WO2007124053A1 - Twin bifurcated stent graft - Google Patents

Twin bifurcated stent graft Download PDF

Info

Publication number
WO2007124053A1
WO2007124053A1 PCT/US2007/009665 US2007009665W WO2007124053A1 WO 2007124053 A1 WO2007124053 A1 WO 2007124053A1 US 2007009665 W US2007009665 W US 2007009665W WO 2007124053 A1 WO2007124053 A1 WO 2007124053A1
Authority
WO
WIPO (PCT)
Prior art keywords
leg
stent
sleeve
aperture
stent graft
Prior art date
Application number
PCT/US2007/009665
Other languages
French (fr)
Inventor
Roy K. Greenberg
David Ernest Hartley
Michael Lawrence-Brown
Original Assignee
William A. Cook Australia Pty. Ltd.
Cook Incorporated
Cleveland Clinic Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by William A. Cook Australia Pty. Ltd., Cook Incorporated, Cleveland Clinic Foundation filed Critical William A. Cook Australia Pty. Ltd.
Priority to CN2007800227121A priority Critical patent/CN101484090B/en
Priority to AU2007240703A priority patent/AU2007240703C1/en
Priority to CA2649705A priority patent/CA2649705C/en
Priority to EP07755802.1A priority patent/EP2007313B1/en
Priority to JP2009506603A priority patent/JP2009534104A/en
Publication of WO2007124053A1 publication Critical patent/WO2007124053A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/954Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2476Valves implantable in the body not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/061Blood vessels provided with means for allowing access to secondary lumens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/065Y-shaped blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/065Y-shaped blood vessels
    • A61F2002/067Y-shaped blood vessels modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable

Definitions

  • This invention relates to a medical device and more particularly a device which can be deployed by endovascular means into the vasculature of a patient.
  • bifurcated endovascular devices which can be deployed into the vasculature, particularly in the region of the aortic bifurcation, so that an aneurysm in the aorta can be bridged by placement of the endovascular device with a proximal portion which seals into a non-aneurysed portion of the aorta adjacent to the renal arteries, a first leg which extends down one iliac artery to a non-aneurysed portion of the iliac artery and another short leg into which a leg extension may be placed to extend into a non-aneurysed portion of the contralateral iliac artery.
  • the object of this invention is to provide a single endovascularly deployed medical device which can solve this problem or at least provide a physician with a useful alternative.
  • distal with respect to a portion of the aorta, a deployment device or a prosthesis means the end of the aorta, deployment device or prosthesis further away in the direction of blood flow away from the heart and the term proximal means the portion of the aorta, deployment device or end of the prosthesis nearer to the heart.
  • proximal means the portion of the aorta, deployment device or end of the prosthesis nearer to the heart.
  • the invention is said to reside in a stent graft comprising a tubular body of a biocompatible graft material defining a main lumen therethrough, a bifurcation in the tubular body at one end thereof and a first leg and a second leg extending from the bifurcation, the first leg being a long leg and the second leg being a short leg, the first and second legs having respective first and second lumens therethrough and the first and second lumens being in fluid communication with the main lumen, characterised by the first long leg comprising a side arm with a side arm lumen therethrough and the side arm lumen being in fluid communication with the first leg lumen, whereby the stent graft can be deployed into the vasculature of a patient with the tubular body being in an aorta of the patient, the first leg extending down an iliac artery, the second leg being directed towards a contralateral iliac artery and the side arm on the first leg directed to an internal artery of the ilia
  • the side arm comprises a tube of corrugated biocompatible graft material and the tube extends part helically around the first leg.
  • the side arm comprises a tube of biocompatible graft material and at least one self expanding stent on the tube of biocompatible graft material.
  • the first leg includes an aperture or fenestration proximally of the side arm and a valve arrangement to prevent fluid flow through the aperture from inside of the leg to outside of the leg.
  • the aperture includes a resilient reinforcement ring around the aperture.
  • the valve arrangement can comprise a sleeve of a biocompatible graft material within the first leg and a self expanding stent within the sleeve, the sleeve being fastened at its proximal end to the first leg proximal of the aperture and the self expanding stent being fastened to the sleeve, whereby the self expanding stent forces the sleeve against the inner surface of the first leg around the aperture to prevent fluid flow through the aperture from inside of the leg to outside of the leg.
  • the sleeve of a biocompatible graft material comprises a cylindrical form. In an alternative embodiment the sleeve of a biocompatible graft material comprises a semi-cylindrical form.
  • the valve can be formed from a self expanding stent to which a part cylindrical portion of biocompatible graft material is stitched along spaced apart struts of the self expanding stent. These two components together can form a valve assembly which can be stitched into the longer leg of the stent graft.
  • the valve assembly can further include a semi-circular resilient wire around the distal end of the part cylindrical portion of biocompatible graft material forming the valve member. This semi-circular resilient wire around the distal end of the part cylindrical portion of biocompatible graft material will assist with sealing off the fenestration by ensuring that the distal end of the valve member is held against the inside of the wall of the longer first leg of the stent graft.
  • the biocompatible graft material can include polytetrafluoroethylene, Dacron, polyamide or any other suitable biocompatible graft material.
  • a naturally occurring biomaterial such as collagen
  • ECM extracellular matrix
  • examples of ECM's include pericardium, stomach submucosa, liver basement membrane, urinary bladder submucosa, tissue mucosa, and dura mater.
  • SIS is particularly useful, and can be made in the fashion described in
  • the material can be made thicker by making multilaminate constructs, for example SIS constructs as described in US Patents 5,968,096; 5,955,1 10; 5,885,619; and 5,71 1 ,969.
  • multilaminate constructs for example SIS constructs as described in US Patents 5,968,096; 5,955,1 10; 5,885,619; and 5,71 1 ,969.
  • autologous tissue can be harvested as well, for use in forming the tubular graft material.
  • Elastin or Elastin-Like Polypetides (ELPs) and the like offer potential as a material to fabricate the tubular graft material to form a device with exceptional biocompatibility.
  • SIS is available from Cook Biotech, West Lafayette, Indiana, USA.
  • a stent graft which has a main bifurcation to allow access into each of the iliac arteries and in one of the legs extending from the bifurcation there is a further bifurcation or branch which will enable access into the internal iliac artery.
  • a stent graft which has a main bifurcation to allow access into each of the iliac arteries and in one of the legs extending from the bifurcation there is a further bifurcation or branch which will enable access into the internal iliac artery.
  • valve arrangement proximal of the side arm or side branch of the iliac leg of the bifurcated stent graft.
  • the valve allows an indwelling catheter to be provided through the sidearm in the iliac artery at the time of deployment to assist with deployment of leg extension into the internal iliac artery.
  • the indwelling catheter can be extended and its guide wire snared from the contra-lateral artery and the leg extension placed into the internal iliac artery before the leg extension is placed into the iliac artery.
  • the invention is said to reside in a stent graft comprising a tubular body of a biocompatible graft material defining a main lumen therethrough an aperture defining a fenestration in the tubular body and a valve arrangement to prevent fluid flow through the aperture.
  • the aperture includes a resilient reinforcement ring around the aperture.
  • the valve arrangement comprises a sleeve of a biocompatible graft material within the tubular body and a self expanding stent within the sleeve, the sleeve being fastened at its proximal end to the first leg proximal of the aperture and the self expanding stent being fastened to the sleeve, whereby the self expanding stent forces the sleeve against the inner surface of the tubular body around the aperture to prevent fluid flow through the aperture.
  • the sleeve of a biocompatible graft material can comprise a cylindrical form or alternatively a semi-cylindrical form.
  • valve arrangement comprises a valve assembly comprising a self expanding stent to which a part cylindrical portion of biocompatible graft material is stitched along spaced apart struts of the self expanding stent.
  • the valve assembly can further comprise a semi-circular resilient wire around the distal end of the part cylindrical portion of biocompatible graft material forming the valve member.
  • Figure 1 shows a first embodiment of stent graft according to the invention as it would be deployed into the vasculature before placement of an iliac side branch;
  • Figure 2 shows the embodiment of Figure 1 with the side branch installed into the internal iliac artery and the leg extension in the contralateral iliac artery;
  • Figure 3 shows a schematic view of part of the leg of the stent graft of the present invention in particular showing one embodiment of the valve arrangement
  • Figure 4 shows a cross-section of embodiment shown in Figure 3;
  • Figure 5 shows a same view as Figure 4 except with the indwelling catheter extending through the corrugated side arm and valve;
  • Figure 6 shows an alternative embodiment of stent graft deployed into a schematic vasculature with an alternative arrangement of side arm
  • Figure 7 shows embodiment of Figure 6 at the stage where the indwelling catheter has been snared and pulled down the contralateral artery and the indwelling catheter has been used to deploy an extension piece into internal iliac artery;
  • Figure 8 shows an alternative embodiment of valve arrangement suitable for the embodiment of stent graft shown in Figures 6 and 7;
  • Figure 9 shown a cross-section thought the valve arrangement of Figure 8;
  • Figure 10 shows the valve arrangement of Figures 8 and 9 with an indwelling catheter extending through it;
  • Figure 1 1 shows an alternative embodiment of valve arrangement suitable for the embodiment of stent graft shown in Figures 6 and 7;
  • Figure 12 shown a detail of the valve arrangement of Figure 1 1 showing the self expanding stent with a valve member mounted onto it;
  • Figure 13 shown a cross-section thought valve arrangement of Figure 1 1 ;
  • Figure 14 shows the valve arrangement of Figures 1 1 and 13 with an indwelling catheter extending through it:
  • Figure 1 5A to 1 5M show the various stages of deployment of a stent graft according to one embodiment of the present invention
  • Figure 16A to 16K show the various stages of deployment of a stent graft according to another embodiment of the present invention.
  • the vasculature comprises an aorta 10 in the region between the renal arteries 12 and the aortic bifurcation 14.
  • Common iliac arteries 16 and 18 extend down from the aortic bifurcation 14.
  • the aorta 10 has an aneurysm 20 which extends down into the common iliac artery 18 as far as the bifurcation 22 between the internal iliac artery 24 and the external iliac artery 26.
  • a twin bifurcated aortic stent graft 40 according to one embodiment of the present invention has been deployed into the aorta 10.
  • the introduction device which is used to deploy the stent graft into the vasculature has been omitted to assist clarity.
  • PCT Patent Publication No. WO 98/53761 entitled "A prosthesis and a method deploying a prosthesis” there is disclosed an introducer for a stent graft which is suitable for use with the present invention.
  • the proximal end 42 of the bifurcated stent graft 40 is engaged into non-aneurysed portion 28 of the aorta 10 just distal of the renal arteries 12.
  • stent graft 40 has a proximally extending supra-renal exposed stent 44 with barbs 46 engaging the wall of the aorta proximal of the renal arteries to provide a secure position to prevent migration of the stent graft.
  • the stent graft 40 has a short leg 50 and a long leg 52 extending from the graft bifurcation 54.
  • the longer Jeg 52 has a sealing surface 56 at its distal end which engages into a non-aneurysed portion of the external iliac artery 26.
  • the longer leg 52 has a side arm 60 which in this embodiment is in the form of a corrugated tube extending in a part helical manner from its connection at a fenestration 62 into the longer leg 52.
  • the side arm 60 extends in a distal direction and helically partly around the longer leg 52 and has a distal end 61 remote from its connection with the longer leg 52 which opens adjacent to the internal iliac artery 24.
  • a fenestration 64 is placed into the longer leg 52 proximal of the connection of the side arm 60 into the longer leg 52.
  • the fenestration 64 has a valve arrangement within it to close it off as will be discussed with reference to Figures 3 to 5.
  • an indwelling catheter 66 extends through the side arm 60 and out through the valved fenestration 64.
  • the indwelling catheter includes a guide wire 68.
  • Figure 2 shows the embodiment of Figure 1 but after deployment of a extension piece 70 into the corrugated side arm 60 and deployment of a leg extension 72 into the short leg 50 of the bifurcated stent graft 40 which seals into a non-aneurysed portion of the iliac artery 16.
  • United States Patent Application Serial No. 10/962,763 entitled “Introducer for Iliac Side Branch Device” discloses an arrangement for using an indwelling catheter to access an internal iliac artery. At this stage the indwelling catheter has been withdrawn and the fenestration 64 is closed off by the valve arrangement.
  • the extension piece 70 seals into a non-aneurysed portion of the internal iliac artery 24.
  • Figures 3, 4 and 5 show a first embodiment of valve arrangement suitable for the present invention.
  • the longer leg 52 of the bifurcated stent graft 40 as shown in Figure 1 has a fenestration 64 defined by a peripheral resilient ring 80 which is stitched into the tube of the longer leg 52.
  • a semi- circular portion of biocompatible graft material 82 and a resilient self-expanding zigzag stent 85 which engages with the semi-circular biocompatible graft material 82 and engages it against the inside wall of the longer leg 52 and in particular over the fenestration 64.
  • the semi-circular piece 82 is stitched by stitching 83 at its proximal end to the inner wall of the longer leg 52.
  • FIG. 5 shows the embodiment as shown in Figure 4 except that an indwelling catheter 66 and guide wire 68 through the indwelling catheter extend through the side arm 60 and through the fenestration 64 and this lifts the valve 82 off the fenestration 64 against the restoring force of the resilient self expanding stent 85.
  • FIGs 6 and 7 show an alternative embodiment of bifurcated stent graft according to the present invention in the vasculature of a patient.
  • the vasculature and the bifurcated stent graft are similar to the earlier embodiment shown in Figures 1 and 2 and the same reference numerals are used for corresponding items.
  • the vasculature comprises an aorta 10 in the region between the renal arteries 12 and the aortic bifurcation 14.
  • Common iliac arteries 16 and 18 extend down from the aortic bifurcation.
  • the aorta 10 has an aneurysm 20 which extends down into the common iliac artery 18 so far as the bifurcation 22 between the internal iliac artery 24 and the external iliac artery 26.
  • a bifurcated aortic stent graft 40 has been deployed into the aorta 10.
  • the proximal end 42 of the bifurcated stent graft 40 is engaged into non-aneurysed portion 28 of the aorta 10 just distal of the renal arteries 12.
  • stent graft 40 has a proximally extending suprarenal exposed stent 44 with barbs 46 engaging the wall of the aorta proximal of the renal arteries to provide a secure position to prevent migration of the stent graft.
  • the stent graft 40 has a short leg 50 and a long leg 52 extending from the graft bifurcation 54.
  • the longer leg 52 has a sealing surface 56 at its distal end which engages into a non-aneurysed portion of the external iliac artery 26.
  • the longer leg 52 has a side arm 90 which in this embodiment is in the form of a stented tube extending from a fenestration 92 in the longer leg 52.
  • the side arm 90 extends in a distal direction and has an end 94 remote from its connection with the longer leg 52 which opens adjacent to the internal iliac artery 24.
  • a fenestration 64 is placed into the longer leg 52 proximal of the connection of the side arm 90 into the longer leg 52.
  • the fenestration 64 has a valve arrangement within it to close it off as will be discussed with reference to Figures 8 to 10.
  • an in- dwelling catheter 66 extends through the side arm 90 and out through the valved fenestration 64.
  • the indwelling catheter includes a guide wire 68 therethrough.
  • Figure 7 shows the embodiment of Figure 6 but after deployment of a extension piece 70 into the side arm 90.
  • United States Patent Application Serial No. 10/962,763 entitled "Introducer for Iliac Side Branch Device” discloses an arrangement for using an indwelling catheter to access an internal iliac artery. At this stage the indwelling catheter has been withdrawn and the fenestration 64 is closed off by the valve arrangement. The extension piece 70 seals into a non- aneurysed portion of the internal iliac artery 24.
  • FIGS 8, 9 and 10 show an alternative embodiment of valve arrangement suitable for the present invention.
  • the longer leg 52 of the bifurcated stent graft 40 as shown in Figure 6 has a fenestration 64 defined by a peripheral resilient ring 80 which is stitched into the tubular wall of the longer leg 52.
  • a cylindrical portion of biocompatible graft material 96 and a self-expanding zigzag stent 98 which engages with the cylindrical biocompatible graft material 96 and engages it against the inside wall of the longer leg 52 and in particular over the fenestration 64.
  • the cylindrical portion of biocompatible graft material 96 is stitched by stitching 99 at its proximal end to the inner wall of the longer leg 52.
  • Figure 10 shows the embodiment as shown in Figure 9 except that an indwelling catheter 66 and guide wire 68 through the catheter extend through the side arm 60 and through the fenestration 64 and this lifts the valve 96 for the fenestration 64.
  • Figures 1 1 to 14 show a further embodiment of valve arrangement suitable for the present invention.
  • ⁇ Figure 1 has a fenestration 202 defined by a peripheral resilient ring 204 which is stitched into the tube of the longer leg 200.
  • a self expanding stent 206 which has a plurality of struts 208 and bends 210.
  • the self expanding stent 206 is shown in Figure 12.
  • the self expanding stent 206 has a valve member 21 2 formed from a piece of biocompatible graft material stitched onto spaced apart struts 208 to provide a part cylindrical surface on the self expanding stent 206 to form a valve assembly 214.
  • valve member 212 Around the lower circumference of the valve member 212 is a portion of resilient wire 213 retained by stitching 21 5 to assist with retaining the part circular shape of the valve member to endure good sealing against the inside surface of the tubular body of the longer leg 200.
  • This valve assembly is stitched into the tubular body of the longer leg 200 by stitching 216 at the bends 210 so that the valve member underlies the fenestration 202 and closes off the fenestration to flow therethrough from inside the longer leg to outside.
  • a cross section of the valve at this stage is shown in Figure 1 3.
  • a side arm 218 extends from a fenestration 220 in the tubular longer leg 200.
  • the side arm 218 is in this embodiment formed from a corrugated graft material.
  • Figure 14 shows the embodiment as shown in Figure 13 except that an indwelling catheter 66 and guide wire 68 through the indwelling catheter extend through the side arm 218 and through the fenestration 202 and this lifts the valve member 212 off the fenestration 202 against the restoring force of the resilient self expanding stent 206.
  • Figure 1 5A to 1 5M show the various stages of deployment of a stent graft according to one embodiment of the present invention.
  • FIG 15A shows a schematic version of one embodiment of a stent graft according to the present invention loaded onto a delivery device.
  • the delivery device 100 has a nose cone dilator 102 at its proximal end and a stent graft assembly according to one embodiment of the present invention 104 is mounted onto the deployment device.
  • This embodiment of stent graft 104 has an helical side arm 106 on the longer leg 108 of the stent graft 104.
  • An indwelling catheter 1 10 extends from the deployment device 100 through the helical side arm 106 exiting at valved aperture 1 12 and extending to a groove 1 14 in the nose cone dilator 102 outside of the stent graft 104.
  • the indwelling catheter 1 10 has a flexible curved proximal end 1 16.
  • FIG. 15B Detail of the tubular side arm 106 and valve arrangement 1 12 are shown in Figure 15B.
  • the tubular side arm 106 extends around the longer leg 108 from a fenestration 107 and the indwelling catheter 1 10 extends into the tubular side arm and out through the valved aperture 1 12.
  • the valved aperture 1 12 has a flap valve 1 13 on its inside to ensure that the aperture is closed when the indwelling catheter is removed.
  • the flap valve is substantially the same as the as the construction shown in Figures 3 to 6.
  • Figure 1 5C shows a schematic vasculature of a patient including an aorta
  • iliac arteries 16 and 18 Extending from the aortic bifurcation are iliac arteries 16 and 18.
  • the aorta has an aneurysm 20 which extends down the iliac artery to the position of the internal iliac artery 24.
  • the iliac bifurcation 22 defines the bifurcation between the internatal iliac artery 24 and the external iliac artery 26.
  • the deployment device 100 has been deployed over a guide wire 1 20 so that its nose cone 102 extends up into the aneurysm 20 and the distal end of the nose cone 102 is substantially adjacent to the aortic bifurcation 14.
  • the indwelling catheter and particularly its curved tip 1 1 6 has been compressed by the sheath 122 into the groove 1 14 in the nose cone dilator.
  • the sheath 122 of the deployment device has been withdrawn slightly to release the curved tip 1 16 of the indwelling catheter 1 10 and the indwelling guide wire 124 from the indwelling catheter 1 10 has been extended.
  • the indwelling guide wire 1 24 has extended down the contra-lateral iliac artery 16.
  • a snare catheter 1 28 has been deployed into the contra-lateral common iliac artery and a snare 130 of the snare catheter 128 has been extended to grasp the guide wire 1 24.
  • the guide wire 124 is extracted via the snare catheter 1 28 so that it becomes a through-and-through guide wire. It is important at this stage to ensure there is slack maintained in the guide wire at the aortic bifurcation to prevent damage to the aortic bifurcation. This position is shown in Figure 15E.
  • the deployment device 100 in then advanced so that the nose cone dilator 102 is proximal of the renal arteries 12. This draws the indwelling guide wire 124 also up into the aorta 10.
  • the sheath 122 of the deployment device 1 10 is then withdrawn to release the shorter leg 109 of the stent graft 104. This stage is shown in Figure 15G.
  • the indwelling catheter is withdrawn down into the contra-lateral iliac artery 16 and the sheath 122 is withdrawn so that it is distal of the distal end of the side arm 106 while still retaining the distal end of the longer leg 108.
  • a dilator and sheath introducer 130 is advanced over the guide wire 124 in the contra-lateral iliac artery 16 and the indwelling catheter 1 10 and extension arm deployment device are tracked over the guide wire 1 24 so that the nose cone 132 of the sheath introducer enters the valved aperture 1 12 and tracks over the guide wire 124 into the side arm 106 until it exits the distal end of the side arm 134 as shown in Figure 15J.
  • sheath introducer nose cone 132 is then withdrawn leaving the sheath 130 in place.
  • the indwelling guide wire 1 24 is still in a through-and-through position.
  • another guide wire 136 is introduced through the sheath 130 and extended from the sheath 130 to enter into the internal iliac artery 24.
  • a side arm deployment device is deployed over the guide wire 136 into the internal iliac artery 24 so that balloon expandable covered stent 140 extends into the internal iliac artery 24 from the side arm 106.
  • the indwelling guide wire 124 is then removed and the position of the distal end of the longer leg 108 is set into the external iliac artery 26 and the balloon expandable covered stent 140 is expanded.
  • the sheath 130 is then withdrawn and the valve 1 12 automatically closes.
  • a leg extension 144 is then placed into the short leg 107 of the graft 104.
  • the proximal end 146 of the stent graft is also released from the deployment device 100 such that a portion of the graft seals into a non-aneurysed portion of the aorta 10 distal of the renal arteries 12 while an uncovered suprarenal stent 148 extends over the renal arteries to provide secure fixation.
  • Figures 16A to 16K show an alternative embodiment of stent graft according to the present invention and the process of deploying such a stent graft in the vasculature of a patient.
  • the stent graft in this embodiment comprises a two piece body with a proximal portion 150 and a distal portion 1 52 which when joined together into the vasculature of the patient provide a composite stent graft.
  • the proximal portion 150 has the proximally extending suprarenal stents 154 and the distal portion 152 is bifurcated with a shorter leg 1 56 and longer leg 158.
  • the longer leg 1 58 has the helical side arm 160 and the valved aperture 162 through which the indwelling catheter 164 extends.
  • the process of deployment of the stent graft of this embodiment is substantially similar to that shown in Figures 15 C to 1 5M except that, as shown in Figure 16C, as a first stage the proximal portion 150 is deployed and released into the aorta. Subsequently a separate device 170 with an indwelling catheter 164 is introduced which carries the distal portion 152 and the process of snaring the indwelling guide wire, release of the main stent graft and deployment of a side arm extension into the internal iliac artery as shown in Figures 16D to 16J is substantially the same as shown in Figures 1 5C to 1 5L.
  • the final stage as shown in Figure 16K of the deployment of the two piece stent graft includes release of the distal portion 152 inside the proximal portion 150 and the deployment of a leg extension 172 into the short leg 156 and release of the distal end of the longer leg 158.

Landscapes

  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Surgery (AREA)
  • Pulmonology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A stent graft (40) has a tubular body with a first bifurcation (54) with first and second legs (50, 52) extending from the bifurcation. One of the legs (52) has a further bifurcation (62) to define a side arm. The stent graft can be deployed into the vasculature of a patient with the tubular body being in an aorta of the patient, a first leg extending down an iliac artery, a second leg being directed towards a contralateral iliac artery and the side arm directed to an internal artery of one of the iliac arteries. One of the legs can include a valved aperture to enable the placement of an indwelling catheter therethrough.

Description

TWIN BIFURCATED STENT GRAFT
Description Technical Field
This invention relates to a medical device and more particularly a device which can be deployed by endovascular means into the vasculature of a patient. INCORPORATION BY REFERENCE The following co-pending patent applications are referred to in the following description:
- United States Patent Application Serial No. 10/962,763 entitled "Introducer for Iliac Side Branch Device", filed October 12, 2004, and published August 1 5, 2005 as U.S. Patent Application Publication No. US-2005-0182476- A1 ;
- PCT Patent Publication No. WO 98/53761 entitled "A Prosthesis and a Method of Deploying a Prosthesis";
- United States Patent Application Serial No. 1 1 /600,655 entitled "Stent Graft Introducer", filed November 16, 2006; - United States Patent Application Serial No. 1 1 /231 ,621 entitled "Side
Branch Stent Graft", filed September 21 , 2005, and published May 4, 2006 as U.S. Patent Application Publication No. US-2006-00951 18-A1 .
The entire content of each of these applications is hereby incorporated by reference. Background of the Invention
There have been proposed bifurcated endovascular devices which can be deployed into the vasculature, particularly in the region of the aortic bifurcation, so that an aneurysm in the aorta can be bridged by placement of the endovascular device with a proximal portion which seals into a non-aneurysed portion of the aorta adjacent to the renal arteries, a first leg which extends down one iliac artery to a non-aneurysed portion of the iliac artery and another short leg into which a leg extension may be placed to extend into a non-aneurysed portion of the contralateral iliac artery. There can be problems, however, if the aneurysm of the aorta extends down into one or other of the iliac arteries. Each of the common iliac arteries branches into the internal and external iliac arteries and it is necessary in such a situation that a blood flow path can be directed through an endovascular stent graft into each of these arteries.
The object of this invention is to provide a single endovascularly deployed medical device which can solve this problem or at least provide a physician with a useful alternative.
Throughout this specification the term distal with respect to a portion of the aorta, a deployment device or a prosthesis means the end of the aorta, deployment device or prosthesis further away in the direction of blood flow away from the heart and the term proximal means the portion of the aorta, deployment device or end of the prosthesis nearer to the heart. When applied to other vessels similar terms such as caudal and cranial should be understood. Summary of the Invention
In one form therefore the invention is said to reside in a stent graft comprising a tubular body of a biocompatible graft material defining a main lumen therethrough, a bifurcation in the tubular body at one end thereof and a first leg and a second leg extending from the bifurcation, the first leg being a long leg and the second leg being a short leg, the first and second legs having respective first and second lumens therethrough and the first and second lumens being in fluid communication with the main lumen, characterised by the first long leg comprising a side arm with a side arm lumen therethrough and the side arm lumen being in fluid communication with the first leg lumen, whereby the stent graft can be deployed into the vasculature of a patient with the tubular body being in an aorta of the patient, the first leg extending down an iliac artery, the second leg being directed towards a contralateral iliac artery and the side arm on the first leg directed to an internal artery of the iliac artery.
In one preferred embodiment the side arm comprises a tube of corrugated biocompatible graft material and the tube extends part helically around the first leg. In an alternative embodiment the side arm comprises a tube of biocompatible graft material and at least one self expanding stent on the tube of biocompatible graft material. Co-pending United States Patent Application Serial No. 1 1 /231 ,621 entitled "Side Branch Stent Graft "discloses side arm tubes suitable for the present invention.
Preferably the first leg includes an aperture or fenestration proximally of the side arm and a valve arrangement to prevent fluid flow through the aperture from inside of the leg to outside of the leg.
Preferably the aperture includes a resilient reinforcement ring around the aperture.
The valve arrangement can comprise a sleeve of a biocompatible graft material within the first leg and a self expanding stent within the sleeve, the sleeve being fastened at its proximal end to the first leg proximal of the aperture and the self expanding stent being fastened to the sleeve, whereby the self expanding stent forces the sleeve against the inner surface of the first leg around the aperture to prevent fluid flow through the aperture from inside of the leg to outside of the leg.
In one preferred embodiment the sleeve of a biocompatible graft material comprises a cylindrical form. In an alternative embodiment the sleeve of a biocompatible graft material comprises a semi-cylindrical form.
Alternatively the valve can be formed from a self expanding stent to which a part cylindrical portion of biocompatible graft material is stitched along spaced apart struts of the self expanding stent. These two components together can form a valve assembly which can be stitched into the longer leg of the stent graft. The valve assembly can further include a semi-circular resilient wire around the distal end of the part cylindrical portion of biocompatible graft material forming the valve member. This semi-circular resilient wire around the distal end of the part cylindrical portion of biocompatible graft material will assist with sealing off the fenestration by ensuring that the distal end of the valve member is held against the inside of the wall of the longer first leg of the stent graft. The biocompatible graft material can include polytetrafluoroethylene, Dacron, polyamide or any other suitable biocompatible graft material.
While Dacron, expanded polytetrafluoroethylene (ePTFE), or other synthetic biocompatible materials can be used for the tubular graft material for the stent graft, a naturally occurring biomaterial, such as collagen, is highly desirable, particularly a specially derived collagen material known as an extracellular matrix (ECM), such as small intestinal submucosa (SIS). Besides SIS, examples of ECM's include pericardium, stomach submucosa, liver basement membrane, urinary bladder submucosa, tissue mucosa, and dura mater. SIS is particularly useful, and can be made in the fashion described in
Badylak et al., US Patent 4,902,508; Intestinal Collagen Layer described in US Patent 5,733,337 to Carr and in 17 Nature Biotechnology 1083 (Nov. 1999); Cook et al., WIPO Publication WO 98/22158, dated 28 May 1998, which is the published application of PCT/US97/14855, the teachings of which are incorporated herein by reference. Irrespective of the origin of the material
(synthetic versus naturally occurring), the material can be made thicker by making multilaminate constructs, for example SIS constructs as described in US Patents 5,968,096; 5,955,1 10; 5,885,619; and 5,71 1 ,969. In addition to xenogenic biomaterials, such as SIS, autologous tissue can be harvested as well, for use in forming the tubular graft material. Additionally Elastin or Elastin-Like Polypetides (ELPs) and the like offer potential as a material to fabricate the tubular graft material to form a device with exceptional biocompatibility.
SIS is available from Cook Biotech, West Lafayette, Indiana, USA.
It will be seen that by this invention there is provided a stent graft which has a main bifurcation to allow access into each of the iliac arteries and in one of the legs extending from the bifurcation there is a further bifurcation or branch which will enable access into the internal iliac artery. There is some advantage in having a double or twin bifurcation stent graft.
As discussed above there is preferably a valve arrangement proximal of the side arm or side branch of the iliac leg of the bifurcated stent graft. The valve allows an indwelling catheter to be provided through the sidearm in the iliac artery at the time of deployment to assist with deployment of leg extension into the internal iliac artery.
United States Patent Application Serial No. 10/962,763 entitled "Introducer for Iliac Side Branch Device" discloses an arrangement for using an indwelling catheter to access an internal iliac artery and the teaching of this specification is incorporated herewith in its entirety.
In this case the indwelling catheter can be extended and its guide wire snared from the contra-lateral artery and the leg extension placed into the internal iliac artery before the leg extension is placed into the iliac artery. In a further form the invention is said to reside in a stent graft comprising a tubular body of a biocompatible graft material defining a main lumen therethrough an aperture defining a fenestration in the tubular body and a valve arrangement to prevent fluid flow through the aperture.
Preferably the aperture includes a resilient reinforcement ring around the aperture.
Preferably the valve arrangement comprises a sleeve of a biocompatible graft material within the tubular body and a self expanding stent within the sleeve, the sleeve being fastened at its proximal end to the first leg proximal of the aperture and the self expanding stent being fastened to the sleeve, whereby the self expanding stent forces the sleeve against the inner surface of the tubular body around the aperture to prevent fluid flow through the aperture.
The sleeve of a biocompatible graft material can comprise a cylindrical form or alternatively a semi-cylindrical form.
In one embodiment the valve arrangement comprises a valve assembly comprising a self expanding stent to which a part cylindrical portion of biocompatible graft material is stitched along spaced apart struts of the self expanding stent.
The valve assembly can further comprise a semi-circular resilient wire around the distal end of the part cylindrical portion of biocompatible graft material forming the valve member. This then generally describes the invention but to assist with understanding reference will now be made to the accompanying drawings which show further embodiments of the invention. Brief Description of the Drawing " In the drawings;
Figure 1 shows a first embodiment of stent graft according to the invention as it would be deployed into the vasculature before placement of an iliac side branch;
Figure 2 shows the embodiment of Figure 1 with the side branch installed into the internal iliac artery and the leg extension in the contralateral iliac artery;
Figure 3 shows a schematic view of part of the leg of the stent graft of the present invention in particular showing one embodiment of the valve arrangement;
Figure 4 shows a cross-section of embodiment shown in Figure 3;
Figure 5 shows a same view as Figure 4 except with the indwelling catheter extending through the corrugated side arm and valve;
Figure 6 shows an alternative embodiment of stent graft deployed into a schematic vasculature with an alternative arrangement of side arm;
Figure 7 shows embodiment of Figure 6 at the stage where the indwelling catheter has been snared and pulled down the contralateral artery and the indwelling catheter has been used to deploy an extension piece into internal iliac artery;
Figure 8 shows an alternative embodiment of valve arrangement suitable for the embodiment of stent graft shown in Figures 6 and 7;
Figure 9 shown a cross-section thought the valve arrangement of Figure 8; Figure 10 shows the valve arrangement of Figures 8 and 9 with an indwelling catheter extending through it;
Figure 1 1 shows an alternative embodiment of valve arrangement suitable for the embodiment of stent graft shown in Figures 6 and 7;
Figure 12 shown a detail of the valve arrangement of Figure 1 1 showing the self expanding stent with a valve member mounted onto it;
Figure 13 shown a cross-section thought valve arrangement of Figure 1 1 ; Figure 14 shows the valve arrangement of Figures 1 1 and 13 with an indwelling catheter extending through it:
Figure 1 5A to 1 5M show the various stages of deployment of a stent graft according to one embodiment of the present invention; and Figure 16A to 16K show the various stages of deployment of a stent graft according to another embodiment of the present invention. Detailed Description
Looking more closely at the drawings and in particular Figures 1 and 2 it will be seen that a schematic view of part of the vascular arrangement of a patient is illustrated incorporating a stent graft according to the present invention.
The vasculature comprises an aorta 10 in the region between the renal arteries 12 and the aortic bifurcation 14. Common iliac arteries 16 and 18 extend down from the aortic bifurcation 14. The aorta 10 has an aneurysm 20 which extends down into the common iliac artery 18 as far as the bifurcation 22 between the internal iliac artery 24 and the external iliac artery 26.
To traverse the aneurysm 20 a twin bifurcated aortic stent graft 40 according to one embodiment of the present invention has been deployed into the aorta 10. In this drawing the introduction device which is used to deploy the stent graft into the vasculature has been omitted to assist clarity. In our earlier patent application, PCT Patent Publication No. WO 98/53761 entitled "A prosthesis and a method deploying a prosthesis" there is disclosed an introducer for a stent graft which is suitable for use with the present invention. The proximal end 42 of the bifurcated stent graft 40 is engaged into non-aneurysed portion 28 of the aorta 10 just distal of the renal arteries 12. In this embodiment stent graft 40 has a proximally extending supra-renal exposed stent 44 with barbs 46 engaging the wall of the aorta proximal of the renal arteries to provide a secure position to prevent migration of the stent graft. The stent graft 40 has a short leg 50 and a long leg 52 extending from the graft bifurcation 54. The longer Jeg 52 has a sealing surface 56 at its distal end which engages into a non-aneurysed portion of the external iliac artery 26.
The longer leg 52 has a side arm 60 which in this embodiment is in the form of a corrugated tube extending in a part helical manner from its connection at a fenestration 62 into the longer leg 52. The side arm 60 extends in a distal direction and helically partly around the longer leg 52 and has a distal end 61 remote from its connection with the longer leg 52 which opens adjacent to the internal iliac artery 24.
A fenestration 64 is placed into the longer leg 52 proximal of the connection of the side arm 60 into the longer leg 52. The fenestration 64 has a valve arrangement within it to close it off as will be discussed with reference to Figures 3 to 5. During deployment of the stent graft into the vasculature of a patient an indwelling catheter 66 extends through the side arm 60 and out through the valved fenestration 64. The indwelling catheter includes a guide wire 68.
Figure 2 shows the embodiment of Figure 1 but after deployment of a extension piece 70 into the corrugated side arm 60 and deployment of a leg extension 72 into the short leg 50 of the bifurcated stent graft 40 which seals into a non-aneurysed portion of the iliac artery 16. United States Patent Application Serial No. 10/962,763 entitled "Introducer for Iliac Side Branch Device" discloses an arrangement for using an indwelling catheter to access an internal iliac artery. At this stage the indwelling catheter has been withdrawn and the fenestration 64 is closed off by the valve arrangement.
The extension piece 70 seals into a non-aneurysed portion of the internal iliac artery 24.
The process of deployment of a stent graft according to this embodiment of the invention will be discussed with reference to Figures 15A to 15M. Figures 3, 4 and 5 show a first embodiment of valve arrangement suitable for the present invention.
In this embodiment the longer leg 52 of the bifurcated stent graft 40 as shown in Figure 1 has a fenestration 64 defined by a peripheral resilient ring 80 which is stitched into the tube of the longer leg 52. Inside the longer leg is a semi- circular portion of biocompatible graft material 82 and a resilient self-expanding zigzag stent 85 which engages with the semi-circular biocompatible graft material 82 and engages it against the inside wall of the longer leg 52 and in particular over the fenestration 64. By this arrangement the fenestration 64 is held in a closed configuration. The semi-circular piece 82 is stitched by stitching 83 at its proximal end to the inner wall of the longer leg 52. Substantially opposite to the fenestration 64 in the tubular longer leg 52 the side arm 60 extends from a fenestration 62 in the tubular longer leg 52. Figure 5 shows the embodiment as shown in Figure 4 except that an indwelling catheter 66 and guide wire 68 through the indwelling catheter extend through the side arm 60 and through the fenestration 64 and this lifts the valve 82 off the fenestration 64 against the restoring force of the resilient self expanding stent 85.
Figures 6 and 7 show an alternative embodiment of bifurcated stent graft according to the present invention in the vasculature of a patient. The vasculature and the bifurcated stent graft are similar to the earlier embodiment shown in Figures 1 and 2 and the same reference numerals are used for corresponding items.
The vasculature comprises an aorta 10 in the region between the renal arteries 12 and the aortic bifurcation 14. Common iliac arteries 16 and 18 extend down from the aortic bifurcation. The aorta 10 has an aneurysm 20 which extends down into the common iliac artery 18 so far as the bifurcation 22 between the internal iliac artery 24 and the external iliac artery 26.
To traverse the aneurysm a bifurcated aortic stent graft 40 has been deployed into the aorta 10. The proximal end 42 of the bifurcated stent graft 40 is engaged into non-aneurysed portion 28 of the aorta 10 just distal of the renal arteries 12. In this embodiment stent graft 40 has a proximally extending suprarenal exposed stent 44 with barbs 46 engaging the wall of the aorta proximal of the renal arteries to provide a secure position to prevent migration of the stent graft. The stent graft 40 has a short leg 50 and a long leg 52 extending from the graft bifurcation 54. The longer leg 52 has a sealing surface 56 at its distal end which engages into a non-aneurysed portion of the external iliac artery 26.
The longer leg 52 has a side arm 90 which in this embodiment is in the form of a stented tube extending from a fenestration 92 in the longer leg 52. The side arm 90 extends in a distal direction and has an end 94 remote from its connection with the longer leg 52 which opens adjacent to the internal iliac artery 24. A fenestration 64 is placed into the longer leg 52 proximal of the connection of the side arm 90 into the longer leg 52. The fenestration 64 has a valve arrangement within it to close it off as will be discussed with reference to Figures 8 to 10.
During deployment of the stent graft into the vasculature of a patient an in- dwelling catheter 66 extends through the side arm 90 and out through the valved fenestration 64. The indwelling catheter includes a guide wire 68 therethrough.
Figure 7 shows the embodiment of Figure 6 but after deployment of a extension piece 70 into the side arm 90. United States Patent Application Serial No. 10/962,763 entitled "Introducer for Iliac Side Branch Device" discloses an arrangement for using an indwelling catheter to access an internal iliac artery. At this stage the indwelling catheter has been withdrawn and the fenestration 64 is closed off by the valve arrangement. The extension piece 70 seals into a non- aneurysed portion of the internal iliac artery 24.
Figures 8, 9 and 10 show an alternative embodiment of valve arrangement suitable for the present invention.
In this embodiment of valve the longer leg 52 of the bifurcated stent graft 40 as shown in Figure 6 has a fenestration 64 defined by a peripheral resilient ring 80 which is stitched into the tubular wall of the longer leg 52. Inside the longer leg is a cylindrical portion of biocompatible graft material 96 and a self-expanding zigzag stent 98 which engages with the cylindrical biocompatible graft material 96 and engages it against the inside wall of the longer leg 52 and in particular over the fenestration 64. By this arrangement the fenestration 64 is held in a closed configuration. The cylindrical portion of biocompatible graft material 96 is stitched by stitching 99 at its proximal end to the inner wall of the longer leg 52. Figure 10 shows the embodiment as shown in Figure 9 except that an indwelling catheter 66 and guide wire 68 through the catheter extend through the side arm 60 and through the fenestration 64 and this lifts the valve 96 for the fenestration 64.
Figures 1 1 to 14 show a further embodiment of valve arrangement suitable for the present invention. In this embodiment the longer leg 200 of the bifurcated stent graft 40
{Figure 1 ) has a fenestration 202 defined by a peripheral resilient ring 204 which is stitched into the tube of the longer leg 200. Inside the longer leg is a self expanding stent 206 which has a plurality of struts 208 and bends 210. The self expanding stent 206 is shown in Figure 12. The self expanding stent 206 has a valve member 21 2 formed from a piece of biocompatible graft material stitched onto spaced apart struts 208 to provide a part cylindrical surface on the self expanding stent 206 to form a valve assembly 214.
Around the lower circumference of the valve member 212 is a portion of resilient wire 213 retained by stitching 21 5 to assist with retaining the part circular shape of the valve member to endure good sealing against the inside surface of the tubular body of the longer leg 200.
This valve assembly is stitched into the tubular body of the longer leg 200 by stitching 216 at the bends 210 so that the valve member underlies the fenestration 202 and closes off the fenestration to flow therethrough from inside the longer leg to outside. A cross section of the valve at this stage is shown in Figure 1 3.
Substantially opposite to the fenestration 202 in the tubular longer leg 200 a side arm 218 extends from a fenestration 220 in the tubular longer leg 200. The side arm 218 is in this embodiment formed from a corrugated graft material.
Figure 14 shows the embodiment as shown in Figure 13 except that an indwelling catheter 66 and guide wire 68 through the indwelling catheter extend through the side arm 218 and through the fenestration 202 and this lifts the valve member 212 off the fenestration 202 against the restoring force of the resilient self expanding stent 206.
Figure 1 5A to 1 5M show the various stages of deployment of a stent graft according to one embodiment of the present invention.
Figure 15A shows a schematic version of one embodiment of a stent graft according to the present invention loaded onto a delivery device. For convenience the sheath of the delivery device has been withdrawn to show the assembly inside it. The delivery device 100 has a nose cone dilator 102 at its proximal end and a stent graft assembly according to one embodiment of the present invention 104 is mounted onto the deployment device. This embodiment of stent graft 104 has an helical side arm 106 on the longer leg 108 of the stent graft 104. An indwelling catheter 1 10 extends from the deployment device 100 through the helical side arm 106 exiting at valved aperture 1 12 and extending to a groove 1 14 in the nose cone dilator 102 outside of the stent graft 104. The indwelling catheter 1 10 has a flexible curved proximal end 1 16.
Detail of the tubular side arm 106 and valve arrangement 1 12 are shown in Figure 15B. The tubular side arm 106 extends around the longer leg 108 from a fenestration 107 and the indwelling catheter 1 10 extends into the tubular side arm and out through the valved aperture 1 12. The valved aperture 1 12 has a flap valve 1 13 on its inside to ensure that the aperture is closed when the indwelling catheter is removed. The flap valve is substantially the same as the as the construction shown in Figures 3 to 6. Figure 1 5C shows a schematic vasculature of a patient including an aorta
10 renal arteries 12 and an aortic bifurcation 14. Extending from the aortic bifurcation are iliac arteries 16 and 18. The aorta has an aneurysm 20 which extends down the iliac artery to the position of the internal iliac artery 24. The iliac bifurcation 22 defines the bifurcation between the internatal iliac artery 24 and the external iliac artery 26.
As shown in Figure 15C the deployment device 100 has been deployed over a guide wire 1 20 so that its nose cone 102 extends up into the aneurysm 20 and the distal end of the nose cone 102 is substantially adjacent to the aortic bifurcation 14. As shown in the detail in Figure 15C the indwelling catheter and particularly its curved tip 1 1 6 has been compressed by the sheath 122 into the groove 1 14 in the nose cone dilator. As shown in Figure 15D the sheath 122 of the deployment device has been withdrawn slightly to release the curved tip 1 16 of the indwelling catheter 1 10 and the indwelling guide wire 124 from the indwelling catheter 1 10 has been extended. Because of the curved end of the indwelling catheter the indwelling guide wire 1 24 has extended down the contra-lateral iliac artery 16. A snare catheter 1 28 has been deployed into the contra-lateral common iliac artery and a snare 130 of the snare catheter 128 has been extended to grasp the guide wire 1 24. The guide wire 124 is extracted via the snare catheter 1 28 so that it becomes a through-and-through guide wire. It is important at this stage to ensure there is slack maintained in the guide wire at the aortic bifurcation to prevent damage to the aortic bifurcation. This position is shown in Figure 15E.
The use of and indwelling catheter with a curved tip to facilitate snaring from a contralateral iliac artery is taught in US Patent Application Serial No. 1 1 /600,655 entitled 'Stent Graft Introducer ' and the teaching therein is incorporated herein in its entirety.
As shown in Figure 15F the deployment device 100 in then advanced so that the nose cone dilator 102 is proximal of the renal arteries 12. This draws the indwelling guide wire 124 also up into the aorta 10.
The sheath 122 of the deployment device 1 10 is then withdrawn to release the shorter leg 109 of the stent graft 104. This stage is shown in Figure 15G.
As shown in Figure 15H the indwelling catheter is withdrawn down into the contra-lateral iliac artery 16 and the sheath 122 is withdrawn so that it is distal of the distal end of the side arm 106 while still retaining the distal end of the longer leg 108. As shown in Figure 15I a dilator and sheath introducer 130 is advanced over the guide wire 124 in the contra-lateral iliac artery 16 and the indwelling catheter 1 10 and extension arm deployment device are tracked over the guide wire 1 24 so that the nose cone 132 of the sheath introducer enters the valved aperture 1 12 and tracks over the guide wire 124 into the side arm 106 until it exits the distal end of the side arm 134 as shown in Figure 15J. The sheath introducer nose cone 132 is then withdrawn leaving the sheath 130 in place. At this stage the indwelling guide wire 1 24 is still in a through-and-through position. As shown in Figure 15K, another guide wire 136 is introduced through the sheath 130 and extended from the sheath 130 to enter into the internal iliac artery 24.
As shown in Figure 1 5L a side arm deployment device is deployed over the guide wire 136 into the internal iliac artery 24 so that balloon expandable covered stent 140 extends into the internal iliac artery 24 from the side arm 106. As shown in Figure 1 5M# the indwelling guide wire 124 is then removed and the position of the distal end of the longer leg 108 is set into the external iliac artery 26 and the balloon expandable covered stent 140 is expanded. The sheath 130 is then withdrawn and the valve 1 12 automatically closes. A leg extension 144 is then placed into the short leg 107 of the graft 104. The proximal end 146 of the stent graft is also released from the deployment device 100 such that a portion of the graft seals into a non-aneurysed portion of the aorta 10 distal of the renal arteries 12 while an uncovered suprarenal stent 148 extends over the renal arteries to provide secure fixation.
Figures 16A to 16K show an alternative embodiment of stent graft according to the present invention and the process of deploying such a stent graft in the vasculature of a patient.
The stent graft in this embodiment comprises a two piece body with a proximal portion 150 and a distal portion 1 52 which when joined together into the vasculature of the patient provide a composite stent graft. The proximal portion 150 has the proximally extending suprarenal stents 154 and the distal portion 152 is bifurcated with a shorter leg 1 56 and longer leg 158. The longer leg 1 58 has the helical side arm 160 and the valved aperture 162 through which the indwelling catheter 164 extends.
The process of deployment of the stent graft of this embodiment is substantially similar to that shown in Figures 15 C to 1 5M except that, as shown in Figure 16C, as a first stage the proximal portion 150 is deployed and released into the aorta. Subsequently a separate device 170 with an indwelling catheter 164 is introduced which carries the distal portion 152 and the process of snaring the indwelling guide wire, release of the main stent graft and deployment of a side arm extension into the internal iliac artery as shown in Figures 16D to 16J is substantially the same as shown in Figures 1 5C to 1 5L. The final stage as shown in Figure 16K of the deployment of the two piece stent graft includes release of the distal portion 152 inside the proximal portion 150 and the deployment of a leg extension 172 into the short leg 156 and release of the distal end of the longer leg 158.
It will be realised that an alternative embodiment access for deployment into the internal iliac artery maybe by a brachial approach and in such case the indwelling catheter in the side arm may extend through the main lumen of the stent graft and the valved aperture may not be necessary in such an embodiment. Throughout this specification various indications have been given as to the scope of invention but invention not limited to any one of these but may reside in two or more of these combined together. The examples are given for illustration only and not for limitations.

Claims

Claims
1. A stent graft comprising a tubular body of a biocompatible graft material defining a main lumen therethrough, a bifurcation in the tubular body at one end thereof and a first leg and a second leg extending from the bifurcation, the first leg being a long leg and the second leg being a short leg, the first and second legs having respective first and second lumens therethrough and the first and second lumens being in fluid communication with the main lumen, characterised by the first long leg comprising a side arm with a side arm lumen therethrough and the side arm lumen being in fluid communication with the first leg lumen, whereby the stent graft can be deployed into the vasculature of a patient with the tubular body being in an aorta of the patient, the first leg extending down a common iliac artery, the second leg being directed towards a contralateral common iliac artery and the side arm on the first leg directed to an internal iliac artery of the iliac artery.
2. A stent graft as in Claim 1 wherein the side arm comprises a tube of corrugated biocompatible graft material and the tube extends part helically around the first leg.
3. A stent graft as in Claim 1 wherein the side arm comprises a tube of biocompatible graft material and at least one self expanding stent on the tube of biocompatible graft material.
4. A stent graft as in Claim 1 wherein the first leg comprises an aperture proximally of the side arm and a valve arrangement to prevent fluid flow through the aperture from inside of the leg to outside of the leg.
5. A stent graft as in Claim 4 wherein the aperture includes a resilient reinforcement ring around the aperture.
6. A stent graft as in Claim 4 wherein the valve arrangement comprises a sleeve of a biocompatible graft material within the first leg and a self expanding stent within the sleeve, the sleeve being fastened at its proximal end to the first leg proximal of the aperture and the self expanding stent being fastened to the sleeve, whereby the self expanding stent forces the sleeve against the inner surface of the first leg around the aperture to prevent fluid flow through the aperture from inside of the leg to outside of the leg.
7. A stent graft as in Claim 6 wherein the sleeve of a biocompatible graft material comprises a cylindrical form.
8. A stent graft as in Claim 6 wherein the sleeve of a biocompatible graft material comprises a semi-cylindrical form.
9. A stent graft as in Claim 4 wherein the valve arrangement comprises a valve assembly comprising a self expanding stent to which a part cylindrical portion of biocompatible graft material is stitched along spaced apart struts of the self expanding stent.
10. A stent graft as in Claim 9 wherein the valve assembly further comprises a semi-circular resilient wire around the distal end of the part cylindrical portion of biocompatible graft material forming the valve member. —
1 1 . A stent graft comprising a tubular body of a biocompatible graft material defining a main lumen therethrough an aperture defining a fenestration in the tubular body and a valve arrangement to prevent fluid flow through the aperture from inside of the leg to outside of the leg.
12. A stent graft as in Claim 1 1 wherein the aperture includes a resilient reinforcement ring around the aperture.
13. A stent graft as in Claim 1 1 wherein the valve arrangement comprises a sleeve of a biocompatible graft material within the tubular body and a self expanding stent within the sleeve, the sleeve being fastened at its proximal end to the first leg proximal of the aperture and the self expanding stent being fastened to the sleeve, whereby the self expanding stent forces the sleeve against the inner surface of the tubular body around the aperture to prevent fluid flow through the aperture.
14. A stent graft as in Claim 13 wherein the sleeve of a biocompatible graft material comprises a cylindrical form.
15. A stent graft as in Claim 13 wherein the sleeve of a biocompatible graft material comprises a semi-cylindrical form.
16. A stent graft as in Claim 1 1 wherein the valve arrangement comprises a valve assembly comprising a self expanding stent to which a part cylindrical portion of biocompatible graft material is stitched along spaced apart struts of the self expanding stent.
17. A stent graft as in Claim 16 wherein the valve assembly further comprises a semi-circular resilient wire around the distal end of the part cylindrical portion of biocompatible graft material forming the valve member.
18. A stent graft comprising a tubular body of a biocompatible graft material defining a main lumen therethrough, a bifurcation in the tubular body at one end thereof and a first leg and a second leg extending from the bifurcation, the first leg being a long leg and the second leg being a short leg, the first and second legs having respective first and second lumens therethrough and the first and second lumens being in fluid communication with the main lumen, characterised by the first long leg comprising a side arm with a side arm lumen therethrough and the side arm lumen being in fluid communication with the first leg lumen, whereby the stent graft can be deployed into the vasculature of a patient with the tubular body being in an aorta of the patient, the first leg extending down a common iliac artery, the second leg being directed towards a contralateral common iliac artery and the side arm on the first leg directed to an internal iliac artery of the iliac artery, wherein the side arm comprises a tube of corrugated biocompatible graft material and the tube extends part helically around the first leg stent graft and the valve arrangement comprises a sleeve of a biocompatible graft material within the first leg and a self expanding stent within the sleeve, the sleeve being fastened at its proximal end to the first leg proximal of the aperture and the self expanding stent being fastened to the sleeve, whereby the self expanding stent forces the sleeve against the inner surface of the first leg around the aperture to prevent fluid flow through the aperture.
PCT/US2007/009665 2006-04-19 2007-04-19 Twin bifurcated stent graft WO2007124053A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800227121A CN101484090B (en) 2006-04-19 2007-04-19 Twin bifurcated stent graft
AU2007240703A AU2007240703C1 (en) 2006-04-19 2007-04-19 Twin bifurcated stent graft
CA2649705A CA2649705C (en) 2006-04-19 2007-04-19 Twin bifurcated stent graft
EP07755802.1A EP2007313B1 (en) 2006-04-19 2007-04-19 Stent graft
JP2009506603A JP2009534104A (en) 2006-04-19 2007-04-19 Double-branched stent graft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US79328206P 2006-04-19 2006-04-19
US60/793,282 2006-04-19

Publications (1)

Publication Number Publication Date
WO2007124053A1 true WO2007124053A1 (en) 2007-11-01

Family

ID=38353445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/009665 WO2007124053A1 (en) 2006-04-19 2007-04-19 Twin bifurcated stent graft

Country Status (7)

Country Link
US (2) US9707113B2 (en)
EP (1) EP2007313B1 (en)
JP (2) JP2009534104A (en)
CN (1) CN101484090B (en)
AU (1) AU2007240703C1 (en)
CA (1) CA2649705C (en)
WO (1) WO2007124053A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008057568A1 (en) * 2006-11-07 2008-05-15 William A. Cook Australia Pty. Ltd Fenestrations for stent graft arrangements and stent graft including the same
WO2009062264A1 (en) * 2007-11-15 2009-05-22 Endogad Research Pty Limited Hybrid intraluminal device
JP2011512217A (en) * 2008-02-22 2011-04-21 バーツ・アンド・ザ・ロンドン・エヌエイチエス・トラスト Vascular prosthesis and delivery device
JP2011528258A (en) * 2008-07-16 2011-11-17 ザ クリーヴランド クリニック ファウンデーション Endovascular device with side branch
AU2011202120B1 (en) * 2011-05-09 2012-09-13 Cook Medical Technologies Llc Paraplegia prevention valve for stent grafts
EP2564812A1 (en) * 2011-08-31 2013-03-06 Cook Medical Technologies LLC Endoluminal prosthesis assembly
EP2564811A1 (en) * 2011-08-31 2013-03-06 The Cleveland Clinic Foundation Retention system for an endoluminal device
US8535371B2 (en) 2010-11-15 2013-09-17 Endovascular Development AB Method of positioning a tubular element in a blood vessel of a person
WO2013162682A1 (en) * 2012-04-27 2013-10-31 Medtronic Vascular Inc. Stent-graft prosthesis for placement in the abdominal aorta
AU2013206465B1 (en) * 2013-06-18 2014-01-16 Cook Medical Technologies Llc Endovascular graft with an expanded lumen at a bifurcation
WO2014096811A2 (en) 2012-12-18 2014-06-26 Vascutek Limited Graft with leg
WO2014096810A1 (en) 2012-12-18 2014-06-26 Vascutek Limited Modular fenestrated assembly
EP2749252A1 (en) * 2012-12-26 2014-07-02 Cook Medical Technologies LLC Prosthesis system
EP2749253A1 (en) * 2012-12-26 2014-07-02 Cook Medical Technologies LLC Endoluminal prosthesis having modular branches
EP2740440A3 (en) * 2012-11-27 2014-08-27 Cook Medical Technologies LLC Stent graft having a closeable fenestration
EP2777606A1 (en) * 2013-03-12 2014-09-17 Cook Medical Technologies LLC Extension for iliac branch delivery device and methods of using the same
US9656046B2 (en) 2010-11-15 2017-05-23 Endovascular Development AB Assembly with a guide wire and a fixator for attaching to a blood vessel
WO2018078297A1 (en) * 2016-10-27 2018-05-03 Bs Medical Tech Industry Drivers and set for the insertion of connectable implants
US10130501B2 (en) 2013-03-12 2018-11-20 Cook Medical Technologies Llc Delivery device with an extension sheath and methods of using the same

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
WO2006127412A1 (en) * 2005-05-20 2006-11-30 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
EP2007313B1 (en) * 2006-04-19 2018-05-16 Cook Medical Technologies, LLC Stent graft
EP2445444B1 (en) 2009-06-23 2018-09-26 Endospan Ltd. Vascular prostheses for treating aneurysms
WO2011004374A1 (en) 2009-07-09 2011-01-13 Endospan Ltd. Apparatus for closure of a lumen and methods of using the same
JP5651183B2 (en) 2009-10-13 2015-01-07 クック メディカル テクノロジーズ エルエルシーCook Medical Technologies Llc Paraplegia preventive stent graft
US9095456B2 (en) 2009-10-13 2015-08-04 Cook Medical Technologies Llc Paraplegia prevention stent graft
CA2782357C (en) 2009-11-30 2018-06-05 Endospan Ltd. Multi-component stent-graft system for implantation in a blood vessel with multiple branches
CA2783554C (en) 2009-12-08 2016-02-16 Endospan Ltd. Endovascular stent-graft system with fenestrated and crossing stent-grafts
CA2789304C (en) 2010-02-08 2018-01-02 Endospan Ltd. Thermal energy application for prevention and management of endoleaks in stent-grafts
US20110208289A1 (en) * 2010-02-25 2011-08-25 Endospan Ltd. Flexible Stent-Grafts
JP5301726B2 (en) * 2010-03-04 2013-09-25 テルモ株式会社 Artificial blood vessel
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
WO2012006124A2 (en) 2010-06-28 2012-01-12 Vela Biosystems Llc Method and apparatus for the endoluminal delivery of intravascular devices
AU2011343755A1 (en) 2010-12-14 2013-06-06 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
CA2826022A1 (en) 2011-02-03 2012-08-09 Endospan Ltd. Implantable medical devices constructed of shape memory material
WO2012111006A1 (en) 2011-02-17 2012-08-23 Endospan Ltd. Vascular bands and delivery systems therefor
AU2011200858B1 (en) 2011-02-28 2012-04-05 Cook Medical Technologies Llc Stent graft with valve arrangement
WO2012117395A1 (en) 2011-03-02 2012-09-07 Endospan Ltd. Reduced-strain extra- vascular ring for treating aortic aneurysm
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
EP3583916B1 (en) 2011-04-28 2023-12-06 Cook Medical Technologies LLC Apparatus for facilitating deployment of an endoluminal prosthesis
US8574287B2 (en) 2011-06-14 2013-11-05 Endospan Ltd. Stents incorporating a plurality of strain-distribution locations
EP2579811B1 (en) 2011-06-21 2016-03-16 Endospan Ltd Endovascular system with circumferentially-overlapping stent-grafts
US9254209B2 (en) 2011-07-07 2016-02-09 Endospan Ltd. Stent fixation with reduced plastic deformation
US9839510B2 (en) 2011-08-28 2017-12-12 Endospan Ltd. Stent-grafts with post-deployment variable radial displacement
WO2013065040A1 (en) 2011-10-30 2013-05-10 Endospan Ltd. Triple-collar stent-graft
US8728148B2 (en) 2011-11-09 2014-05-20 Cook Medical Technologies Llc Diameter reducing tie arrangement for endoluminal prosthesis
EP2785277B1 (en) 2011-12-04 2017-04-05 Endospan Ltd. Branched stent-graft system
US8968389B2 (en) 2011-12-28 2015-03-03 The Cleveland Clinic Foundation Endoluminal prosthesis with a valve arrangement
AU2012200735C1 (en) 2012-02-08 2013-01-24 Cook Medical Technologies Llc Orientation markers for endovascular delivery system
US9173752B2 (en) * 2012-05-21 2015-11-03 Manli International Ltd. Coil bioabsorbable bifurcation stent
US8734504B2 (en) * 2012-04-12 2014-05-27 Sanford Health Aortic arch double-barreled main body stent graft and methods for use
US10357353B2 (en) 2012-04-12 2019-07-23 Sanford Health Combination double-barreled and debranching stent grafts and methods for use
DK2836163T3 (en) * 2012-04-12 2016-07-18 Sanford Health DEBRANCHING STENT TRANSPLANT ELEMENT
WO2013171730A1 (en) 2012-05-15 2013-11-21 Endospan Ltd. Stent-graft with fixation elements that are radially confined for delivery
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9308107B2 (en) 2012-08-27 2016-04-12 Cook Medical Technologies Llc Endoluminal prosthesis and delivery device
WO2014093473A1 (en) 2012-12-14 2014-06-19 Kelly Patrick W Combination double-barreled and debranching stent grafts
US9861466B2 (en) 2012-12-31 2018-01-09 Cook Medical Technologies Llc Endoluminal prosthesis
US9993360B2 (en) 2013-01-08 2018-06-12 Endospan Ltd. Minimization of stent-graft migration during implantation
US9220614B2 (en) * 2013-03-11 2015-12-29 Cook Medical Technologies Llc Endovascular grafts for treating the iliac arteries and methods of delivery and deployment thereof
US9668892B2 (en) 2013-03-11 2017-06-06 Endospan Ltd. Multi-component stent-graft system for aortic dissections
US9545324B2 (en) 2013-03-13 2017-01-17 Cook Medical Technologies Llc Pre-loaded iliac branch device and methods of deployment
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
AU2013206712B1 (en) 2013-07-03 2013-11-28 Cook Medical Technologies Llc Endovascular graft having a cannulation pocket
AU2013254913B1 (en) 2013-11-04 2014-09-25 Cook Medical Technologies Llc Stent graft with valve arrangement
WO2015075708A1 (en) 2013-11-19 2015-05-28 Endospan Ltd. Stent system with radial-expansion locking
US9974675B2 (en) * 2014-04-04 2018-05-22 W. L. Gore & Associates, Inc. Delivery and deployment systems for bifurcated stent grafts
EP2929860B1 (en) * 2014-04-07 2017-06-28 Nvt Ag Device for implantation in the heart of a mammal
EP3068339B1 (en) 2014-12-18 2017-11-01 Endospan Ltd. Endovascular stent-graft with fatigue-resistant lateral tube
CN104546221B (en) * 2014-12-30 2017-01-11 胡锡祥 Aorta abdominalis covered stent
US10039655B2 (en) 2015-01-12 2018-08-07 Microvention, Inc. Stent
US10779976B2 (en) * 2015-10-30 2020-09-22 Ram Medical Innovations, Llc Apparatus and method for stabilization of procedural catheter in tortuous vessels
WO2017100927A1 (en) 2015-12-15 2017-06-22 Neovasc Tiara Inc. Transseptal delivery system
WO2017117068A1 (en) * 2015-12-31 2017-07-06 Endologix, Inc. Systems and methods with fenestrated graft and filling structure
CA3007670A1 (en) 2016-01-29 2017-08-03 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
WO2017137868A1 (en) * 2016-02-08 2017-08-17 Innoventric Ltd. Treatment of tricuspid insufficiency
US9987122B2 (en) 2016-04-13 2018-06-05 Medtronic Vascular, Inc. Iliac branch device and method
KR101709601B1 (en) * 2016-05-30 2017-02-23 주식회사 에스앤지바이오텍 Inserting Device of Stent Having Guide Member Having Fixing Part
CN107625562B (en) * 2016-07-13 2020-02-04 先健科技(深圳)有限公司 Branch type covered stent
AU2017361296B2 (en) 2016-11-21 2022-09-29 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
US10874501B2 (en) 2016-12-28 2020-12-29 Cook Medical Technologies Llc Low profile stent graft having a check valve
WO2018144271A1 (en) * 2017-02-01 2018-08-09 Endologix, Inc. Longitudinally extendable stent graft systems and methods
US10856984B2 (en) 2017-08-25 2020-12-08 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
WO2019051476A1 (en) 2017-09-11 2019-03-14 Incubar, LLC Conduit vascular implant sealing device for reducing endoleak
DE102018108584A1 (en) * 2018-04-11 2019-10-31 Freistaat Bayern vertreten durch Hochschule Hof, Institut für Materialwissenschaften Branched stent and stent system
AU2019281515A1 (en) 2018-06-08 2021-01-14 Innoventric Ltd. Systems, methods and devices for treating tricuspid insufficiency
JP7260930B2 (en) 2018-11-08 2023-04-19 ニオバスク ティアラ インコーポレイテッド Ventricular deployment of a transcatheter mitral valve prosthesis
AU2020233892A1 (en) 2019-03-08 2021-11-04 Neovasc Tiara Inc. Retrievable prosthesis delivery system
US10888414B2 (en) 2019-03-20 2021-01-12 inQB8 Medical Technologies, LLC Aortic dissection implant
US11116650B2 (en) * 2019-03-28 2021-09-14 Medtronic Vascular, Inc. Supra aortic access modular stent assembly and method
US11083605B2 (en) 2019-03-28 2021-08-10 Medtronic Vascular, Inc. Femoral aortic access modular stent assembly and method
JP7438236B2 (en) 2019-04-01 2024-02-26 ニオバスク ティアラ インコーポレイテッド Controllably deployable prosthetic valve
CA3136334A1 (en) 2019-04-10 2020-10-15 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
WO2020236931A1 (en) 2019-05-20 2020-11-26 Neovasc Tiara Inc. Introducer with hemostasis mechanism
US11311376B2 (en) 2019-06-20 2022-04-26 Neovase Tiara Inc. Low profile prosthetic mitral valve
US11826226B2 (en) 2019-07-31 2023-11-28 Medtronic Vascular, Inc. Modular multibranch stent assembly and method
RU2742451C1 (en) * 2020-03-04 2021-02-05 Заза Александрович Кавтеладзе Bifurcation stent-graft system for treating aneurism of abdominal aorta and method of treating aneurism of abdominal aorta using thereof
US11324583B1 (en) 2021-07-06 2022-05-10 Archo Medical LTDA Multi-lumen stent-graft and related surgical methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020169497A1 (en) 2001-01-02 2002-11-14 Petra Wholey Endovascular stent system and method of providing aneurysm embolization
US20030204243A1 (en) * 2002-04-26 2003-10-30 Brian Shiu Stent graft with integrated valve device and method
WO2004064686A1 (en) * 2003-01-14 2004-08-05 The Cleveland Clinic Foundation Branched vessel endoluminal device

Family Cites Families (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501263A (en) * 1982-03-31 1985-02-26 Harbuck Stanley C Method for reducing hypertension of a liver
US4592754A (en) * 1983-09-09 1986-06-03 Gupte Pradeep M Surgical prosthetic vessel graft and catheter combination and method
US4762130A (en) * 1987-01-15 1988-08-09 Thomas J. Fogarty Catheter with corkscrew-like balloon
US4902508A (en) * 1988-07-11 1990-02-20 Purdue Research Foundation Tissue graft composition
US5413601A (en) * 1990-03-26 1995-05-09 Keshelava; Viktor V. Tubular organ prosthesis
US5578071A (en) 1990-06-11 1996-11-26 Parodi; Juan C. Aortic graft
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
EP0461791B1 (en) 1990-06-11 1997-01-02 Hector D. Barone Aortic graft and apparatus for repairing an abdominal aortic aneurysm
US5129910A (en) * 1991-07-26 1992-07-14 The Regents Of The University Of California Stone expulsion stent
US5197976A (en) * 1991-09-16 1993-03-30 Atrium Medical Corporation Manually separable multi-lumen vascular graft
JP2839127B2 (en) 1993-06-22 1998-12-16 宇部興産株式会社 Branched artificial blood vessel
US6039754A (en) * 1993-10-01 2000-03-21 Imperial College Of Science Technology & Medicine Vascular prostheses
DE9319267U1 (en) 1993-12-15 1994-02-24 Günther, Rudolf W., Prof. Dr., 52074 Aachen Aortic endoprosthesis
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5552880A (en) * 1994-03-17 1996-09-03 A R T Group Inc Optical radiation probe
US5653743A (en) * 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US5733337A (en) * 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric
US5711969A (en) 1995-04-07 1998-01-27 Purdue Research Foundation Large area submucosal tissue graft constructs
US6287315B1 (en) * 1995-10-30 2001-09-11 World Medical Manufacturing Corporation Apparatus for delivering an endoluminal prosthesis
US5591195A (en) * 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US6045557A (en) * 1995-11-10 2000-04-04 Baxter International Inc. Delivery catheter and method for positioning an intraluminal graft
US5824040A (en) * 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US6576009B2 (en) 1995-12-01 2003-06-10 Medtronic Ave, Inc. Bifurcated intraluminal prostheses construction and methods
JP2001503285A (en) 1996-03-13 2001-03-13 メドトロニク,インコーポレイティド Endoluminal prosthesis and therapy for multi-arm body lumen system
US5755791A (en) 1996-04-05 1998-05-26 Purdue Research Foundation Perforated submucosal tissue graft constructs
US5800514A (en) * 1996-05-24 1998-09-01 Meadox Medicals, Inc. Shaped woven tubular soft-tissue prostheses and methods of manufacturing
US5617878A (en) * 1996-05-31 1997-04-08 Taheri; Syde A. Stent and method for treatment of aortic occlusive disease
NL1007739C2 (en) * 1997-12-08 1999-06-09 Hoogovens Staal Bv Method and device for manufacturing a high strength steel strip.
US6325819B1 (en) 1996-08-19 2001-12-04 Cook Incorporated Endovascular prosthetic device, an endovascular graft prothesis with such a device, and a method for repairing an abdominal aortic aneurysm
BR9711166A (en) * 1996-08-23 1999-08-17 Cook Biotech Inc Graft prosthesis materials for their preparation and methods for their use
US5755778A (en) * 1996-10-16 1998-05-26 Nitinol Medical Technologies, Inc. Anastomosis device
EP0944366B1 (en) * 1996-11-04 2006-09-13 Advanced Stent Technologies, Inc. Extendible double stent
US6325826B1 (en) 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
US7220275B2 (en) * 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
ES2230627T3 (en) * 1996-12-10 2005-05-01 Cook Biotech, Inc. TUBULAR GRAINTS FROM PURIFIED SUBMUCOSA.
US6152956A (en) 1997-01-28 2000-11-28 Pierce; George E. Prosthesis for endovascular repair of abdominal aortic aneurysms
US6048360A (en) 1997-03-18 2000-04-11 Endotex Interventional Systems, Inc. Methods of making and using coiled sheet graft for single and bifurcated lumens
AU744343B2 (en) * 1997-04-11 2002-02-21 Transvascular, Inc. Methods and apparatus for transmyocardial direct coronary revascularization
AUPO700897A0 (en) 1997-05-26 1997-06-19 William A Cook Australia Pty Ltd A method and means of deploying a graft
CA2235911C (en) * 1997-05-27 2003-07-29 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
GB9710905D0 (en) * 1997-05-27 1997-07-23 Imperial College Stent for blood vessel
US6361544B1 (en) * 1997-08-13 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6165195A (en) * 1997-08-13 2000-12-26 Advanced Cardiovascylar Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6221090B1 (en) * 1997-08-13 2001-04-24 Advanced Cardiovascular Systems, Inc. Stent delivery assembly
US6187033B1 (en) * 1997-09-04 2001-02-13 Meadox Medicals, Inc. Aortic arch prosthetic graft
US5984955A (en) 1997-09-11 1999-11-16 Wisselink; Willem System and method for endoluminal grafting of bifurcated or branched vessels
US6520988B1 (en) * 1997-09-24 2003-02-18 Medtronic Ave, Inc. Endolumenal prosthesis and method of use in bifurcation regions of body lumens
US6030414A (en) * 1997-11-13 2000-02-29 Taheri; Syde A. Variable stent and method for treatment of arterial disease
AUPP083597A0 (en) * 1997-12-10 1998-01-08 William A Cook Australia Pty Ltd Endoluminal aortic stents
US6395018B1 (en) * 1998-02-09 2002-05-28 Wilfrido R. Castaneda Endovascular graft and process for bridging a defect in a main vessel near one of more branch vessels
US20020144696A1 (en) 1998-02-13 2002-10-10 A. Adam Sharkawy Conduits for use in placing a target vessel in fluid communication with a source of blood
FR2775182B1 (en) * 1998-02-25 2000-07-28 Legona Anstalt DEVICE FORMING INTRACORPOREAL ENDOLUMINAL ANDOPROTHESIS, IN PARTICULAR AORTIC ABDOMINAL
US6077296A (en) * 1998-03-04 2000-06-20 Endologix, Inc. Endoluminal vascular prosthesis
US6290731B1 (en) * 1998-03-30 2001-09-18 Cordis Corporation Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm
US6887268B2 (en) * 1998-03-30 2005-05-03 Cordis Corporation Extension prosthesis for an arterial repair
US6093203A (en) * 1998-05-13 2000-07-25 Uflacker; Renan Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
AU4679499A (en) * 1998-06-10 1999-12-30 Advanced Bypass Technologies, Inc. Thermal securing anastomosis systems
US5868765A (en) * 1998-06-10 1999-02-09 Surgical Innovations, Llc Device and method for the surgical anastomasis of tubular structures
GB2344053A (en) 1998-11-30 2000-05-31 Imperial College Stents for blood vessels
US6733523B2 (en) * 1998-12-11 2004-05-11 Endologix, Inc. Implantable vascular graft
US6059824A (en) * 1998-12-23 2000-05-09 Taheri; Syde A. Mated main and collateral stent and method for treatment of arterial disease
JP4332658B2 (en) * 1999-02-01 2009-09-16 ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム Braided and trifurcated stent and method for producing the same
US20030225453A1 (en) 1999-03-03 2003-12-04 Trivascular, Inc. Inflatable intraluminal graft
JP4138144B2 (en) 1999-03-31 2008-08-20 テルモ株式会社 Intraluminal indwelling
DE19938377A1 (en) * 1999-08-06 2001-03-01 Biotronik Mess & Therapieg Stent for vascular branching
US6409757B1 (en) * 1999-09-15 2002-06-25 Eva Corporation Method and apparatus for supporting a graft assembly
US6344056B1 (en) * 1999-12-29 2002-02-05 Edwards Lifesciences Corp. Vascular grafts for bridging a vessel side branch
US20020198585A1 (en) 1999-10-05 2002-12-26 Willem Wisselink System and method for edoluminal grafting of bifurcated or branched vessels
US6585758B1 (en) * 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US6652567B1 (en) 1999-11-18 2003-11-25 David H. Deaton Fenestrated endovascular graft
US6361555B1 (en) * 1999-12-15 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and stent delivery assembly and method of use
US6663667B2 (en) * 1999-12-29 2003-12-16 Edwards Lifesciences Corporation Towel graft means for enhancing tissue ingrowth in vascular grafts
US6409756B1 (en) * 2000-01-24 2002-06-25 Edward G. Murphy Endovascular aortic graft
US6398807B1 (en) * 2000-01-31 2002-06-04 Scimed Life Systems, Inc. Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor
NL1014559C2 (en) * 2000-02-11 2001-08-14 Surgical Innovations Vof Umbrella stent.
EP1259192B1 (en) 2000-03-03 2003-12-10 Cook Incorporated Endovascular device having a stent
ES2328901T3 (en) 2000-03-14 2009-11-19 Cook Incorporated ENDOVASCULAR PROTESIS GRAFT.
US6361556B1 (en) * 2000-04-27 2002-03-26 Endovascular Tech Inc System and method for endovascular aneurysm repair in conjuction with vascular stabilization
US20020082684A1 (en) * 2000-09-25 2002-06-27 David Mishaly Intravascular prosthetic and method
US6695833B1 (en) 2000-09-27 2004-02-24 Nellix, Inc. Vascular stent-graft apparatus and forming method
AU2001296716A1 (en) * 2000-10-13 2002-04-22 Rex Medical, Lp Covered stents with side branch
US6582394B1 (en) * 2000-11-14 2003-06-24 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcated vessels
WO2002039928A2 (en) * 2000-11-15 2002-05-23 Mcmurray Fabrics, Inc. Soft-tissue tubular prostheses with seamed transitions
US6942692B2 (en) * 2000-11-16 2005-09-13 Cordis Corporation Supra-renal prosthesis and renal artery bypass
US7314483B2 (en) * 2000-11-16 2008-01-01 Cordis Corp. Stent graft with branch leg
US7267685B2 (en) * 2000-11-16 2007-09-11 Cordis Corporation Bilateral extension prosthesis and method of delivery
US20040106972A1 (en) * 2000-11-20 2004-06-03 Deaton David H. Fenestrated endovascular graft
US6645242B1 (en) 2000-12-11 2003-11-11 Stephen F. Quinn Bifurcated side-access intravascular stent graft
WO2002056799A2 (en) 2001-01-19 2002-07-25 Boston Scientific Limited Introducer for deployment of branched prosthesis
US6695877B2 (en) 2001-02-26 2004-02-24 Scimed Life Systems Bifurcated stent
FR2822370B1 (en) 2001-03-23 2004-03-05 Perouse Lab TUBULAR ENDOPROSTHESIS COMPRISING A DEFORMABLE RING AND REQUIRED OF INTERVENTION FOR ITS IMPLANTATION
EP1245202B1 (en) * 2001-03-27 2004-08-04 William Cook Europe ApS An aortic graft device
US20030009212A1 (en) * 2001-07-06 2003-01-09 Andrew Kerr Axially-connected stent/graft assembly
US7175651B2 (en) * 2001-07-06 2007-02-13 Andrew Kerr Stent/graft assembly
US20040073288A1 (en) * 2001-07-06 2004-04-15 Andrew Kerr Stent/graft assembly
US7105017B2 (en) 2001-04-11 2006-09-12 Andrew Kerr Axially-connected stent/graft assembly
AU2002316254A1 (en) 2001-06-18 2003-01-02 Eva Corporation Prosthetic graft assembly and method of use
AUPR847201A0 (en) * 2001-10-26 2001-11-15 Cook Incorporated Endoluminal graft
US7014653B2 (en) * 2001-12-20 2006-03-21 Cleveland Clinic Foundation Furcated endovascular prosthesis
US6641606B2 (en) 2001-12-20 2003-11-04 Cleveland Clinic Foundation Delivery system and method for deploying an endovascular prosthesis
US7326237B2 (en) * 2002-01-08 2008-02-05 Cordis Corporation Supra-renal anchoring prosthesis
US20030130720A1 (en) * 2002-01-08 2003-07-10 Depalma Donald F. Modular aneurysm repair system
US6723116B2 (en) * 2002-01-14 2004-04-20 Syde A. Taheri Exclusion of ascending/descending aorta and/or aortic arch aneurysm
US6949121B1 (en) 2002-02-07 2005-09-27 Sentient Engineering & Technology, Llc Apparatus and methods for conduits and materials
WO2003071929A2 (en) 2002-02-26 2003-09-04 Endovascular Technologies, Inc. Endovascular grafting device
CA2474978C (en) 2002-03-25 2010-07-06 Cook Incorporated Bifurcated/branch vessel prosthesis
US7131991B2 (en) 2002-04-24 2006-11-07 Medtronic Vascular, Inc. Endoluminal prosthetic assembly and extension method
US7887575B2 (en) 2002-05-22 2011-02-15 Boston Scientific Scimed, Inc. Stent with segmented graft
DK1517652T3 (en) * 2002-06-28 2012-03-19 Cook Medical Technologies Llc Thorax introduces
US20040034406A1 (en) * 2002-08-19 2004-02-19 Thramann Jeffrey J. Vascular stent grafts
US7550004B2 (en) 2002-08-20 2009-06-23 Cook Biotech Incorporated Endoluminal device with extracellular matrix material and methods
US6777514B2 (en) * 2002-08-27 2004-08-17 Exxonmobil Research And Engineering Company Geminally disubstituted olefin-carbon monoxide-ethylene polymer useful as a polyvinyl chloride plasticizer and a method of making same
US20040059406A1 (en) * 2002-09-20 2004-03-25 Cully Edward H. Medical device amenable to fenestration
US9125733B2 (en) * 2003-01-14 2015-09-08 The Cleveland Clinic Foundation Branched vessel endoluminal device
WO2004093746A1 (en) 2003-03-26 2004-11-04 The Foundry Inc. Devices and methods for treatment of abdominal aortic aneurysm
CA2518890C (en) 2003-04-03 2012-06-05 William A. Cook Australia Pty. Ltd. Branch stent graft deployment and method
US20050059923A1 (en) * 2003-09-17 2005-03-17 Ricardo Gamboa Fenestration with intrinsic means of selective closure incorporated to a tubular body and used in interventional cardiovascular procedures
US8734501B2 (en) * 2003-10-10 2014-05-27 Cook Medical Technologies Llc Composite stent graft
AU2004279458B2 (en) * 2003-10-10 2009-12-10 Cook Incorporated Fenestrated stent grafts
ATE402666T1 (en) * 2003-10-10 2008-08-15 Cook Inc STRETCHABLE PROSTHETIC WINDOW
US7645298B2 (en) * 2003-10-10 2010-01-12 William A. Cook Australia Pty. Ltd. Stent graft fenestration
US8043357B2 (en) * 2003-10-10 2011-10-25 Cook Medical Technologies Llc Ring stent
EP3031426B1 (en) * 2003-10-14 2022-07-20 Cook Medical Technologies LLC Introducer for an iliac side branch device
US7998186B2 (en) * 2003-10-14 2011-08-16 William A. Cook Australia Pty. Ltd. Introducer for a side branch device
WO2006007389A1 (en) * 2004-06-16 2006-01-19 Cook Incorprated Thoracic deployment device and stent graft
AU2005286843B2 (en) * 2004-09-21 2011-07-14 Cook Incorporated Side branch stent graft
US8864819B2 (en) * 2004-12-17 2014-10-21 Cook Medical Technologies Llc Stented side branch graft
WO2006113501A1 (en) 2005-04-13 2006-10-26 The Cleveland Clinic Foundation Endoluminal prosthesis
EP2497444B1 (en) * 2005-08-18 2015-09-16 Cook Medical Technologies LLC Design and assembly of fenestrated stent grafts
US20070055346A1 (en) * 2005-09-02 2007-03-08 Medtronic Vascular, Inc. Method and apparatus for delivery of a treatment element in a blood vessel
WO2007059280A1 (en) 2005-11-16 2007-05-24 William A. Cook Australia Pty Ltd Introducer for implantable device
EP2007313B1 (en) * 2006-04-19 2018-05-16 Cook Medical Technologies, LLC Stent graft
AU2007255001B2 (en) * 2006-06-02 2012-07-26 Cook Incorporated Multi-port delivery device
JP4171032B2 (en) * 2006-06-16 2008-10-22 株式会社東芝 Semiconductor device and manufacturing method thereof
US8118854B2 (en) * 2006-09-28 2012-02-21 Cook Medical Technologies Llc Endovascular delivery device
US8353943B2 (en) * 2008-08-29 2013-01-15 Cook Medical Technologies Llc Variable weave graft with metal strand reinforcement for in situ fenestration
AU2009200350B1 (en) * 2009-02-02 2009-07-16 Cook Incorporated Preloaded stent graft delivery device
AU2010202487B1 (en) * 2010-06-15 2011-07-28 Cook Incorporated Pre-loaded multiport delivery device
AU2011200858B1 (en) * 2011-02-28 2012-04-05 Cook Medical Technologies Llc Stent graft with valve arrangement
AU2012258394B1 (en) * 2012-11-27 2013-03-07 Cook Medical Technologies Llc Stent graft having a closeable fenestration
US9220614B2 (en) * 2013-03-11 2015-12-29 Cook Medical Technologies Llc Endovascular grafts for treating the iliac arteries and methods of delivery and deployment thereof
AU2013206465B1 (en) * 2013-06-18 2014-01-16 Cook Medical Technologies Llc Endovascular graft with an expanded lumen at a bifurcation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020169497A1 (en) 2001-01-02 2002-11-14 Petra Wholey Endovascular stent system and method of providing aneurysm embolization
US20030204243A1 (en) * 2002-04-26 2003-10-30 Brian Shiu Stent graft with integrated valve device and method
WO2004064686A1 (en) * 2003-01-14 2004-08-05 The Cleveland Clinic Foundation Branched vessel endoluminal device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8167926B2 (en) 2006-11-07 2012-05-01 Cook Medical Technologies Llc Fenestration for stent graft arrangements and stent graft including the same
AU2007317777B2 (en) * 2006-11-07 2012-08-02 Cook Incorporated Fenestrations for stent graft arrangements and stent graft including the same
WO2008057568A1 (en) * 2006-11-07 2008-05-15 William A. Cook Australia Pty. Ltd Fenestrations for stent graft arrangements and stent graft including the same
WO2009062264A1 (en) * 2007-11-15 2009-05-22 Endogad Research Pty Limited Hybrid intraluminal device
JP2011512217A (en) * 2008-02-22 2011-04-21 バーツ・アンド・ザ・ロンドン・エヌエイチエス・トラスト Vascular prosthesis and delivery device
JP2011528258A (en) * 2008-07-16 2011-11-17 ザ クリーヴランド クリニック ファウンデーション Endovascular device with side branch
US8535371B2 (en) 2010-11-15 2013-09-17 Endovascular Development AB Method of positioning a tubular element in a blood vessel of a person
US9656046B2 (en) 2010-11-15 2017-05-23 Endovascular Development AB Assembly with a guide wire and a fixator for attaching to a blood vessel
US8636789B2 (en) 2011-05-09 2014-01-28 Cook Medical Technologies Llc Paraplegia prevention valve for stent grafts
AU2011202120B1 (en) * 2011-05-09 2012-09-13 Cook Medical Technologies Llc Paraplegia prevention valve for stent grafts
EP2564811A1 (en) * 2011-08-31 2013-03-06 The Cleveland Clinic Foundation Retention system for an endoluminal device
US11185403B2 (en) 2011-08-31 2021-11-30 Cook Medical Technologies Llc Endoluminal prosthesis assembly
EP2564812A1 (en) * 2011-08-31 2013-03-06 Cook Medical Technologies LLC Endoluminal prosthesis assembly
US9265599B2 (en) 2011-08-31 2016-02-23 Cleveland Clinic Foundation Retention system for an endoluminal device
WO2013162682A1 (en) * 2012-04-27 2013-10-31 Medtronic Vascular Inc. Stent-graft prosthesis for placement in the abdominal aorta
EP2740440A3 (en) * 2012-11-27 2014-08-27 Cook Medical Technologies LLC Stent graft having a closeable fenestration
WO2014096811A3 (en) * 2012-12-18 2014-09-18 Vascutek Limited Graft with leg
WO2014096811A2 (en) 2012-12-18 2014-06-26 Vascutek Limited Graft with leg
WO2014096810A1 (en) 2012-12-18 2014-06-26 Vascutek Limited Modular fenestrated assembly
EP2749253A1 (en) * 2012-12-26 2014-07-02 Cook Medical Technologies LLC Endoluminal prosthesis having modular branches
CN103932820A (en) * 2012-12-26 2014-07-23 库克医学技术有限责任公司 Endoluminal prosthesis with modular branches and method of deployment thereof
US9351822B2 (en) 2012-12-26 2016-05-31 Cook Medical Technologies Llc Prosthesis having pivoting fenestration
EP2749252A1 (en) * 2012-12-26 2014-07-02 Cook Medical Technologies LLC Prosthesis system
US10092391B2 (en) 2012-12-26 2018-10-09 The Cleveland Clinic Foundation Endoluminal prosthesis having modular branches and methods of deployment
EP2777606A1 (en) * 2013-03-12 2014-09-17 Cook Medical Technologies LLC Extension for iliac branch delivery device and methods of using the same
US9439793B2 (en) 2013-03-12 2016-09-13 Cook Medical Technologies Llc Extension for iliac branch delivery device and methods of using the same
US10130501B2 (en) 2013-03-12 2018-11-20 Cook Medical Technologies Llc Delivery device with an extension sheath and methods of using the same
EP2815722A1 (en) * 2013-06-18 2014-12-24 Cook Medical Technologies LLC Endovascular graft with an expanded lumen at a bifurcation
US9114002B2 (en) 2013-06-18 2015-08-25 Cook Medical Technologies Llc Endovascular graft with an expanded lumen at a bifurcation
AU2013206465B1 (en) * 2013-06-18 2014-01-16 Cook Medical Technologies Llc Endovascular graft with an expanded lumen at a bifurcation
WO2018078297A1 (en) * 2016-10-27 2018-05-03 Bs Medical Tech Industry Drivers and set for the insertion of connectable implants
FR3058046A1 (en) * 2016-10-27 2018-05-04 Bs Medical Tech Industry LAUNCHES AND ASSEMBLY FOR THE INSTALLATION OF CONNECTABLE IMPLANTS

Also Published As

Publication number Publication date
US9707113B2 (en) 2017-07-18
EP2007313B1 (en) 2018-05-16
JP2009534104A (en) 2009-09-24
JP2012210545A (en) 2012-11-01
US20170325978A1 (en) 2017-11-16
AU2007240703C1 (en) 2012-06-14
US10143576B2 (en) 2018-12-04
CA2649705C (en) 2015-12-01
US20070250154A1 (en) 2007-10-25
CA2649705A1 (en) 2007-11-01
EP2007313A1 (en) 2008-12-31
CN101484090B (en) 2011-04-27
CN101484090A (en) 2009-07-15
AU2007240703B2 (en) 2012-02-02
JP5707584B2 (en) 2015-04-30
AU2007240703A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
US10143576B2 (en) Twin bifurcated stent graft
US8480726B2 (en) Stent graft with valve arrangement
US7645298B2 (en) Stent graft fenestration
US7335224B2 (en) Stent graft retention system
EP2051663B1 (en) Stent graft
US20050234542A1 (en) Endoluminal graft
US20110264192A1 (en) Curve forming stent graft
US10595982B2 (en) Endoluminal prosthesis
EP1487380A2 (en) Branched vessel prothesis
US9308107B2 (en) Endoluminal prosthesis and delivery device
AU2011250799B2 (en) Bifurcated stent graft with valve
AU2011250798A1 (en) Bifurcated-bifurcated stent graft

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780022712.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07755802

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009506603

Country of ref document: JP

Ref document number: 2649705

Country of ref document: CA

Ref document number: 2007240703

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007755802

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007240703

Country of ref document: AU

Date of ref document: 20070419

Kind code of ref document: A

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)