WO2007125872A1 - Optical recording disc and optical recording system using same - Google Patents

Optical recording disc and optical recording system using same Download PDF

Info

Publication number
WO2007125872A1
WO2007125872A1 PCT/JP2007/058753 JP2007058753W WO2007125872A1 WO 2007125872 A1 WO2007125872 A1 WO 2007125872A1 JP 2007058753 W JP2007058753 W JP 2007058753W WO 2007125872 A1 WO2007125872 A1 WO 2007125872A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical functional
optical
group
functional layer
Prior art date
Application number
PCT/JP2007/058753
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuyuki Takahashi
Naoyasu Miyagawa
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2007125872A1 publication Critical patent/WO2007125872A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B2007/24612Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes two or more dyes in one layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24079Width or depth

Definitions

  • the present invention relates to an optical recording disk suitable for high-density and large-capacity recording / reproduction and an optical recording system using the same.
  • the amount of information that can be recorded on one optical recording medium has increased significantly.
  • DVD-format media such as DVD-R, DVD-RAM, DVD-RW, etc.
  • the disc is 4.7 GB, which is about 7 times that of CD-R and CD-RW.
  • the Blu-Ray (hereinafter referred to as BD) format which has been recently standardized, is 25 GB for a single-layer disc and 50 GB for a double-layer disc, and a double-layer disc can record about 10 times the information of a DVD. . This means that the digital and IB Vision can be recorded for more than 4 hours.
  • the depth Gd of each groove is 15 nm or more and 25 nm or less on one main surface of the support substrate of the optical recording disk, and the half width Gw of the group is
  • a method of stabilizing the tracking operation by forming groups and lands alternately so that the thickness is 150 nm or more and 230 nm or less and the recording layer contains an inorganic element.
  • FIG. 12 is a cross-sectional view of a conventional dual-layer optical recording disk.
  • a rear layer 103, an intermediate layer 101, a front layer 104, and a cover layer 102 are formed on a substrate 100 as shown in FIG.
  • the front layer 104 which is the front layer
  • the transparent layer through which the laser beam LB passes, that is, the cover layer 102 is as thin as 75 m. Changes less, and signal degradation due to optical aberrations during disc tilt is small.
  • the thickness of the transparent layer through which the laser beam LB passes (the thickness of the cover layer 102 and the intermediate layer 101) is about 100 m
  • the change in the jitter of the playback signal with respect to the disc tilt increases, and the signal degradation due to aberrations during disc tilt is large, so the necessary margin (jitter value less than the predetermined value for the predetermined tilt width) is secured. I can't do that.
  • the two-layer optical recording disk by designing the two-layer optical recording disk by increasing the recording layer of the rear layer 103 so that the degree of modulation of the rear layer 103 is larger than that of the front layer 104, the signal of the rear layer 103 can be designed.
  • the required amplitude can be secured by increasing the amplitude.
  • the servo in order for an optical recording disk to exhibit stable performance, the servo must be stable.
  • One element of this servo is the tracking performance, and it is important that the change of the push-pull signal (hereinafter referred to as “PPnor malj t ⁇ ”) normalized by the reflection level before and after recording is small! is there.
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-196885
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-327016
  • the present invention provides an optical recording disc that can stabilize the tracking performance even when the recording layer is thick and can realize good recording and reproducing characteristics even when the recording layer is thin. Is intended to provide.
  • An optical recording disk includes a support substrate and a plurality of optical functional layers formed on the support substrate, and the laser beam is emitted from a direction opposite to the support substrate.
  • FIG. 1 is a cross-sectional view of a two-layer optical recording disk according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view for explaining definitions of a group width and a group depth.
  • FIG. 3 is a schematic diagram for explaining a state in which recording / reproduction is performed on the two-layer optical recording disk shown in FIG. 1 using a laser beam.
  • FIG. 4 is a diagram showing a relationship between disc tilt and jitter of an optical functional layer of an optical recording disc.
  • FIG. 5 is a diagram showing the relationship between the thickness of a recording layer of an optical recording disk and the degree of modulation.
  • FIG. 6 is a schematic diagram for explaining a tracking servo signal extraction method of the optical recording system of the present embodiment.
  • FIG. 7 is a diagram showing the relationship between the group phase difference and the SUM and PP signals.
  • FIG. 8 is a diagram showing the relationship between the recording layer thickness and PPr.
  • FIG. 9 is a cross-sectional view of a four-layer optical recording disk in one embodiment of the present invention.
  • FIG. 10 is a diagram showing the relationship between the group width, PPr, and modulation factor in the thickness of each recording layer of the four-layer optical recording disk in one embodiment of the present invention.
  • FIG. 11 is a diagram showing the relationship between the group width and PPnormal at each group depth of the four-layer optical recording disk in the embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a conventional dual-layer optical recording disk.
  • FIG. 1 is a cross-sectional view of a two-layer optical recording disk according to an embodiment of the present invention.
  • a two-layer optical recording disk shown in FIG. 1 includes a support substrate 1, an L0 optical functional layer 10, an intermediate layer 2,
  • L1 optical functional layer 15 and cover layer 5 are provided.
  • the L0 optical functional layer 10 includes an L0 reflection layer 6, an L0 back side dielectric layer 7, an L0 recording layer 8, and an L0 front side dielectric layer 9.
  • the L1 optical functional layer 15 includes an L1 reflective layer 11, an L1 back side dielectric layer 12, an L1 recording layer 13, and an L1 front side dielectric layer.
  • the support substrate 1 is a transparent substrate made of polycarbonate having a thickness of 1.1 mm and having tracking grooves (groups).
  • the support substrate is not particularly limited to this example, and various substrates can be used.
  • L0 recording layer 8 with a thickness of 20 nm and ZnS—SiO force 40 nm before L0
  • the side dielectric layer 9 is sequentially formed by vacuum sputtering. Thereafter, an intermediate layer 2 made of an ultraviolet curable resin and having a film thickness of 25 m is provided, and a groove (group) for tracking is formed on the surface by a transfer method.
  • the layer 14 is sequentially formed on the intermediate layer 2 by vacuum sputtering. Thereafter, a cover layer 5 having a film thickness of 75 ⁇ m made of an ultraviolet curable resin is formed.
  • the LO recording layer 8 preferably contains at least one selected from the group consisting of Te, Pd, and O force as a main component, which is preferably an inorganic write-once recording material. In this case, good recording / reproducing characteristics can be realized.
  • the other recording layers are the same as described above.
  • FIG. 2 is a cross-sectional view for explaining the definition of the group width and the group depth.
  • the L0 optical functional layer 10 will be described as an example, but the same applies to the L1 optical functional layer 15 and the like.
  • the group depth Gd in the present embodiment means the height of the step at the boundary between the intermediate layer 2 and the L0 optical functional layer 10
  • the group width Gw Means the width of the group at the depth of 1Z2 of the depth Gd of the groove.
  • the group is formed in accordance with the track pitch, and the track pitch can be arbitrarily set within the range of 0.31 m or more and 0.33 ⁇ m or less. If it is, 0.32 m can be used.
  • FIG. 3 is a schematic diagram for explaining a state in which recording / reproduction is performed on the double-layered optical recording disk shown in FIG. 1 using a laser beam.
  • the optical recording system 50 is configured as, for example, an optical recording drive, and includes an optical pickup 52 having a semiconductor laser that emits a laser beam LB.
  • the laser beam LB is an optical recording drive.
  • the light is converged by the objective lens 51 provided in the pickup 52 and guided to the two-layer optical recording disk.
  • the laser beam LB is transmitted from the cover layer 5 side to the front optical functional layer (incident surface side optical functional layer) L1 optical functional layer 15 or rear optical functional layer (supporting substrate side optical functional layer).
  • the L0 optical functional layer 10 is irradiated, and the focus servo of the objective lens 51 is applied using the reflected light from the L1 optical functional layer 15 or the L0 optical functional layer 10, and the L1 optical functional layer 10 Push-pull for functional layer 15 or L0 optical functional layer 10 group (convex part as seen from laser beam LB incident side) Tracking servo is applied by the method, and information is recorded and reproduced.
  • the tracking method is not particularly limited to the above example, and other methods may be used.
  • the wavelength of the laser beam LB is preferably in the range of not less than 400 nm and not more than 410 nm. In this case, information can be recorded and reproduced with high density and stability.
  • the NA of the objective lens 51 that is an optical system for converging the laser beam LB is preferably in the range of 0.84 or more and 0.86 or less. In this case, information can be recorded and reproduced with high density and stability.
  • FIG. 4 is a diagram showing the relationship between the disc tilt and jitter of the optical functional layer of the optical recording disc, and the thin line in the figure indicates that the thickness of the LO recording layer 8 of the optical functional layer 10 is lOnm. Shows the relationship between disc tilt and jitter in the case of, and the broken line shows the relationship between disc tilt and jitter when the thickness of the L1 recording layer 13 of the optical functional layer 15 is lOnm, and the thick line shows the optical function. The relationship between disc tilt and jitter when the thickness of the L0 recording layer 8 of the active layer 10 is 20 nm is shown.
  • the L1 recording layer 13 shows that when the range between the two vertical broken lines in the figure is the working tilt range, the jitter of the playback signal for the tilt within this range is less than the allowable jitter value shown by the horizontal broken line.
  • the thickness of the cover layer 5, which is the incident-side transparent layer is as thin as 75 ⁇ m, and the optical aberration due to tilting is small, so that the deterioration of jitter is small.
  • the incident-side transparent layer is as thick as 100 / zm, and the optical aberration due to tilt is large, so that the jitter is greatly deteriorated. .
  • the L0 recording layer 8 and the L1 recording layer 13 are effective.
  • the margin can be maintained by increasing the thickness of the recording layer as described below.
  • FIG. 5 is a diagram showing the relationship between the thickness of the recording layer of the optical recording disk and the degree of modulation.
  • the modulation degree increases by increasing the thickness of the recording layer containing Te—Pd—O as the main component. Accordingly, when the thickness of the LO recording layer 8 is 20 nm, the degree of modulation increases and the SZN ratio can be improved. As a result, as shown by the thick line in FIG. 4, the jitter can be reduced as a whole, so that even if the incident-side transparent layer is thick like the LO recording layer 8, the jitter margin for the required tilt range can be obtained. Can be secured.
  • the thickness of the recording layer is preferably 9 nm or more, more preferably lOnm or more.
  • the thickness of the L1 recording layer 13 is set to lOnm
  • the thickness of the L0 recording layer 8 is set to 20 nm
  • a margin of jitter with respect to the necessary tilt is secured.
  • the L0 recording layer 8 is preferably within 105 ⁇ m from the surface of the cover layer 5 which is a laser incident surface.
  • the optical aberration due to the disc tilt of the L0 recording layer 8 can be limited to a predetermined range, and a jitter margin for the necessary tilt range can be secured.
  • FIG. 6 is a schematic diagram for explaining a tracking servo signal extraction method of the optical recording system of the present embodiment.
  • FIG. 6 for the sake of clarity, only the part related to the tracking servo in the optical recording system is shown, and the other parts are not shown.
  • the land LT and the group GT are alternately formed on the recording layer (L0 recording layer 8 or L1 recording layer 13) of the double-layered optical recording disk, and the recording layer strength is reduced.
  • the reflected light RB is collected by the quadrant detector 61, and of the electric signals A to D from the light receiving areas 61a to 61d of the quadrant detector 61 excited by the reflected light RB, the electric signals from the light receiving areas 61a and 61b.
  • the signals A and B are input to the adder 62, and the electric signals C and D from the light receiving areas 61c and 61d are input to the calorie calculator 63.
  • the adder 62 adds the electrical signals A and B and outputs the result to the adder 64 and the subtractor 66, and the adder 63 adds the electrical signals C and D and outputs the result to the adder 64 and the subtractor 66.
  • Adder 64 adds all signals A to D, and the added signal is input to signal demodulation circuit 65 as a SUM signal (A + B + C + D).
  • the subtractor 66 subtracts the electric signal (C + D) on the other side from the electric signal (A + B) on one side along the groove by the group GT, and the subtracted signal is PP (push-pull signal). )
  • Signal is input to tracking servo circuit 67.
  • a normalized PP signal hereinafter, rppnor malj t
  • a normalized PP signal hereinafter, rppnor malj t
  • FIG. 7 is a diagram showing the relationship between the phase difference of the group (the optical groove depth of the group that takes into account the refractive index), the SUM signal, and the PP signal.
  • the SUM signal indicated by the broken line in Fig. 7 is maximum when the phase difference of the group is zero, and is minimum when the phase difference of the group is ⁇ 4.
  • the ⁇ signal indicated by the solid line in FIG. 7 is maximum when the group phase difference is ⁇ ⁇ 8, and is minimum when the group phase difference is zero or ⁇ ⁇ 4.
  • phase difference of a group of commonly used two-layer optical recording discs is about Z10 in an unrecorded state. If the group phase difference does not change after recording, the SUM signal PPnormal does not change because the ratio of ⁇ and ⁇ signal does not change. However, in practice, PPnormal often increases after recording. This is because the refractive index of the recording layer decreases after recording and the phase difference of the group with respect to the land increases. Moreover, the possibility of substrate deformation due to the heating temperature during recording is also conceivable.
  • phase difference of the above group will be described with reference to FIG. 7.
  • the phase difference of the group in the unrecorded state is the line LN
  • the group position is positioned at the position of the line LE or LF after recording.
  • the phase difference has moved.
  • This increases the ratio of PP signal to SUM signal and increases PPnormal.
  • FIG. 8 is a diagram showing the relationship between the thickness of the recording layer and PPr. As shown in Fig. 8, it can be seen that PPr tends to increase as the recording layer becomes thicker. This indicates that if other conditions are the same, the PPr increases in the optical functional layer 10 that is the thick rear layer of the recording layer, which affects the tracking performance.
  • the group width and depth are optimized as described below, and good tracking performance is realized even when the recording layer is thick.
  • the four-layer optical recording disk shown in FIG. An example will be described.
  • FIG. 9 is a cross-sectional view of a four-layer optical recording disk according to an embodiment of the present invention.
  • the four-layer type optical recording disk shown in FIG. 9 has a support substrate 1, L0 optical functional layer 10, intermediate layer 2, L1 optical functional layer 15, intermediate layer 3, L2 optical functional layer 19, intermediate layer 4, L3.
  • An optical functional layer 23 and a cover layer 5 are provided.
  • the arrow LI in the figure indicates the direction of incidence of the laser beam.
  • the L0 optical functional layer 10 is composed of the L0 reflection layer 6, the L0 back side dielectric layer 7, the L0 recording layer 8, and the L0 front side dielectric layer 9.
  • the L1 optical functional layer 15 includes an L1 reflection layer 11, an L1 back side dielectric layer 12, an L1 recording layer 13, and an L1 front side dielectric layer 14.
  • the L2 optical functional layer 19 includes an L2 back side dielectric layer 16, an L2 recording layer 17, and an L2 front side dielectric layer 18.
  • the L3 optical functional layer 23 includes an L3 back side dielectric layer 20, an L3 recording layer 21, and an L3 front side dielectric layer 22.
  • the support substrate 1 is a transparent substrate made of polycarbonate having a thickness of 1.1 mm and having tracking grooves (groups).
  • the support substrate is not particularly limited to this example, and various substrates can be used.
  • L0 optical functional layer 10 On the support substrate 1, as the L0 optical functional layer 10, a 40 nm thick L0 reflective layer 6 made of an Ag alloy carrier, a 30 nm thick L0 back side dielectric layer 7 made of ZnS-SiO force, Te—Pd—O
  • L0 recording layer 8 with a thickness of 20 nm and ZnS—SiO force 40 nm before L0
  • the side dielectric layer 9 is sequentially formed by vacuum sputtering. Thereafter, an intermediate layer 2 made of an ultraviolet curable resin and having a thickness of about 20 m is provided, and a tracking groove (group) is formed on the surface by a transfer method.
  • an L1 reflective layer 11 having a film thickness of 6 nm that also has an Ag alloy force
  • an L1 back dielectric layer 12 having a film thickness of 15 nm that also has a ZnS-SiO force, Te — Pd— O
  • the front dielectric layer 14 is sequentially formed by vacuum sputtering. Thereafter, an intermediate layer 3 made of an ultraviolet curable resin and having a thickness of about 20 m is provided, and a groove (group) for tracking is formed on the surface by a transfer method.
  • Films are sequentially formed. Thereafter, an intermediate layer 4 made of an ultraviolet curable resin and having a thickness of about 20 m is provided, and a tracking groove (group) is formed on the surface by a transfer method.
  • an intermediate layer 4 made of an ultraviolet curable resin and having a thickness of about 20 m is provided, and a tracking groove (group) is formed on the surface by a transfer method.
  • the L3 back side dielectric having a thickness of 5 nm, which also has ZnS-SiO force.
  • Body layer 20 6 nm thick L3 recording layer 21 mainly composed of Te—Pd—O, and ZnS—SiO?
  • the dielectric layer 22 on the front side of the L3 having a thickness of 15 nm is sequentially formed on the intermediate layer 4 by vacuum sputtering. Thereafter, a cover layer 5 made of an ultraviolet curable resin and having a thickness of about 40 / zm is formed.
  • the thickness of the L0 recording layer 8 is 20 nm
  • the thickness of the L1 recording layer 13 is 10 nm
  • the thickness of the L2 recording layer 17 The thickness of the L3 recording layer 21 is 6 nm
  • the reflectance from the optical functional layers 10, 15, 19, 23 to the outside of the disc is within ⁇ 20% of the average of each layer.
  • each of the intermediate layers 2, 3, and 4 may be changed little by little so that the plurality of layers are not focused.
  • the inventors of the present invention have 140, 160, 180, 200, 220, 240, and 260 nm as the group width of each layer.
  • the above four-layer type optical recording disk and double-layer type optical recording disk were created in six types of 14 nm, 16 nm, 18 nm, 20 nm, 22 nm, and 24 nm as types and group depths.
  • FIG. 10 is a diagram showing the relationship between the group width, the PPr, and the modulation degree in the thickness of each recording layer of the four-layer optical recording disk in one embodiment of the present invention.
  • 4 is a table showing the measurement results of PPr and modulation degree with respect to the width of the group in the thickness of each recording layer.
  • PPr correlates with the width of the group not only with the thickness of the recording layer. This is because the optical phase change after recording can be suppressed by narrowing the group width, and the recording layer (L0 recording layer 8: 20 nm) is thick like the L0 optical functional layer 10. If this is the case, the PPr can be kept small by narrowing the group width. it can.
  • the degree of modulation also has a correlation with the width of the group that depends on only the thickness of the recording layer. This is because the width of the recording mark can be increased by increasing the width of the group, such as L1 optical functional layer 15, L2 optical functional layer 19, and L3 optical functional layer 23.
  • the modulation factor can be compensated for by widening the group width.
  • FIG. 11 is a diagram showing the relationship between the group width and PPnormal at each group depth of the four-layer optical recording disk according to one embodiment of the present invention, and Table 2 shows each group depth. It is a table
  • the L0 optical functional layer 10 group width is 165 nm
  • the L1 optical functional layer 15 group width is 190 nm
  • the L2 optical functional layer 19 group width is 205 nm
  • the L3 optical functional layer 10 group width is 205 nm.
  • the PPnormal of each layer is almost the same value (about approximately as shown in point PPO, point PP1, point PP2, and point PP3 in Figure 11). 0.25) and stable tracking servo can be realized.
  • Table 3 is a table showing measurement results of recording / reproducing jitter with respect to the group depth and group width of each optical functional layer of the four-layer optical recording disk according to one embodiment of the present invention.
  • the practical group depth is preferably 26 nm or less.
  • the jitter value is 6.5% or less in the LO optical functional layer 10
  • the L1 optical functional layer 15, L2 optical In the functional layer 19 and the L3 optical functional layer 23 8.5% or less is satisfactory.
  • PPr is good if it is 1.25 or less, good if the degree of modulation is 0.4 or more, and good if PPnormal is 0.21 or more.
  • the group width is preferably in the range of 140 nm to 190 nm. Good. This is because if it is less than 140 mn, the jitter is less than 6.5%, and if it exceeds 190 nm, PPr exceeds 1.25, which is not preferable. Furthermore, considering the margin, in the L0 optical functional layer 10, the group width is more preferably 165 nm, more preferably in the range of 140 nm or more and 180 nm or less.
  • the width of the group is preferably in the range of 160 nm or more and 220 nm or less. This is because when the degree of modulation is less than 160 mn, the degree of modulation is less than 0.4, and when it exceeds 220 nm, PPr exceeds 1.25, which is not preferable. Further, considering the margin, in the L1 optical functional layer 15, the group width is more preferably 190 nm, more preferably in the range of 170 nm to 210 nm.
  • the group width is preferably in the range of 180 nm or more and 235 nm or less. This is because when the degree of modulation is less than 180 mn, the degree of modulation is less than 0.4, and when it exceeds 235 nm, PPr exceeds 1.25, which is not preferable. Further, considering the margin, in the L2 optical functional layer 19, the group width is more preferably 205 nm, more preferably in the range of 190 nm to 225 nm. [0069] Similarly, in the L3 optical functional layer 23, the group width is preferably in the range of 200 nm to 250 nm.
  • the group width is more preferably in the range of 210 nm to 240 nm, and more preferably 225 nm.
  • the depth of the group is preferably in the range of 14 nm or more and 26 nm or less. Furthermore, considering the margin, it is in the range of 16 nm or more and 20 nm or less. More preferably, it is 18 nm.
  • the PPnormal is less than 0.21 when the width is less than 15 nm, so the depth of the group is 15 nm. More preferably, the range is 26 nm or less, and considering the margin, the range of 18 nm or more and 22 nm or less is more preferable, and 20 nm is more preferable.
  • the PPnormal is less than 0.21 when the group width is less than 16 nm.
  • the range of 26 nm or less is preferable, and considering the margin, the range of 20 nm to 24 nm is more preferable, and 22 nm is even more preferable.
  • the PPnormal is less than 0.21 when the width is less than 18 nm.
  • the range of 26 nm or less is preferable, and considering the margin, the range of 22 nm or more and 26 nm or less is more preferable, more preferably 24 nm.
  • the L1 optical functional layer 15, the L1 optical functional layer 15, and the L1 optical functional layer 15, Like the L2 optical functional layer 19 and the L3 optical functional layer 23, the incident surface force of the laser beam is close Since the loop width is wide, PPr can be kept small, and the modulation factor can be secured.
  • the PPnormal ratio (PPr) before and after recording can be reduced, so that the tracking performance is improved. It can be stabilized, and even if the recording layer is thin, such as the optical functional layer 15, the L2 optical functional layer 19, and the L3 optical functional layer 23, the required modulation degree is required. Therefore, a multilayer optical recording disk having good recording / reproducing characteristics can be realized.
  • the force described for the two-layer or four-layer optical recording disk The number of optical functional layers (recording layers) of the optical recording disk to which the present invention is applied is not particularly limited to the above example. Even if the optical recording disk has three or more layers, the width of the optical functional layer group on the support substrate side is the optical surface on the incident surface side in at least one set of optical functional layers. If the width of the functional layer group is narrower, the same effect can be obtained.
  • the optical recording disk according to the present invention includes a support substrate and a plurality of optical functional layers formed on the support substrate, and a laser beam is applied to the optical functional layer from a direction opposite to the support substrate.
  • the optical phase change after recording can be suppressed by narrowing the width of the support substrate side optical functional layer group, so that the PPnormal ratio before and after recording is reduced.
  • the width of the recording mark can be increased by increasing the width of the groove of the incident surface side optical functional layer, the degree of modulation can be increased.
  • the PPnormal ratio before and after recording can be reduced, so that the tracking performance can be stabilized and the incident surface side optical Like the functional layer, the recording layer Even when it is thin, the degree of modulation can be increased, so that good recording and reproduction characteristics can be realized.
  • the thickness of the recording layer of the support substrate side optical functional layer is preferably larger than the thickness of the recording layer of the incident surface side optical functional layer. In this case, the degree of modulation of the reproduction signal from the recording layer of the support substrate side optical functional layer can be increased.
  • the modulation degree of the reproduction signal from the recording layer of the support substrate side optical functional layer is preferably larger than the modulation degree of the reproduction signal of the recording layer force of the incident surface side optical functional layer. In this case, it is possible to realize good recording / reproduction characteristics for the support substrate side optical functional layer.
  • the depth of the group of the support substrate side optical functional layer is shallower than the depth of the group of the incident surface side optical functional layer.
  • PPnormal decreases when the width of the group of the optical surface layer on the incident surface side is increased in order to increase the degree of modulation, but the PPnormal increases by increasing the group depth of the optical surface layer on the incident surface side.
  • PPno rmal can be set to an appropriate value.
  • the recording layer of the support substrate side optical functional layer is preferably within 105 m from the laser incident surface.
  • the optical aberration due to the disc tilt of the optical function layer on the support substrate side can be limited to a predetermined range, and a margin of jitter with respect to the necessary tilt range can be ensured.
  • the recording layer of the support substrate side optical functional layer is preferably made of an inorganic write-once recording material, and preferably contains at least one selected from the group consisting of Te, Pd, and O force as a main component. preferable. In this case, good recording / reproducing characteristics can be realized.
  • the width of the group of the plurality of optical functional layers is preferably close to the support substrate and narrower as the optical functional layer. In this case, the closer to the support substrate, the narrower the group width, the optical phase change after recording can be suppressed, so that PPr can be reduced. In addition, by increasing the width of the group sequentially as the support substrate force increases, the width of the recording mark can be increased, so that the degree of modulation can be increased.
  • the thickness of the recording layer of the plurality of optical functional layers is close to that of the support substrate, and the optical function It is preferable that the layer is thicker. In this case, the modulation degree of the reproduction signal can be increased by increasing the thickness of the recording layer as it is closer to the support substrate.
  • the degree of modulation of the reproduction signal from the recording layers of the plurality of optical functional layers is preferably larger as the optical functional layer is closer to the support substrate. In this case, by increasing the degree of modulation of the reproduction signal from the recording layer as it is closer to the support substrate, good recording / reproduction characteristics can be realized for all the optical functional layers.
  • the depth of the group of the plurality of optical functional layers is preferably shallower as the optical functional layer is closer to the support substrate.
  • the width of the optical functional layer group is gradually increased as the distance from the support substrate increases in order to increase the degree of modulation, the force that decreases the PPnormal is gradually increased. It can be deepened to increase PPnormal, and PPnormal can be set to an appropriate value for all optical functional layers.
  • a first group is formed on one main surface of the support substrate, and the support substrate side optical functional layer is formed on the one main surface of the support substrate on which the first group is formed.
  • a second group is formed on a surface opposite to the optical functional layer, and the incident surface side optical functional layer is formed on the light transmission layer on which the second group is formed, and at least a second group is formed.
  • the second optical functional layer including the recording layer is preferable.
  • the track pitch of the first and second optical functional layers is in the range of 0.31 ⁇ m or more and 0.33 ⁇ m or less, and the width of the group of the first optical functional layers is 140 nm.
  • the depth of the first optical functional layer group is more preferably in the range of 190 nm or less and the width of the second optical functional layer group is more preferably in the range of 160 nm or more and 220 nm or less. More preferably, the depth of the group of the second optical functional layer is in the range of 15 nm to 26 nm.
  • a two-layer optical recording disk is constituted by the first and second optical functional layers, and the tracking performance can be stabilized even when the recording layer is thick. Even if it is thin, a two-layer optical recording disk that can realize good recording and reproduction characteristics Can be provided.
  • the plurality of optical functional layers include first to fourth optical functional layers, a first group is formed on one main surface of the support substrate, and the first optical functional layer Is an optical functional layer that is formed on the one main surface of the support substrate on which the first group is formed and includes at least a first recording layer, on the first optical functional layer A first light transmission layer formed; a second group formed on a surface of the first light transmission layer opposite to the first optical functional layer; and the second optical transmission layer
  • the functional layer is an optical functional layer that is formed on the first light transmission layer in which the second group is formed and includes at least a second recording layer, and on the second optical functional layer A second light transmission layer formed, and a third light transmission layer on a surface opposite to the second optical functional layer of the second light transmission layer.
  • a group is formed, and the third optical functional layer is an optical functional layer formed on the second light transmission layer formed with the third group and including at least a third recording layer.
  • a third light transmission layer formed on the third optical function layer, and a fourth light transmission layer on a surface opposite to the third optical function layer of the third light transmission layer.
  • the fourth optical functional layer is an optical functional layer formed on the third light transmission layer formed with the fourth group and including at least a fourth recording layer.
  • the width of the first optical functional layer group is smaller than the width of the second optical functional layer group, and the width of the second optical functional layer group is the third optical functional layer.
  • the width of the group of the third optical functional layer which is narrower than the width of the group of, is the width of the group of the fourth optical functional layer. Narrow is preferred.
  • the plurality of optical functional layers include first to fourth optical functional layers, a first group is formed on one main surface of the support substrate, and the first optical layer is formed.
  • the functional layer is an optical functional layer that is formed on the one main surface of the support substrate on which the first group is formed, and includes at least the first recording layer.
  • a first light-transmitting layer formed on the optical functional layer; and a second group is formed on a surface of the first light-transmitting layer opposite to the first optical functional layer.
  • the second optical functional layer is an optical functional layer formed on the first light transmission layer in which the second group is formed and including at least a second recording layer, A second optical layer formed on the second optical functional layer.
  • a light transmission layer, a third group is formed on a surface of the second light transmission layer opposite to the second optical function layer, and the third optical function layer includes the first optical function layer.
  • 3 is an optical functional layer formed on the second light transmission layer on which the third groove is formed, and includes at least a third recording layer, and is formed on the third optical functional layer.
  • 3 and a fourth group is formed on the surface of the third light transmissive layer opposite to the third optical functional layer, and the fourth optical functional layer.
  • the track pitch is in the range of 0.311 to 0.33 m
  • the width of the first optical functional layer group is in the range of 140 nm to 19 Onm.
  • the width of the second optical functional layer group is in the range of 160 nm to 220 nm, and the width of the third optical functional layer group is in the range of 180 nm to 235 nm,
  • the width of the fourth optical functional layer group is preferably in the range of 200 nm to 250 nm, and the depth of the first optical functional layer group is in the range of 14 nm to 26 nm,
  • the groove depth of the second optical functional layer is in the range of 15 nm to 26 nm, and the depth of the groove of the third optical functional layer is in the range of 16 nm to 26 nm.
  • the depth of the group of the fourth optical functional layer is more preferably in the range of 18 nm or more and 26 nm or less.
  • a four-layer optical recording disk is constituted by the first to fourth optical functional layers. Even when the recording layer is thick, the tracking performance can be stabilized and the recording layer It is possible to provide a four-layer optical recording disk capable of realizing good recording / reproducing characteristics even when it is thin.
  • An optical recording system is an optical recording system that records and / or reproduces information by focusing laser light on the optical recording disk, and performs tracking by a push-pull method.
  • tracking is performed by a push-pull method, so that it is stable. Tracking control can be realized.
  • An optical recording system focuses laser light on the optical recording disk.
  • the optical recording system records and / or reproduces information according to the above, and the wavelength of the laser beam is in the range of 400 nm or more and 410 nm or less.
  • laser light having a wavelength in the range of 400 nm to 410 nm is used. Since it is used, information can be recorded and Z or reproduced with high density and stability.
  • An optical recording system is an optical recording system for recording and / or reproducing information by converging a laser beam on the optical recording disk, and an optical system for converging the laser beam.
  • the NA of the system is in the range from 0.84 to 0.86.
  • NA in the range of 0.84 to 0.86 is used. Since the laser beam is converged using the optical system, information can be recorded and Z or reproduced with high density and stability.
  • the present invention is a technique relating to the parameters of the substrate and group shape of a high-density and multi-layer optical recording disk, and can stabilize the tracking performance even when the recording layer is thick. Even when the recording layer is thin, good recording / reproducing characteristics can be realized, so that it is useful as an optical recording disk suitable for high-density and large-capacity recording / reproducing and an optical recording system using the same.

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

An optical recording disc is provided with a supporting substrate and a plurality of optical function layers formed on the supporting substrate. Information can be recorded and/or reproduced by irradiating the optical function layers with laser beams from the direction opposite to the supporting substrate. The optical function layers include at least an optical function layer (L0) close to the supporting substrate, and an optical function layer (L1) closer to a laser beam entrance face than the optical function layer (L0). The optical recording disc having excellent tracking performance and recording/reproducing performance is provided bymaking the width of a groove on the optical function layer (L0) narrower than that of a groove on the optical function layer (L1).

Description

明 細 書  Specification
光記録ディスク及びそれを用いた光記録システム  Optical recording disk and optical recording system using the same
技術分野  Technical field
[0001] 本発明は、高密度及び大容量の記録再生に適した光記録ディスク及びそれを用い た光記録システムに関するものである。  The present invention relates to an optical recording disk suitable for high-density and large-capacity recording / reproduction and an optical recording system using the same.
背景技術  Background art
[0002] 近年、 1枚の光記録媒体に記録できる情報量が著しく増大して 、る。現在急速に普 及しつつある DVD— R、 DVD -RAM, DVD— RWなど、 DVDフォーマットのメディ ァの場合は、一層ディスクで 4. 7GBであり、 CD— R、 CD— RWの約 7倍となってい る。さらに最近規格ィ匕された Blu— Ray (以下 BD)フォーマットでは、一層ディスクで 2 5GB、二層ディスクで 50GBとなり、二層ディスクでは、 DVDの約 10倍の情報を記録 することが可能となる。これはデジタルノ、イビジョンを 4時間以上記録できることを意味 している。  In recent years, the amount of information that can be recorded on one optical recording medium has increased significantly. In the case of DVD-format media such as DVD-R, DVD-RAM, DVD-RW, etc., which are rapidly spreading at present, the disc is 4.7 GB, which is about 7 times that of CD-R and CD-RW. It is. The Blu-Ray (hereinafter referred to as BD) format, which has been recently standardized, is 25 GB for a single-layer disc and 50 GB for a double-layer disc, and a double-layer disc can record about 10 times the information of a DVD. . This means that the digital and IB Vision can be recorded for more than 4 hours.
[0003] この性能を実現するためには、微小マークを記録再生する光ピックアップを含めた 光記録ドライブの技術の進歩だけではなぐ高密度にお!、て良好な記録性能を実現 する記録材料技術、また多層化を実現するプロセス技術、さらには微細なトラックを 安定して実現する原盤技術及び成型技術などの進歩が必要となる。また、フォーマツ トを成立させるためには、システム全体での性能マージンを考慮する必要がある。  [0003] In order to achieve this performance, recording material technology that realizes good recording performance with high density as well as advancement in optical recording drive technology including optical pickups that record and reproduce minute marks! In addition, progress is required in process technology that realizes multi-layering, as well as master technology and molding technology that stably realize fine tracks. In order to establish the format, it is necessary to consider the performance margin of the entire system.
[0004] また、さらに大容量ィ匕を求めて更なる多層化の提案がなされており、特許文献 1に お!、ては、多層ディスクのどの層にフォーカスされて!/、るかを瞬時に判断するために 、レーザー入射面から遠 、層で大きくなるようにグループの幅及び深さを変化させる ことにより、どの層にフォーカスされて!/、るかを検出する方法が提案されて 、る。  [0004] Further, in order to further increase the capacity, proposals for further multilayering have been made. In order to instantly determine which layer of the multilayer disc is focused! /, By changing the width and depth of the group so that it is larger in the layer far from the laser incident surface, A method to detect which layer is focused! / Is proposed.
[0005] また、多層化を行う際、上記のフォーカス動作だけでなぐトラッキング動作を安定 化する必要があり、特許文献 2においては、多層ディスクの中間層の厚みむらなどに よるレーザー入射面力 遠い記録層のトラッキング信号の SZN比の劣化を防止する ため、グループの深さを深くして出力を大きくすることにより、トラッキング動作を安定 させる方法が提案されて ヽる。 [0006] また、特許文献 3にお 、ては、光記録ディスクの支持基板の一方の主面に、各ダル ーブの深さ Gdが 15nm以上 25nm以下で、且つ、グループの半値幅 Gwが 150nm 以上 230nm以下となるように、グループ及びランドが交互に形成され、記録層が無 機元素を含むことにより、トラッキング動作を安定させる方法が提案されている。 [0005] In addition, when performing multi-layering, it is necessary to stabilize the tracking operation that is performed only by the focus operation described above. In Patent Document 2, the laser incident surface force due to uneven thickness of the intermediate layer of the multi-layer disc is far. In order to prevent degradation of the SZN ratio of the tracking signal in the recording layer, a method for stabilizing the tracking operation by increasing the depth of the group and increasing the output has been proposed. [0006] Also, in Patent Document 3, the depth Gd of each groove is 15 nm or more and 25 nm or less on one main surface of the support substrate of the optical recording disk, and the half width Gw of the group is There has been proposed a method of stabilizing the tracking operation by forming groups and lands alternately so that the thickness is 150 nm or more and 230 nm or less and the recording layer contains an inorganic element.
[0007] ここで、上記のような従来の光記録ディスクの構造について具体的に説明する。図 12は、従来の二層型光記録ディスクの断面図である。例えば、 BD二層ディスクの場 合、図 12に示すように、基板 100の上に、リア層 103、中間層 101、フロント層 104、 及びカバー層 102が形成される。手前の層であるフロント層 104では、記録層の厚み 力 S 10nmの場合、レーザービーム LBが通過する透明層すなわちカバー層 102の厚 みは 75 mと薄いため、ディスクのチルトに対する再生信号のジッターの変化が小さ くなり、ディスクチルト時の光学的収差による信号劣化が少な 、。  Here, the structure of the conventional optical recording disk as described above will be specifically described. FIG. 12 is a cross-sectional view of a conventional dual-layer optical recording disk. For example, in the case of a BD double-layer disc, a rear layer 103, an intermediate layer 101, a front layer 104, and a cover layer 102 are formed on a substrate 100 as shown in FIG. In the front layer 104, which is the front layer, when the recording layer thickness S is 10 nm, the transparent layer through which the laser beam LB passes, that is, the cover layer 102 is as thin as 75 m. Changes less, and signal degradation due to optical aberrations during disc tilt is small.
[0008] これに対して奥の層であるリア層 103では、記録層の厚みが lOnmの場合、レーザ 一ビーム LBが通過する透明層の厚み (カバー層 102及び中間層 101の厚み)は約 1 00 mとなり、ディスクのチルトに対する再生信号のジッターの変化が大きくなり、デ イスクチルト時の収差による信号劣化が大きいため、必要なマージン (所定のチルト 幅に対する所定値以下のジッター値)を確保することができなくなる。  [0008] On the other hand, in the rear layer 103, which is the inner layer, when the recording layer thickness is lOnm, the thickness of the transparent layer through which the laser beam LB passes (the thickness of the cover layer 102 and the intermediate layer 101) is about 100 m, the change in the jitter of the playback signal with respect to the disc tilt increases, and the signal degradation due to aberrations during disc tilt is large, so the necessary margin (jitter value less than the predetermined value for the predetermined tilt width) is secured. I can't do that.
[0009] そこで、フロント層 104と比べてリア層 103の変調度が大きくなるように、リア層 103 の記録層を厚くして二層型光記録ディスクを設計することにより、リア層 103の信号振 幅を増やして必要なマージンを確保することができる。  [0009] Therefore, by designing the two-layer optical recording disk by increasing the recording layer of the rear layer 103 so that the degree of modulation of the rear layer 103 is larger than that of the front layer 104, the signal of the rear layer 103 can be designed. The required amplitude can be secured by increasing the amplitude.
[0010] 一方、光記録ドライブにお!/ヽて、光記録ディスクが安定した性能を発揮するために は、サーボが安定している必要がある。このサーボの一つの要素は、トラッキング性 能であり、記録前後の反射レベルで正規ィ匕されたプッシュプル信号 (以下、「PPnor malj t\、う)の変化が小さ!/、ことが重要である。  [0010] On the other hand, in order for an optical recording disk to exhibit stable performance, the servo must be stable. One element of this servo is the tracking performance, and it is important that the change of the push-pull signal (hereinafter referred to as “PPnor malj t \”) normalized by the reflection level before and after recording is small! is there.
[0011] し力しながら、リア層 103の記録層を厚くして変調度を大きくとった場合、記録前後 の PPnormalの比(以下、「PPr」という)が大きくなり、光記録ドライブにおいて十分な トラッキング制御ができないという課題があった。また、フロント層 104のように記録層 を薄くすると、変調度が小さくなりすぎて、記録再生特性が不十分となるという課題も めつに。 特許文献 1 :特開 2002— 117591号公報 [0011] However, when the recording layer of the rear layer 103 is thickened to increase the modulation degree, the ratio of PPnormal before and after recording (hereinafter referred to as “PPr”) increases, which is sufficient for an optical recording drive. There was a problem that tracking control was not possible. Another problem is that if the recording layer is made thin like the front layer 104, the degree of modulation becomes too small and the recording / reproducing characteristics become insufficient. Patent Document 1: JP 2002-117591
特許文献 2 :特開 2003— 196885号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-196885
特許文献 3:特開 2004— 327016号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-327016
発明の開示  Disclosure of the invention
[0012] 本発明は、記録層が厚い場合でも、トラッキング性能を安定ィ匕することができるとと もに、記録層が薄い場合でも、良好な記録再生特性を実現することができる光記録 ディスクを提供することを目的とするものである。  The present invention provides an optical recording disc that can stabilize the tracking performance even when the recording layer is thick and can realize good recording and reproducing characteristics even when the recording layer is thin. Is intended to provide.
[0013] 本発明の一局面に従う光記録ディスクは、支持基板と、前記支持基板の上に形成 された複数の光学的機能層とを備え、前記支持基板と逆方向からレーザービームを 前記光学的機能層に照射することにより、情報が記録及び Z又は再生される光記録 ディスクであって、前記複数の光学的機能層は、前記支持基板に近い支持基板側光 学的機能層と、前記支持基板側光学的機能層よりレーザービームの入射面に近い 入射面側光学的機能層とを少なくとも含み、前記支持基板側光学的機能層のダル 一ブの幅は、前記入射面側光学的機能層のグループの幅より狭 、。  [0013] An optical recording disk according to one aspect of the present invention includes a support substrate and a plurality of optical functional layers formed on the support substrate, and the laser beam is emitted from a direction opposite to the support substrate. An optical recording disk on which information is recorded and / or reproduced by irradiating the functional layer, wherein the plurality of optical functional layers include a support substrate side optical functional layer close to the support substrate and the support At least an incident surface side optical functional layer closer to the incident surface of the laser beam than the substrate side optical functional layer, and the width of the dimple of the support substrate side optical functional layer is the incident surface side optical functional layer Narrower than the width of the group.
[0014] 上記の構成により、記録層が厚い場合でも、記録前後の PPnormalの比を小さくす ることができるので、トラッキング性能を安定ィ匕させることができるとともに、記録層が 薄い場合でも、変調度を大きくすることができるので、良好な記録再生特性を実現す ることができる光記録ディスクを提供することができる。  [0014] With the above configuration, even when the recording layer is thick, the ratio of PPnormal before and after recording can be reduced, so that tracking performance can be stabilized, and even when the recording layer is thin, modulation can be performed. Therefore, it is possible to provide an optical recording disk capable of realizing good recording / reproducing characteristics.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の一実施の形態における二層型光記録ディスクの断面図である。 FIG. 1 is a cross-sectional view of a two-layer optical recording disk according to an embodiment of the present invention.
[図 2]グループの幅及びグループの深さの定義を説明するための断面図である。  FIG. 2 is a cross-sectional view for explaining definitions of a group width and a group depth.
[図 3]図 1に示す二層型光記録ディスクに対してレーザービームを用いて記録再生を 行う様子を説明するための模式図である。  FIG. 3 is a schematic diagram for explaining a state in which recording / reproduction is performed on the two-layer optical recording disk shown in FIG. 1 using a laser beam.
[図 4]光記録ディスクの光学的機能層のディスクチルトとジッターとの関係を示す図で ある。  FIG. 4 is a diagram showing a relationship between disc tilt and jitter of an optical functional layer of an optical recording disc.
[図 5]光記録ディスクの記録層の厚さと変調度との関係を示す図である。  FIG. 5 is a diagram showing the relationship between the thickness of a recording layer of an optical recording disk and the degree of modulation.
[図 6]本実施の形態の光記録システムのトラッキングサーボ信号の取り出し方法を説 明するための模式図である。 [図 7]グループの位相差と SUM信号及び PP信号との関係を示す図である。 FIG. 6 is a schematic diagram for explaining a tracking servo signal extraction method of the optical recording system of the present embodiment. FIG. 7 is a diagram showing the relationship between the group phase difference and the SUM and PP signals.
[図 8]記録層の厚さと PPrとの関係を示す図である。  FIG. 8 is a diagram showing the relationship between the recording layer thickness and PPr.
[図 9]本発明の一実施の形態における四層型光記録ディスクの断面図である。  FIG. 9 is a cross-sectional view of a four-layer optical recording disk in one embodiment of the present invention.
[図 10]本発明の一実施の形態における四層型光記録ディスクの各記録層の厚さに おける、グループの幅と PPr及び変調度との関係を示す図である。  FIG. 10 is a diagram showing the relationship between the group width, PPr, and modulation factor in the thickness of each recording layer of the four-layer optical recording disk in one embodiment of the present invention.
[図 11]本発明の一実施の形態における四層型光記録ディスクの各グループ深さにお ける、グループの幅と PPnormalとの関係を示す図である。  FIG. 11 is a diagram showing the relationship between the group width and PPnormal at each group depth of the four-layer optical recording disk in the embodiment of the present invention.
[図 12]従来の二層型光記録ディスクの断面図である。  FIG. 12 is a cross-sectional view of a conventional dual-layer optical recording disk.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の一実施の形態について、図面を参照しながら説明する。図 1は、本 発明の一実施の形態における二層型光記録ディスクの断面図である。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a two-layer optical recording disk according to an embodiment of the present invention.
[0017] 図 1に示す二層型光記録ディスクは、支持基板 1、 L0光学的機能層 10、中間層 2、A two-layer optical recording disk shown in FIG. 1 includes a support substrate 1, an L0 optical functional layer 10, an intermediate layer 2,
L1光学的機能層 15及びカバー層 5を備える。ここで、 L0光学的機能層 10は、 L0反 射層 6、 L0奥側誘電体層 7、 L0記録層 8及び L0手前側誘電体層 9から構成される。 また、 L1光学的機能層 15は、 L1反射層 11、 L1奥側誘電体層 12、 L1記録層 13及 び L1手前側誘電体層 14から構成される。 L1 optical functional layer 15 and cover layer 5 are provided. Here, the L0 optical functional layer 10 includes an L0 reflection layer 6, an L0 back side dielectric layer 7, an L0 recording layer 8, and an L0 front side dielectric layer 9. The L1 optical functional layer 15 includes an L1 reflective layer 11, an L1 back side dielectric layer 12, an L1 recording layer 13, and an L1 front side dielectric layer.
[0018] 支持基板 1は、トラッキング用の溝 (グループ)を有した厚さ 1. 1mmのポリカーボネ ート製の透明な基板である。なお、支持基板は、この例に特に限定されず、種々の基 板を用いることができる。 The support substrate 1 is a transparent substrate made of polycarbonate having a thickness of 1.1 mm and having tracking grooves (groups). The support substrate is not particularly limited to this example, and various substrates can be used.
[0019] 支持基板 1上に、 L0光学的機能層 10として、 Ag合金力もなる膜厚 40nmの L0反 射層 6、 ZnS -SiO力 なる膜厚 30nmの L0奥側誘電体層 7、 Te— Pd—Oを主成 [0019] On the support substrate 1, as an L0 optical functional layer 10, an L0 reflective layer 6 with a film thickness of 40 nm that also has an Ag alloy force, an L0 back dielectric layer 7 with a film thickness of 30 nm that has a ZnS-SiO force, Te— Pd—O
2  2
分とする膜厚 20nmの L0記録層 8、及び ZnS— SiO力 なる膜厚 40nmの L0手前  L0 recording layer 8 with a thickness of 20 nm and ZnS—SiO force 40 nm before L0
2  2
側誘電体層 9が真空スパッタ法により順次成膜される。その後、紫外線硬化樹脂から なる膜厚 25 mの中間層 2が設けられ、その表面に転写工法によりトラッキング用の 溝 (グループ)が形成される。  The side dielectric layer 9 is sequentially formed by vacuum sputtering. Thereafter, an intermediate layer 2 made of an ultraviolet curable resin and having a film thickness of 25 m is provided, and a groove (group) for tracking is formed on the surface by a transfer method.
[0020] さらに、 L1光学的機能層 15として、 Ag合金力もなる膜厚 6nmの L1反射層 11、 Zn S -SiO力もなる膜厚 15nmの L1奥側誘電体層 12、 Te— Pd— Oを主成分とする膜[0020] Further, as the L1 optical functional layer 15, an L1 reflective layer 11 having a film thickness of 6 nm that also has an Ag alloy force, an L1 back dielectric layer 12 having a film thickness of 15 nm that also has a Zn S-SiO force, and Te-Pd-O Main film
2 2
厚 10nmの L1記録層 13、及び ZnS— SiOからなる膜厚 20nmの L1手前側誘電体 層 14が真空スパッタ法により中間層 2上に順次成膜される。その後、紫外線硬化榭 脂からなる膜厚 75 μ mのカバー層 5が形成される。 10nm thick L1 recording layer 13 and 20nm thick L1 front dielectric consisting of ZnS-SiO The layer 14 is sequentially formed on the intermediate layer 2 by vacuum sputtering. Thereafter, a cover layer 5 having a film thickness of 75 μm made of an ultraviolet curable resin is formed.
[0021] なお、 LO記録層 8としては、無機追記型記録材料カゝらなることが好ましぐ Te、 Pd 及び O力もなる群より選ばれる少なくとも一種を主成分として含むことがより好ましい。 この場合、良好な記録再生特性を実現することができる。他の記録層も、上記と同様 である。 Note that the LO recording layer 8 preferably contains at least one selected from the group consisting of Te, Pd, and O force as a main component, which is preferably an inorganic write-once recording material. In this case, good recording / reproducing characteristics can be realized. The other recording layers are the same as described above.
[0022] ここで、上記のグループの幅及びグループの深さについて詳細に説明する。図 2は 、グループの幅及びグループの深さの定義を説明するための断面図である。図 2で は、 L0光学的機能層 10を例に説明するが、 L1光学的機能層 15等についても同様 である。  Here, the width of the group and the depth of the group will be described in detail. FIG. 2 is a cross-sectional view for explaining the definition of the group width and the group depth. In FIG. 2, the L0 optical functional layer 10 will be described as an example, but the same applies to the L1 optical functional layer 15 and the like.
[0023] 図 2に示すように、本実施の形態におけるグループの深さ Gdは、中間層 2と L0光 学的機能層 10との境界部における段差の高さを意味し、グループの幅 Gwは、ダル ーブの深さ Gdの 1Z2の深さにおけるグループの幅を意味する。なお、本実施の形 態では、グループは、トラックピッチに合わせて形成されており、トラックピッチとしては 、 0. 31 m以上 0. 33 μ m以下の範囲で任意に設定すること力 Sでき、伊えば、、 0. 3 2 mを用いることができる。  As shown in FIG. 2, the group depth Gd in the present embodiment means the height of the step at the boundary between the intermediate layer 2 and the L0 optical functional layer 10, and the group width Gw Means the width of the group at the depth of 1Z2 of the depth Gd of the groove. In the present embodiment, the group is formed in accordance with the track pitch, and the track pitch can be arbitrarily set within the range of 0.31 m or more and 0.33 μm or less. If it is, 0.32 m can be used.
[0024] 次に、上記のように構成された二層型光記録ディスクに対する光記録システムによ る記録再生動作について説明する。図 3は、図 1に示す二層型光記録ディスクに対し てレーザービームを用いて記録再生を行う様子を説明するための模式図である。  Next, a recording / reproducing operation by the optical recording system for the dual-layer optical recording disk configured as described above will be described. FIG. 3 is a schematic diagram for explaining a state in which recording / reproduction is performed on the double-layered optical recording disk shown in FIG. 1 using a laser beam.
[0025] 図 3に示すように、光記録システム 50は、例えば、光記録ドライブとして構成され、 レーザービーム LBを出射する半導体レーザーを内部に有する光ピックアップ 52を備 え、レーザービーム LBは、光ピックアップ 52に設けられた対物レンズ 51により収束さ れ、二層型光記録ディスクへ導かれる。このとき、レーザービーム LBは、カバー層 5 側からフロント光学的機能層 (入射面側光学的機能層)である L1光学的機能層 15又 はリア光学的機能層 (支持基板側光学的機能層)である L0光学的機能層 10に照射 され、 L1光学的機能層 15又は L0光学的機能層 10からの反射光を用いて、対物レ ンズ 51のフォーカスサーボがかけられ、また、 L1光学的機能層 15又は L0光学的機 能層 10のグループ(レーザービーム LB入射側から見て凸部)に対してプッシュプル 方式でトラッキングサーボがかけられ、情報の記録再生が行われる。なお、トラツキン グ方式は、上記の例に特に限定されず、他の方式を用いてもよい。 As shown in FIG. 3, the optical recording system 50 is configured as, for example, an optical recording drive, and includes an optical pickup 52 having a semiconductor laser that emits a laser beam LB. The laser beam LB is an optical recording drive. The light is converged by the objective lens 51 provided in the pickup 52 and guided to the two-layer optical recording disk. At this time, the laser beam LB is transmitted from the cover layer 5 side to the front optical functional layer (incident surface side optical functional layer) L1 optical functional layer 15 or rear optical functional layer (supporting substrate side optical functional layer). The L0 optical functional layer 10 is irradiated, and the focus servo of the objective lens 51 is applied using the reflected light from the L1 optical functional layer 15 or the L0 optical functional layer 10, and the L1 optical functional layer 10 Push-pull for functional layer 15 or L0 optical functional layer 10 group (convex part as seen from laser beam LB incident side) Tracking servo is applied by the method, and information is recorded and reproduced. The tracking method is not particularly limited to the above example, and other methods may be used.
[0026] ここで、レーザービーム LBの波長は、 400nm以上 410nm以下の範囲にあることが 好ましい。この場合、高密度に且つ安定的に情報を記録及び再生することができる。 また、レーザービーム LBを収束させる光学系である対物レンズ 51の NAは、 0. 84以 上 0. 86以下の範囲にあることが好ましい。この場合、高密度に且つ安定的に情報を 記録及び再生することができる。  Here, the wavelength of the laser beam LB is preferably in the range of not less than 400 nm and not more than 410 nm. In this case, information can be recorded and reproduced with high density and stability. The NA of the objective lens 51 that is an optical system for converging the laser beam LB is preferably in the range of 0.84 or more and 0.86 or less. In this case, information can be recorded and reproduced with high density and stability.
[0027] 図 4は、光記録ディスクの光学的機能層のディスクチルトとジッターとの関係を示す 図であり、図中の細線は、光学的機能層 10の LO記録層 8の厚さが lOnmの場合の ディスクチルトとジッターとの関係を示し、破線は、光学的機能層 15の L1記録層 13 の厚さが lOnmの場合のディスクチルトとジッターとの関係を示し、太線は、光学的機 能層 10の L0記録層 8の厚さが 20nmの場合のディスクチルトとジッターとの関係を示 している。  FIG. 4 is a diagram showing the relationship between the disc tilt and jitter of the optical functional layer of the optical recording disc, and the thin line in the figure indicates that the thickness of the LO recording layer 8 of the optical functional layer 10 is lOnm. Shows the relationship between disc tilt and jitter in the case of, and the broken line shows the relationship between disc tilt and jitter when the thickness of the L1 recording layer 13 of the optical functional layer 15 is lOnm, and the thick line shows the optical function. The relationship between disc tilt and jitter when the thickness of the L0 recording layer 8 of the active layer 10 is 20 nm is shown.
[0028] 図 4において、 L1記録層 13及び L0記録層 8のどちらも変調度が小さい場合、すな わち、 L1記録層 13及び L0記録層 8の厚さが lOnmの場合、 L1記録層 13 (破線)は 、図中の 2本の縦破線間の範囲を使用チルト範囲としたとき、この範囲内のチルトに 対する再生信号のジッターが横破線で示す許容ジッタ値以下になっており、必要な チルトに対するジッターのマージンを確保している力 L0記録層 8 (細線)は、使用チ ルト範囲の両端で再生信号のジッターが横破線で示す許容ジッタ値を越えており、 必要なチルトに対するジッターのマージンを確保できて ヽな 、。  [0028] In Fig. 4, when both the L1 recording layer 13 and the L0 recording layer 8 have a small modulation degree, that is, when the thickness of the L1 recording layer 13 and the L0 recording layer 8 is lOnm, the L1 recording layer 13 (broken line) shows that when the range between the two vertical broken lines in the figure is the working tilt range, the jitter of the playback signal for the tilt within this range is less than the allowable jitter value shown by the horizontal broken line. The force to secure the jitter margin for the required tilt In the L0 recording layer 8 (thin line), the jitter of the playback signal exceeds the allowable jitter value shown by the horizontal broken line at both ends of the used tilt range. Jitter margin can be secured.
[0029] この理由は、 L1記録層 13では、入射側透明層であるカバー層 5の厚さが 75 μ mと 薄ぐチルトによる光学的収差が小さいため、ジッターの劣化が小さいためである。こ れに対して、 L0記録層 8では、入射側透明層(中間層 2+カバー層 5)の厚さが 100 /z mと厚く、チルトによる光学的収差が大きいため、ジッターの劣化が大きくなる。  The reason for this is that in the L1 recording layer 13, the thickness of the cover layer 5, which is the incident-side transparent layer, is as thin as 75 μm, and the optical aberration due to tilting is small, so that the deterioration of jitter is small. In contrast, in the L0 recording layer 8, the incident-side transparent layer (intermediate layer 2 + cover layer 5) is as thick as 100 / zm, and the optical aberration due to tilt is large, so that the jitter is greatly deteriorated. .
[0030] ここで、 L0記録層 8のチルトに対するジッターのマージンを確保するためには、入 射側透明層の厚みを薄くすることが効果的であるが、 L0記録層 8と L1記録層 13とが 近づくと、層間クロストークによる信号品質劣化が発生するため、ある一定の層間距 離が必要になり、入射側透明層の厚みを薄くすることはできない。し力しながら、入射 側透明層が厚い場合でも、以下のように記録層の厚さを厚くすることによりマージンを ½保することができる。 Here, in order to secure a jitter margin with respect to the tilt of the L0 recording layer 8, it is effective to reduce the thickness of the incident-side transparent layer. However, the L0 recording layer 8 and the L1 recording layer 13 are effective. When approaching, signal quality degradation due to interlayer crosstalk occurs, so a certain interlayer distance is required, and the thickness of the incident-side transparent layer cannot be reduced. While pushing Even when the side transparent layer is thick, the margin can be maintained by increasing the thickness of the recording layer as described below.
[0031] 図 5は、光記録ディスクの記録層の厚さと変調度との関係を示す図である。図 5に示 すように、 Te— Pd— Oを主成分とする記録層の厚さを厚くすることにより、変調度が 上がる。従って、 LO記録層 8の厚さを 20nmにすると、変調度が大きくなり、 SZN比 を向上することができる。この結果、図 4に太線で示すように、ジッターを全体的に低 下させることができるので、 LO記録層 8のように入射側透明層が厚い場合でも、必要 なチルト範囲に対するジッターのマージンを確保することができる。  FIG. 5 is a diagram showing the relationship between the thickness of the recording layer of the optical recording disk and the degree of modulation. As shown in FIG. 5, the modulation degree increases by increasing the thickness of the recording layer containing Te—Pd—O as the main component. Accordingly, when the thickness of the LO recording layer 8 is 20 nm, the degree of modulation increases and the SZN ratio can be improved. As a result, as shown by the thick line in FIG. 4, the jitter can be reduced as a whole, so that even if the incident-side transparent layer is thick like the LO recording layer 8, the jitter margin for the required tilt range can be obtained. Can be secured.
[0032] また、図 5から、変調度の最低許容値を 0. 4に設定した場合、記録層の厚さが 9nm 未満になると、最低許容値を満たすことができず、記録層が非常に薄い場合は、変 調度が小さくなるため、記録再生性能が確保できない場合があることがわかる。従つ て、変調度の最低許容値を 0. 4に設定した場合、記録層の厚さは、 9nm以上である ことが好ましぐ lOnm以上であることがより好ましい。本実施の形態では、図 4に示す ように、 L1記録層 13の厚さを lOnmに設定し、 L0記録層 8の厚さを 20nmに設定し、 必要なチルトに対するジッターのマージンを確保している。  [0032] Further, from FIG. 5, when the minimum allowable value of the modulation degree is set to 0.4, when the thickness of the recording layer is less than 9 nm, the minimum allowable value cannot be satisfied and the recording layer is very If it is thin, the degree of modulation becomes small, and it can be seen that the recording / reproducing performance may not be secured. Therefore, when the minimum allowable modulation factor is set to 0.4, the thickness of the recording layer is preferably 9 nm or more, more preferably lOnm or more. In this embodiment, as shown in FIG. 4, the thickness of the L1 recording layer 13 is set to lOnm, the thickness of the L0 recording layer 8 is set to 20 nm, and a margin of jitter with respect to the necessary tilt is secured. Yes.
[0033] また、 L0記録層 8は、レーザー入射面であるカバー層 5の表面から 105 μ m以内に あることが好ましい。この場合、 L0記録層 8のディスクチルトによる光学的収差を所定 範囲に制限することができ、必要なチルト範囲に対するジッターのマージンを確保す ることがでさる。  [0033] Further, the L0 recording layer 8 is preferably within 105 μm from the surface of the cover layer 5 which is a laser incident surface. In this case, the optical aberration due to the disc tilt of the L0 recording layer 8 can be limited to a predetermined range, and a jitter margin for the necessary tilt range can be secured.
[0034] 次に、上記の二層型光記録ディスクを用いた場合のトラッキングサーボ性能につい て説明する。図 6は、本実施の形態の光記録システムのトラッキングサーボ信号の取 り出し方法を説明するための模式図である。なお、図 6では、わかり易くするために、 光記録システムのうちトラッキングサーボに関係する部分のみを図示し、他の部分の 図示を省略している。  [0034] Next, the tracking servo performance when the above-mentioned double-layer optical recording disk is used will be described. FIG. 6 is a schematic diagram for explaining a tracking servo signal extraction method of the optical recording system of the present embodiment. In FIG. 6, for the sake of clarity, only the part related to the tracking servo in the optical recording system is shown, and the other parts are not shown.
[0035] 図 6において、二層型光記録ディスクの記録層(L0記録層 8又は L1記録層 13)に は、ランド LTとグループ GTとが交互に形成されており、記録層力ゝらの反射光 RBは、 4分割ディテクタ 61に集められ、反射光 RBによって励起された 4分割ディテクタ 61の 受光領域 61a〜61dからの電気信号 A〜Dのうち、受光領域 61a、 61bからの電気信 号 A、 Bは、加算器 62へ入力され、受光領域 61c、 61dからの電気信号 C、 Dは、カロ 算器 63へ入力される。加算器 62は、電気信号 A、 Bを加算して加算器 64及び減算 器 66へ出力し、加算器 63は、電気信号 C、 Dを加算して加算器 64及び減算器 66へ 出力する。 In FIG. 6, the land LT and the group GT are alternately formed on the recording layer (L0 recording layer 8 or L1 recording layer 13) of the double-layered optical recording disk, and the recording layer strength is reduced. The reflected light RB is collected by the quadrant detector 61, and of the electric signals A to D from the light receiving areas 61a to 61d of the quadrant detector 61 excited by the reflected light RB, the electric signals from the light receiving areas 61a and 61b. The signals A and B are input to the adder 62, and the electric signals C and D from the light receiving areas 61c and 61d are input to the calorie calculator 63. The adder 62 adds the electrical signals A and B and outputs the result to the adder 64 and the subtractor 66, and the adder 63 adds the electrical signals C and D and outputs the result to the adder 64 and the subtractor 66.
[0036] 加算器 64は、すべての信号 A〜Dを加算し、加算された信号は、 SUM信号 (A+ B + C + D)として信号復調回路 65へ入力される。また、減算器 66は、グループ GT による溝に沿った一方側の電気信号 (A+B)から他方側の電気信号 (C + D)を減算 し、減算された信号は、 PP (プッシュプル信号)信号としてトラッキングサーボ回路 67 へ入力される。本実施の形態では、トラッキングサーボ動作時には、除算器(図示省 略)により PP信号を SUM信号で除算して正規ィ匕した正規化 PP信号 (以下、 rppnor malj t 、う)を作成し、二層型光記録ディスクの反射レベルの違 、をキャンセルして いる。  Adder 64 adds all signals A to D, and the added signal is input to signal demodulation circuit 65 as a SUM signal (A + B + C + D). The subtractor 66 subtracts the electric signal (C + D) on the other side from the electric signal (A + B) on one side along the groove by the group GT, and the subtracted signal is PP (push-pull signal). ) Signal is input to tracking servo circuit 67. In this embodiment, during tracking servo operation, a normalized PP signal (hereinafter, rppnor malj t) is created by dividing the PP signal by the SUM signal by a divider (not shown) and performing normalization. The difference in the reflection level of the layered optical recording disk is canceled.
[0037] 図 7は、グループの位相差 (屈折率をカ卩味したグループの光学的溝深さ)と SUM 信号及び PP信号との関係を示す図である。図 7に破線で示す SUM信号は、グルー ブの位相差がゼロのときに最大となり、グループの位相差が λ Ζ4のときに最小とな る。また、図 7に実線で示す ΡΡ信号は、グループの位相差が λ Ζ8のときに最大とな り、グループの位相差がゼロ又は λ Ζ4のときに最小となる。  FIG. 7 is a diagram showing the relationship between the phase difference of the group (the optical groove depth of the group that takes into account the refractive index), the SUM signal, and the PP signal. The SUM signal indicated by the broken line in Fig. 7 is maximum when the phase difference of the group is zero, and is minimum when the phase difference of the group is λΖ4. In addition, the ΡΡ signal indicated by the solid line in FIG. 7 is maximum when the group phase difference is λ Ζ8, and is minimum when the group phase difference is zero or λ Ζ4.
[0038] 一般的に使用される二層型光記録ディスクのグループの位相差は、未記録状態で は、 〜え Z10程度であり、記録後もグループの位相差が変化しない場合は 、 SUM信号と ΡΡ信号との比が変わらないので、 PPnormalは変化しない。しかしな がら、実際は、記録後に PPnormalが大きくなる場合が多い。これは、記録層の屈折 率が記録後に小さくなり、ランドに対するグループの位相差が増加することが考えら れる。また、記録時の加熱温度による基板変形の可能性も考えられる。  [0038] The phase difference of a group of commonly used two-layer optical recording discs is about Z10 in an unrecorded state. If the group phase difference does not change after recording, the SUM signal PPnormal does not change because the ratio of と and ΡΡ signal does not change. However, in practice, PPnormal often increases after recording. This is because the refractive index of the recording layer decreases after recording and the phase difference of the group with respect to the land increases. Moreover, the possibility of substrate deformation due to the heating temperature during recording is also conceivable.
[0039] 図 7を用いて、上記のグループの位相差の増加について説明すると、未記録状態 でのグループの位相差がライン LNのときに、記録後にはライン LE又は LFの位置に グループの位相差が移動したことになる。このことにより、 SUM信号に対する PP信 号の比率が増加し、 PPnormalが大きくなる。ここで、未記録時の PPnormalに対す る記録後の PPnormalの比を表したものが PPr ( = (記録後の PPnormal) / (未記録 時の PPnormal) )であり、記録後に PPnormalが増加すれば、 PPrは 1を超えること になる。 [0039] The increase in the phase difference of the above group will be described with reference to FIG. 7. When the phase difference of the group in the unrecorded state is the line LN, the group position is positioned at the position of the line LE or LF after recording. The phase difference has moved. This increases the ratio of PP signal to SUM signal and increases PPnormal. Here, the ratio of PPnormal after recording to PPnormal when unrecorded is PPr (= (PPnormal after recording) / (unrecorded) PPnormal))), and if PPnormal increases after recording, PPr will exceed 1.
[0040] 図 8は、記録層の厚さと PPrとの関係を示す図である。図 8に示すように、記録層が 厚くなるにつれて、 PPrが大きくなる傾向があることがわかる。このことは、他の条件が 同じであれば、特に記録層の厚いリア層となる光学的機能層 10において、 PPrが大 きくなり、トラッキング性能に影響があることを示している。  FIG. 8 is a diagram showing the relationship between the thickness of the recording layer and PPr. As shown in Fig. 8, it can be seen that PPr tends to increase as the recording layer becomes thicker. This indicates that if other conditions are the same, the PPr increases in the optical functional layer 10 that is the thick rear layer of the recording layer, which affects the tracking performance.
[0041] このため、本実施の形態では、以下のようにしてグループの幅及び深さを最適化し 、記録層が厚い場合でも、良好なトラッキング性能を実現している。なお、以下の説 明では、上記の二層型光記録ディスクと、さらに多層化した四層型光記録ディスクと で、同様の測定結果が得られたため、図 9に示す四層型光記録ディスクを例に説明 する。  For this reason, in the present embodiment, the group width and depth are optimized as described below, and good tracking performance is realized even when the recording layer is thick. In the following description, since the same measurement results were obtained with the above-described two-layer optical recording disk and the multilayered four-layer optical recording disk, the four-layer optical recording disk shown in FIG. An example will be described.
[0042] 図 9は、本発明の一実施の形態における四層型光記録ディスクの断面図である。図 9に示す四層型光記録ディスクは、支持基板 1、 L0光学的機能層 10、中間層 2、 L1 光学的機能層 15、中間層 3、 L2光学的機能層 19、中間層 4、 L3光学的機能層 23 及びカバー層 5を備える。なお、図中の矢印 LIは、レーザービームの入射方向を示し ている。  FIG. 9 is a cross-sectional view of a four-layer optical recording disk according to an embodiment of the present invention. The four-layer type optical recording disk shown in FIG. 9 has a support substrate 1, L0 optical functional layer 10, intermediate layer 2, L1 optical functional layer 15, intermediate layer 3, L2 optical functional layer 19, intermediate layer 4, L3. An optical functional layer 23 and a cover layer 5 are provided. The arrow LI in the figure indicates the direction of incidence of the laser beam.
[0043] ここで、 L0光学的機能層 10は、 L0反射層 6、 L0奥側誘電体層 7、 L0記録層 8及 び L0手前側誘電体層 9から構成される。また、 L1光学的機能層 15は、 L1反射層 11 、 L1奥側誘電体層 12、 L1記録層 13及び L1手前側誘電体層 14から構成される。ま た、 L2光学的機能層 19は、 L2奥側誘電体層 16、 L2記録層 17及び L2手前側誘電 体層 18から構成される。また、 L3光学的機能層 23は、 L3奥側誘電体層 20、 L3記 録層 21及び L3手前側誘電体層 22から構成される。  Here, the L0 optical functional layer 10 is composed of the L0 reflection layer 6, the L0 back side dielectric layer 7, the L0 recording layer 8, and the L0 front side dielectric layer 9. The L1 optical functional layer 15 includes an L1 reflection layer 11, an L1 back side dielectric layer 12, an L1 recording layer 13, and an L1 front side dielectric layer 14. The L2 optical functional layer 19 includes an L2 back side dielectric layer 16, an L2 recording layer 17, and an L2 front side dielectric layer 18. The L3 optical functional layer 23 includes an L3 back side dielectric layer 20, an L3 recording layer 21, and an L3 front side dielectric layer 22.
[0044] 支持基板 1は、トラッキング用の溝 (グループ)を有した厚さ 1. 1mmのポリカーボネ ート製の透明な基板である。なお、支持基板は、この例に特に限定されず、種々の基 板を用いることができる。  The support substrate 1 is a transparent substrate made of polycarbonate having a thickness of 1.1 mm and having tracking grooves (groups). The support substrate is not particularly limited to this example, and various substrates can be used.
[0045] 支持基板 1上に、 L0光学的機能層 10として、 Ag合金カゝらなる膜厚 40nmの L0反 射層 6、 ZnS -SiO力 なる膜厚 30nmの L0奥側誘電体層 7、 Te— Pd—Oを主成  [0045] On the support substrate 1, as the L0 optical functional layer 10, a 40 nm thick L0 reflective layer 6 made of an Ag alloy carrier, a 30 nm thick L0 back side dielectric layer 7 made of ZnS-SiO force, Te—Pd—O
2  2
分とする膜厚 20nmの L0記録層 8、及び ZnS— SiO力 なる膜厚 40nmの L0手前 側誘電体層 9が真空スパッタ法により順次成膜される。その後、紫外線硬化樹脂から なる膜厚約 20 mの中間層 2が設けられ、その表面に転写工法によりトラッキング用 の溝 (グループ)が形成される。 L0 recording layer 8 with a thickness of 20 nm and ZnS—SiO force 40 nm before L0 The side dielectric layer 9 is sequentially formed by vacuum sputtering. Thereafter, an intermediate layer 2 made of an ultraviolet curable resin and having a thickness of about 20 m is provided, and a tracking groove (group) is formed on the surface by a transfer method.
[0046] また、中間層 2上に、 L1光学的機能層 15として、 Ag合金力もなる膜厚 6nmの L1 反射層 11、 ZnS -SiO力もなる膜厚 15nmの L1奥側誘電体層 12、 Te— Pd— Oを [0046] On the intermediate layer 2, as an L1 optical functional layer 15, an L1 reflective layer 11 having a film thickness of 6 nm that also has an Ag alloy force, an L1 back dielectric layer 12 having a film thickness of 15 nm that also has a ZnS-SiO force, Te — Pd— O
2  2
主成分とする膜厚 10nmの L1記録層 13、及び ZnS— SiO力もなる膜厚 20nmの LI  10 nm thick L1 recording layer 13 as the main component and 20 nm thick LI with ZnS-SiO force
2  2
手前側誘電体層 14が真空スパッタ法により順次成膜される。その後、紫外線硬化榭 脂からなる膜厚約 20 mの中間層 3が設けられ、その表面に転写工法によりトラツキ ング用の溝 (グループ)が形成される。  The front dielectric layer 14 is sequentially formed by vacuum sputtering. Thereafter, an intermediate layer 3 made of an ultraviolet curable resin and having a thickness of about 20 m is provided, and a groove (group) for tracking is formed on the surface by a transfer method.
[0047] また、中間層 3上に、 L2光学的機能層 19として、 ZnS— SiO力もなる膜厚 15nm [0047] Further, on the intermediate layer 3, as the L2 optical functional layer 19, a film thickness of 15 nm also having a ZnS-SiO force
2  2
の L2奥側誘電体層 16、 Te— Pd— Oを主成分とする膜厚 8nmの L2記録層 17、及 び ZnS— SiOカゝらなる膜厚 15nmの L2手前側誘電体層 18が真空スパッタ法により  The L2 back side dielectric layer 16, the L2 recording layer 17 with a thickness of 8 nm mainly composed of Te—Pd—O, and the L2 front side dielectric layer 18 with a thickness of 15 nm consisting of ZnS—SiO By sputtering
2  2
順次成膜される。その後、紫外線硬化樹脂からなる膜厚約 20 mの中間層 4が設け られ、その表面に転写工法によりトラッキング用の溝 (グループ)が形成される。  Films are sequentially formed. Thereafter, an intermediate layer 4 made of an ultraviolet curable resin and having a thickness of about 20 m is provided, and a tracking groove (group) is formed on the surface by a transfer method.
[0048] さらに、 L3光学的機能層 23として、 ZnS— SiO力もなる膜厚 5nmの L3奥側誘電 [0048] Furthermore, as the L3 optical functional layer 23, the L3 back side dielectric having a thickness of 5 nm, which also has ZnS-SiO force.
2  2
体層 20、 Te— Pd— Oを主成分とする膜厚 6nmの L3記録層 21、及び ZnS— SiOか  Body layer 20, 6 nm thick L3 recording layer 21 mainly composed of Te—Pd—O, and ZnS—SiO?
2 らなる膜厚 15nmの L3手前側誘電体層 22が真空スパッタ法により中間層 4上に順次 成膜される。その後、紫外線硬化樹脂からなる膜厚約 40 /z mのカバー層 5が形成さ れる。  The dielectric layer 22 on the front side of the L3 having a thickness of 15 nm is sequentially formed on the intermediate layer 4 by vacuum sputtering. Thereafter, a cover layer 5 made of an ultraviolet curable resin and having a thickness of about 40 / zm is formed.
[0049] 本発明の一実施の形態の四層型光記録ディスクでは、前述のように L0記録層 8の 厚さを 20nm、 L1記録層 13の厚さを 10nm、 L2記録層 17の厚さを 8nm、 L3記録層 21の厚さを 6nmとし、各光学的機能層 10、 15、 19、 23からのディスク外への反射率 が各層の平均に対して ± 20%以内になるように、且つ、各光学的機能層 10、 15、 1 In the four-layer optical recording disk of one embodiment of the present invention, as described above, the thickness of the L0 recording layer 8 is 20 nm, the thickness of the L1 recording layer 13 is 10 nm, and the thickness of the L2 recording layer 17 The thickness of the L3 recording layer 21 is 6 nm, and the reflectance from the optical functional layers 10, 15, 19, 23 to the outside of the disc is within ± 20% of the average of each layer. And each optical functional layer 10, 15, 1
9、 23の記録感度力 各層の平均に対して ± 20%以内になるように各光学的機能層9 and 23 recording sensitivity Each optical functional layer within ± 20% of the average of each layer
10、 15、 19、 23を形成した。また、複数の層に焦点が合うことがないように、各中間 層 2、 3、 4の厚さを少しずつ変えてもよい。 10, 15, 19, and 23 were formed. In addition, the thickness of each of the intermediate layers 2, 3, and 4 may be changed little by little so that the plurality of layers are not focused.
[0050] 本願発明者らは、最適なグループの幅及び深さ等を検討するため、各層のグルー ブ幅として、 140nm、 160nm、 180nm、 200nm、 220nm、 240nm、 260nmの 7 種類、グループの深さとして、 14nm、 16nm、 18nm、 20nm、 22nm、 24nmの 6種 類で上記の四層型光記録ディスク及び二層型光記録ディスクを作成し、 PULSTEC 社の光ディスク評価装置 ODU— 1000を用いて、各光記録ディスクの記録再生特性 を計測した。また、ジッター測定は、 PULSTEC社の SignalDetector及び YOKO GAWA社のタイムインターバルアナライザー TA720を用いて行!、、 LEQ- Gainは、 7. OdBに設定した。これらの測定結果を以下に詳細に説明する。 [0050] In order to study the optimum group width and depth, etc., the inventors of the present invention have 140, 160, 180, 200, 220, 240, and 260 nm as the group width of each layer. The above four-layer type optical recording disk and double-layer type optical recording disk were created in six types of 14 nm, 16 nm, 18 nm, 20 nm, 22 nm, and 24 nm as types and group depths. — Using 1000, we measured the recording and playback characteristics of each optical recording disk. Jitter measurement was performed using PULSTEC's SignalDetector and YOKO GAWA's time interval analyzer TA720 !, and LEQ-Gain was set to 7. OdB. These measurement results will be described in detail below.
[0051] なお、図 1に示す二層型光記録ディスクの L0光学的機能層 10及び L1光学的機能 層 15のグループの幅に対する PPr及び変調度の測定結果、並びに、グループの幅 に対する PPnormalの測定結果は、以下に説明する四層型光記録ディスクの L0光 学的機能層 10及び L1光学的機能層 15の測定結果とほぼ同じ結果であったので、 その説明を省略し、四層型光記録ディスクについてのみ詳細に説明する。  [0051] It should be noted that the measurement results of PPr and modulation degree with respect to the group width of the L0 optical functional layer 10 and the L1 optical functional layer 15 of the two-layer optical recording disk shown in FIG. The measurement results were almost the same as the measurement results of the L0 optical functional layer 10 and the L1 optical functional layer 15 of the four-layer optical recording disk described below. Only the optical recording disk will be described in detail.
[0052] 図 10は、本発明の一実施の形態における四層型光記録ディスクの各記録層の厚 さにおける、グループの幅と PPr及び変調度との関係を示す図であり、表 1は、各記 録層の厚さにおけるグループの幅に対する PPr及び変調度の測定結果を示す表で ある。  FIG. 10 is a diagram showing the relationship between the group width, the PPr, and the modulation degree in the thickness of each recording layer of the four-layer optical recording disk in one embodiment of the present invention. 4 is a table showing the measurement results of PPr and modulation degree with respect to the width of the group in the thickness of each recording layer.
[0053] [表 1]  [0053] [Table 1]
Figure imgf000013_0001
Figure imgf000013_0001
[0054] 図 10及び表 1から、 PPrは、記録層の厚さだけでなぐグループの幅とも相関がある ことがわかる。これは、グループの幅を狭くすることによって、記録後の光学的な位相 変化を抑えることができるためであり、 L0光学的機能層 10のように記録層(L0記録 層 8 : 20nm)が厚い場合は、グループの幅を狭くすることで PPrを小さく抑えることが できる。 [0054] From FIG. 10 and Table 1, it can be seen that PPr correlates with the width of the group not only with the thickness of the recording layer. This is because the optical phase change after recording can be suppressed by narrowing the group width, and the recording layer (L0 recording layer 8: 20 nm) is thick like the L0 optical functional layer 10. If this is the case, the PPr can be kept small by narrowing the group width. it can.
[0055] また、変調度も、記録層の厚さだけでなぐグループの幅とも相関があることがわか る。これは、グループの幅を広くすることによって、記録マークの幅を広くすることがで きるためであり、 L1光学的機能層 15、 L2光学的機能層 19、 L3光学的機能層 23の ように記録層(L1記録層 13 : 10nm、 L2記録層 17 : 8nm、 L3記録層 21 : 6nm)が薄 V、場合は、グループの幅を広くすることで変調度を補うことができる。  [0055] It can also be seen that the degree of modulation also has a correlation with the width of the group that depends on only the thickness of the recording layer. This is because the width of the recording mark can be increased by increasing the width of the group, such as L1 optical functional layer 15, L2 optical functional layer 19, and L3 optical functional layer 23. When the recording layer (L1 recording layer 13: 10 nm, L2 recording layer 17: 8 nm, L3 recording layer 21: 6 nm) is thin V, the modulation factor can be compensated for by widening the group width.
[0056] 図 11は、本発明の一実施の形態における四層型光記録ディスクの各グループ深さ における、グループの幅と PPnormalとの関係を示す図であり、表 2は、各グループ 深さにおけるグループの幅に対する PPnormalの測定結果を示す表である。  FIG. 11 is a diagram showing the relationship between the group width and PPnormal at each group depth of the four-layer optical recording disk according to one embodiment of the present invention, and Table 2 shows each group depth. It is a table | surface which shows the measurement result of PPnormal with respect to the width | variety of the group in.
している。  is doing.
[0057] [表 2]  [0057] [Table 2]
Figure imgf000014_0001
Figure imgf000014_0001
[0058] 図 11及び表 2から、 PPnormalは、グループの幅がトラックピッチの 1Z2である 160 nmをピークにして、広くしても狭くしても低下することがわかる。また、 PPnormalは、 グループの深さとも相関があり、グループの深さを深くすることにより PPnormalを大 きくすることができることがわかる。従って、 L1光学的機能層 15、 L2光学的機能層 1 9、 L3光学的機能層 23のように記録層(L1記録層 13 : 10nm、 L2記録層 17 : 8nm、 L3記録層 21 : 6nm)が薄いときに、変調度を補うためにグループの幅を広くした場合 、 PPnormalが下がるので、グループ深さを深くして PPnormalを補うことは有効であ る。  [0058] From FIG. 11 and Table 2, it can be seen that PPnormal decreases with a peak at 160 nm where the width of the group is 1Z2 of the track pitch. PPnormal is also correlated with the depth of the group, and it can be seen that PPnormal can be increased by increasing the depth of the group. Therefore, the recording layer (L1 recording layer 13: 10 nm, L2 recording layer 17: 8 nm, L3 recording layer 21: 6 nm) like L1 optical functional layer 15, L2 optical functional layer 19, L3 optical functional layer 23 When the width of the group is widened to compensate for the degree of modulation when PP is thin, PPnormal decreases, so it is effective to increase PPnormal by increasing the group depth.
[0059] 例えば、 L0光学的機能層 10のグループの幅を 165nm、 L1光学的機能層 15のグ ループの幅を 190nm、 L2光学的機能層 19のグループの幅を 205nm、 L3光学的 機能層 23のグループの幅を 225nmとした場合、 LO光学的機能層 10のグループの 深さを 18nm、 L1光学的機能層 15のグループの深さを 20nm、 L2光学的機能層 19 のグループの深さを 22nm、 L3光学的機能層 23のグループの深さを 24nmとすれ ば、図 11における点 PPO、点 PP1、点 PP2、点 PP3のように、各層の PPnormalがほ ぼ同じ値 (約 0. 25)になり、安定したトラッキングサーボを実現できる。 [0059] For example, the L0 optical functional layer 10 group width is 165 nm, the L1 optical functional layer 15 group width is 190 nm, the L2 optical functional layer 19 group width is 205 nm, and the L3 optical functional layer 10 group width is 205 nm. When the width of the functional layer 23 group is 225 nm, the depth of the LO optical functional layer 10 group is 18 nm, the depth of the L1 optical functional layer 15 group is 20 nm, and the depth of the L2 optical functional layer 19 group If the depth is 22 nm and the depth of the L3 optical functional layer 23 group is 24 nm, the PPnormal of each layer is almost the same value (about approximately as shown in point PPO, point PP1, point PP2, and point PP3 in Figure 11). 0.25) and stable tracking servo can be realized.
[0060] 表 3は、本発明の一実施の形態における四層型光記録ディスクの各光学的機能層 のグループの深さ及びグループの幅に対する記録再生ジッターの測定結果を示す 表である。  [0060] Table 3 is a table showing measurement results of recording / reproducing jitter with respect to the group depth and group width of each optical functional layer of the four-layer optical recording disk according to one embodiment of the present invention.
[0061] [表 3]  [0061] [Table 3]
Figure imgf000015_0001
Figure imgf000015_0001
[0062] 表 3から、グループの幅を狭くするに従って、ジッターが悪化する傾向にあることが わかる。これは、グループの幅が狭くなると、記録マークの幅も狭くなり、メディアノィ ズの主成分を発生させるグループ側面部がビームスポットの中心部(ここがもっとも光 強度が高い)に近づくために、再生信号の SZN比が悪くなるからである。  [0062] From Table 3, it can be seen that the jitter tends to deteriorate as the group width is narrowed. This is because when the width of the group becomes narrower, the width of the recording mark also becomes narrower, and the side surface of the group that generates the main component of the media noise approaches the center of the beam spot (where the light intensity is the highest). This is because the SZN ratio of the playback signal becomes worse.
[0063] また、表 3から、グループの幅が広くなりすぎても、ジッターが悪化することがわかる 。これは、隣接トラックの側面部がビームスポットの一部に力かるため、隣接トラックの ゥォブル (蛇行)信号のクロストークが大きくなるとともに、隣接する記録マークも近づ くため、クロストークが大きくなるからである。 [0063] Also, from Table 3, it can be seen that the jitter deteriorates even if the group width becomes too wide. . This is because the side part of the adjacent track exerts a force on a part of the beam spot, so that the crosstalk of the wobble (meandering) signal of the adjacent track increases and the adjacent recording mark also approaches, so the crosstalk increases. Because.
[0064] また、表 3から、グループの深さが深くなるほど、上記の影響が大きくなるため、ジッ ターが悪ィ匕する傾向にあることがわかる。このため、光記録システム全体での性能マ 一ジン等を考慮すると、実用的なグループの深さは、 26nm以下であることが好まし い。  [0064] Further, it can be seen from Table 3 that the above-mentioned influence increases as the depth of the group increases, so that the jitter tends to deteriorate. For this reason, considering the performance margin of the entire optical recording system, the practical group depth is preferably 26 nm or less.
[0065] また、光記録システム全体での性能マージン等を考慮すると、一般的に、ジッター 値は、 LO光学的機能層 10では 6. 5%以下あれば、 L1光学的機能層 15、 L2光学 的機能層 19、及び L3光学的機能層 23では 8. 5%以下であれば、良好である。また 、 PPrは、 1. 25以下であれば、良好であり、変調度は、 0. 4以上であれば、良好で あり、 PPnormalは、 0. 21以上であれば、良好である。  [0065] Considering the performance margin of the entire optical recording system and the like, generally, if the jitter value is 6.5% or less in the LO optical functional layer 10, the L1 optical functional layer 15, L2 optical In the functional layer 19 and the L3 optical functional layer 23, 8.5% or less is satisfactory. In addition, PPr is good if it is 1.25 or less, good if the degree of modulation is 0.4 or more, and good if PPnormal is 0.21 or more.
[0066] 図 10及び図 11並びに表 1乃至表 3から、上記の各数値を満足するには、 L0光学 的機能層 10では、グループの幅は、 140nm以上 190nm以下の範囲であることが好 ましい。これは、 140mn未満の場合、ジッターが 6. 5%を割り、 190nmを超えると PP rが 1. 25を超え、いずれも好ましくないからである。さらに、マージンを考慮すると、 L 0光学的機能層 10では、グループの幅は、 140nm以上 180nm以下の範囲であるこ とがより好ましぐ 165nmであることがさらに好ましい。  [0066] From FIG. 10 and FIG. 11 and Tables 1 to 3, in order to satisfy the above numerical values, in the L0 optical functional layer 10, the group width is preferably in the range of 140 nm to 190 nm. Good. This is because if it is less than 140 mn, the jitter is less than 6.5%, and if it exceeds 190 nm, PPr exceeds 1.25, which is not preferable. Furthermore, considering the margin, in the L0 optical functional layer 10, the group width is more preferably 165 nm, more preferably in the range of 140 nm or more and 180 nm or less.
[0067] 同様に、 L1光学的機能層 15では、グループの幅は、 160nm以上 220nm以下の 範囲であることが好ましい。これは、 160mn未満の場合、変調度が 0. 4を割り、 220 nmを超えると、 PPrが 1. 25を超え、いずれも好ましくないからである。さらに、マージ ンを考慮すると、 L1光学的機能層 15では、グループの幅は、 170nm以上 210nm 以下の範囲であることがより好ましぐ 190nmであることがさらに好ましい。  [0067] Similarly, in the L1 optical functional layer 15, the width of the group is preferably in the range of 160 nm or more and 220 nm or less. This is because when the degree of modulation is less than 160 mn, the degree of modulation is less than 0.4, and when it exceeds 220 nm, PPr exceeds 1.25, which is not preferable. Further, considering the margin, in the L1 optical functional layer 15, the group width is more preferably 190 nm, more preferably in the range of 170 nm to 210 nm.
[0068] 同様に、 L2光学的機能層 19では、グループの幅は、 180nm以上 235nm以下の 範囲であることが好ましい。これは、 180mn未満の場合、変調度が 0. 4を割り、 235 nmを超えると、 PPrが 1. 25を超え、いずれも好ましくないからである。さらに、マージ ンを考慮すると、 L2光学的機能層 19では、グループの幅は、 190nm以上 225nm 以下の範囲であることがより好ましぐ 205nmであることがさらに好ましい。 [0069] 同様に、 L3光学的機能層 23では、グループの幅は、 200nm以上 250nm以下の 範囲であることが好ましい。これは、 200mn未満の場合、変調度が 0. 4を割り、 250 nmを超えると、 PPrが 1. 25を超え、いずれも好ましくないからである。さらに、マージ ンを考慮すると、 L3光学的機能層 23では、グループの幅は、 210nm以上 240nm 以下の範囲であることがより好ましぐ 225nmであることがさらに好ましい。 [0068] Similarly, in the L2 optical functional layer 19, the group width is preferably in the range of 180 nm or more and 235 nm or less. This is because when the degree of modulation is less than 180 mn, the degree of modulation is less than 0.4, and when it exceeds 235 nm, PPr exceeds 1.25, which is not preferable. Further, considering the margin, in the L2 optical functional layer 19, the group width is more preferably 205 nm, more preferably in the range of 190 nm to 225 nm. [0069] Similarly, in the L3 optical functional layer 23, the group width is preferably in the range of 200 nm to 250 nm. This is because when the degree of modulation is less than 200 mn, the degree of modulation is less than 0.4, and when it exceeds 250 nm, PPr exceeds 1.25, which is not preferable. Further, considering the margin, in the L3 optical functional layer 23, the group width is more preferably in the range of 210 nm to 240 nm, and more preferably 225 nm.
[0070] また、図 10及び図 11並びに表 1乃至表 3から、上記の各数値を満足するには、 LO 光学的機能層 10では、グループの幅が 140nm以上 190nm以下の範囲にあるとき、 14nm未満の場合は PPnormalが 0. 21を下回るため、グループの深さは、 14nm以 上 26nm以下の範囲であることが好ましぐさらに、マージンを考慮すると、 16nm以 上 20nm以下の範囲であることがより好ましぐ 18nmであることがさらに好ましい。  [0070] From FIG. 10 and FIG. 11 and Tables 1 to 3, in order to satisfy the above numerical values, in the LO optical functional layer 10, when the group width is in the range of 140 nm or more and 190 nm or less, Since PPnormal is less than 0.21 if it is less than 14 nm, the depth of the group is preferably in the range of 14 nm or more and 26 nm or less. Furthermore, considering the margin, it is in the range of 16 nm or more and 20 nm or less. More preferably, it is 18 nm.
[0071] 同様に、 L1光学的機能層 15では、グループの幅は、 160nm以上 220nm以下の 範囲にあるとき、 15nm未満の場合は PPnormalが 0. 21を下回るため、グループの 深さは、 15nm以上 26nm以下の範囲であることが好ましぐさらに、マージンを考慮 すると、 18nm以上 22nm以下の範囲であることがより好ましぐ 20nmであることがさ らに好ましい。  Similarly, in the L1 optical functional layer 15, when the group width is in the range of 160 nm or more and 220 nm or less, the PPnormal is less than 0.21 when the width is less than 15 nm, so the depth of the group is 15 nm. More preferably, the range is 26 nm or less, and considering the margin, the range of 18 nm or more and 22 nm or less is more preferable, and 20 nm is more preferable.
[0072] 同様に、 L2光学的機能層 19では、グループの幅が 180nm以上 235nm以下の範 囲にあるとき、 16nm未満の場合は PPnormalが 0. 21を下回るため、グループの深 さは、 16nm以上 26nm以下の範囲であることが好ましぐさらに、マージンを考慮す ると、 20nm以上 24nm以下の範囲であることがより好ましぐ 22nmであることがさら に好ましい。  [0072] Similarly, in the L2 optical functional layer 19, when the group width is in the range of 180 nm or more and 235 nm or less, the PPnormal is less than 0.21 when the group width is less than 16 nm. The range of 26 nm or less is preferable, and considering the margin, the range of 20 nm to 24 nm is more preferable, and 22 nm is even more preferable.
[0073] 同様に、 L3光学的機能層 23では、グループの幅が 200nm以上 250nm以下の範 囲にあるとき、 18nm未満の場合は PPnormalが 0. 21を下回るため、グループの深 さは、 18nm以上 26nm以下の範囲であることが好ましぐさらに、マージンを考慮す ると、 22nm以上 26nm以下の範囲であることがより好ましぐ 24nmであることがさら に好ましい。  [0073] Similarly, in the L3 optical functional layer 23, when the group width is in the range of 200 nm or more and 250 nm or less, the PPnormal is less than 0.21 when the width is less than 18 nm. The range of 26 nm or less is preferable, and considering the margin, the range of 22 nm or more and 26 nm or less is more preferable, more preferably 24 nm.
[0074] 上記のように、本実施の形態によれば、 L0光学的機能層 10のようにレーザービー ムの入射面力 遠い層のグループの幅を狭ぐ且つ、 L1光学的機能層 15、 L2光学 的機能層 19、 L3光学的機能層 23のようにレーザービームの入射面力 近 、層のグ ループの幅を広くしているので、 PPrを小さく抑えることができるとともに、変調度も確 保することができる。 [0074] As described above, according to the present embodiment, the L1 optical functional layer 15, the L1 optical functional layer 15, and the L1 optical functional layer 15, Like the L2 optical functional layer 19 and the L3 optical functional layer 23, the incident surface force of the laser beam is close Since the loop width is wide, PPr can be kept small, and the modulation factor can be secured.
[0075] この結果、光学的機能層 10のようにレーザービームの入射面力 遠く且つ記録層 が厚い場合でも、記録前後の PPnormalの比(PPr)を小さくすることができるので、ト ラッキング性能を安定化させることができるとともに、光学的機能層 15、 L2光学的機 能層 19、 L3光学的機能層 23のようにレーザービームの入射面力 近く且つ記録層 が薄い場合でも、必要な変調度を確保することができるので、良好な記録再生特性 を有する多層型光記録ディスクを実現することができる。  As a result, even when the incident surface force of the laser beam is far and the recording layer is thick like the optical functional layer 10, the PPnormal ratio (PPr) before and after recording can be reduced, so that the tracking performance is improved. It can be stabilized, and even if the recording layer is thin, such as the optical functional layer 15, the L2 optical functional layer 19, and the L3 optical functional layer 23, the required modulation degree is required. Therefore, a multilayer optical recording disk having good recording / reproducing characteristics can be realized.
[0076] なお、上記では、二層型又は四層型光記録ディスクについて説明した力 本発明 が適用される光記録ディスクの光学的機能層(記録層)の層数は上記の例に特に限 定されず、三層又は五層以上の光記録ディスクであっても、少なくとも一組の光学的 機能層にお 、て、支持基板側の光学的機能層のグループの幅が入射面側の光学 的機能層のグループの幅より狭ければ、同様の効果を得ることができる。  In the above, the force described for the two-layer or four-layer optical recording disk The number of optical functional layers (recording layers) of the optical recording disk to which the present invention is applied is not particularly limited to the above example. Even if the optical recording disk has three or more layers, the width of the optical functional layer group on the support substrate side is the optical surface on the incident surface side in at least one set of optical functional layers. If the width of the functional layer group is narrower, the same effect can be obtained.
[0077] 上記の実施の形態力も本発明について要約すると、以下のようになる。すなわち、 本発明に係る光記録ディスクは、支持基板と、前記支持基板の上に形成された複数 の光学的機能層とを備え、前記支持基板と逆方向からレーザービームを前記光学的 機能層に照射することにより、情報が記録及び Z又は再生される光記録ディスクであ つて、前記複数の光学的機能層は、前記支持基板に近い支持基板側光学的機能層 と、前記支持基板側光学的機能層よりレーザービームの入射面に近い入射面側光 学的機能層とを少なくとも含み、前記支持基板側光学的機能層のグループの幅は、 前記入射面側光学的機能層のグループの幅より狭 、。  [0077] The above embodiment power is also summarized as follows. That is, the optical recording disk according to the present invention includes a support substrate and a plurality of optical functional layers formed on the support substrate, and a laser beam is applied to the optical functional layer from a direction opposite to the support substrate. An optical recording disk on which information is recorded and Z or reproduced by irradiation, wherein the plurality of optical functional layers include a support substrate side optical functional layer close to the support substrate and the support substrate side optical function layer. At least an incident surface side optical functional layer closer to the laser beam incident surface than the functional layer, and the width of the support substrate side optical functional layer group is greater than the width of the incident surface side optical functional layer group. Narrow,.
[0078] この光記録ディスクにおいては、支持基板側光学的機能層のグループの幅を狭く することによって、記録後の光学的な位相変化を抑えることができるので、記録前後 の PPnormalの比を小さく抑えることができ、また、入射面側光学的機能層のグルー ブの幅を広くすることによって、記録マークの幅を広くすることができるので、変調度 を大きくすることができる。この結果、支持基板側光学的機能層のように記録層が厚 い場合でも、記録前後の PPnormalの比を小さくすることができるので、トラッキング 性能を安定化させることができるとともに、入射面側光学的機能層のように記録層が 薄い場合でも、変調度を大きくすることができるので、良好な記録再生特性を実現す ることがでさる。 In this optical recording disk, the optical phase change after recording can be suppressed by narrowing the width of the support substrate side optical functional layer group, so that the PPnormal ratio before and after recording is reduced. In addition, since the width of the recording mark can be increased by increasing the width of the groove of the incident surface side optical functional layer, the degree of modulation can be increased. As a result, even when the recording layer is thick like the support substrate side optical functional layer, the PPnormal ratio before and after recording can be reduced, so that the tracking performance can be stabilized and the incident surface side optical Like the functional layer, the recording layer Even when it is thin, the degree of modulation can be increased, so that good recording and reproduction characteristics can be realized.
[0079] 前記支持基板側光学的機能層の記録層の膜厚は、前記入射面側光学的機能層 の記録層の膜厚より厚いことが好ましい。この場合、支持基板側光学的機能層の記 録層からの再生信号の変調度を大きくすることができる。  [0079] The thickness of the recording layer of the support substrate side optical functional layer is preferably larger than the thickness of the recording layer of the incident surface side optical functional layer. In this case, the degree of modulation of the reproduction signal from the recording layer of the support substrate side optical functional layer can be increased.
[0080] 前記支持基板側光学的機能層の記録層からの再生信号の変調度は、前記入射面 側光学的機能層の記録層力もの再生信号の変調度より大きいことが好ましい。この 場合、支持基板側光学的機能層に対する良好な記録再生特性を実現することがで きる。  [0080] The modulation degree of the reproduction signal from the recording layer of the support substrate side optical functional layer is preferably larger than the modulation degree of the reproduction signal of the recording layer force of the incident surface side optical functional layer. In this case, it is possible to realize good recording / reproduction characteristics for the support substrate side optical functional layer.
[0081] 前記支持基板側光学的機能層のグループの深さは、前記入射面側光学的機能層 のグループの深さより浅いことが好ましい。この場合、変調度を大きくするために入射 面側光学的機能層のグループの幅を広くしたときに、 PPnormalが下がるが、入射面 側光学的機能層のグループ深さを深くして PPnormalを大きくすることができ、 PPno rmalを適正な値に設定することができる。  [0081] It is preferable that the depth of the group of the support substrate side optical functional layer is shallower than the depth of the group of the incident surface side optical functional layer. In this case, PPnormal decreases when the width of the group of the optical surface layer on the incident surface side is increased in order to increase the degree of modulation, but the PPnormal increases by increasing the group depth of the optical surface layer on the incident surface side. And PPno rmal can be set to an appropriate value.
[0082] 前記支持基板側光学的機能層の記録層は、レーザー入射面から 105 m以内に あることが好ましい。この場合、支持基板側光学的機能層のディスクチルトによる光学 的収差を所定範囲に制限することができ、必要なチルト範囲に対するジッターのマー ジンを確保することができる。  [0082] The recording layer of the support substrate side optical functional layer is preferably within 105 m from the laser incident surface. In this case, the optical aberration due to the disc tilt of the optical function layer on the support substrate side can be limited to a predetermined range, and a margin of jitter with respect to the necessary tilt range can be ensured.
[0083] 前記支持基板側光学的機能層の記録層は、無機追記型記録材料からなることが 好ましぐ Te、 Pd及び O力 なる群より選ばれる少なくとも一種を主成分として含むこ とがより好ましい。この場合、良好な記録再生特性を実現することができる。  [0083] The recording layer of the support substrate side optical functional layer is preferably made of an inorganic write-once recording material, and preferably contains at least one selected from the group consisting of Te, Pd, and O force as a main component. preferable. In this case, good recording / reproducing characteristics can be realized.
[0084] 前記複数の光学的機能層のグループの幅は、前記支持基板に近!、光学的機能層 ほど狭いことが好ましい。この場合、支持基板に近いほどグループの幅を順次狭くす ることによって、記録後の光学的な位相変化を抑えることができるので、 PPrを小さく 抑えることができる。また、支持基板力 遠いほどグループの幅を順次広くすることに よって、記録マークの幅を広くすることができるので、変調度を大きくすることができる  [0084] The width of the group of the plurality of optical functional layers is preferably close to the support substrate and narrower as the optical functional layer. In this case, the closer to the support substrate, the narrower the group width, the optical phase change after recording can be suppressed, so that PPr can be reduced. In addition, by increasing the width of the group sequentially as the support substrate force increases, the width of the recording mark can be increased, so that the degree of modulation can be increased.
[0085] 前記複数の光学的機能層の記録層の膜厚は、前記支持基板に近!、光学的機能 層ほど厚いことが好ましい。この場合、支持基板に近いほど記録層の膜厚を厚くする ことによって、再生信号の変調度を大きくすることができる。 [0085] The thickness of the recording layer of the plurality of optical functional layers is close to that of the support substrate, and the optical function It is preferable that the layer is thicker. In this case, the modulation degree of the reproduction signal can be increased by increasing the thickness of the recording layer as it is closer to the support substrate.
[0086] 前記複数の光学的機能層の記録層からの再生信号の変調度は、前記支持基板に 近い光学的機能層ほど大きいことが好ましい。この場合、支持基板に近いほど記録 層からの再生信号の変調度を大きくすることによって、すべての光学的機能層に対し て良好な記録再生特性を実現することができる。  [0086] The degree of modulation of the reproduction signal from the recording layers of the plurality of optical functional layers is preferably larger as the optical functional layer is closer to the support substrate. In this case, by increasing the degree of modulation of the reproduction signal from the recording layer as it is closer to the support substrate, good recording / reproduction characteristics can be realized for all the optical functional layers.
[0087] 前記複数の光学的機能層のグループの深さは、前記支持基板に近い光学的機能 層ほど浅いことが好ましい。この場合、変調度を大きくするために支持基板から遠い ほど光学的機能層のグループの幅を順次広くしたときに、 PPnormalが下がる力 支 持基板力も遠いほど光学的機能層のグループ深さを順次深くして PPnormalを大き くすることができ、すべての光学的機能層に対して PPnormalを適正な値に設定する ことができる。  [0087] The depth of the group of the plurality of optical functional layers is preferably shallower as the optical functional layer is closer to the support substrate. In this case, when the width of the optical functional layer group is gradually increased as the distance from the support substrate increases in order to increase the degree of modulation, the force that decreases the PPnormal is gradually increased. It can be deepened to increase PPnormal, and PPnormal can be set to an appropriate value for all optical functional layers.
[0088] 前記支持基板の一方の主面に第 1のグループが形成され、前記支持基板側光学 的機能層は、前記第 1のグループが形成された前記支持基板の前記一方の主面上 に形成され、少なくとも第 1の記録層を含む第 1の光学的機能層であり、前記第 1の 光学的機能層上に形成された光透過層をさらに備え、前記光透過層の前記第 1の 光学的機能層とは反対側の面に第 2のグループが形成され、前記入射面側光学的 機能層は、前記第 2のグループが形成された前記光透過層上に形成され、少なくとも 第 2の記録層を含む第 2の光学的機能層であることが好ましい。また、前記第 1及び 第 2の光学的機能層のトラックピッチは、 0. 31 μ m以上 0. 33 μ m以下の範囲にあり 、前記第 1の光学的機能層のグループの幅は、 140nm以上 190nm以下の範囲に あり、前記第 2の光学的機能層のグループの幅は、 160nm以上 220nm以下の範囲 にあることがより好ましぐ前記第 1の光学的機能層のグループの深さは、 14nm以上 26nm以下の範囲にあり、前記第 2の光学的機能層のグループの深さは、 15nm以 上 26nm以下の範囲にあることがさらに好ましい。  [0088] A first group is formed on one main surface of the support substrate, and the support substrate side optical functional layer is formed on the one main surface of the support substrate on which the first group is formed. A first optical functional layer formed and including at least a first recording layer, further comprising a light transmissive layer formed on the first optical functional layer, wherein the first transmissive layer comprises: A second group is formed on a surface opposite to the optical functional layer, and the incident surface side optical functional layer is formed on the light transmission layer on which the second group is formed, and at least a second group is formed. The second optical functional layer including the recording layer is preferable. The track pitch of the first and second optical functional layers is in the range of 0.31 μm or more and 0.33 μm or less, and the width of the group of the first optical functional layers is 140 nm. The depth of the first optical functional layer group is more preferably in the range of 190 nm or less and the width of the second optical functional layer group is more preferably in the range of 160 nm or more and 220 nm or less. More preferably, the depth of the group of the second optical functional layer is in the range of 15 nm to 26 nm.
[0089] この場合、第 1及び第 2の光学的機能層から二層型光記録ディスクが構成され、記 録層が厚い場合でも、トラッキング性能を安定ィ匕することができるとともに、記録層が 薄 、場合でも、良好な記録再生特性を実現することができる二層型光記録ディスクを 提供することができる。 [0089] In this case, a two-layer optical recording disk is constituted by the first and second optical functional layers, and the tracking performance can be stabilized even when the recording layer is thick. Even if it is thin, a two-layer optical recording disk that can realize good recording and reproduction characteristics Can be provided.
[0090] 前記複数の光学的機能層は、第 1乃至第 4の光学的機能層を含み、前記支持基板 の一方の主面に第 1のグループが形成され、前記第 1の光学的機能層は、前記第 1 のグループが形成された前記支持基板の前記一方の主面上に形成され、少なくとも 第 1の記録層を含む光学的機能層であり、前記第 1の光学的機能層上に形成された 第 1の光透過層をさらに備え、前記第 1の光透過層の前記第 1の光学的機能層とは 反対側の面に第 2のグループが形成され、前記第 2の光学的機能層は、前記第 2の グループが形成された前記第 1の光透過層上に形成され、少なくとも第 2の記録層を 含む光学的機能層であり、前記第 2の光学的機能層上に形成された第 2の光透過層 をさらに備え、前記第 2の光透過層の前記第 2の光学的機能層とは反対側の面に第 3のグループが形成され、前記第 3の光学的機能層は、前記第 3のグループが形成 された前記第 2の光透過層上に形成され、少なくとも第 3の記録層を含む光学的機 能層であり、前記第 3の光学的機能層上に形成された第 3の光透過層をさらに備え、 前記第 3の光透過層の前記第 3の光学的機能層とは反対側の面に第 4のグループ が形成され、前記第 4の光学的機能層は、前記第 4のグループが形成された前記第 3の光透過層上に形成され、少なくとも第 4の記録層を含む光学的機能層であり、前 記第 1の光学機能層のグループの幅は、前記第 2の光学機能層のグループの幅より 狭ぐ前記第 2の光学機能層のグループの幅は、前記第 3の光学機能層のグループ の幅より狭ぐ前記第 3の光学機能層のグループの幅は、前記第 4の光学機能層の グループの幅より狭 、ことが好まし 、。  [0090] The plurality of optical functional layers include first to fourth optical functional layers, a first group is formed on one main surface of the support substrate, and the first optical functional layer Is an optical functional layer that is formed on the one main surface of the support substrate on which the first group is formed and includes at least a first recording layer, on the first optical functional layer A first light transmission layer formed; a second group formed on a surface of the first light transmission layer opposite to the first optical functional layer; and the second optical transmission layer The functional layer is an optical functional layer that is formed on the first light transmission layer in which the second group is formed and includes at least a second recording layer, and on the second optical functional layer A second light transmission layer formed, and a third light transmission layer on a surface opposite to the second optical functional layer of the second light transmission layer. A group is formed, and the third optical functional layer is an optical functional layer formed on the second light transmission layer formed with the third group and including at least a third recording layer. A third light transmission layer formed on the third optical function layer, and a fourth light transmission layer on a surface opposite to the third optical function layer of the third light transmission layer. The fourth optical functional layer is an optical functional layer formed on the third light transmission layer formed with the fourth group and including at least a fourth recording layer. Yes, the width of the first optical functional layer group is smaller than the width of the second optical functional layer group, and the width of the second optical functional layer group is the third optical functional layer. The width of the group of the third optical functional layer, which is narrower than the width of the group of, is the width of the group of the fourth optical functional layer. Narrow is preferred.
[0091] また、前記複数の光学的機能層は、第 1乃至第 4の光学的機能層を含み、前記支 持基板の一方の主面に第 1のグループが形成され、前記第 1の光学的機能層は、前 記第 1のグループが形成された前記支持基板の前記一方の主面上に形成され、少 なくとも第 1の記録層を含む光学的機能層であり、前記第 1の光学的機能層上に形 成された第 1の光透過層をさらに備え、前記第 1の光透過層の前記第 1の光学的機 能層とは反対側の面に第 2のグループが形成され、前記第 2の光学的機能層は、前 記第 2のグループが形成された前記第 1の光透過層上に形成され、少なくとも第 2の 記録層を含む光学的機能層であり、前記第 2の光学的機能層上に形成された第 2の 光透過層をさらに備え、前記第 2の光透過層の前記第 2の光学的機能層とは反対側 の面に第 3のグループが形成され、前記第 3の光学的機能層は、前記第 3のグルー ブが形成された前記第 2の光透過層上に形成され、少なくとも第 3の記録層を含む光 学的機能層であり、前記第 3の光学的機能層上に形成された第 3の光透過層をさら に備え、前記第 3の光透過層の前記第 3の光学的機能層とは反対側の面に第 4のグ ループが形成され、前記第 4の光学的機能層は、前記第 4のグループが形成された 前記第 3の光透過層上に形成され、少なくとも第 4の記録層を含む光学的機能層で あり、前記第 1乃至第 4の光学的機能層のトラックピッチは、 0. 31 111以上0. 33 m以下の範囲にあり、前記第 1の光学的機能層のグループの幅は、 140nm以上 19 Onm以下の範囲にあり、前記第 2の光学的機能層のグループの幅は、 160nm以上 220nm以下の範囲にあり、前記第 3の光学的機能層のグループの幅は、 180nm以 上 235nm以下の範囲にあり、前記第 4の光学的機能層のグループの幅は、 200nm 以上 250nm以下の範囲にあることが好ましぐ前記第 1の光学的機能層のグループ の深さは、 14nm以上 26nm以下の範囲にあり、前記第 2の光学的機能層のグルー ブの深さは、 15nm以上 26nm以下の範囲にあり、前記第 3の光学的機能層のダル ーブの深さは、 16nm以上 26nm以下の範囲にあり、前記第 4の光学的機能層のグ ループの深さは、 18nm以上 26nm以下の範囲にあることがより好ましい。 [0091] Further, the plurality of optical functional layers include first to fourth optical functional layers, a first group is formed on one main surface of the support substrate, and the first optical layer is formed. The functional layer is an optical functional layer that is formed on the one main surface of the support substrate on which the first group is formed, and includes at least the first recording layer. A first light-transmitting layer formed on the optical functional layer; and a second group is formed on a surface of the first light-transmitting layer opposite to the first optical functional layer. And the second optical functional layer is an optical functional layer formed on the first light transmission layer in which the second group is formed and including at least a second recording layer, A second optical layer formed on the second optical functional layer. A light transmission layer, a third group is formed on a surface of the second light transmission layer opposite to the second optical function layer, and the third optical function layer includes the first optical function layer. 3 is an optical functional layer formed on the second light transmission layer on which the third groove is formed, and includes at least a third recording layer, and is formed on the third optical functional layer. 3, and a fourth group is formed on the surface of the third light transmissive layer opposite to the third optical functional layer, and the fourth optical functional layer. Is an optical functional layer formed on the third light transmission layer in which the fourth group is formed and including at least a fourth recording layer, and the first to fourth optical functional layers The track pitch is in the range of 0.311 to 0.33 m, and the width of the first optical functional layer group is in the range of 140 nm to 19 Onm. The width of the second optical functional layer group is in the range of 160 nm to 220 nm, and the width of the third optical functional layer group is in the range of 180 nm to 235 nm, The width of the fourth optical functional layer group is preferably in the range of 200 nm to 250 nm, and the depth of the first optical functional layer group is in the range of 14 nm to 26 nm, The groove depth of the second optical functional layer is in the range of 15 nm to 26 nm, and the depth of the groove of the third optical functional layer is in the range of 16 nm to 26 nm. The depth of the group of the fourth optical functional layer is more preferably in the range of 18 nm or more and 26 nm or less.
[0092] 上記の場合、第 1乃至第 4の光学的機能層から四層型光記録ディスクが構成され、 記録層が厚い場合でも、トラッキング性能を安定ィ匕することができるとともに、記録層 が薄い場合でも、良好な記録再生特性を実現することができる四層型光記録デイス クを提供することがでさる。  [0092] In the above case, a four-layer optical recording disk is constituted by the first to fourth optical functional layers. Even when the recording layer is thick, the tracking performance can be stabilized and the recording layer It is possible to provide a four-layer optical recording disk capable of realizing good recording / reproducing characteristics even when it is thin.
[0093] 本発明に係る光記録システムは、上記の光記録ディスクにレーザー光を収束するこ とによって情報を記録及び Z又は再生を行う光記録システムであって、プッシュプル 方式でトラッキングを行う。  [0093] An optical recording system according to the present invention is an optical recording system that records and / or reproduces information by focusing laser light on the optical recording disk, and performs tracking by a push-pull method.
[0094] この光記録システムにおいては、上記の光記録ディスクにレーザー光を収束するこ とによって情報を記録及び Z又は再生を行う際に、プッシュプル方式でトラッキングを 行って 、るので、安定なトラッキング制御を実現することができる。  In this optical recording system, when information is recorded and Z or reproduced by converging the laser beam on the optical recording disk, tracking is performed by a push-pull method, so that it is stable. Tracking control can be realized.
[0095] 本発明に係る光記録システムは、上記の光記録ディスクにレーザー光を収束するこ とによって情報を記録及び z又は再生を行う光記録システムであって、前記レーザ 一光の波長は、 400nm以上 410nm以下の範囲にある。 [0095] An optical recording system according to the present invention focuses laser light on the optical recording disk. The optical recording system records and / or reproduces information according to the above, and the wavelength of the laser beam is in the range of 400 nm or more and 410 nm or less.
[0096] この光記録システムにおいては、上記の光記録ディスクにレーザー光を収束するこ とによって情報を記録及び/又は再生を行う際に、 400nm以上 410nm以下の範囲 内の波長を有するレーザー光を使用しているので、高密度且つ安定的に情報を記 録及び Z又は再生することができる。  In this optical recording system, when information is recorded and / or reproduced by converging laser light on the optical recording disk, laser light having a wavelength in the range of 400 nm to 410 nm is used. Since it is used, information can be recorded and Z or reproduced with high density and stability.
[0097] 本発明に係る光記録システムは、上記の光記録ディスクにレーザー光を収束するこ とによって情報を記録及び Z又は再生を行う光記録システムであって、前記レーザ 一光を収束させる光学系の NAは、 0. 84以上 0. 86以下の範囲にある。  [0097] An optical recording system according to the present invention is an optical recording system for recording and / or reproducing information by converging a laser beam on the optical recording disk, and an optical system for converging the laser beam. The NA of the system is in the range from 0.84 to 0.86.
[0098] この光記録システムにおいては、上記の光記録ディスクにレーザー光を収束するこ とによって情報を記録及び Z又は再生を行う際に、 0. 84以上 0. 86以下の範囲内 の NAを有する光学系を用いてレーザー光を収束させて 、るので、高密度且つ安定 的に情報を記録及び Z又は再生することができる。  In this optical recording system, when information is recorded and Z or reproduced by focusing the laser beam on the optical recording disk, NA in the range of 0.84 to 0.86 is used. Since the laser beam is converged using the optical system, information can be recorded and Z or reproduced with high density and stability.
産業上の利用可能性  Industrial applicability
[0099] 本発明は、高密度及び多層型光記録ディスクの基板及びグループの形状のパラメ一 タ等に関する技術であり、記録層が厚い場合でも、トラッキング性能を安定ィ匕すること ができるとともに、記録層が薄い場合でも、良好な記録再生特性を実現することがで きるので、高密度及び大容量の記録再生に適した光記録ディスク及びそれを用いた 光記録システムとして有用である。  [0099] The present invention is a technique relating to the parameters of the substrate and group shape of a high-density and multi-layer optical recording disk, and can stabilize the tracking performance even when the recording layer is thick. Even when the recording layer is thin, good recording / reproducing characteristics can be realized, so that it is useful as an optical recording disk suitable for high-density and large-capacity recording / reproducing and an optical recording system using the same.

Claims

請求の範囲 The scope of the claims
[1] 支持基板と、前記支持基板の上に形成された複数の光学的機能層とを備え、前記 支持基板と逆方向力 レーザービームを前記光学的機能層に照射することにより、 情報が記録及び Z又は再生される光記録ディスクであって、  [1] A support substrate and a plurality of optical functional layers formed on the support substrate, and information is recorded by irradiating the optical functional layer with the support substrate and a reverse force laser beam. And Z or an optical recording disc to be reproduced,
前記複数の光学的機能層は、前記支持基板に近い支持基板側光学的機能層と、 前記支持基板側光学的機能層よりレーザービームの入射面に近い入射面側光学的 機能層とを少なくとも含み、  The plurality of optical functional layers include at least a support substrate side optical functional layer close to the support substrate, and an incident surface side optical functional layer closer to a laser beam incident surface than the support substrate side optical functional layer. ,
前記支持基板側光学的機能層のグループの幅は、前記入射面側光学的機能層の グループの幅より狭いことを特徴とする光記録ディスク。  The optical recording disk according to claim 1, wherein a width of the group of the support substrate side optical functional layer is narrower than a width of the group of the incident surface side optical functional layer.
[2] 前記支持基板側光学的機能層の記録層の膜厚は、前記入射面側光学的機能層の 記録層の膜厚より厚いことを特徴とする請求項 1記載の光記録ディスク。  2. The optical recording disk according to claim 1, wherein the thickness of the recording layer of the support substrate side optical functional layer is larger than the thickness of the recording layer of the incident surface side optical functional layer.
[3] 前記支持基板側光学的機能層の記録層からの再生信号の変調度は、前記入射面 側光学的機能層の記録層からの再生信号の変調度より大きいことを特徴とする請求 項 1又は 2記載の光記録ディスク。 3. The modulation degree of the reproduction signal from the recording layer of the support substrate side optical functional layer is larger than the modulation degree of the reproduction signal from the recording layer of the incident surface side optical functional layer. The optical recording disk according to 1 or 2.
[4] 前記支持基板側光学的機能層のグループの深さは、前記入射面側光学的機能層 のグループの深さより浅いことを特徴とする請求項 1〜3のいずれかに記載の光記録 ディスク。 [4] The optical recording according to any one of [1] to [3], wherein the depth of the group of the support substrate side optical functional layer is shallower than the depth of the group of the incident surface side optical functional layer. disk.
[5] 前記支持基板側光学的機能層の記録層は、レーザー入射面から 105 μ m以内にあ ることを特徴とする請求項 1〜4のいずれかに記載の光記録ディスク。  [5] The optical recording disk according to any one of [1] to [4], wherein the recording layer of the support substrate side optical functional layer is within 105 μm from the laser incident surface.
[6] 前記支持基板側光学的機能層の記録層は、無機追記型記録材料からなることを特 徴とする請求項 1〜5のいずれかに記載の光記録ディスク。 6. The optical recording disk according to any one of claims 1 to 5, wherein the recording layer of the support substrate side optical functional layer is made of an inorganic write-once recording material.
[7] 前記支持基板側光学的機能層の記録層は、 Te、 Pd及び Oからなる群より選ばれる 少なくとも一種を主成分として含むことを特徴とする請求項 1〜6のいずれかに記載 の光記録ディスク。 7. The recording layer of the support substrate side optical functional layer contains at least one selected from the group consisting of Te, Pd, and O as a main component. Optical recording disc.
[8] 前記複数の光学的機能層のグループの幅は、前記支持基板に近!、光学的機能層 ほど狭いことを特徴とする請求項 1〜7のいずれかに記載の光記録ディスク。  8. The optical recording disk according to any one of claims 1 to 7, wherein a width of the group of the plurality of optical functional layers is close to the support substrate and is narrower as the optical functional layer.
[9] 前記複数の光学的機能層の記録層の膜厚は、前記支持基板に近!、光学的機能層 ほど厚いことを特徴とする請求項 1〜8のいずれかに記載の光記録ディスク。 [10] 前記複数の光学的機能層の記録層からの再生信号の変調度は、前記支持基板に 近 、光学的機能層ほど大き 、ことを特徴とする請求項 1〜9の 、ずれかに記載の光 記録ディスク。 9. The optical recording disk according to claim 1, wherein the recording layers of the plurality of optical functional layers are close to the support substrate and thicker as the optical functional layer. . [10] The degree of modulation of the reproduction signal from the recording layers of the plurality of optical functional layers is closer to the support substrate and larger as the optical functional layer, The optical recording disc described.
[11] 前記複数の光学的機能層のグループの深さは、前記支持基板に近い光学的機能層 ほど浅いことを特徴とする請求項 1〜: LOのいずれかに記載の光記録ディスク。  11. The optical recording disk according to claim 1, wherein the depth of the group of the plurality of optical functional layers is shallower as the optical functional layer is closer to the support substrate.
[12] 前記支持基板の一方の主面に第 1のグループが形成され、  [12] A first group is formed on one main surface of the support substrate,
前記支持基板側光学的機能層は、前記第 1のグループが形成された前記支持基 板の前記一方の主面上に形成され、少なくとも第 1の記録層を含む第 1の光学的機 能層であり、  The support substrate side optical functional layer is formed on the one main surface of the support substrate on which the first group is formed, and includes a first optical functional layer including at least a first recording layer. And
前記第 1の光学的機能層上に形成された光透過層をさらに備え、  A light transmission layer formed on the first optical functional layer;
前記光透過層の前記第 1の光学的機能層とは反対側の面に第 2のグループが形 成され、  A second group is formed on a surface of the light transmission layer opposite to the first optical functional layer;
前記入射面側光学的機能層は、前記第 2のグループが形成された前記光透過層 上に形成され、少なくとも第 2の記録層を含む第 2の光学的機能層であることを特徴 とする請求項 1〜: L 1のいずれかに記載の光記録ディスク。  The incident surface side optical functional layer is a second optical functional layer which is formed on the light transmission layer in which the second group is formed and includes at least a second recording layer. Claims 1 to: The optical recording disk according to any one of L1.
[13] 前記第 1及び第 2の光学的機能層のトラックピッチは、 0. 31 m以上 0. 33 μ m以下 の範囲にあり、 [13] The track pitch of the first and second optical functional layers is in a range from 0.31 m to 0.33 μm,
前記第 1の光学的機能層のグループの幅は、 140nm以上 190nm以下の範囲に あり、  The width of the group of the first optical functional layer is in the range of 140 nm or more and 190 nm or less,
前記第 2の光学的機能層のグループの幅は、 160nm以上 220nm以下の範囲に あることを特徴とする請求項 12記載の光記録ディスク。  13. The optical recording disk according to claim 12, wherein the width of the group of the second optical functional layer is in a range of 160 nm or more and 220 nm or less.
[14] 前記第 1の光学的機能層のグループの深さは、 14nm以上 26nm以下の範囲にあり 前記第 2の光学的機能層のグループの深さは、 15nm以上 26nm以下の範囲にあ ることを特徴とする請求項 13記載の光記録ディスク。 [14] The depth of the group of the first optical functional layer is in the range of 14 nm to 26 nm, and the depth of the group of the second optical functional layer is in the range of 15 nm to 26 nm. 14. The optical recording disk according to claim 13, wherein:
[15] 前記複数の光学的機能層は、第 1乃至第 4の光学的機能層を含み、 [15] The plurality of optical functional layers include first to fourth optical functional layers,
前記支持基板の一方の主面に第 1のグループが形成され、  A first group is formed on one main surface of the support substrate;
前記第 1の光学的機能層は、前記第 1のグループが形成された前記支持基板の前 記一方の主面上に形成され、少なくとも第 1の記録層を含む光学的機能層であり、 前記第 1の光学的機能層上に形成された第 1の光透過層をさらに備え、 前記第 1の光透過層の前記第 1の光学的機能層とは反対側の面に第 2のグループ が形成され、 The first optical functional layer is formed in front of the support substrate on which the first group is formed. An optical functional layer formed on one main surface and including at least a first recording layer, further comprising a first light transmission layer formed on the first optical functional layer, A second group is formed on the surface of the light transmitting layer opposite to the first optical functional layer,
前記第 2の光学的機能層は、前記第 2のグループが形成された前記第 1の光透過 層上に形成され、少なくとも第 2の記録層を含む光学的機能層であり、  The second optical functional layer is an optical functional layer formed on the first light transmission layer in which the second group is formed and including at least a second recording layer,
前記第 2の光学的機能層上に形成された第 2の光透過層をさらに備え、 前記第 2の光透過層の前記第 2の光学的機能層とは反対側の面に第 3のグループ が形成され、  A second light transmission layer formed on the second optical function layer; and a third group on a surface of the second light transmission layer opposite to the second optical function layer. Formed,
前記第 3の光学的機能層は、前記第 3のグループが形成された前記第 2の光透過 層上に形成され、少なくとも第 3の記録層を含む光学的機能層であり、  The third optical functional layer is an optical functional layer formed on the second light transmission layer in which the third group is formed and including at least a third recording layer,
前記第 3の光学的機能層上に形成された第 3の光透過層をさらに備え、 前記第 3の光透過層の前記第 3の光学的機能層とは反対側の面に第 4のグループ が形成され、  A third light transmission layer formed on the third optical function layer; and a fourth group on a surface of the third light transmission layer opposite to the third optical function layer. Formed,
前記第 4の光学的機能層は、前記第 4のグループが形成された前記第 3の光透過 層上に形成され、少なくとも第 4の記録層を含む光学的機能層であり、  The fourth optical functional layer is an optical functional layer formed on the third light transmission layer in which the fourth group is formed and including at least a fourth recording layer,
前記第 1の光学機能層のグループの幅は、前記第 2の光学機能層のグループの幅 より狭ぐ前記第 2の光学機能層のグループの幅は、前記第 3の光学機能層のダル ーブの幅より狭ぐ前記第 3の光学機能層のグループの幅は、前記第 4の光学機能 層のグループの幅より狭いことを特徴とする請求項 1〜: L 1のいずれかに記載の光記 録ディスク。  The width of the group of the first optical functional layer is narrower than the width of the group of the second optical functional layer, and the width of the group of the second optical functional layer is the double of the third optical functional layer. The width of the group of the third optical functional layer narrower than the width of the first optical functional layer is narrower than the width of the group of fourth optical functional layer. Optical recording disc.
前記複数の光学的機能層は、第 1乃至第 4の光学的機能層を含み、 The plurality of optical functional layers include first to fourth optical functional layers,
前記支持基板の一方の主面に第 1のグループが形成され、  A first group is formed on one main surface of the support substrate;
前記第 1の光学的機能層は、前記第 1のグループが形成された前記支持基板の前 記一方の主面上に形成され、少なくとも第 1の記録層を含む光学的機能層であり、 前記第 1の光学的機能層上に形成された第 1の光透過層をさらに備え、 前記第 1の光透過層の前記第 1の光学的機能層とは反対側の面に第 2のグループ が形成され、 前記第 2の光学的機能層は、前記第 2のグループが形成された前記第 1の光透過 層上に形成され、少なくとも第 2の記録層を含む光学的機能層であり、 The first optical functional layer is an optical functional layer formed on the one main surface of the support substrate on which the first group is formed and including at least a first recording layer, A first light transmission layer formed on the first optical functional layer, and a second group on a surface of the first light transmission layer opposite to the first optical functional layer; Formed, The second optical functional layer is an optical functional layer formed on the first light transmission layer in which the second group is formed and including at least a second recording layer,
前記第 2の光学的機能層上に形成された第 2の光透過層をさらに備え、 前記第 2の光透過層の前記第 2の光学的機能層とは反対側の面に第 3のグループ が形成され、  A second light transmission layer formed on the second optical function layer; and a third group on a surface of the second light transmission layer opposite to the second optical function layer. Formed,
前記第 3の光学的機能層は、前記第 3のグループが形成された前記第 2の光透過 層上に形成され、少なくとも第 3の記録層を含む光学的機能層であり、  The third optical functional layer is an optical functional layer formed on the second light transmission layer in which the third group is formed and including at least a third recording layer,
前記第 3の光学的機能層上に形成された第 3の光透過層をさらに備え、 前記第 3の光透過層の前記第 3の光学的機能層とは反対側の面に第 4のグループ が形成され、  A third light transmission layer formed on the third optical function layer; and a fourth group on a surface of the third light transmission layer opposite to the third optical function layer. Formed,
前記第 4の光学的機能層は、前記第 4のグループが形成された前記第 3の光透過 層上に形成され、少なくとも第 4の記録層を含む光学的機能層であり、  The fourth optical functional layer is an optical functional layer formed on the third light transmission layer in which the fourth group is formed and including at least a fourth recording layer,
前記第 1乃至第 4の光学的機能層のトラックピッチは、 0. 31 m以上 0. 33 μ m以 下の範囲にあり、  The track pitch of the first to fourth optical functional layers is in the range of 0.31 m or more and 0.33 μm or less,
前記第 1の光学的機能層のグループの幅は、 140nm以上 190nm以下の範囲に あり、  The width of the group of the first optical functional layer is in the range of 140 nm or more and 190 nm or less,
前記第 2の光学的機能層のグループの幅は、 160nm以上 220nm以下の範囲に あり、  The width of the group of the second optical functional layer is in the range of 160 nm or more and 220 nm or less,
前記第 3の光学的機能層のグループの幅は、 180nm以上 235nm以下の範囲に あり、  The width of the group of the third optical functional layer is in a range of 180 nm or more and 235 nm or less,
前記第 4の光学的機能層のグループの幅は、 200nm以上 250nm以下の範囲に あることを特徴とする請求項 1〜11及び 15のいずれかに記載の光記録ディスク。 前記第 1の光学的機能層のグループの深さは、 14nm以上 26nm以下の範囲にあり 前記第 2の光学的機能層のグループの深さは、 15nm以上 26nm以下の範囲にあ り、  16. The optical recording disk according to claim 1, wherein the width of the group of the fourth optical functional layer is in the range of 200 nm or more and 250 nm or less. The depth of the first optical functional layer group is in the range of 14 nm to 26 nm, and the depth of the second optical functional layer group is in the range of 15 nm to 26 nm,
前記第 3の光学的機能層のグループの深さは、 16nm以上 26nm以下の範囲にあ り、 前記第 4の光学的機能層のグループの深さは、 18nm以上 26nm以下の範囲にあ ることを特徴とする請求項 16記載の光記録ディスク。 The depth of the group of the third optical functional layer is in the range of 16 nm to 26 nm, 17. The optical recording disk according to claim 16, wherein the depth of the group of the fourth optical functional layer is in the range of 18 nm or more and 26 nm or less.
[18] 請求項 1〜17のいずれかに記載の光記録ディスクにレーザー光を収束することによ つて情報を記録及び Z又は再生を行う光記録システムであって、 [18] An optical recording system for recording and / or reproducing information by converging a laser beam on the optical recording disk according to any one of claims 1 to 17,
プッシュプル方式でトラッキングを行うことを特徴とする光記録システム。  An optical recording system that performs tracking by a push-pull method.
[19] 請求項 1〜17のいずれかに記載の光記録ディスクにレーザー光を収束することによ つて情報を記録及び Z又は再生を行う光記録システムであって、  [19] An optical recording system for recording and / or reproducing information by converging a laser beam on the optical recording disk according to any one of claims 1 to 17,
前記レーザー光の波長は、 400nm以上 410nm以下の範囲にあることを特徴とす る光記録システム。  An optical recording system characterized in that the wavelength of the laser beam is in the range of not less than 400 nm and not more than 410 nm.
[20] 請求項 1〜17のいずれかに記載の光記録ディスクにレーザー光を収束することによ つて情報を記録及び Z又は再生を行う光記録システムであって、  [20] An optical recording system for recording and / or reproducing information by converging a laser beam on the optical recording disk according to any one of claims 1 to 17,
前記レーザー光を収束させる光学系の NAは、 0. 84以上 0. 86以下の範囲にある ことを特徴とする光記録システム。  The optical recording system characterized in that the NA of the optical system for converging the laser light is in the range of 0.84 to 0.86.
PCT/JP2007/058753 2006-04-24 2007-04-23 Optical recording disc and optical recording system using same WO2007125872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006118886A JP2009163780A (en) 2006-04-24 2006-04-24 Optical recording disk and optical recording system
JP2006-118886 2006-04-24

Publications (1)

Publication Number Publication Date
WO2007125872A1 true WO2007125872A1 (en) 2007-11-08

Family

ID=38655397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058753 WO2007125872A1 (en) 2006-04-24 2007-04-23 Optical recording disc and optical recording system using same

Country Status (2)

Country Link
JP (1) JP2009163780A (en)
WO (1) WO2007125872A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002133712A (en) * 2000-08-17 2002-05-10 Matsushita Electric Ind Co Ltd Optical information recording medium, its manufacturing method, recording/reproducing method and recording/ reproducing device
JP2003141775A (en) * 2001-10-31 2003-05-16 Toshiba Corp One surface double-layer optical disk and optical disk recording/reproducing device
JP2005537603A (en) * 2002-08-29 2005-12-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Multi-stack optical data storage medium and method of using such medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002133712A (en) * 2000-08-17 2002-05-10 Matsushita Electric Ind Co Ltd Optical information recording medium, its manufacturing method, recording/reproducing method and recording/ reproducing device
JP2003141775A (en) * 2001-10-31 2003-05-16 Toshiba Corp One surface double-layer optical disk and optical disk recording/reproducing device
JP2005537603A (en) * 2002-08-29 2005-12-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Multi-stack optical data storage medium and method of using such medium

Also Published As

Publication number Publication date
JP2009163780A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP2004039147A (en) Optical recording medium and optical recording method
TWI460723B (en) An optical information recording medium and an optical information recording medium
JP7014152B2 (en) Optical recording medium and its manufacturing method
JP2001273672A (en) Optical recording medium
CN1750149A (en) Multi-layer optical information recording medium
WO2006062036A1 (en) Optical information recording medium, optical information recording/reproducing device and optical information recording medium manufacturing method
JP2006269040A (en) Optical information storage medium and optical information storage medium reproducing apparatus
JP4330538B2 (en) Dual stack optical data storage media and use of such media
JP5381795B2 (en) Optical recording medium and optical recording / reproducing method
JP2008535136A (en) Hybrid disc and method for recording and / or reading data on / from the disc
JP2005530290A (en) Double stacked optical data storage media and use of such media
WO2003085658A1 (en) Optical information recording medium, and method and device for optical information recording/reproduction using same
KR100634667B1 (en) Optical recording medium
US7406023B2 (en) Optical reproduction method, optical pickup device, optical reproduction device, and optical recording medium
JP4252482B2 (en) Read-only multilayer optical information recording medium and manufacturing method thereof
WO2005015550A1 (en) Optical information recording medium and its recorder/reproducer
US20100067336A1 (en) Device and method for reproducing information and computer program
WO2007125872A1 (en) Optical recording disc and optical recording system using same
WO2007037070A1 (en) Optical information recording medium and optical information recording medium reproducing device
JP4211607B2 (en) Optical information recording and reproducing method and apparatus
RU2353982C2 (en) Combination fluorescent-reflecting optical data medium and device for its reading
JP2008097794A (en) Single-side double-layer optical recording medium
JP4187369B2 (en) Information recording medium and information recording / reproducing method
JP2004327007A (en) Optical information recording medium and reproducing device
JP2012164380A (en) Optical recording and reproducing method

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)