WO2007129396A1 - 軟骨の再生又は移植方法 - Google Patents

軟骨の再生又は移植方法 Download PDF

Info

Publication number
WO2007129396A1
WO2007129396A1 PCT/JP2006/309176 JP2006309176W WO2007129396A1 WO 2007129396 A1 WO2007129396 A1 WO 2007129396A1 JP 2006309176 W JP2006309176 W JP 2006309176W WO 2007129396 A1 WO2007129396 A1 WO 2007129396A1
Authority
WO
WIPO (PCT)
Prior art keywords
cartilage
cells
perichondrium
cell
perichondrial
Prior art date
Application number
PCT/JP2006/309176
Other languages
English (en)
French (fr)
Inventor
Shigehiko Suzuki
Takeshi Togo
Motoko Naitoh
Noriyuki Morikawa
Original Assignee
Kyoto University
Gunze Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Gunze Limited filed Critical Kyoto University
Priority to PCT/JP2006/309176 priority Critical patent/WO2007129396A1/ja
Publication of WO2007129396A1 publication Critical patent/WO2007129396A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30756Cartilage endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus

Definitions

  • the present invention relates to a method for regenerating or transplanting cartilage.
  • nasal septal cartilage, auricular cartilage, and costal cartilage are used for frame creation, facial deformation, etc. in microtia surgery.
  • the amount of cartilage that can be taken from these donors is limited and invasive.
  • Patent Document 1 discloses that chondrocytes attached with perichondrium are collected, and chondrocytes are cultured in a state where the perichondrium remains, thereby preventing the migration of chondrocytes to fibroblasts.
  • Patent Document 1 JP 2005-143
  • An object of the present invention is to regenerate a sufficient amount of cartilage by a minimally invasive method.
  • Another object of the present invention is to prepare cartilage that is difficult to mineralize and ossify even if it is kept in vivo for a long period of time.
  • the present inventors have focused on the perichondrium as a source of chondrocytes, and found that culturing the cells of the perichondrium yields a large amount of chondrocytes, as well as fat cells and bone cells. It was.
  • the present invention relates to the following method.
  • Item 1 A method for regenerating cartilage, comprising a step of culturing perichondrial cells.
  • Item 2 A method for regenerating cartilage, comprising the steps of collecting perichondrium, separating perichondrial cells from perichondrium, and culturing the obtained periosteum cells.
  • Item 3 A method for regenerating cartilage, wherein perichondrial cells are seeded on a scaffold structure and cultured to form cartilage having a predetermined shape.
  • Item 4 Obtaining perichondrium, separating perichondrial cells from perichondrium, culturing the obtained periosteum cells to form cartilage for transplantation, obtained for patients with cartilage defects
  • a cartilage transplantation method comprising a step of transplanting cartilage.
  • Item 5 The method according to claim 4, wherein collection of perichondrium is performed by a human patient having a defect in cartilage tissue, and the obtained soft bone is transplanted into the patient.
  • the prepared cartilage is pinna, nasal septum or rib cartilage.
  • Item 7 Obtaining perichondrium, separating perichondrial cells from perichondrium, differentiating the resulting periosteum cells into adipocytes as necessary to form cartilage or adipose tissue A cosmetic surgery method characterized by embedding cartilage or adipose tissue under the skin.
  • Perichondrial cells have advantages such as extremely high proliferation ability and difficulty in calcification of the obtained cartilage. Furthermore, the collection of perichondrium is minimally invasive and is suitable as a material for regenerating cartilage to be transplanted into a subject having problems with cartilage such as the auricle, nasal septum, and joints.
  • perichondrial cells can be classified not only into chondrocytes but also into fat cells and bone cells.
  • the adipose tissue or the cartilage / adipose tissue complex can also be used in cosmetic surgery, for example, by embedding subcutaneously in the face.
  • Cartilage is composed of chondrocytes and an extracellular matrix.
  • the extracellular matrix is composed of proteoglycans such as aggrecan and fibrous tongues such as type II collagen and elastin. Consists of parks.
  • Cartilage is mainly classified into three types (hyaline cartilage, fibrocartilage, elastic cartilage), but there is a big difference in the elastic force of these cartilages. It is the amount of elastin contained in each cartilage that makes this difference.
  • the cartilage obtained by the method of the present invention has properties close to those of elastic cartilage or fibrocartilage, and is suitable as a transplant material.
  • FIG. 3-l Figure 3. Clone-forming assembly and derivation induction.
  • A Cells were newly isolated, seeded at a density of 60 cells / 10 cm culture plate, and cultured for 4 weeks (Giemsa staining).
  • B The size and number of colonies from PCs (conv.), PCs (con) and Cs were measured.
  • C Convex perichondrial cells were stimulated with an adipogenesis induction medium for 2 weeks. Adipogenesis was indicated by the accumulation of fat vacuoles stained with oil red O. Scale bar: 100 ⁇ m.
  • D Top; convex perichondrial cells were stimulated with osteogenesis induction medium for 3 weeks.
  • FIG. 3-2 Figure 3. Clonogenic activity and induction.
  • A Cells were newly isolated, seeded at a density of 60 cells / 10 cm culture plate, and cultured for 4 weeks (Giemsa staining).
  • PCs conv .
  • the size and number of colonies from PCs (con) and Cs were measured.
  • C Convex perichondrial cells were stimulated with an adipogenesis induction medium for 2 weeks. Adipogenesis was indicated by the accumulation of fat vacuoles stained with oil red O. Scale bar: 100 ⁇ m.
  • D Top; convex perichondrial cells were stimulated with osteogenesis induction medium for 3 weeks.
  • FIG. 4 Figure 4. Characterization of cultured perichondrial cells and chondrocytes.
  • (b) PCs (conv.) (- ⁇ -) And Cs (- ⁇ -) growth curves. (Left). Detailed data from the first four passages are shown on the right. Each point represents one passage. *: p ⁇ 0.01, n 3. Data are shown as mean standard error.
  • FIG. 5 Figure 5. Cartilage reconstruction in vivo.
  • (a) Average weight after 4 weeks implantation of MSCSCs and PCSCs (conv.). The collagen complex was seeded with 2.3 ⁇ 10 6 cells. MSCSCs were maintained in cartilage induction medium for 2 weeks prior to implantation. PCSCs were incubated for 1 day in D-MEM / F-12 medium containing 10% FCS prior to implantation. Data are shown as mean average standard error. *: P ⁇ 0. 01, n 6.
  • (b) a 3-, seeding after 4 weeks of the 5-and tenth passage 6.0 X 10 6 PCSCs seeded with cells (con v.) Average weight and appearance. Data are shown as mean average standard error. *: p 0.01, n 6.
  • MSCSCs mesenchymal stem cell-scaffold complex
  • PCSCs conv.
  • PCSCs cone
  • CSCs chondrocyte-scaffold complex.
  • the perichondrium can obtain a force such as an auricular cartilage, a nasal septal cartilage, a soft bone of a joint such as a knee, an elbow, and a shoulder, and a radial cartilage. Because it is desirable.
  • the perichondrium can be present on both sides of the cartilage, V, you can use a misplaced perichondrium!
  • auricular cartilage it is preferable to use the shift between the posterior side (convex perichondrium) and the front side (concave perichondrium) because it is easy to collect the convex perichondrium.
  • the perichondrial cells can be cultured by a method in which the extracellular matrix of the perichondrium is almost completely digested, and is cultivated by force culture in a single cell state. This may be a deviation from the method of allowing a semi-digested tissue piece to adhere to a culture flask without completely digesting the outer matrix to a certain extent and allowing the cells to migrate and proliferate.
  • Examples of the source of perichondrium include mammals such as humans, rabbits, pigs, horses, monkeys, rabbits, hedges, and the like, and preferably humans.
  • Examples of subjects (subjects) to be transplanted with cartilage include mammals such as humans, rabbits, pigs, horses, sals, rabbits, and hedges, and preferably humans.
  • Examples of the target of cartilage transplantation include patients with defects in cartilage tissue, for example, patients with diseases such as traumatic injury and reconstruction associated with malignant tumor surgery in addition to diseases such as microtia and vaginal nose. .
  • it can be used as a material for the treatment of not only soft tissue defects and defects but also all diseases and defects.
  • transplantation of a graft such as cartilage derived from perichondrium obtained from a close relative of the transplant recipient or his / her family, and a donor force close to the type of HLA is an infection or It is desirable from the viewpoint of suppression of rejection.
  • a graft such as cartilage derived from perichondrium obtained from a close relative of the transplant recipient or his / her family, and a donor force close to the type of HLA is an infection or It is desirable from the viewpoint of suppression of rejection.
  • chondrocytes from the perichondrium Since fat cells, bone cells and the like can also be obtained, a composite material such as adipose tissue, bone, or cartilage / adipose tissue, cartilage / bone can be prepared and transplanted.
  • cosmetic surgery for example, cosmetic surgery
  • Adipocytes can also be used for breast augmentation (including reconstruction of the resected breast by breast cancer treatment) by injecting into the breast. Since the cells derived from the perichondrium obtained in the present invention have a high proliferation ability, when transplanted to breast augmentation or a skin defect part, the position of the skin can be raised.
  • Maintenance of the differentiation function of perichondrial cells can be performed using various factors.
  • factors include, for example, Ihh (Indian hedgehog), parathyroid hormone related protein (PTHrP), cytogenicity such as bone formation-promoting protein, and other regulatory factors such as IGF, insulin like growth factor; , FGF (fibroblast growth factor; aFuF, bFGF), TGF—j8, PTH (parathyroid growth hormone), Wnt (Wingless / int—1), retinoic acid, 1 a, 25 (OH) D, thyroid hormone, transcription Factors (Sox, CbFal, ERG), etc.
  • Cambrex's following induction medium For the separation of perichondrial cells into bone cells and fat cells, Cambrex's following induction medium can be used.
  • Osteogenesis induction medium Osteogenesis induction medium containing dexamethasone, L-glutmine, ascorbate, MCGS, and j8-glycerophosphate (hMSC Osteogenic SingleQuots (registered trademark), Cambrex, Walkersville, MD, USA)
  • Perichondrial cells include “cartilage tissue stem cells” that are destined to regenerate cartilage. Therefore, perichondrial cells can regenerate cartilage without particularly inducing differentiation.
  • the perichondrium can be collected as follows. First, a midline incision is made in the human posterior skin of the auricle, and after the subcutaneous peeling, the convex auricular cartilage is exposed. Incision in posterior perichondrium with scalpel It is possible to collect approximately 4 cm 2 of perichondrium by peeling off with a dental peeler.
  • Preparation of perichondrial cells is not particularly limited, and can be performed, for example, as follows.
  • the perichondrium is chopped up with force and collagenase (especially capable of degrading type II collagen) is activated to release perichondrial cells.
  • collagenase especially capable of degrading type II collagen
  • Connective tissue, skin cells, etc. adhering to the perichondrium should be removed before the treatment of the perichondrium. Subsequently, insoluble matters are removed by filtration under conditions where the perichondrial cells pass, and perichondrial cells can be obtained.
  • the perichondrial cells are younger donors, and are preferred because they have higher cartilage-forming ability. Therefore, in humans who are expected to undergo cartilage transplantation, it is possible to collect perichondrium at a young / young period, cryopreserve it, and to culture and proliferate after thawing when transplantation is necessary.
  • the obtained perichondrial cells can be rapidly proliferated by, for example, subculture using D-MEM / F-12 medium supplemented with 10% ushi fetal serum (FCS). Is possible.
  • subculture of perichondrial cells may decrease the expression level of type II collagen and further aggrecan, but the production amount of these can be increased by devising the medium components and culture conditions. For example, if you stop the production of type II collagen and the peritoneal membrane cells that have started producing type I collagen (like fibroblasts) are transferred to an agarose culture dish, the agarose gel surrounds the cells and the cells Floats in the air and is forced into a round shape.
  • the cells quickly revert to chondrocyte properties and again produce type II collagen.
  • the chondrocyte population that forms a small mass of cartilage grows while changing the surrounding fibroblasts into chondrocytes. If the amount of type II collagen or elastin decreases in the subcultured perichondrial cells, it is necessary to revert to the chondrocytes and cultivate them again in order to prepare the cartilage / graft. Is desirable.
  • the cells can be seeded and cultured on the porous scaffold structure material.
  • the material of the scaffold structure include collagen, lactic acid polymer, glycolic acid polymer, alginic acid, agarose, chitin, and chitosan.
  • the scaffold structure is in the form of sponge, woven fabric, non-woven fabric, etc. It can be.
  • a preferred scaffold structure is a collagen sponge. Collagen sponges can be mounted by using a cross-linking agent such as dartalaldehyde or heat dehydration condensation. Bridged ones are preferable for maintaining the shape for a long time.
  • the shape of the porous scaffold structure can be appropriately selected according to the site to be transplanted.
  • Cartilage cells in the porous scaffold structure can regenerate cartilage by culturing for about 20 to 30 days.
  • a complex in which perichondrial cells are seeded in a porous scaffold structure is devised by cultivating a culture medium and culture method that can be transplanted immediately after cell seeding or relatively early to regenerate cartilage in vivo. It is also possible to regenerate cartilage tissue only by in vitro culture.
  • the perichondrial cells used in the present invention are probably capable of differentiation and can be differentiated into fat cells and bone cells that are not only chondrocytes.
  • Adipose tissue can also be used for cosmetic formation, and in order to enhance shape retention in vivo, it is differentiated into adipocytes, or adipocytes and chondrocytes, and these are cultured, and are used for cosmetic formation. Adipose tissue and adipose tissue / cartilage complex can also be obtained.
  • the cartilage obtained in the present invention can be transplanted into a human.
  • cartilage prepared in the shape of an auricle can be transplanted to the auricular region simultaneously with the skin that can cover the separately prepared auricular cartilage. May be stretched to cover the auricular soft bone.
  • cartilage prepared in the shape of all or part of the nasal ridge can be transplanted by incising the skin of the nose and embedding the cartilage in the shape of the nasal septum.
  • BrdU pulse tracking experiments were performed as described in the literature (Taylor G, Lehrer MS, Jensen PJ, bun T, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000 ; 102: 451-461.).
  • Two 4-week-old rabbits were subcutaneously injected daily with 50 mg / kg / day BrdU (Sigma-Aldrich, St. Louis, MO, USA) for 5 days. The Usagi was sacrificed after 4 weeks.
  • Tissue sections were soaked in 3% hydrogen peroxide (Wako Pure Chemical Industries, Ltd., Osaka, Japan) for 10 minutes, digested with 0.2% trypsin (Kamiya Biomedical Company, Seattle, WA, USA) for 10 minutes, then Denatured with denaturing solution (Kamiya Biomedical Company, Seattle, WA, USA) for 30 minutes. After blocking with blocking solution (Kamiya Biomedica 1 Company, Seattle, WA, USA) for 10 minutes, sections were incubated with anti-BrdU antibody (Kamiya Biomedical Company, Seattle, WA, USA) for 1 hour at room temperature.
  • Perichondrium and cartilage were harvested in the proximal regions of both ears of a 4-week-old Japanese white rabbit. Perichondrium and cartilage were collected separately using a dental periosteum stripper and weighed. The tissue was washed with phosphate buffered saline (pH 7.4, PBS (-), Takara Bio Inc., Otsu, Japan) containing 0.10% ethylenediamine tetraacetic acid (EDTA) and no magnesium and calcium ions. Sliced with scissors in D-MEM / F-12 medium (Gibco, Grand Island, NY, USA) supplemented with 10% urine fetal serum (FCS) (Gibco, Grand Island, NY, USA) .
  • FCS urine fetal serum
  • the cells were cultured in D-MEM / F-12 medium supplemented with 0 ⁇ g / ml streptomycin sulfate and 25 ⁇ g / ml amphotericin B (antibacterial-antifungal, Gibe 0, Grand Island, NY, USA). The culture medium was changed every 7 days. Colony size and number were measured after 4 weeks by Giemsa staining.
  • cells were seeded at a density of 1,200 cells / cm in 75 cm 2 cultured flasks (Sumitomo Bakelite Co., Ltd., Tokyo, Japan) The cells were subcultured in D-MEM / F-12 medium containing 10% FCS and antibacterial and antifungal reagents. The culture medium was changed every 3 days. Cells were harvested at 0.25% (w / v) trypsin treatment for 5 minutes at subconfluence, counted and seeded at the same density as above (approximately 1:50 dilution).
  • adipogenesis and osteogenic differentiation of perichondrial cells and chondrocytes cells were seeded at a density of 2,400 cells / cm 2 on 12-well or 6-well culture plates with coverglass and 10% The cells were cultured in D-MEM / F-12 medium containing FCS. The culture medium was changed every 3 days until confluent.
  • confluent cells were treated for 2 weeks with h-insulin, L-glutmine, MCS, dexamethasone, indomethacin and 3-isobutyl- methy ⁇ xanthine (hMSC Adipogenic Induction SingleQuots (registered trademark)), Stimulated with Cambrex, Walkersville, MD, USA).
  • Cells in 12-well plates were expressed for alkaline phosphatase expression using an alkaline phosphatase staining kit (Muto Pure Chemicals, Co., Ltd., Tokvo, Japan). Detected. Cells in 6-well plates were detected using RT-PCR.
  • MSCs were isolated according to a slightly modified method (Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartila ge. J. Bone Joint Surg. 1994; 76— A: 579— 592; Azizi SA, Stokes D, Augelli BJ, DiGirol amo C, Prockop DJ.Engraftment and migration of human bone marrow stromal cells implanted in the brains of aloino rats-similarities to astrocyte grafts.Proc. Natl. Aca d. Sci. USA. 1998; 95: 3908-3913.) O The tibia was cut from two 4-week-old male Japanese white rabbits.
  • Pellet culture was performed for differentiation into chondrocytes.
  • TGF- ⁇ 3 transforming growth factor-j8 3
  • hMSC soft bone cell induction medium
  • the culture medium was changed every 3 days, and the bottom of each tube was tapped to confirm that the pellet could flow freely even after the medium was changed.
  • the pellet was fixed with 10% phosphate buffered formalin for 24 hours at 4 ° C. Fixed tissues were embedded in paraffin, sliced into 7.0 ⁇ m sections, and stained with toluidine blue (pH 2.5) or Elastica van Gies on. MSCs adipogenesis and osteogenic differentiation studies were performed as described for perichondrial cells and chondrocyte differentiation studies. [0037] Preparation of scaffold and cell-scaffold complex
  • Collagen sponges were prepared as previously reported (Kim BM, Suzuki S, Nishimura Y, et al. Cellular artificial s in substitute produced by short period simultaneo us culture of fibroblasts and keratinocytes. Br. J. Plast. Surg.). The thickness of the sheet was adjusted to 2 mm, and the average pore size was 90 / zm. The collagen sponge was cut into a circular disk with a diameter of 12 mm. For assembly of MSC-scaffold complexes (MSCSCs), seed 2.3 x 10 6 cells on collagen scaffold (1.0 x 10 7 cells / cm 3 ) and stimulate with chondrocyte induction medium daily for 2 weeks prior to implantation did.
  • MSCSCs MSC-scaffold complexes
  • PCSCs convex perichondrial cell-scaffold complexes
  • PCSCs Concave perichondrial cell-scaffold complexes
  • CSCs chondrocyte-scaffold complexes
  • MSCSCs, PCSCs and CSCs were removed for histological analysis 4 weeks after implantation. All specimens were rinsed in PBS (-) and fixed in 10% phosphate buffered formalin for 24 hours at 4 ° C. The fixed tissue was embedded in paraffin, sliced into 7.0 m sections, and stained with toluidine blue (pH 2.5) or 7 pieces (51 & 31: 10 & van t ⁇ ieson).
  • Alexa Fluor® 546 Fragment-conjugated goat anti-mouse antibody (Molecular Probes, Eugene, OR, USA) for 12 hours at 4 ° C.
  • TO-PR03 (Molecular Probes, Eugene, OR, USA) was used for nuclear staining by adding to the secondary antibody solution. After washing, the sections were observed with a confocal microscope (MRC 1024, Bio-Rad, Hercules, CA, USA). 10% mild phosphate Specimens were examined by staining with Alizarin Red S Qunsei Chemical Co., Ltd., Tokyo, Japan after immobilizing the specimens at 4 ° C for 24 hours with impact formalin and immersing in 3% KOH solution for 1 week.
  • the cDNA product was used for PCR using Taq DNA polymerase (Toyobo Co., Ltd., Osaka, Japan) in PCR System 9 700 (Applied Biosystems, Foster City, CA, USA).
  • Primers for Usagi Type I Collagen, Type I I Collagen, Type X Collagen, aggrecan, osteopontin and GAPDH were as follows:
  • antisense primer (5, — AGCTGTTCCGGGCAATCCTC — 3,);
  • antisense primer (5 '-AGCCCCGCACGGTCTTGCTT-3');
  • antisense primer (5, CCAGGAGCACCATATCCTGT-3)
  • antisense primer (5, CTTCGCCTGTGTAGCAGATG-3);
  • osteopontin GenBankTM accession no.D 16544) (249 bp), sense primer (5,-GCTCAGCACCTGAATGTACC-3)
  • antisense primer (5 '-CTTCGGCTCGATGGCTAGC-3');
  • antisense primer (5, — CACAATGCCGAAGTGGTCGT — 3,).
  • PCR conditions were 94 ° C, 30 s; 58 ° C, 30 s; 72 ° C, 30 s, then 72 ° C, 5 min.
  • the cyclores of the PCR reaction were 35 for type I collagen, 25 for type II collagen, type X collagen, 30 for aggrecan, 25 for osteopontin and 22 for GAPDH.
  • RT-PCR products were separated by agarose gel electrophoresis, stained with ethidium bromide, and photographed.
  • the proximal region of the Usagi pinna was examined histologically (Figure 2a and b).
  • the perichondrium consists of two layers, ie, the outer fiber layer and the inner formation layer (Figure 2b) G After removing skin, fat and muscle ( Figure 2c), the perichondrium is removed using a small dental exfoliator. Cartilage force Mechanically separated ( Figure 2d and e).
  • Whole perichondrium was used as a source of perichondrial cells (Ishikawa K, Issh iki N. Experimental study on chondrogenesis by the pencnondrium. J. Jpn.
  • the present inventor analyzed the clonogenicity using newly isolated cells of perichondrium and cartilage and evaluated the proliferative ability of single cells.
  • Cells were maintained in monolayer cultures in D-MEM / F-12 medium with 10% FCS.
  • colonies formed by cells with perichondrium and cartilage force were stained and counted ( Figure 3a and b).
  • 35% of cells derived from convex perichondrium and 20% of cells derived from concave perichondrium formed colonies having a diameter of 14-2 1 mm.
  • cells of only 8.5% from cartilage formed colonies with diameter 14-21 m m.
  • MSCs bone marrow derived maggot mesenchymal stem cells
  • the weights of PCSCs (conv.) And MSCSCs were 98.5 ⁇ 12.0 mg and 8.90 ⁇ 2.90 mg, respectively.
  • passage 5 and PCSCs seeded tenth passage cells Were significantly smaller than those seeded third passage cells (Figure 5b) G first 3_, second 5_ , the weight of PCSCs seeded with the 10-passage cells (conv.) are each 139 workers 24.1 mg, 46.5 workers 20.2 mg, 39.1 workers 7.9 mg of ( Figure 5b) 0 tert-passage cells Seeded PCSCs (conv.) Showed accumulation of glycosaminodarlican sulfate by toluidine blue staining (pH 2.5), but the 5th and 10th passage cells were Powered to show no such signal (data not shown).
  • PCSCs as well as CSCs produce glycosaminodarlican sulfate and collagen components, indicating that a non-calcified phenotype can be maintained in reconstructed cartilage, and cell-scaffold complexes embedded in nude mice have cartilage-specific molecules
  • RT-PCR was performed using PCSCs and CSCs 4 weeks after implantation, and the living convex cartilage and living cartilage were extracted from the rabbit ears and their RNAs were extracted.
  • PCR showed type II collagen and aggrecan gene expression in PCSCs and CS Cs, as detected in living ear cartilage and living cartilage tissue ( Figure 51) .
  • Type X collagen gene expression (which is hypertrophic) (Specific for chondrocytes) was detected only in CSCs and not in PC SCs or living ear cartilage tissue RT-PCR results show that PCSCs may be more useful for cartilage reconstruction than CS Cs I suggest because CSCs Because undesired hypertrophic chondrocytes can be induced, these results indicate that cultured second passage perichondrocytes are useful for cartilage reconstruction in vivo.
  • the main problem with cartilage reconstruction is that the implant is not maintained due to constant absorption.
  • the long-term success of skin transplantation relies on suitable supplementation of stem cells in the graft.
  • the use of a sufficient number of self-replicating stem cells may be necessary for successful cartilage reconstruction.
  • Stem cells have the ability to self-replicate and produce more differentiated offspring, more recent Studies have shown that most living tissues contain stem cells. These adult stem cells are usually involved in homeostatic processes, but are quickly recruited to repair damaged tissue.
  • the presence of LRCs was demonstrated for the first time in the perichondrium of adult auricular cartilage. LRCs are a subpopulation of cells characterized by having a longer cell cycle than transiently proliferating cells.
  • Mesenchymal stem cells in the hyaline cartilage of fetal limbs were shown to be multipotent (Aral F, Ohneda O, Miyamoto T, Zhang XQ, buda T.
  • Mesenchymal stem cells 1 n perichondrium express activated leukocyte cell Adhesion molecule and participate in bone marrow formation. J. Exp. Med. 2002; 195: 1549-1563.).
  • chondrocytes derived from the articular cartilage of the shoulder joint were implanted in nude mice using a poly (L-lactide- ⁇ -cap rolactone) scaffold, where the cartilage was successfully reconstructed and its shape was reported to have been maintained for 10 months.
  • the cell population used in this study may not contain the cells corresponding to those derived from the cambium laye r of the articular cartilage used in this study. This is because it is difficult to maintain a regenerated tissue for a long time without stem cells.
  • the present inventor has shown that perichondrial cells derived from the ear cartilage membrane are useful for cartilage regeneration.
  • perichondrial cells are superior to bone marrow-derived mesenchymal stem cells in application to cartilage regeneration.
  • Periosteal cells were prepared without removing the auricular cartilage itself, preserving the shape of the donor site. Furthermore, the ear is the easiest site for obtaining perichondrium in clinical cases. The ear periosteum is affected by various factors such as donor age, culture conditions, etc. Shieh et al. Argued that cartilage is preferred as a donor thread and weave because the reproducibility of the building and the yield of new cartilage are inconsistent (Shieh S, Terada S, Vacanti JP. Tissue engineering auricular reconstruction: in in vitro ana in vivo studies.
  • cartilage membrane cells for tissue engineering of cartilage Is a useful source of Cultured chondrocytes (possibly including perichondrial cells) gradually lose their ability to produce cartilage-specific molecules after several passages.
  • the redifferentiation of dedifferentiated chondrocytes is insulin, tolyocytonin, bone morphogenetic protein-2 (BMP-2), IGF-1, TGF-1, epidermal growth factor, platelet-derived growth factor-bb and fibroblast growth factor- Attempts were made by adding various site forces, such as 2. However, the effects of these site forces were not elucidated by in vivo studies.
  • cartilage from which the nasal septum, outer ear, and rib strength were also collected was used to treat microtia to treat facial deformation / deformation. Or it is used to compensate for soft tissue defects.
  • the amount of cartilage that can be excised from the donor is limited.
  • tissue engineering organ-specific cells are used to seed cells onto the scaffold ex ex vivo. This may be a useful approach for preparing large volumes of tissue, such as small volume tissue samples. This is because tissue samples are self-origin and can be obtained without substantial deformation or defects. Tissues that always self-renew, such as the skin, colon, and small intestine, are continuously regenerated by stem cells.
  • mesenchymal stem cells appear to be a potential source of cells, but the rate of chondrocyte proliferation and extracellular matrix formation is insufficient to support the 3D scaffold of the auricle Met. Furthermore, cartilage reconstruction using auricular cartilage has difficulty for certain applications. Therefore, the present inventors focused on the ear perichondrium as a cell source for auricular cartilage reconstruction. In addition, adult ears were selected as the cell source for future clinical use. Differentiation studies of 5-bromo-2, -deoxyuridine (BrdU) labeling, clonogenic atsy, and perichondrium-derived cells revealed for the first time the presence of tissue progenitor cells in adult auricular perichondrium.
  • NrdU 5-bromo-2, -deoxyuridine
  • the perichondrium was physically separated from the auricular cartilage.
  • Perichondrial cells expressed a cartilage marker gene and were embedded in the subcutaneous space of nude mice together with a collagen sponge.
  • the present inventor directly compared the perichondrium cells and the mesenchymal stem cells derived from the rabbit bone marrow for the possibility of in vivo cartilage reconstruction.
  • the inventor has demonstrated that cultured perichondrial cells can perform cartilage reconstruction in vivo.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Rheumatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Microbiology (AREA)
  • Vascular Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明者はウサギ成体中の耳介軟骨膜における軟骨前駆細胞の存在を5-ブロモ-2’-デオキシウリジン標識により示し、クローン形成性と分化について分析した。長期間標識保持細胞の存在が軟骨膜で実証された。軟骨膜由来細胞、すなわち軟骨膜細胞は骨膜剥離器(骨膜剥離器)を用いて物理的に分離し、10% FCSを含むD-MEM/F-12培地で維持した。得られた軟骨膜細胞は、軟骨細胞よりも増殖能に優れていた。軟骨膜細胞は誘導培地中で脂肪細胞及び骨形成細胞にも分化し得た。

Description

軟骨の再生又は移植方法
技術分野
[0001] 本発明は、軟骨の再生又は移植方法に関する。
背景技術
[0002] 形成外科領域において、鼻中隔軟骨、耳介軟骨および肋軟骨は小耳症手術にお けるフレーム作成や顔面の変形等に使用される。しかしながら、これらのドナーから採 取できる軟骨の量には限界があり、侵襲も少なくない。
[0003] 肋軟骨は小耳症の耳介の作製に使用されているが、現在の方法は、採取した肋軟 骨を材料として耳介形態に近いフレームを作成することにより、耳介を再建するもの であり、その形態の再現には限界があった。一方、軟骨再建のために、十分な量の 軟骨を得、その機能的表現型を長期間維持するのは依然として困難である。組織幹 細胞の利用は、このような困難性を克服する 1つのアプローチである。軟骨細胞を増 殖させて耳介を再生させる方法も知られている (特許文献 1)。特許文献 1は、軟骨膜 が付着した軟骨片を採取し、軟骨膜を残した状態で軟骨細胞を培養して、軟骨細胞 の繊維芽細胞への移行を防止することを開示する。
特許文献 1 :特開 2005-143
発明の開示
発明が解決しょうとする課題
[0004] 本発明は、十分な量の軟骨を低侵襲な方法で再生することを目的とする。
[0005] また、本発明は、 in vivoで長期間保持しても石灰化および骨化しにくい軟骨を調製 することを目的とする。
課題を解決するための手段
[0006] 本発明者らは、軟骨細胞の供給源として軟骨膜に着目し、該軟骨膜の細胞を培養 することにより、軟骨細胞、さらには脂肪細胞、骨細胞が大量に得られることを見出し た。
[0007] 本発明は、以下の方法に関する。 項 1. 軟骨膜細胞を培養する工程を含むことを特徴とする軟骨の再生方法。
項 2. 軟骨膜を採取する工程、軟骨膜から軟骨膜細胞を分離する工程、得られた軟 骨膜細胞を培養する工程を含むことを特徴とする、軟骨の再生方法。
項 3. 軟骨膜細胞を足場構造体に播種し、培養して所定形状の軟骨を形成すること を特徴とする、軟骨の再生方法。
項 4. 軟骨膜を採取する工程、軟骨膜から軟骨膜細胞を分離する工程、得られた軟 骨膜細胞を培養して移植用の軟骨を形成する工程、軟骨に欠陥を有する患者に得 られた軟骨を移植する工程を含む、軟骨移植方法。
項 5. 軟骨膜の採取を、軟骨組織に欠陥を有するヒトの患者力 行 、、得られた軟 骨を該患者に移植することを特徴とする請求項 4に記載の方法。
項 6. 調製された軟骨が、耳介、鼻中隔又は肋骨の軟骨である。請求項 4に記載の 方法。
項 7. 軟骨膜を採取する工程、軟骨膜から軟骨膜細胞を分離する工程、得られた軟 骨膜細胞を必要に応じて脂肪細胞に分化させて、軟骨ないし脂肪組織を形成し、得 られた軟骨ないし脂肪組織を皮下に埋め込むことを特徴とする美容整形方法。
発明の効果
[0008] 軟骨膜由来の細胞 (軟骨膜細胞)は、タイプ Xコラーゲンをほとんどあるいは全く発現 せず、 aggrecan、タイプ IIコラーゲン、エラスチンを発現する。
[0009] 軟骨膜細胞は、増殖能力が非常に高いこと、得られた軟骨が石灰化し難いことなど の利点を有する。さらに、軟骨膜の採取は低侵襲性であり、耳介、鼻中隔、関節など の軟骨に問題を有する被験体へ移植する軟骨を再生するための材料として好適で ある。
[0010] さらに、軟骨膜細胞は軟骨細胞だけでなく脂肪細胞、骨細胞などに分ィヒ可能であり
、軟骨、脂肪組織、骨の再生に有用である。脂肪組織あるいは軟骨/脂肪組織の複 合体は、例えば顔面の皮下に埋入するなどの方法により、美容外科に使用することも できる。
[0011] 軟骨は軟骨細胞および細胞外マトリックスより構成される。更に、細胞外マトリックス は aggrecanなどのプロテオグリカンとタイプ IIコラーゲンやエラスチンなどの繊維状タン パクから構成される。軟骨は主に 3種類 (硝子軟骨、線維軟骨、弾性軟骨)に分類さ れるが、これらの軟骨の弾性力には大きな差が認められる。この差を生みだしている のはそれぞれの軟骨に含まれているエラスチンの量である。
[0012] 本発明の方法により得られる軟骨は、弾性軟骨もしくは繊維軟骨に近い性質を有し 、移植材料として好適である。
図面の簡単な説明
[0013] [図 l]Figure 1. LRCsの検出 4週齢ゥサギに BrdUを 5日間皮下投与し、 4週の追跡期 間後、耳を切除した。パラフィン包埋切片を抗 -BrdU抗体、次いで HRP-複合体ィ匕抗 マウス抗体で検査し、 DABで可視化した。へマトキシリンを対比染色に使用した。軟 骨膜の形成層と繊維層間の接合部に位置する核に陽性のシグナルがあった (矢印). [図 2]Figure 2.軟骨力 の軟骨膜の分離(a)ゥサギ耳の斜線領域を使用した。 (b)切 除されたゥサギ耳介組織標本 (へマトキシリンとェォシン染色。スケールバー: 100 m •)(c)皮膚、脂肪及び筋肉除去後のゥサギ耳介組織標本。スケールバー: 100 ^ m. ( d)軟骨力もの軟骨膜の分離は歯科用剥離子を用いて行った。スケールバー: 10 mm . (e)軟骨からの凸面軟骨膜の分離。 スケールバー: 100 m. F,軟骨膜の繊維層; C,軟骨膜の形成層
[図 3-l]Figure 3.クローン形成性アツセィと分ィ匕誘導。(a)細胞は新たに単離し、 60細 胞 /10 cm培養プレートの密度で播種し、 4週間培養した (Giemsa染色)。 (b)PCs (conv .), PCs (con )および Csからのコロニーのサイズと数を測定した。(c)凸面軟骨膜細胞 を 2週間脂肪生成誘導培地で刺激した。脂肪形成は oil red Oで染色される脂肪空胞 の蓄積により示された。スケールバー: 100 ^ m. (d)上;凸面軟骨膜細胞は 3週間骨 形成誘導培地で刺激した。アルカリホスファターゼ染色を骨細胞の検出に使用した。 スケールバー: 100 ^ m. PCs (conv.),凸面軟骨膜細胞; PCs (cone),凹面軟骨膜細 胞; Cs,軟骨細胞 下;骨形成誘導培地中で 3週間刺激した凸面軟骨膜細胞を用い たォステオボンチン、タイプ Iコラーゲン及びタイプ Xコラーゲン遺伝子発現について の RT- PCR研究。
[図 3-2]Figure 3.クローン形成性アツセィと分ィ匕誘導。(a)細胞は新たに単離し、 60細 胞 /10 cm培養プレートの密度で播種し、 4週間培養した (Giemsa染色)。 (b)PCs (conv .), PCs (con )および Csからのコロニーのサイズと数を測定した。(c)凸面軟骨膜細胞 を 2週間脂肪生成誘導培地で刺激した。脂肪形成は oil red Oで染色される脂肪空胞 の蓄積により示された。スケールバー: 100 ^ m. (d)上;凸面軟骨膜細胞は 3週間骨 形成誘導培地で刺激した。アルカリホスファターゼ染色を骨細胞の検出に使用した。 スケールバー: 100 ^ m. PCs (conv.),凸面軟骨膜細胞; PCs (cone),凹面軟骨膜細 胞; Cs,軟骨細胞 下;骨形成誘導培地中で 3週間刺激した凸面軟骨膜細胞を用い たォステオボンチン、タイプ Iコラーゲン及びタイプ Xコラーゲン遺伝子発現について の RT- PCR研究。
[図 4]Figure 4.培養された軟骨膜細胞と軟骨細胞の特徴付け。 (a)10% FCSを加えた D- MEM/F-12培地中で維持された第 2継代の第 5日の細胞スケールバー: 100 μ τη. (b) PCs (conv.) (-參 -)と Cs (-〇-)の増殖曲線。(左).最初の 4継代からの詳細なデ ータは右側に示される。各ポイントは、 1継代を示す。 *: p < 0.01 , n=3.データは平均 士標準誤差として示す。 (c)示される種々の継代培養時の凸面軟骨膜細胞と軟骨細 胞を用いたタイプ IIコラーゲン、 aggrecan及びタイプ Xコラーゲン遺伝子発現につい ての RT-PCR研究。比較のための初代培養時の皮膚繊維芽細胞の RT-PCR研究。 P Cs (conv.),凸面軟骨膜細胞; PCs(conc),凹面軟骨膜細胞; Cs,軟骨細胞。
[図 5]Figure 5. in vivoでの軟骨再建。 (a) MSCSCsと PCSCs (conv.)の埋入 4週間後で の平均重量。コラーゲン複合体は 2.3 X 106細胞で播種された。 MSCSCは埋入前に 2週間軟骨誘導培地で維持された。 PCSCsは埋入前に 10% FCSを含む D- MEM/F-1 2培地で 1日間インキュベートされた。 データは平均士標準誤差として示す。 *: p < 0. 01 , n = 6. (b)第 3-、第 5-及び第 10継代の 6.0 X 106 細胞で播種された PCSCs (con v.)の播種 4週間後での平均重量と外観。データは平均士標準誤差として示す。 *: p く 0.01 , n = 6.スケールバー: 10 mm. (c)埋入 4週間後での平均重量と外観。 PCSCs (conv.), PCSCs (cone.)及び CSCsは 6.0 X 106細胞で播種された。データは平均士 標準誤差として示す。 n = 6.スケールバー: 10 mm. (d) PCSCsと CSCsのトルイジンブ ルー (pH 2.5)染色 (TB)及び Elastica van Gieson染色 (EVG)。タイプ IIコラーゲンを埋 入 4週間後に特異的抗体で検査した。スケールバー: 100 ^ m. (e)埋入 4週間後の P CSCs (conv.)と CSCsの Alizarin Red S染色。 4週齢ゥサギの骨と耳軟骨を各々陽性と 陰性コントロールとして染色した。スケールバー: 10 mm. (1) 4週間埋入後の PCSCsと CSCsからのタイプ IIコラーゲン, aggrecan,及びタイプ Xコラーゲン、 4週齢のゥサギ 耳からの軟骨と凸面軟骨膜についての RT-PCR研究。 MSCSCs、間葉系幹細胞-足 場複合体; PCSCs (conv.),凸面軟骨膜細胞-足場複合体; PCSCs (cone),凹面軟 骨膜細胞-足場複合体; CSCs,軟骨細胞-足場複合体。
発明を実施するための最良の形態
[0014] 本発明において、軟骨膜は、耳介軟骨、鼻中隔軟骨、膝、肘、肩などの関節の軟 骨、肋骨軟骨など力 得ることができるが、耳介軟骨力も得るのが低侵襲性であるの で望ま 、。軟骨膜は軟骨の両側に存在し得、 V、ずれの軟骨膜を利用してもよ!、。 例えば耳介軟骨では、後方側(凸面軟骨膜)と前方側(凹面軟骨膜)の 、ずれを利用 してもょ 、が、凸面軟骨膜の採取が容易であるので好ま 、。
[0015] 本明細書にぉ 、て、軟骨膜細胞の培養は、軟骨膜の細胞外マトリックスをほぼ完全 に消化させて、シングルセルの状態にして力 培養して増殖させる方法でもよぐ細 胞外マトリックスを完全には消化させずにある程度形態を保ったままの半消化状態の 組織片を培養フラスコに接着させて、そこ力 細胞を遊走 ·増殖させる方法の 、ずれ であってもよい。
[0016] 軟骨膜の供給源としては、哺乳動物、例えばヒト、ゥシ、ブタ、ゥマ、サル、ゥサギ、ヒ ッジなどが挙げられ、好ましくはヒトが挙げられる。
[0017] 軟骨を移植する対象 (被験体)としては、哺乳動物、例えばヒト、ゥシ、ブタ、ゥマ、サ ル、ゥサギ、ヒッジなどが挙げられ、好ましくはヒトが挙げられる。軟骨の移植対象のヒ トとしては、軟骨組織に欠陥を有する患者が挙げられ、例えば小耳症、鞍鼻などの疾 患以外にも外傷や悪性腫瘍手術に伴う再建などの疾患の患者が挙げられる。また、 整形外科領域における関節軟骨などに障害を有する患者も挙げられる。更には、軟 骨組織の欠陥、欠損に限らず、体すベての疾患や欠陥に対する治療における材料と して使用することが可能である。
[0018] ヒトに移植する場合、移植対象者本人あるいは家族などの近親者、さらに HLAの型 の近いドナー力 得た軟骨膜由来の軟骨等の移植片を移植するのが、感染、あるい は拒絶反応の抑制の観点力 望ましい。なお、軟骨膜からは軟骨細胞だけでなぐ 脂肪細胞、骨細胞などを得ることもできるので、脂肪組織、骨、あるいは軟骨/脂肪組 織、軟骨/骨などの複合材料を作製し、これを移植することもできる。例えば美容外科
Z形成外科領域では、脂肪組織のみでは生体内で長期間その形状を保持するのが 困難である場合、軟骨あるいは軟骨に近!、組織を必要に応じて脂肪組織などと複合 させて移植片を作製し、これを例えば皮下に移植することで、生体内で長期間移植 片を保持することが可能になる。また、脂肪細胞は乳房に注入することで、豊胸術 (乳 癌治療による切除乳房の再建を含む)にも使用し得る。本発明で得られた軟骨膜由 来の細胞は、増殖能力が高いので、豊胸術あるいは皮膚欠損部などに移植すると、 皮膚の位置を盛り上げることができる。
[0019] 軟骨膜細胞の分化機能維持は、種々の因子を用いて行うことができる。該因子とし ては、例えば Ihh(Indian hedgehog),副甲状腺ホルモン関連蛋白 (parathyroid hormon e related protein: PTHrP)、骨形成促進蛋白などのサイト力イン、その他の調節因子 として IGF、insulin like growth factor;, FGF(fibroblast growth factor; aFuF, bFGFなと )、 TGF— j8、 PTH(parathyroid growth hormone), Wnt(Wingless/int— 1)、レチノイン酸、 1 a、 25(OH) D、甲状腺ホルモン、転写因子 (Sox, CbFal, ERG),などが挙げられる
2 3
[0020] 軟骨膜細胞の骨細胞および脂肪細胞への分ィ匕につ!、ては Cambrexの以下の分ィ匕 誘導培地が使用できる。
水月旨肪生成 "地: h— insulin, L— glutamine, Mし G¾, dexamethasone, indomethaci n and 3- isobutyhnethy卜 xanthineを含む脂肪生成誘導培地(hMSC Adipogenic Indu ction SingleQuots (登録商標), Cambrex, Walkersville, MD, USA) :
*骨形成誘導培地: dexamethasone, L— glutamine, ascorbate, MCGS,及び j8— glycer ophosphateを含む骨形成誘導培地 (hMSC Osteogenic SingleQuots (登録商標) , Ca mbrex, Walkersville, MD, USA)
軟骨膜細胞は軟骨を再生する運命にある「軟骨組織幹細胞」を含む。したがって、 軟骨膜細胞は、特に分化誘導させることなく軟骨を再生することができる。
[0021] 軟骨膜の採取は、以下のように行うことができる。まず、ヒト耳介後部皮膚を縦正中 切開し、皮下剥離後、凸面耳介軟骨膜を露出する。メスにて耳介後部軟骨膜に切開 を加え、歯科用剥離子にて剥離することにより、約 4cm2の軟骨膜を採取することが出 来る。
[0022] 軟骨膜細胞の調製は、特に限定されないが、例えば以下のようにして行うことがで きる。軟骨膜を細力べ切り刻み、コラゲナーゼ (特にタイプ IIコラーゲンを分解可能なも の)を作用させて軟骨膜細胞を遊離させる。軟骨膜に付着した結合組織、皮膚細胞 などは、軟骨膜の処理前に除去しておくのがよい。次いで、軟骨膜細胞が通過する 条件下で不溶物を濾過により除き、軟骨膜細胞を得ることができる。
[0023] 軟骨膜細胞は、ドナーが若!、方が軟骨新生能が高く好ま 、。従って、軟骨移植 が予測されるヒトにおいては、幼い/若い時期に軟骨膜を採取し、これを凍結保存し、 移植が必要な時期になれば解凍後培養、増殖させることも可能である。
[0024] 得られた軟骨膜細胞は、例えば 10%ゥシ胎児血清 (FCS)を添カ卩した D-MEM/F-12 培地により継代培養を行うことで、軟骨膜細胞を速やかに増殖することが可能である 。なお、軟骨膜細胞を継代培養すると、タイプ IIコラーゲン、さらには aggrecanの発現 量は低下することがあるが、培地の成分、培養条件を工夫することでこれらの産生量 を上げることができる。例えば、タイプ IIコラーゲンの産生を停止し、タイプ Iコラーゲン の産生を始めた (繊維芽細胞様の)軟骨膜細胞をァガロースの培養皿に移すと、ァ ガロースのゲルが細胞の周囲を囲むので細胞は宙に浮き、丸い形を強要される。こ のような状況では、細胞は速やかに軟骨細胞の性質に戻り、再びタイプ IIコラーゲン を産生する。また、軟骨の小さな塊を作っている軟骨細胞集団は、周囲の繊維芽細 胞を軟骨細胞に変えながら大きくなる。継代培養した軟骨膜細胞がタイプ IIコラーゲ ンゃエラスチンの産生量が低下した場合には、このような培養条件の変更により再び 軟骨細胞に戻して培養するのが軟骨/移植片の調製のために望ましい。
[0025] 本発明の好ま 、実施形態にぉ 、て、軟骨膜細胞を培養して数を増加させた後、 多孔性足場構造体材料に細胞を播種し、培養することができる。このような足場構造 体の材質としては、コラーゲン、乳酸重合体、グリコール酸重合体、アルギン酸、ァガ ロース、キチン、キトサンなどが挙げられ、該足場構造体はスポンジ、織布、不織布な どの形態であり得る。好ましい足場構造体はコラーゲンスポンジである。コラーゲンス ポンジは、ダルタルアルデヒドなどの架橋剤、あるいは熱による脱水縮合などにより架 橋されたものが、形状を長期間保つのに好ましい。多孔性足場構造体の形状は、移 植の対象となる部位に応じて適宜選択することができる。
[0026] 多孔性足場構造体中の軟骨膜細胞は、 20〜30日程度培養することにより、軟骨を 再生することができる。多孔性足場構造体中に軟骨膜細胞を播種した複合体は、細 胞播種後速やかに、あるいは比較的早期に移植を行って生体内で軟骨を再生させ てもよぐ培地や培養方法を工夫して生体外での培養のみで軟骨組織を再生させる ことも可能である。
[0027] 本発明で使用する軟骨膜細胞は、多分ィ匕能を有しており、軟骨細胞だけでなぐ脂 肪細胞、骨細胞に分化させることが可能である。脂肪組織は、美容形成にも用いるこ とができ、生体内での形状保持性を高めるために、脂肪細胞、あるいは脂肪細胞と 軟骨細胞に分化させ、これらを培養することで、美容形成用の脂肪組織、脂肪組織/ 軟骨複合体を得ることもできる。
[0028] 本発明で得られた軟骨は、ヒトに移植することができる。例えば小耳症の治療にお いて、耳介の形状に調製した軟骨は、別途調製した該耳介軟骨を覆うことができる皮 膚と同時に耳介部位に移植することもでき、耳介周辺の皮膚を引き延ばし、耳介軟 骨を覆うようにしてもよい。また、鼻中隱全部又は一部)の形状に調製した軟骨は、鼻 の皮膚を切開し、鼻中隔形状の軟骨を埋め込むことで、移植することができる。隆鼻 術にぉ 、ては現在使用されて 、るインプラントと同じように、軟骨を I字型や L字形に 調整したのち、鼻腔内切開により移植することが可能である。
実施例
[0029] 以下、本発明について実施例を用いてさらに詳細に説明する。本発明は、これらの 実施例に限定されることはない。
[0030] 実施例 1
材料と方法
動物と操作
動物 i 、 Institute of Laboratory Animals, uraduate School of Medicine, Kyoto Uni versityにおいて維持された。本実施例で使用された動物の数は、最小限に保たれ、 t he Animal Research Committee of Kyoto Universityにより確立されたプロトコ一ノレに 従い動物の苦痛をできるだけ軽減するためのあらゆる努力が払われた。
5-ブロモ -2, -デォキシゥリジン(BrdU)標識及び検出
BrdUパルス追跡実験は、文献記載のように行われた(Taylor G, Lehrer MS, Jensen PJ, bun T, Lavker RM. Involvement of follicular stem cells in forming not only the f ollicle but also the epidermis. Cell. 2000;102:451- 461.)。 2匹の 4週齢ゥサギに 50 mg /kg/day BrdU (Sigma- Aldrich, St. Louis, MO, USA)を 5日間毎日皮下注射した。該 ゥサギを 4週間後に犠牲にした。組織切片を 3%過酸化水素 (Wako Pure Chemical Ind ustries, Ltd., Osaka, Japan)に 10分間浸漬し、 0.2%トリプシン(Kamiya Biomedical Co mpany, Seattle, WA, USA)で 10分間消化し、次いで変性溶液 (Kamiya Biomedical C ompany, Seattle, WA, USA)で 30分間変性した。ブロッキング溶液 (Kamiya Biomedica 1 Company, Seattle, WA, USA)で 10分間ブロッキングした後、切片を室温で 1時間抗 —BrdU抗体 (Kamiya Biomedical Company, Seattle, WA, USA)とインキュベートした。 ストレプトアビジン- HRP複合体 (Kamiya Biomedical Company, Seattle, WA, USA)で 1 0分間、そして DAB (Kamiya Biomedical Company, Seattle, WA, USA)で 10分間イン キュペートすることにより発色させた。へマトキシリンを対比染色に使用した。
[0031] 細胞培養
軟骨膜と軟骨は 4週齢の日本白色ゥサギの両耳の近位領域 (proximal regions)力 収穫した。軟骨膜と軟骨は、デンタル骨膜剥離器を使用して別々に集め、秤量した。 組織を、 0.10%エチレンジァミン四酢酸 (EDTA)を含み、マグネシウムイオンとカルシゥ ムイオンを含まないリン酸緩衝生理食塩水(pH 7.4, PBS (-) , Takara Bio Inc., Otsu, Japan)で洗浄し、 10%ゥシ胎児血清 (FCS)(Gibco, Grand Island, NY, USA)を添カ卩した D- MEM/F-12培地 (Gibco, Grand Island, NY, USA)中ではさみを用いて切り刻んだ。 次いで、 0.25%コラゲナーゼ -タイプ I (Gibco, Grand Island, NY, USA) I D- MEM/F- 12培地中で、振盪しながら 37°Cで 2時間消化した。 100 mナイロンメッシュ (Cell Str ainer, BD Falcon, Bedford, MA, USA)を通過させた後、細胞を 10% FCSを添カ卩した D -MEM/F-12培地で 2回洗浄した。細胞数を血球計算板でカウントし、生存度をトリバ ンブルー排除試験で測定した。
[0032] クローン形成性アツセィ 軟骨膜と軟骨由来の細胞のクローン形成性を分析するために、細胞を 60細胞/プレ 一ト(10 cm直径)の密度で播種した(Morris RJ, Liu Y, Maries L, et al. Capturing an d profiling adult hair follicle stem cells. Nature Biotechnol. 2004;22:41ト 417.)。 細 胞を 5% CO雰囲気下 37°Cで、 10% FCS, 10,000 U/mlのペニシリン Gナトリウム、 10,00
2
0 μ g/mlの硫酸ストレプトマイシン, 25 μ g/mlアンホテリシン B (抗菌-抗真菌, Gibe 0, Grand Island, NY, USA)を添カ卩した D- MEM/F-12培地中で培養した。培養培地を 7日毎に交換した。コロニーのサイズと数を Giemsa染色により 4週間後に測定した。
[0033] in vitro細胞増殖
軟骨膜細胞と軟骨細胞の細胞増殖速度を研究するため、細胞を 75 cm2培養フラス コ (Sumitomo Bakelite Co., Ltd., Tokyo, Japan)中 1,200細胞/ cmの密度で播種し、 次 、で 10% FCSと抗菌及び抗真菌試薬を含む D-MEM/F-12培地で継代培養した。 培養培地は 3日毎に交換した。細胞をサブコンフルエンシーで 5分間 0.25% (w/v)トリ プシン処理により回収し、上記と同じ密度でカウント及び播種した (約 1: 50希釈)。
[0034] 脂肪生成と骨形成分ィ匕
軟骨膜細胞と軟骨細胞の脂肪生成と骨形成分化にっ ヽて、細胞をカバーグラスを 備えた 12-ゥエル培養プレートまたは 6-ゥエル培養プレートに 2,400細胞/ cm2の密度 で播種し、 10% FCSを含む D-MEM/F-12培地で培養した。培養培地をコンフルェン トになるまで 3日毎に交換した。脂肪生成分ィ匕について、コンフルェント細胞を 2週間 h— insulin, L— glutamine, MC S, dexamethasone, indomethacin and 3— isobutyl— methy 卜 xanthineを含む脂肪生成誘導培地(hMSC Adipogenic Induction SingleQuots (登録 商標), Cambrex, Walkersville, MD, USA)で刺激した。 12-ゥエルプレート中の細胞を 4%リン酸緩衝パラホルムアルデヒドで 10分間固定し、オイルレッド 0溶液 (0.3 % w/v)で 10分間室温で染色し、蒸留水でリンスし、デジタルカメラ (DXM 1200, Nikon, Tokyo, Japan)で写真撮影した。骨形成分化について、コンフルェント細胞を dexamethasone, L-glutamine, ascorbate, MCGS,及び β -glycerophosphateを含む骨形成誘導培地 (h MSC Osteogenic SingleQuots (登録商標), Cambrex, Walkersville, MD, USA)で 3週 間刺激した。 12-ゥエルプレート中の細胞をアルカリホスファターゼ染色キット (Muto P ure Chemicals, Co., Ltd., Tokvo, Japan)を使用してアルカリホスファターゼ発現につ いて検出した。 6-ゥエルプレート中の細胞を RT-PCRを使用して検出した。
[0035] 骨髄由来の間葉系幹細胞 (MSCs)の単離と培養
MSCsを既報を若干改変した方法に従い単離した (Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartila ge. J. Bone Joint Surg. 1994;76— A:579— 592 ;Azizi SA, Stokes D, Augelli BJ, DiGirol amo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of aloino rats-similarities to astrocyte grafts. Proc. Natl. Aca d. Sci. USA. 1998;95:3908-3913.) o脛骨を 2匹の 4週齢雄性日本白色ゥサギから切り 出した。直径 2 mmの穴をドリルで開け、 18-ゲージの針とシリンジにより骨髄を 5mlの D -MEM (Gibco, Grand Island, NY, USA)を用いて吸引した。集めた骨髄組織をピぺッ トで粉砕することにより引き離し、次いで 100 mナイロンメッシュを用いて濾過した。 懸濁液を 800 rpmで 5分間遠心した。骨髄細胞のペレットを 10mlの D- MEM培地に懸 濁し、 15% FCS、抗菌剤、抗真菌剤を含む D-MEM中で培養した。 4日後、非接着細 胞を培地交換することにより除いた。細胞をサブコンフルエンシーで 5分間 0.25% (w/v )トリプシンで処理し、そして 6,000cells/cm2の密度で播種し、増殖させた。
[0036] in vitroでの MSCsの分化研究
軟骨細胞への分化について、ペレット培養を行った。 2.0 X 105 MSCsを 15mlポリ プロピレン遠心チューブ (Corning Incorporated, Corning, NY, USA)中、 500 rpmでス ピンダウンし、 10 ng/mlトランスフォーミング増殖因子 - j8 3 (TGF- β 3) (Sigma- Aldric h, INC., Saint Louis, MO, USA)を添カロし 7こ dexamethasone, ascorbate, ITS + supple ment, penicillin/ streptomycin, sodium pyruvate, proline, and L— glutamineを含む軟 骨細胞誘導培地 (hMSC Chondrogenic SingleQuots (登録商標), Cambrex, Walkersvil le, MD, USA)で培養した。培養培地を 3日毎に交換し、各チューブの底を軽くたたき 、ペレットが培地交換後にも自由に流動できることを確認した。培養 3週間後,ペレット を 10%リン酸緩衝ホルマリンにて 24時間 4°Cで固定した。固定した組織をパラフィンに 埋入し、 7.0 μ m切片にスライスし、トルィジンブルー (pH 2.5)または Elastica van Gies on染色した。 MSCsの脂肪生成と骨形成分化研究を軟骨膜細胞と軟骨細胞分化研 究につ 、て記載されるように行った。 [0037] 足場と細胞-足場複合体の調製
コラーゲンスポンジを以前に報告しているように作製した(Kim BM, Suzuki S, Nishi mura Y, et al. Cellular artificial s in substitute produced by short period simultaneo us culture of fibroblasts and keratinocytes. Br. J. Plast. Surg.)。シ' ~~トの厚みを 2 m mに調整し、平均ポアサイズを 90 /z mとした。コラーゲンスポンジを直径 12mmの円形 ディスクに切断した。 MSC-足場複合体 (MSCSCs)のアッセンブリのために、 2.3 X 106 細胞をコラーゲン足場 (1.0 X 107細胞 /cm3)に播種し、埋入前に毎日 2週間軟骨細 胞誘導培地で刺激した。凸面軟骨膜細胞-足場複合体 (PCSCs (conv.)),凹面軟骨 膜細胞-足場複合体 (PCSCs (cone.)),及び軟骨細胞-足場複合体 (CSCs)を用いた再 建研究において、それらはコラーゲン足場上に 6.0 X 106細胞を播種し、次いで 24 時間インキュベートした。 2.3 X 106細胞の PCSCsも MSCSCsの比較研究のために作 製した。それらは、次いでヌードマウス背部の正中切開の両側での鈍的切開により作 製した皮下ポケットに埋入した。切開部を 5-0ナイロン結節縫合により閉じた。
[0038] 組織化学及び免疫組織化学分析
MSCSCs, PCSCs及び CSCsを埋入 4週間後に組織学的分析のために摘出した。全 ての標本を PBS (-)中でリンスし、 10%リン酸緩衝ホルマリンにて 24時間 4°Cで固定した 。固定した組織をパラフィンに包埋し、 7.0 m切片にスライスし、トルイジンブルー(p H 2.5)ま7こ【ま51&31:10& van t^ieson染色した。
[0039] 免疫組織化学染色.凍結切片を 3回 PBS (-)で洗浄した。 20% BlockAce (Dainippon, Tokyo, Japan)を含む SaGlyPBS(0.005% saponin, 50 mM glycine in PBS)で 30分間処 理後、切片を 5% BlockAce中で 1:1,000に希釈した抗 -hCL (II)抗体(Daiichi Fine Ch emicals, Takaoka, Japan)で 30分間 4°Cでインキュベートした。この抗体はヒト、ラットお よびゥサギタイプ IIコラーゲンと反応させることができる。 SaGlyPBSで 3回洗浄後、切 片を 5% BlockAceを含む SaGlyPBS中で 1:1, 000に希釈した Alexa Fluor (登録商標) 546 フラグメント-複合体化ャギ抗 -マウス抗体 (Molecular Probes, Eugene, OR, USA)で 1 2時間 4°Cでインキュベートした。 TO- PR03 (Molecular Probes, Eugene, OR, USA)を 、二次抗体溶液に加えることにより、核染色するために使用した。洗浄後、切片を共 焦点顕微鏡 (MRC 1024, Bio-Rad, Hercules, CA, USA)により観察した。 10%リン酸緩 衝ホルマリンで 24時間 4°C標本を固定化し、 3% KOH溶液で 1週間浸漬後、 Alizarin R ed S Qunsei Chemical Co., Ltd., Tokyo, Japan)染色より石灰化を調べた。
総 RNAの単離と RT- PCR
総 RNAを培養軟骨膜細胞、軟骨細胞、及び皮膚線維芽細胞カゝら RNeasy (登録商標 ) Mini Kit (QIAGEN, Hilden, Germany)を用いて単離した。総 RNAを 4週齢ゥサギから 摘出した軟骨膜及び軟骨力も単離し、そして PCSCsと CSCsから Trizol (登録商標) Re agent (Invitrogen, CA, USA)から単離し、 RNeasy (登録商標) Mini Kitを用いて精製し た。 Advantage RT- for- PCR Kit (BD Biosciences, Palo Alto, CA, USA)を用いて、 cD NAを 100 μ 1の溶液中、 1.0 μ gの総 RNAsで合成した。 cDNA生成物を PCR System 9 700 (Applied Biosystems, Foster City, CA, USA)中の Taq DNA polymerase (Toyobo Co., Ltd., Osaka, Japan)を用いた PCRに使用した。ゥサギタイプ Iコラーゲン,タイプ I Iコラーゲン,タイプ Xコラーゲン, aggrecan, osteopontinおよび GAPDH用のプライマ 一は、以下の通りであった:
*タイプ 1コフ ~~クン (Morone MA, Boden SD, Hair u, et ai. uene expression during autograft lumbar spine fusion and the effect of bone morphogenetic protein 2. Clin. Orthop. 1998;351:252-265)
sense primer (5,— GAGGAATTTCCGTGCCTGGC— 3,);
antisense primer (5,— AGCTGTTCCGGGCAATCCTC— 3,);
*タイプ IIコラーゲン (GenBankTM accession no. S83370) (323 bp),
sense primer (5,— GCACCCATGGACATTGGAGG— 3,) ;
antisense primer (5 ' -AGCCCCGCACGGTCTTGCTT-3 ' );
*タイプ Xコラーゲン(GenBankTM accession no. AF247705) (313 bp),
sense primer (5,— AGCCAGGGTTGCCAGGACC— 3,) ;
antisense primer (5,— CCAGGAGCACCATATCCTGT— 3,);
* aggrecan (GenBankTM accession no. L38480) (313 bp),
sense primer (5, - GAGGAGATGGAGGGTGAGGTCTTT- 3,);
antisense primer (5,— CTTCGCCTGTGTAGCAGATG— 3,);
* osteopontin (GenBankTM accession no. D 16544) (249 bp), sense primer (5, - GCTCAGCACCTGAATGTACC- 3,)
antisense primer (5 ' -CTTCGGCTCGATGGCTAGC-3 ' );
* GAPDH (GenBankTM accession no. L23961) (293 bp),
sense primer (5,— TCACCATCTTCCAGGAGCGA— 3,);
antisense primer (5,— CACAATGCCGAAGTGGTCGT— 3,).
PCR条件は、 94°C, 30 s; 58°C, 30 s; 72°C, 30 s,次いで 72°C, 5 minであった。 PCR 反応のサイクノレは、 type Iコラーゲンについて 35, type IIコラーゲンについて, type Xコラーゲン,及び aggrecanについて 30, osteopontinについて 25及び GAPDHについ て 22であった。 RT-PCRの生成物は、ァガロースゲル電気泳動で分離され、ェチジゥ ムブロミドで染色され、写真撮影された。
[0041] 統計分析
統計分析は、 Student' s t-testを用いて行われ、 2群間の相違を調べた。 p < 0.01の 値は統計的に有意であると考えた。全ての値は平均士標準誤差として表す。
[0042] 結果
長期標識保持細胞 (LRCs)の同定
成体の耳における組織前駆細胞を同定するために、本発明者は最初に幹細胞を 含むとして公知の LRCsの存在を実証することを試みた。 slow-cycling幹細胞を標識 するために、 BrdUを連続 5日間 4週齢ゥサギに皮下注射した。 4週間の追跡期間後、 BrdUをモノクローナル抗体を用いて免疫組織ィ匕学的に検出した (図 1)。 LRCs細胞核 は軟骨膜の形成層と繊維層間の接合部の細胞核に見出されが、軟骨細胞内の核に は標識は残っていなカゝつた。ゥサギの凹面軟骨膜の形成層(cambium layer)の約 0.4 %の細胞は BrdU陽性であった。
[0043] 軟骨からの軟骨膜の分離
ゥサギ耳介の近位領域を組織ィ匕学的に調べた (Figure 2a and b)。軟骨膜は 2層、す なわち外側の繊維層と内側の形成層からなる (Figure 2b)G 皮膚、脂肪及び筋肉を除 去後 (Figure 2c),軟骨膜を小さい歯科用剥離子を用いて軟骨力 機械的に分離した (Figure 2d and e)。全軟骨膜を軟骨膜細胞の供給源として使用した (Ishikawa K, Issh iki N. Experimental study on chondrogenesis by the pencnondrium. J. Jpn. P. R. S. 1988;8:419-434) o軟骨膜と軟骨を小片に切り刻み、 0.25%コラゲナーゼで消化した。 2匹のゥサギを使用した代表例において、本発明者は 0.19 gの凸面軟骨膜から 3.4 X 104細胞を調製し、 0.21 gの凹面軟骨膜から 5.0 X 103細胞を調製し、 0.51 gの軟骨 力 1.4 X 105細胞を調製した。軟骨の凹面側力 大量の軟骨膜を調製するのは困 難であった。なぜなら、凹面側ではタイトにパックされた厚い繊維層で軟骨と結合して いる力 である (Figure 2b)0
[0044] クローン形成性アツセィ
本発明者は、軟骨膜と軟骨の新しく単離した細胞を用いてクローン形成性を分析し 、単一細胞の増殖能力を評価した。細胞を 10% FCSを有する D- MEM/F-12培地にお V、て単層培養で維持した。プラスチックディッシュに 60個の細胞を播種して 4週間後、 軟骨膜と軟骨力もの細胞によって形成されたコロニーを染色及びカウントした (Figure 3a and b)。凸面軟骨膜由来の 35%の細胞と凹面軟骨膜由来の 20%の細胞が直径 14-2 1 mmでコロニーを形成した。これに対し、軟骨由来の 8.5%のみの細胞が直径 14-21 mmでコロニーを形成した。凸面軟骨膜 (4.8%)と凹面軟骨膜 (1.6%)由来の細胞の特定 の集団が直径 21mmよりも大きいコロニーを形成した力 軟骨由来の細胞は形成しな かった。これらの知見は、軟骨膜細胞が軟骨細胞よりも盛んに増殖することを示唆す る。
[0045] 細胞の脂肪細胞と骨細胞への分ィ匕
軟骨膜由来細胞の多分ィ匕能を試験するために分化研究を行った。脂肪細胞への 分化を誘導するために、コンフルェントに単層培養した軟骨膜細胞と軟骨細胞を脂 肪細胞誘導培地で処理した (Figure 3c)0多角形から楕円形への形状変化は、刺激 の 3日後に検出された。細胞の重層化が促進され、細胞内の脂質豊富な空胞が続く 1 1日間に増加した。両タイプの細胞の脂質豊富な空胞は、 oil red Oで染色された (Fig ure 3c)。
骨形成分化を誘導するために、コンフルェントな軟骨膜細胞と軟骨細胞を骨形成誘 導培地で処理した (Figure 3d)。細胞は、刺激の 3週間後にアルカリホスファターゼに ついて強い陽性を示す凝集物又は小塊を形成したが、未刺激条件下の細胞は、弱 く染色されただけであった(Figure 3d)。総 RNAは刺激の 3週間後の細胞から集めら れた。 RT-PCRは、ォステオポンチン、タイプ Iコラーゲンとタイプ Xコラーゲンにつ いて行われた (Figure 3d)。タイプ Xコラーゲンは肥大軟骨細胞に特異的であつたが 、骨形成領域では発現されなかった。骨形成分化に関し、タイプ Iコラーゲンとォス テオポンチンはアップレギュレートされた力 タイプ Xコラーゲンは劇的にダウンレギ ュレートされた。誘導後のアルカリホスファターゼの増加はこれらの細胞の肥大軟骨 細胞分ィ匕の結果ではないと結論づけられた。これらの結果は、軟骨膜と軟骨由来の 細胞が脂肪細胞や骨細胞に分化する多分化能を有することを示唆する。強!ヽクロー ン形成性である軟骨膜中の LRCsの存在と軟骨膜細胞の多分ィ匕能はゥサギ耳の軟骨 膜中に組織前駆細胞が存在することを示唆する。
培養軟骨膜細胞と軟骨細胞の特徴付け
軟骨膜と軟骨から単離された細胞、すなわち軟骨膜細胞と軟骨細胞は、各々 10% F CSを添カ卩した D-MEM/F-12培地中で維持された。これらの条件下で、凸面と凹面 の軟骨膜細胞は細胞形状にっ 、て類似して 、たが、これらは多角形形状の軟骨細 胞とは相違していた (Figure 4a)G軟骨膜細胞と軟骨細胞の増殖速度が分析された。 軟骨膜細胞は一次培養の初期から軟骨細胞よりも速やかに増殖した (Figure 4b)。軟 骨細胞の増殖は徐々に遅くなり、細胞は 31日後に増殖を停止した (第 5継代)。対照的 に、軟骨膜細胞は 8ヶ月を超えて (第 35継代)同じ速度で増殖を続けた。総 RNAは異 なる継代で細胞から集められ、 RT-PCRを行った (Figure 4c)G培養された軟骨膜細胞 と軟骨細胞はタイプ IIコラーゲン遺伝子と aggrecan遺伝子を第 3継代まで発現した。 類似の細胞形状を有する培養皮膚繊維芽細胞はタイプ IIコラーゲンと aggrecanのい ずれも発現せず,培養軟骨膜細胞は皮膚繊維芽細胞とは異なる細胞集団であること が示された。第 15継代後に、軟骨膜細胞のみが RT-PCRアツセィに使用されたが、こ れは軟骨細胞が第 5継代で増殖を停止した力もである。軟骨膜細胞において、第 3継 代までタイプ IIコラーゲン遺伝子が発現した。 aggrecan遺伝子発現は第 10継代まで 観察されたが、第 5継代以降は劇的に低下した。第 7継代において、軟骨膜細胞は、 石灰化の初期マーカーであるタイプ Xコラーゲンを非常に低いレベルで発現した。 これらの知見は、培養軟骨膜細胞が 10% FCSを有する D- MEM/F-12培地でさえ増殖 し、軟骨特異的分子の産生能を有することを示す。し力しながら、タイプ IIコラーゲン 発現は、第 3継代まで継続し、軟骨膜細胞は最初の数代までに軟骨再建用に使用す べきであることを示唆する。
in vivoでのコラーゲンスポンジを用いる軟骨再建
in vivoでの軟骨再建を研究するために、本発明者はコラーゲンスポンジ足場システ ムを利用した。比較研究のために、本発明者は骨髄由来のゥサギ間葉系幹細胞 (MS Cs)を選択した。 MSCsはゥサギ骨髄から単離した (Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair or large, full-thickness defects of articular cartila ge. J. Bone Joint Surg. 1994;76— A:579— 592.; Azizi SA, Stokes D, Augelli BJ, DiGiro lamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc. Natl. Ac ad. Sci. USA. 1998;95:3908-3913.) 0最初に,これら細胞の多分化能を材料と方法に 記載されるように in vitroでの脂肪細胞,骨細胞及び軟骨細胞への誘導研究により確 認した (データは示さない)。次いで、本発明者は、軟骨膜細胞と骨髄由来の MSCの 軟骨再建能力について分析した。第 2継代の 2.3 X 106細胞を播種した MSC-足場 複合体 (MSCSCs)を 2週間 in vitroで軟骨細胞への誘導培地で刺激し、次いでヌード マウス背部の皮下スペースに埋入した (n=6)。第2継代の 2.3 X 106細胞を播種した 凸面軟骨膜細胞-足場複合体 (PCSCs (conv.))を埋入前に 24時間インキュベートした (n=6)0埋入の 4週間後,該 MSCSCsは PCSCs (conv.)よりも有意に小さ力つた (Figure 5a )。 PCSCs (conv.)と MSCSCsの重量は、各々 98.5 ± 12.0 mgと 8.90 ± 2.90 mgであ つた。これらの結果は、 in vivoでの軟骨再建について、軟骨膜細胞が MSCsよりも優 れていることを示す。本発明者は、異なる継代数の凸面軟骨膜細胞を使用して、軟 骨再建の能力を試験した。 第 3継代 (n=6)、第 5継代 (n=6)、第 10継代 (n=6)で 6.0 X 10 6細胞を播種した PCSCs (conv.)をヌードマウス背部の皮下スペースに埋入した。埋 入の 4週間後、第 5継代と第 10継代細胞を播種した PCSCs (conv.)は第 3継代細胞を 播種したものより有意に小さかった (Figure 5b)G第 3_、第 5_、第 10-継代細胞を播種し た PCSCs (conv.)の重量は、各々 139士 24.1 mg, 46.5士 20.2 mg, 39.1士 7.9 mgで あった (Figure 5b)0第 3-継代細胞を播種した PCSCs (conv.)は、トルィジンブルー染 色 (pH 2.5)により、硫酸グリコサミノダリカン蓄積を示したが、第 5-、第 10-継代細胞は そのようなシグナルを示さな力つた (データは示さない)。従って以下の実験では、第 2 «代の 6.0 X 106凸面及び凹面の軟骨膜細胞と軟骨細胞がコラーゲンスポンジ足場 に播種された。埋入の 4週間後、これら 3群の複合体は区別不可能な外観を示した (Fi gure 5c)0 PCSCs (conv.),凹面軟骨膜細胞-足場複合体 (PCSCs (con 》および軟骨 細胞-足場複合体 (CSCs)の重量は、各々 137士 15.4 mg, 133士 18.3 mg、 140士 4 2.8 mgで変わらなカゝつた (Figure 5c)。組織学的及び免疫組織化学試験が行われた (F igure 5d)。トルイジンブルー染色 (pH 2.5)により示された細胞周囲の硫酸グリコサミノ グリカンのシグナルは、 PCSCsと CSCsのいずれも同程度であった。 Elastica van Gieso n染色は、全ての群でコラーゲン成分の明確なシグナルを示した。免疫組織化学染 色は、タイプ IIコラーゲンのレベル力PCSCsと CSCsで類似することを示した。 Alizari n Red S染色でのシグナルの欠如により示されるように、石灰化は PCSCsと CSCsのい ずれでも起こらなかった (Figure 5e)。これらの結果は、 CSCsだけでなく PCSCsも硫酸 グリコサミノダリカンとコラーゲン成分を産生し、再建軟骨において非石灰化表現型を 維持できることを示す。ヌードマウスに埋入した細胞-足場複合体が軟骨特異的分子 を発現するかを試験するために、埋入 4週間後の PCSCsと CSCsを用いて RT-PCRを 行った。生体凸面軟骨膜と生体軟骨はゥサギ耳から摘出され、その RNAsを抽出した 。 RT-PCRは、生体耳軟骨膜と生体軟骨組織で検出されたのと同様に、 PCSCsと CS Csでタイプ IIコラーゲンと aggrecan遺伝子発現を示した(Figure 51)。タイプ Xコラー ゲン遺伝子発現 (これは肥大軟骨細胞に特異的である)は CSCsでのみ検出され、 PC SCsまたは生体耳軟骨組織では検出されなかった。 RT-PCRの結果は、 PCSCsは CS Csよりも軟骨再建に有用であり得ることを示唆する。なぜなら、 CSCsは望ましくない肥 大軟骨細胞を誘導し得るからである。これらの結果は、培養第 2継代軟骨膜細胞は in vivoでの軟骨再建に有用であることを示した。
考察
軟骨再建の主要な問題は、絶えず起こる吸収のためにインプラントが維持されないこ とである。皮膚移植の長期の成功は、移植片中の幹細胞の好適な補充に依存する。 同様に、首尾よい軟骨再建について、十分な数の自己複製幹細胞の使用が必要で あろう。幹細胞は、自己複製し、より分化した子孫を生成する能力を有し、より最近の 研究は、大抵の生体組織は幹細胞を含むことを示した。これらの成体幹細胞は通常 恒常性プロセスに関与するが、速やかに補充されて損傷された組織を修復する。本 発明にお 、て、 LRCsの存在は成体耳介軟骨の軟骨膜にぉ 、て初めて実証された。 LRCsは一時的に増殖する細胞よりも長い細胞周期を有することにより特徴付けられ る細胞のサブ集団である。これらは幹細胞として毛髪の毛包の膨らんだ領域で同定 された。いくつかの細胞分裂サイクル後、一時的に増殖された細胞は細胞サイクルか ら離脱し、最終の分化プログラムを遂行する。関節軟骨、表皮ケラチノサイト、乳腺な どの種々の組織からの成体の幹/前駆細胞は、コロニー形成能力により示されるよう に、刺激後活発に増殖可能である。本研究では、軟骨膜由来のより多くの細胞が軟 骨由来の細胞よりもより大きなコロニーを形成可能であることが示された。さらに、軟 骨膜細胞は in vitroで脂肪細胞と骨細胞に、また in vivoで軟骨に分ィ匕可能である。こ れらのデータを合わせると、軟骨前駆細胞は成体耳の軟骨膜より初めて同定された。 胎児肢の硝子軟骨の軟骨膜における間葉系幹細胞は多分化能を有することが示さ れた (Aral F, Ohneda O, Miyamoto T, Zhang XQ, buda T. Mesenchymal stem cells 1 n perichondrium express activated leukocyte cell adhesion molecule and participate i n bone marrow formation. J. Exp. Med.2002;195:1549- 1563.)。し力し、実際的な軟 骨再建について、胎児組織のような同種移植ではなぐ自己軟骨組織力もの細胞を 得ることは重要である。肩関節の関節軟骨由来の軟骨細胞が poly (L-lactide- ε -cap rolactone)足場を用いてヌードマウスに埋入されたことが報告され、ここで、軟骨は首 尾よく再建され、その形状を 10ヶ月にわたり維持したことが報告された。この研究に使 用された細胞集団は本研究に使用された関節軟骨の軟骨膜の形成層 (cambium laye r)由来のものに対応する細胞を含む力もしれない。なぜなら、幹細胞無しに長期間再 生組織を維持するのは困難であるからである。本発明において、本発明者は耳軟骨 膜由来の軟骨膜細胞は軟骨再生に有用であることを示した。軟骨膜細胞は、軟骨再 生への応用において、骨髄由来の間葉系幹細胞よりも優れていることを実証した。軟 骨膜細胞は耳介軟骨自体を除去することなく調製され、ドナー部位の形状を保存し た。さらに、耳は臨床例において軟骨膜を得るための最も容易な部位である。耳の軟 骨膜はドナー年齢、培養条件、などの種々の因子により影響され、その結果軟骨再 建の再現性と新 、軟骨の収量の比率は一貫性がな 、ので、 Shiehらは軟骨がドナ 一糸且織として好ましいと主張した(Shieh S, Terada S, Vacanti JP. Tissue engineering auricular reconstruction: in vitro ana in vivo studies. Biomaterials 2004;25:1545-15 57.)。本研究では、培養軟骨膜細胞は 3代の継代後にタイプ IIコラーゲンの産生を 突然停止した (Figure 5a)0しカゝしながら、 van Oschらはインスリン様増殖因子 1 (IGF-1 )と TGF- β 2を組み合わせた血清不含の培地で培養した際に若い耳の軟骨膜はより 多くの硫酸グリコサミノダリカンを産生することを報告した (van Osch GJ, van der Veen SW, Burger EH, Verwoerd— Verhoef HL.Chondrogenic potential of in vitro multiplie d rabbit perichondrium cells cultured in alginate beads in defined medium. Tissue En g.2000;6:321-330.)o従って、軟骨膜は軟骨の組織工学用の細胞の有用な供給源 である。培養軟骨細胞 (おそらく軟骨膜細胞を含む)は、数代の継代後に軟骨特異 的分子の産生能を徐々に失う。脱分化軟骨細胞の再分化はインスリン、トリョードサイ 口ニン、骨形成蛋白- 2(BMP-2)、 IGF-1, TGF- 1,上皮増殖因子,血小板由来増殖 因子- bb及び繊維芽細胞増殖因子- 2などの種々のサイト力インの添加により試みら れた。しかしながら、これらのサイト力インの効果は in vivo研究では解明されなかった 。このように、脱分ィ匕軟骨膜細胞の再分ィ匕のための最適なサイト力インの組み合わせ は現在研究中である。将来、本発明者らはより多くの軟骨の再建のために、更なる継 代中に軟骨膜細胞の表現型を維持する培養条件を決定することが必要であろう。本 発明者は本研究で埋入 1ヶ月後の複合体を試験したので、軟骨膜細胞がより長い期 間、例えば in vivoで数年間軟骨表現型を維持するかどうかについて決定できなかつ た。これは臨床治療において必須の要件であるので、本発明者は現在 in vivoでの長 期軟骨再建にっ 、て小耳症の患者力もヒト軟骨膜細胞を調製して 、る。培養条件、 増殖因子の要求、足場材料の種類は最適化されなければならないが、成体の耳から の軟骨膜細胞はより多くの裏付けを示した。
産業上の利用可能性
多くの研究者が関節軟骨の再生を試みている力 体重を支えること、摩擦などの環 境因子のために、その質を長期間維持することは依然として困難である。一方、鼻中 隔、外耳、肋骨力も採取された軟骨は、顔面の変形/奇形を治療するために小耳症 又は軟部組織欠損に対する補填のために使用されている。しかしながら、ドナーから 切除可能な軟骨量は限られている。組織工学では、臓器特異的細胞を使用して ex V ivoで足場に細胞を播種する。これは、少量の組織サンプルカゝら大量の組織を調製 するために有用なアプローチであると考えられる。なぜなら、組織サンプルは自己起 源であり、実質的に変形ないし欠陥を生じることなく得られるからである。皮膚、結腸 、小腸などの常に自己再生する組織は、幹細胞により連続的に再生されている。
[0050] 軟骨再建について、間葉系幹細胞は可能性のある細胞源であると考えられるが、 軟骨細胞の増殖と細胞外マトリックスの生成速度は、耳介の 3次元足場を支えるのに 不十分であった。さらに、耳介軟骨を用いた軟骨再建は、特定の用途には困難性を 有する。そこで、本発明者は、耳介軟骨再建の細胞源として、耳の軟骨膜に焦点を 当てた。さらに、将来の臨床使用のために、細胞源として成体の耳を選択した。 5-ブ ロモ -2,-デォキシゥリジン (BrdU)標識,クローン形成性アツセィ,軟骨膜由来細胞の 分化研究により、成体耳介軟骨膜中の組織前駆細胞の存在が本発明者により初め て明らかにされた。軟骨膜は耳介軟骨より物理的に分離された。軟骨膜細胞は軟骨 マーカー遺伝子を発現し、コラーゲンスポンジとともにヌードマウスの皮下スペースに 埋入された。本発明者は、 in vivo軟骨再建の可能性について、軟骨膜細胞とゥサギ 骨髄由来の間葉系幹細胞とを直接比較した。埋入組織の詳細な評価により、本発明 者は、培養軟骨膜細胞が軟骨再建を in vivoで実施可能であることを実証した。
[0051] 本発明により、小耳症などの処置を有効に行うことができる。

Claims

請求の範囲
[1] 軟骨膜細胞を培養する工程を含むことを特徴とする軟骨の再生方法。
[2] 軟骨膜を採取する工程、軟骨膜から軟骨膜細胞を分離する工程、得られた軟骨膜 細胞を培養する工程を含むことを特徴とする、軟骨の再生方法。
[3] 軟骨膜細胞を足場構造体に播種し、培養して所定形状の軟骨を形成することを特徴 とする、軟骨の再生方法。
[4] 軟骨膜を採取する工程、軟骨膜から軟骨膜細胞を分離する工程、得られた軟骨膜 細胞を培養して移植用の軟骨を形成する工程、軟骨に欠陥を有する患者に得られ た軟骨を移植する工程を含む、軟骨移植方法。
[5] 軟骨膜の採取を、軟骨組織に欠陥を有するヒトの患者力 行 、、得られた軟骨を該 患者に移植することを特徴とする請求項 4に記載の方法。
[6] 調製された軟骨が、耳介、鼻中隔又は肋骨の軟骨である。請求項 4に記載の方法。
[7] 軟骨膜を採取する工程、軟骨膜から軟骨膜細胞を分離する工程、得られた軟骨膜 細胞を必要に応じて脂肪細胞に分化させて、軟骨ないし脂肪組織を形成し、得られ た軟骨ないし脂肪組織を皮下に埋め込むことを特徴とする美容整形方法。
PCT/JP2006/309176 2006-05-02 2006-05-02 軟骨の再生又は移植方法 WO2007129396A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/309176 WO2007129396A1 (ja) 2006-05-02 2006-05-02 軟骨の再生又は移植方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/309176 WO2007129396A1 (ja) 2006-05-02 2006-05-02 軟骨の再生又は移植方法

Publications (1)

Publication Number Publication Date
WO2007129396A1 true WO2007129396A1 (ja) 2007-11-15

Family

ID=38667514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309176 WO2007129396A1 (ja) 2006-05-02 2006-05-02 軟骨の再生又は移植方法

Country Status (1)

Country Link
WO (1) WO2007129396A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000143A (ja) * 2003-04-15 2005-01-06 Hiroko Yanaga 移植用軟骨細胞の製法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000143A (ja) * 2003-04-15 2005-01-06 Hiroko Yanaga 移植用軟骨細胞の製法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
TOGO T. ET AL.: "Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction", LAB. INVEST., vol. 86, 1 May 2006 (2006-05-01), pages 445 - 457, XP003024423 *
TOGO T. ET AL.: "Jikai Nankotsumaku ni Okeru Jikai Nankotsu Saisei: Donor to shiteno Shishitsu", JAPANESE SOCIETY OF CONNECTIVE TISSUE RESEARCH GAKUJUTSU TAIKAI SHOROKUSHU, vol. 37, 27 May 2005 (2005-05-27), pages 52 + ABSTR. NO. A16, XP003024421 *
TOGO T. ET AL.: "Jikai Nankotsumaku ni Okeru Soshiki Kansaibo no Dotei: Nankotsu Saisei eno Oyo", JAPANESE SOCIETY OF CONNECTIVE TISSUE RESEARCH GAKUJUTSU TAIKAI SHOROKUSHU, vol. 38, 6 April 2006 (2006-04-06), pages 62 + ABSTR. NO. A17, XP003024420 *
TOGO T. ET AL.: "Jikai Nankotsumaku ni yoru Jikai Nankotsu Saisei", JAPAN SOCIETY OF PLASTIC AND RECONSTRUCTIVE SURGERY KISO GAKUJUTSU SHUKAI PROGRAM SHOROKUSHU, vol. 14, 14 October 2005 (2005-10-14), pages 83 + ABSTR. NO. 57, XP003024422 *
TOKUYA S. ET AL.: "Costal perichondral grafting for articular cartilage defects in the rabbit knee. Process and comparison with fascia grafting", JPN. J. RHEUM. JOINT SURG., vol. 18, no. 3, 15 December 1999 (1999-12-15), pages 115 - 120, XP003024424 *

Similar Documents

Publication Publication Date Title
US8192987B2 (en) Human dental follicle stem cells and methods for obtaining
KR100907248B1 (ko) 분화된 어린 지방 세포와 생분해성 중합체의 이식에 의한신체의 부피 대체 방법
Rohaina et al. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane
JP5227024B2 (ja) 毛包真皮毛根鞘細胞の培養法
JP6687757B2 (ja) 3d軟骨オルガノイドブロックを調製するための方法
WO2006001428A1 (ja) 羊膜由来細胞の分化誘導方法及びその利用
JPWO2002022788A1 (ja) 間葉系幹細胞の培養方法
CN108685948B (zh) 一种医用细胞修复剂的制备方法
CN107254443B (zh) 一种促进骨髓间充质干细胞向神经元分化的诱导培养基和诱导方法
Nair et al. Identification of p63+ keratinocyte progenitor cells in circulation and their matrix-directed differentiation to epithelial cells
KR101178153B1 (ko) 신규한 줄기세포주, 이의 이용 및 배양 방법
DK2888353T3 (en) PROCEDURE FOR INSULATING AND CLEANING SKIN EPITHEL CELLS
JP4748222B2 (ja) 軟骨細胞調製方法
WO2009080794A1 (en) Method for preparing cell-specific extracellular matrices
EP3766963A1 (en) Method of culturing mesenchymal stem cells
WO2012149574A1 (en) Methods of isolating cells
JP2012000262A (ja) ヒト軟骨細胞と新規足場材料を用いた軟骨組織の製法
WO2007129396A1 (ja) 軟骨の再生又は移植方法
US10655103B2 (en) Equine progenitor cells
Karlsson et al. Human dermal fibroblasts: a potential cell source for endothelialization of vascular grafts
KR20100025658A (ko) 피하 연부조직 재생을 위한 분화된 미성숙 지방세포를 포함하는 세포 조성물
JP2006000059A (ja) 細胞外基質を用いた動物細胞の増殖及び分化促進方法
Nishio et al. Chondrocyte differentiation of human buccal fat pad-derived dedifferentiated fat cells and adipose stem cells using an atelocollagen sponge
CN114657122A (zh) 一种复合干细胞球的纳米多肽水凝胶及其制备方法和应用
Breitbart Open Discussion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06746026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06746026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP