WO2007127641A1 - Co-granulates of bleach activator-peroxide compounds - Google Patents

Co-granulates of bleach activator-peroxide compounds Download PDF

Info

Publication number
WO2007127641A1
WO2007127641A1 PCT/US2007/066793 US2007066793W WO2007127641A1 WO 2007127641 A1 WO2007127641 A1 WO 2007127641A1 US 2007066793 W US2007066793 W US 2007066793W WO 2007127641 A1 WO2007127641 A1 WO 2007127641A1
Authority
WO
WIPO (PCT)
Prior art keywords
granulate
bleach
sodium
bleach activator
weight
Prior art date
Application number
PCT/US2007/066793
Other languages
French (fr)
Inventor
Robert Scarella
Georg Borchers
Original Assignee
Oci Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oci Chemical Corporation filed Critical Oci Chemical Corporation
Priority to BRPI0710848-6A priority Critical patent/BRPI0710848A2/en
Priority to EP07760777A priority patent/EP2021454A1/en
Priority to MX2008013747A priority patent/MX2008013747A/en
Publication of WO2007127641A1 publication Critical patent/WO2007127641A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3935Bleach activators or bleach catalysts granulated, coated or protected
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • C11D3/3915Sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • C11D3/3917Nitrogen-containing compounds

Definitions

  • This invention relates to compositions including a bleaching agent.
  • the invention relates to bleaching compositions provided in granule form for use in laundry, cleaning and as disinfection agents, as well as in textile treatment and wood, pulp and paper bleaching, for example.
  • the invention is related to methods of making co-granules of bleach activator/peroxide compounds and compositions made thereby, and especially, for example, bleach activator/percarbonate co-granules having good storage stability and improved bleaching performance in a broad variety of applications.
  • Inorganic peroxide compounds such as hydrogen peroxide, solid peroxides, which release hydrogen peroxide by dissolving in water (e.g. sodium perborate and sodium percarbonate perhydrate), have been used as oxidants for disinfection and bleaching for a long time.
  • the oxidation properties of such compounds are strongly dependent on temperature. For example, hydrogen peroxide or perborate in alkaline bleaching liquors show satisfactory, accelerated bleach performance on soiled textiles only at temperatures above 80° C.
  • bleach activators include N- or O-acyl compounds, e.g. multiple acylated alkylene diamines, especially tetra acetyl ethylene diamine and tetra acetyl glycourile, N- acylated hydantoines, hydrazines, thazoles, hydrotriazines, urazoles, di-keto piperazines, sulfurylamides, and cyanurates, as well as carboxylic acid anhydrides, especially phthalic acid anhydride and substituted maleic acid anhydrides, carboxylic acid esters, especially sodium-acetoxy-benzene sulfonate, sodium-benzoyloxy benzene sulfonate (BOBS), sodium-nonaoyloxy benzene sulfonate (NOBS), sodium-lauroyloxy-benzene sulfon
  • N- or O-acyl compounds e.g. multiple acylated alkylene diamines, especially
  • bleach performance of aqueous peroxide solutions can be improved such that similar bleaching results are achieved at a temperature range of 40 - 50° C, comparable to those of sole peroxide solutions at 95° C.
  • Mixtures of bleach activators may be used as well, which may include both hydrophilic and hydrophobic bleach activators.
  • hydrophobic components derivatives of the readily water soluble sodium-phenolsulfonates are used, e.g. nonaoyloxy benzene sulfonate, acetoxy benzene sulfonate or benzoyloxy benzene sulfonate. These hydrophobic compounds are preferably combined with tetra acetyl ethylene diamine.
  • bleach activators based on hydroxy benzoic acids and derivatives thereof show effective bleach performance.
  • Bleach activators in the form of granules are preferred as bleaching components in combination with substances generating hydrogen peroxide, e.g. sodium perborate or sodium percarbonate for use in laundry, cleaning, and disinfection applications, in textile and fiber treatment preparations, and in the wood, pulp and paper industries.
  • substances generating hydrogen peroxide e.g. sodium perborate or sodium percarbonate
  • bleach activator and peroxide compounds resulting in a loss of bleach performance a number of processes have been developed to stabilize such systems by granulation, using binders and other additives and to eventually protect the granules by coating.
  • EP 0 037 026 shows a process for the production of a readily dissoluble granulated activator containing 90% to 98% active matter.
  • the bleach activator in powdered form is homogenously mixed with cellulose or starch ethers in powdered form, followed by spray-on of an aqueous solution of the cellulose of starch ether, followed by granulation processing and a drying step. Because of the gelling of the cellulose and starch ethers in water, causing poor flow properties and low adhesive power, the activator granules according to this reference are less than optimally stable.
  • EP 1 447 380 A1 a process for the production of sodium percarbonate is shown. A hydrogen peroxide solution is sprayed onto sodium carbonate while simultaneously drying in an air current. This process yields granules having less than optimal solubility characteristics, especially at low washing temperatures, with resultant, less than optimal bleach performance.
  • U.S. Patent No. 5,458,801 discloses a process for producing bleach activators comprising core granules of sodium percarbonate or sodium perborate.
  • the activators are coated with borate, mixed in the presence of water-soluble binders and then granulated.
  • the use of boronic compounds raises toxicological concerns, and therefore these are not preferred components in laundry and cleaning formulations.
  • U.S. Patent No. 5,458,801 teaches that a granulation process of percarbonate and bleach activators is only possible if the percarbonate is coated with borate.
  • One aspect of the present invention provides a method for manufacturing bleach granules, containing at least one bleach activator and at least one bleach component (also referred to herein as peroxide component).
  • the bleach activator and the peroxide components may be combined closely and formulated to have better storage stability and yet also be readily dissolvable.
  • a process for preparation of co-granules including at least one bleach activator and at least one peroxide compound, wherein the peroxide component is mixed and coated with a binder selected from the group of fatty acids, fatty acid polyol esters, polyglycols and fatty alcohol oxalkylates, is disclosed.
  • Bleach activator is added to this mixture, followed by agglomeration in a high-shear mixer, to provide co-granules including bleach activator and peroxide components.
  • the co-granules of bleach activator and peroxide components are produced by mixing the bleach activator with a binder selected from the group of fatty acids, fatty acid polyol ester, polyglycols and fatty alcohol oxalkylates. A peroxide component is then added, followed by agglomeration in a high-shear mixer, yielding co-granules including bleach activator and peroxide components. If desired, the co-granules can be coated using standard coating materials and methods.
  • preferred embodiments provide co-granules of a bleach activator and a peroxide component including one or more peroxide compounds, one or more bleach activators and at least one of a fatty acid, fatty acid polyol ester, polyglycol or fatty alcohol oxalkylates.
  • a process for the production of co-granules of one or more bleach activator and one or more peroxide component including mixing and coating a peroxide component with one or more of a fatty acid, a fatty acid polyol ester, a polyglycol, and a fatty alcohol oxalkylates, is disclosed.
  • the bleach activator(s) is added in solid form.
  • the resulting mixture is agglomerated in a high-shear mixer.
  • a bleach activator with one or more of a fatty acid, a fatty acid polyol ester, a polyglycol, and/or a fatty alcohol oxalkylate is disclosed.
  • the peroxide component is added in a solid form.
  • the resulting mixture is agglomerated in a high-shear mixer.
  • bleach may be used in the contexts of both soil removal and whitening.
  • bleach will react with and dissociate certain soils (i.e. tea, wine stains) thereby removing them from the surface of the fabric they are adhered to.
  • soils i.e. tea, wine stains
  • bleach as an oxidizer, will break apart light absorbing chemical configurations called chromophores, rendering the oxidized material colorless.
  • Bleaching can also be applied to soil on hard surfaces. Additional potential applications are in personal care, e.g. bleaching hair, improving cleaning properties of denture cleaners, etc.
  • the bleach compounds, or oxidizing compounds formulated according to the preferred embodiments herein can be used in industrial cleaning applications, for bleaching wood, pulp and paper, for bleaching cotton, as well as for germ-killing formulations.
  • the preferred embodiments herein may also be used for cleaning textiles and hard surfaces, especially dishes, by using bleach activator compounds in combination with peroxygen components in an aqueous solution. These can contain additional materials for washing and cleaning hard surfaces, and more particularly, for cleaning dishes, for which use in an automatic dish washing application is preferred.
  • Preferred peroxide components include perborate-monohydrate, perborate-tetrahydrate, percarbonates, alkali persulphates, persilicates, and percitrates in which sodium is the preferred alkali metal, as well as hydrogen peroxide adducts of urea or amine oxides.
  • peroxycarboxylic acids e,g, dodecane di-peracid or phthalimido percarboxylic acids
  • the co-granules of the bleach activator and peroxide components may include fatty acids or fatty acid polyol esters.
  • Fatty acids comprise linear or branched, saturated or unsaturated fatty acids having 6 to 30 C-atoms, and preferably 10 to 22 carbon atoms.
  • fatty acids include but are not limited to capronic acid, caprylic acid, 2-ethyl-hexanoyic acid, palmitoleinic acid, stearic acid, isostearic acid, oleic acid, elaidinic acid, petroselinic acid, linolic acid, linoleic acid, elaeosterinic acid, arachinic acid gadoleinic acid, behenic acid, eurucaic acid, and dimers of unsaturated fatty acids. More preferable are fatty acid carbon chain fractions of coconut oil, palm oil or tallow, most preferably stearic acid.
  • the co-granules of bleach activator and peroxide component comprise fatty acid poly esters.
  • These esters can be produced by esterification of polyvalent alcohols with fatty acids.
  • stearic acid esters of pentaerythritol and even more preferred are pentaerythritol distearate.
  • polyvalent alcohols are glycol, benzene glycol, propylene glycol, butylene glycol, butane diol, methylpropane diol, pentylene glycol, iso-pentyl diol, neopentyl glycol, hexylene glycol, hexane diol, ethylhexane diol, diethylene glycol, methoxy diglycol, ethoxy diglycol, butoxy diglycol, dimethoxy diglycol, dipropylene glycol, glycerol, oligo glycerol, poly glycerol, four-valent alcohols, e.g.
  • Suitable for esterification reactions are all linear or branched, saturated and/or unsaturated fatty acids having 6 to 30 C-atoms, preferably 10 to 22 carbon atoms, as mentioned above.
  • the fatty acid esters according to the preferred embodiments can also be obtained by transesterifiaction of fatty acid methylesters with polyvalent alcohols or fatty acid triglycerides.
  • the carbon chain in fatty acid methylesters consists of 8 to 22 carbon atoms, being linear or branched, saturated or unsaturated. Examples are palmitic acid, stearic acid, lauric acid, linolic acid, linoleic acid, isostearic acid or oleic acid.
  • Fatty acid triglycerides comprise all native animal or vegetable based oils, fats, and waxes, e.g. olive oil, rapeseed oil, palmkernel oil, sunflower oil, coconut oil, linseed oil, castor oil, soybean oil, also in their refined or hydrogenated forms.
  • Saccharide esters can be obtained in good yields by reaction of saccharides with activated fatty acid derivatives, e.g. fatty acid chlorides or anhydrides in the presence of an amine base, e.g. pyridine.
  • activated fatty acid derivatives e.g. fatty acid chlorides or anhydrides
  • an amine base e.g. pyridine
  • Polyglycerol esters are preferred, e.g. diglycerol-140 EO- tristearate, sorbitan fatty acid esters, e.g. sorbitan oleate, ethoxylated polyethylene glycol stearates, esters of dextrines having a degree of polymerization of 3 to 200, preferably 5 to 100, most preferably 10 to 50, especially fatty acid esters of dextrine palmitate esters, as well as disaccharide esters, especially esters of cellobiose, most preferably cellobiose palmitate esters, esters of pentaerythritol, PEG especially pentaerythritol stearic acid esters, most preferably pentaerythritol distearate.
  • sorbitan fatty acid esters e.g. sorbitan oleate
  • ethoxylated polyethylene glycol stearates esters of dextrines having a degree of poly
  • the co-granules of bleach activator and peroxide component include effective amounts of: a) tetraacetyl ethylene diamine (TAED) b) sodium percarbonate c) stearic acid and/or pentaerythritol distearate.
  • TAED tetraacetyl ethylene diamine
  • the co-granules of bleach activator and peroxide components include: a) one or more bleach activators in ratios from 1 to 50 weight-%, preferably from 1 to 20 weight-%, most preferably from 5 to 10 weight- % b) one or more peroxide components in ratios from 50 to 99 weight-%, preferably from 75 to 99 weight-%, most preferably from 80 to 90 weight-% c) one or more fatty acid or fatty acid esters in ratios from 1 to 50 weight-
  • % preferably from 1 to 20 weight-%, most preferably from 5 to 10 weight-%.
  • the ratio of bleach activator to peroxide component may be in the range of 1 : 0.5 to 1 :20 parts by weight, and preferably 1 :1 to 1 :5 parts by weight.
  • the co-granules of bleach activator and peroxide component comprise additional binders, additives, and carriers.
  • the group of binders includes cellulose, starch, ethers and esters thereof, for example carboxymethyl cellulose (CMC), methyl cellulose (MC) or hydroxyethyl or hydroxypropyl cellulose (HEC, HPC) and the corresponding starch derivatives, and can also include film-forming polymers like polyacrylic acids and salts thereof.
  • Preferred binders include anionic compounds in powder form, especially cumeme, xylene, toluene sulphonates, alkylethersulphates, alkylsulphates, ⁇ -olefin sulphonates and soaps.
  • the amount of binder based on finished granule can range from about 1 to 45 weight-%, preferably from about 5 to 30 weight-%.
  • the co-granules of bleach activator-peroxygen compound are used in detergent formulations according to the invention in concentrations of about 0.1 to 15%, preferably about 1 to 8%. In prespotters or disinfectants, the concentration of the bleach activator compound up to about 50% can be applied.
  • Granulation of the bleach activator-peroxygen compounds can be performed in known mixing equipment, either in a batch process or a continuous process. Suitable mixing devices include plough shear mixers (L ⁇ dige KM types, Drais K-T types) as well as other highly effective mixing devices, e.g. Eirich, Schugi, L ⁇ dige CB-types, Drain K-TT types). All mixing processes producing satisfactory mixing efficacy can be utilized. According to another embodiment, all of the components are mixed simultaneously. Alternatively, the peroxygen compound is preferably mixed with a molten binder and homogenized. In a second step, the bleach activator is added, and the composition is granulated in a high-speed mixer.
  • One preferred mixer for preparing these preferred compositions is a Littleford Day Horizontal Plow Mixer, a medium intensity mixer that creates a mechanically fluidized bed of material.
  • the mixer includes a horizontal cylinder or drum with a central shaft from which mixing tools radiate. The mixing tools cover the entire surface of the drum, eliminating dead spots where product would be unmixed.
  • the mechanically fluidized bed provides for rapid mixing, effective heat transfer for both cooling and heating, and incorporation of liquids onto the materials. Rapid, accurate mixing of dry components is easily accomplished due to the mixing tools moving the material from end to end in the drum.
  • Liquids can be sprayed onto the fluidized material bed from as low as 0.5% to 50%, i.e., to a point where the material becomes a paste or has a dough-like consistency.
  • Use of an optional jacket can provide heat input for reactions, drying, melting of material in a coating operation, or as means to make a paste such as hot melt adhesives. Cooling of the product can also be accomplished with the jacket.
  • the mixers can be equipped with high speed choppers, mounted in a back lower quadrant of the mixer. These choppers impart high shear to the material, allowing for dispersion of material and incorporation of viscous liquids that are hard to spray.
  • the chopper blade configuration can be changed to increase or decrease the shear input as needed.
  • the mixers can be built as pressure vessels and vacuum rated per the process needs.
  • Materials may be discharged from the mixer through a contour door or a valve mounted in the center of the mixer bottom.
  • the discharge of materials from the mixer is normally quite rapid. Additional valves can be added to the discharge door or valve to control the output flow therethrough for packaging, for example.
  • the residence time in the granulator is preferably 0.5 seconds to 20 minutes, and more preferably about 2 minutes to 10 minutes.
  • a drying and/or cooling step is employed after granulation, to reduce or avoid stickiness of the granules produced.
  • Post- treatment processes may be performed in the same mixer types described above or in conventional fluidized bed equipment. Coarse and fine particles may be separated by sieving. The coarse fraction may be milled and fed back into the granulation process together with the fines fraction.
  • the peroxygen compound, fatty acid or poly ester (binder), and optionally other solid, liquid or molten additives are fed into the mixing device and are homogenized.
  • the mixture is heated to temperatures above the melting point of the binder.
  • the bleach activator is added to this mixture to obtain a plastified mass.
  • Mixing devices as mentioned above can be used, but also kneaders or specific extruder types (e.g. Extrud-o-mix of Hosokawa-Bepex Corp.) are suitable.
  • the mass from the granulation step can be processed into extrudates by appropriate equipments, as extruder-types (e.g.
  • residual water can be removed to increase particle stability. Drying and/or cooling can be performed using the same mixer types described above, or in conventional fluidized bed equipment. Coarse and fine particles may be separated by sieving. The coarse fraction may be milled and fed back into the granulation process together with the fines fraction.
  • the granules can be directly used in laundry and cleaning products. However, in a more preferred form, a coating is be applied. Through coating, using film forming substances, the product properties can be influenced significantly.
  • Suitable coating materials include waxes, silicones, fatty acids, fatty alcohols, soaps, anionic surfactants, nonionic surfactants, cationic surfactants, anionic and cationic polymers, and polyalkylene glycols.
  • Coating materials having a melting point in the range of 30 to 100° C are preferred, e.g. C8 - C31 fatty acids (e.g.
  • C8 - C31 fatty alcohols C8 - C31 fatty alcohols, polyalkylene glycols having a molecular weight of 1000 to 50000 g/mol, fatty alcohol oxalkylates containing 1 to 100 moles of EO, alkane sulfonates, alkyl benzene sulfonates, ⁇ -olefins sulfonates, alkyl sulfates, alkyl ether sulfates, polymers (e.g. polyvinyl alcohols), and waxes (e.g. montane waxes, paraffin waxes, ester waxes, polyolefin waxes, silicones).
  • polymers e.g. polyvinyl alcohols
  • waxes e.g. montane waxes, paraffin waxes, ester waxes, polyolefin waxes, silicones.
  • the coating materials can contain other materials either dissolved or suspended, like homo, co, or crafted co-polymers of unsaturated carboxylic acids and/or sulfonic acids, as well as alkali salts thereof, cellulose ethers, starch, starch ethers, polyvinyl pyrrolidone, mono and polyvalent carboxylic acids, hydroxy carboxylic acids or ether carboxylic acids having 3 to 8 carbon atoms, as well as salts thereof, silicates, carbonates, bicarbonates, sulfates, phosphates, and phosphonates.
  • the coating material can be applied from 1 to 30 weight-percent, preferably 5 to 15 weight-% of the total coated granule.
  • conventional mixers and fluidized bed devices can be used. Suitable mixers include, e.g. plough-shear mixers or Schugi Mixers.
  • the bleach activator-peroxygen compound-co-granulates can be used in laundry and cleaning products, as well as products used to kill germs.
  • Major components of those consumer products include anionic surfactants, nonionic surfactants, builder systems (such as zeolites, phosphates, polymers, sodium carbonate, silicates and layered silicates), organic builders, enzymes, anti-redeposition agents (such as soil release polymers and dye transfer inhibitors), and other ingredients as known in the art, such as colors and fragrances, etc.
  • Sodium Percarbonate is charged to the mixing vessel along with the formulation amount of fatty acid.
  • the mixer used is a Littleford Day MGT Series Vertical mixer/granulator with medium intensity vortex mixing using a single, four blade impeller located at the base of the mixer. The mix is heated to a temperature above the melting point of the fatty acid. The impeller RPM is raised to 1500 RPM. After 2 minutes of mixing, the mixer is stopped and the formulation amount of TAED is added. The mixing then continues for 30 seconds at a mixer speed of 1200 RPM. The mixing is then stopped and the batch is discharged.
  • melt the fatty acid add the formulation amount of TAED to the molten fatty acid.
  • the mixers used were Lodige type, high speed mixers designed for efficient liquid dispersion on powders, and better control on product density and particle size distribution.
  • Table I shows median particle size for the tests conducted on the material made in the above examples. Data regarding median particle size (d50) was obtained using the ISO 3118 method.
  • Table Il shows available oxygen, median particle size and stability data in a set of six different co-granulations made according to the invention.
  • Data reflecting available oxygen is generated using "a standard potassium permanganate titration method.”
  • Data reflecting median particle size is obtained using the ISO 3118 standard industrial method.
  • Data reflecting stability percentage is obtained by measuring the remaining amount of available oxygen in the product (as a percentage of the original amount) after accelerated storage at industry standard test conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

A process for preparation of co-granules including one or more bleach activators and one or more bleach agent compounds is described. The bleach component is mixed and coated with a binder selected from the group of fatty acids, fatty acid polyol esters, polyglycols and fatty alcohol oxalkylates. One or more bleach activators is added to this mixture followed by granulation or agglomeration in a mixer, resulting in a bleach co-granule composition including the bleach activator and peroxide components.

Description

CO-GRANULATES OF BLEACH ACTIVATOR-PEROXIDE COMPOUNDS
This is a continuation of US patent application No. 11/413,131 , filed on April 27, 2006, the content of which is hereby incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
This invention relates to compositions including a bleaching agent. In particular, the invention relates to bleaching compositions provided in granule form for use in laundry, cleaning and as disinfection agents, as well as in textile treatment and wood, pulp and paper bleaching, for example. More particularly, the invention is related to methods of making co-granules of bleach activator/peroxide compounds and compositions made thereby, and especially, for example, bleach activator/percarbonate co-granules having good storage stability and improved bleaching performance in a broad variety of applications.
BACKGROUND OF THE INVENTION
Inorganic peroxide compounds, such as hydrogen peroxide, solid peroxides, which release hydrogen peroxide by dissolving in water (e.g. sodium perborate and sodium percarbonate perhydrate), have been used as oxidants for disinfection and bleaching for a long time. The oxidation properties of such compounds are strongly dependent on temperature. For example, hydrogen peroxide or perborate in alkaline bleaching liquors show satisfactory, accelerated bleach performance on soiled textiles only at temperatures above 80° C.
At lower temperatures, the efficiency of oxidation of an inorganic peroxide compound can be improved by addition of bleach activators. These bleach activators include N- or O-acyl compounds, e.g. multiple acylated alkylene diamines, especially tetra acetyl ethylene diamine and tetra acetyl glycourile, N- acylated hydantoines, hydrazines, thazoles, hydrotriazines, urazoles, di-keto piperazines, sulfurylamides, and cyanurates, as well as carboxylic acid anhydrides, especially phthalic acid anhydride and substituted maleic acid anhydrides, carboxylic acid esters, especially sodium-acetoxy-benzene sulfonate, sodium-benzoyloxy benzene sulfonate (BOBS), sodium-nonaoyloxy benzene sulfonate (NOBS), sodium-lauroyloxy-benzene sulfonate (LOBS), sodium-isononaoyloxy benzene sulfonate (Iso-NOBS) and acylated sugar derivatives, like pentaglucose. In the presence of such bleach activator substances, the bleach performance of aqueous peroxide solutions can be improved such that similar bleaching results are achieved at a temperature range of 40 - 50° C, comparable to those of sole peroxide solutions at 95° C. Mixtures of bleach activators may be used as well, which may include both hydrophilic and hydrophobic bleach activators. Mainly, hydrophobic components derivatives of the readily water soluble sodium-phenolsulfonates are used, e.g. nonaoyloxy benzene sulfonate, acetoxy benzene sulfonate or benzoyloxy benzene sulfonate. These hydrophobic compounds are preferably combined with tetra acetyl ethylene diamine. Also, bleach activators based on hydroxy benzoic acids and derivatives thereof show effective bleach performance.
Bleach activators in the form of granules are preferred as bleaching components in combination with substances generating hydrogen peroxide, e.g. sodium perborate or sodium percarbonate for use in laundry, cleaning, and disinfection applications, in textile and fiber treatment preparations, and in the wood, pulp and paper industries. In order to avoid the premature reaction of a bleach activator and peroxide compounds resulting in a loss of bleach performance, a number of processes have been developed to stabilize such systems by granulation, using binders and other additives and to eventually protect the granules by coating.
For example, EP 0 037 026 shows a process for the production of a readily dissoluble granulated activator containing 90% to 98% active matter. The bleach activator in powdered form is homogenously mixed with cellulose or starch ethers in powdered form, followed by spray-on of an aqueous solution of the cellulose of starch ether, followed by granulation processing and a drying step. Because of the gelling of the cellulose and starch ethers in water, causing poor flow properties and low adhesive power, the activator granules according to this reference are less than optimally stable. In EP 1 447 380 A1 , a process for the production of sodium percarbonate is shown. A hydrogen peroxide solution is sprayed onto sodium carbonate while simultaneously drying in an air current. This process yields granules having less than optimal solubility characteristics, especially at low washing temperatures, with resultant, less than optimal bleach performance.
U.S. Patent No. 5,458,801 discloses a process for producing bleach activators comprising core granules of sodium percarbonate or sodium perborate. The activators are coated with borate, mixed in the presence of water-soluble binders and then granulated. The use of boronic compounds raises toxicological concerns, and therefore these are not preferred components in laundry and cleaning formulations. U.S. Patent No. 5,458,801 teaches that a granulation process of percarbonate and bleach activators is only possible if the percarbonate is coated with borate.
There is a demand, therefore, for methods and compositions, that combine a bleach activator and bleach material in a form which is easy to produce and highly effective while providing long term shelf stability. The present invention satisfies the demand.
SUMMARY OF THE INVENTION
One aspect of the present invention provides a method for manufacturing bleach granules, containing at least one bleach activator and at least one bleach component (also referred to herein as peroxide component). To provide better bleach performance, the bleach activator and the peroxide components may be combined closely and formulated to have better storage stability and yet also be readily dissolvable.
In a preferred embodiment, a process for preparation of co-granules including at least one bleach activator and at least one peroxide compound, wherein the peroxide component is mixed and coated with a binder selected from the group of fatty acids, fatty acid polyol esters, polyglycols and fatty alcohol oxalkylates, is disclosed. Bleach activator is added to this mixture, followed by agglomeration in a high-shear mixer, to provide co-granules including bleach activator and peroxide components. In another preferred embodiment, the co-granules of bleach activator and peroxide components are produced by mixing the bleach activator with a binder selected from the group of fatty acids, fatty acid polyol ester, polyglycols and fatty alcohol oxalkylates. A peroxide component is then added, followed by agglomeration in a high-shear mixer, yielding co-granules including bleach activator and peroxide components. If desired, the co-granules can be coated using standard coating materials and methods.
Therefore, preferred embodiments provide co-granules of a bleach activator and a peroxide component including one or more peroxide compounds, one or more bleach activators and at least one of a fatty acid, fatty acid polyol ester, polyglycol or fatty alcohol oxalkylates.
In another embodiment, a process for the production of co-granules of one or more bleach activator and one or more peroxide component, including mixing and coating a peroxide component with one or more of a fatty acid, a fatty acid polyol ester, a polyglycol, and a fatty alcohol oxalkylates, is disclosed. The bleach activator(s) is added in solid form. The resulting mixture is agglomerated in a high-shear mixer.
In yet another embodiment, mixing and coating a bleach activator with one or more of a fatty acid, a fatty acid polyol ester, a polyglycol, and/or a fatty alcohol oxalkylate is disclosed. The peroxide component is added in a solid form. The resulting mixture is agglomerated in a high-shear mixer.
While the claims concluding the specification particularly point out and distinctly claim the precise subject matter regarded as invention, the preferred embodiments may be best understood from the following detailed description.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The term bleach may be used in the contexts of both soil removal and whitening. For example, in common fabric and textile cleaning, bleach will react with and dissociate certain soils (i.e. tea, wine stains) thereby removing them from the surface of the fabric they are adhered to. Also, bleach, as an oxidizer, will break apart light absorbing chemical configurations called chromophores, rendering the oxidized material colorless.
Bleaching can also be applied to soil on hard surfaces. Additional potential applications are in personal care, e.g. bleaching hair, improving cleaning properties of denture cleaners, etc. Furthermore, the bleach compounds, or oxidizing compounds formulated according to the preferred embodiments herein, can be used in industrial cleaning applications, for bleaching wood, pulp and paper, for bleaching cotton, as well as for germ-killing formulations. The preferred embodiments herein may also be used for cleaning textiles and hard surfaces, especially dishes, by using bleach activator compounds in combination with peroxygen components in an aqueous solution. These can contain additional materials for washing and cleaning hard surfaces, and more particularly, for cleaning dishes, for which use in an automatic dish washing application is preferred.
Preferred peroxide components include perborate-monohydrate, perborate-tetrahydrate, percarbonates, alkali persulphates, persilicates, and percitrates in which sodium is the preferred alkali metal, as well as hydrogen peroxide adducts of urea or amine oxides. Additionally or alternatively, peroxycarboxylic acids, e,g, dodecane di-peracid or phthalimido percarboxylic acids, can be used which can be substituted at the aromatic ring. Addition of small amounts, for example, less than one percent by weight, of stabilizers of the bleaching agents, like phosphonates, meta silicates, as well as manganese and magnesium salts, is contemplated by alternate embodiments. The co-granules of the bleach activator and peroxide components may include fatty acids or fatty acid polyol esters. Fatty acids comprise linear or branched, saturated or unsaturated fatty acids having 6 to 30 C-atoms, and preferably 10 to 22 carbon atoms. Examples of fatty acids include but are not limited to capronic acid, caprylic acid, 2-ethyl-hexanoyic acid, palmitoleinic acid, stearic acid, isostearic acid, oleic acid, elaidinic acid, petroselinic acid, linolic acid, linoleic acid, elaeosterinic acid, arachinic acid gadoleinic acid, behenic acid, eurucaic acid, and dimers of unsaturated fatty acids. More preferable are fatty acid carbon chain fractions of coconut oil, palm oil or tallow, most preferably stearic acid.
In a further preferred embodiment, the co-granules of bleach activator and peroxide component comprise fatty acid poly esters. These esters can be produced by esterification of polyvalent alcohols with fatty acids. Especially preferred are stearic acid esters of pentaerythritol, and even more preferred are pentaerythritol distearate. Useful as polyvalent alcohols are glycol, benzene glycol, propylene glycol, butylene glycol, butane diol, methylpropane diol, pentylene glycol, iso-pentyl diol, neopentyl glycol, hexylene glycol, hexane diol, ethylhexane diol, diethylene glycol, methoxy diglycol, ethoxy diglycol, butoxy diglycol, dimethoxy diglycol, dipropylene glycol, glycerol, oligo glycerol, poly glycerol, four-valent alcohols, e.g. erythrose, threose, especially pentaerythritol, five-valent alcohols, e.g. arabitol, adonitol, xylitol, six-valent alcohols, e.g. sorbitol, mannitol, dulcitol, as well as saccharides, e.g. ribose, xylose, lyxose, altose, glucose, fructose, galactose, arabinose, mannose, gulose, idose, talose, and desoxy sugars, like Rhamnose and fructose, disaccharides, e.g. cane-sugar, trehalose, lactose, maltose, gentiobiose, melibiose, cellobiose, oligo and poly saccharides, e.g. cellotriose, cellotetrose, raffinose, acarbose, as well as starch and its components amylose, amylopektin, and dextrines, dextranes, Xanthanes, or cellulose. Suitable for esterification reactions are all linear or branched, saturated and/or unsaturated fatty acids having 6 to 30 C-atoms, preferably 10 to 22 carbon atoms, as mentioned above.
The fatty acid esters according to the preferred embodiments can also be obtained by transesterifiaction of fatty acid methylesters with polyvalent alcohols or fatty acid triglycerides. The carbon chain in fatty acid methylesters consists of 8 to 22 carbon atoms, being linear or branched, saturated or unsaturated. Examples are palmitic acid, stearic acid, lauric acid, linolic acid, linoleic acid, isostearic acid or oleic acid. Fatty acid triglycerides comprise all native animal or vegetable based oils, fats, and waxes, e.g. olive oil, rapeseed oil, palmkernel oil, sunflower oil, coconut oil, linseed oil, castor oil, soybean oil, also in their refined or hydrogenated forms.
Saccharide esters can be obtained in good yields by reaction of saccharides with activated fatty acid derivatives, e.g. fatty acid chlorides or anhydrides in the presence of an amine base, e.g. pyridine.
Polyglycerol esters are preferred, e.g. diglycerol-140 EO- tristearate, sorbitan fatty acid esters, e.g. sorbitan oleate, ethoxylated polyethylene glycol stearates, esters of dextrines having a degree of polymerization of 3 to 200, preferably 5 to 100, most preferably 10 to 50, especially fatty acid esters of dextrine palmitate esters, as well as disaccharide esters, especially esters of cellobiose, most preferably cellobiose palmitate esters, esters of pentaerythritol, PEG especially pentaerythritol stearic acid esters, most preferably pentaerythritol distearate.
In one preferred embodiment, the co-granules of bleach activator and peroxide component include effective amounts of: a) tetraacetyl ethylene diamine (TAED) b) sodium percarbonate c) stearic acid and/or pentaerythritol distearate.
In another preferred embodiment, the co-granules of bleach activator and peroxide components include: a) one or more bleach activators in ratios from 1 to 50 weight-%, preferably from 1 to 20 weight-%, most preferably from 5 to 10 weight- % b) one or more peroxide components in ratios from 50 to 99 weight-%, preferably from 75 to 99 weight-%, most preferably from 80 to 90 weight-% c) one or more fatty acid or fatty acid esters in ratios from 1 to 50 weight-
%, preferably from 1 to 20 weight-%, most preferably from 5 to 10 weight-%.
Thus, the ratio of bleach activator to peroxide component may be in the range of 1 : 0.5 to 1 :20 parts by weight, and preferably 1 :1 to 1 :5 parts by weight.
Furthermore, in another preferred embodiment, the co-granules of bleach activator and peroxide component comprise additional binders, additives, and carriers. The group of binders includes cellulose, starch, ethers and esters thereof, for example carboxymethyl cellulose (CMC), methyl cellulose (MC) or hydroxyethyl or hydroxypropyl cellulose (HEC, HPC) and the corresponding starch derivatives, and can also include film-forming polymers like polyacrylic acids and salts thereof. Preferred binders include anionic compounds in powder form, especially cumeme, xylene, toluene sulphonates, alkylethersulphates, alkylsulphates, α-olefin sulphonates and soaps. The amount of binder based on finished granule can range from about 1 to 45 weight-%, preferably from about 5 to 30 weight-%. The co-granules of bleach activator-peroxygen compound are used in detergent formulations according to the invention in concentrations of about 0.1 to 15%, preferably about 1 to 8%. In prespotters or disinfectants, the concentration of the bleach activator compound up to about 50% can be applied.
Granulation of the bleach activator-peroxygen compounds can be performed in known mixing equipment, either in a batch process or a continuous process. Suitable mixing devices include plough shear mixers (Lδdige KM types, Drais K-T types) as well as other highly effective mixing devices, e.g. Eirich, Schugi, Lδdige CB-types, Drain K-TT types). All mixing processes producing satisfactory mixing efficacy can be utilized. According to another embodiment, all of the components are mixed simultaneously. Alternatively, the peroxygen compound is preferably mixed with a molten binder and homogenized. In a second step, the bleach activator is added, and the composition is granulated in a high-speed mixer.
One preferred mixer for preparing these preferred compositions is a Littleford Day Horizontal Plow Mixer, a medium intensity mixer that creates a mechanically fluidized bed of material. The mixer includes a horizontal cylinder or drum with a central shaft from which mixing tools radiate. The mixing tools cover the entire surface of the drum, eliminating dead spots where product would be unmixed. The mechanically fluidized bed provides for rapid mixing, effective heat transfer for both cooling and heating, and incorporation of liquids onto the materials. Rapid, accurate mixing of dry components is easily accomplished due to the mixing tools moving the material from end to end in the drum. Liquids can be sprayed onto the fluidized material bed from as low as 0.5% to 50%, i.e., to a point where the material becomes a paste or has a dough-like consistency. Use of an optional jacket can provide heat input for reactions, drying, melting of material in a coating operation, or as means to make a paste such as hot melt adhesives. Cooling of the product can also be accomplished with the jacket.
The mixers can be equipped with high speed choppers, mounted in a back lower quadrant of the mixer. These choppers impart high shear to the material, allowing for dispersion of material and incorporation of viscous liquids that are hard to spray. The chopper blade configuration can be changed to increase or decrease the shear input as needed. The mixers can be built as pressure vessels and vacuum rated per the process needs.
Materials may be discharged from the mixer through a contour door or a valve mounted in the center of the mixer bottom. The discharge of materials from the mixer is normally quite rapid. Additional valves can be added to the discharge door or valve to control the output flow therethrough for packaging, for example.
The residence time in the granulator is preferably 0.5 seconds to 20 minutes, and more preferably about 2 minutes to 10 minutes. In another preferred process option, a drying and/or cooling step is employed after granulation, to reduce or avoid stickiness of the granules produced. Post- treatment processes may be performed in the same mixer types described above or in conventional fluidized bed equipment. Coarse and fine particles may be separated by sieving. The coarse fraction may be milled and fed back into the granulation process together with the fines fraction.
Furthermore, in another preferred embodiment, the peroxygen compound, fatty acid or poly ester (binder), and optionally other solid, liquid or molten additives are fed into the mixing device and are homogenized. The mixture is heated to temperatures above the melting point of the binder. The bleach activator is added to this mixture to obtain a plastified mass. Mixing devices as mentioned above can be used, but also kneaders or specific extruder types (e.g. Extrud-o-mix of Hosokawa-Bepex Corp.) are suitable. The mass from the granulation step can be processed into extrudates by appropriate equipments, as extruder-types (e.g. single-screw and twin-screw, dome and basket extruders), a flat die press or a ring die press. Such equipment is available from companies such as Schlϋter, Amandus-Kahl, Hosokawa Bepex, Fuji-Paudal or Handle. The extrudates are sized to the desired dimension in a post-treatment step. Optionally a spheronizer can be used for bead making.
After sizing of the granules, residual water can be removed to increase particle stability. Drying and/or cooling can be performed using the same mixer types described above, or in conventional fluidized bed equipment. Coarse and fine particles may be separated by sieving. The coarse fraction may be milled and fed back into the granulation process together with the fines fraction.
Coating
The granules can be directly used in laundry and cleaning products. However, in a more preferred form, a coating is be applied. Through coating, using film forming substances, the product properties can be influenced significantly.
Suitable coating materials include waxes, silicones, fatty acids, fatty alcohols, soaps, anionic surfactants, nonionic surfactants, cationic surfactants, anionic and cationic polymers, and polyalkylene glycols. Coating materials having a melting point in the range of 30 to 100° C are preferred, e.g. C8 - C31 fatty acids (e.g. lauric, myristinic, or stearic acid), C8 - C31 fatty alcohols, polyalkylene glycols having a molecular weight of 1000 to 50000 g/mol, fatty alcohol oxalkylates containing 1 to 100 moles of EO, alkane sulfonates, alkyl benzene sulfonates, α-olefins sulfonates, alkyl sulfates, alkyl ether sulfates, polymers (e.g. polyvinyl alcohols), and waxes (e.g. montane waxes, paraffin waxes, ester waxes, polyolefin waxes, silicones).
The coating materials can contain other materials either dissolved or suspended, like homo, co, or crafted co-polymers of unsaturated carboxylic acids and/or sulfonic acids, as well as alkali salts thereof, cellulose ethers, starch, starch ethers, polyvinyl pyrrolidone, mono and polyvalent carboxylic acids, hydroxy carboxylic acids or ether carboxylic acids having 3 to 8 carbon atoms, as well as salts thereof, silicates, carbonates, bicarbonates, sulfates, phosphates, and phosphonates. Depending on the desired properties, the coating material can be applied from 1 to 30 weight-percent, preferably 5 to 15 weight-% of the total coated granule. For coating, conventional mixers and fluidized bed devices can be used. Suitable mixers include, e.g. plough-shear mixers or Schugi Mixers.
The bleach activator-peroxygen compound-co-granulates according to the preferred embodiments described above can be used in laundry and cleaning products, as well as products used to kill germs. Major components of those consumer products include anionic surfactants, nonionic surfactants, builder systems (such as zeolites, phosphates, polymers, sodium carbonate, silicates and layered silicates), organic builders, enzymes, anti-redeposition agents (such as soil release polymers and dye transfer inhibitors), and other ingredients as known in the art, such as colors and fragrances, etc.
Method Examples
Two exemplary processes are provided hereinbelow to illustrate the manufacture of the bleach/bleach activator co-granule according to the invention.
1.) Sodium Percarbonate is charged to the mixing vessel along with the formulation amount of fatty acid. The mixer used is a Littleford Day MGT Series Vertical mixer/granulator with medium intensity vortex mixing using a single, four blade impeller located at the base of the mixer. The mix is heated to a temperature above the melting point of the fatty acid. The impeller RPM is raised to 1500 RPM. After 2 minutes of mixing, the mixer is stopped and the formulation amount of TAED is added. The mixing then continues for 30 seconds at a mixer speed of 1200 RPM. The mixing is then stopped and the batch is discharged.
2.) In a separate vessel, melt the fatty acid, add the formulation amount of TAED to the molten fatty acid. Charge the same mixer described in item #1 above with the formulation amount of sodium percarbonate and mix at a speed of 1200 RPM. After 1 minute stop mixing, add the molten mix of fatty acid and TAED to the sodium percarbonate, start the mixer and mix for 1 minute at a mixer speed of 1200 RPM. After 1 minute of mixing, discharge the mixer.
The formulation amounts used in both examples were:
Raw Material wt. %
Sodium Percarbonate 83
TAED 10
Fatty Acid 7_
Total 100
The mixers used were Lodige type, high speed mixers designed for efficient liquid dispersion on powders, and better control on product density and particle size distribution. Table I shows median particle size for the tests conducted on the material made in the above examples. Data regarding median particle size (d50) was obtained using the ISO 3118 method.
Table I
Trial # d 10 (mic.) d50 (mic.) d90 (mic.)
1 354 604 1070
2 326 577 966
3 309 580 987
Table Il shows available oxygen, median particle size and stability data in a set of six different co-granulations made according to the invention. Data reflecting available oxygen is generated using "a standard potassium permanganate titration method." Data reflecting median particle size is obtained using the ISO 3118 standard industrial method. Data reflecting stability percentage is obtained by measuring the remaining amount of available oxygen in the product (as a percentage of the original amount) after accelerated storage at industry standard test conditions. Table Il
Figure imgf000014_0001
The described embodiments are to be considered in all respects only as illustrative and not restrictive, and the scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. Those of skill in the art will recognize changes, substitutions and other modifications that will nonetheless come within the scope of the invention and range of the claims.

Claims

WHAT IS CLAIMED IS:
1. A method of preparing a bleach composition, comprising: mixing one of a bleach activator and a bleach component with a binder at a time and temperature sufficient to form a granulate; adding to the granulate the other of the bleach activator and the bleach component to form a co-granulate.
2. The method of claim 1 , wherein the bleach activator is present in the co-granulate at an amount from about 1-50% by weight, the bleach component is present in the co-granulate at an amount from about 50-99% by weight and the binder is present in the co-granulate at an amount from about 1-50% by weight.
3. The method of claim 1 , wherein the bleach activator is present in the co-granulate at an amount from about 1-20% by weight, the bleach component is present in the co-granulate at an amount from about 75-99% by weight and the binder is present in the co-granulate at an amount from about 1-20% by weight.
4. The method of claim 1 , wherein the bleach activator is present in the co-granulate at an amount from about 5-10% by weight, the bleach component is present in the co-granulate at an amount from about 80-90% by weight and the binder is present in the co-granulate at an amount from about 5-10% by weight.
5. The method of claim 1 , wherein the bleach activator comprises one or more of an N- or O-Acyl compound, an acylated alkylene diamine, tetra acetyl glycourile, an N-acylated hydantoine, a hydrazine, a triazole, a hydratriazine, a urazoles, a di-ketopiperazine, a sulfurylamide and a cyanurate.
6. The method of claim 1 , wherein the bleach activator comprises one or more of a carboxylic acid anhydride, sodium-acetoxy-benzene sulfonate, sodium- benzoyloxy benzene sulfonate (BOBS), sodium-lauroyloxy-benzene sulfonate
(LOBS), sodium-isononaoyloxy benzene sulfonate (iso-NOBS), acylated sugar derivatives, and pentaglucose.
7. The method of claim 1 , wherein the bleach activator comprises tetra acetyl ethylene diamine (TAED).
8. The method of claim 1 , wherein the bleach activator comprises sodium-nonaoyloxy benzene sulfonate (NOBS).
9. The method of claim 1 , including both hydrophilic and hydrophobic bleach activators.
10. The method of claim 1 , wherein the binder includes a fatty acid.
1 1. The method of claim 1 , wherein the binder includes one or more of a fatty acid and a fatty acid ester.
12. The method of claim 1 , wherein the bleach component includes a peroxide.
13. The method of claim 1 , wherein the bleach component comprises one or both of sodium percarbonate and sodium perborate.
14. The method of claim 1 , further comprising processing the co-granulate to produce a median particle size between 300 and 900 microns.
15. The method of claim 1 , further comprising processing the co-granulate o produce a median particle size between 550 and 700 microns.
16. The method of claim 1 , further comprising processing the co-granulate to produce a density between 800 and 1200 grams/Liter.
17. The method of claim 1 , further comprising processing the co-granulate to produce a density between 900 and 1050 grams/Liter.
18. The method of claim 1 , wherein the granulate includes the bleach component and the binder.
19. The method of claim 1 , wherein the granulate includes the bleach activator and the binder.
20. The method of claim 1 , wherein the granulate is mixed at a time and temperature sufficient to melt the binder.
21. The method of claim 20, wherein the granulate is mixed for about 2-10 minutes in a granulator.
22. The method of claim 20, wherein the granulate is mixed at a temperature of about 30 -100 degrees C.
23. The method of claim 1 , further including coating the co-granulate.
24. A bleaching agent co-granulate, comprising, in combination: a bleach component; a bleach activator; and a binder at about 1-20% by weight, wherein said bleach component and said bleach activator are present at a ratio of about 1 :1 to about 9:1 parts by weight.
25. The bleaching agent co-granulate of claim 24, wherein said bleach component includes one or more of sodium percarbonate and sodium perborate.
26. The bleaching agent co-granulate of claim 24, wherein said bleach activator includes one or more of an N- or O-Acyl compound, an acylated alkylene diamine, tetra acetyl glycourile, N-acylated hydantoine, hydrazine, triazole, hydratriazine, urazole, di-ketopiperazine, sulfurylamide, cyanurate, a carboxylic acid
95 anhydride, sodium-acetoxy-benzene sulfonate, sodium-benzoyloxy benzene sulfonate (BOBS), sodium-lauroyloxy-benzene sulfonate (LOBS), sodium- isononaoyloxy benzene sulfonate (iso-NOBS), acylated sugar derivatives, pentaglucose, tetra acetyl ethylene diamine (TAED), and sodium-nonaoyloxy benzene sulfonate (NOBS). 100
27. The bleaching agent co-granulate of claim 24, wherein said bleach activator includes both hydrophilic and hydrophobic bleach activators.
28. The bleaching agent co-granulate of claim 24, wherein said binder 105 includes one or more of fatty acids, fatty acid polyol esters, polyglycols and fatty alcohol oxalkylates.
29. The bleaching agent co-granulate of claim 24, further including a bleaching agent stabilizer selected from the group consisting of a phosphonate, a no meta silicate, and a magnesium salt.
30. The bleaching agent co-granulate of claim 24, wherein said binder is present at about 5-10% by weight, wherein said bleach component and said bleach activator are present at a ratio of about 1 :1 to about 5:1 parts by weight.
15
31. The bleaching agent co-granulate of claim 24, wherein the co- granulate is a median particle size between about 550 and 700 microns.
32. The bleaching agent co-granulate of claim 24, wherein the co- 20 granulate is a density between about 900 and 1050 grams/Liter.
PCT/US2007/066793 2006-04-27 2007-04-17 Co-granulates of bleach activator-peroxide compounds WO2007127641A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0710848-6A BRPI0710848A2 (en) 2006-04-27 2007-04-17 method of preparing a bleaching composition, and, co-granulating bleaching agent
EP07760777A EP2021454A1 (en) 2006-04-27 2007-04-17 Co-granulates of bleach activator-peroxide compounds
MX2008013747A MX2008013747A (en) 2006-04-27 2007-04-17 Co-granulates of bleach activator-peroxide compounds.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/413,131 2006-04-27
US11/413,131 US7709437B2 (en) 2006-04-27 2006-04-27 Co-granulates of bleach activator-peroxide compounds

Publications (1)

Publication Number Publication Date
WO2007127641A1 true WO2007127641A1 (en) 2007-11-08

Family

ID=38493652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/066793 WO2007127641A1 (en) 2006-04-27 2007-04-17 Co-granulates of bleach activator-peroxide compounds

Country Status (7)

Country Link
US (2) US7709437B2 (en)
EP (1) EP2021454A1 (en)
BR (1) BRPI0710848A2 (en)
MX (1) MX2008013747A (en)
TW (1) TW200808954A (en)
WO (1) WO2007127641A1 (en)
ZA (1) ZA200808750B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110005007A1 (en) * 2009-07-09 2011-01-13 The Procter & Gamble Company Method of Laundering Fabric Using a Compacted Laundry Detergent Composition
US20110005006A1 (en) * 2009-07-09 2011-01-13 The Proter & Gamble Company Method of Laundering Fabric Using a Compacted Laundry Detergent Composition
WO2011005833A1 (en) 2009-07-09 2011-01-13 The Procter & Gamble Company Layered particles and compositions comprising same
WO2011005906A1 (en) 2009-07-09 2011-01-13 The Procter & Gamble Company Process for making bleach co-particles
US20110010870A1 (en) * 2009-07-09 2011-01-20 The Procter & Gamble Company Method of Laundering Fabric Using a Compacted Laundry Detergent Composition
DE102010028236A1 (en) 2010-04-27 2011-10-27 Evonik Degussa Gmbh Bleaching agent particles comprising sodium percarbonate and a bleach activator
EP2447350A1 (en) 2010-10-29 2012-05-02 The Procter & Gamble Company Bleach coparticle
US8198503B2 (en) 2007-11-19 2012-06-12 The Procter & Gamble Company Disposable absorbent articles comprising odor controlling materials
US8658590B2 (en) 2006-07-27 2014-02-25 Evonik Degussa Gmbh Coated sodium percarbonate particles
US8945671B2 (en) 2007-12-19 2015-02-03 Evonik Treibacher Gmbh Method for producing encapsulated sodium percarbonate particles
US10870818B2 (en) 2018-06-15 2020-12-22 Ecolab Usa Inc. Enhanced peroxygen stability using fatty acid in bleach activating agent containing peroxygen solid

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471740A (en) * 2009-07-09 2012-05-23 宝洁公司 Continuous process for making a laundry detergent composition
WO2011005827A1 (en) * 2009-07-09 2011-01-13 The Procter & Gamble Company Compositions containing bleach co-particles
GB201003892D0 (en) * 2010-03-09 2010-04-21 Reckitt Benckiser Nv Detergent composition
US20140243252A1 (en) * 2013-02-28 2014-08-28 Futurefuel Chemical Company Laundry detergent formulation
US10280386B2 (en) 2015-04-03 2019-05-07 Ecolab Usa Inc. Enhanced peroxygen stability in multi-dispense TAED-containing peroxygen solid
US9783766B2 (en) 2015-04-03 2017-10-10 Ecolab Usa Inc. Enhanced peroxygen stability using anionic surfactant in TAED-containing peroxygen solid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545784A (en) * 1983-04-14 1985-10-08 Interox Chemicals Limited Particulate sodium perborate monohydrate containing adsorbed activator
DE4316481A1 (en) * 1993-05-17 1994-11-24 Henkel Kgaa Bleach and disinfectant
US5458801A (en) * 1991-09-27 1995-10-17 Kao Corporation Process for producing granular bleach activator composition and granular bleach activator composition

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064062A (en) * 1975-12-15 1977-12-20 Colgate-Palmolive Stabilized activated percompound bleaching compositions and methods for manufacture thereof
IE49996B1 (en) * 1979-07-06 1986-01-22 Unilever Ltd Particulate bleach compositions
DE3011998C2 (en) 1980-03-28 1982-06-16 Henkel KGaA, 4000 Düsseldorf Process for the production of a storage-stable, easily soluble granulate with a content of bleach activators
EP0053859B1 (en) * 1980-12-09 1985-04-03 Unilever N.V. Bleach activator granules
US4378300A (en) * 1981-12-10 1983-03-29 Colgate-Palmolive Company Peroxygen bleaching composition
US4664837A (en) * 1982-10-04 1987-05-12 Colgate Palmolive Co. Bleaching and laundering composition containing magnesium monoperoxyphthalate a chelating agent, a peroxygen compound and phthalic anhydride
GB8410826D0 (en) * 1984-04-27 1984-06-06 Unilever Plc Bleach products
GB8415909D0 (en) * 1984-06-21 1984-07-25 Procter & Gamble Ltd Peracid compounds
DE3504628A1 (en) * 1985-02-11 1986-08-14 Henkel KGaA, 4000 Düsseldorf METHOD FOR PRODUCING GRANULATE GRANULATE
US4678594A (en) 1985-07-19 1987-07-07 Colgate-Palmolive Company Method of encapsulating a bleach and activator therefor in a binder
DE4439039A1 (en) * 1994-11-02 1996-05-09 Hoechst Ag Granulated bleach activators and their manufacture
DE19606343A1 (en) * 1996-02-21 1997-08-28 Hoechst Ag Bleach
US5981463A (en) 1998-06-08 1999-11-09 Noramtech Corporation Anhydrous detergent/bleach composition and method of preparing same
DE19831703A1 (en) * 1998-07-15 2000-01-20 Henkel Kgaa Portions of detergent or washing composition packaged in water-soluble film containers with most of the composition above a specified particle size to prevent container sealing and storage problems
DE19858887A1 (en) * 1998-12-19 2000-06-21 Henkel Kgaa High density compacted washing and cleaning agent compositions based on codried mixture of amorphous sodium silicate and polymeric polycarboxylate
DE10161766A1 (en) 2001-12-15 2003-06-26 Clariant Gmbh Bleach co-granules
KR100494814B1 (en) 2003-02-17 2005-06-13 동양제철화학 주식회사 Process for preparing granular sodium percarbonate
BR0318303A (en) 2003-05-07 2006-07-11 Ciba Sc Holding Ag bleach composition and bleach detergent composition
EP1794272B1 (en) * 2004-09-08 2009-08-26 Clariant Produkte (Deutschland) GmbH Mixtures of bleaching agents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545784A (en) * 1983-04-14 1985-10-08 Interox Chemicals Limited Particulate sodium perborate monohydrate containing adsorbed activator
US5458801A (en) * 1991-09-27 1995-10-17 Kao Corporation Process for producing granular bleach activator composition and granular bleach activator composition
DE4316481A1 (en) * 1993-05-17 1994-11-24 Henkel Kgaa Bleach and disinfectant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2021454A1 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658590B2 (en) 2006-07-27 2014-02-25 Evonik Degussa Gmbh Coated sodium percarbonate particles
US8198503B2 (en) 2007-11-19 2012-06-12 The Procter & Gamble Company Disposable absorbent articles comprising odor controlling materials
US8945671B2 (en) 2007-12-19 2015-02-03 Evonik Treibacher Gmbh Method for producing encapsulated sodium percarbonate particles
WO2011005906A1 (en) 2009-07-09 2011-01-13 The Procter & Gamble Company Process for making bleach co-particles
US20110010870A1 (en) * 2009-07-09 2011-01-20 The Procter & Gamble Company Method of Laundering Fabric Using a Compacted Laundry Detergent Composition
US20110005007A1 (en) * 2009-07-09 2011-01-13 The Procter & Gamble Company Method of Laundering Fabric Using a Compacted Laundry Detergent Composition
WO2011005833A1 (en) 2009-07-09 2011-01-13 The Procter & Gamble Company Layered particles and compositions comprising same
US20110005006A1 (en) * 2009-07-09 2011-01-13 The Proter & Gamble Company Method of Laundering Fabric Using a Compacted Laundry Detergent Composition
DE102010028236A1 (en) 2010-04-27 2011-10-27 Evonik Degussa Gmbh Bleaching agent particles comprising sodium percarbonate and a bleach activator
WO2011134972A1 (en) 2010-04-27 2011-11-03 Evonik Degussa Gmbh Bleaching agent particles comprising sodium percarbonate and a bleach activator
EP2447350A1 (en) 2010-10-29 2012-05-02 The Procter & Gamble Company Bleach coparticle
WO2012058082A1 (en) 2010-10-29 2012-05-03 The Procter & Gamble Company Bleach coparticle
US10870818B2 (en) 2018-06-15 2020-12-22 Ecolab Usa Inc. Enhanced peroxygen stability using fatty acid in bleach activating agent containing peroxygen solid
US11193093B2 (en) 2018-06-15 2021-12-07 Ecolab Usa Inc. Enhanced peroxygen stability using fatty acid in bleach activating agent containing peroxygen solid

Also Published As

Publication number Publication date
US7709437B2 (en) 2010-05-04
EP2021454A1 (en) 2009-02-11
TW200808954A (en) 2008-02-16
US20070252107A1 (en) 2007-11-01
US8431519B2 (en) 2013-04-30
BRPI0710848A2 (en) 2011-08-23
MX2008013747A (en) 2009-03-06
ZA200808750B (en) 2009-12-30
US20100207062A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
US7709437B2 (en) Co-granulates of bleach activator-peroxide compounds
JP4897988B2 (en) Process for the production of coated granular bleach activators
ES2525813T3 (en) Bleaching agents granules with active coating
JP3242669B2 (en) Production of non-aqueous particle-containing liquid detergent composition containing surfactant-constructed liquid phase
JP2010526156A (en) Use of aminoacetone and its salts as bleaching effect enhancer for peroxygen compounds (Bleichkraftverstaerker)
DE2338412A1 (en) Bleaching agent suitable for use in laundry detergents and bleaching agents, and the process for their manufacture
US5167852A (en) Process for preparing particulate detergent additive bodies and use thereof in detergent compositions
JP3233944B2 (en) Non-aqueous particulate matter-containing liquid detergent composition having a liquid phase structured by a surfactant
JP2002507227A (en) Non-aqueous speckle-containing liquid detergent composition
JP3255931B2 (en) Non-aqueous detergent composition containing a specific alkylbenzene sulfonate surfactant
JP2002507231A (en) Structured non-aqueous liquid detergent compositions containing fatty acids
JPH05509119A (en) Granular bleach activator
EP1791939A1 (en) Bleach activator mixtures
JP3267626B2 (en) Non-aqueous detergent composition containing bleach precursor
US5336433A (en) Bleaching agent
DE2263939A1 (en) TABLETS SUITABLE FOR USE WITH TEXTILE DETERGENTS, CONTAINING BLEACH ACTIVATORS
PL180050B1 (en) Granular detergent compositions containing zeolites and method of obtaining them
JP5124460B2 (en) Granular bleach activator mixture
JPH02284999A (en) Granulated detergent additive product, preparation thereof and use it in detergent composition
GB2267911A (en) Solid granulate detergent additives
JP2004331816A (en) Bleaching detergent composition
JPH11514027A (en) Non-aqueous liquid cleaning compositions containing coated particles
KR20050057051A (en) Detergent particle
ES2331086T3 (en) BLENDING AGENTS MIXTURES.
JPH11513069A (en) Non-aqueous detergent composition containing a specific alkylbenzene sulfonate surfactant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07760777

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2008/013747

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007760777

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007760777

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0710848

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081024