wide tape. Run on a stainless steel guide pin (surface roughness; Ra lOOnm) using a tape running tester (running speed 250 m / min, winding angle 60 °) Side tension 90g, number of running times 1). At this time, the tension on the entry side was Ti, and the following formula, M k = 2.201og (90 / Ti) was used.
(12)レーザーラマン分光による配向度  (12) Degree of orientation by laser Raman spectroscopy
レーザーラマン散乱法による顕微ラマンの測定条件は、次の通りである。 The measurement conditions of the microscopic Raman by the laser Raman scattering method are as follows.
レーザーラマン装置: PDP320 (フオトンデザイン社製) Laser Raman system: PDP320 (manufactured by Phu Tong Design)
マイクロプローブ: 対物レンズ χΙΟΟ Microprobe: Objective lens χΙΟΟ
クロススリット :1mm  Cross slit: 1mm
スポット径: 1 μ m  Spot diameter: 1 μm
光源: Nd_YAG (波長 1064nm、出力: 1W) Light source: Nd_YAG (wavelength 1064nm, output: 1W)
回折格子: Spectrograph 300g/mm スリツ卜: 100 /i m Diffraction grating: Spectrograph 300g / mm Suritsu: 100 / im
検出器: InGaAs (Roper Scientific512)  Detector: InGaAs (Roper Scientific512)
測定に用いるフィルムは、サンプリングしてエポキシ樹脂に包理後、ミクロトームでフ イルム断面を出した。フィルム断面がフィルム長手方向または幅方向に平行なものを 調整し、各試料の中央点を測定点として、長手方向および幅方向のそれぞれに対し て 5個の試料を測定して平均値をとつた。測定は、フィルム面に平行な長手方向また は幅方向の偏光での Ι δΤΟαι 1のラマンピ一ク強度(I)とフィルム面に垂直方向に おける偏光での TAOcnT1のラマンピ一ク強度(I )の比 I/I を求めて、ポリアリ一 The film used for measurement was sampled and embedded in an epoxy resin, and then the film cross section was taken out with a microtome. The film cross section was adjusted to be parallel to the film longitudinal direction or width direction, and the average value was obtained by measuring 5 samples for each of the longitudinal direction and width direction with the central point of each sample as the measurement point. . Measurements Ramanpi Ichiku strength TAOcnT 1 in polarization definitive vertically to the film surface Ramanpi Ichiku strength Ι δΤΟαι 1 of the polarization of the parallel longitudinal or transverse direction in the film plane (I) (I) The ratio I / I of the polyary
ND ND  ND ND
レンスルフイドフイルムの配向パラメ一タ一とした。 The orientation parameter of the lens was determined.
(13)フィルムの機械特性 (破断伸度、破断強度、ヤング率)および伸度一応力曲線 の微分係数  (13) Mechanical properties of film (breaking elongation, breaking strength, Young's modulus) and differential coefficient of elongation-stress curve
ASTM— D882— 97に規定された方法に従って、インストロンタイプの引張試験機 を用いて測定した。測定は下記の条件で行い、長手方向、幅方向それぞれについて 試料数 10にて実施した。破断伸度、破断強度、ヤング率は、引張り試験において、 伸度を低い方力 高い方に並べ最高 ·最低をそれぞれ 2測定ずつ除いた残り 6測定 の破断伸度、破断強度、ヤング率の平均値とした。また、長手方向、幅方向それぞれ につレ、て伸度の順列の中央の 2測定にっレ、て、各々のデータサンプリング点(両端 のサンプリング点を除く)について微分係数を求め、それぞれの方向について伸度 2 %と (破断点伸度(%)—5%)の区間における各測定の最低値の平均値をとり、両者 比較して小さレ、方の値を最低微分係数 γ minとした。  Measurement was performed using an Instron type tensile tester according to the method prescribed in ASTM-D882-97. The measurement was performed under the following conditions, and was performed with 10 samples in each of the longitudinal direction and the width direction. Breaking elongation, breaking strength, and Young's modulus are the average of elongation in the tensile test in the lower direction, higher in the higher direction, and removing the highest and lowest 2 measurements each for the remaining 6 measurements. Value. Also, for each of the data sampling points (excluding the sampling points at both ends), the differential coefficient is obtained for each of the longitudinal and width directions, and the two measurements at the center of the permutation of elongation. The average value of the minimum values of each measurement in the section of elongation 2% and (elongation at break (%)-5%) was taken, and the smaller value was compared with both, and the value of the lower one was the minimum derivative γ min .
また、  Also,
測定装置:オリエンテック (株)製フィルム強伸度自動測定装置"テンシロン AMFZ RTA- 100"  Measuring device: Orientec Co., Ltd. film strong elongation automatic measuring device "Tensilon AMFZ RTA-100"
試料サイズ:幅 10mm X試長間 50mm  Sample size: width 10mm x test length 50mm
引張り速度: 300mmZ分  Pulling speed: 300mmZ min
測定環境:温度 23°C、湿度 65%RH  Measurement environment: Temperature 23 ° C, humidity 65% RH
データのサンプリング間隔:伸度 0. 4%毎  Data sampling interval: Elongation 0.4% every 4%
微分係数 γの計算方法 N番目の測定点の伸度(%)および応力(MPa)をそれぞれ E (N)、 S (N)とし、次 式で N番目の測定点の微分係数 γ (Ν)を計算する。 Calculation method of derivative γ Let E (N) and S (N) be the elongation (%) and stress (MPa) of the Nth measurement point, respectively, and calculate the differential coefficient γ (Ν) of the Nth measurement point using the following formula.
γ (N) = {S (N+ 1) - S (N) }/{E (N+ 1)— E (N) }  γ (N) = {S (N + 1)-S (N)} / {E (N + 1) — E (N)}
微分係数の判定  Derivative coefficient determination
C : y min< 0  C: y min <0
B : 0≤ y min< 0. 5  B: 0≤ y min <0.5
A: 0. 5≤ γ min  A: 0.5 ≤ γ min
実施例  Example
[0098] (参考例 1)ポリ p フエ二レンスルフイド(PPS— 1)の重合  [0098] (Reference Example 1) Polymerization of poly p-phenylene sulfide (PPS-1)
撹拌機付きの 70リットルオートクレーブに、 47. 5重量%水硫化ナトリウム 8, 267. 3 7g (70. 00モノレ)、 96重量0/ o7 酸ィ匕ナトリウム 2, 957. 21g (70. 97モノレ)、 N—メチ ノレ 2 ヒ。口リドン(NMP) 11 , 434. 50g (115. 50モノレ)、醉酸ナトリウム 2, 583. 0 0g (31. 50モル)、及びイオン交換水 10, 500gを仕込み、常圧で窒素を通じながら 245°Cまで約 3時間かけて徐々に加熱し、水 14, 780. lgおよび NMP280gを留出 した後、反応容器を 160°Cに冷却した。仕込みアルカリ金属硫化物 1モル当たりの系 内残存水分量は、 NMPの加水分解に消費された水分を含めて 1. 06モルであった 。また、硫化水素の飛散量は、仕込みアルカリ金属硫化物 1モル当たり 0. 02モルで あった。 In a 70 liter autoclave with a stirrer, 47.5 wt% sodium hydrosulfide 8, 267.3 3 7 g (70.00 mono), 96 wt 0 / o7 sodium oxalate 2, 957. 21 g (70. 97 mono) , N—Met. Mouth Lidon (NMP) 11, 434. 50 g (115. 50 monole), sodium oxalate 2, 583.00 g (31. 50 mol), and ion-exchanged water 10,500 g were charged while passing nitrogen at normal pressure. After gradually heating to ° C over about 3 hours and distilling 14,780.lg of water and 280g of NMP, the reaction vessel was cooled to 160 ° C. The amount of water remaining in the system per mole of the alkali metal sulfide charged was 1.06 mol including the water consumed for the hydrolysis of NMP. The amount of hydrogen sulfide scattered was 0.02 mol per mol of the alkali metal sulfide charged.
[0099] 次に、 p_ジクロロベンゼン 10, 235. 46g (69. 63モノレ)、 NMP9, 009. 00g (91 . 00モル)を加え、反応容器を窒素ガス下に密封し、 240rpmで撹拌しながら、 0. 6 °C /分の速度で 238°Cまで昇温した。 238°Cで 95分反応を行った後、 0. 8°CZ分 の速度で 270°Cまで昇温した。 270°Cで 100分反応を行った後、 1, 260g (70モノレ) の水を 15分かけて圧入しながら 250°Cまで 1. 3°CZ分の速度で冷却した。その後 2 00°Cまで 1. 0°CZ分の速度で冷却してから、室温近傍まで急冷した。  [0099] Next, p_dichlorobenzene 10, 235.46 g (69.63 monole) and NMP9, 009.00 g (91.00 mol) were added, and the reaction vessel was sealed under nitrogen gas and stirred at 240 rpm. However, the temperature was raised to 238 ° C at a rate of 0.6 ° C / min. After 95 minutes of reaction at 238 ° C, the temperature was raised to 270 ° C at a rate of 0.8 ° CZ. After reacting at 270 ° C for 100 minutes, 1,260 g (70 monoliths) of water was injected over 15 minutes and cooled to 250 ° C at a rate of 1.3 ° CZ. After that, it was cooled to 200 ° C at a rate of 1.0 ° CZ and then rapidly cooled to near room temperature.
[0100] 内容物を取り出し、 26, 300gの NMPで希釈後、溶剤と固形物をふるい(80mesh )で滤另し、得られた粒子を 31, 900gの NMPで洗净、滤另 IJした。これを、 56, OOOg のイオン交換水で 3回洗浄、濾別した後、 0. 05重量%酢酸水溶液 70, OOOgで洗浄 、濾別した。 70, 000gのイオン交換水で洗浄、濾別した後、得られた含水 PPS粒子 を 80°Cで熱風乾燥し、 120°Cで減圧乾燥した。得られた PPSは、溶融粘度が 200P a' s (310°C、剪断速度 1 , 000/s)であり、ガラス転移温度が 93°C、融点が 285°Cで あった。 [0100] After the contents were taken out and diluted with 26,300 g of NMP, the solvent and the solid were washed with a sieve (80 mesh), and the resulting particles were washed with 31,900 g of NMP and further IJ. This was washed with 56, OOOg of ion-exchanged water three times and filtered, then washed with 0.05% by weight acetic acid aqueous solution 70, OOOg and filtered. Water-containing PPS particles obtained after washing with 70,000 g of ion-exchanged water and filtration Was dried with hot air at 80 ° C and dried under reduced pressure at 120 ° C. The obtained PPS had a melt viscosity of 200 Pa's (310 ° C, shear rate of 1,000 / s), a glass transition temperature of 93 ° C, and a melting point of 285 ° C.
(参考例 2)ポリ— p—フエ二レンスルフイド(PPS— 2)の重合  Reference Example 2 Polymerization of poly-p-phenylene sulfide (PPS-2)
参考例 1の洗浄工程を以下のようにする事以外は参考例 1と同様にして PPS樹脂を 作成した。 A PPS resin was prepared in the same manner as in Reference Example 1 except that the cleaning process in Reference Example 1 was as follows.
重合後の内容物を取り出し、 26, 300gの NMPで希釈後、溶剤と固形物をふるい( 80mesh)で濾別し、得られた粒子を 31, 900gの NMPで 4回洗浄、濾別した。これ を、 56, OOOgのイオン交換水で 5回洗浄、濾別した後、 0. 05重量%酢酸水溶液 70 , OOOgで 2回洗浄、濾別した。 70, 000gのイオン交換水で 5回洗浄、濾別した後、 得られた含水 PPS粒子を 80°Cで熱風乾燥し、 120°Cで減圧乾燥した。得られた PP Sは、溶融粘度が 200Pa' s (310°C、剪断速度 1, 000/s)であり、ガラス転移温度 力 S93°C、融点が 285°Cであった。  After the polymerization, the content was taken out, diluted with 26,300 g of NMP, the solvent and solid matter were filtered off with a sieve (80 mesh), and the resulting particles were washed 4 times with 31,900 g of NMP and filtered. This was washed 5 times with 56, OOOg of ion-exchanged water and filtered, then washed twice with 0.05% by weight acetic acid aqueous solution 70, OOOg and filtered. After washing with 70,000 g of ion-exchanged water 5 times and filtering, the obtained hydrous PPS particles were dried with hot air at 80 ° C and dried under reduced pressure at 120 ° C. The obtained PP S had a melt viscosity of 200 Pa's (310 ° C, shear rate of 1,000 / s), a glass transition temperature force of S93 ° C, and a melting point of 285 ° C.
(参考例 3)ポリ p フエ二レンスルフイド(PPS— 3)の重合  (Reference Example 3) Polymerization of poly p-phenylene sulfide (PPS-3)
参考例の洗浄工程にぉレ、て酢酸水溶液を用いる代わりに酢酸カルシウム水溶液を 用いること以外は参考例 1と同様にして PPS樹脂を作成した。得られた PPS樹脂は 溶融粘度が 210Pa' s (310°C、剪断速度 1, 000/s)であり、ガラス転移温度が 93 °C、融点が 285°Cであった。 A PPS resin was prepared in the same manner as in Reference Example 1 except that a calcium acetate aqueous solution was used instead of the acetic acid aqueous solution in the cleaning process of the reference example. The obtained PPS resin had a melt viscosity of 210 Pa's (310 ° C, shear rate of 1,000 / s), a glass transition temperature of 93 ° C, and a melting point of 285 ° C.
(参考例 4)粒子マスターチップの作成 (Reference Example 4) Creation of particle master chip
参考例 1で作成した PPS樹脂 92重量部に対し、平均粒径 0. 55 μ ΐηのシリカ球状 微粒子(日本触媒社製"シーホスター" KEP— 50) 8重量部となるよう配合し、ベント 付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径 30mm、スクリュ 一長さ Zスクリュー直径 = 45. 5)に投入し、滞留時間 30秒、スクリュー回転数 300回 転/分、 330°Cで溶融押出してストランド状に吐出し、温度 25°Cの水で冷却した後、 直ちにカッティングして粒子マスターチップ (粒子 8%含有)を作製した。  To 92 parts by weight of the PPS resin prepared in Reference Example 1, 8 parts by weight of silica spherical fine particles with an average particle size of 0.55 μΐη (“Chihoster KEP-50” manufactured by Nippon Shokubai Co., Ltd.) were added and the same with a vent. Rotating unidirectional twin screw extruder (made by Nippon Steel, screw diameter 30mm, screw length Z screw diameter = 45.5), residence time 30 seconds, screw rotation speed 300 rotations / minute, 330 ° It was melt-extruded with C, discharged into a strand, cooled with water at a temperature of 25 ° C, and immediately cut to produce a particle master chip (containing 8% particles).
(参考例 5)低融点共重合ポリフエ二レンスルフイド(PPS— 4)の重合 (Reference Example 5) Polymerization of low melting point copolymer polyphenylene sulfide (PPS-4)
オートクレーブに、 100モルの硫化ナトリウム 9水塩、 45モルの水酸化ナトリウムおよ び 25リットルの N メチル _ 2_ピロリドン(以下 NMPという)を仕込み、攪拌しながら 徐々に 220°Cまで昇温して含有されている水分を蒸留により除去した。 An autoclave was charged with 100 moles of sodium sulfide 9 hydrate, 45 moles of sodium hydroxide and 25 liters of N methyl _ 2_pyrrolidone (hereinafter referred to as NMP) while stirring. The temperature was gradually raised to 220 ° C., and the contained water was removed by distillation.
[0102] 脱水の終了した系内へ主成分モノマとして 89. 8モル%の ージクロルベンゼン、 副成分モノマとして 10モル0 /0の m—ジクロルベンゼン、および 0. 2モノレ0 /0の 1, 2, 4 —トリクロ口ベンゼンを 5リットルの NMPとともに添加し、 170°Cで窒素を 3kg/cm2カロ 圧封入後、昇温し、 260°Cにて 4時間重合した。重合終了後冷却し、蒸留水中にポリ マーを沈殿させ、 150メッシュ目開きを有する金網によって、小塊状ポリマーを採取し た。 [0102] dewatering 89. 8 mol% of over-dichlorobenzene finished into the system as the main component monomer, 10 mol 0/0 as a secondary component monomers m- dichlorobenzene, and 0. 2 Monore 0/0 1, 2, 4 - the trichloroacetic port benzene was added with 5 liters of NMP, after nitrogen 3 kg / cm 2 Caro pressure sealed at 170 ° C, the temperature was raised, and polymerized for 4 hours at 260 ° C. After completion of the polymerization, the mixture was cooled, the polymer was precipitated in distilled water, and a small polymer was collected with a wire mesh having a 150 mesh opening.
[0103] このポリマー 90°Cの蒸留水により 5回洗浄した後、減圧下 120°Cにて乾燥して融点 力 ¾50°Cの白色粒子状の共重合 PPS組成物を得た。  [0103] This polymer was washed 5 times with distilled water at 90 ° C and then dried at 120 ° C under reduced pressure to obtain a copolymerized PPS composition in the form of white particles having a melting point of 50 ° C.
(実施例 1)  (Example 1)
参考例 1で作成した PPS— 1樹脂を 180°Cで 3時間 ImmHgの減圧下で乾燥し、 熱可塑性樹脂 Aとしてポリエーテルイミド(ジーィープラスチックス社製 "ウルテム 10 10") (PEI)を 120°Cで 3時間 ImmHgの減圧下で別々に乾燥した。上記 PPS樹脂 9 4. 4重量部と ΡΕΙ5· 6重量部にさらに、 y—イソシァネ一トプロピルトリエトキシシラン (信越化学社製、 "KBE9007"、 C1と記載する) 0. 4重量部を乾燥空気下で均一配 合後、ニーデイングパドル混練部を 3箇所設けたベント付き同方向回転式二軸混練 押出機(日本製鋼所製、スクリュー直径 30mm、スクリュー長さ/スクリュー直径 =45 . 5)に投入し、滞留時間 90秒、スクリュー回転数 300回転/分、 330°Cで溶融押出 してストランド状に吐出し、温度 25°Cの水で冷却した後、直ちにカッティングしてブレ ンドチップを作製した。  PPS-1 resin prepared in Reference Example 1 was dried at 180 ° C for 3 hours under a reduced pressure of ImmHg. Polyetherimide as thermoplastic resin A ("Ultem 10 10" manufactured by GE Plastics) (PEI) Were dried separately under reduced pressure of ImmHg at 120 ° C for 3 hours. In addition to 94.4 parts by weight and 5.6 parts by weight of the above PPS resin, y-isocyanatopropyltriethoxysilane (made by Shin-Etsu Chemical Co., Ltd., described as “KBE9007”, C1) 0.4 parts by weight of dry air After uniform mixing at the bottom, the same direction rotating twin-screw kneading extruder with three kneading paddle kneading sections (manufactured by Nippon Steel, screw diameter 30 mm, screw length / screw diameter = 45.5) The melt was extruded at a residence time of 90 seconds, a screw speed of 300 rpm, 330 ° C, discharged into a strand, cooled with water at a temperature of 25 ° C, and immediately cut to produce a blend tip. .
得られた PPS/PEI (94. 4/5. 6重量部)のブレンドチップ原料 90重量部と粒子マ スターチップ 10重量部をドライブレンドし、 180°Cで 7時間 ImmHgの減圧下で乾燥 した後、溶融部が 320°Cに加熱されたフルフライトの単軸押出機に供給した。  90 parts by weight of the blended chip raw material of PPS / PEI (94. 4/5. 6 parts by weight) and 10 parts by weight of the particle master chip were dry blended and dried at 180 ° C for 7 hours under reduced pressure of ImmHg. Thereafter, the molten part was supplied to a full-flight single screw extruder heated to 320 ° C.
[0104] 次いで押出機で溶融したポリマーを温度 320°Cに設定したフィルターで濾過し、温 度 320°Cに設定した Tダイの口金から溶融押出した後、表面温度 25°Cのキャストドラ ムに静電荷を印加させながら密着冷却固化し、未延伸ポリフヱニレスルフイドフイルム を作製した。 [0104] Next, the polymer melted by the extruder was filtered through a filter set at a temperature of 320 ° C, melt-extruded from a die of a T die set at a temperature of 320 ° C, and then cast at a surface temperature of 25 ° C. While applying an electrostatic charge to the film, it was closely cooled and solidified to produce an unstretched polyresin film film.
[0105] この未延伸ポリフヱニレンスルフイドフイルムを、加熱された複数のロール群からなる 縦延伸機を用い、ロールの周速差を利用して、フィルム温度 103°C、延伸速度 3000 0%/分でフィルムの縦方向に 3. 8倍の倍率で延伸した。その後、このフィルムの両 端部をクリップで把持して、テンターに導き、延伸温度 105°C、延伸速度 1 100%/ 分、延伸倍率 3. 8倍でフィルムの幅方向に延伸を行レ、、引き続いて温度 265°Cで 4 秒間の熱処理を行つた後、 150°Cにコントロールされた冷却ゾーンで横方向に 4 %弛 緩処理を行い室温まで冷却した後、フィルムエッジを除去し、卷き取り、厚み 3. 7 μ mの二軸配向ポリフエ二レンスルフイドフイルムを得た。 [0105] This unstretched polyphenylene sulfide film is composed of a plurality of heated roll groups. Using a longitudinal stretching machine, the film was stretched at a magnification of 3.8 times in the longitudinal direction of the film at a film temperature of 103 ° C and a stretching speed of 3000 0% / min. Then, grip both ends of this film with clips and guide it to a tenter, and stretch it in the width direction of the film at a stretching temperature of 105 ° C, a stretching speed of 1 100% / min, and a stretching ratio of 3.8 times. Subsequently, after heat treatment at 265 ° C for 4 seconds, 4% relaxation treatment was performed in the transverse direction in a cooling zone controlled at 150 ° C and cooled to room temperature. The biaxially oriented polyphenylene sulfide film having a thickness of 3.7 μm was obtained.
得られた二軸配向ポリフヱニレンスルフイドフイルムの構成や特性についての測定、 評価結果およびコンデンサー特性は、表 1に示したとおりであり、この二軸配向ポリフ ェニレンスルフイドフイルムは高温での絶縁特性および耐電圧に優れ、コンデンサー 特十生も良好なものであった。  Table 1 shows the measurement, evaluation results, and capacitor characteristics of the resulting biaxially oriented polyphenylene sulfide film, and the characteristics of the biaxially oriented polyphenylene sulfide film. The insulation characteristics and withstand voltage were excellent, and the capacitor was in good condition.
(比較例 1 ) (Comparative Example 1)
参考例 1で作成した PPS— 1樹脂 90重量部と粒子マスターチップ 10重量部をドラ ィブレンドした原料を、 180°Cで 7時間 ImmHgの減圧下で乾燥した後、溶融部が 3 20°Cに加熱されたフルフライトの単軸押出機に供給した。  The raw material prepared by dry blending 90 parts by weight of PPS-1 resin and 10 parts by weight of particle master chip prepared in Reference Example 1 was dried at 180 ° C for 7 hours under a reduced pressure of ImmHg, and then the melting part was adjusted to 320 ° C. It was fed to a heated full flight single screw extruder.
次いで、押出機にて溶融したポリマーを温度 320°Cに設定したフィルターで濾過した 後、温度 320°Cに設定した Tダイの口金から溶融押出し、表面温度 25°Cのキャストド ラムに静電荷を印加させながら密着冷却固化し、未延伸ポリフエ二レスルフイドフィノレ ムを作製した。得られた未延伸ポリフエ二レンスルフイドフイルムを、実施例 1と同様に して厚み 3. 7 μ mの二軸配向ポリフエ二レンスルフイドフイルムおよびそれを使用した コンデンサーを作成した。得られた二軸配向ポリフエ二レンスルフイドフイルムの構成 や特性についての測定、評価結果およびコンデンサー特性は、表 1に示したとおりで あり、この二軸配向ポリフヱニレンスルフイドフイルムは実施例 1と比較して体積固有 抵抗の値はほぼ同じであったにもかかわらず、高温での絶縁破壊電圧に劣るもので あった。さらにコンデンサー特性においても SH性が低ぐ高温耐熱性が低く不十分 なものであった。 Next, after the polymer melted in the extruder is filtered through a filter set at a temperature of 320 ° C, it is melt-extruded from a die of a T die set at a temperature of 320 ° C, and an electrostatic charge is applied to a cast drum having a surface temperature of 25 ° C. The solid film was solidified by cooling with application of an unstretched polyphenylene sulfide phenolic film. In the same manner as in Example 1, a biaxially oriented polyphenylene sulfide film having a thickness of 3.7 μm and a capacitor using the unstretched polyphenylene sulfide film were prepared. The measurement, evaluation results, and capacitor characteristics of the obtained biaxially oriented polyphenylene sulfide film are as shown in Table 1. This biaxially oriented polyphenylene sulfide film is an example. Compared to 1, the volume resistivity was almost the same, but it was inferior to the dielectric breakdown voltage at high temperature. Furthermore, in terms of capacitor characteristics, the SH property was low and the high-temperature heat resistance was low and insufficient.
(実施例 2、 4) (Examples 2 and 4)
熱可塑性樹脂 Aの PEIおよび相溶化剤の添加量を表 1に示した通り変更した以外 は、実施例 1と同様にしてそれぞれ厚み 3· 7 /i mの二軸配向ポリフエ二レンスルフィ ドフィルムおよびそれを使用したコンデンサーを作成した。実施例 2, 4いずれの二軸 配向ポリフエ二レンスルフイドフイルムとも高温の絶縁破壊電圧が高ぐコンデンサー 特十生も良好なものであった。 Other than changing the amount of PEI and compatibilizer added to thermoplastic resin A as shown in Table 1. Produced a biaxially oriented polyethylene sulfide film having a thickness of 3 · 7 / im and a capacitor using the same in the same manner as in Example 1. Both the biaxially oriented polyphenylene sulfide films of Examples 2 and 4 were excellent in capacitor performance with high dielectric breakdown voltage at high temperatures.
(実施例 3) (Example 3)
熱可塑性樹脂 Aの PEIおよび相溶化剤の添加量を表 1に示した通り変更し、縦延 伸をフィルム温度 105°Cで 3. 4倍延伸、横延伸を 106°Cで 3. 6倍延伸とした以外は 、実施例 1と同様にして厚み 3. 8 z mの二軸配向ポリフエ二レンスルフイドフイルムお よびそれを使用したコンデンサーを作成した。実施例 1と比較すると製膜安定性にや や劣り、製膜中に破れが点発した。本実施例の二軸配向ポリフエ二レンスルフイドフィ ルムは耐電圧がやや低めであり、コンデンサー特性においても耐電圧がやや劣るが 、比較例 1と比べれば十分高いレベルであり、実使用上問題ないレベルであった。 (実施例 5)  The amount of PEI and compatibilizer added to thermoplastic resin A was changed as shown in Table 1, and the longitudinal stretch was stretched 3.4 times at a film temperature of 105 ° C and the transverse stretch was 3.6 times at 106 ° C. A biaxially oriented polyphenylene sulfide film having a thickness of 3.8 zm and a capacitor using the same were prepared in the same manner as in Example 1 except that the drawing was performed. Compared with Example 1, the film formation stability was slightly inferior, and tearing occurred during film formation. The biaxially oriented polysulfide film of this example has a slightly lower withstand voltage and a slightly lower withstand voltage in terms of capacitor characteristics, but it is sufficiently high compared to Comparative Example 1 and is problematic in practical use. There was no level. (Example 5)
PPS— 1を参考例 2で作成した PPS— 2に変更した以外は、実施例 1と同様にして 厚み 3. 6 μ mの二軸配向ポリフエ二レンスルフイドフイルムおよびそれを使用したコン デンサ一を作成した。本実施例の二軸配向ポリフエ二レンスルフイドフイルムは高温 での体積固有抵抗、絶縁破壊抵抗とも極めて高ぐコンデンサー特性も極めて良好 なものであった。  Except that PPS-1 was changed to PPS-2 prepared in Reference Example 2, it was the same as Example 1, and a 3.6 μm thick biaxially oriented polyurethane film and a capacitor using the same It was created. The biaxially oriented polyphenylene sulfide film of this example had very good capacitor characteristics with both high volume resistivity and dielectric breakdown resistance at high temperatures.
(実施例 6) (Example 6)
熱可塑性樹脂 Aとしてポリアリレート(ュニチカ社製 "Uポリマー" U100) (PAR)を 用いる以外は、実施例 1と同様にして厚み 3. 5 μ ΐηの二軸配向ポリフエ二レンスルフ イドフイルムおよびそれを使用したコンデンサーを作成した。本実施例の二軸配向ポ リフエ二レンスルフイドフイルムは耐電圧に優れ、コンデンサー特性も良好なものであ つた。 A biaxially oriented polyphenylene sulfide film having a thickness of 3.5 μΐη and the same as in Example 1 except that polyarylate (“U polymer” U100) (PAR) manufactured by Unitica is used as the thermoplastic resin A. The capacitor used was created. The biaxially oriented polyimide film of this example had excellent withstand voltage and good capacitor characteristics.
(実施例 7)  (Example 7)
熱可塑性樹脂 Aとしてポリフエ二レンエーテル(三菱ガス化学社製 YPX- 100A) (PPE)を用いる以外は、実施例 1と同様にして厚み 3. 5 z mの二軸配向ポリフエユレ ンスルフイドフイルムおよびそれを使用したコンデンサーを作成した。本実施例の二 軸配向ポリフエ二レンスルフイドフイルムは耐電圧に優れ、コンデンサー特性も良好な ものであった。 Biaxially oriented polyphenylene sulfide film having a thickness of 3.5 zm and the same as in Example 1 except that polyphenylene ether (YPX-100A manufactured by Mitsubishi Gas Chemical Co., Ltd.) (PPE) is used as thermoplastic resin A. A capacitor was made using Second of this example The axially oriented polyphenylene sulfide film had excellent withstand voltage and good capacitor characteristics.
(実施例 8)  (Example 8)
熱可塑性樹脂 Aとしてポリエーテルスルホン(ァモコ社製 "RADEL"A_ 200A) (P ES)を用いる以外は、実施例 1と同様にして厚み 3. 7 x mの二軸配向ポリフエ二レン スルフイドフイルムおよびそれを使用したコンデンサーを作成した。本実施例の二軸 配向ポリフエ二レンスルフイドフイルムは耐電圧に優れ、コンデンサー特性も良好なも のであった。 Biaxially oriented polyphenylene sulfide film having a thickness of 3.7 xm as in Example 1 except that polyethersulfone ("RADEL" A_200A) (P ES) manufactured by Amoco is used as thermoplastic resin A And the capacitor which used it was made. The biaxially oriented polyphenylene sulfide film of this example had excellent withstand voltage and good capacitor characteristics.
(実施例 9) (Example 9)
熱可塑性樹脂 Aとしてポリスルホン(ァモコ社製 "UDEL"P— 1700) (PSF)を用い る以外は、実施例 1と同様にして厚み 3. 7 z mの二軸配向ポリフエ二レンスルフイドフ イルムおよびそれを使用したコンデンサーを作成した。本実施例の二軸配向ポリフエ 二レンスルフイドフイルムは耐電圧に優れ、コンデンサー特性も良好なものであった。 (実施例 10) Except using polysulfone ("UDEL" P-1700) (PSF) manufactured by Amoco as the thermoplastic resin A, a 3.7 zm biaxially oriented polyphenylene sulfide film and its use were used in the same manner as in Example 1. Made a capacitor. The biaxially oriented polyphenylene sulfide film of this example had excellent withstand voltage and good capacitor characteristics. (Example 10)
γ—イソシァネートプロピルトリエトキシシラン(信越化学社製、 "ΚΒΕ9007")をビス フエノール型エポキシ樹脂(油化シェルエポキシ社製、 "ェピコード' 1004、 C2と記載 する)とし、縦延伸をフィルム温度 103°Cで 3· 5倍延伸、横延伸を 105°C3. 6倍延伸 とした以外は、実施例 1と同様にして厚み 3. 8 μ ΐηの二軸配向ポリフエ二レンスルフィ ドフィルムおよびそれを使用したコンデンサーを作成した。実施例 1と比較すると製膜 安定性にやや劣り、製膜中に破れが点発した。本実施例の二軸配向ポリフエ二レン スルフイドフイルムは耐電圧がやや低めであり、コンデンサー特性においても耐電圧 がやや劣る力 比較例と比べれば十分高いレベルであり、実使用上問題ないレベル であった。 γ-isocyanatopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., “ΚΒΕ9007”) is bisphenol type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., described as “Epicord 1004, C2”), and longitudinal stretching is performed at the film temperature. A biaxially oriented polyethylene sulfide film with a thickness of 3.8 μΐη and a 3.8 μΐ-thick biaxially oriented film are the same as in Example 1 except that the film is stretched 3.5 times at 103 ° C and stretched 3.6 times at 105 ° C. Capacitors used were prepared.Slightly inferior in film formation stability compared to Example 1 and tearing occurred during film formation.The biaxially oriented polyphenylene sulfide film of this example had a little withstand voltage. The power is slightly lower and the withstand voltage is slightly inferior even in the capacitor characteristics. This is a sufficiently high level compared to the comparative example, and there is no problem in practical use.
(実施例 11) (Example 11)
参考例 1で作成した PPS— 1樹脂を 180°Cで 3時間 ImmHgの減圧下で乾燥し、 熱可塑性樹脂 Aとしてポリエーテルイミド(ジーィープラスチックス社製 "ウルテム 10 10") (PEI)を 120°Cで 3時間 ImmHgの減圧下で別々に乾燥した。上記 PPS— 1樹 脂 70重量部と PEI30重量部にさらに、 y—イソシァネ一トプロピルトリエトキシシラン( 信越化学社製、 "KBE9007") 2. 4重量部を乾燥空気下で均一配合後、ニーデイン グパドル混練部を 3箇所設けたベント付き同方向回転式二軸混練押出機(日本製鋼 所製、スクリュー直径 30mm、スクリュー長さ/スクリュー直径 =45· 5)に投入し、滞 留時間 90秒、スクリュー回転数 300回転 Z分、 330°Cで溶融押出してストランド状に 吐出し、温度 25°Cの水で冷却した後、直ちにカッティングしてブレンドチップを作製 した。 PPS-1 resin prepared in Reference Example 1 was dried at 180 ° C for 3 hours under a reduced pressure of ImmHg. Polyetherimide as thermoplastic resin A ("Ultem 10 10" manufactured by GE Plastics) (PEI) Were dried separately under reduced pressure of ImmHg at 120 ° C for 3 hours. In addition to 70 parts by weight of the above PPS-1 resin and 30 parts by weight of PEI, y-isocyanate propyltriethoxysilane ( (KBE9007, manufactured by Shin-Etsu Chemical Co., Ltd.) 2. After blending 4 parts by weight uniformly in dry air, a twin-rotating twin-screw kneading extruder with vents with three kneading paddle kneading parts (manufactured by Nippon Steel Works, screw) 30 mm diameter, screw length / screw diameter = 45 5), dwell time 90 seconds, screw rotation speed 300 rpm Z min, melt extruded at 330 ° C, discharged in strand form, temperature 25 ° C After cooling with water, it was immediately cut to produce a blend chip.
得られた PPS/PEI (70/30重量部)のブレンドチップ原料 17重量部、参考例 3で 作成した PPS— 3樹脂 73重量部および粒子マスターチップ 10重量部をドライブレン ドし、これを原料として押し出す以外は実施例 1と同様にして厚み 3. の二軸配 向ポリフエ二レンスルフイドフイルムおよびそれを使用したコンデンサーを作成した。 延伸製膜性は良好であり、溶融比抵抗はやや低く体積固有抵抗も実施例 1対比で 低いものの、得られた本実施例の二軸配向ポリフヱニレンスルフイドフイルムは耐電 圧に優れ、コンデンサー特性も良好なものであった。 The resulting PPS / PEI (70/30 parts by weight) blend chip raw material 17 parts by weight, PPS-3 resin prepared in Reference Example 3 73 parts by weight and particle master chip 10 parts by weight were drive-lensed and used as raw materials A biaxially oriented polyphenylene sulfide film having a thickness of 3 and a capacitor using the same were prepared in the same manner as in Example 1 except that the film was extruded as. The stretched film-forming property is good, the melt specific resistance is somewhat low, and the volume resistivity is also low compared to Example 1, but the obtained biaxially oriented polyphenylene sulfide film of this example is excellent in withstand voltage, The capacitor characteristics were also good.
(比較例 2) (Comparative Example 2)
PPS— 1樹脂 90重量部添加する代わりに PPS— 1樹脂 17重量部と PPS— 3樹脂 73 重量部のブレンドを用いること以外は比較例 1と同様にして厚み 3. 7 μ ΐηの二軸配 向ポリフエ二レンスルフイドフイルムおよびそれを使用したコンデンサーを作成した。 本コンデンサーの高温での耐電圧は他の実施例 ·比較例と比べて極めて低かった。 Biaxial distribution with a thickness of 3.7 μΐη as in Comparative Example 1 except that instead of adding 90 parts by weight of PPS-1 resin, a blend of 17 parts by weight of PPS-1 resin and 73 parts by weight of PPS-3 resin is used. A polyphenylene sulfide film and a capacitor using the same were prepared. The withstand voltage of this capacitor at a high temperature was extremely low compared to other examples and comparative examples.
(比較例 3) (Comparative Example 3)
熱可塑性樹脂 Aの PEIの添加量を表 1に示した通り変更した以外は、実施例 1と同 様にして製膜を試みた力 フィルム破れが多発して評価できるサンプルが採取できな かった。  Except that the amount of PEI added to thermoplastic resin A was changed as shown in Table 1, the force of film formation was the same as in Example 1. .
(比較例 4) (Comparative Example 4)
熱可塑性樹脂 Aの Ί—イソシァネートプロピルトリエトキシシランの添加量を表 1に 示した通り 0. 05重量部に変更した以外は、実施例 1と同様にしてそれぞれ厚み 3. 7 z mの二軸配向ポリフエ二レンスルフイドフイルムおよびそれを使用したコンデンサー を作成した。 PEIの平均分散径は 650nmと粗大であり、本フィルムは高温耐電圧が 低ぐコンデンサー特性において SH性が若干低く不十分なものであった。 (実施例 12, 14, 15) In the same manner as in Example 1, except that the amount of the thermoplastic resin A— isocyanate propyltriethoxysilane added was changed to 0.05 parts by weight as shown in Table 1, a thickness of 3.7 zm was obtained. An axially oriented polyphenylene sulfide film and a capacitor using the same were prepared. The average dispersion diameter of PEI was as large as 650 nm, and this film had insufficient low SH characteristics and insufficient capacitor properties with low high-temperature withstand voltage. (Examples 12, 14, 15)
製膜条件およびフィルム厚みを表 2に記載の通りに変更した以外は実施例 11と同 様にしてそれぞれ二軸配向ポリフエ二レンスルフイドフイルムおよびそれを使用したコ ンデンサーを作成した。得られた二軸配向ポリフエ二レンスルフイドフイルムの特性に ついての測定、評価結果およびコンデンサー特性は表 2に示したとおりであり、いず れもフィルムの高温および室温耐電圧が高ぐ絶縁破壊電圧の測定値のばらつきも 少なぐコンデンサー特性も極めて良好であった。  A biaxially oriented polyester film and a capacitor using the same were prepared in the same manner as in Example 11 except that the film forming conditions and the film thickness were changed as shown in Table 2. The measurement, evaluation results, and capacitor characteristics of the obtained biaxially oriented polyphenylene sulfide film are as shown in Table 2, both of which have high dielectric breakdown due to high temperature and room temperature withstand voltage. Capacitor characteristics with very little variation in measured voltage values were also very good.
(実施例 13) (Example 13)
参考例 1で作成した PPS— 1樹脂を 180°Cで 3時間 ImmHgの減圧下で乾燥し、 熱可塑性樹脂 Aとしてポリエーテルイミド(ジーィープラスチックス社製 "ウルテム 10 10") (PEI)を 120°Cで 3時間 ImmHgの減圧下で別々に乾燥した。上記 PPS— 1樹 脂 70重量部と PEI30重量部にさらに、 y—イソシァネ一トプロピルトリエトキシシラン( 信越化学社製、 "KBE9007") 2. 4重量部を乾燥空気下で均一配合後、ニーデイン グパドル混練部を 3箇所設けた真空ベント付き同方向回転式二軸混練押出機(日本 製鋼所製、スクリュー直径 30mm、スクリュー長さ/スクリュー直径 =45. 5)に投入し 、滞留時間 90秒、スクリュー回転数 300回転/分、 330°Cで溶融押出してストランド 状に吐出し、温度 25°Cの水で冷却した後、直ちにカッティングしてブレンドチップを 作製した。  PPS-1 resin prepared in Reference Example 1 was dried at 180 ° C for 3 hours under a reduced pressure of ImmHg. Polyetherimide as thermoplastic resin A ("Ultem 10 10" manufactured by GE Plastics) (PEI) Were dried separately under reduced pressure of ImmHg at 120 ° C for 3 hours. In addition to 70 parts by weight of the above PPS-1 resin and 30 parts by weight of PEI, y-isocyanate propyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., "KBE9007") 2. Charged into a co-rotating twin-screw kneading extruder with a vacuum vent with three gpaddle kneading units (manufactured by Nippon Steel Works, screw diameter 30 mm, screw length / screw diameter = 45.5), residence time 90 seconds, The melt was extruded at a screw speed of 300 rpm at 330 ° C, discharged into a strand, cooled with water at a temperature of 25 ° C, and then immediately cut to produce a blend chip.
得られた PPS/PEI (70/30重量部)のブレンドチップ原料 17重量部、参考例 3で 作成した PPS— 3樹脂 73重量部および粒子マスターチップ 10重量部をドライブレン ドし、更に樹脂 100重量部当たり 0. 3重量部の水を添加したものを、上記二軸混練 押出機に投入し、滞留時間 90秒、スクリュー回転数 300回転/分、 330°Cで溶融押 出してストランド状に吐出し、温度 25°Cの水で冷却した後、直ちにカッティングしてブ レンドチップを作製した。 Drive blend of 17 parts by weight of the PPS / PEI (70/30 parts by weight) blended chip raw material, 73 parts by weight of the PPS-3 resin prepared in Reference Example 3 and 10 parts by weight of the particle master chip. Add 0.3 parts by weight of water per part by weight into the above twin-screw kneading extruder, melt and extrude into a strand shape at a residence time of 90 seconds, screw speed of 300 rpm, and 330 ° C. After discharging and cooling with water at a temperature of 25 ° C, cutting was performed immediately to produce a blend tip.
これを原料として押し出す以外は実施例 11と同様にして厚み 3. 4 x mの二軸配向ポ リフエ二レンスルフイドフイルムおよびそれを使用したコンデンサーを作成した。延伸 製膜性は良好であり、更に長時間製膜しても発生ガスや目やにが少なく安定してい た。得られた二軸配向ポリフエ二レンスルフイドフイルムは耐電圧に優れ、コンデンサ 一特性も良好なものであった。 Except for extruding this as a raw material, a biaxially oriented polyimide film having a thickness of 3.4 xm and a capacitor using the same were prepared in the same manner as in Example 11. The stretched film-forming property was good, and even when the film was formed for a long time, it was stable with few generated gas and eyes. The obtained biaxially oriented polyphenylene sulfide film has excellent withstand voltage and is a capacitor. One characteristic was also good.
(実施例 16)  (Example 16)
製膜条件およびフィルム厚みを表 2に記載の通りに変更した以外は比較例 3と同様 にして二軸配向ポリフエ二レンスルフイドフイルムおよびそれを使用したコンデンサー を作成した。得られた二軸配向ポリフエ二レンスルフイドフイルムの特性およびコンデ ンサー特性は表 2に示したとおりであり、コンデンサー特性において SH性が改善さ れ実使用上問題ないレベルであった。 A biaxially oriented polyethylene film and a capacitor using the same were prepared in the same manner as in Comparative Example 3 except that the film forming conditions and film thickness were changed as shown in Table 2. The characteristics and capacitor characteristics of the obtained biaxially oriented polyester film are as shown in Table 2. The SH characteristics of the capacitor characteristics were improved and there was no problem in practical use.
(実施例 17) (Example 17)
熱可塑性樹脂 Aとしてナイロン 610樹脂 (東レ社製ナイロン樹脂"アミラン CM2001 ") (ポリアミド (PA) )を用レ、、製膜条件を表 2に記載の通りに変更した以外は、実施 例 6と同様にして二軸配向ポリフエ二レンスルフイドフイルムおよびそれを使用したコ ンデンサーを作成した。得られた二軸配向ポリフエ二レンスルフイドフイルムの特性お よびコンデンサー特性は、表 2に示したとおりであり、この二軸配向ポリフエ二レンスル フイドフイルムは絶縁破壊電圧がやや低レ、が、コンデンサー特性において SH性が改 善され実使用上問題ないレベルであった。  Except that the thermoplastic resin A was nylon 610 resin (nylon resin "Amilan CM2001" manufactured by Toray Industries, Inc.) (polyamide (PA)) and the film forming conditions were changed as shown in Table 2, Example 6 and Similarly, a biaxially oriented polyester film and a capacitor using the same were prepared. The characteristics and capacitor characteristics of the obtained biaxially oriented polyphenylene sulfide film are as shown in Table 2. This biaxially oriented polyphenylene sulfide film has a slightly lower dielectric breakdown voltage, but the capacitor characteristics. In SH, the SH characteristics were improved and there was no problem in practical use.
(実施例 18) (Example 18)
PPS— 3樹脂の代わりに PPS— 4樹脂を 73重量部を用いることと、製膜条件を表 2に 記載の通りに変更した以外は実施例 1 1と同様にして厚み 3. 5 / mの二軸配向ポリフ ェニレンスルフイドフイルムおよびそれを使用したコンデンサーを作成した。本コンデ ンサ一は高温での耐電圧の割に SH性が良好であった。  The thickness of 3.5 / m was the same as in Example 11 except that 73 parts by weight of PPS-4 resin was used instead of PPS-3 resin and the film forming conditions were changed as shown in Table 2. A biaxially oriented polyphenylene sulfide film and a capacitor using the same were prepared. This capacitor had good SH characteristics for its withstand voltage at high temperatures.
(比較例 5, 6) (Comparative Examples 5 and 6)
製膜条件を表 2に記載の通りに変更した以外は実施例 1 1と同様にして厚み 3. 5 μ mの二軸配向ポリフエ二レンスルフイドフイルムおよびそれを使用したコンデンサーを 作成した。比較例 6のフィルムおよびそのコンデンサ一は高温の耐電圧が極めて低 かった。比較例 7のフィルムは比較例 6より耐電圧が高いものの、フィルム伸度は 80 %を越えており、コンデンサ一としたときの SH性は不十分なものであった。 A biaxially oriented polyphenylene sulfide film having a thickness of 3.5 μm and a capacitor using the same were prepared in the same manner as in Example 11 except that the film forming conditions were changed as shown in Table 2. The film of Comparative Example 6 and its capacitor had extremely low withstand voltage at high temperatures. Although the film of Comparative Example 7 had a higher withstand voltage than Comparative Example 6, the film elongation exceeded 80%, and the SH property when using a single capacitor was insufficient.
(比較例 7) (Comparative Example 7)
製膜条件を表 2に記載の通りに変更した以外は比較例 2と同様にして厚み 3. 7 M m の二軸配向ポリフエ二レンスルフイドフイルムおよびそれを使用したコンデンサーを作 成した。このコンデンサ一は比較例 2のコンデンサーより耐電圧が高レ、ものの、 SH性 は不十分であった。 Thickness 3.7 M m as in Comparative Example 2 except that the film forming conditions were changed as shown in Table 2. Biaxially oriented polyphenylene sulfide film and a capacitor using the same were prepared. Although this capacitor 1 had a higher withstand voltage than the capacitor of Comparative Example 2, the SH property was insufficient.
(実施例 19)  (Example 19)
参考例 1で作成した PPS— 1樹脂 95重量部を 180°Cで 3時間 ImmHgの減圧下で 乾燥し、熱可塑性樹脂 (A)としてポリエーテルイミド(ジーィープラスチックス社製 " ゥノレテム 1010") (PEI) 5重量部を 120°Cで 3時間 ImmHgの減圧下で別々に乾燥 した。上記 PPS樹脂 95重量部と PEI5重量部にさらに、 —イソシァネ—トプロビルト リエトキシシラン (信越化学社製、 "KBE9007") 0. 5重量部を乾燥空気下で均一配 合後、 330°Cに加熱された、ニーデイングパドル混練部を 3箇所設けたベント付き同 方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径 30mm、スクリュー長さ /スクリュー直径 = 45. 5)に投入し、滞留時間 90秒、スクリュー回転数 300回転/ 分で溶融押出してストランド状に吐出し、温度 25°Cの水で冷却した後、直ちにカッテ イングしてブレンドチップを作製した。得られた PPS/PEI (95/5重量部)のブレンド チップ原料を、 180°Cで 7時間 ImmHgの減圧下で乾燥した後、溶融部が 320°Cに 加熱されたフルフライトの単軸押出機に供給した。  95 parts by weight of the PPS-1 resin prepared in Reference Example 1 was dried at 180 ° C for 3 hours under reduced pressure of ImmHg, and polyether imide ("Unoretem 1010" manufactured by GE Plastics Co., Ltd.) as the thermoplastic resin (A). ) (PEI) 5 parts by weight were separately dried at 120 ° C for 3 hours under reduced pressure of ImmHg. In addition to 95 parts by weight of the above-mentioned PPS resin and 5 parts by weight of PEI, further 0.5 parts by weight of —isocyanatoprobilt triethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., “KBE9007”) under dry air and heated to 330 ° C. Was added to a vented, co-rotating twin-screw kneading extruder equipped with three kneading paddle kneading sections (Japan Steel Works, screw diameter 30 mm, screw length / screw diameter = 45.5) It was melt-extruded for 90 seconds at a screw speed of 300 revolutions / minute, discharged in the form of a strand, cooled with water at a temperature of 25 ° C, and then immediately cut to prepare a blend chip. The resulting PPS / PEI (95/5 parts by weight) blended chip raw material was dried at 180 ° C for 7 hours under reduced pressure of ImmHg, and then the melted part was heated to 320 ° C. Supplied to the machine.
[0107] 次いで押出機で溶融したポリマーを温度 320°Cに設定したフィルターで濾過し、温 度 320°Cに設定した Tダイの口金から溶融押出した後、表面温度 25°Cのキャストドラ ムに静電荷を印加させながら密着冷却固化し、未延伸ポリフエ二レスルフイドフイルム を作製した。 [0107] Next, the polymer melted by the extruder is filtered through a filter set at a temperature of 320 ° C, melt-extruded from a die of a T die set at a temperature of 320 ° C, and then cast at a surface temperature of 25 ° C. While applying an electrostatic charge to the film, it was closely cooled and solidified to produce an unstretched polyphenylene sulfide film.
[0108] この未延伸ポリフエ二レンスルフイドフイルムを、加熱された複数のロール群からなる 縦延伸機を用い、ロールの周速差を利用して、 103°Cの温度でフィルムの縦方向に 3. 8倍の倍率で延伸した。その後、このフィルムの両端部をクリップで把持して、テン ターに導き、延伸温度 105°C、延伸倍率 3. 8倍でフィルムの幅方向に延伸を行い、 § Iき続レ、て温度 265°Cで 4秒間の熱処理を行つた後、 150°Cにコントロールされた冷 却ゾーンで横方向に 4%弛緩処理を行レ、室温まで冷却した後、フィルムエッジを除去 し、卷き取り、厚み 3. 5 z mの二軸配向ポリフエ二レンスルフイドフイルムを得た。  [0108] This unstretched polyphenylene sulfide film was used in the longitudinal direction of the film at a temperature of 103 ° C using a longitudinal stretching machine composed of a plurality of heated roll groups and utilizing the peripheral speed difference of the rolls. 3. Stretched at a magnification of 8 times. After that, both ends of this film are gripped with clips and guided to a tenter, and stretched in the width direction of the film at a stretching temperature of 105 ° C and a stretching ratio of 3.8 times. After heat treatment for 4 seconds at ° C, 4% relaxation treatment was performed in the transverse direction in the cooling zone controlled at 150 ° C, and after cooling to room temperature, the film edge was removed, scraped, A biaxially oriented polyphenylene sulfide film having a thickness of 3.5 zm was obtained.
[0109] 得られた二軸配向ポリフヱニレンスルフイドフイルムの評価結果およびコンデンサー 特性は、表 3に示したとおりであり、この二軸配向ポリフエ二レンスルフイドフイルムは 耐電圧に優れ、コンデンサー特性も良好なものであつた。 [0109] Evaluation result of obtained biaxially oriented polyphenylene sulfide film and capacitor The characteristics are as shown in Table 3. This biaxially oriented polyphenylene sulfide film had excellent withstand voltage and good capacitor characteristics.
(実施例 20, 21) (Examples 20, 21)
熱可塑性樹脂 (A)の PEIの添加量を表 3に示した通り変更した以外は、実施例 1 8と同様にして二軸配向ポリフエ二レンスルフイドフイルムおよびそれを使用したコン デンサ一を作成した。実施例 19の二軸配向ポリフヱニレンスルフイドフイルムは耐電 圧に優れ、コンデンサー特性も良好なものであった。実施例 20の二軸配向ポリフエ二 レンスルフイドフイルムは耐電圧に優れ、コンデンサー特性においては耐熱性がやや 劣るが実使用上問題ないレベルであった。  A biaxially oriented polyester film and a capacitor using the same were prepared in the same manner as in Example 18 except that the amount of PEI added to the thermoplastic resin (A) was changed as shown in Table 3. did. The biaxially oriented polyphenylene sulfide film of Example 19 was excellent in voltage resistance and capacitor characteristics. The biaxially oriented polyphenylene sulfide film of Example 20 was excellent in withstand voltage, and was slightly inferior in heat resistance in terms of capacitor characteristics, but at a level where there was no problem in practical use.
(実施例 22) (Example 22)
PPS樹脂として参考例 2で作成した PPS樹脂(PPS— 2)を用いる以外は実施例 18 と同様にして二軸配向ポリフエ二レンスルフイドフイルムおよびそれを使用したコンデ ンサーを作成した。本実施例の二軸配向ポリフエ二レンスルフイドフイルムは耐電圧 に優れ、コンデンサー特性にぉレ、ては耐熱性がやや劣るが実使用上問題なレ、レべ ノレであった。  A biaxially oriented polyester film and a capacitor using the same were prepared in the same manner as in Example 18 except that the PPS resin (PPS-2) prepared in Reference Example 2 was used as the PPS resin. The biaxially oriented polysulfide film of this example was excellent in withstand voltage, had poor capacitor characteristics, and was slightly inferior in heat resistance, but was problematic in practical use.
(実施例 23) (Example 23)
熱可塑性樹脂 (A)としてポリアリレート(ュニチカ社製 "Uポリマー" U100) (PAR) を用いる以外は、実施例 18と同様にして二軸配向ポリフエ二レンスルフイドフイルムお よびそれを使用したコンデンサーを作成した。本実施例の二軸配向ポリフエ二レンス ルフィドフイノレムは耐電圧に優れ、コンデンサー特性も良好なものであつた。 A biaxially oriented polyphenylene sulfide film and a capacitor using the same as in Example 18 except that polyarylate ("U polymer" U100) (PAR) manufactured by Unitica is used as the thermoplastic resin (A) It was created. The biaxially oriented polyphenylene sulfide in this example had excellent withstand voltage and good capacitor characteristics.
(実施例 24) (Example 24)
熱可塑性樹脂 (A)としてポリフエ二レンエーテル (三菱ガス化学社製 YPX- 100 A) (PPE)を用いる以外は、実施例 18と同様にして二軸配向ポリフエ二レンスルフィ ドフィルムおよびそれを使用したコンデンサーを作成した。本実施例の二軸配向ポリ フエ二レンスルフイドフイルムは耐電圧に優れ、コンデンサー特性も良好なものであつ た。  A biaxially oriented polyurethane film and the same were used in the same manner as in Example 18 except that polyphenylene ether (YPX-100A manufactured by Mitsubishi Gas Chemical Company) (PPE) was used as the thermoplastic resin (A). A capacitor was created. The biaxially oriented polyester film of this example had excellent withstand voltage and good capacitor characteristics.
(比較例 8)  (Comparative Example 8)
参考例 1で作成した PPS樹脂 100重量部の原料を、 180°Cで 7時間 ImmHgの減 圧下で乾燥した後、溶融部が 320°Cに加熱されたフルフライトの単軸押出機に供給 した。 Using 100 parts by weight of the PPS resin material prepared in Reference Example 1, reduce ImmHg for 7 hours at 180 ° C. After drying under pressure, the molten part was fed to a full flight single screw extruder heated to 320 ° C.
次いで、押出機にて溶融したポリマーを温度 320°Cに設定したフィルターで濾過した 後、温度 320°Cに設定した Tダイの口金から溶融押出し、表面温度 25°Cのキャストド ラムに静電荷を印加させながら密着冷却固化し、未延伸ポリフヱニレスルフイドフィノレ ムを作製した。得られた未延伸ポリフエ二レンスルフイドフイルムを、実施例 18と同様 にして二軸配向ポリフエ二レンスルフイドフイルムおよびそれを使用したコンデンサー を作成した。得られた二軸配向ポリフヱニレンスルフイドフイルムの評価結果およびコ ンデンサー特性は、表 3に示したとおりであり、この二軸配向ポリフエ二レンスルフイド フィルムは表面特性が本発明の好ましい範囲外であり、滑り性が悪くコンデンサー素 子加工性が不良なものであった。さらにコンデンサー特性においても耐電圧および 耐熱性が不十分なものであった。 Next, after the polymer melted in the extruder is filtered through a filter set at a temperature of 320 ° C, it is melt-extruded from a die of a T die set at a temperature of 320 ° C, and an electrostatic charge is applied to a cast drum having a surface temperature of 25 ° C. The solid film was solidified by cooling with application of an unstretched polyphenylene sulfide fine film. A biaxially oriented polyphenylene sulfide film and a capacitor using the same were produced from the obtained unstretched polyphenylene sulfide film in the same manner as in Example 18. The evaluation results and the capacitor characteristics of the obtained biaxially oriented polyester film are as shown in Table 3. The surface characteristics of this biaxially oriented polyester film are outside the preferred range of the present invention. In addition, the slipperiness was poor and the capacitor element workability was poor. Furthermore, with regard to the capacitor characteristics, the withstand voltage and heat resistance were insufficient.
(実施例 25) (Example 25)
参考例 1で作成した PPS樹脂 95重量部を 180°Cで 3時間 ImmHgの減圧化で乾 燥し、熱可塑性樹脂 (A)としてポリエーテルイミド(ジーィープラスチックス社製 "ゥ ノレテム 1010") (PEI) 5重量部を 120°Cで 3時間減圧下で別々に乾燥した。上記 PP S樹脂 95重量部と PEI5重量部にさらに、 y—イソシァネ一トプロピルトリエトキシシラ ン (信越化学社製、 "KBE9007") 0. 5重量部を乾燥空気下で均一配合後、 330°C に加熱された、ニーデイングパドル混練部を 3箇所設けたベント付き同方向回転式二 軸混練押出機(日本製鋼所製、スクリュー直径 30mm、スクリュー長さ/スクリュー直 径 = 45. 5)に投入し、滞留時間 90秒、スクリュー回転数 300回転/分で溶融押出し てストランド状に吐出し、温度 25°Cの水で冷却した後、直ちにカッティングしてプレン ドチップを作製した。得られた PPSZPEI (95Z5重量部)のブレンドチップに対し平 均一次粒径 1. 2 z mの炭酸カルシウム粒子を 0. 3重量部を添加し均一に分散配合 させた原料を、 180°Cで 7時間 ImmHgの減圧下で乾燥した後、溶融部が 320°Cに 加熱されたフルフライトの単軸押出機に供給した。  95 parts by weight of the PPS resin prepared in Reference Example 1 was dried at 180 ° C for 3 hours under reduced pressure of ImmHg. Polyetherimide ("NOREMEM 1010" manufactured by GE Plastics) was used as the thermoplastic resin (A). ) (PEI) 5 parts by weight were dried separately under reduced pressure at 120 ° C for 3 hours. In addition to 95 parts by weight of the above PPS resin and 5 parts by weight of PEI, y-isocyanatopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., "KBE9007") C. Heated to C, and equipped with a vented co-rotating twin-screw kneading extruder with three kneading paddle kneading parts (manufactured by Nippon Steel, screw diameter 30 mm, screw length / screw diameter = 45.5) The melt was extruded at a residence time of 90 seconds and a screw speed of 300 revolutions / minute, discharged into a strand, cooled with water at a temperature of 25 ° C, and immediately cut to produce a blend tip. A raw material obtained by adding 0.3 parts by weight of calcium carbonate particles with a uniform uniform particle size of 1.2 zm to the blended chip of PPSZPEI (95Z5 parts by weight) and uniformly dispersing and blending them at 180 ° C 7 After drying under a reduced pressure of ImmHg for a period of time, the molten part was supplied to a full flight single screw extruder heated to 320 ° C.
次いで押出機で溶融したポリマーを温度 320°Cに設定したフィルターで濾過した後 、温度 320°Cに設定した Tダイの口金から溶融押出した後、表面温度 25°Cのキャスト ドラムに静電荷を印加させながら密着冷却固化し、未延伸ポリフエ二レスルフイドフィ ルムを作製した。この未延伸ポリフエ二レンスルフイドフイルムを、実施例 18と同様に して二軸配向ポリフエ二レンスルフイドフイルムおよびそれを使用したコンデンサーを 作成した。得られた二軸配向ポリフヱニレンスルフイドフイルムの評価結果およびコン デンサ一特性は、表 3に示したとおりであり、この二軸配向ポリフエ二レンスルフイドフ イルムは表面突起高さが本発明の好ましい範囲外であり、コンデンサ一としたときの 耐電圧および耐熱性がやや低レ、が問題なレ、レベルであった。 Next, the polymer melted by the extruder is filtered through a filter set at a temperature of 320 ° C, and then melt-extruded from a die of a T die set at a temperature of 320 ° C, and then cast at a surface temperature of 25 ° C. An electrostatic charge was applied to the drum, and it was closely cooled and solidified to produce an unstretched polyphenylene sulfide film. In the same manner as in Example 18, a biaxially oriented polyphenylene sulfide film and a capacitor using the unstretched polyphenylene sulfide film were prepared. The evaluation results and capacitor characteristics of the obtained biaxially oriented polyphenylene sulfide film are as shown in Table 3. This biaxially oriented polyphenylene sulfide film has a surface protrusion height that is preferred in the present invention. It was out of range, and the withstand voltage and heat resistance when using a single capacitor was slightly low, but it was a problem.
[表 1-1] [Table 1-1]
Figure imgf000055_0001
Figure imgf000055_0001
[0112] [表 1-2] [0112] [Table 1-2]
Figure imgf000057_0001
Figure imgf000057_0001
[0113] [表 2-1] [0113] [Table 2-1]
Figure imgf000059_0001
Figure imgf000059_0001
[0114] [表 2-2] [0114] [Table 2-2]
Figure imgf000061_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000062_0001
[0116] [表 3-2] [0116] [Table 3-2]
Figure imgf000064_0001
Figure imgf000064_0001
産業上の利用可能性 Industrial applicability
本発明の二軸配向ポリアリーレンスルフイドフイルムは、優れた耐熱性、寸法安定性 、電気特性および平面性を有する二軸配向ポリアリーレンスルフイドフイルムを提供 することであり、特にコンデンサー用として用いると高い電気特性と優れた自己回復 性 (SH性)を具備することにより、高温'高電圧で使用しても信頼性の高いコンデンサ 一用フィルムとして好適に使用することができる。さらに本発明の二軸配向ポリアリー レンスルフイドフイルムはフィルムを使用したコンデンサ一は小型'高容量の高性能コ ンデンサ一として好適に使用することができる。  The biaxially oriented polyarylene sulfide film of the present invention is to provide a biaxially oriented polyarylene sulfide film having excellent heat resistance, dimensional stability, electrical properties and planarity, particularly for capacitors. When used, it has high electrical characteristics and excellent self-healing property (SH property), so that it can be suitably used as a highly reliable film for a capacitor even when used at high temperature and high voltage. Furthermore, in the biaxially oriented polyarylene sulfide film of the present invention, a capacitor using a film can be suitably used as a small-sized and high-capacity high-performance capacitor.

Claims

請求の範囲 The scope of the claims
[1] ポリアリーレンスノレフイドと、ポリアリーレンスルフイドとは異なる他の熱可塑性樹脂 Aと を含む熱可塑性樹脂からなるフィルムであって、熱可塑性樹脂 Aが分散相を形成し、 該分散相の平均分散径が 50〜500nmであり、該フィルムのガラス転移温度が 85°C 以上 95°C未満に観察され、かつ 95°C以上 130°C以下には観察されず、フィルムの 長手方向および幅方向の破断伸度がいずれも 80%以下であり、 150°Cの絶縁破壊 電圧 V (150)が 300V/ μ m以上であることを特徴とする二軸配向ポリアリーレンス ノレフイドフイノレム。  [1] A film made of a thermoplastic resin containing polyarylene sulfide and another thermoplastic resin A different from polyarylene sulfide, wherein the thermoplastic resin A forms a dispersed phase, and the dispersion The average dispersion diameter of the phases is 50 to 500 nm, the glass transition temperature of the film is observed from 85 ° C to less than 95 ° C, and is not observed from 95 ° C to 130 ° C, and the longitudinal direction of the film The biaxially oriented polyarylene fiber has a breaking elongation in the width direction of 80% or less and a dielectric breakdown voltage V (150) at 150 ° C of 300V / μm or more. Nolem.
[2] ポリアリーレンスルフイドと熱可塑性樹脂 Aの含有量の和を 100重量部としたときにポ リアリーレンスルフイドの含有量が 70〜99. 5重量部、熱可塑性樹脂 Aの含有量が 0 . 5〜30重量部である請求項 1に記載の二軸配向ポリアリーレンスルフイドフイルム。  [2] When the sum of the content of polyarylene sulfide and thermoplastic resin A is 100 parts by weight, the content of polyarylene sulfide is 70 to 99.5 parts by weight, and the content of thermoplastic resin A The biaxially oriented polyarylene sulfide film according to claim 1, wherein is 0.5 to 30 parts by weight.
[3] ポリアリーレンスルフイドがポリフエ二レンスルフイドである請求項 1に記載の二軸配向  [3] The biaxial orientation according to claim 1, wherein the polyarylene sulfide is a polyphenylene sulfide.
[4] 熱可塑性樹脂 Aが非晶性樹脂であり、そのガラス転移温度が 150°C以上かつポリア リーレンスルフイドの融点以下である請求項 1に記載の二軸配向ポリアリーレンスルフ イド、フイノレム。 [4] The biaxially oriented polyarylene sulfide according to claim 1, wherein the thermoplastic resin A is an amorphous resin and has a glass transition temperature of 150 ° C. or higher and a melting point of the polyarylene sulfide or lower. Huinolem.
[5] 熱可塑性樹脂 Aがポリアリレート、ポリフエ二レンエーテル、ポリエーテルイミド、ポリエ 一テルスルホンおよびポリスルホン力 なる群力 選ばれる少なくとも 1種のポリマー である請求項 1に記載の二軸配向ポリアリーレンスルフイドフイルム。  [5] The biaxially oriented polyarylensule according to claim 1, wherein the thermoplastic resin A is at least one polymer selected from the group consisting of polyarylate, polyphenylene ether, polyetherimide, polyethersulfone and polysulfone force. Food film.
[6] 熱可塑性樹脂 Aからなる分散相の界面にシロキサン結合からなるシリコン原子を含む 請求項 1に記載の二軸配向ポリアリーレンスルフイドフイルム。 6. The biaxially oriented polyarylene sulfide film according to claim 1, comprising a silicon atom composed of a siloxane bond at the interface of the dispersed phase composed of the thermoplastic resin A.
[7] ポリアリーレンスルフイドと熱可塑性樹脂 Aおよび、エポキシ基、アミノ基、イソシアナ ート基からなる群から選ばれる少なくとも 1種の基を有する相溶化剤を 0. 05〜3重量 部含む原材料を混練してなる樹脂組成物を溶融製膜してなる請求項 1に記載の二 軸配向ポリアリーレンスルフイドフイルム。 [7] 0.05 to 3 parts by weight of a compatibilizer having polyarylene sulfide and thermoplastic resin A and at least one group selected from the group consisting of an epoxy group, an amino group and an isocyanate group 2. The biaxially oriented polyarylene sulfide film according to claim 1, wherein a resin composition obtained by kneading raw materials is melt-formed.
[8] 150°C、直流 500V印加における体積固有抵抗が 1. 0 Χ 1014 Ω ' cm以上である請 求項 1に記載の二軸配向ポリアリ一レンスルフィドフィルム。 [8] The biaxially oriented polyarylene sulfide film according to claim 1, having a volume resistivity of 1.0 to 10 14 Ω′cm or more at 150 ° C. and a direct current of 500 V applied.
[9] フィルムを構成する樹脂組成物の 310°Cにおける溶融比抵抗が 1. 0 X 109 Ω ' cm〜 [9] The resin composition constituting the film has a melt specific resistance at 310 ° C of 1.0 X 10 9 Ω 'cm
1. 0 X 10 Ω ' cmである請求項 1に記載の二軸配向ポリアリーレンスルフイドフィノレ ム。 2. The biaxially oriented polyarylene sulfide fininolem according to claim 1, which is 1.0 × 10 Ω′cm.
[10] 23°Cでの絶縁破壊電圧 V (23) (V/ μ m)と 150°Cでの絶縁破壊電圧 V ( 150) (V [10] Dielectric breakdown voltage V (23) (V / μm) at 23 ° C and dielectric breakdown voltage V (150) (V
Z μ m)力 Z μm) force
V ( 150) /V (23)≥0. 85  V (150) / V (23) ≥0.8.
であることを特徴とする請求項 1に記載の二軸配向ポリアリーレンスルフイドフイルム。  The biaxially oriented polyarylene sulfide film according to claim 1, wherein
[11] フィルムの長手方向および幅方向における 23°Cでの伸度—応力曲線において、伸 度 2%と (破断点伸度— 5%)の区間における微分係数が長手方向、幅方向とも常に[11] Elongation at 23 ° C in the longitudinal and width directions of the film—stress curve, the differential coefficient between the elongation of 2% and (elongation at break—5%) is always in the longitudinal and width directions.
0以上である請求項 1に記載の二軸配向ポリアリーレンフィルム。 2. The biaxially oriented polyarylene film according to claim 1, which is 0 or more.
[12] 23°Cでの絶縁破壊電圧 V (23)が 350V/ μ m以上、該絶縁破壊電圧の標準偏差 が 30V/ μ m以下であることを特徴とする請求項 1に記載の二軸配向ポリアリーレン スノレフイドフイノレ厶。 [12] The biaxial shaft according to claim 1, wherein the breakdown voltage V (23) at 23 ° C is 350 V / μm or more and the standard deviation of the breakdown voltage is 30 V / μm or less. Oriented polyarylene (Snow-refined)
[13] 中心線平均粗さ Raが 30nm以上 l OOnm以下、最大高さ Rmaxが 700nm以下、 50 μ ϊ Χ δΟ μ mの領域に突起高さ 50nm以上の突起個数が 250個以上であることを 特徴とする請求項 1に記載の二軸配向ポリアリーレンスルフイドフイルム。  [13] Centerline average roughness Ra is 30 nm or more l OOnm or less, maximum height Rmax is 700 nm or less, and the number of protrusions with a height of 50 nm or more in the region of 50 μϊ μ δϊ μm is 250 or more. 2. The biaxially oriented polyarylene sulfide film according to claim 1, wherein
[14] 実質的に粒子を含まない請求項 1に記載の二軸配向ポリアリーレンスルフイドフィル ム。  [14] The biaxially oriented polyarylene sulfide film according to [1], substantially free of particles.
[15] 摩擦係数が 0. 2以上 0. 6以下である請求項 1に記載の二軸配向ポリアリーレンスル フイドフイノレム。  [15] The biaxially oriented polyarylene sulfide Finoinolem according to claim 1, wherein the friction coefficient is 0.2 or more and 0.6 or less.
[16] 請求項 1に記載のポリアリーレンスルフイドフイルムの製造方法であって、面積倍率が 1 1倍以上になるよう長手方向および幅方向に延伸し、延伸後の熱固定を温度の異 なる 2段以上の工程で行う製造方法であって、その 1段目の熱固定温度を(直前の延 伸温度 + 5°C)以上 240°C以下、後段の熱固定温度の最高値を( 1段目の熱固定温 度 + 20。C)以上(フィルムを構成するポリアリーレンスルフイドの融点 _ 5°C)以下とす るポリアリーレンスルフイドフイルムの製造方法。  [16] The method for producing a polyarylene sulfide film according to claim 1, wherein the film is stretched in the longitudinal direction and the width direction so that the area magnification becomes 11 times or more, and the heat setting after stretching is performed at different temperatures. This is a manufacturing method that is performed in two or more stages, and the heat setting temperature of the first stage is (the previous stretching temperature + 5 ° C) to 240 ° C or less, and the maximum heat setting temperature of the latter stage is ( First stage heat setting temperature + 20. C) A method for producing a polyarylene sulfide film with a melting point of the polyarylene sulfide film constituting the film _ 5 ° C or less.
[17] 二軸配向ポリアリーレンスルフイドフイルムがコンデンサー用である請求項 1に記載の 二軸配向ポリアリーレンスルフイドフイルム。  17. The biaxially oriented polyarylene sulfide film according to claim 1, wherein the biaxially oriented polyarylene sulfide film is for a capacitor.
[18] 請求項 1に記載の二軸配向ポリアリーレンスルフイドフイルムの少なくとも片面に金属 層を形成してなる金属化フィルム。 [18] The metal on at least one side of the biaxially oriented polyarylene sulfide film according to claim 1 A metallized film formed by forming a layer.
請求項 18に記載の金属化フィルムを捲回あるいは積層してなることを特徴とするコン デンサ一。 A capacitor, wherein the metallized film according to claim 18 is wound or laminated.
PCT/JP2007/059481 2006-05-10 2007-05-08 Biaxially oriented polyarylene sulfide film WO2007129695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008514491A JP5239855B2 (en) 2006-05-10 2007-05-08 Biaxially oriented polyarylene sulfide film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006131101 2006-05-10
JP2006-131100 2006-05-10
JP2006-131101 2006-05-10
JP2006131100 2006-05-10

Publications (1)

Publication Number Publication Date
WO2007129695A1 true WO2007129695A1 (en) 2007-11-15

Family

ID=38667803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059481 WO2007129695A1 (en) 2006-05-10 2007-05-08 Biaxially oriented polyarylene sulfide film

Country Status (3)

Country Link
JP (1) JP5239855B2 (en)
TW (1) TW200804481A (en)
WO (1) WO2007129695A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256608A (en) * 2008-03-28 2009-11-05 Toray Ind Inc Preparation process of polyphenylenesulfide resin composition and polyphenylene sulfide resin composition
WO2010004700A1 (en) * 2008-07-08 2010-01-14 パナソニック株式会社 Metallized film capacitor
WO2016052303A1 (en) * 2014-09-30 2016-04-07 日本ゼオン株式会社 Film capacitor
WO2018142922A1 (en) * 2017-02-03 2018-08-09 株式会社村田製作所 Film capacitor, method for manufacturing film capacitor, dielectric resin film, and method for manufacturing dielectric resin film
EP3438165A4 (en) * 2016-03-31 2019-11-20 Toray Industries, Inc. Film, electrical insulation sheet using same, adhesive tape, and rotating machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI729017B (en) * 2016-10-25 2021-06-01 日商迪思科股份有限公司 Resin agent for forming protective film and laser processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859993A (en) * 1994-08-19 1996-03-05 Japan Synthetic Rubber Co Ltd Molded product comprising thermoplastic resin composition
JP2001261959A (en) * 2000-03-21 2001-09-26 Toray Ind Inc Biaxially oriented film, metallized film and film capacitor
JP2003113307A (en) * 2001-07-31 2003-04-18 Toray Ind Inc Polyphenylene sulfide resin composition and method for producing the same
WO2006051658A1 (en) * 2004-11-12 2006-05-18 Toray Industries, Inc. Biaxially oriented polyarylene sulfide film and laminated polyarylene sulfide sheets comprising the same
WO2007049571A1 (en) * 2005-10-27 2007-05-03 Toray Industries, Inc. Polyarylene sulfide film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552633B2 (en) * 2003-12-10 2010-09-29 東レ株式会社 Low dielectric resin film
JP2005335226A (en) * 2004-05-27 2005-12-08 Toray Ind Inc Heat-resistant multi-layer sheet
JP2005342978A (en) * 2004-06-02 2005-12-15 Toray Ind Inc Biaxially oriented laminated film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859993A (en) * 1994-08-19 1996-03-05 Japan Synthetic Rubber Co Ltd Molded product comprising thermoplastic resin composition
JP2001261959A (en) * 2000-03-21 2001-09-26 Toray Ind Inc Biaxially oriented film, metallized film and film capacitor
JP2003113307A (en) * 2001-07-31 2003-04-18 Toray Ind Inc Polyphenylene sulfide resin composition and method for producing the same
WO2006051658A1 (en) * 2004-11-12 2006-05-18 Toray Industries, Inc. Biaxially oriented polyarylene sulfide film and laminated polyarylene sulfide sheets comprising the same
WO2007049571A1 (en) * 2005-10-27 2007-05-03 Toray Industries, Inc. Polyarylene sulfide film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256608A (en) * 2008-03-28 2009-11-05 Toray Ind Inc Preparation process of polyphenylenesulfide resin composition and polyphenylene sulfide resin composition
WO2010004700A1 (en) * 2008-07-08 2010-01-14 パナソニック株式会社 Metallized film capacitor
US8451579B2 (en) 2008-07-08 2013-05-28 Panasonic Corporation Metalized film capacitor
JP5370363B2 (en) * 2008-07-08 2013-12-18 パナソニック株式会社 Metallized film capacitors
WO2016052303A1 (en) * 2014-09-30 2016-04-07 日本ゼオン株式会社 Film capacitor
JPWO2016052303A1 (en) * 2014-09-30 2017-07-20 日本ゼオン株式会社 Film capacitor
CN107077969A (en) * 2014-09-30 2017-08-18 日本瑞翁株式会社 Membrane capacitance
EP3438165A4 (en) * 2016-03-31 2019-11-20 Toray Industries, Inc. Film, electrical insulation sheet using same, adhesive tape, and rotating machine
WO2018142922A1 (en) * 2017-02-03 2018-08-09 株式会社村田製作所 Film capacitor, method for manufacturing film capacitor, dielectric resin film, and method for manufacturing dielectric resin film
US11335502B2 (en) 2017-02-03 2022-05-17 Murata Manufacturing Co., Ltd. Film capacitor, method of producing film capacitor, dielectric resin film, and method of producing dielectric resin film

Also Published As

Publication number Publication date
JPWO2007129695A1 (en) 2009-09-17
TW200804481A (en) 2008-01-16
JP5239855B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5056015B2 (en) Biaxially oriented polyarylene sulfide film and laminated polyarylene sulfide sheet comprising the same
JP5428335B2 (en) Biaxially oriented polyarylene sulfide film
JP2009132874A (en) Biaxially oriented polyarylene sulfide film, metallized film, and capacitor
JP2008280508A (en) Biaxially oriented polyarylene sulfide film, metallized film and capacitor
JP5088322B2 (en) Biaxially oriented polyarylene sulfide film and method for producing the same
WO2007129695A1 (en) Biaxially oriented polyarylene sulfide film
JP2007276457A (en) Electric insulating sheet and motor using it
JP2007002221A (en) Biaxially oriented polyarylene sulfide film
JP2007276456A (en) Laminate
JP2008201926A (en) Biaxialy oriented polyarylene sulfide film and method for producing the same
JP4639422B2 (en) Biaxially oriented film, metallized film and film capacitor
JP2009292902A (en) Biaxially oriented polyarylene sulfide film and adhesive material using the same
JP2008280507A (en) Biaxially oriented polyarylene sulfide film, metallized film and capacitor
JP5423464B2 (en) Biaxially oriented laminated film
JP2007250245A (en) Insulating film for cable, and cable using same
JP2007246650A (en) Biaxially oriented polyarylene sulfide film
JP5151914B2 (en) Thermal laminated laminated film and method for producing the same
JP2006321977A (en) Biaxially oriented polyarylene sulfide film
JP2009274411A (en) Laminated film and method of manufacturing the same
JP2007190689A (en) Release film and release film for printed wiring board comprising it
JP2006137852A (en) Biaxially oriented polyarylene sulfide film
JP4774788B2 (en) Molding film
JP2010065089A (en) Polyarylene sulfide resin composition, polyarylene sulfide film, and capacitor
JP2008202127A (en) Biaxially oriented polyarylene sulfide composite film and laminate composed thereof
JPH06126900A (en) Laminated polyphenylene sulfide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008514491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742916

Country of ref document: EP

Kind code of ref document: A1