WO2007125580A1 - Adaptive modulation method and communication apparatus - Google Patents

Adaptive modulation method and communication apparatus Download PDF

Info

Publication number
WO2007125580A1
WO2007125580A1 PCT/JP2006/308871 JP2006308871W WO2007125580A1 WO 2007125580 A1 WO2007125580 A1 WO 2007125580A1 JP 2006308871 W JP2006308871 W JP 2006308871W WO 2007125580 A1 WO2007125580 A1 WO 2007125580A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
modulation
subcarrier
adjustment
sir
Prior art date
Application number
PCT/JP2006/308871
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhisa Kataoka
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2006/308871 priority Critical patent/WO2007125580A1/en
Priority to JP2008513027A priority patent/JP4700106B2/en
Publication of WO2007125580A1 publication Critical patent/WO2007125580A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding

Definitions

  • the present invention relates to an adaptive modulation method for adaptively selecting and determining an encoding method and a modulation method at the time of data transmission by orthogonal frequency division multiplexing (OFDM).
  • the present invention relates to an adaptive modulation method in the case of selecting and determining a V-code scheme and a modulation scheme for each subcarrier based on communication quality for each subcarrier, and a communication apparatus for realizing the adaptive modulation method.
  • An adaptive modulation scheme is a scheme that selectively uses a combination of a coding scheme (coding rate and type of error correction code) and a modulation scheme according to the state of a transmission path.
  • a coding scheme coding rate and type of error correction code
  • a modulation scheme that is difficult to error are used in combination.
  • Patent Document 1 discloses a method of selecting and using an encoding method, a modulation method, or the like according to the state of a transmission path as an adaptive modulation method when performing communication using OFDM. .
  • a plurality of data are transmitted in parallel using a plurality of subcarriers.
  • Each subcarrier can use a different modulation method.
  • the same modulation method is used for all subcarriers. ing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-261726
  • OFDM frequency division multiplexing
  • TDM Time Division
  • CDM Code Division Multiplexing
  • SDM Space Division Multiplexing
  • the present invention has been made in view of the above, and in communication using OFDM, It is an object of the present invention to provide an adaptive modulation method capable of realizing high-speed data transmission while satisfying desired communication quality and a communication apparatus for realizing the adaptive modulation method.
  • an adaptive modulation method adapts an encoding method and a modulation method at the time of data transmission by orthogonal frequency division multiplexing according to the state of a transmission path. For example, a modulation method for each subcarrier is selected from among modulation methods defined in advance, and a combination of modulation methods for each subcarrier (modulation method pattern).
  • a modulation scheme pattern determining step for determining the transmission method an encoding scheme selection step for selecting an encoding scheme to be used when encoding the transmission data from among the encoding schemes defined in advance, and a received signal Based on the SIR for each subcarrier, the transmission rate and communication quality (transmission quality) at the time of data transmission using the determined modulation method pattern and the selected encoding method are determined.
  • a transmission quality calculation step to be output, and further, by repeatedly executing the modulation scheme pattern determination step, the encoding scheme selection step, and the transmission quality calculation step, the modulation scheme pattern and the coding scheme are The transmission quality calculation step is executed for all the combinations, and the modulation method pattern and the encoding method when the transmission quality that achieves the maximum transmission speed while satisfying the desired communication quality is obtained in the transmission quality calculation result. It is characterized in that it is selected and determined as a formal modulation system pattern and encoding system used during data transmission.
  • the adaptive modulation method according to the present invention performs data transmission by selecting a combination of an optimal encoding method and an optimal modulation method for each subcarrier based on the reception quality of the signal. Therefore, while satisfying the desired communication quality, it is possible to perform data transmission at a higher speed than when the above-mentioned conventional technology is used, and in particular, transmission at the time of data transmission on a transmission line whose frequency characteristics are not flat. There is an effect that the speed can be increased.
  • FIG. 1 is a diagram showing a configuration example of a first embodiment of a communication system and a communication apparatus constituting the communication system for realizing an adaptive modulation method according to the present invention.
  • FIG. 2 is a flowchart showing an example of an operation for selecting and determining a coding scheme and a modulation scheme for each subcarrier.
  • FIG. 3 is a diagram for explaining an operation of selecting a modulation scheme for each subcarrier.
  • FIG. 4 is a diagram for explaining a selection operation of a sign key method.
  • FIG. 5 is a diagram for explaining an operation of selecting and determining a modulation method and a code key method for each subcarrier.
  • FIG. 6 is a flowchart showing an operation of generating adaptive modulation instruction information performed by the communication apparatus of the second embodiment.
  • Fig. 7-1 is a diagram for explaining the SIR threshold setting operation.
  • Fig. 7-2 is a diagram for explaining the SIR threshold setting operation.
  • FIG. 8 is a diagram showing a configuration example of a third embodiment of a communication system and a communication apparatus constituting the communication system for realizing the adaptive modulation method according to the present invention.
  • FIG. 9 is a flowchart showing an operation for adjusting a modulation scheme and a coding scheme for each subcarrier once determined.
  • FIG. 10 is a flowchart showing an SIR threshold adjustment operation.
  • FIG. 11 is a flowchart showing a sign key method adjustment operation.
  • FIG. 12 is a flowchart showing an operation of updating adaptive modulation instruction information in the adaptive modulation method of the fourth embodiment.
  • FIG. 13 is a flowchart showing an operation of changing the modulation scheme for each subcarrier in the adaptive modulation method of the fifth embodiment.
  • FIG. 14 is a flowchart showing an operation of changing the modulation scheme for each subcarrier in the adaptive modulation method of the fifth embodiment.
  • FIG. 15 is a flowchart showing an operation for updating adaptive modulation instruction information in the adaptive modulation method of the seventh embodiment.
  • FIG. 16-1 is a diagram for explaining an adaptive modulation method according to the eighth embodiment.
  • FIG. 16-2 is a diagram for explaining an adaptive modulation method according to the eighth embodiment.
  • FIG. 17-1 is a diagram for explaining an adaptive modulation method according to the ninth embodiment.
  • FIG. 17-2 is a diagram for explaining an adaptive modulation method according to the ninth embodiment.
  • FIG. 17-3 is a diagram for explaining an adaptive modulation method according to the ninth embodiment.
  • FIG. 17-4 is a diagram for explaining an adaptive modulation method according to the ninth embodiment.
  • FIG. 17-5 is a diagram for explaining an adaptive modulation method according to the ninth embodiment.
  • FIG. 18 is a flowchart showing an operation when the adaptive modulation method of the ninth embodiment is applied to the first embodiment.
  • FIG. 1 is a diagram showing a configuration example of a first embodiment of a communication system that implements an adaptive modulation method according to the present invention and a communication device that constitutes the communication system.
  • This communication system includes a communication device 1 and a communication device 2.
  • the communication device 1 includes an encoding unit 11
  • the communication apparatus 2 includes an OFDM demodulator 21, a decoder 22, and a determiner 23.
  • the determination unit 23 operates as a transmission condition selection unit, a transmission quality calculation unit, an iterative process control unit, and a transmission condition determination unit.
  • FIG. 1 shows a state in which the communication device 1 transmits data to the communication device 2. Therefore, each of the communication devices 1 and 2 includes only a signal transmission processing unit (corresponding to the encoding unit 11 and the modulation unit 12) and a reception processing unit (corresponding to the OFDM demodulating unit 21 and the decoding unit 22). In actuality, both have a transmission processing unit and a reception processing unit, and the communication device 2 transmits a signal to the communication device 1 as necessary.
  • a signal transmission processing unit corresponding to the encoding unit 11 and the modulation unit 12
  • a reception processing unit corresponding to the OFDM demodulating unit 21 and the decoding unit 22
  • encoding section 11 encodes transmission data in the encoding scheme indicated by "encoding scheme information" that constitutes the adaptive modulation instruction information notified in advance from the communication partner.
  • the OFDM modulation unit 12 is a modulation scheme indicated by “information indicating the modulation scheme for each subcarrier” that constitutes the adaptive modulation instruction information for which the communication partner power has been notified in advance, and the encoding received from the encoding unit 11
  • the transmission data is modulated to generate a transmission signal.
  • the generated transmission signal is transmitted from the antenna to the communication apparatus 2 that is the communication partner via the transmission path.
  • OFDM demodulator 21 demodulates the received signal from communication device 1.
  • Decoding section 22 performs error correction processing on the demodulated data obtained by OFDM demodulation section 21 demodulating the received signal, and outputs the processing result as received data.
  • the determination unit 23 determines the encoding method used by the data transmission source device (communication device 1) and the modulation method for each subcarrier. Then, adaptive modulation instruction information indicating the determination result is generated. Specifically, the determination unit 23 selects an encoding method that can maximize the transmission rate and a modulation method for each subcarrier according to the transmission path state estimated based on the received signal.
  • this is not a frequency characteristic S flat of the transmission path, so an optimum modulation method is selected for each frequency (subcarrier), and this is combined with an optimum coding method to perform communication. Is.
  • the generated adaptive modulation instruction information is notified (transmitted) to the communication device 1 via the transmission path.
  • FIG. 2 is a flowchart showing an operation for generating adaptive modulation instruction information.
  • the determination unit 23 receives the SIR (Signal to Interference Ratio) for each subcarrier measured by the OFDM demodulation unit 21 (step Sl 1).
  • the determination unit 23 selects a modulation scheme for each subcarrier (step S12). For example, if the number of subcarriers is 3 and the selectable modulation methods are BPSK and QPSK, select one of the eight patterns shown in Fig. 3 as the combination of modulation methods for each subcarrier. Will be. Note that the conditions for selecting a combination (combination pattern) of modulation methods for each subcarrier are not particularly specified. Therefore, for example, the combination pattern numbers shown in FIG. 3 may be selected in ascending order, or selectable combination patterns may be selected at random! /.
  • the determination unit 23 selects an encoding method (step S13).
  • the encoding method is selected from two types of encoding methods with different error correction capabilities as shown in Fig. 4, for example.
  • Figure 4 shows an example using Reed-Solomon (RS) codes.
  • RS 255, 239), which is the first encoding method, indicates an encoding method for generating a code in which 16 redundant bytes are added to 239 bytes of information.
  • RS (120, 104) which is the second encoding method, indicates a code method that generates a code in which 16 bytes of redundant bytes are added to 104 bytes of information.
  • the determination unit 23 holds the selection result in step S12 and the selection result in step S13 together (holds a combination of the selection results), and the next step S12 and subsequent times.
  • the determination unit 23 calculates a transmission rate and communication quality when communication is performed using the selection results in steps S 12 and S 13 (step S 14). For example, if No. 1 in the example shown in Fig. 3 is selected as the combination of modulation schemes for each subcarrier and No. 1 in the example shown in Fig.
  • the communication quality is calculated using the SIR for each subcarrier obtained in step S11.
  • Communication quality is the bit error rate (coded: BER: coded bit error rate) or packet error rate (PER: packet error rate) after error correction, so it can be calculated based on the SIR for each subcarrier. .
  • the decision unit 23 performs this uncoded-BER for all subcarriers. Then, the BER of the input signal to the decoding unit 22 is calculated.
  • the power shown in the case of using coded BER as the communication quality may be replaced with PER.
  • the method for calculating the communication quality by calculation is shown here, the SIR vs. BER characteristics are calculated by simulation in advance of the calculation, and a table showing the result is created and referred to this table. Even so,
  • step S 15 determines whether or not the transmission rate calculation and communication quality calculation have been completed for all combinations of the modulation scheme for each subcarrier and the encoding scheme.
  • step S15 it is not yet selected (transmission rate calculation and If there is a combination of the modulation scheme for each subcarrier and the encoding scheme (No in step S15), the process returns to step S12 and is still selected. Similar processing (steps S12 to S14) is performed for the combination of the modulation scheme for each subcarrier and the code key scheme.
  • the determination unit 23 compares the combination of the transmission speed and communication quality held as the processing result of step S14. From the processing results that are held, a combination that satisfies the desired communication quality (for example, the communication quality required by the communication system) and has the maximum transmission speed is selected. Finally, the combination of the modulation scheme for each subcarrier and the coding scheme corresponding to the selection result (where the selection result was obtained) is adaptive modulation instruction information (a combination used for data transmission). (Step S16).
  • FIG. 5 shows subcarrier numbers # 1, # 2, and # 3 during data transmission performed by combining any of the modulation schemes shown in FIG. 3 and any of the encoding schemes shown in FIG.
  • An example of the calculation result in step S14 is shown when the SIR of each subcarrier is 8 dB, 9 dB, and 10 dB, respectively.
  • No. 15 is the combination that gives the highest transmission rate. Therefore, when the calculation result shown in FIG.
  • the determination unit 23 selects and determines the combination of No. 15 in step S16. If there are a plurality of candidates having the same transmission rate among the combinations satisfying the communication quality, the combination having the best communication quality is selected and determined.
  • a combination of an optimal encoding scheme and an optimal modulation scheme for each subcarrier is selected based on the reception quality of the signal, and the selected combination is used.
  • Data transmission This makes it possible to perform data transmission at the highest transmission speed while satisfying the desired communication quality.
  • the transmission speed at the time of data transmission on the transmission line which is not the frequency characteristic force S flat, is higher than before. Speed up The
  • the adaptive modulation method and communication apparatus according to the second embodiment will be described.
  • an adaptive modulation method for reducing the amount of calculation and reducing the circuit scale by simplifying the processing described in Embodiment 1 will be described.
  • the configuration of the communication system that implements the adaptive modulation method of the present embodiment and the configuration of the communication device that constitutes the communication system are the same as those of the above-described first embodiment, and the adaptive modulation instruction information that is determined by the determination unit 23 Only the generation operation is different. Therefore, in the present embodiment, the description will focus on the adaptive modulation instruction information generation operation performed by the determination unit 23.
  • FIG. 6 is a flowchart showing an operation for generating adaptive modulation instruction information performed by communication apparatus 2 (determination unit 23) according to the second embodiment. Note that the same steps as those in the first embodiment are denoted by the same step numbers, and the description thereof is omitted.
  • the determination unit 23 sets the SIR threshold corresponding to the coding scheme selected in step S13 (step S21). Further, this SIR threshold is determined in advance for each selectable encoding method based on the communication quality (desired communication quality) that should be satisfied in the communication. To select and set the one corresponding to the selected encoding method.
  • FIGS. 7-1 and 7-2 are diagrams showing an example of a correspondence relationship between received signal quality before error correction execution (in this example, uncoded-BER, which is a BER before error correction execution), and SIR. More specifically, FIG. 7-1 is a diagram showing an example of a correspondence relationship between communication quality (coded-BER which is a BER after error correction) and uncoded-BER for each coding method. This correspondence can be calculated based on the coding rate for each coding method. Fig. 7-2 shows an example of the relationship between uncoded-BER and SIR for each modulation method.
  • the modulation scheme # 2 requires a larger SIR, and this is the case for modulation schemes with a large number of transmission bits.
  • the SIR of a certain subcarrier is between ⁇ and ⁇ , and the desired communication quality is coded-
  • modulation scheme # 2 can be used on the subcarrier. That is, ⁇ and ⁇ are signs
  • determination unit 23 selects SIR threshold value ⁇ for selecting modulation scheme # 1 and modulation scheme # 2.
  • determination unit 23 determines SIR threshold value ⁇ and modulation method for selecting modulation method # 1.
  • the determination unit 23 compares the SIR threshold set in step S21 with the SIR for each subcarrier acquired in step S11, and determines the modulation scheme for each subcarrier (step S 22). Specifically, based on FIGS. 7-1 and 7-2, for example, if the SIR of the subcarrier for which the modulation scheme is determined is between ⁇ and ⁇ , the determination unit 23 determines the subcarrier
  • the modulation method is determined to be modulation method # 1. Note that the determination unit 23 performs such processing (determination of the modulation scheme) for all subcarriers.
  • the determination unit 23 calculates a transmission rate (step S23). Note that the transmission rate calculation process is the same as the transmission rate calculation process performed in step S14 of the first embodiment described above, and the coding rate and step of the coding method selected in step S13 above. In step S22, the transmission rate is calculated when the modulation method (modulation method for each subcarrier) determined in step S22 is used. The determination unit 23 holds the calculated transmission rate. Next, the determination unit 23 determines whether or not the above-described series of processing (steps S13, S21, S22, S23) for all selectable encoding methods has been executed (step S24).
  • step S24, No If there is an encoding method (step S24, No) (if the above processing is executed) (step S24, No), the process returns to step S13 and the same processing is performed for the remaining encoding methods. (Steps S13, S21, S22, S23, S24) are performed. When the above-described series of processing is completed for all the code keys (step S24, Yes), the process proceeds to step S16.
  • the determination unit 23 selects and determines the combination of the modulation scheme for each subcarrier and the encoding scheme for which the maximum transmission rate is obtained in step S23 as a combination to be used during data transmission ( Step S 16).
  • the optimum coding scheme and the optimum for each subcarrier are described.
  • a combination with a suitable modulation method was selected, and data transmission was performed using the selected combination.
  • the selection accuracy of the combination is inferior to that of the first embodiment, but the amount of calculation is reduced. While reducing the circuit scale, the transmission speed during data transmission can be increased faster than before.
  • FIG. 8 is a diagram showing a configuration example of a third embodiment of a communication system for realizing an adaptive modulation method according to the present invention and a communication apparatus constituting the communication system.
  • the communication system according to the third embodiment includes a communication device 1 and a communication device 2a.
  • Communication device 1 is the same as communication device 1 of the first embodiment described above.
  • the communication device 2a includes a determination unit 23a instead of the determination unit 23 included in the communication device 2.
  • the determination unit 23a performs operations as a transmission condition selection unit, a transmission quality calculation unit, an iterative process control unit, and a transmission condition determination unit. Further, the determination unit 23a includes a comparison unit 31, a threshold setting unit 32, a selection unit 33, an encoding scheme holding unit 34, and a control unit 35. Note that parts other than the determination unit 23a have the same configurations as those of the first embodiment, and thus the same reference numerals are given and description thereof is omitted. In the present embodiment, an operation for adjusting the modulation scheme and the coding scheme for each subcarrier that is determined (in use) will be described.
  • the modulation scheme and code scheme can be adjusted (reselected) adaptively to increase the transmission speed. Is realized. Note that the present embodiment differs from the second embodiment described above only in the adaptive modulation instruction information generation operation (adaptive modulation instruction information update operation) performed by the determination unit 23a. Here, the operation of the determination unit 23a will be mainly described.
  • the determination unit 23a included in the communication device 2a of the present embodiment adjusts the modulation scheme and encoding scheme for each subcarrier once determined by the procedure shown in FIG. FIG.
  • FIG. 9 is a flowchart showing an operation (operation for updating adaptive modulation instruction information) in which the determination unit 23a adjusts the modulation scheme for each subcarrier once determined and the encoding scheme. Note that the same steps as those in the second embodiment are denoted by the same step numbers, and the description thereof is omitted.
  • the comparison unit 31 constitutes a modulation scheme pattern determination unit
  • the threshold setting unit 32 and the control unit 35 constitute an SIR threshold adjustment unit
  • the control unit 35 constitutes a reference communication quality acquisition unit
  • the selection unit 33, the code key scheme holding unit 34, and the control unit 35 constitute a coding scheme adjustment unit.
  • determination section 23a generates adaptive modulation instruction information by executing any of the adaptive modulation instruction information generation operations shown in Embodiment 1 or 2 at the start of communication (modulation for each subcarrier). System and coding system). Thereafter, the control unit 35 of the determination unit 23a acquires communication quality information indicating the communication quality measured by the decoding unit 22 (step S31). Note that the communication quality measured by the decoding unit 22 is a CRC error as is generally done. This is measured by the method of detecting the perception and obtaining PER. The communication quality acquired here is retained as the standard communication quality until the next step S31 is executed.
  • determination unit 23a adjusts the SIR threshold value (see step S21 in FIG. 6) set in the adaptive modulation instruction information generation operation at the start of communication (step S32). It should be noted that after the adjustment of the SIR threshold has already been performed, the latest SIR threshold value obtained by the previous adjustment is adjusted (readjustment).
  • step S32 the control unit 35 of the determination unit 23a has a good communication quality (reference communication quality) indicated by the communication quality information acquired in step S31 (the desired communication quality is satisfied).
  • the communication quality is determined based on a communication quality determination threshold value for determining whether the communication quality is good or not. Specifically, the control unit 35 determines that the communication quality is good when the communication quality is equal to or higher than the communication determination threshold, and otherwise the communication quality is not good.
  • step S41, No the control unit 35 instructs the value setting unit 32 to adjust the SIR threshold, and the threshold! /, Value setting unit 32
  • the SIR threshold value (updated SIR threshold value) is reset (step S42).
  • the threshold value setting unit 32 adjusts all the SIR thresholds for each of the plurality of modulation schemes. Based on the updated SIR threshold value and the SIR for each subcarrier received from OFDM demodulator 21, comparator 31 performs the same processing as step S22 in Embodiment 2 (see FIG. 6).
  • the modulation method for each carrier is determined (step S43). Note that the determined modulation scheme for each subcarrier is notified to the communication device 1.
  • control unit 35 acquires communication quality information in a state reflecting the determined modulation scheme for each subcarrier from the decoding unit 22, and confirms whether the communication quality is good (step S44). ).
  • step S44 If the communication quality is good (step S44, Yes), the process proceeds to step S33. On the other hand, if the communication quality is not good (step S44, No), the process proceeds to step S42 and the SIR Adjust the threshold (increase by the specified value) and execute step S43 above. Thereafter, the same processing (steps S42 to S44) is repeatedly executed until it is determined in step S44 that the communication quality is good (step S44, Yes).
  • step S42 when the SIR threshold value is increased, 16QAM and 64QAM, such as a large multi-value number! /, And a modulation method (weak to noise !, modulation method) are selected.
  • a modulation system with a small multi-level number such as BPSK and QPSK is easily selected.
  • the SIR threshold by adjusting the SIR threshold, it is possible to increase noise resistance and improve communication quality.
  • the amount of increase in the SIR threshold in step S42 can be finely adjusted as the value is reduced, and the number of executions of the adjustment process is reduced as the value is increased.
  • step S41 when it is determined in step S41 that the communication quality is good (step S41, Yes), the control unit 35 sets the SIR threshold value to the threshold setting unit 32.
  • the threshold value setting unit 32 resets the SIR threshold value (updated SIR threshold value) after reducing the SIR threshold value in use by a specified value.
  • Step S45 Note that there are a plurality of threshold V and value setting units 32, and the adjustment is performed according to all the SIR thresholds and values for each modulation method. However, even if the communication quality is good, the control unit 35 determines the communication quality, determines the excess quality with a certain margin for the value, and if it is less than the value, Does not issue an instruction to adjust the SIR threshold to the threshold setting unit 32. That is, the process of step S32 is terminated without adjusting the SIR threshold value.
  • step S46 Based on the SIR threshold value reset (adjusted) by the threshold value setting unit 32 and the SIR for each subcarrier received from the OFDM demodulation unit 21, the comparison unit 31 The same processing as in step S22 is executed to determine the modulation scheme for each subcarrier (step S46). Note that the determined modulation scheme for each subcarrier is notified to the communication apparatus 1.
  • control unit 35 acquires communication quality information in a state reflecting the determined modulation scheme for each subcarrier from the decoding unit 22, and based on the acquired communication quality! /, SIR threshold, It is checked whether the value can be further decreased (whether the communication quality is excessively good enough to further increase the transmission rate) (step S47). That is, this In step S47, it is determined whether or not the communication quality is within the above-mentioned quality judgment threshold and is in a range that is greater than the value and less than the above-mentioned excess quality judgment threshold value.
  • step S47 If the value cannot be further decreased (step S47, No), the process proceeds to step S33. On the other hand, if the SIR threshold can be further reduced (step S47, Yes), the process proceeds to step S45 to adjust the SIR threshold (decrease by the specified value) and Execute. Thereafter, in step S47, the same processing (steps S45 to S47) is repeatedly executed until it is determined that the SIR threshold cannot be further decreased (No in step S47).
  • steps S45 to S47 described above makes it easier to select a modulation scheme that can transmit a large number of bits at once, such as 16QAM and 64QAM, by reducing the SIR threshold. This is based on the characteristic. In other words, the transmission rate can be increased by adjusting the SIR threshold.
  • step S33 the control unit 35 checks whether or not the coding scheme selection count has reached the specified count (step S33). If the number of encoding method selections has reached the specified number (step S33, Yes), the process proceeds to step S16. On the other hand, if the number of selections of the coding scheme has reached the specified number (step S33, No), the determination unit 23a adjusts the coding scheme in use (step S34).
  • step S34 the control unit 35 of the determination unit 23a confirms whether or not the reference communication quality indicated by the communication quality information acquired in step S31 is good (satisfying the desired communication quality). (Step S51).
  • step S51 When the communication quality is not good (step S51, No), the control unit 35 instructs the selection unit 33 to adjust the encoding method, and the selection unit 33 uses the encoding used. Select a coding method with a higher error correction capability from the coding methods held in the coding method holding unit 34, and change the method to use this coding method thereafter (step S52). This increases the number of redundant bits included in the encoded data and increases noise resistance.
  • step S51 determines whether the communication quality is good (step (S51, Yes)
  • the control unit 35 instructs the selection unit 33 to adjust the encoding method, and the selection unit 33 sends the encoding method used to the encoding method holding unit 34.
  • a code scheme with a lower error correction capability is selected from the stored code schemes, and thereafter changed to use this code scheme (step S53). This reduces the number of redundant bits contained in the encoded data and increases the transmission rate.
  • the control unit 35 if it is less than the excess quality determination threshold value obtained by adding a certain margin to the communication quality determination threshold value, the selection unit 33 Does not give instructions for adjusting the encoding method. That is, the process of step S34 is terminated without adjusting the encoding method.
  • step S34 the process proceeds to step S31, and the series of processes (steps S31, S32, S23, S33) are executed again. Thereafter, in step S33, the same processing (steps S31, S32, S23, S33, S34) is continued until it is determined that the number of selections of the sign key method has reached the specified number (step S33, Yes).
  • the change in the code method is limited to the specified number of times because the number of processing executions is reduced and the time required to reset the combination of the coding method and the modulation method for each subcarrier. This is to shorten the time. However, if the time and circuit scale are sufficient, all the coding methods can be selected. In this case, it is possible to select a more appropriate code scheme and modulation scheme for each subcarrier.
  • control unit 35 obtains the combination of the modulation scheme for each subcarrier and the encoding scheme that has obtained the maximum transmission rate among the calculations and stored in step S23. Make a selection (step S16). The combination force selected and determined in step S16 When the combination of the modulation scheme for each subcarrier in use and the encoding scheme is different, the selected combination is notified to the communication apparatus 1.
  • the time variation of the transmission path is monitored, and the encoding scheme being used and the modulation scheme for each subcarrier are not optimal for the transmission path state.
  • the code scheme to be used and the modulation scheme for each subcarrier were appropriately changed. With this, for example, even if the communication quality cannot be satisfied, the communication quality becomes excessively good, etc., the change follows, A high transmission speed can always be realized while satisfying desired communication quality.
  • Embodiment 4 the adaptive modulation method and communication apparatus according to Embodiment 4 will be described.
  • the amount of calculation is reduced and the circuit scale is reduced.
  • the configuration of the communication system that implements the adaptive modulation method of the present embodiment and the communication device that constitutes the communication system are the same as those of the third embodiment described above, and the update of the adaptive modulation instruction information performed by the determination unit 23a Only the operation is different.
  • FIG. 12 is a flowchart illustrating an operation in which the determination unit 23a according to the fourth embodiment updates the adaptive modulation instruction information.
  • step S61 is executed instead of step S16.
  • the process of step S61 is a process for determining the modulation scheme for each subcarrier.
  • the adjusted SIR threshold! /, And the modulation scheme for each subcarrier using the value are set. Since it has been determined, it is adopted as the modulation method for each subcarrier after adjustment.
  • Other processing is the same as that in the adaptive modulation instruction information update operation of Embodiment 3 (see Fig. 9) with the same step number.
  • the adaptive modulation method and communication apparatus will be described.
  • an adaptive modulation method in which the processing described in Embodiment 3 is partially changed will be described.
  • the configuration of the communication system that implements the adaptive modulation method of the present embodiment and the communication device that configures the communication system are the same as those of the above-described third embodiment, and update of the adaptive modulation instruction information performed by the determination unit 23a Only the operation is different. Therefore, in the present embodiment, the update operation of adaptive modulation instruction information performed by determination unit 23a will be mainly described.
  • FIG. 13 is a flowchart showing an operation in which the determination unit 23a of the fifth embodiment changes the modulation scheme for each subcarrier, and is executed instead of step S32 of FIG. 9 described in the third embodiment. Operation (step S32b). Other processes in the adaptive modulation instruction information update operation (processes other than step S32 in FIG. 9) are the same as those in the third embodiment.
  • step S71 is added between steps S42 and S43.
  • step S45 and S46 are interspersed with step S72.
  • the other parts are the same as those shown in FIG.
  • step S71 and step S72 the same processing is executed. Specifically, in steps S42 and S45, each SIR threshold value, which is uniformly adjusted with the same adjustment amount, is added to each modulation method, and different offset values are added for each modulation method. adjust. The reason for adding this offset value will be described below.
  • modulation methods with a small number of multi-values generally tend to be less susceptible to disturbances such as noise and signal fluctuations (phase fluctuations) due to device imperfections. is there.
  • modulation methods with large multi-levels such as 16QAM and 64QAM, are generally vulnerable to disturbances.
  • 16QAM and 64QAM are generally vulnerable to disturbances.
  • the required SIR increases greatly in 16QAM and 64QAM compared to BPSK and QPSK.
  • FIG. 7-2 used in the description of Embodiment 2 it is necessary to increase the ⁇ force ldB. In a state where ⁇ is 2 dB, etc. (The numerical values are just examples.
  • the SIR threshold used in the modulation scheme adjustment operation for each subcarrier is given an offset corresponding to the modulation scheme corresponding to each value.
  • the SIR threshold can be adjusted with a different adjustment amount for each modulation method, and even when there is a disturbance such as signal fluctuation due to incompleteness of the device, a highly accurate modulation method for each subcarrier. Selection becomes possible.
  • Embodiment 6 an adaptive modulation method in which the processing described in Embodiment 3 is partially changed will be described.
  • the configuration of the communication system that implements the adaptive modulation method of the present embodiment and the communication device that configures the communication system are the same as those of the above-described third embodiment, and update of the adaptive modulation instruction information performed by the determination unit 23a Only the operation is different. Therefore, in the present embodiment, the update operation of adaptive modulation instruction information performed by determination unit 23a will be mainly described.
  • FIG. 14 is a flowchart showing an operation in which the determination unit 23a of the sixth embodiment changes the modulation scheme for each subcarrier, and is executed instead of step S32 of FIG. 9 described in the third embodiment. Operation (step S32c). Other processes in the adaptive modulation instruction information update operation (processes other than step S32 in FIG. 9) are the same as those in the third embodiment.
  • step S81 between steps S41 and S42 with respect to the operation shown in FIG. 10 (SIR threshold adjustment operation in the third embodiment).
  • Step S41 and S45 are interpolated from Step S82.
  • the other parts are the same as those shown in FIG.
  • step S81 and step S82 are the same, and the threshold value is adjusted. This is a process to limit the amount (increase / decrease amount). Specifically, when executing the process to increase and decrease the SIR threshold (step S42ZS45), the current adjustment amount is compared to the cumulative adjustment amount of the SIR threshold that has been increased and decreased in step S32c. When is added, it is confirmed whether or not the cumulative adjustment amount falls within the specified range (step S81ZS82). If the result of adding the current adjustment amount to the cumulative adjustment amount is within the specified range (steps S81, YesZS82, Yes), the SIR threshold value is increased and decreased (step S43ZS45). On the other hand, if the result of adding the current adjustment amount to the cumulative adjustment amount is not within the specified range (step S81, NoZS82, No), the process of step S32c is terminated.
  • the reason for adjusting the value by referring to the cumulative adjustment amount as described above will be explained as follows.
  • the higher the SIR threshold the easier it is to select a modulation scheme with a small multi-level number.
  • the transmission rate will be extremely reduced and transmission efficiency will deteriorate.
  • the smaller the SIR threshold the easier it is to select a modulation scheme with a large number of values, but it becomes weaker with respect to the time variation of the transmission path and communication becomes unstable.
  • the adjustment amount is set within a certain range.
  • the adjustment of the SIR threshold used in the modulation scheme adjustment operation for each subcarrier is performed only within a certain range.
  • the modulation scheme for each subcarrier is not excessively adjusted with respect to fluctuations in the transmission path state, and stable communication can be realized.
  • FIG. 15 is a flowchart illustrating an operation in which the determination unit 23a of the seventh embodiment updates the adaptive modulation instruction information.
  • step S91 is executed instead of step S 16.
  • the process of step S91 is a process of determining the encoding method, and the encoding method that obtained the maximum transmission rate in step S23 is selected and determined as the adjusted encoding method.
  • Other processing is the same as that in the adaptive modulation instruction information update operation (see FIG. 9) of Embodiment 3 to which the same step number is assigned.
  • the process of selecting (determining) the modulation scheme for each subcarrier in the above-described embodiment is performed collectively for each of a plurality of neighboring subcarriers. Therefore, the configuration of the communication system that implements the adaptive modulation method of the present embodiment and the communication device that constitutes the communication system is the same as that of either the first or third embodiment described above.
  • FIG. 16-1 and FIG. 16-2 are diagrams for explaining the adaptive modulation method of the eighth embodiment. is there.
  • Figure 16-1 is an example of the frequency characteristic (amplitude characteristic) of the transmission line, and shows that the signal easily passes in proportion to the magnitude of the amplitude characteristic shown on the vertical axis.
  • Figure 16-2 is an example of the received signal level of the OFDM signal received through the transmission line with the amplitude characteristics shown in Figure 16-1.
  • the reception level is proportional to the amplitude characteristics of the transmission line, and a subcarrier with a higher reception level can easily use a multi-level modulation method that can transmit many bits at a time.
  • a subcarrier with a low reception level has a small multi-level number and cannot be used as a modulation method, and can transmit only a few bits at a time.
  • the frequency characteristics of the transmission path are determined by the influence of the reflected wave (multipath wave) and the like.
  • the delay time of the multipath wave (the signal that arrives first and the signal that arrives after being delayed by reflection) If the time difference is not so large, the frequency characteristics undulation (number of peaks and valleys) is relatively small.
  • the ease of passing the signal (reception level) is almost the same in neighboring subcarriers. Therefore, even if a process for selecting a modulation scheme for each subcarrier as in the above-described embodiment is executed, the same modulation scheme may be used for neighboring subcarriers as a result. The amount of calculation is unnecessarily high.
  • a plurality of subcarriers that are not set for each subcarrier are grouped into a plurality of subcarriers (subcarrier group).
  • the same modulation method is set. For example, if there are 100 subcarriers and 2 waves are combined into a subcarrier group, the number of targets for which the modulation scheme is set (corresponding to the number of subcarriers in the above-described embodiment) is 1Z2.
  • the effort for setting the modulation method for each carrier processing for setting the modulation method for each subcarrier in the above-described embodiment
  • the modulation scheme setting processing that has been individually executed for each subcarrier in Embodiments 1 to 6 described above is performed by subcarriers having a plurality of neighboring subcarriers. It was decided to carry out every group. As a result, the processing time and circuit scale required for setting the modulation method can be reduced. [0092] Embodiment 9.
  • Embodiments 1 to 8 described above the power of explaining an adaptive modulation method in a communication system using OFDM
  • the adaptive modulation method described above is applied to a communication system using a method other than OFDM. The case where it does is demonstrated. Therefore, the configuration of the communication system that realizes the adaptive modulation method of the present embodiment is the same as that of either of the first or third embodiment described above, and only the multiplexing scheme to be used is different.
  • FIGS. 17-1 to 17-5 are diagrams for explaining the adaptive modulation method according to the ninth embodiment.
  • Figures 17-1 to 17-3 show an example of the spectrum of the OFDM signal, an example of the spectrum of the FDM signal, and an example of the spectrum of the CDM signal, respectively.
  • Fig. 17-4 schematically shows an example of the time waveform of the TDM signal
  • Fig. 17-5 shows a configuration example of a communication system that performs SDM.
  • Embodiments 1 to 8 are inventions based on OFDM signals as shown in FIG. 17-1, and in this system, data is transmitted in parallel using multiple subcarriers. To do.
  • the present invention can be applied to the above-described miscommunication system.
  • the transmission channel used in each communication system (communication system based on one of FDM, CDM, TDM, and SDM) is a process targeting subcarriers. (Channels multiplexed using one of frequency, code, time slot, and space) are changed.
  • the communication apparatus on the receiving side can execute the following processing to select and determine the modulation scheme and code scheme for each transmission channel.
  • the communication device on the receiving side first measures the SIR for each transmission channel (step S111), then selects the modulation method for each transmission channel (step S112), and then selects the coding method (step S112). S113), then calculate the transmission rate and communication quality (step S114), and determine all combinations of the modulation scheme for each transmission scheme selected in step S112 and the encoding scheme selected in step S113. After confirming whether or not step S114 has been executed (step S115), if all combinations have been executed!
  • step S112 and S113 Selects and determines the combination of the modulation method and the encoding method for each transmission channel corresponding to the combination that maximizes the transmission speed while satisfying the desired communication quality in the combination of the selection results. (Step S11 6). If it is determined in step S115 that step S114 has not been executed for all combinations (step S115, No), steps S112 to S112 are performed until the above processing is executed for all combinations. The process of S115 is repeatedly executed.
  • Embodiments 2 to 8 The operation procedure shown in Embodiments 2 to 8 is the same as the communication system using OFDM signals. In order to apply to communication systems other than the above, the operation procedure of each embodiment has been described above.
  • Embodiments 1 to 7 the adaptive modulation method shown in Embodiments 1 to 7 described above can be applied to a communication system that performs multiplex transmission other than OFDM. It was. That is, the transmission channels (frequency, code, time slot, space) of each communication system that performs multiplex transmission other than OFDM are handled in the same way as subcarriers in a communication system using OFDM, and are shown in Embodiments 1 to 8. By performing the operation, the same effects as those of the above-described embodiments can be obtained in each communication system. Industrial applicability
  • the adaptive modulation method according to the present invention is useful for, for example, a communication system using OFDM, and particularly based on the communication quality for each subcarrier. It is suitable for the adaptive modulation method of communication equipment that performs communication by adaptively selecting and determining each modulation method.

Abstract

An adaptive modulation method, in a case of adaptively selecting and deciding an encoding scheme and a modulation scheme in data transmission using the orthogonal frequency division multiplexing, comprises a modulation scheme pattern deciding step of selecting a modulation scheme for each of subcarriers and deciding a modulation scheme combination (modulation scheme pattern) for each of the subcarriers; an encoding scheme selecting step of selecting an encoding scheme; and a transmission quality calculating step of calculating, based on SIR for each subcarrier, a transmission rate and a communication quality (transmission quality). In this method, the modulation scheme pattern deciding step, encoding scheme selecting step and transmission quality calculating step are repetitively executed, thereby executing the transmission quality calculating steps for all of the combinations of modulation scheme patterns and encoding schemes. Then, a modulation scheme pattern and an encoding scheme, for which a desired communication quality is satisfied and a transmission quality exhibiting the maximum transmission rate is obtained in the transmission quality calculation results, are selected and decided as a formal modulation scheme pattern and a formal encoding scheme, respectively.

Description

明 細 書  Specification
適応変調方法および通信装置  Adaptive modulation method and communication apparatus
技術分野  Technical field
[0001] 本発明は、直交周波数分割多重(OFDM : Orthogonal Frequency Division Multi plexing)によるデータ伝送時の符号化方式および変調方式を適応的に選択決定す るための適応変調方法に関するものであり、特に、サブキャリア毎の通信品質に基づ V、て、符号ィ匕方式およびサブキャリア毎の変調方式を選択決定する場合の適応変調 方法および当該適応変調方法を実現する通信装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an adaptive modulation method for adaptively selecting and determining an encoding method and a modulation method at the time of data transmission by orthogonal frequency division multiplexing (OFDM). The present invention relates to an adaptive modulation method in the case of selecting and determining a V-code scheme and a modulation scheme for each subcarrier based on communication quality for each subcarrier, and a communication apparatus for realizing the adaptive modulation method.
背景技術  Background art
[0002] 適応変調方式は、符号化方式 (符号化率や誤り訂正符号の種類)と変調方式の組 み合わせを、伝送路の状態に応じて選択使用する方式である。すなわち、伝送路の 状態が、大きな雑音などにより劣悪な状態である場合には、なるべく誤り訂正能力の 高い符号化方式と、誤り難い変調方式とを組み合わせて使用する。逆に、伝送路の 状態が良好な場合には、付加する冗長ビット (誤り訂正ビット)数の少ない符号ィ匕方 式と、多くのビットを一度に伝送できる多値数の多 、変調方式とを組み合わせて使用 する。このような適応変調方式の採用により、伝送路の状態に応じて、所望の通信品 質 (ビット誤り率や、パケット誤り率)を満足しつつ、なるべく高速なデータ伝送を実現 することができる。たとえば、下記特許文献 1では、 OFDMを使用して通信を行う際 の適応変調方式として、符号化方式や、変調方式などを、伝送路の状態に応じて選 択使用する方式が開示されている。  [0002] An adaptive modulation scheme is a scheme that selectively uses a combination of a coding scheme (coding rate and type of error correction code) and a modulation scheme according to the state of a transmission path. In other words, when the transmission path is in a poor state due to a large amount of noise or the like, a coding system having as high an error correction capability as possible and a modulation system that is difficult to error are used in combination. On the other hand, if the transmission path is in good condition, a code-type method with a small number of redundant bits (error correction bits) to be added and a multi-valued multi-value modulation method that can transmit many bits at one time. Use in combination. By adopting such an adaptive modulation method, it is possible to realize data transmission as fast as possible while satisfying desired communication quality (bit error rate and packet error rate) according to the state of the transmission path. For example, Patent Document 1 below discloses a method of selecting and using an encoding method, a modulation method, or the like according to the state of a transmission path as an adaptive modulation method when performing communication using OFDM. .
[0003] ここで、 OFDMによるデータ伝送では、複数のサブキャリアを使用して、複数のデ ータを並列に伝送する。また、各サブキャリアには、それぞれ異なる変調方式を使用 できるが、特許文献 1に開示された従来技術や、 OFDMを使用した無線 LANなどで は、全てのサブキャリアで同一の変調方式を使用している。  Here, in data transmission by OFDM, a plurality of data are transmitted in parallel using a plurality of subcarriers. Each subcarrier can use a different modulation method. However, in the conventional technique disclosed in Patent Document 1 and a wireless LAN using OFDM, the same modulation method is used for all subcarriers. ing.
[0004] 特許文献 1:特開 2002— 261726号公報  [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2002-261726
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] 一般に、マルチパス等の影響によって、伝送路の周波数特性はフラットではな 、。 そして、減衰の大きな周波数は信号が通り難く (伝送誤りが発生し易く)、多値数の小 さい変調方式し力使用できない。逆に、減衰の小さい周波数は信号が通り易ぐ多値
Figure imgf000004_0001
、変調方式を使用できる。
Problems to be solved by the invention [0005] Generally, the frequency characteristics of a transmission line are not flat due to the influence of multipath and the like. In addition, it is difficult for signals to pass through frequencies with large attenuation (transmission errors are likely to occur), and it is not possible to use force by using a modulation method with a small number of multiple values. On the other hand, a low-attenuation frequency is a multivalued signal that passes easily.
Figure imgf000004_0001
Modulation scheme can be used.
[0006] 上述したように、 OFDMによるデータ伝送は、複数のサブキャリアにそれぞれデー タを乗せて並列伝送するものである。そして、伝送路の周波数特性がフラットでない 場合にも、信号の通り易さに応じた変調方式をサブキャリア毎に設定できることが知ら れている。  [0006] As described above, data transmission using OFDM is performed by transmitting data on a plurality of subcarriers in parallel. Further, it is known that a modulation scheme corresponding to the ease of passing a signal can be set for each subcarrier even when the frequency characteristics of the transmission path are not flat.
[0007] し力しながら、従来は、全てのサブキャリアに同じ変調方式を設定してデータ伝送を 行っていた。そのため、信号が最も通り難いサブキャリアを考慮して全サブキャリアの 変調方式が選択され、効率的なデータ伝送を実現できていな力つた。また、最適な 品質 (高伝送レートの通信)を得るための、符号ィ匕方式とサブキャリア毎の変調方式と の設定方法 (組み合わせの選択方法)が示されて 、なかった。  However, in the past, data transmission was performed by setting the same modulation scheme for all subcarriers. For this reason, the modulation scheme for all subcarriers was selected in consideration of the subcarrier where the signal was most difficult to pass, and it was not possible to realize efficient data transmission. Also, there has been no setting method (combination selection method) between the code key method and the modulation method for each subcarrier to obtain optimum quality (communication at a high transmission rate).
[0008] さらに、 OFDMを用いる通信に限らず、複数の周波数でデータを伝送する周波数 分割(FDM : Frequency Division Multiplexing)ベースの通信システム,複数の時間 でデータを伝送する時分割(TDM : Time Division Multiplexing)ベースの通信シス テム,複数の符号でデータを伝送する符号分割(CDM : Code Division Multiplexin g)通信システム,複数の空間でデータを伝送する空間分割(SDM : Space Division Multiplexing)ベースの通信システムにおいても、 OFDMにおけるサブキャリアを、そ れぞれ、周波数、時間、符号、空間と見なせば、同様の問題があった。すなわち、 O FDMにおけるサブキャリア毎の信号の通り易さは、 FDMベースの通信における各 周波数での信号の通り易さと同じであり、 TDMベースの通信における各時間スロット での信号の通り易さと同じであり、 CDMベースの通信における各符号で拡散された 信号の通り易さと同じであり、 SDMベースの通信における各空間での信号の通り易 さと同じである。よって、 OFDMと同様に、最適な品質を得るための、符号化方式と、 周波数、時間、符号、空間に設定する変調方式との設定方法が示されていな力つた  [0008] Furthermore, not only communication using OFDM, but also a frequency division multiplexing (FDM) -based communication system that transmits data at multiple frequencies, time division (TDM: Time Division) that transmits data at multiple times Multiplexing (communication system), Code Division Multiplexing (CDM) communication system that transmits data using multiple codes, Space Division Multiplexing (SDM) communication system that transmits data in multiple spaces However, there are similar problems if subcarriers in OFDM are considered as frequency, time, code, and space, respectively. In other words, the ease of passing the signal for each subcarrier in OFDM is the same as the passing of the signal at each frequency in FDM-based communication, and the same as the passing of the signal in each time slot in TDM-based communication. This is the same as the signal spread in each code in CDM-based communication, and the same as the signal in each space in SDM-based communication. Therefore, as with OFDM, there is no indication of how to set the coding method and the modulation method to be set in frequency, time, code, and space in order to obtain optimal quality.
[0009] 本発明は、上記に鑑みてなされたものであって、 OFDMを用いる通信において、 所望の通信品質を満足しつつ、高速なデータ伝送を実現できる適応変調方法およ びこれを実現する通信装置を得ることを目的とする。 The present invention has been made in view of the above, and in communication using OFDM, It is an object of the present invention to provide an adaptive modulation method capable of realizing high-speed data transmission while satisfying desired communication quality and a communication apparatus for realizing the adaptive modulation method.
[0010] またさらに、 FDM、 TDM、 CDM、 SDMを用いる通信において、所望の通信品質 を満足しつつ、高速なデータ伝送を実現することのできる適応変調方法およびこれを 実現する通信装置を得ることを目的とする。 [0010] Furthermore, in communication using FDM, TDM, CDM, and SDM, an adaptive modulation method capable of realizing high-speed data transmission while satisfying desired communication quality and a communication apparatus for realizing the same are obtained. With the goal.
課題を解決するための手段  Means for solving the problem
[0011] 上述した課題を解決し、目的を達成するために、本発明にかかる適応変調方法は 、直交周波数分割多重によるデータ伝送時の符号化方式および変調方式を伝送路 の状態に応じて適応的に選択決定する場合の適応変調方法であって、たとえば、サ ブキャリア毎の変調方式を、予め規定されている変調方式の中から選択し、サブキヤ リア毎の変調方式の組み合わせ (変調方式パターン)を決定する変調方式パターン 決定ステップと、送信データを符号化する際に使用する符号化方式を、予め規定さ れて ヽる符号化方式の中から選択する符号化方式選択ステップと、受信信号のサブ キャリア毎の SIRに基づ 、て、前記決定した変調方式パターンおよび前記選択した 符号化方式を使用したデータ伝送時の伝送速度および通信品質 (伝送品質)を算出 する伝送品質算出ステップと、を含み、さらに、前記変調方式パターン決定ステップ、 前記符号化方式選択ステップおよび前記伝送品質算出ステップを繰り返し実行する ことにより、変調方式パターンと、符号ィ匕方式との全ての組み合わせについて前記伝 送品質算出ステップを実行し、伝送品質算出結果の中で所望の通信品質を満たし つつ伝送速度が最大となる伝送品質が得られた際の変調方式パターンおよび符号 化方式を、データ伝送時に使用する正式な変調方式パターンおよび符号化方式とし て選択決定することを特徴とする。 In order to solve the above-described problems and achieve the object, an adaptive modulation method according to the present invention adapts an encoding method and a modulation method at the time of data transmission by orthogonal frequency division multiplexing according to the state of a transmission path. For example, a modulation method for each subcarrier is selected from among modulation methods defined in advance, and a combination of modulation methods for each subcarrier (modulation method pattern). A modulation scheme pattern determining step for determining the transmission method, an encoding scheme selection step for selecting an encoding scheme to be used when encoding the transmission data from among the encoding schemes defined in advance, and a received signal Based on the SIR for each subcarrier, the transmission rate and communication quality (transmission quality) at the time of data transmission using the determined modulation method pattern and the selected encoding method are determined. A transmission quality calculation step to be output, and further, by repeatedly executing the modulation scheme pattern determination step, the encoding scheme selection step, and the transmission quality calculation step, the modulation scheme pattern and the coding scheme are The transmission quality calculation step is executed for all the combinations, and the modulation method pattern and the encoding method when the transmission quality that achieves the maximum transmission speed while satisfying the desired communication quality is obtained in the transmission quality calculation result. It is characterized in that it is selected and determined as a formal modulation system pattern and encoding system used during data transmission.
発明の効果  The invention's effect
[0012] 本発明に力かる適応変調方法は、信号の受信品質に基づ 、て、最適な符号化方 式と、サブキャリア毎の最適な変調方式との組み合わせを選択してデータ伝送を行う こととしたので、所望の通信品質を満足しつつ、上記従来技術を使用した場合よりも 高速度でデータ伝送を行うことが可能となり、特に、周波数特性がフラットでない伝送 路におけるデータ伝送時の伝送速度を高速化できる、という効果を奏する。 図面の簡単な説明 [0012] The adaptive modulation method according to the present invention performs data transmission by selecting a combination of an optimal encoding method and an optimal modulation method for each subcarrier based on the reception quality of the signal. Therefore, while satisfying the desired communication quality, it is possible to perform data transmission at a higher speed than when the above-mentioned conventional technology is used, and in particular, transmission at the time of data transmission on a transmission line whose frequency characteristics are not flat. There is an effect that the speed can be increased. Brief Description of Drawings
[図 1]図 1は、本発明に力かる適応変調方法を実現する通信システムおよび通信シス テムを構成する通信装置の実施の形態 1の構成例を示す図である。 [FIG. 1] FIG. 1 is a diagram showing a configuration example of a first embodiment of a communication system and a communication apparatus constituting the communication system for realizing an adaptive modulation method according to the present invention.
[図 2]図 2は、符号化方式およびサブキャリア毎の変調方式を選択決定する動作の一 例を示すフローチャートである。 FIG. 2 is a flowchart showing an example of an operation for selecting and determining a coding scheme and a modulation scheme for each subcarrier.
[図 3]図 3は、サブキャリア毎に変調方式を選択する動作を説明するための図である。  FIG. 3 is a diagram for explaining an operation of selecting a modulation scheme for each subcarrier.
[図 4]図 4は、符号ィ匕方式の選択動作を説明するための図である。 FIG. 4 is a diagram for explaining a selection operation of a sign key method.
[図 5]図 5は、サブキャリア毎の変調方式および符号ィ匕方式を選択決定する動作を説 明するための図である。 FIG. 5 is a diagram for explaining an operation of selecting and determining a modulation method and a code key method for each subcarrier.
[図 6]図 6は、実施の形態 2の通信装置が行う適応変調指示情報の生成動作を示す フローチャートである。  FIG. 6 is a flowchart showing an operation of generating adaptive modulation instruction information performed by the communication apparatus of the second embodiment.
[図 7-1]図 7—1は、 SIRしきい値設定動作を説明するための図である。  [Fig. 7-1] Fig. 7-1 is a diagram for explaining the SIR threshold setting operation.
[図 7-2]図 7— 2は、 SIRしきい値設定動作を説明するための図である。  [Fig. 7-2] Fig. 7-2 is a diagram for explaining the SIR threshold setting operation.
[図 8]図 8は、本発明に力かる適応変調方法を実現する通信システムおよび通信シス テムを構成する通信装置の実施の形態 3の構成例を示す図である。  [Fig. 8] Fig. 8 is a diagram showing a configuration example of a third embodiment of a communication system and a communication apparatus constituting the communication system for realizing the adaptive modulation method according to the present invention.
[図 9]図 9は、一旦決定したサブキャリア毎の変調方式と、符号化方式とを調整する動 作を示すフローチャートである。  [FIG. 9] FIG. 9 is a flowchart showing an operation for adjusting a modulation scheme and a coding scheme for each subcarrier once determined.
[図 10]図 10は、 SIRしきい値調整動作を示すフローチャートである。  FIG. 10 is a flowchart showing an SIR threshold adjustment operation.
[図 11]図 11は、符号ィ匕方式調整動作を示すフローチャートである。  FIG. 11 is a flowchart showing a sign key method adjustment operation.
[図 12]図 12は、実施の形態 4の適応変調方法において、適応変調指示情報を更新 する動作を示すフローチャートである。  FIG. 12 is a flowchart showing an operation of updating adaptive modulation instruction information in the adaptive modulation method of the fourth embodiment.
[図 13]図 13は、実施の形態 5の適応変調方法において、サブキャリア毎の変調方式 を変更する動作を示すフローチャートである。  FIG. 13 is a flowchart showing an operation of changing the modulation scheme for each subcarrier in the adaptive modulation method of the fifth embodiment.
[図 14]図 14は、実施の形態 5の適応変調方法において、サブキャリア毎の変調方式 を変更する動作を示すフローチャートである。  FIG. 14 is a flowchart showing an operation of changing the modulation scheme for each subcarrier in the adaptive modulation method of the fifth embodiment.
[図 15]図 15は、実施の形態 7の適応変調方法において、適応変調指示情報を更新 する動作を示すフローチャートである。  FIG. 15 is a flowchart showing an operation for updating adaptive modulation instruction information in the adaptive modulation method of the seventh embodiment.
[図 16-1]図 16— 1は、実施の形態 8の適応変調方法を説明するための図である。 [図 16-2]図 16— 2は、実施の形態 8の適応変調方法を説明するための図である。 FIG. 16-1 is a diagram for explaining an adaptive modulation method according to the eighth embodiment. FIG. 16-2 is a diagram for explaining an adaptive modulation method according to the eighth embodiment.
[図 17-1]図 17— 1は、実施の形態 9の適応変調方法を説明するための図である。  FIG. 17-1 is a diagram for explaining an adaptive modulation method according to the ninth embodiment.
[図 17-2]図 17— 2は、実施の形態 9の適応変調方法を説明するための図である。  FIG. 17-2 is a diagram for explaining an adaptive modulation method according to the ninth embodiment.
[図 17-3]図 17— 3は、実施の形態 9の適応変調方法を説明するための図である。  FIG. 17-3 is a diagram for explaining an adaptive modulation method according to the ninth embodiment.
[図 17-4]図 17— 4は、実施の形態 9の適応変調方法を説明するための図である。  [FIG. 17-4] FIG. 17-4 is a diagram for explaining an adaptive modulation method according to the ninth embodiment.
[図 17-5]図 17— 5は、実施の形態 9の適応変調方法を説明するための図である。  FIG. 17-5 is a diagram for explaining an adaptive modulation method according to the ninth embodiment.
[図 18]図 18は、実施の形態 9の適応変調方法を実施の形態 1に適用した場合の動 作を示すフローチャートである。  FIG. 18 is a flowchart showing an operation when the adaptive modulation method of the ninth embodiment is applied to the first embodiment.
符号の説明  Explanation of symbols
[0014] l、2、2a 通信装置 [0014] l, 2, 2a communication device
11 符号化部  11 Encoder
12 変調部  12 Modulator
21 復調部  21 Demodulator
22 復号部  22 Decryption unit
23、 23a 判定部  23, 23a judgment part
31 比較部  31 Comparison part
32 しきい値設定部  32 Threshold setting section
33 選択部  33 Selection section
34 符号化方式保持部  34 Coding method holding unit
35 制御部  35 Control unit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下に、本発明にかかる適応変調方法および通信装置の実施の形態を図面に基 づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものでは ない。  Hereinafter, embodiments of an adaptive modulation method and a communication apparatus according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
[0016] 実施の形態 1.  [0016] Embodiment 1.
図 1は、本発明に力かる適応変調方法を実現する通信システムおよび通信システム を構成する通信装置の実施の形態 1の構成例を示す図である。この通信システムは 、通信装置 1および通信装置 2により構成される。また、通信装置 1は、符号化部 11 および OFDM変調部 12を備え、通信装置 2は、 OFDM復調部 21、復号部 22およ び判定部 23を備える。なお、判定部 23は、送信条件選択手段、伝送品質算出手段 、繰り返し処理制御手段および伝送条件決定手段として動作を行う。 FIG. 1 is a diagram showing a configuration example of a first embodiment of a communication system that implements an adaptive modulation method according to the present invention and a communication device that constitutes the communication system. This communication system includes a communication device 1 and a communication device 2. In addition, the communication device 1 includes an encoding unit 11 The communication apparatus 2 includes an OFDM demodulator 21, a decoder 22, and a determiner 23. The determination unit 23 operates as a transmission condition selection unit, a transmission quality calculation unit, an iterative process control unit, and a transmission condition determination unit.
[0017] また、図 1では、通信装置 1が通信装置 2に対してデータを送信する様子を示して いる。そのため、通信装置 1と 2とは、それぞれ信号の送信処理部 (符号ィ匕部 11およ び変調部 12に相当)、受信処理部(OFDM復調部 21および復号部 22に相当)のみ を備える構成となっているが、実際には、双方ともに送信処理部と受信処理部とを備 えており、通信装置 2は、必要に応じて通信装置 1へ信号を送信している。  FIG. 1 shows a state in which the communication device 1 transmits data to the communication device 2. Therefore, each of the communication devices 1 and 2 includes only a signal transmission processing unit (corresponding to the encoding unit 11 and the modulation unit 12) and a reception processing unit (corresponding to the OFDM demodulating unit 21 and the decoding unit 22). In actuality, both have a transmission processing unit and a reception processing unit, and the communication device 2 transmits a signal to the communication device 1 as necessary.
[0018] 通信装置 1において、符号化部 11は、通信相手先から予め通知されていた適応変 調指示情報を構成する"符号化方式情報"が示す符号化方式で送信データを符号 化する。 OFDM変調部 12は、通信相手先力も予め通知されていた適応変調指示情 報を構成する"サブキャリア毎の変調方式を示す情報"が示す変調方式で、符号ィ匕 部 11から受け取った符号化された送信データを変調して送信信号を生成する。生成 された送信信号は、アンテナから伝送路を介して通信相手先である通信装置 2へ送 信される。  [0018] In communication device 1, encoding section 11 encodes transmission data in the encoding scheme indicated by "encoding scheme information" that constitutes the adaptive modulation instruction information notified in advance from the communication partner. The OFDM modulation unit 12 is a modulation scheme indicated by “information indicating the modulation scheme for each subcarrier” that constitutes the adaptive modulation instruction information for which the communication partner power has been notified in advance, and the encoding received from the encoding unit 11 The transmission data is modulated to generate a transmission signal. The generated transmission signal is transmitted from the antenna to the communication apparatus 2 that is the communication partner via the transmission path.
[0019] 通信装置 2においては、 OFDM復調部 21が通信装置 1からの受信信号を復調す る。復号部 22は、 OFDM復調部 21が受信信号を復調して得られた復調データに対 して誤り訂正処理を実行し、その処理結果を受信データとして出力する。判定部 23 は、 OFDM復調部 21にて復調された受信信号 (復調データ)に基づいて、データの 送信元装置 (通信装置 1)が使用する符号化方式およびサブキャリア毎の変調方式 を決定し、当該決定結果を示す適応変調指示情報を生成する。具体的には、判定 部 23は、受信信号に基づいて推定した伝送路状態に応じて、伝送速度を最大化で きるような符号化方式と、サブキャリア毎の変調方式とを選択する。これは、上述した ように、伝送路の周波数特性力 Sフラットでないため、周波数 (サブキャリア)毎に最適 な変調方式を選択し、これを最適な符号化方式と組み合わせて通信を行うための処 理である。なお、生成された適応変調指示情報は、伝送路を介して通信装置 1へ通 知 (送信)される。  In communication device 2, OFDM demodulator 21 demodulates the received signal from communication device 1. Decoding section 22 performs error correction processing on the demodulated data obtained by OFDM demodulation section 21 demodulating the received signal, and outputs the processing result as received data. Based on the received signal (demodulated data) demodulated by the OFDM demodulator 21, the determination unit 23 determines the encoding method used by the data transmission source device (communication device 1) and the modulation method for each subcarrier. Then, adaptive modulation instruction information indicating the determination result is generated. Specifically, the determination unit 23 selects an encoding method that can maximize the transmission rate and a modulation method for each subcarrier according to the transmission path state estimated based on the received signal. As described above, this is not a frequency characteristic S flat of the transmission path, so an optimum modulation method is selected for each frequency (subcarrier), and this is combined with an optimum coding method to perform communication. Is. The generated adaptive modulation instruction information is notified (transmitted) to the communication device 1 via the transmission path.
[0020] 判定部 23が上記適応変調指示情報を生成する動作 (符号化方式およびサブキヤ リア毎の変調方式を選択決定する動作)を図 2に基づいて説明する。図 2は、適応変 調指示情報の生成動作を示すフローチャートである。判定部 23は、 OFDM復調部 2 1が測定したサブキャリア毎の SIR (Signal to Interference Ratio)を受け取る(ステツ プ Sl l)。 [0020] Operation in which the determination unit 23 generates the adaptive modulation instruction information (encoding method and sub-carrier) The operation of selecting and determining the modulation method for each rear will be described with reference to FIG. FIG. 2 is a flowchart showing an operation for generating adaptive modulation instruction information. The determination unit 23 receives the SIR (Signal to Interference Ratio) for each subcarrier measured by the OFDM demodulation unit 21 (step Sl 1).
[0021] 次に、判定部 23は、サブキャリア毎の変調方式を選択する (ステップ S12)。たとえ ば、サブキャリア数が 3,選択可能な変調方式が BPSKおよび QPSKの場合であれ ば、各サブキャリアの変調方式の組み合わせとして、図 3に示した 8パターンの中の いずれか一つを選択することとなる。なお、各サブキャリアの変調方式の組み合わせ (組み合わせパターン)を選択する際の条件は特に規定しない。したがって、たとえば 、図 3に示した組み合わせパターン番号の若番号順に選択してもよいし、選択可能な 組み合わせパターンをランダムに選択してもよ!/、。  Next, the determination unit 23 selects a modulation scheme for each subcarrier (step S12). For example, if the number of subcarriers is 3 and the selectable modulation methods are BPSK and QPSK, select one of the eight patterns shown in Fig. 3 as the combination of modulation methods for each subcarrier. Will be. Note that the conditions for selecting a combination (combination pattern) of modulation methods for each subcarrier are not particularly specified. Therefore, for example, the combination pattern numbers shown in FIG. 3 may be selected in ascending order, or selectable combination patterns may be selected at random! /.
[0022] 次に、判定部 23は、符号化方式を選択する (ステップ S13)。符号化方式は、たとえ ば、図 4に示したような誤り訂正能力の異なる 2種類の符号化方式の中から選択する 。図 4は、リードソロモン (RS)符号を使用する場合の例を示している。第 1の符号ィ匕 方式である RS (255, 239)は、 239バイトの情報に対して 16バイトの冗長バイトを付 加した符号を生成する符号化方式を示す。また、第 2の符号化方式である RS ( 120, 104)は、 104バイトの情報に対して 16バイトの冗長バイトを付加した符号を生成する 符号ィ匕方式を示す。なお、符号ィ匕率は、 RS (255, 239)を使用した場合が約 0. 94 ( = 239,255)であり、 RS (120, 104)を使用した場合力約 0. 87 (= 104/120) である。また、同じ変調方式を使用した場合の伝送速度は、 RS (255, 239)を使用 した場合の方が高くなる。また、誤り訂正能力は、 RS (120, 104)を使用した場合の 方が高くなる。  Next, the determination unit 23 selects an encoding method (step S13). The encoding method is selected from two types of encoding methods with different error correction capabilities as shown in Fig. 4, for example. Figure 4 shows an example using Reed-Solomon (RS) codes. RS (255, 239), which is the first encoding method, indicates an encoding method for generating a code in which 16 redundant bytes are added to 239 bytes of information. Also, RS (120, 104), which is the second encoding method, indicates a code method that generates a code in which 16 bytes of redundant bytes are added to 104 bytes of information. The sign rate is approximately 0.94 (= 239,255) when RS (255, 239) is used, and the force is approximately 0.87 (= 104/120) when RS (120, 104) is used. ). Also, the transmission rate when using the same modulation method is higher when RS (255, 239) is used. The error correction capability is higher when RS (120, 104) is used.
[0023] なお、符号化方式を選択する際の条件は特に規定しない。したがって、たとえば、 図 4に示した符号ィ匕方式の若番号順に選択してもよ ヽし、ランダムに選択してもよ!/ヽ。  [0023] It should be noted that conditions for selecting an encoding method are not particularly defined. Thus, for example, you can select the code numbers shown in Fig. 4 in order of increasing numbers, or you can select them randomly! / ヽ.
[0024] また、判定部 23は、上記ステップ S12における選択結果と上記ステップ S13におけ る選択結果を合わせて保持しておき (選択結果の組み合わせを保持しておき)、次回 以降のステップ S 12および S 13の実行時には、それぞれの選択結果の組み合わせ 力 今回の選択結果の組み合わせと同じにならないように処理を行う。 [0025] 次に、判定部 23は、上記ステップ S 12および S 13における選択結果を使用して通 信を行う場合の、伝送速度および通信品質を計算する (ステップ S 14)。たとえば、サ ブキャリア毎の変調方式の組み合わせとして図 3に示した例の No. 1を選択し、符号 化方式として図 4に示した例の No. 1を選択した場合、伝送速度は、全サブキャリア の変調方式が BPSK,符号化率が 0. 94なので、 1シンボル当たり 2. 82 ( = 3 * 0. 9 4)ビットとなる。また、サブキャリア毎の変調方式の組み合わせとして図 3に示した例 の No. 2を選択し、符号ィ匕方式として図 4に示した例の No. 2を選択した場合、伝送 速度は、サブキャリア # 1の変調方式が QPSKで他は BPSK,符号化率が 0. 87な ので、 1シンポノレ当たり 3. 48 (=4 * 0. 87)ビットとなる。なお、 bps (bits per second )などの単位で表される実際の伝送速度は、この値を 1シンボルの時間長で除算する 必要があるが、ここでは、伝送速度の大小比較ができればよいので、除算処理は必 須ではない。 [0024] In addition, the determination unit 23 holds the selection result in step S12 and the selection result in step S13 together (holds a combination of the selection results), and the next step S12 and subsequent times. When executing S13 and S13, the combination force of each selection result is processed so as not to be the same as the combination of the selection result this time. Next, the determination unit 23 calculates a transmission rate and communication quality when communication is performed using the selection results in steps S 12 and S 13 (step S 14). For example, if No. 1 in the example shown in Fig. 3 is selected as the combination of modulation schemes for each subcarrier and No. 1 in the example shown in Fig. 4 is selected as the encoding scheme, the transmission rate is Since the carrier modulation method is BPSK and the coding rate is 0.94, 2.82 (= 3 * 0.94) bits per symbol. When No. 2 in the example shown in FIG. 3 is selected as the combination of modulation schemes for each subcarrier, and No. 2 in the example shown in FIG. 4 is selected as the coding scheme, the transmission rate is Since the modulation method for carrier # 1 is QPSK, the other is BPSK, and the coding rate is 0.87, it is 3.48 (= 4 * 0.87) bits per simponole. Note that the actual transmission speed expressed in units such as bps (bits per second) needs to be divided by the time length of one symbol, but here it is only necessary to be able to compare the transmission speed. Division processing is not essential.
[0026] 通信品質の計算は、上記ステップ S11で取得したサブキャリア毎の SIRを用いて計 算する。通信品質は、誤り訂正後のビット誤り率(coded— BER: coded Bit Error R ate)、または、パケット誤り率(PER: Packet Error Rate)であるので、サブキャリア毎 の SIRに基づいて計算ができる。具体的には、あるサブキャリアの誤り訂正前の BER (uncoded-BER)は、そのサブキャリアの変調方式および SIRに基づいて計算できる ため、判定部 23は、全てのサブキャリアについてこの uncoded-BERを求めることによ り、復号部 22への入力信号の BERを計算する。また、誤り訂正は、使用する符号ィ匕 方式によって訂正能力が決まっており、誤り訂正前の uncoded-BERに対する誤り訂 正後の coded_BER( =通信品質)が計算できる。なお、この例では通信品質として cod ed-BERを使用する場合を示した力 これに代えて、 PERを使用してもよい。また、ここ では通信品質を計算により求める方法を示したが、計算するのではなぐ予め、シミュ レーシヨンにより SIR対 BER特性を求め、その結果を示した表を作成しておき、この 表を参照するようにしてもょ 、。  [0026] The communication quality is calculated using the SIR for each subcarrier obtained in step S11. Communication quality is the bit error rate (coded: BER: coded bit error rate) or packet error rate (PER: packet error rate) after error correction, so it can be calculated based on the SIR for each subcarrier. . Specifically, since the BER before error correction (uncoded-BER) of a subcarrier can be calculated based on the modulation scheme and SIR of that subcarrier, the decision unit 23 performs this uncoded-BER for all subcarriers. Then, the BER of the input signal to the decoding unit 22 is calculated. In addition, the error correction capability is determined by the code method used, and the coded_BER (= communication quality) after error correction with respect to the uncoded-BER before error correction can be calculated. Note that in this example, the power shown in the case of using coded BER as the communication quality may be replaced with PER. In addition, although the method for calculating the communication quality by calculation is shown here, the SIR vs. BER characteristics are calculated by simulation in advance of the calculation, and a table showing the result is created and referred to this table. Even so,
[0027] 次に、判定部 23は、サブキャリア毎の変調方式と、符号化方式との全ての組み合 わせについての伝送速度計算および通信品質計算が終了した力どうかを判定する( ステップ S 15)。ステップ S 15において、未だ選択されていない (伝送速度計算およ び通信品質計算を計算して!/、な 、)サブキャリア毎の変調方式と、符号化方式との組 み合わせがある場合 (ステップ S 15、 No)、ステップ S 12へ戻り、未だ選択されていな いサブキャリア毎の変調方式と、符号ィ匕方式との組み合わせについて、同様の処理( ステップ S12〜S14)を行う。全ての組み合わせについての伝送速度計算および通 信品質計算が終了した場合 (ステップ S15、 Yes)、ステップ SI 6へ進む。 [0027] Next, the determination unit 23 determines whether or not the transmission rate calculation and communication quality calculation have been completed for all combinations of the modulation scheme for each subcarrier and the encoding scheme (step S 15 ). In step S15, it is not yet selected (transmission rate calculation and If there is a combination of the modulation scheme for each subcarrier and the encoding scheme (No in step S15), the process returns to step S12 and is still selected. Similar processing (steps S12 to S14) is performed for the combination of the modulation scheme for each subcarrier and the code key scheme. When transmission rate calculation and communication quality calculation for all combinations are completed (step S15, Yes), proceed to step SI6.
[0028] 最後に、判定部 23は、ステップ S 14の処理結果として保持している伝送速度およ び通信品質の組み合わせを比較する。そして、保持している処理結果の中から、所 望の通信品質 (たとえば、通信システムが要求する通信品質)を満足しつつ、伝送速 度が最大である組み合わせを選択する。最後に、当該選択結果に対応する(当該選 択結果が得られた)、サブキャリア毎の変調方式と、符号化方式との組み合わせを、 適応変調指示情報 (データ伝送時に使用する組み合わせ)とする (ステップ S 16)。  [0028] Finally, the determination unit 23 compares the combination of the transmission speed and communication quality held as the processing result of step S14. From the processing results that are held, a combination that satisfies the desired communication quality (for example, the communication quality required by the communication system) and has the maximum transmission speed is selected. Finally, the combination of the modulation scheme for each subcarrier and the coding scheme corresponding to the selection result (where the selection result was obtained) is adaptive modulation instruction information (a combination used for data transmission). (Step S16).
[0029] 図 5は、図 3に示した変調方式のいずれかおよび図 4に示した符号化方式のいずれ かを組み合わせて行うデータ伝送時において、サブキャリア番号 # 1、 # 2、 # 3の各 サブキャリアの SIRがそれぞれ 8dB、 9dB、 10dBの場合の上記ステップ S 14での計 算結果の一例を示したものである。図 5に示したような計算結果が得られた場合にお いて、たとえば、所望の通信品質が coded-BER= IE— 6 (1,000,000ビット当たり 1ビ ットの誤りまで許容)であれば、この所望通信品質を満足する組み合わせは、 No. 1, 5, 9, 11, 13, 15の 6通り存在する。そして、この中で最も大きい伝送速度が得られ る組み合わせは、 No. 15である。そのため、図 5に示した計算結果が得られ、かつ所 望通信品質が coded-BER= lE— 6の場合、判定部 23は、ステップ S16において、 N o. 15の組み合わせを選択決定する。なお、通信品質を満足する組み合わせの中で 、伝送速度が等しい複数の候補が存在する場合には、その中から通信品質が最も良 好な組み合わせを選択決定する。  [0029] FIG. 5 shows subcarrier numbers # 1, # 2, and # 3 during data transmission performed by combining any of the modulation schemes shown in FIG. 3 and any of the encoding schemes shown in FIG. An example of the calculation result in step S14 is shown when the SIR of each subcarrier is 8 dB, 9 dB, and 10 dB, respectively. When the calculation results shown in Fig. 5 are obtained, for example, if the desired communication quality is coded-BER = IE-6 (up to 1 bit error per 1,000,000 bits), this is the case. There are six combinations No. 1, 5, 9, 11, 13, and 15 that satisfy the desired communication quality. No. 15 is the combination that gives the highest transmission rate. Therefore, when the calculation result shown in FIG. 5 is obtained and the desired communication quality is coded-BER = lE-6, the determination unit 23 selects and determines the combination of No. 15 in step S16. If there are a plurality of candidates having the same transmission rate among the combinations satisfying the communication quality, the combination having the best communication quality is selected and determined.
[0030] このように、本実施の形態においては、信号の受信品質に基づいて、最適な符号 化方式と、サブキャリア毎の最適な変調方式との組み合わせを選択し、選択した組み 合わせを使用してデータ伝送を行うこととした。これにより、所望の通信品質を満足し つつ、最も大きな伝送速度でデータ伝送を行うことが可能となり、特に、周波数特性 力 Sフラットでな 、伝送路におけるデータ伝送時の伝送速度を、従来よりも高速化でき る。 [0030] As described above, in this embodiment, a combination of an optimal encoding scheme and an optimal modulation scheme for each subcarrier is selected based on the reception quality of the signal, and the selected combination is used. Data transmission. This makes it possible to perform data transmission at the highest transmission speed while satisfying the desired communication quality.In particular, the transmission speed at the time of data transmission on the transmission line, which is not the frequency characteristic force S flat, is higher than before. Speed up The
[0031] 実施の形態 2.  [0031] Embodiment 2.
つづいて、実施の形態 2の適応変調方法および通信装置について説明する。本実 施の形態においては、実施の形態 1で説明した処理を簡易化することにより、計算量 を減らして回路規模を低減する適応変調方法について説明する。なお、本実施の形 態の適応変調方法を実現する通信システムおよび通信システムを構成する通信装 置の構成は、上述した実施の形態 1と同様であり、判定部 23が行う適応変調指示情 報の生成動作のみが異なる。そのため、本実施の形態においては、判定部 23が行う 適応変調指示情報生成動作を中心に説明する。  Next, the adaptive modulation method and communication apparatus according to the second embodiment will be described. In the present embodiment, an adaptive modulation method for reducing the amount of calculation and reducing the circuit scale by simplifying the processing described in Embodiment 1 will be described. Note that the configuration of the communication system that implements the adaptive modulation method of the present embodiment and the configuration of the communication device that constitutes the communication system are the same as those of the above-described first embodiment, and the adaptive modulation instruction information that is determined by the determination unit 23 Only the generation operation is different. Therefore, in the present embodiment, the description will focus on the adaptive modulation instruction information generation operation performed by the determination unit 23.
[0032] 図 6は、実施の形態 2の通信装置 2 (判定部 23)が行う適応変調指示情報の生成動 作を示すフローチャートである。なお、実施の形態 1と同様の処理については、同様 のステップ番号を付して、その説明を省略する。  FIG. 6 is a flowchart showing an operation for generating adaptive modulation instruction information performed by communication apparatus 2 (determination unit 23) according to the second embodiment. Note that the same steps as those in the first embodiment are denoted by the same step numbers, and the description thereof is omitted.
[0033] 判定部 23は、ステップ SS11、ステップ SI 3の順番で処理を実行後、ステップ S13 で選択した符号化方式に対応する SIRしきい値を設定する (ステップ S21)。また、こ の SIRしきい値は、その通信において満足すべき通信品質 (所望の通信品質)に基 づいて、選択可能な符号化方式毎に予め決定されており、判定部 23は、その中から 上記選択した符号化方式に対応するものを選択して設定する。  [0033] After executing the processing in the order of step SS11 and step SI3, the determination unit 23 sets the SIR threshold corresponding to the coding scheme selected in step S13 (step S21). Further, this SIR threshold is determined in advance for each selectable encoding method based on the communication quality (desired communication quality) that should be satisfied in the communication. To select and set the one corresponding to the selected encoding method.
[0034] SIRしきい値設定動作の具体例を図 7—1および 7— 2に基づいて説明する。図 7— 1および 7— 2は、誤り訂正実行前の受信信号品質 (この例では、誤り訂正実行前の B ERである uncoded— BER)と SIRとの対応関係の一例を示す図である。更に詳しくは 、図 7— 1は、符号化方式毎の、通信品質 (誤り訂正後の BERである coded-BER)と u ncoded-BERとの対応関係の一例を示す図である。この対応関係は、符号化方式毎 の符号化率に基づいて算出できる。また、図 7— 2は、変調方式毎の、 uncoded-BER と SIRとの関係例を示す図である。  A specific example of the SIR threshold setting operation will be described with reference to FIGS. 7-1 and 7-2. FIGS. 7-1 and 7-2 are diagrams showing an example of a correspondence relationship between received signal quality before error correction execution (in this example, uncoded-BER, which is a BER before error correction execution), and SIR. More specifically, FIG. 7-1 is a diagram showing an example of a correspondence relationship between communication quality (coded-BER which is a BER after error correction) and uncoded-BER for each coding method. This correspondence can be calculated based on the coding rate for each coding method. Fig. 7-2 shows an example of the relationship between uncoded-BER and SIR for each modulation method.
[0035] たとえば、所望の通信品質が coded-BER= IE— 6の場合、これを満足するために、 図 7— 1によれば、符号化方式 # 1使用時ならば uncoded_BER≤lE— 4が成立する 必要があり、符号ィ匕方式 # 2使用時ならば uncoded-BER≤ IE— 3が成立する必要が ある。この図 7—1に示した例は、符号ィ匕方式 # 2の誤り訂正能力が符号ィ匕方式 # 1 の誤り訂正能力よりも高い場合についてのものである。また、図 7— 2によれば、所望 の通信品質が coded-BER= IE— 6かつ符号化方式 # 1使用時ならば uncoded-BER ≤ IE— 4が成立する必要があり、 SIRが γ 以上でなければならない。同様に、変調 [0035] For example, if the desired communication quality is coded-BER = IE-6, to satisfy this, according to Fig. 7-1, uncoded_BER≤lE-4 is If coded method # 2 is used, uncoded-BER≤ IE-3 must be established. The example shown in Fig. 7-1 shows that the error correction capability of code method # 2 is This is for a case where the error correction capability is higher than the above. Also, according to Figure 7-2, if the desired communication quality is coded-BER = IE-6 and encoding method # 1 is used, uncoded-BER ≤ IE-4 must be satisfied, and the SIR is γ or more. Must. Similarly, modulation
11  11
方式 # 2使用時ならば、 SIRが γ 以上でなければならない。この図 7— 2に示した例  If method # 2 is used, SIR must be greater than or equal to γ. Example shown in Fig. 7-2
12  12
は、変調方式 # 2の方が大きな SIRを必要としており、伝送ビット数が多い変調方式 の場合につ 、てのものである。  The modulation scheme # 2 requires a larger SIR, and this is the case for modulation schemes with a large number of transmission bits.
[0036] ここで、あるサブキャリアの SIRが γ と γ との間にあり、所望の通信品質が coded-[0036] Here, the SIR of a certain subcarrier is between γ and γ, and the desired communication quality is coded-
11 12 11 12
BER= IE— 6の場合について考えると、そのサブキャリアで、変調方式 # 1は使用可 能である力 変調方式 # 2は使用できない。これに対して、 SIRが γ より大きければ  Considering the case of BER = IE—6, modulation scheme # 1 can be used on that subcarrier. Force modulation scheme # 2 cannot be used. On the other hand, if SIR is greater than γ
12  12
、そのサブキャリアで変調方式 # 2が使用可能である。すなわち、 γ 、 γ は、符号  Then, modulation scheme # 2 can be used on the subcarrier. That is, γ and γ are signs
12 12 化方式 # 1に対する SIRしきい値である。同様に、 γ 、 y は、符号化方式 # 2に対  This is the SIR threshold value for 12 12 conversion method # 1. Similarly, γ and y correspond to encoding method # 2.
21 22  21 22
する SIRしきい値である。  SIR threshold to be used.
[0037] 以上より、ステップ S 13において符号ィ匕方式 # 1を選択した場合、判定部 23は、変 調方式 # 1を選択するための SIRしき 、値 γ および変調方式 # 2を選択するための [0037] As described above, when sign key scheme # 1 is selected in step S13, determination unit 23 selects SIR threshold value γ for selecting modulation scheme # 1 and modulation scheme # 2. of
12  12
SIRしきい値 γ  SIR threshold γ
12を設定する。また、ステップ S 13において符号化方式 # 2を選択した 場合、判定部 23は、変調方式 # 1を選択するための SIRしき 、値 γ および変調方  Set 12. In addition, when encoding method # 2 is selected in step S13, determination unit 23 determines SIR threshold value γ and modulation method for selecting modulation method # 1.
21  twenty one
式 # 2を選択するための SIRしき 、値 γ を設定する。  Set the SIR threshold for selecting Equation # 2 and the value γ.
22  twenty two
[0038] 次に、判定部 23は、ステップ S21で設定した SIRしきい値と、ステップ S 11で取得し たサブキャリア毎の SIRとを比較し、サブキャリア毎の変調方式を決定する (ステップ S 22)。具体的には、判定部 23は、図 7— 1および 7— 2に基づいて、たとえば、変調方 式の決定対象のサブキャリアの SIRが γ と γ との間であれば、このサブキャリアの  [0038] Next, the determination unit 23 compares the SIR threshold set in step S21 with the SIR for each subcarrier acquired in step S11, and determines the modulation scheme for each subcarrier (step S 22). Specifically, based on FIGS. 7-1 and 7-2, for example, if the SIR of the subcarrier for which the modulation scheme is determined is between γ and γ, the determination unit 23 determines the subcarrier
11 12  11 12
変調方式を変調方式 # 1に決定する。なお、判定部 23は、このような処理 (変調方式 の決定)を全サブキャリアにつ 、て行う。  The modulation method is determined to be modulation method # 1. Note that the determination unit 23 performs such processing (determination of the modulation scheme) for all subcarriers.
[0039] 次に、判定部 23は、伝送速度を計算する (ステップ S23)。なお、伝送速度の計算 処理は、上述した実施の形態 1のステップ S 14において行う伝送速度の計算処理と 同様であり、上記ステップ S 13にお ヽて選択した符号化方式の符号化率およびステ ップ S22にお 、て決定した変調方式 (サブキャリア毎の変調方式)を使用した場合の 伝送速度を計算する。判定部 23は、計算した伝送速度を保持しておく。 [0040] 次に、判定部 23は、選択可能な全ての符号化方式に対する上記一連の処理 (ステ ップ S13, S21, S22, S23)を実行したかどうかを判定する(ステップ S24)。未だ選 択されて 、な 、(上記一連の処理を実行して 、な 、)符号化方式がある場合 (ステツ プ S24、 No)、ステップ S13へ戻り、残りの符号化方式について、同様の処理 (ステツ プ S13, S21, S22, S23, S24)を行う。全ての符号ィ匕方式について上記一連の処 理が終了した場合 (ステップ S 24、 Yes)、ステップ S16へ進む。 Next, the determination unit 23 calculates a transmission rate (step S23). Note that the transmission rate calculation process is the same as the transmission rate calculation process performed in step S14 of the first embodiment described above, and the coding rate and step of the coding method selected in step S13 above. In step S22, the transmission rate is calculated when the modulation method (modulation method for each subcarrier) determined in step S22 is used. The determination unit 23 holds the calculated transmission rate. Next, the determination unit 23 determines whether or not the above-described series of processing (steps S13, S21, S22, S23) for all selectable encoding methods has been executed (step S24). If there is an encoding method (step S24, No) (if the above processing is executed) (step S24, No), the process returns to step S13 and the same processing is performed for the remaining encoding methods. (Steps S13, S21, S22, S23, S24) are performed. When the above-described series of processing is completed for all the code keys (step S24, Yes), the process proceeds to step S16.
[0041] 最後に、判定部 23は、上記ステップ S23において最大の伝送速度が得られたサブ キャリア毎の変調方式と、符号化方式との組み合わせ、をデータ伝送時に使用する 組み合わせとして選択決定する (ステップ S 16)。  [0041] Finally, the determination unit 23 selects and determines the combination of the modulation scheme for each subcarrier and the encoding scheme for which the maximum transmission rate is obtained in step S23 as a combination to be used during data transmission ( Step S 16).
[0042] このように、本実施の形態においては、信号の受信品質および受信品質のしきい 値 (たとえば SIRのしきい値)に基づいて、最適な符号化方式と、サブキャリア毎の最 適な変調方式との組み合わせを選択し、選択した組み合わせを使用してデータ伝送 を行うこととした。これにより、全ての組み合わせ (符号化方式と、サブキャリア毎の最 適な変調方式との組み合わせ)を調査しないため、組み合わせの選択精度が実施の 形態 1よりも劣るが、計算量を少なく抑えて回路規模を低減しつつ、データ伝送時の 伝送速度を、従来よりも高速ィ匕することができる。  [0042] Thus, in the present embodiment, based on the signal reception quality and the threshold of reception quality (for example, the SIR threshold), the optimum coding scheme and the optimum for each subcarrier are described. A combination with a suitable modulation method was selected, and data transmission was performed using the selected combination. As a result, not all combinations (combination of encoding scheme and optimal modulation scheme for each subcarrier) are investigated, so the selection accuracy of the combination is inferior to that of the first embodiment, but the amount of calculation is reduced. While reducing the circuit scale, the transmission speed during data transmission can be increased faster than before.
[0043] 実施の形態 3.  [0043] Embodiment 3.
つづいて、実施の形態 3の適応変調方法および通信装置について説明する。図 8 は、本発明に力かる適応変調方法を実現する通信システムおよび通信システムを構 成する通信装置の実施の形態 3の構成例を示す図である。実施の形態 3の通信シス テムは、通信装置 1および通信装置 2aにより構成される。なお、通信装置 1は、上述 した実施の形態 1の通信装置 1と同様である。  Next, the adaptive modulation method and communication apparatus of Embodiment 3 will be described. FIG. 8 is a diagram showing a configuration example of a third embodiment of a communication system for realizing an adaptive modulation method according to the present invention and a communication apparatus constituting the communication system. The communication system according to the third embodiment includes a communication device 1 and a communication device 2a. Communication device 1 is the same as communication device 1 of the first embodiment described above.
[0044] 通信装置 2aは、通信装置 2が備える判定部 23に代えて判定部 23aを備えた構成と なる。判定部 23aは、送信条件選択手段、伝送品質算出手段、繰り返し処理制御手 段および伝送条件決定手段としての動作を行う。また、判定部 23aは、比較部 31と、 しきい値設定部 32と、選択部 33と、符号化方式保持部 34と、制御部 35と、を備える 。なお、判定部 23a以外の部分については実施の形態 1と同じ構成であるため、同一 の符号を付してその説明を省略する。 [0045] 本実施の形態においては、ー且決定した (使用中の)サブキャリア毎の変調方式と 符号化方式とを調整する動作について説明する。本実施の形態では、伝送路状態 の変動などにより通信品質が変化した場合であっても、適応的に変調方式と符号ィ匕 方式を調整 (再選択)できるようにして、伝送速度の高速化を実現している。なお、本 実施の形態は、上述した実施の形態 2と比較して、判定部 23aが行う適応変調指示 情報の生成動作 (適応変調指示情報の更新動作)のみが異なる。ここでは、判定部 2 3aの動作を中心に説明する。 [0044] The communication device 2a includes a determination unit 23a instead of the determination unit 23 included in the communication device 2. The determination unit 23a performs operations as a transmission condition selection unit, a transmission quality calculation unit, an iterative process control unit, and a transmission condition determination unit. Further, the determination unit 23a includes a comparison unit 31, a threshold setting unit 32, a selection unit 33, an encoding scheme holding unit 34, and a control unit 35. Note that parts other than the determination unit 23a have the same configurations as those of the first embodiment, and thus the same reference numerals are given and description thereof is omitted. In the present embodiment, an operation for adjusting the modulation scheme and the coding scheme for each subcarrier that is determined (in use) will be described. In this embodiment, even when the communication quality changes due to fluctuations in the transmission path condition, etc., the modulation scheme and code scheme can be adjusted (reselected) adaptively to increase the transmission speed. Is realized. Note that the present embodiment differs from the second embodiment described above only in the adaptive modulation instruction information generation operation (adaptive modulation instruction information update operation) performed by the determination unit 23a. Here, the operation of the determination unit 23a will be mainly described.
[0046] 伝送路状態は時間の経過とともに変動するので、ー且決定したサブキャリア毎の変 調方式と、符号化方式とが、時間の経過とともに所望の通信品質を満足しなくなるケ ースが発生し得る。一方、時間の経過とともに所望の通信品質より過剰によい通信品 質となるケースも発生し得る。そのため、前者の場合には、伝送速度を減少させて所 望の通信品質を満足させる必要がある。また、後者の場合には、効率的にデータを 伝送するために、所望の通信品質を満足する範囲内で伝送速度を増加させる必要 がある。これを実現するために、本実施の形態の通信装置 2aが備える判定部 23aは 、図 9に示した手順で、一旦決定したサブキャリア毎の変調方式と、符号化方式とを 調整する。図 9は、判定部 23aが、一旦決定したサブキャリア毎の変調方式と、符号 化方式とを調整する動作 (適応変調指示情報を更新する動作)を示すフローチャート である。なお、実施の形態 2と同様の処理については、同様のステップ番号を付して 、その説明を省略する。  [0046] Since the transmission path state changes with time, the case where the modulation method for each subcarrier and the coding method determined do not satisfy the desired communication quality with time. Can occur. On the other hand, there may be cases where communication quality becomes excessively better than desired communication quality over time. Therefore, in the former case, it is necessary to reduce the transmission rate to satisfy the desired communication quality. In the latter case, in order to transmit data efficiently, it is necessary to increase the transmission speed within a range that satisfies the desired communication quality. In order to realize this, the determination unit 23a included in the communication device 2a of the present embodiment adjusts the modulation scheme and encoding scheme for each subcarrier once determined by the procedure shown in FIG. FIG. 9 is a flowchart showing an operation (operation for updating adaptive modulation instruction information) in which the determination unit 23a adjusts the modulation scheme for each subcarrier once determined and the encoding scheme. Note that the same steps as those in the second embodiment are denoted by the same step numbers, and the description thereof is omitted.
[0047] なお、比較部 31が変調方式パターン決定手段を構成し、また、しきい値設定部 32 および制御部 35が SIRしきい値調整手段を構成する。また、制御部 35が基準通信 品質取得手段を構成し、選択部 33、符号ィ匕方式保持部 34および制御部 35が符号 化方式調整手段を構成する。  Note that the comparison unit 31 constitutes a modulation scheme pattern determination unit, and the threshold setting unit 32 and the control unit 35 constitute an SIR threshold adjustment unit. Further, the control unit 35 constitutes a reference communication quality acquisition unit, and the selection unit 33, the code key scheme holding unit 34, and the control unit 35 constitute a coding scheme adjustment unit.
[0048] まず、判定部 23aは、通信開始時に、実施の形態 1または 2において示したいずれ かの適応変調指示情報の生成動作を実行して適応変調指示情報を生成する (サブ キャリア毎の変調方式と、符号化方式とを決定する)。その後、判定部 23aの制御部 3 5は、復号部 22が測定した通信品質を示す通信品質情報を取得する (ステップ S31) 。なお、復号部 22が測定した通信品質は、一般的に行われているような、 CRCの誤 りを検出して PERを求める方法などにより測定されたものである。また、ここで取得し た通信品質は、基準通信品質として次回ステップ S31が実行されるまで保持しておく [0048] First, determination section 23a generates adaptive modulation instruction information by executing any of the adaptive modulation instruction information generation operations shown in Embodiment 1 or 2 at the start of communication (modulation for each subcarrier). System and coding system). Thereafter, the control unit 35 of the determination unit 23a acquires communication quality information indicating the communication quality measured by the decoding unit 22 (step S31). Note that the communication quality measured by the decoding unit 22 is a CRC error as is generally done. This is measured by the method of detecting the perception and obtaining PER. The communication quality acquired here is retained as the standard communication quality until the next step S31 is executed.
[0049] 次に、判定部 23aは、上記通信開始時の適応変調指示情報生成動作において設 定した SIRしきい値(図 6のステップ S21参照)を調整する(ステップ S32)。なお、既 に SIRしきい値の調整を実行した後においてはこの限りではなぐ前回調整して得ら れて 、る最新の SIRしき 、値を調整 (再調整)する。 Next, determination unit 23a adjusts the SIR threshold value (see step S21 in FIG. 6) set in the adaptive modulation instruction information generation operation at the start of communication (step S32). It should be noted that after the adjustment of the SIR threshold has already been performed, the latest SIR threshold value obtained by the previous adjustment is adjusted (readjustment).
[0050] ここで、ステップ S32の動作を図 10に基づいて詳細に説明する。図 10は、 SIRしき い値調整動作の詳細を示すフローチャートである。ステップ S32において、判定部 2 3aの制御部 35は、上記ステップ S31にお 、て取得した通信品質情報が示す通信品 質 (基準通信品質)が良好 (所望の通信品質を満足して 、る)かどうかを判定する (ス テツプ S41)。なお、通信品質は、通信品質が良好力否かを判断するための通信品 質判定しきい値に基づいて判断する。具体的には、制御部 35は、通信品質が通信 判定しきい値以上の場合は通信品質が良好、そうでない場合には通信品質が良好 でないと判断する。通信品質が良好でない場合 (ステップ S41、 No)、制御部 35は、 しき 、値設定部 32に対して SIRしき 、値を調整するように指示を出し、しき!/、値設定 部 32は、使用中の(設定されている) SIRしきい値を規定の値だけ増加させた後の SI Rしき 、値 (更新 SIRしき 、値)を再設定する (ステップ S42)。なお、しき 、値設定部 3 2は、複数存在している変調方式毎の SIRしきい値すべてについて調整を行う。比較 部 31は、更新 SIRしきい値と OFDM復調部 21から受け取ったサブキャリア毎の SIR とに基づいて、上記実施の形態 2のステップ S22 (図 6参照)と同様の処理を実行し、 サブキャリア毎の変調方式を決定する (ステップ S43)。なお、決定したサブキャリア 毎の変調方式は、通信装置 1へ通知される。  Here, the operation of step S32 will be described in detail with reference to FIG. FIG. 10 is a flowchart showing details of the SIR threshold adjustment operation. In step S32, the control unit 35 of the determination unit 23a has a good communication quality (reference communication quality) indicated by the communication quality information acquired in step S31 (the desired communication quality is satisfied). (Step S41). Note that the communication quality is determined based on a communication quality determination threshold value for determining whether the communication quality is good or not. Specifically, the control unit 35 determines that the communication quality is good when the communication quality is equal to or higher than the communication determination threshold, and otherwise the communication quality is not good. If the communication quality is not good (step S41, No), the control unit 35 instructs the value setting unit 32 to adjust the SIR threshold, and the threshold! /, Value setting unit 32 After the SIR threshold value in use (set) is increased by a specified value, the SIR threshold value (updated SIR threshold value) is reset (step S42). Note that the threshold value setting unit 32 adjusts all the SIR thresholds for each of the plurality of modulation schemes. Based on the updated SIR threshold value and the SIR for each subcarrier received from OFDM demodulator 21, comparator 31 performs the same processing as step S22 in Embodiment 2 (see FIG. 6). The modulation method for each carrier is determined (step S43). Note that the determined modulation scheme for each subcarrier is notified to the communication device 1.
[0051] その後、制御部 35は、上記決定したサブキャリア毎の変調方式を反映した状態で の通信品質情報を復号部 22から取得し、通信品質が良好であるかどうかを確認する (ステップ S44)。  [0051] After that, the control unit 35 acquires communication quality information in a state reflecting the determined modulation scheme for each subcarrier from the decoding unit 22, and confirms whether the communication quality is good (step S44). ).
[0052] 通信品質が良好な場合 (ステップ S44、 Yes)、ステップ S33へ遷移する。これに対 して、通信品質が良好でない場合 (ステップ S44、 No)、ステップ S42へ遷移して SIR しきい値を調整し (規定値だけ増加させ)、上記ステップ S43を実行する。以下、ステ ップ S44において通信品質が良好である (ステップ S44、 Yes)と判断するまで同様 の処理 (ステップ S42〜S44)を繰り返し実行する。 [0052] If the communication quality is good (step S44, Yes), the process proceeds to step S33. On the other hand, if the communication quality is not good (step S44, No), the process proceeds to step S42 and the SIR Adjust the threshold (increase by the specified value) and execute step S43 above. Thereafter, the same processing (steps S42 to S44) is repeatedly executed until it is determined in step S44 that the communication quality is good (step S44, Yes).
[0053] 以上のステップ S42〜S44の処理は、 SIRしきい値を増加させると、 16QAMや 64 QAMと 、う多値数の大き!/、変調方式 (雑音に弱!、変調方式)が選択され難くなり、 逆に、 BPSKや QPSKなど、多値数の小さい変調方式 (雑音に強い変調方式)が選 択され易くなる、という特性に基づいて行うものである。すなわち、 SIRしきい値を調 整することで、雑音耐性を強くして通信品質をよくすることができる。なお、ステップ S 42における SIRしきい値の増加量は、小さくするほど細かい調整が可能で、大きくす るほど、調整処理の実行回数が少なくなるが、本発明を適用するシステムの都合に 応じて設定すればよい。  [0053] In the processing of steps S42 to S44, when the SIR threshold value is increased, 16QAM and 64QAM, such as a large multi-value number! /, And a modulation method (weak to noise !, modulation method) are selected. On the contrary, it is based on the characteristic that a modulation system with a small multi-level number (modulation system resistant to noise) such as BPSK and QPSK is easily selected. In other words, by adjusting the SIR threshold, it is possible to increase noise resistance and improve communication quality. Note that the amount of increase in the SIR threshold in step S42 can be finely adjusted as the value is reduced, and the number of executions of the adjustment process is reduced as the value is increased. However, depending on the convenience of the system to which the present invention is applied. You only have to set it.
[0054] 一方、上記ステップ S41にお 、て、通信品質が良好であると判断した場合 (ステツ プ S41、 Yes)、制御部 35は、しきい値設定部 32に対して SIRしきい値を調整するよ うに指示を出し、しきい値設定部 32は、使用中の SIRしきい値を規定の値だけ減少さ せた後の SIRしき 、値 (更新 SIRしき 、値)を再設定する (ステップ S45)。なお、しき V、値設定部 32は、複数存在して 、る変調方式毎の SIRしき 、値すべてにっ 、て調 整を行う。ただし、制御部 35は、通信品質が良好であっても、それが上記通信品質 判定しき 、値に対して一定のマージンをカ卩えた過剰品質判定しき 、値未満である場 合には、しきい値設定部 32に対して SIRしきい値の調整指示を出さない。すなわち、 SIRしきい値の調整を行わずにステップ S32の処理を終了する。  On the other hand, when it is determined in step S41 that the communication quality is good (step S41, Yes), the control unit 35 sets the SIR threshold value to the threshold setting unit 32. The threshold value setting unit 32 resets the SIR threshold value (updated SIR threshold value) after reducing the SIR threshold value in use by a specified value. Step S45). Note that there are a plurality of threshold V and value setting units 32, and the adjustment is performed according to all the SIR thresholds and values for each modulation method. However, even if the communication quality is good, the control unit 35 determines the communication quality, determines the excess quality with a certain margin for the value, and if it is less than the value, Does not issue an instruction to adjust the SIR threshold to the threshold setting unit 32. That is, the process of step S32 is terminated without adjusting the SIR threshold value.
[0055] 比較部 31は、しきい値設定部 32により再設定 (調整)された SIRしきい値と OFDM 復調部 21から受け取ったサブキャリア毎の SIRとに基づいて、上記実施の形態 2のス テツプ S22と同様の処理を実行してサブキャリア毎の変調方式を決定する (ステップ S 46)。なお、決定したサブキャリア毎の変調方式は、通信装置 1へ通知される。  Based on the SIR threshold value reset (adjusted) by the threshold value setting unit 32 and the SIR for each subcarrier received from the OFDM demodulation unit 21, the comparison unit 31 The same processing as in step S22 is executed to determine the modulation scheme for each subcarrier (step S46). Note that the determined modulation scheme for each subcarrier is notified to the communication apparatus 1.
[0056] その後、制御部 35は、上記決定したサブキャリア毎の変調方式を反映した状態で の通信品質情報を復号部 22から取得し、取得した通信品質に基づ!/、て SIRしき 、 値をさらに減少させることができるかどうか (さらに伝送速度を増加させることができる 程度に通信品質が過剰に良好力どうか)を確認する (ステップ S47)。すなわち、この ステップ S47では、通信品質が上記品質判定しき!、値以上かつ上記過剰品質判定 しきい値未満の範囲にあるかどうかを判断する。 [0056] After that, the control unit 35 acquires communication quality information in a state reflecting the determined modulation scheme for each subcarrier from the decoding unit 22, and based on the acquired communication quality! /, SIR threshold, It is checked whether the value can be further decreased (whether the communication quality is excessively good enough to further increase the transmission rate) (step S47). That is, this In step S47, it is determined whether or not the communication quality is within the above-mentioned quality judgment threshold and is in a range that is greater than the value and less than the above-mentioned excess quality judgment threshold value.
[0057] SIRしき!/、値をさらに減少させることができな 、場合 (ステップ S47、 No)、ステップ S33へ遷移する。これに対して、 SIRしきい値をさらに減少させることができる場合 (ス テツプ S47、 Yes)、ステップ S45へ遷移して SIRしきい値を調整し(規定値だけ減少 させ)、上記ステップ S46を実行する。以下、ステップ S47において、 SIRしきい値をさ らに減少させることができな ヽ (ステップ S47、 No)と判断するまで同様の処理 (ステツ プ S45〜S47)を繰り返し実行する。  [0057] SIR threshold! / If the value cannot be further decreased (step S47, No), the process proceeds to step S33. On the other hand, if the SIR threshold can be further reduced (step S47, Yes), the process proceeds to step S45 to adjust the SIR threshold (decrease by the specified value) and Execute. Thereafter, in step S47, the same processing (steps S45 to S47) is repeatedly executed until it is determined that the SIR threshold cannot be further decreased (No in step S47).
[0058] 以上のステップ S45〜S47の処理は、 SIRしきい値を減少させると、 16QAMや 64 QAMなど、多値数が大きく一度に多くのビットを伝送できる変調方式を選択し易くな る、という特性に基づいて行うものである。すなわち、 SIRしきい値を調整することで、 伝送速度を増加させることができる。  [0058] The processing of steps S45 to S47 described above makes it easier to select a modulation scheme that can transmit a large number of bits at once, such as 16QAM and 64QAM, by reducing the SIR threshold. This is based on the characteristic. In other words, the transmission rate can be increased by adjusting the SIR threshold.
[0059] 図 9の説明に戻り、ステップ S23の処理に続いて、制御部 35は、符号化方式の選 択回数が規定回数に達した力どうかを確認する (ステップ S33)。符号化方式の選択 回数が規定回数に達している場合 (ステップ S33、 Yes)、ステップ S 16へ遷移する。 これに対して、符号ィ匕方式の選択回数が規定回数に達して 、な 、場合 (ステップ S3 3、 No)、判定部 23aは、使用中の符号化方式を調整する (ステップ S34)。  Returning to the description of FIG. 9, following the processing of step S23, the control unit 35 checks whether or not the coding scheme selection count has reached the specified count (step S33). If the number of encoding method selections has reached the specified number (step S33, Yes), the process proceeds to step S16. On the other hand, if the number of selections of the coding scheme has reached the specified number (step S33, No), the determination unit 23a adjusts the coding scheme in use (step S34).
[0060] ここで、ステップ S34の動作を図 11に基づいて詳細に説明する。図 11は、符号ィ匕 方式調整動作を示すフローチャートである。ステップ S34において、判定部 23aの制 御部 35は、上記ステップ S31にお 、て取得した通信品質情報が示す基準通信品質 が良好 (所望の通信品質を満足している)か否かを確認する (ステップ S51)。  Here, the operation of step S34 will be described in detail with reference to FIG. FIG. 11 is a flowchart showing the code adjustment method. In step S34, the control unit 35 of the determination unit 23a confirms whether or not the reference communication quality indicated by the communication quality information acquired in step S31 is good (satisfying the desired communication quality). (Step S51).
[0061] 通信品質が良好でない場合 (ステップ S51、 No)、制御部 35は、選択部 33に対し て符号化方式を調整するように指示を出し、選択部 33は、使用している符号化方式 を、符号化方式保持部 34に保持されている符号化方式の中から、より高い誤り訂正 能力の符号化方式を選択し、以降この符号ィ匕方式を使用するように変更する (ステツ プ S52)。これにより、符号化データに含まれる冗長ビット数を増加させて、雑音耐性 を強くする。  [0061] When the communication quality is not good (step S51, No), the control unit 35 instructs the selection unit 33 to adjust the encoding method, and the selection unit 33 uses the encoding used. Select a coding method with a higher error correction capability from the coding methods held in the coding method holding unit 34, and change the method to use this coding method thereafter (step S52). This increases the number of redundant bits included in the encoded data and increases noise resistance.
[0062] 一方、上記ステップ S51にお 、て、通信品質が良好であると判断した場合 (ステツ プ S51、 Yes)、制御部 35は、選択部 33に対して符号化方式を調整するように指示 を出し、選択部 33は、使用している符号化方式を、符号化方式保持部 34に保持さ れている符号ィ匕方式の中から、より低い誤り訂正能力の符号ィ匕方式を選択し、以降 この符号ィ匕方式を使用するように変更する (ステップ S53)。これにより、符号化デー タに含まれる冗長ビット数を減少させて、伝送速度を増加させる。ただし、制御部 35 は、通信品質が良好であっても、それが上記通信品質判定しきい値に対して一定の マージンを加えた過剰品質判定しき ヽ値未満である場合には、選択部 33に対して符 号化方式の調整指示を出さない。すなわち、符号化方式の調整を行わずにステップ S34の処理を終了する。 On the other hand, if it is determined in step S51 that the communication quality is good (step (S51, Yes), the control unit 35 instructs the selection unit 33 to adjust the encoding method, and the selection unit 33 sends the encoding method used to the encoding method holding unit 34. A code scheme with a lower error correction capability is selected from the stored code schemes, and thereafter changed to use this code scheme (step S53). This reduces the number of redundant bits contained in the encoded data and increases the transmission rate. However, even if the communication quality is good, the control unit 35, if it is less than the excess quality determination threshold value obtained by adding a certain margin to the communication quality determination threshold value, the selection unit 33 Does not give instructions for adjusting the encoding method. That is, the process of step S34 is terminated without adjusting the encoding method.
[0063] そして、ステップ S34を実行後、ステップ S31へ遷移し、上記一連の処理 (ステップ S31, S32, S23, S33)を再度実行する。以後、ステップ S33において、符号ィ匕方 式の選択回数が規定回数に達している (ステップ S33、 Yes)と判断するまで同様の 処理 (ステップ S31, S32, S23, S33, S34)を継続する。ここで、符号ィ匕方式の変 更を規定回数に制限しているのは、処理の実行回数を低減して、符号化方式とサブ キャリア毎の変調方式との組み合わせを再設定できるまでの時間を短縮するためで ある。ただし、時間や回路規模に余裕があれば、全ての符号ィ匕方式を選択できるよう にしてもよい。その場合には、より適切な符号ィ匕方式とサブキャリア毎の変調方式の 選択が可能となる。 [0063] Then, after executing step S34, the process proceeds to step S31, and the series of processes (steps S31, S32, S23, S33) are executed again. Thereafter, in step S33, the same processing (steps S31, S32, S23, S33, S34) is continued until it is determined that the number of selections of the sign key method has reached the specified number (step S33, Yes). Here, the change in the code method is limited to the specified number of times because the number of processing executions is reduced and the time required to reset the combination of the coding method and the modulation method for each subcarrier. This is to shorten the time. However, if the time and circuit scale are sufficient, all the coding methods can be selected. In this case, it is possible to select a more appropriate code scheme and modulation scheme for each subcarrier.
[0064] 最後に、制御部 35は、上記ステップ S23において算出して保持しておいた中で最 大の伝送速度が得られたサブキャリア毎の変調方式と、符号化方式との組み合わせ 、を選択決定する (ステップ S 16)。ステップ S 16において選択決定した組み合わせ 力 使用中のサブキャリア毎の変調方式と、符号化方式との組み合わせと異なる場合 、選択決定した組み合わせは、通信装置 1へ通知される。  [0064] Finally, the control unit 35 obtains the combination of the modulation scheme for each subcarrier and the encoding scheme that has obtained the maximum transmission rate among the calculations and stored in step S23. Make a selection (step S16). The combination force selected and determined in step S16 When the combination of the modulation scheme for each subcarrier in use and the encoding scheme is different, the selected combination is notified to the communication apparatus 1.
[0065] このように、本実施の形態においては、伝送路の時間変動を監視し、使用中の符号 化方式およびサブキャリア毎の変調方式が伝送路状態に対して最適なものではなく なった場合には、使用する符号ィ匕方式およびサブキャリア毎の変調方式を適宜変更 することとした。これにより、たとえば、通信品質を満足できなくなってしまった場合、 通信品質が過剰によくなつてしまった場合、などにおいても、その変化に追随して、 所望の通信品質を満足しつつ、常に高速な伝送速度を実現することができる。 As described above, in the present embodiment, the time variation of the transmission path is monitored, and the encoding scheme being used and the modulation scheme for each subcarrier are not optimal for the transmission path state. In this case, the code scheme to be used and the modulation scheme for each subcarrier were appropriately changed. With this, for example, even if the communication quality cannot be satisfied, the communication quality becomes excessively good, etc., the change follows, A high transmission speed can always be realized while satisfying desired communication quality.
[0066] 実施の形態 4.  [0066] Embodiment 4.
つづいて、実施の形態 4の適応変調方法および通信装置について説明する。本実 施の形態は、実施の形態 3で示した処理を簡易化することにより、計算量を減らして 回路規模を低減したものである。なお、本実施の形態の適応変調方法を実現する通 信システムおよび通信システムを構成する通信装置の構成は、上述した実施の形態 3と同様であり、判定部 23aが行う適応変調指示情報の更新動作のみが異なる。  Next, the adaptive modulation method and communication apparatus according to Embodiment 4 will be described. In this embodiment, by simplifying the processing shown in Embodiment 3, the amount of calculation is reduced and the circuit scale is reduced. Note that the configuration of the communication system that implements the adaptive modulation method of the present embodiment and the communication device that constitutes the communication system are the same as those of the third embodiment described above, and the update of the adaptive modulation instruction information performed by the determination unit 23a Only the operation is different.
[0067] 図 12は、実施の形態 4の判定部 23aが、適応変調指示情報を更新する動作を示す フローチャートである。本実施の形態の適応変調指示情報更新動作は、実施の形態 FIG. 12 is a flowchart illustrating an operation in which the determination unit 23a according to the fourth embodiment updates the adaptive modulation instruction information. The adaptive modulation instruction information update operation of the present embodiment
3の適応変調指示情報更新動作 (図 9参照)と比較して符号化方式を調整しな!ヽ点 が異なる。具体的には、実施の形態 3で示したステップ S23、ステップ S33および S3 4の処理を削除し、実行しないようにしている。また、これに伴いステップ S16に代え てステップ S61を実行している。なお、ステップ S61の処理は、サブキャリア毎の変調 方式を決定する処理である力 上述したように、ステップ S32において、調整後の SI Rしき!/、値を使用したサブキャリア毎の変調方式を決定済みであるため、それをその まま調整後のサブキャリア毎の変調方式として採用する。その他の処理は、実施の形 態 3の適応変調指示情報更新動作(図 9参照)の中の同一のステップ番号が付与さ れたものと同様である。 Compared to the adaptive modulation instruction information update operation in Fig. 3 (see Fig. 9), the encoding system is not adjusted. Specifically, the processing of step S23, step S33, and S34 shown in the third embodiment is deleted and not executed. Accordingly, step S61 is executed instead of step S16. Note that the process of step S61 is a process for determining the modulation scheme for each subcarrier. As described above, in step S32, the adjusted SIR threshold! /, And the modulation scheme for each subcarrier using the value are set. Since it has been determined, it is adopted as the modulation method for each subcarrier after adjustment. Other processing is the same as that in the adaptive modulation instruction information update operation of Embodiment 3 (see Fig. 9) with the same step number.
[0068] 通信品質が悪くなつたり、良くなり過ぎたりする理由は、上述のような伝送路の時間 変動や、 SIR測定の精度不足、通信装置内の OFDM復調を行う受信機 (受信処理 部)の精度など、種々の原因が関係する。よって、サブキャリア毎の変調方式を常に 精度よく選択するのは一般的には難しい。そのため、本実施の形態においては、符 号ィ匕方式の調整を行わないことして処理の簡易化を図るとともに、処理時間を短縮し てサブキャリア毎の変調方式を頻繁に調整するようにして 、る。  [0068] The reason why the communication quality deteriorates or becomes too good is because of the time variation of the transmission path as described above, insufficient accuracy of SIR measurement, and a receiver that performs OFDM demodulation in the communication device (reception processing unit) Various causes, such as accuracy, are involved. Therefore, it is generally difficult to always select the modulation method for each subcarrier with high accuracy. Therefore, in this embodiment, the adjustment of the code method is not performed to simplify processing, and the processing time is shortened so that the modulation method for each subcarrier is frequently adjusted. The
[0069] このように、本実施の形態においては、ー且決定した符号化方式およびサブキヤリ ァ毎の変調方式のうち、サブキャリア毎の変調方式のみに焦点を当て、高頻度に変 調方式を調整することとした。これにより、伝送路の時間変動に対するサブキャリア毎 の変調方式調整動作の追従性が向上し、より高精度にサブキャリア毎の変調方式を 選択できる。 [0069] Thus, in the present embodiment, out of the determined coding scheme and modulation scheme for each subcarrier, only the modulation scheme for each subcarrier is focused, and the modulation scheme is frequently used. It was decided to adjust. This improves the follow-up performance of the modulation scheme adjustment operation for each subcarrier with respect to the time variation of the transmission path, and allows the modulation scheme for each subcarrier to be adjusted with higher accuracy. You can choose.
[0070] 実施の形態 5.  [0070] Embodiment 5.
つづいて、実施の形態 5の適応変調方法および通信装置について説明する。本実 施の形態にお!ヽては、実施の形態 3で説明した処理を一部変更した適応変調方法 について説明する。なお、本実施の形態の適応変調方法を実現する通信システムお よび通信システムを構成する通信装置の構成は、上述した実施の形態 3と同様であり 、判定部 23aが行う適応変調指示情報の更新動作のみが異なる。そのため、本実施 の形態においては、判定部 23aが行う適応変調指示情報の更新動作を中心に説明 する。  Next, the adaptive modulation method and communication apparatus according to the fifth embodiment will be described. In this embodiment, an adaptive modulation method in which the processing described in Embodiment 3 is partially changed will be described. Note that the configuration of the communication system that implements the adaptive modulation method of the present embodiment and the communication device that configures the communication system are the same as those of the above-described third embodiment, and update of the adaptive modulation instruction information performed by the determination unit 23a Only the operation is different. Therefore, in the present embodiment, the update operation of adaptive modulation instruction information performed by determination unit 23a will be mainly described.
[0071] 図 13は、実施の形態 5の判定部 23aが、サブキャリア毎の変調方式を変更する動 作を示すフローチャートであり、実施の形態 3において説明した図 9のステップ S32に 代えて実行する動作 (ステップ S32bとする)を示している。なお、適応変調指示情報 の更新動作におけるその他の処理(図 9のステップ S32以外の処理)は、実施の形態 3と同様である。  FIG. 13 is a flowchart showing an operation in which the determination unit 23a of the fifth embodiment changes the modulation scheme for each subcarrier, and is executed instead of step S32 of FIG. 9 described in the third embodiment. Operation (step S32b). Other processes in the adaptive modulation instruction information update operation (processes other than step S32 in FIG. 9) are the same as those in the third embodiment.
[0072] 図 13に示した動作は、上記図 10に示した動作 (実施の形態 3における SIRしきい 値調整動作)に対して、ステップ S42と S43との間にステップ S71を追カロし、ステップ S45と S46との間〖こステップ S72を追カロしたものである。なお、他の部分は図 10に示 した動作と同様である。  [0072] The operation shown in FIG. 13 is the same as the operation shown in FIG. 10 described above (the SIR threshold adjustment operation in the third embodiment), and step S71 is added between steps S42 and S43. Step S45 and S46 are interspersed with step S72. The other parts are the same as those shown in FIG.
[0073] ステップ S71およびステップ S72においては、同じ処理を実行する。具体的には、 ステップ S42および S45において、同じ調整量で一律に調整された、変調方式毎に 複数存在するそれぞれの SIRしきい値を、さらに、変調方式毎に異なるオフセット値 を付加して再調整する。このオフセット値を付加する理由について以下に述べる。  [0073] In step S71 and step S72, the same processing is executed. Specifically, in steps S42 and S45, each SIR threshold value, which is uniformly adjusted with the same adjustment amount, is added to each modulation method, and different offset values are added for each modulation method. adjust. The reason for adding this offset value will be described below.
[0074] BPSKや QPSKのように、多値数の小さい変調方式は、一般的に雑音や、装置の 不完全性による信号揺らぎ (位相変動)など、外乱に対して強ぐ劣化が小さい傾向 がある。これに対して、 16QAMや 64QAMのよう〖こ、多値数の大きい変調方式は、 一般に、外乱に対して弱い。すなわち、同じ程度の信号揺らぎがあった場合には、 B PSKや QPSKに比べて、 16QAMや 64QAMでは、所要 SIRが大きく増加する。た とえば、実施の形態 2の説明で使用した図 7— 2において、 γ 力 ldB大きく必要とな る状態では、 γ は、 2dB必要となる、などである (数値については、あくまでも一例で [0074] Like BPSK and QPSK, modulation methods with a small number of multi-values generally tend to be less susceptible to disturbances such as noise and signal fluctuations (phase fluctuations) due to device imperfections. is there. On the other hand, modulation methods with large multi-levels, such as 16QAM and 64QAM, are generally vulnerable to disturbances. In other words, when the same level of signal fluctuation occurs, the required SIR increases greatly in 16QAM and 64QAM compared to BPSK and QPSK. For example, in FIG. 7-2 used in the description of Embodiment 2, it is necessary to increase the γ force ldB. In a state where γ is 2 dB, etc. (The numerical values are just examples.
12  12
ある)。そのため、本実施の形態においては、変調方式毎に異なるオフセットを付カロ するようにして、変調多値数によって通信品質の劣化量が異なると 、う現象を回避す ることとした。すなわち、多値数の大きな変調方式ほど大きなオフセット値を付加する ようにすることで、外乱〖こよる影響を回避することとした。  is there). For this reason, in the present embodiment, different offsets are added for each modulation scheme, so that the phenomenon of deterioration is avoided when the amount of communication quality degradation differs depending on the number of modulation levels. In other words, the influence of disturbance is avoided by adding a larger offset value to modulation schemes with a large multi-level number.
[0075] このように、本実施の形態においては、サブキャリア毎の変調方式調整動作におい て使用する SIRしき 、値に対して、それぞれに対応する変調方式に応じたオフセット を与えることとした。これにより、変調方式毎に異なる調整量で SIRしきい値を調整す ることができ、装置の不完全性による信号揺らぎのような外乱がある場合においても、 精度の高いサブキャリア毎の変調方式選択が可能となる。  As described above, in this embodiment, the SIR threshold used in the modulation scheme adjustment operation for each subcarrier is given an offset corresponding to the modulation scheme corresponding to each value. As a result, the SIR threshold can be adjusted with a different adjustment amount for each modulation method, and even when there is a disturbance such as signal fluctuation due to incompleteness of the device, a highly accurate modulation method for each subcarrier. Selection becomes possible.
[0076] 実施の形態 6.  [0076] Embodiment 6.
つづいて、実施の形態 6の適応変調方法および通信装置について説明する。本実 施の形態にお!ヽては、実施の形態 3で説明した処理を一部変更した適応変調方法 について説明する。なお、本実施の形態の適応変調方法を実現する通信システムお よび通信システムを構成する通信装置の構成は、上述した実施の形態 3と同様であり 、判定部 23aが行う適応変調指示情報の更新動作のみが異なる。そのため、本実施 の形態においては、判定部 23aが行う適応変調指示情報の更新動作を中心に説明 する。  Next, the adaptive modulation method and communication apparatus according to Embodiment 6 will be described. In this embodiment, an adaptive modulation method in which the processing described in Embodiment 3 is partially changed will be described. Note that the configuration of the communication system that implements the adaptive modulation method of the present embodiment and the communication device that configures the communication system are the same as those of the above-described third embodiment, and update of the adaptive modulation instruction information performed by the determination unit 23a Only the operation is different. Therefore, in the present embodiment, the update operation of adaptive modulation instruction information performed by determination unit 23a will be mainly described.
[0077] 図 14は、実施の形態 6の判定部 23aが、サブキャリア毎の変調方式を変更する動 作を示すフローチャートであり、実施の形態 3において説明した図 9のステップ S32に 代えて実行する動作 (ステップ S32cとする)を示している。なお、適応変調指示情報 の更新動作におけるその他の処理(図 9のステップ S32以外の処理)は、実施の形態 3と同様である。  FIG. 14 is a flowchart showing an operation in which the determination unit 23a of the sixth embodiment changes the modulation scheme for each subcarrier, and is executed instead of step S32 of FIG. 9 described in the third embodiment. Operation (step S32c). Other processes in the adaptive modulation instruction information update operation (processes other than step S32 in FIG. 9) are the same as those in the third embodiment.
[0078] 図 14に示した処理は、上記図 10に示した動作 (実施の形態 3における SIRしきい 値調整動作)に対して、ステップ S41と S42との間にステップ S81を追カ卩し、ステップ S41と S45との間〖こステップ S82を追カロしたものである。なお、他の部分は図 10に示 した動作と同様である。  The process shown in FIG. 14 adds step S81 between steps S41 and S42 with respect to the operation shown in FIG. 10 (SIR threshold adjustment operation in the third embodiment). Step S41 and S45 are interpolated from Step S82. The other parts are the same as those shown in FIG.
[0079] ステップ S81およびステップ S82における処理は、同じものであり、しきい値の調整 量 (増減量)を制限するための処理である。具体的には、 SIRしきい値を増加 Z減少 させる処理 (ステップ S42ZS45)を実行するにあたり、それまでステップ S32cにおい て増加 Z減少させた SIRしきい値の累積調整量に対して今回の調整量を加算した場 合に、累積調整量が規定の範囲内に収まるかどうかを確認する (ステップ S81ZS82 )。累積調整量に対して今回の調整量を加算した結果が規定範囲内であれば (ステ ップ S81、 YesZS82、 Yes)、 SIRしきい値を増加 Z減少させる(ステップ S43ZS4 5)。これに対して、累積調整量に対して今回の調整量を加算した結果が規定範囲内 でなければ (ステップ S81、 NoZS82、 No)、ステップ S32cの処理を終了する。 [0079] The processes in step S81 and step S82 are the same, and the threshold value is adjusted. This is a process to limit the amount (increase / decrease amount). Specifically, when executing the process to increase and decrease the SIR threshold (step S42ZS45), the current adjustment amount is compared to the cumulative adjustment amount of the SIR threshold that has been increased and decreased in step S32c. When is added, it is confirmed whether or not the cumulative adjustment amount falls within the specified range (step S81ZS82). If the result of adding the current adjustment amount to the cumulative adjustment amount is within the specified range (steps S81, YesZS82, Yes), the SIR threshold value is increased and decreased (step S43ZS45). On the other hand, if the result of adding the current adjustment amount to the cumulative adjustment amount is not within the specified range (step S81, NoZS82, No), the process of step S32c is terminated.
[0080] 上述したような累積調整量を参照しながら SIRしき 、値の調整を行う理由につ!/、て 説明する。たとえば、 SIRしきい値を増加すればするほど、多値数の小さい変調方式 が選択され易くなるが、極端に増加した場合、伝送速度が極端に低下してしまい、伝 送効率が悪くなる。また、 SIRしきい値を減少すればするほど、多値数の大きい変調 方式が選択され易くなるが、伝送路の時間変化に対して弱くなり、通信が不安定にな る。このように、一定範囲を超えて調整をした場合には、 SIRしきい値を調整した効果 が殆ど見られず、計算量が多くなるなど、力えって別の問題が生じる恐れがあるため 、本実施の形態においては、調整量が一定の範囲内に収まるようにしている。  [0080] The reason for adjusting the value by referring to the cumulative adjustment amount as described above will be explained as follows. For example, the higher the SIR threshold, the easier it is to select a modulation scheme with a small multi-level number. However, if it increases excessively, the transmission rate will be extremely reduced and transmission efficiency will deteriorate. Also, the smaller the SIR threshold, the easier it is to select a modulation scheme with a large number of values, but it becomes weaker with respect to the time variation of the transmission path and communication becomes unstable. In this way, when the adjustment exceeds a certain range, the effect of adjusting the SIR threshold is hardly seen, and there is a possibility that another problem may occur due to an increase in the amount of calculation. In the present embodiment, the adjustment amount is set within a certain range.
[0081] このように本実施の形態においては、サブキャリア毎の変調方式調整動作において 使用する SIRしきい値の調整を一定の範囲内においてのみ行うこととした。これにより 、伝送路状態の変動に対してサブキャリア毎の変調方式を過度に調整することが無く なり、安定して通信を実現できる。  As described above, in the present embodiment, the adjustment of the SIR threshold used in the modulation scheme adjustment operation for each subcarrier is performed only within a certain range. As a result, the modulation scheme for each subcarrier is not excessively adjusted with respect to fluctuations in the transmission path state, and stable communication can be realized.
[0082] 実施の形態 7.  [0082] Embodiment 7.
つづいて、実施の形態 7の適応変調方法および通信装置について説明する。本実 施の形態は、実施の形態 3で示した処理を簡易化することにより、計算量を減らして 回路規模を低減したものである。なお、本実施の形態の適応変調方法を実現する通 信システムおよび通信システムを構成する通信装置の構成は、上述した実施の形態 3と同様であり、判定部 23aが行う適応変調指示情報の更新動作のみが異なる。その ため、本実施の形態においては、判定部 23aが行う適応変調指示情報の更新動作 を中心に説明する。 [0083] 図 15は、実施の形態 7の判定部 23aが、適応変調指示情報を更新する動作を示す フローチャートである。本実施の形態の適応変調指示情報更新動作は、実施の形態Next, the adaptive modulation method and communication apparatus according to Embodiment 7 will be described. In this embodiment, by simplifying the processing shown in Embodiment 3, the amount of calculation is reduced and the circuit scale is reduced. Note that the configuration of the communication system that implements the adaptive modulation method of the present embodiment and the communication device that constitutes the communication system are the same as those of the third embodiment described above, and the update of the adaptive modulation instruction information performed by the determination unit 23a Only the operation is different. Therefore, in the present embodiment, the update operation of adaptive modulation instruction information performed by determination unit 23a will be mainly described. FIG. 15 is a flowchart illustrating an operation in which the determination unit 23a of the seventh embodiment updates the adaptive modulation instruction information. The adaptive modulation instruction information update operation of the present embodiment
3の適応変調指示情報更新動作 (図 9参照)と比較して、サブキャリア毎の変調方式 を調整しない点が異なる。具体的には、実施の形態 3で示したステップ S32の処理を 削除し、実行しないようにしている。また、これに伴いステップ S 16に代えてステップ S 91を実行している。なお、ステップ S91の処理は、符号化方式を決定する処理であり 、ステップ S23において最大の伝送速度が得られた符号化方式を、調整後の符号化 方式として選択決定するものである。その他の処理は、実施の形態 3の適応変調指 示情報更新動作 (図 9参照)の中の同一のステップ番号が付与されたものと同様であ る。 Compared to the adaptive modulation instruction information update operation in Fig. 3 (see Fig. 9), the difference is that the modulation scheme for each subcarrier is not adjusted. Specifically, the process in step S32 shown in the third embodiment is deleted and not executed. Accordingly, step S 91 is executed instead of step S 16. Note that the process of step S91 is a process of determining the encoding method, and the encoding method that obtained the maximum transmission rate in step S23 is selected and determined as the adjusted encoding method. Other processing is the same as that in the adaptive modulation instruction information update operation (see FIG. 9) of Embodiment 3 to which the same step number is assigned.
[0084] サブキャリア数が多い場合や、変調方式の候補が多い場合には、サブキャリア毎の 変調方式を決定するために要する時間が長くなる。そのため、本実施に形態におい ては、そのような場合にサブキャリア毎の変調方式の調整を行わないこととして処理 の簡略ィ匕を図るとともに、処理時間を短縮して符号化方式を頻繁に調整するようにし ている。  [0084] When the number of subcarriers is large or the number of modulation scheme candidates is large, the time required to determine the modulation scheme for each subcarrier increases. Therefore, in this embodiment, in such a case, the adjustment of the modulation method for each subcarrier is not performed, so that the processing is simplified, and the encoding method is frequently adjusted by reducing the processing time. I try to do it.
[0085] このように、本実施の形態においては、ー且決定した符号化方式およびサブキヤリ ァ毎の変調方式のうち、符号ィ匕方式のみに焦点を当て、伝送路の時間変動に対して より高頻度に符号化方式を変更することとした。これにより、伝送路の時間変動に対 する符号ィ匕方式調整動作の追従性が向上し、より高精度にサブキャリア毎の符号ィ匕 方式を選択できる。  As described above, in the present embodiment, of the determined coding schemes and modulation schemes for each subcarrier, only the coding scheme is focused on, and the time variation of the transmission path is reduced. The coding method was changed frequently. Thereby, the followability of the code key method adjustment operation with respect to the time fluctuation of the transmission path is improved, and the code key method for each subcarrier can be selected with higher accuracy.
[0086] 実施の形態 8.  [0086] Embodiment 8.
つづいて、実施の形態 8の適応変調方法および通信装置について説明する。本実 施の形態は、上述した実施の形態において、サブキャリア毎に変調方式を選択 (決 定)していた処理を、近隣の複数のサブキャリア毎にまとめて行うこととしたものである 。そのため、本実施の形態の適応変調方法を実現する通信システムおよび通信シス テムを構成する通信装置の構成は、上述した実施の形態 1または 3のいずれかと同 様である。  Next, the adaptive modulation method and communication apparatus according to Embodiment 8 will be described. In the present embodiment, the process of selecting (determining) the modulation scheme for each subcarrier in the above-described embodiment is performed collectively for each of a plurality of neighboring subcarriers. Therefore, the configuration of the communication system that implements the adaptive modulation method of the present embodiment and the communication device that constitutes the communication system is the same as that of either the first or third embodiment described above.
[0087] 図 16— 1および図 16— 2は、実施の形態 8の適応変調方法を説明するための図で ある。図 16— 1は、伝送路の周波数特性 (振幅特性)の一例であり、縦軸に示した振 幅特性の値の大きさに比例して信号が通り易くなることを示している。図 16— 2は、図 16 - 1に示した振幅特性の伝送路を通って受信された OFDM信号の受信レベルの 一例である。受信レベルは、伝送路の振幅特性の大きさに比例し、受信レベルが大 きいサブキャリアほど信号が通り易ぐ一度に多くのビットを送信できる多値数の大き い変調方式を使用できる。一方、受信レベルが小さいサブキャリアでは、多値数の小 さ 、変調方式し力使用できず、一度に少な 、ビットしか送信できな 、。 FIG. 16-1 and FIG. 16-2 are diagrams for explaining the adaptive modulation method of the eighth embodiment. is there. Figure 16-1 is an example of the frequency characteristic (amplitude characteristic) of the transmission line, and shows that the signal easily passes in proportion to the magnitude of the amplitude characteristic shown on the vertical axis. Figure 16-2 is an example of the received signal level of the OFDM signal received through the transmission line with the amplitude characteristics shown in Figure 16-1. The reception level is proportional to the amplitude characteristics of the transmission line, and a subcarrier with a higher reception level can easily use a multi-level modulation method that can transmit many bits at a time. On the other hand, a subcarrier with a low reception level has a small multi-level number and cannot be used as a modulation method, and can transmit only a few bits at a time.
[0088] ここで、伝送路の周波数特性は、反射波(マルチパス波)などの影響によって決まり 、マルチパス波の遅延時間(最初に到来する信号と、反射により遅延して到来する信 号との時間差)がさほど大きくなければ、周波数特性のうねり(山、谷の数)は比較的 少ない。そして、この場合には、図 16— 2に示した例のように、近隣のサブキャリアで はその信号の通り易さ(受信レベル)は、ほとんど同じになる。そのため、仮に、上述し た実施の形態のようにサブキャリア毎に変調方式を選択するような処理を実行しても 、結果的に近隣のサブキャリアでは同一の変調方式を使用することになる可能性が 高ぐ無駄に計算量が多くなつてしまう。  [0088] Here, the frequency characteristics of the transmission path are determined by the influence of the reflected wave (multipath wave) and the like. The delay time of the multipath wave (the signal that arrives first and the signal that arrives after being delayed by reflection) If the time difference is not so large, the frequency characteristics undulation (number of peaks and valleys) is relatively small. In this case, as in the example shown in Fig. 16-2, the ease of passing the signal (reception level) is almost the same in neighboring subcarriers. Therefore, even if a process for selecting a modulation scheme for each subcarrier as in the above-described embodiment is executed, the same modulation scheme may be used for neighboring subcarriers as a result. The amount of calculation is unnecessarily high.
[0089] このような理由により、本実施の形態においては、変調方式をサブキャリア毎に設 定するのではなぐ複数のサブキャリアをまとめて、その複数のサブキャリアのまとまり (サブキャリア群)に対して、同一の変調方式を設定する。たとえば、サブキャリア数が 100波ある場合に、 2波ずつをまとめてサブキャリア群とすると、変調方式を設定する 対象の数 (上述した実施の形態におけるサブキャリア数に相当)が 1Z2となり、サブ キャリア毎に変調方式を設定する場合の手間(上述した実施の形態におけるサブキ ャリア毎に変調方式を設定する処理)を 1Z2とすることができる。  For this reason, in the present embodiment, a plurality of subcarriers that are not set for each subcarrier are grouped into a plurality of subcarriers (subcarrier group). On the other hand, the same modulation method is set. For example, if there are 100 subcarriers and 2 waves are combined into a subcarrier group, the number of targets for which the modulation scheme is set (corresponding to the number of subcarriers in the above-described embodiment) is 1Z2. The effort for setting the modulation method for each carrier (processing for setting the modulation method for each subcarrier in the above-described embodiment) can be set to 1Z2.
[0090] なお、上述した変調方式を近隣のサブキャリア (サブキャリア群)毎に設定する動作 は、実施の形態 1〜6に対して適用可能である。  Note that the operation for setting the above-described modulation scheme for each neighboring subcarrier (subcarrier group) is applicable to Embodiments 1 to 6.
[0091] このように、本実施の形態においては、上述した実施の形態 1〜6においてサブキ ャリア毎に個別に実行していた変調方式の設定処理を、近隣の複数のサブキャリア 力 なるサブキャリア群毎に実行することとした。これにより、変調方式の設定に要す る処理時間や回路規模を低減できる。 [0092] 実施の形態 9. [0091] As described above, in this embodiment, the modulation scheme setting processing that has been individually executed for each subcarrier in Embodiments 1 to 6 described above is performed by subcarriers having a plurality of neighboring subcarriers. It was decided to carry out every group. As a result, the processing time and circuit scale required for setting the modulation method can be reduced. [0092] Embodiment 9.
つづいて、実施の形態 9の適応変調方法および通信装置について説明する。上述 した実施の形態 1〜8では、 OFDMを使用した通信システムにおける適応変調方法 について説明した力 本実施の形態においては、上述した適応変調方法を、 OFD M以外の方式を使用した通信システムに適用する場合について説明する。そのため 、本実施の形態の適応変調方法を実現する通信システムの構成は、上述した実施の 形態 1または 3のいずれかと同様であり、使用する多重化方式のみが異なる。  Next, the adaptive modulation method and communication apparatus according to Embodiment 9 will be described. In Embodiments 1 to 8 described above, the power of explaining an adaptive modulation method in a communication system using OFDM In this embodiment, the adaptive modulation method described above is applied to a communication system using a method other than OFDM. The case where it does is demonstrated. Therefore, the configuration of the communication system that realizes the adaptive modulation method of the present embodiment is the same as that of either of the first or third embodiment described above, and only the multiplexing scheme to be used is different.
[0093] 図 17— 1〜17— 5は、実施の形態 9適応変調方法を説明するための図である。図 1 7— 1〜17— 3は、それぞれ、 OFDM信号のスペクトルの一例、 FDM信号のスぺタト ルの一例、 CDM信号のスペクトルの一例を示したものである。また、図 17— 4は、 T DM信号の時間波形の一例を模擬的に示したものであり、図 17— 5は、 SDMを行う 通信システムの構成例を示したものである。上述したように、実施の形態 1〜8は、図 17— 1に示したような OFDM信号をベースとした発明であり、この方式の場合は、複 数のサブキャリアを使ってデータを並列伝送する。  FIGS. 17-1 to 17-5 are diagrams for explaining the adaptive modulation method according to the ninth embodiment. Figures 17-1 to 17-3 show an example of the spectrum of the OFDM signal, an example of the spectrum of the FDM signal, and an example of the spectrum of the CDM signal, respectively. Fig. 17-4 schematically shows an example of the time waveform of the TDM signal, and Fig. 17-5 shows a configuration example of a communication system that performs SDM. As described above, Embodiments 1 to 8 are inventions based on OFDM signals as shown in FIG. 17-1, and in this system, data is transmitted in parallel using multiple subcarriers. To do.
[0094] これに対して、図 17— 2に示したような FDM信号を使用した通信システムの場合、 複数の周波数 (周波数帯の異なるキャリア)を使用してデータを並列伝送し、かつ、キ ャリア毎に変調方式を設定するのであれば、 FDM信号における周波数は、 OFDM 信号におけるサブキャリアと同様に扱える。すなわち、 FDM信号を使用した通信シス テムに対して実施の形態 1〜8に示した適応変調方法を適用可能である。  [0094] On the other hand, in the case of a communication system using an FDM signal as shown in Fig. 17-2, data is transmitted in parallel using a plurality of frequencies (carriers having different frequency bands), and a key is used. If the modulation scheme is set for each carrier, the frequency in the FDM signal can be handled in the same way as the subcarrier in the OFDM signal. That is, the adaptive modulation methods shown in Embodiments 1 to 8 can be applied to a communication system using FDM signals.
[0095] 同様に、図 17— 3に示したような CDM信号を使用した通信システムの場合、複数 の符号 (異なる符号により拡散されたキャリア)を使用してデータを並列伝送し、かつ 、符号毎に変調方式を設定するのであれば、 CDM信号における符号は、 OFDM信 号におけるサブキャリアと同様に扱える。すなわち、 CDM信号を使用した通信システ ムに対して実施の形態 1〜8に示した適応変調方法を適用可能である。  [0095] Similarly, in the case of a communication system using a CDM signal as shown in Fig. 17-3, data is transmitted in parallel using a plurality of codes (carriers spread by different codes), and If the modulation scheme is set for each, the code in the CDM signal can be handled in the same way as the subcarrier in the OFDM signal. That is, the adaptive modulation methods shown in Embodiments 1 to 8 can be applied to a communication system using a CDM signal.
[0096] 同様に、図 17— 4に示したような TDM信号を使用した通信システムの場合、複数 のタイムスロットを使用してデータを並列伝送し、かつ、タイムスロット毎に変調方式を 設定するのであれば、 TDM信号におけるタイムスロットは、 OFDM信号におけるサ ブキャリアと同様に扱える。すなわち、 CDM信号を使用した通信システムに対して実 施の形態 1〜8に示した適応変調方法を適用可能である。 Similarly, in the case of a communication system using a TDM signal as shown in FIG. 17-4, data is transmitted in parallel using a plurality of time slots, and a modulation scheme is set for each time slot. If so, the time slot in the TDM signal can be handled in the same way as the subcarrier in the OFDM signal. In other words, it is practical for communication systems using CDM signals. The adaptive modulation methods shown in Embodiments 1 to 8 can be applied.
[0097] さらに、図 17— 5に示したような SDMを行う通信システムの場合、複数の空間を使 用して (複数の送信アンテナおよび受信アンテナを使用して)データを並列伝送し、 かつ、空間(送信アンテナからの送信信号)毎に変調方式を設定するのであれば、 S DMを行う通信システムにおける上記空間は、 OFDM信号におけるサブキャリアと同 様に扱える。すなわち、 SDMを行う通信システムに対して実施の形態 1〜8に示した 適応変調方法を適用可能である。  [0097] Further, in the case of a communication system that performs SDM as shown in Fig. 17-5, data is transmitted in parallel using a plurality of spaces (using a plurality of transmission antennas and reception antennas), and If the modulation scheme is set for each space (transmission signal from the transmission antenna), the space in the communication system that performs SDM can be handled in the same way as the subcarrier in the OFDM signal. That is, the adaptive modulation method shown in Embodiments 1 to 8 can be applied to a communication system that performs SDM.
[0098] たとえば、実施の形態 1における図 2に示した動作手順を、図 18に示したような手 順に変更することにより、本発明を上記 、ずれの通信システムに対しても適用できる ようになる。具体的には、図 2に示した動作手順において、サブキャリアを対象として いる処理を、各通信システム(FDM、 CDM、 TDM、 SDMのいずれかをベースとす る通信システム)において使用する伝送チャネル (周波数,符号,タイムスロット,空間 のいずれかを使用して多重化されたチャネル)を対象とするように変更する。  For example, by changing the operation procedure shown in FIG. 2 in the first embodiment to the procedure shown in FIG. 18, the present invention can be applied to the above-described miscommunication system. Become. Specifically, in the operation procedure shown in FIG. 2, the transmission channel used in each communication system (communication system based on one of FDM, CDM, TDM, and SDM) is a process targeting subcarriers. (Channels multiplexed using one of frequency, code, time slot, and space) are changed.
[0099] このような変更を行うことで、受信側の通信装置は、以下に示した処理を実行して伝 送チャネル毎の変調方式および符号ィ匕方式を選択決定することが可能となる。受信 側の通信装置は、まず、伝送チャネル毎の SIRを測定し (ステップ S111)、次に伝送 チャネル毎の変調方式を選択し (ステップ S 112)、次に符号化方式を選択し (ステツ プ S 113)、次に伝送速度および通信品質を計算し (ステップ S 114)、ステップ S 112 で選択した伝送方式毎の変調方式と、ステップ S113で選択した符号化方式との全 ての組み合わせにつ 、て上記ステップ S114を実行したかどうかを確認後(ステップ S 115)、全ての組み合わせにつ!/、てステップ S 114を実行したのであれば (ステップ S 115、 Yes)、上記ステップ S 112および S 113の選択結果の組み合わせの中力も所 望の通信品質を満足しつつ、伝送速度が最大となる組み合わせに対応する伝送チ ャネル毎の変調方式と、符号化方式との組み合わせ、を選択決定する (ステップ S11 6)。なお、ステップ S 115において、全ての組み合わせについてステップ S 114を実 行していないと判断した場合は (ステップ S 115、 No)、全ての組み合わせに対して 上記処理を実行するまで、ステップ S 112〜S 115の処理を繰り返し実行する。  [0099] By making such a change, the communication apparatus on the receiving side can execute the following processing to select and determine the modulation scheme and code scheme for each transmission channel. The communication device on the receiving side first measures the SIR for each transmission channel (step S111), then selects the modulation method for each transmission channel (step S112), and then selects the coding method (step S112). S113), then calculate the transmission rate and communication quality (step S114), and determine all combinations of the modulation scheme for each transmission scheme selected in step S112 and the encoding scheme selected in step S113. After confirming whether or not step S114 has been executed (step S115), if all combinations have been executed! / And step S114 has been executed (step S115, Yes), then step S112 and S113 Selects and determines the combination of the modulation method and the encoding method for each transmission channel corresponding to the combination that maximizes the transmission speed while satisfying the desired communication quality in the combination of the selection results. (Step S11 6). If it is determined in step S115 that step S114 has not been executed for all combinations (step S115, No), steps S112 to S112 are performed until the above processing is executed for all combinations. The process of S115 is repeatedly executed.
[0100] なお、実施の形態 2〜8で示した動作手順を、 OFDM信号を使用した通信システム 以外の通信システムへ適用するには、各実施の形態の動作手順に対して、上述した[0100] The operation procedure shown in Embodiments 2 to 8 is the same as the communication system using OFDM signals. In order to apply to communication systems other than the above, the operation procedure of each embodiment has been described above.
、図 2の動作手順に対する変更と同様の変更を行えばよい。 The same change as the change to the operation procedure of FIG.
[0101] このように、本実施の形態においては、上述した実施の形態 1〜7で示した適応変 調方法を OFDM以外で多重伝送を行う通信システムに対しても適用可能であること を示した。すなわち、 OFDM以外で多重伝送を行う各通信システムの伝送チャネル( 周波数,符号,タイムスロット,空間)を、 OFDMを使用した通信システムにおけるサ ブキャリアと同様に扱い、実施の形態 1〜8で示した動作を行うことにより、それぞれ の通信システムにおいて、上述した各実施の形態と同様の効果を得ることができる。 産業上の利用可能性 [0101] Thus, in this embodiment, it is shown that the adaptive modulation method shown in Embodiments 1 to 7 described above can be applied to a communication system that performs multiplex transmission other than OFDM. It was. That is, the transmission channels (frequency, code, time slot, space) of each communication system that performs multiplex transmission other than OFDM are handled in the same way as subcarriers in a communication system using OFDM, and are shown in Embodiments 1 to 8. By performing the operation, the same effects as those of the above-described embodiments can be obtained in each communication system. Industrial applicability
[0102] 以上のように、本発明に力かる適応変調方法は、たとえば、 OFDMを使用した通信 システムに有用であり、特に、サブキャリア毎の通信品質に基づいて、符号化方式お よびサブキャリア毎の変調方式を適応的に選択決定して通信を行う通信装置の適応 変調方法に適している。 [0102] As described above, the adaptive modulation method according to the present invention is useful for, for example, a communication system using OFDM, and particularly based on the communication quality for each subcarrier. It is suitable for the adaptive modulation method of communication equipment that performs communication by adaptively selecting and determining each modulation method.

Claims

請求の範囲 The scope of the claims
[1] 直交周波数分割多重(OFDM : Orthogonal Frequency Division Multiplexing)に よるデータ伝送時の符号化方式および変調方式を伝送路の状態に応じて適応的に 選択決定する場合の適応変調方法であって、  [1] An adaptive modulation method for adaptively selecting and determining a coding scheme and a modulation scheme in data transmission by orthogonal frequency division multiplexing (OFDM) according to the state of a transmission line,
サブキャリア毎の変調方式を、予め規定されている変調方式の中から選択し、サブ キャリア毎の変調方式の組み合わせ (変調方式パターン)を決定する変調方式バタ ーン決定ステップと、  A modulation scheme pattern determining step for selecting a modulation scheme for each subcarrier from among modulation schemes defined in advance, and determining a modulation scheme combination (modulation scheme pattern) for each subcarrier;
送信データを符号化する際に使用する符号化方式を、予め規定されている符号ィ匕 方式の中から選択する符号化方式選択ステップと、  An encoding method selection step for selecting an encoding method to be used when encoding transmission data from pre-defined encoding methods;
受信信号のサブキャリア毎の SIR (Signal to Interference Ratio)に基づいて、前 記決定した変調方式パターンおよび前記選択した符号ィ匕方式を使用したデータ伝 送時の伝送速度および通信品質 (伝送品質)を算出する伝送品質算出ステップと、 を含み、  Based on the SIR (Signal to Interference Ratio) for each subcarrier of the received signal, the transmission rate and communication quality (transmission quality) at the time of data transmission using the modulation scheme pattern determined above and the selected code scheme A transmission quality calculation step for calculating
さらに、前記変調方式パターン決定ステップ、前記符号化方式選択ステップおよび 前記伝送品質算出ステップを繰り返し実行することにより、変調方式パターンと、符号 化方式との全ての組み合わせにつ 、て前記伝送品質算出ステップを実行し、伝送品 質算出結果の中で所望の通信品質を満たしつつ伝送速度が最大となる伝送品質が 得られた際の変調方式パターンおよび符号ィ匕方式を、データ伝送時に使用する正 式な変調方式パターンおよび符号化方式として選択決定することを特徴とする適応 変調方法。  Further, by repeatedly executing the modulation scheme pattern determination step, the encoding scheme selection step, and the transmission quality calculation step, the transmission quality calculation step for all combinations of modulation scheme patterns and encoding schemes. The modulation method pattern and code method used when transmitting the data with the maximum transmission speed while satisfying the desired communication quality in the transmission quality calculation results are used for data transmission. An adaptive modulation method characterized in that it is selected and determined as a specific modulation scheme pattern and coding scheme.
[2] 直交周波数分割多重(OFDM : Orthogonal Frequency Division Multiplexing)に よるデータ伝送時の符号化方式および変調方式を伝送路の状態に応じて適応的に 選択決定する場合の適応変調方法であって、  [2] An adaptive modulation method in the case of adaptively selecting and determining an encoding method and a modulation method in data transmission by orthogonal frequency division multiplexing (OFDM) according to the state of a transmission line,
送信データを符号化する際に使用する符号化方式を、予め規定されている符号ィ匕 方式の中から選択する符号化方式選択ステップと、  An encoding method selection step for selecting an encoding method to be used when encoding transmission data from pre-defined encoding methods;
前記選択した符号化方式に基づいてサブキャリア毎の変調方式を予め規定されて いる変調方式の中から選択し、サブキャリア毎の変調方式の組み合わせ (変調方式 ノターン)を決定する処理において、変調方式を選択可能かどうか判断する際の比 較対象として使用する SIR (Signal to Interference Ratio)しきい値を、予め規定さ れた SIRしき 、値の中力も選択設定する SIRしき 、値設定ステップと、 In the process of selecting a modulation scheme for each subcarrier from the modulation schemes defined in advance based on the selected encoding scheme and determining a combination of modulation schemes (modulation scheme notch) for each subcarrier. Ratio when determining whether or not can be selected The SIR threshold value used as a comparison target, the SIR threshold value to select and set the intermediate force of the SIR threshold value, the value setting step,
受信信号のサブキャリア毎の SIRおよび前記選択設定した SIRしき 、値に基づ ヽ て、変調方式パターンを決定する変調方式パターン決定ステップと、  A modulation scheme pattern determining step for determining a modulation scheme pattern based on the SIR for each subcarrier of the received signal and the SIR threshold value selected and set;
前記受信信号のサブキャリア毎の SIRに基づ 、て、前記選択した符号化方式およ び前記決定した変調方式パターンを使用したデータ伝送時の伝送速度を算出する 伝送速度算出ステップと、  A transmission rate calculating step of calculating a transmission rate at the time of data transmission using the selected coding scheme and the determined modulation scheme pattern based on SIR for each subcarrier of the received signal;
を含み、  Including
さらに、前記符号ィ匕方式選択ステップ、前記 SIRしきい値設定ステップ、前記変調 方式パターン決定ステップおよび前記伝送速度算出ステップを繰り返し実行すること により、前記予め規定されている符号ィ匕方式を使用したすべての場合についての伝 送速度を算出し、当該伝送速度算出ステップにおいて算出した伝送速度が最大とな つた場合の符号化方式および変調方式パターンを、データ伝送時に使用する正式 な符号化方式および変調方式パターンとして選択決定することを特徴とする適応変 調方法。  Further, the previously defined code method is used by repeatedly executing the code method selection step, the SIR threshold setting step, the modulation method pattern determination step, and the transmission rate calculation step. The transmission rate is calculated for all cases, and the encoding method and modulation method pattern when the transmission rate calculated in the transmission rate calculation step reaches the maximum are used as the official encoding method and modulation used for data transmission. An adaptive modulation method characterized by selection and determination as a method pattern.
[3] 直交周波数分割多重(OFDM : Orthogonal Frequency Division Multiplexing)に よるデータ伝送において、使用中の符号化方式および変調方式を伝送路の状態変 動に応じて適応的に選択変更する場合の適応変調方法であって、  [3] In data transmission using Orthogonal Frequency Division Multiplexing (OFDM), adaptive modulation is used when the coding method and modulation method in use are adaptively selected and changed according to the state change of the transmission path. A method,
使用中の符号化方式および変調方式を伝送路の状態変動に応じて適応的に選択 変更するか否かを判断するための基準通信品質を取得する基準通信品質取得ステ ップと、  A reference communication quality acquisition step for acquiring a reference communication quality for determining whether or not to adaptively select and change a coding scheme and a modulation scheme in use according to a change in the state of the transmission path;
前記基準通信品質が所望の通信品質を満たして 、な 、場合、サブキャリア毎の変 調方式を選択してサブキャリア毎の変調方式の組み合わせ (変調方式パターン)を決 定する処理において、変調方式を選択可能かどうか判断する際の比較対象として使 用している SIR (Signal to Interference Ratio)しきい値を規定の調整量だけ増加さ せ、一方、前記基準通信品質が所望の通信品質を満たしている場合には、当該 SIR しき 、値を規定の調整量だけ減少させるし SIRしき ヽ値調整ステップと、  In the case where the reference communication quality satisfies the desired communication quality, a modulation method is selected in the process of selecting a modulation method for each subcarrier and determining a combination of modulation methods (modulation method pattern) for each subcarrier. The SIR (Signal to Interference Ratio) threshold used as a comparison target when determining whether or not can be selected is increased by a specified adjustment amount, while the reference communication quality satisfies the desired communication quality. The SIR threshold value is decreased by a specified adjustment amount, and the SIR threshold adjustment step,
前記 SIRしき 、値調整ステップにお 、て、 SIRしき 、値を規定の調整量だけ増加ま たは減少させた後の SIRしき 、値およびサブキャリア毎の SIRに基づ 、て変調方式 パターンを決定する変調パターン決定ステップと、 In the SIR threshold value adjustment step, the SIR threshold value is increased by a specified adjustment amount. A modulation pattern determining step for determining a modulation scheme pattern based on the SIR threshold value after being reduced or the value and the SIR for each subcarrier;
受信信号のサブキャリア毎の SIRに基づ 、て伝送速度を算出する伝送速度算出ス テツプと、  A transmission rate calculation step for calculating the transmission rate based on the SIR for each subcarrier of the received signal;
それまでに実行した符号化方式の調整処理実行回数 (符号化方式調整回数)が規 定回数に達して 、な 、場合、かつ前記基準通信品質が所望の通信品質を満たして いない場合、使用中の符号ィ匕方式よりも誤り訂正能力の高い符号ィ匕方式を使用する ように符号化方式の調整処理を行い、一方、前記基準通信品質が所望の通信品質 を満たしてきる場合には、使用中の符号ィ匕方式よりも誤り訂正能力の低い符号ィ匕方 式を使用するように符号化方式を変更の調整処理を行う符号化方式調整ステップと を含み、  If the number of encoding method adjustment processing executions performed so far (the number of encoding method adjustments) has reached the specified number of times, and if the reference communication quality does not satisfy the desired communication quality, it is in use. If the encoding method is adjusted to use a coding method having a higher error correction capability than that of the coding method, while the reference communication quality satisfies the desired communication quality, it is used. A coding method adjustment step for performing adjustment processing for changing the coding method so as to use a code method having a lower error correction capability than the middle code method,
まず、通信品質が良好であると判断するための通信品質判定しきい値と通信品質 が過剰に良好であると判断するための過剰品質判定しきい値との間の範囲に通信品 質が収まるまで、前記 SIRしき 、値調整ステップおよび変調パターン決定ステップを 繰り返し実行して SIRしきい値の調整を行い、次に、当該 SIRしきい値調整を終了後 First, the communication quality falls within the range between the communication quality judgment threshold for judging that the communication quality is good and the excessive quality judgment threshold for judging that the communication quality is excessively good. Until the SIR threshold value is adjusted by repeatedly executing the SIR threshold, the value adjustment step and the modulation pattern determination step, and then the SIR threshold adjustment is completed.
、前記伝送速度算出ステップを実行して伝送速度を算出し、さらに、当該伝送速度 算出ステップを実行後、前記符号ィ匕方式調整ステップを実行して符号ィ匕方式の調整 を行い、またさらに、当該符号化方式調整ステップを実行後、前記符号化方式調整 回数が規定回数に達するまで、前記基準通信品質取得ステップ、当該 SIRしきい値 の調整処理、当該伝送速度算出ステップおよび当該符号化方式調整ステップを繰り 返し実行し、当該符号化方式調整回数が規定回数に達した場合には、当該伝送速 度算出ステップにおいて算出した伝送速度が最大となった場合の符号ィ匕方式および 変調方式パターンを、データ伝送時に使用する正式な符号ィ匕方式および変調方式 パターンとして選択決定することを特徴とする適応変調方法。 前記基準通信品質取得ステップおよび前記 SIRしきい値調整ステップのみを実行 し、当該 SIRしきい値調整ステップにおいて決定した変調方式パターンを、データ伝 送時に使用する正式な変調方式パターンとして選択決定することを特徴とする請求 項 3に記載の適応変調方法。 The transmission rate calculation step is executed to calculate the transmission rate, and after the transmission rate calculation step is executed, the code key method adjustment step is executed to adjust the code key method. After executing the encoding scheme adjustment step, until the encoding scheme adjustment count reaches a specified count, the reference communication quality acquisition step, the SIR threshold adjustment processing, the transmission rate calculation step, and the encoding scheme adjustment are performed. Steps are repeatedly executed, and when the number of times of adjustment of the encoding method reaches the specified number of times, the code key method and the modulation method pattern when the transmission rate calculated in the transmission rate calculation step becomes maximum are displayed. An adaptive modulation method characterized in that it is selected and determined as a formal code scheme and modulation scheme pattern used during data transmission. Only the reference communication quality acquisition step and the SIR threshold adjustment step are executed, and the modulation scheme pattern determined in the SIR threshold adjustment step is selected and determined as a formal modulation scheme pattern used for data transmission. Claim characterized by The adaptive modulation method according to Item 3.
[5] 前記 SIRしき 、値調整ステップでは、変調多値数の多!、変調方式を選択可能かど うか判断する際に使用する SIRしきい値ほど、より SIRしきい値が大きな値になるよう な調整量で調整することを特徴とする請求項 3に記載の適応変調方法。  [5] In the SIR threshold, in the value adjustment step, the SIR threshold is set to a larger value as the SIR threshold used for determining whether the modulation multi-value number is large and the modulation method can be selected. 4. The adaptive modulation method according to claim 3, wherein the adjustment is performed with an appropriate adjustment amount.
[6] 前記 SIRしき 、値調整ステップでは、変調多値数の多!、変調方式を選択可能かど うか判断する際に使用する SIRしきい値ほど、より SIRしきい値が大きな値になるよう な調整量で調整することを特徴とする請求項 4に記載の適応変調方法。  [6] In the SIR threshold, in the value adjustment step, the SIR threshold is set to a larger value as the SIR threshold used for determining whether the modulation multi-value number is larger and the modulation scheme can be selected. 5. The adaptive modulation method according to claim 4, wherein the adjustment is performed with a proper adjustment amount.
[7] 前記 SIRしきい値調整ステップでは、当該ステップの処理を開始後、 SIRしきい値を 調整した調整量 (SIRしき 、値の増加量または減少量)の累積値が規定の範囲内に 収まって!/、る場合にのみ SIRしき ヽ値を調整することを特徴とする請求項 3に記載の 適応変調方法。  [7] In the SIR threshold adjustment step, the accumulated value of the adjustment amount (SIR threshold, the amount of increase or decrease in value) adjusted within the specified range is within the specified range after the processing of that step is started. 4. The adaptive modulation method according to claim 3, wherein the SIR threshold value is adjusted only when it is settled! /.
[8] 前記 SIRしきい値調整ステップでは、当該ステップの処理を開始後、 SIRしきい値を 調整した調整量 (SIRしき 、値の増加量または減少量)の累積値が規定の範囲内に 収まっている場合にのみ SIRしきい値を調整することを特徴とする請求項 4に記載の 適応変調方法。  [8] In the SIR threshold adjustment step, the accumulated value of the adjustment amount (SIR threshold, the amount of increase or decrease of the value) adjusted within the specified range is within the specified range after the processing of that step is started. 5. The adaptive modulation method according to claim 4, wherein the SIR threshold value is adjusted only when it falls within the range.
[9] 前記基準通信品質取得ステップを実行後、前記 SIRしき ヽ値調整ステップを実行 せずに、直ちに前記伝送速度算出ステップ実行し、以後、前記符号化方式調整回 数が規定回数に達するまで、当該基準通信品質取得ステップ、当該伝送速度算出 ステップおよび前記符号ィ匕方式調整ステップを繰り返し実行し、当該符号化方式調 整回数が規定回数に達した場合には、当該伝送速度算出ステップにおいて算出し た伝送速度が最大となった場合の符号化方式を、データ伝送時に使用する正式な 符号化方式として選択決定することを特徴とする請求項 3に記載の適応変調方法。  [9] After executing the reference communication quality acquisition step, the transmission rate calculation step is immediately performed without performing the SIR threshold adjustment step, and thereafter, until the coding method adjustment number reaches a specified number. The reference communication quality acquisition step, the transmission rate calculation step, and the coding method adjustment step are repeatedly executed, and when the number of times of adjusting the encoding method reaches a specified number, the calculation is performed in the transmission rate calculation step. 4. The adaptive modulation method according to claim 3, wherein the encoding method when the transmission rate is maximized is selected and determined as a formal encoding method used during data transmission.
[10] 近隣の複数のサブキャリアにより構成されたサブキャリア群を、前記サブキャリアに 見立てて処理を行うことにより、サブキャリア群毎に変調方式を個別に割り当てること を特徴とする請求項 1に記載の適応変調方法。  [10] The method according to claim 1, wherein a modulation scheme is individually assigned to each subcarrier group by processing a subcarrier group composed of a plurality of neighboring subcarriers as if it were the subcarrier. The adaptive modulation method described.
[11] 近隣の複数のサブキャリアにより構成されたサブキャリア群を、前記サブキャリアに 見立てて処理を行うことにより、サブキャリア群毎に変調方式を個別に割り当てること を特徴とする請求項 2に記載の適応変調方法。 [12] 近隣の複数のサブキャリアにより構成されたサブキャリア群を、前記サブキャリアに 見立てて処理を行うことにより、サブキャリア群毎に変調方式を個別に割り当てること を特徴とする請求項 3に記載の適応変調方法。 [11] The method according to claim 2, wherein a modulation scheme is individually assigned to each subcarrier group by processing a subcarrier group composed of a plurality of neighboring subcarriers as if it were the subcarrier. The adaptive modulation method described. [12] The method according to claim 3, wherein a modulation scheme is individually assigned to each subcarrier group by processing a subcarrier group including a plurality of neighboring subcarriers as if it were the subcarrier. The adaptive modulation method described.
[13] FDM (Frequency Division Multiplexing)、 CDM (Code Division Multiplexingノ、 TDM (Time Division Multiplexing)または SDM (Space Division Multiplexing)を 使用した通信システムにおいて、伝送路の状態に応じて、周波数、拡散符号、タイム スロットまたは空間により分割された伝送チャネル毎に異なる変調方式を割り当てて データ伝送を行う場合の適応変調方法であって、  [13] In a communication system using FDM (Frequency Division Multiplexing), CDM (Code Division Multiplexing), TDM (Time Division Multiplexing) or SDM (Space Division Multiplexing), the frequency, spreading code, An adaptive modulation method in the case of performing data transmission by assigning different modulation schemes to each transmission channel divided by time slots or spaces,
前記サブキャリアまたは前記サブキャリア群に代えて、前記伝送チャネルに対して 伝送チャネル毎の変調方式および符号化方式の選択決定処理を実行することを特 徴とする請求項 1に記載の適応変調方法。  2. The adaptive modulation method according to claim 1, wherein a selection determination process of a modulation scheme and a coding scheme for each transmission channel is executed on the transmission channel instead of the subcarrier or the subcarrier group. .
[14] FDM (Frequency Division Multiplexing)、 CDM (Code Division Multiplexing;、 TDM (Time Division Multiplexing)または SDM (Space Division Multiplexing)を 使用した通信システムにおいて、伝送路の状態に応じて、周波数、拡散符号、タイム スロットまたは空間により分割された伝送チャネル毎に異なる変調方式を割り当てて データ伝送を行う場合の適応変調方法であって、  [14] In a communication system using FDM (Frequency Division Multiplexing), CDM (Code Division Multiplexing), TDM (Time Division Multiplexing), or SDM (Space Division Multiplexing), frequency, spreading code, An adaptive modulation method in the case of performing data transmission by assigning different modulation schemes to each transmission channel divided by time slots or spaces,
前記サブキャリアまたは前記サブキャリア群に代えて、前記伝送チャネルに対して 伝送チャネル毎の変調方式および符号化方式の選択決定処理を実行することを特 徴とする請求項 2に記載の適応変調方法。  3. The adaptive modulation method according to claim 2, wherein a selection determination process of a modulation scheme and a coding scheme for each transmission channel is executed on the transmission channel instead of the subcarrier or the subcarrier group. .
[15] FDM (Frequency Division Multiplexing)、 CDM (Code Division Multiplexingノ、 TDM (Time Division Multiplexing)または SDM (Space Division Multiplexing)を 使用した通信システムにおいて、伝送路の状態に応じて、周波数、拡散符号、タイム スロットまたは空間により分割された伝送チャネル毎に異なる変調方式を割り当てて データ伝送を行う場合の適応変調方法であって、  [15] In a communication system using FDM (Frequency Division Multiplexing), CDM (Code Division Multiplexing), TDM (Time Division Multiplexing) or SDM (Space Division Multiplexing), frequency, spreading code, An adaptive modulation method in the case of performing data transmission by assigning different modulation schemes to each transmission channel divided by time slots or spaces,
前記サブキャリアまたは前記サブキャリア群に代えて、前記伝送チャネルに対して 伝送チャネル毎の変調方式および符号化方式の選択決定処理を実行することを特 徴とする請求項 3に記載の適応変調方法。  4. The adaptive modulation method according to claim 3, wherein a selection determination process of a modulation scheme and a coding scheme for each transmission channel is executed on the transmission channel instead of the subcarrier or the subcarrier group. .
[16] 直交周波数分割多重(OFDM : Orthogonal Frequency Division Multiplexing)に よるデータ伝送時の符号化方式および変調方式を伝送路の状態に応じて適応的に 選択決定する通信装置であって、 [16] For Orthogonal Frequency Division Multiplexing (OFDM) A communication apparatus that adaptively selects and determines an encoding method and a modulation method during data transmission according to a state of a transmission path,
サブキャリア毎の変調方式の組み合わせ (変調方式パターン)と、送信データを符 号化する際に使用する符号化方式との組み合わせ (伝送条件)を選択する伝送条件 選択手段と、  A transmission condition selection means for selecting a combination (transmission condition) of a combination of modulation schemes for each subcarrier (modulation scheme pattern) and a coding scheme used when encoding transmission data;
前記伝送条件選択手段が選択した伝送条件を使用したデータ伝送時の伝送品質 (通信品質および伝送速度、または伝送速度)を算出する伝送品質算出手段と、 前記伝送条件選択手段および前記伝送品質算出手段に対して、それ以前に選択 した伝送条件を再度選択しない、という条件の下で伝送条件を再選択しながら、前記 伝送品質を繰り返し算出するように、制御を行う繰り返し処理制御手段と、  Transmission quality calculation means for calculating transmission quality (communication quality and transmission speed, or transmission speed) at the time of data transmission using the transmission condition selected by the transmission condition selection means, the transmission condition selection means and the transmission quality calculation means On the other hand, a repetitive process control means for performing control so as to repeatedly calculate the transmission quality while reselecting the transmission condition under the condition that the transmission condition selected before is not selected again.
前記伝送品質算出手段が、前記伝送条件選択手段が選択対象とする全ての伝送 条件についての伝送品質を算出した場合、算出した伝送品質の中で、所望の通信 品質を満足しつつ伝送速度が最大の伝送品質が得られた際の伝送条件を、データ 伝送時に使用する正式な伝送条件として選択決定する伝送条件決定手段と、 を備えることを特徴とする通信装置。  When the transmission quality calculation means calculates the transmission quality for all transmission conditions to be selected by the transmission condition selection means, the transmission speed is maximized while satisfying the desired communication quality among the calculated transmission quality. And a transmission condition determining means for selecting and determining a transmission condition when the transmission quality is obtained as a formal transmission condition used at the time of data transmission.
[17] 前記伝送条件選択手段は、サブキャリア毎の変調方式を予め規定されている変調 方式の中から選択することにより前記変調方式パターンを決定し、さらに、予め規定 されている符号ィヒ方式の中から前記符号ィヒ方式を選択し、 [17] The transmission condition selection means determines the modulation scheme pattern by selecting a modulation scheme for each subcarrier from a predefined modulation scheme, and further defines a predefined codeh scheme. Select the sign-rich method from
前記伝送品質算出手段は、受信信号のサブキャリア毎の SIR (Signal to Interfere nce Ratio)に基づいて、前記通信品質および前記伝送速度を算出することを特徴と する請求項 16に記載の通信装置。  17. The communication apparatus according to claim 16, wherein the transmission quality calculation means calculates the communication quality and the transmission rate based on a SIR (Signal to Interference Ratio) for each subcarrier of the received signal.
[18] 前記伝送条件選択手段は、予め規定されて!、る符号化方式の中から選択した符 号化方式に基づ!、てサブキャリア毎の変調方式を予め規定されて!、る変調方式の 中から選択することにより前記変調方式パターンを決定する処理において使用する、 変調方式を選択可能かどうか判断する際の比較対象とする SIR (Signal to Interfere nce Ratio)しき 、値を、予め規定された複数の SIRしき 、値の中から選択設定し、さ らに、受信信号のサブキャリア毎の SIRおよび当該選択設定した SIRしき 、値に基づ いて当該変調方式パターンを決定し、 前記伝送品質算出手段は、受信信号のサブキャリア毎の SIRに基づいて、前記伝 送条件選択手段が選択した伝送条件を使用したデータ伝送時の伝送速度を算出し 前記伝送条件決定手段は、前記伝送品質算出手段の算出した伝送速度が最大と なった場合の伝送条件を、データ伝送時に使用する正式な伝送条件として選択決定 することを特徴とする請求項 16に記載の通信装置。 [18] The transmission condition selection means is defined in advance, based on an encoding scheme selected from among the encoding schemes, and a modulation scheme for each subcarrier is defined in advance. SIR (Signal to Interference Ratio) threshold value used in the process of determining the modulation scheme pattern by selecting from among the schemes to be compared when determining whether the modulation scheme can be selected A plurality of SIR threshold values selected and set from among the values, and further, the modulation scheme pattern is determined based on the SIR for each subcarrier of the received signal and the SIR threshold value selected and set, and The transmission quality calculation means calculates a transmission rate at the time of data transmission using the transmission condition selected by the transmission condition selection means based on the SIR for each subcarrier of the received signal, and the transmission condition determination means 17. The communication apparatus according to claim 16, wherein the transmission condition when the transmission rate calculated by the transmission quality calculating means is maximized is selected and determined as an official transmission condition used during data transmission.
前記伝送条件選択手段は、  The transmission condition selection means includes
使用中の符号化方式および変調方式を伝送路の状態変動に応じて適応的に選択 変更する力否かを判断するための基準通信品質を取得する基準通信品質取得手段 と、  A reference communication quality acquisition means for acquiring a reference communication quality for judging whether or not the power to adaptively select and change a coding scheme and a modulation scheme in use according to a change in the state of the transmission path;
前記基準通信品質が所望の通信品質を満たして 、な 、場合、サブキャリア毎の変 調方式を選択して前記変調方式パターンを決定する処理にお!ヽて、変調方式を選 択可能かどうか判断する際の比較対象として使用している SIR(Signal to Interferen ce Ratio)しきい値を規定の調整量だけ増力!]させて調整し、一方、当該取得した基準 通信品質が所望の通信品質を満たしている場合には、当該 SIRしきい値を規定の調 整量だけ減少させて調整する SIRしきい値調整手段と、  If the reference communication quality satisfies the desired communication quality, if the modulation scheme can be selected by selecting the modulation scheme for each subcarrier and determining the modulation scheme pattern? Increase the SIR (Signal to Interference Ratio) threshold used as a comparison target when making judgments by the specified adjustment amount! On the other hand, if the acquired reference communication quality meets the desired communication quality, the SIR threshold adjustment means adjusts the SIR threshold by decreasing the specified adjustment amount. When,
前記 SIRしき 、値調整手段により調整された SIRしき 、値およびサブキャリア毎の S IRに基づいて変調方式パターンを決定する変調方式パターン決定手段と、  A modulation scheme pattern determining means for determining a modulation scheme pattern based on the SIR threshold adjusted by the value adjusting means, the value and the SIR for each subcarrier;
それまでに実行した符号化方式の調整処理実行回数 (符号化方式調整回数)が規 定回数に達して 、な 、場合、かつ前記基準通信品質が所望の通信品質を満たして いない場合、使用中の符号ィ匕方式よりも誤り訂正能力の高い符号ィ匕方式を使用する ように符号ィ匕方式の調整を行い、一方、当該基準通信品質が所望の通信品質を満 たしてきる場合には、使用中の符号ィ匕方式よりも誤り訂正能力の低い符号ィ匕方式を 使用するように符号化方式を調整する符号化方式調整手段と、  If the number of encoding method adjustment processing executions performed so far (the number of encoding method adjustments) has reached the specified number of times, and if the reference communication quality does not satisfy the desired communication quality, it is in use. If the code method is adjusted to use a code method that has higher error correction capability than the other code method, and if the reference communication quality meets the desired communication quality, Encoding method adjusting means for adjusting the encoding method to use a code key method having a lower error correction capability than the code key method being used;
を備え、  With
前記変調方式パターン決定手段により決定された変調方式パターンを使用した通 信の品質が良好であると判断するための通信品質判定しきい値と、通信品質が過剰 に良好であると判断するための過剰品質判定しきい値との間の範囲に通信品質が収 まるまで、前記 SIRしき ヽ値調整手段および前記変調方式パターン決定手段が繰り 返して処理を実行することを特徴とし、 A communication quality determination threshold value for determining that the communication quality using the modulation method pattern determined by the modulation method pattern determining means is good, and for determining that the communication quality is excessively good. Communication quality is within the range between the excess quality judgment threshold. The SIR threshold value adjusting means and the modulation method pattern determining means repeatedly perform the process until it is round,
さらに、  In addition,
前記伝送品質算出手段は、前記伝送条件選択手段に含まれる SIRしきい値調整 手段および前記変調方式パターン決定手段が行う繰り返し処理が終了後、受信信 号のサブキャリア毎の SIRに基づいて、当該変調方式パターン決定手段が決定した 変調方式パターンを使用したデータ伝送時の伝送速度を算出し、  The transmission quality calculation means, after the repetition processing performed by the SIR threshold adjustment means and the modulation scheme pattern determination means included in the transmission condition selection means is completed, based on the SIR for each subcarrier of the received signal Calculate the transmission rate during data transmission using the modulation method pattern determined by the modulation method pattern determination means,
前記繰り返し処理制御手段は、前記符号化方式調整手段が符号化方式を調整後 、前記符号化方式調整回数が規定回数に達するまで、前記 SIRしきい値調整手段 および変調方式パターン決定手段による繰り返し処理と、当該符号化方式調整手段 による符号化方式調整処理とを繰り返し実行するように制御を行い、  The iterative processing control means is configured to repeat the processing by the SIR threshold adjusting means and the modulation scheme pattern determining means until the coding scheme adjustment count reaches a specified count after the coding scheme adjustment section has adjusted the coding scheme. And the encoding method adjustment processing by the encoding method adjustment means are repeatedly executed,
前記伝送条件決定手段は、前記符号化方式調整回数が規定回数に達した場合に は、前記伝送品質算出手段の算出した伝送速度が最大となった場合の伝送条件を 、データ伝送時に使用する正式な伝送条件として選択決定することを特徴とする請 求項 16に記載の通信装置。  The transmission condition determining means, when the number of times of adjustment of the encoding method reaches a specified number of times, the transmission condition when the transmission rate calculated by the transmission quality calculating means is maximized is used for data transmission. 17. The communication device according to claim 16, wherein the communication device is selected and determined as an appropriate transmission condition.
[20] 前記伝送条件選択手段が、前記基準通信品質を取得処理および前記 SIRしき ヽ 値繰り返し調整処理のみを実行し、 [20] The transmission condition selection means performs only the reference communication quality acquisition process and the SIR threshold value repeated adjustment process,
前記伝送条件決定手段は、前記前記伝送条件選択手段における SIRしき 、値繰り 返し調整処理が終了した時点の変調方式パターンを、データ伝送時に使用する正 式な変調方式パターンとして選択決定することを特徴とする請求項 19に記載の通信 装置。  The transmission condition determining means selects and determines the modulation scheme pattern at the time when the SIR threshold and the value repetition adjustment process in the transmission condition selection section is completed as a normal modulation scheme pattern used at the time of data transmission. The communication device according to claim 19.
[21] 前記伝送条件選択手段が、前記 SIRしき 、値調整処理にお 、て、変調多値数の 多い変調方式を選択可能力どうか判断する際に使用する SIRしきい値ほど、より SIR しきい値が大きな値になるような調整量で調整することを特徴とする請求項 19に記載 の通信装置。  [21] The SIR threshold used by the transmission condition selection means to determine whether or not a modulation scheme having a large number of modulation multi-values can be selected in the SIR threshold and value adjustment processing is more SIR. 20. The communication apparatus according to claim 19, wherein adjustment is performed with an adjustment amount such that the threshold value becomes a large value.
[22] 前記伝送条件選択手段が、前記 SIRしき 、値調整処理にお 、て、変調多値数の 多い変調方式を選択可能力どうか判断する際に使用する SIRしきい値ほど、より SIR しきい値が大きな値になるような調整量で調整することを特徴とする請求項 20に記載 の通信装置。 [22] The SIR threshold used by the transmission condition selection means for determining whether or not a modulation scheme having a large number of modulation multi-values can be selected in the SIR threshold and value adjustment processing is more SIR. 21. The adjustment according to claim 20, wherein the adjustment is performed with an adjustment amount such that the threshold value becomes a large value. Communication equipment.
[23] 前記伝送条件選択手段が、前記 SIRしき 、値調整処理を開始後、 SIRしき 、値を 調整した調整量 (SIRしき 、値の増加量または減少量)の累積値が規定の範囲内に 収まっている場合にのみ SIRしきい値を調整することを特徴とする請求項 19に記載 の通信装置。  [23] After the transmission condition selection means starts the SIR threshold and value adjustment processing, the accumulated value of the adjustment amount (SIR threshold, the amount of increase or decrease of the value) adjusted within the specified range is within the specified range. 20. The communication device according to claim 19, wherein the SIR threshold value is adjusted only when it is within the range.
[24] 前記伝送条件選択手段が、前記 SIRしき 、値調整処理を開始後、 SIRしき 、値を 調整した調整量 (SIRしき 、値の増加量または減少量)の累積値が規定の範囲内に 収まって!/ヽる場合にのみ SIRしき ヽ値を調整することを特徴とする請求項 20に記載 の通信装置。  [24] After the transmission condition selection means starts the SIR threshold and value adjustment processing, the accumulated value of the adjustment amount (SIR threshold, the amount of increase or decrease of the SIR threshold) is within a specified range. 21. The communication device according to claim 20, wherein the SIR threshold value is adjusted only when it falls within the range!
[25] 前記伝送条件選択手段は、前記基準通信品質取得処理を実行後、前記 SIRしき い値調整処理を実行せずに、直ちに前記伝送速度算出処理実行し、以後、前記符 号化方式調整回数が規定回数に達するまで、当該基準通信品質取得処理、当該伝 送速度算出処理および前記符号化方式調整処理を繰り返し実行し、当該符号化方 式調整回数が規定回数に達した場合には、伝送品質算出手段の算出した伝送速度 が最大となった場合の伝送条件を、データ伝送時に使用する正式な伝送条件として 選択決定することを特徴とする請求項 19に記載の通信装置。  [25] The transmission condition selection means, after executing the reference communication quality acquisition process, immediately executes the transmission rate calculation process without performing the SIR threshold adjustment process, and thereafter performs the encoding method adjustment. The reference communication quality acquisition process, the transmission speed calculation process, and the encoding method adjustment process are repeatedly executed until the number of times reaches the specified number. 20. The communication apparatus according to claim 19, wherein the transmission condition when the transmission speed calculated by the transmission quality calculation means is maximized is selected and determined as an official transmission condition used during data transmission.
[26] 近隣の複数のサブキャリアにより構成されたサブキャリア群を、前記サブキャリアに 見立てて処理を行いうことにより、サブキャリア群毎に変調方式を個別に割り当てるこ とを特徴とする請求項 16に記載の通信装置。  [26] The modulation scheme is individually assigned to each subcarrier group by processing a subcarrier group including a plurality of neighboring subcarriers as if it were the subcarrier. 16. The communication device according to 16.
[27] FDM (Frequency Division Multiplexing)、 CDM (Code Division Multiplexing;、 TDM (Time Division Multiplexing)または SDM (Space Division Multiplexing)を 使用した通信システムにおいて、伝送路の状態に応じて、周波数、拡散符号、タイム スロットまたは空間により分割された伝送チャネル毎に異なる変調方式を割り当てて データ伝送を行う通信装置であって、  [27] In a communication system using FDM (Frequency Division Multiplexing), CDM (Code Division Multiplexing), TDM (Time Division Multiplexing), or SDM (Space Division Multiplexing), the frequency, spreading code, A communication device that performs data transmission by assigning different modulation schemes to transmission channels divided by time slots or spaces,
前記サブキャリアまたは前記サブキャリア群に代えて、前記伝送チャネルに対して 伝送チャネル毎の変調方式および符号化方式の選択決定処理を実行することを特 徴とする請求項 16に記載の通信装置。  17. The communication apparatus according to claim 16, wherein a selection determination process for a modulation scheme and a coding scheme for each transmission channel is executed on the transmission channel instead of the subcarrier or the subcarrier group.
PCT/JP2006/308871 2006-04-27 2006-04-27 Adaptive modulation method and communication apparatus WO2007125580A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/308871 WO2007125580A1 (en) 2006-04-27 2006-04-27 Adaptive modulation method and communication apparatus
JP2008513027A JP4700106B2 (en) 2006-04-27 2006-04-27 Adaptive modulation method and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/308871 WO2007125580A1 (en) 2006-04-27 2006-04-27 Adaptive modulation method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2007125580A1 true WO2007125580A1 (en) 2007-11-08

Family

ID=38655127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308871 WO2007125580A1 (en) 2006-04-27 2006-04-27 Adaptive modulation method and communication apparatus

Country Status (2)

Country Link
JP (1) JP4700106B2 (en)
WO (1) WO2007125580A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259064A (en) * 2007-04-06 2008-10-23 Matsushita Electric Works Ltd Multicarrier communication apparatus
WO2009057183A1 (en) * 2007-11-02 2009-05-07 Fujitsu Limited Network encoding method and network encoding apparatus
JP2009267897A (en) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp Digital wireless broadcast system
JP2010537494A (en) * 2007-08-16 2010-12-02 イカノス・コミュニケーションズ・インコーポレーテッド Method and apparatus for bit error determination in a multitone transceiver
JP2012060312A (en) * 2010-09-07 2012-03-22 Nippon Telegr & Teleph Corp <Ntt> Transmission quality evaluation method, transmission method, and transmission device
US10257104B2 (en) * 2015-05-28 2019-04-09 Sony Mobile Communications Inc. Terminal and method for audio data transmission
CN110311770A (en) * 2019-07-05 2019-10-08 北京神经元网络技术有限公司 The time-frequency multiplexing method of high-speed industrial communication system based on ofdm communication system
WO2023122909A1 (en) * 2021-12-27 2023-07-06 Oppo广东移动通信有限公司 Method for data transmission and communication device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169036A (en) * 2001-11-30 2003-06-13 Japan Telecom Co Ltd Orthogonal frequency-division multiplex system and transmitter/receiver
JP2004531980A (en) * 2001-06-26 2004-10-14 クゥアルコム・インコーポレイテッド Method and system for processing data for transmission in a multi-channel communication system using selective channel transmission
JP2005252834A (en) * 2004-03-05 2005-09-15 Rikogaku Shinkokai Mimo-specific mode adaptive transmission system and mimo-ofdm-specific mode adaptive transmission system
JP2005535167A (en) * 2002-06-20 2005-11-17 クゥアルコム・インコーポレイテッド Rate control for multi-channel communication systems.
JP2006025067A (en) * 2004-07-07 2006-01-26 Hitachi Ltd Adaptive modulating method for multi-carrier communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531980A (en) * 2001-06-26 2004-10-14 クゥアルコム・インコーポレイテッド Method and system for processing data for transmission in a multi-channel communication system using selective channel transmission
JP2003169036A (en) * 2001-11-30 2003-06-13 Japan Telecom Co Ltd Orthogonal frequency-division multiplex system and transmitter/receiver
JP2005535167A (en) * 2002-06-20 2005-11-17 クゥアルコム・インコーポレイテッド Rate control for multi-channel communication systems.
JP2005252834A (en) * 2004-03-05 2005-09-15 Rikogaku Shinkokai Mimo-specific mode adaptive transmission system and mimo-ofdm-specific mode adaptive transmission system
JP2006025067A (en) * 2004-07-07 2006-01-26 Hitachi Ltd Adaptive modulating method for multi-carrier communication

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259064A (en) * 2007-04-06 2008-10-23 Matsushita Electric Works Ltd Multicarrier communication apparatus
JP2010537494A (en) * 2007-08-16 2010-12-02 イカノス・コミュニケーションズ・インコーポレーテッド Method and apparatus for bit error determination in a multitone transceiver
WO2009057183A1 (en) * 2007-11-02 2009-05-07 Fujitsu Limited Network encoding method and network encoding apparatus
JP4915450B2 (en) * 2007-11-02 2012-04-11 富士通株式会社 Network encoding method and network encoding apparatus
US8509136B2 (en) 2007-11-02 2013-08-13 Fujitsu Limited Network coding method and network coding apparatus
JP2009267897A (en) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp Digital wireless broadcast system
JP2012060312A (en) * 2010-09-07 2012-03-22 Nippon Telegr & Teleph Corp <Ntt> Transmission quality evaluation method, transmission method, and transmission device
US10257104B2 (en) * 2015-05-28 2019-04-09 Sony Mobile Communications Inc. Terminal and method for audio data transmission
CN110311770A (en) * 2019-07-05 2019-10-08 北京神经元网络技术有限公司 The time-frequency multiplexing method of high-speed industrial communication system based on ofdm communication system
CN110311770B (en) * 2019-07-05 2022-08-23 北京神经元网络技术有限公司 Time-frequency multiplexing method of high-speed industrial communication system based on OFDM communication system
WO2023122909A1 (en) * 2021-12-27 2023-07-06 Oppo广东移动通信有限公司 Method for data transmission and communication device

Also Published As

Publication number Publication date
JP4700106B2 (en) 2011-06-15
JPWO2007125580A1 (en) 2009-09-10

Similar Documents

Publication Publication Date Title
US7697466B2 (en) Base station apparatus, mobile station apparatus, radio communication system, and radio communication method
JP4412005B2 (en) Adaptive modulation method and data rate control method
US8040912B2 (en) Multicarrier communication system, multicarrier communication apparatus and CQI reporting method
WO2007125580A1 (en) Adaptive modulation method and communication apparatus
EP1533965B1 (en) Apparatus and method for controlling adaptive modulation and coding in an orthogonal frequency division multiplexing communication system
US7277498B2 (en) Mapping method of code word with QAM modulation
US20070263737A1 (en) Transmitting Apparatus, Receiving Apparatus, Communication System and Communication Method
JP4626766B2 (en) Communication system and communication control method
CN101567756A (en) Variable rate coding for forward link
KR20080013966A (en) Transmitting apparatus, receiving apparatus and transmission power control method
KR101022951B1 (en) Adaptive modulation/demodulation method and radio communications systems
US7693224B2 (en) Subcarrier adaptive thresholding
JP4881939B2 (en) Multi-carrier wireless communication system and multi-carrier wireless communication method
EP1503535A1 (en) Transmitting device and transmitting method
JP4918935B2 (en) Adaptive modulation method and data rate control method
JP5293079B2 (en) Wireless communication system and transmission power and data rate control method thereof
JP2006303556A (en) Radio communication apparatus and method for deciding modulation level
JP2010157990A (en) Wireless transmitting apparatus and method, and wireless receiving apparatus and method
JP2006186630A (en) Subcarrier adaptive control method and its device, and radio equipment
JP6851223B2 (en) Wireless communication device and communication method control method
JP4482347B2 (en) Data transmission device
WO2005122448A1 (en) Wireless communication apparatus
WO2013069204A1 (en) Transmitting apparatus and transmitting method
JP4418523B2 (en) Data transmission apparatus, data transmission method, and wireless communication system
JP4482609B2 (en) Data transmitting apparatus, data transmitting method, data receiving apparatus, data receiving method, and wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06732422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008513027

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06732422

Country of ref document: EP

Kind code of ref document: A1