WO2007122883A1 - Signal processing apparatus - Google Patents

Signal processing apparatus Download PDF

Info

Publication number
WO2007122883A1
WO2007122883A1 PCT/JP2007/054547 JP2007054547W WO2007122883A1 WO 2007122883 A1 WO2007122883 A1 WO 2007122883A1 JP 2007054547 W JP2007054547 W JP 2007054547W WO 2007122883 A1 WO2007122883 A1 WO 2007122883A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
energy
data area
restored
change
Prior art date
Application number
PCT/JP2007/054547
Other languages
French (fr)
Japanese (ja)
Inventor
Fuminori Takahashi
Original Assignee
Nittoh Kogaku K.K
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoh Kogaku K.K filed Critical Nittoh Kogaku K.K
Priority to CN200780008768.1A priority Critical patent/CN101401417B/en
Priority to JP2008512003A priority patent/JP4982484B2/en
Publication of WO2007122883A1 publication Critical patent/WO2007122883A1/en

Links

Classifications

    • G06T5/73

Definitions

  • the present invention relates to a signal processing device.
  • a method of moving a lens and a method of circuit processing are known.
  • a method for moving a lens a method in which camera shake is detected and correction is performed by moving a predetermined lens in accordance with the detected camera shake (see Patent Document 1).
  • a circuit processing method a change in the optical axis of the camera is detected by an angular acceleration sensor, and a transfer function representing a blurring state at the time of photographing the detected angular velocity is taken. It is known that an image is restored by performing inverse transformation of a function (see Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 6-317824 (see abstract)
  • Patent Document 2 JP-A-11 24122 (see abstract)
  • an object of the present invention is to provide a signal processing device that prevents a device from becoming large and restores a signal and has a realistic circuit processing method.
  • the signal processing apparatus of the present invention should acquire the signal before the change or the original signal data from the original signal data (hereinafter referred to as change data) in which a change such as deterioration has occurred.
  • a restoration data area for storing the restored signal data (hereinafter referred to as restoration data) is provided, and the processing unit uses the energy of the change data and the change factor information data that causes the change.
  • the transition from the changed data area to the restored data area is generated, the restored data is generated, and the remaining data of the changed data area remaining by the migration is replaced with the changed data, and the same process is repeated.
  • the energy value of the remaining data becomes less than zero in the process of repeated processing, a part of the energy that has already been transferred to the restored data area is converted to the remaining data using the change factor information. Repeat the process while returning to the change data area so that the energy value becomes zero or more.
  • the data formed in the restored data area at the end of repeated processing is used as the original signal data.
  • the energy of the change data can be obtained by using the change factor information data that forms the same filter. Is transferred to the restoration data area, the original signal data is reliably restored as restoration data in the restoration data area. Also. As a result of the energy shift, it is possible to avoid a situation that could not occur theoretically, that is, the energy value of the remaining data is less than zero, so the restoration accuracy of the restoration data can be improved.
  • the change data stored in the change data area may be obtained by processing the change data while keeping the energy state of the change data as it is (the same applies hereinafter). ).
  • the restoration data stored in the restoration data area may be the restoration data that has been processed after the state of energy constituting the restoration data is left as it is (the same applies hereinafter).
  • “migration” literally moves the energy value from the changed data area to the restored data area, and removes the energy from the changed data area power and generates new energy in the restored data area. (Including the same).
  • the change data area and the restored data area include both temporarily formed areas and permanently formed areas (the same applies hereinafter).
  • the value when the energy value of the remaining data is less than zero, the value is processed to be zero or more. If the energy value of the remaining data becomes zero, it can be considered that the restoration accuracy of the restoration data restored from the change data is very good.
  • another invention performs a process of adding energy transferred to the restoration data area to the restoration data already stored in the restoration data area at the time of repetition processing, and the remaining data
  • the energy value of is close to zero in the range of zero or more. If the remaining data approaches zero in the range of zero or more, most of the energy in the changed data area shifts to the restored data area, so that the restored data approaches the original signal data.
  • another signal processing apparatus of the present invention includes a plurality of elements.
  • the processing unit that restores the original signal data, which has multiple elemental forces, from the digitized data, the change data area in which the change data is stored, and the data of the restored signal for each restoration process (hereinafter, ,
  • the restoration data area for storing the data, and the processing unit uses the element energy of one element of the change data as the center of gravity value of the response characteristic function of the change factor information data that causes the change. Is used to move to the change data area power restoration data area, and the element energy corresponding to the transferred element energy is also excluded using the change data area data.
  • the process for one element is also performed sequentially for the other elements, and restored data is generated in the restored data area, and the remaining data in the changed data area remaining after the exclusion is changed to the change data.
  • the same process is repeated for each element, and the element energy that moves to the restoration data area is added to the restoration data each time it is repeated. If any element energy value of the remaining data becomes less than zero in the process of the above, a part of the element energy that has already moved to the restored data area is less than zero using the change factor information.
  • the process returns to the change data area so that the element energy value becomes zero or more, while proceeding with a series of processes, the process to bring the remaining data closer to zero within the range of zero or more, and at the end of the process
  • the restored data formed in the restored data area is used as the original signal data!
  • the centroid value of the response characteristic function (energy is the energy)
  • the energy value of the remaining data (hereinafter referred to as the remaining energy amount)
  • the original signal data is reliably restored as restored data in the restored data area.
  • the remaining energy amount the energy value of the remaining data
  • Response characteristic functions include impulse response functions and unit response functions.
  • a signal processing device is based on the above-described invention, and the processing unit, when generating the restoration data, uses a predetermined value less than or equal to a predetermined value within a range of the energy value power of zero or more of the remaining data. When it gets smaller, it is stopped. When this configuration is adopted, the processing is stopped even if the remaining energy amount does not become “0”, so that it is possible to prevent a long processing time.
  • the value is less than the predetermined value
  • the restored data to be approximated is closer to the original signal data before the change (before deterioration, etc.) that is the source of the change data.
  • the force that tends to cause a situation in which the remaining energy amount cannot be “0” in reality Even in such a case, the process is repeated indefinitely. It will not be.
  • the processing unit performs a process of stopping when the number of times of generating the restoration data reaches a predetermined number when generating the restoration data. .
  • the processing is stopped regardless of whether the remaining energy amount becomes “0”, so that the processing can be prevented from being prolonged.
  • the processing is continued until a predetermined number of times, the approximate restoration data is closer to the original signal data before the deterioration that is the source of the change data.
  • the power that tends to cause a situation where the remaining energy amount does not become “0” in reality. Will not be repeated.
  • a signal processing device is based on the above-described invention, and the processing unit, when generating the restored data, checks the remaining data when the number of times the restored data is generated reaches a predetermined number. If the energy value is less than or equal to a predetermined value in the range of zero or more, or is smaller than the predetermined value, the process is stopped. In the present invention, since the number of times of processing and the remaining energy amount are combined, the restoration accuracy is improved compared to the case where the number of processing times is simply limited or the remaining energy amount is limited. Processing that balances the shortness of processing time can be achieved.
  • another signal processing apparatus of the present invention includes a processing unit that restores original signal data having a plurality of elemental forces from change data including a plurality of elements, and A change data area in which data is stored and a restoration data area in which data of the restored signal (hereinafter referred to as restoration data) is stored for each restoration process are provided.
  • the energy in one element is transferred from the change data area to the restoration data area using the change factor information data that causes the change, and the energy corresponding to the transferred energy is changed in the change data area.
  • the processing is stopped and the restored data is treated as the original signal data. If the value is greater than the specified value or greater than or equal to the specified value, the remaining data is replaced with the change data and the same process is repeated, and the element energy that moves to the restored data area is added to the restored data each time it is repeated. If any element energy value of the remaining data is less than zero when processing to generate new restoration data is performed, a part of the element energy that has already moved to the restoration data area is displayed as the change factor information. The remaining data amount is compared with a predetermined value while performing a process of returning to the change data area so that the element energy value that becomes less than zero of the remaining data becomes zero or more.
  • the energy of the change data can be obtained by using the change factor information data that is the same filter. Can be restored to the restored data area, the original signal data is reliably restored in the restored data area. Furthermore, as a result of energy transfer, it is possible to avoid a situation that could not occur theoretically, in which the energy value of any element constituting the remaining data is less than zero. Can do. Also, change energy information is used to transfer energy from the change data area to the restoration data area, and only when the remaining energy amount in each element of the change data area exceeds the specified value or exceeds the specified value.
  • the restoration process can be performed quickly. Furthermore, since restoration processing is performed by transferring energy from the change data area to the restoration data area, the apparatus does not increase in size with little hardware increase. Because of this, signal restoration In this case, a signal processing apparatus having a realistic circuit processing method can be obtained.
  • the processing unit performs a process of stopping when the number of times of generating the restored data reaches a predetermined number when generating the restored data. .
  • the processing is stopped regardless of whether the remaining energy amount becomes “0”, so that the processing can be prevented from being prolonged. Further, since the processing is continued up to a predetermined number of times, the restored data is closer to the original signal data. Furthermore, when there is noise or the like, a situation where the remaining energy amount does not become “0” is likely to occur in reality, but in such a case, the processing is repeated indefinitely. Such a problem does not occur when the composition is adopted.
  • the signal processing device may be one of the maximum value, the average value, or the total value of the remaining data values of each element when the restoration data is generated or Comparison with a predetermined value is performed for a plurality.
  • the remaining energy amount in each element constituting the change data can be brought close to zero, so that the degree of approximation between the restored data and the original signal data can be further increased.
  • the returning process is performed when the element energy value of any one of the remaining data is zero when the restoration data is generated once or a plurality of times.
  • the target energy is the element energy that has moved to the restored data area before that time.
  • a signal processing apparatus uses signal data as image data.
  • image data As a result, even if image degradation occurs due to camera shake, the original image that has undergone degradation, the image before the change, the image that should have been taken, or an approximate image thereof (hereinafter referred to as the original image). Can be restored.
  • FIG. 1 is a block diagram showing a main configuration of a signal processing device according to an embodiment of the present invention.
  • FIG. 3 is a processing flow diagram for explaining a processing routine related to an image restoration processing method (repetitive processing) performed by a processing unit of the signal processing device shown in FIG. 1.
  • FIG. 4 is a diagram for explaining the concept of the processing method performed by the processing unit of the signal processing device shown in FIG.
  • FIG. 5 is a diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example, and is a table showing the concentration of pixel energy when there is no camera shake.
  • FIG. 6 is a diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example, and is a diagram showing image data when there is no camera shake.
  • FIG. 7 is a diagram for specifically explaining the processing method shown in FIG. 3 with an example of camera shake, and a diagram showing dispersion of pixel energy when camera shake occurs.
  • FIG. 8 is a diagram for explaining an example of a camera shake situation when the pixel energy dispersion shown in FIG. 7 occurs.
  • FIG. 9 is a diagram illustrating the processing method shown in FIG. 3 using the image data shown in FIG. 8 degraded by camera shake as an example.
  • FIG. 10 is a conceptual diagram showing a concept of a method for reviewing transition values in transition processing when the processing method shown in FIG. 3 is executed.
  • FIG. 13 is a diagram for explaining an example of a transition value review method 2 in the transition process when the process shown in FIG. 3 is executed.
  • FIG. 14 is a diagram for explaining an example of a transition value review method 3 in the transition process when the process shown in FIG. 3 is executed.
  • FIG. 15 is a diagram for explaining an example of a transition value review method 4 in the transition process when the process shown in FIG. 3 is executed.
  • FIG. 16 is a process flow diagram for explaining a processing routine according to a method for reviewing transition values when the processing method shown in FIG. 3 is executed.
  • the signal processing device 1 is an image processing device, which is used as a consumer camera, such as a force monitoring camera, a television camera, and a handy video camera. It can also be applied to devices other than cameras, such as a camera for other uses such as a camera, an endoscopic camera, a diagnostic microscope such as a microscope, binoculars, and NMR imaging.
  • FIG. 1 shows an outline of the configuration of the signal processing device 1.
  • the signal processing apparatus 1 includes a photographing unit 2 that captures an image of a person or the like, a control system unit 3 that drives the photographing unit 2, and a processing unit 4 that processes an image captured by the capturing unit 2.
  • the signal processing device 1 according to this embodiment further includes a recording unit 5 that records an image processed by the processing unit 4 and change factor information that causes an angular velocity sensor and other factors that cause changes such as image degradation. It has a detection unit 6 for detecting, and a factor information storage unit 7 for storing known change factor information that causes image degradation and the like.
  • the photographing unit 2 is a receiving unit 2 that receives various input signals such as an audio signal (hereinafter, the photographing unit 2 and the receiving unit are appropriately described). 2).
  • the imaging unit 2 is a part that includes an imaging optical system having a lens and an imaging element such as a CCD or C-MOS that converts light that has passed through the lens into an electrical signal.
  • the control system unit 3 controls each unit in the signal processing device 1 such as the imaging unit 2, processing unit 4, recording unit 5, detection unit 6, and factor information storage unit 7.
  • the processing unit 4 is composed of an image processing processor, and is composed of hardware such as an ASIC (Application Specific Integrated Circuit).
  • the processing unit 4 generates a sampling frequency for detecting vibrations such as camera shake to be detected, and supplies the sampling frequency to the detection unit 6.
  • the processing unit 4 controls the start and end of vibration detection.
  • the signal processing device 1 is applied as a device other than the image processing device, the receiving sensitivity of the receiving unit 2 can be changed depending on the magnitude of the input signal or the like.
  • the processing unit 4 may be configured not to be configured as hardware such as an ASIC but to be processed by software.
  • an original image data area serving as a change data area and a restored image data area serving as a restored data area are permanently arranged.
  • the processing unit 4 also stores a maximum value “E” of the remaining energy amount of each pixel described later.
  • the recording unit 5 may employ magnetic recording means such as a force hard disk drive constituted by a semiconductor memory, or optical recording means using a DVD or the like.
  • the recording unit 5 may be provided with a change data area and a restoration data area. You may try to memorize the maximum energy amount “E”!
  • the detection unit 6 includes two angular velocity sensors that detect the speeds around the X and Y axes that are perpendicular to the Z axis that is the optical axis of the signal processing device 1. Is provided.
  • the camera shake when shooting with the camera is the movement that moves in the X, Y, and Z directions, and the force that also rotates around the Z axis. And rotation around the X axis.
  • These two variations are only a slight variation, and the captured image is greatly blurred. Therefore, in this embodiment, only two angular velocity sensors around the X axis and the Y axis in FIG. 2 are arranged.
  • an additional angular velocity sensor around the Z axis or a sensor that detects movement in the X or Y direction may be added.
  • the sensor used may be an angular acceleration sensor that is not an angular velocity sensor.
  • the factor information storage unit 7 stores a change factor information such as known deterioration factor information, for example, a point spread function calculated based on the aberration of the optical system and Z or the detected vibration. It is.
  • the point spread function recorded by the factor information storage unit 7 is used by the processing unit 4 when restoring the original image, which is an image that has undergone changes such as degradation that was taken immediately after the calculation, for example. .
  • the original image restoration process when executed, the original image is taken when the imaging power is turned off, when the processing unit 4 is not operating, or when the operating rate of the processing unit 4 is low.
  • the original image data stored in the recording unit 5 and the change factor information such as the point spread function for the original image stored in the factor information storage unit 7 are associated with each other. Stored for a long time.
  • the advantage of delaying the timing of executing the restoration processing of the original image from the timing of shooting the original image is that the burden of the processing unit 4 at the time of shooting involving various processes can be reduced.
  • the signal processing device 1 is applied as a device other than an image processing device, the temperature, humidity, etc. detected by the detection unit 6 may change the reception characteristics of the reception unit 2 or the characteristics of the entire system. Therefore, they can be recorded and used as change factor information.
  • the response characteristic function of the system that is already working such as the impulse response of the system, can be stored in the factor information storage unit 7.
  • E is the light energy (original image pixel energy) of each pixel of original image data Img ′ (details will be described later) in which changes such as deterioration have occurred, and the change data Stored in the original image data area.
  • F is the pixel energy transferred from the original image data area as the nth change area to the restored image data area as the restored data area (hereinafter referred to as transition pixel energy).
  • E is the amount of remaining energy remaining in the original image data area, which is the change data area, due to the transition of the transition energy F for the first time and n times up to the nth time, and is the energy to be processed.
  • “R” is restored data stored in the restored image data area, which is the restored data area, and becomes approximate data of the original image data “Img” by performing the image restoration process shown in FIG. “X” is a predetermined value of the remaining energy amount E.
  • “Img” is data of an original image, that is, an image that should have been originally taken, and is original signal data.
  • Original image data Img ' refers to the data of a captured image, that is, a deteriorated image.
  • the relationship between Img and Img ' is expressed by the following equation (1).
  • T shown in FIG. 3 is a pixel energy amount for removing pixel energy corresponding to the transition pixel energy F from the original image data area, and is the same amount as the transition pixel energy F.
  • is the maximum value of the remaining energy of each pixel in the original image data area.
  • the transition pixel energy F uses the reciprocal of the centroid value Ga of the point spread function which is the data G of the change factor information, using the remaining energy amount E (energy to be processed) of each pixel in the original image data area. You can get more than that.
  • “k” is a component ratio with respect to the energy of a pixel corresponding to the specific pixel in the original image Img, which is included in the energy of a specific pixel of the captured original image data Img ′. Since “k” is unknown, it can be set arbitrarily within the range of “0 ⁇ k ⁇ 1”.
  • the processing routine of the processing unit 4 in Fig. 3 also begins to extract the pixel energy of one element constituting the original image data Img 'as the original image pixel energy E (step S101).
  • E original image data
  • Lugi E E is the inverse of the center of gravity Ga of the point spread function Ga (the largest value of the change factor information data G)
  • step S102 Multiply the number to obtain the transition pixel energy F (step S102).
  • the transfer pixel energy F is transferred to the restored data R in the restored image data area. That is, the transition pixel energy F is added to the restored data R in the restored image data area to
  • the restored data is R (step S103).
  • the original image data region force is removed from the pixel energy F of the transition pixel energy F transferred to the restored image data region.
  • the point spread function which is the change factor information data G is used. This is because the deterioration of the data is caused by passing through a filter called change factor information data G, and the transition pixel energy 1 F can be removed from the original image data area force so that there is no contradiction before and after the deterioration. Because. Therefore, the pixel energy amount T obtained by the superposition integration (step S104) of the transition pixel energy F and the change factor information data G is removed from the original image data area, and the residual energy in the original image data area is removed. The remaining energy amount E is obtained (step S 105).
  • step S102, S103, S104 and S105 are sequentially performed on all remaining pixels constituting the original image data Img in the original image data area.
  • the energy E to be processed in step S102 is the energy transfer of surrounding pixels.
  • the maximum value E of the remaining energy amount E is less than a predetermined value X, that is, the initial value.
  • the predetermined value X is set to a value close to “0” other than “0”, and it is determined whether E is less than the predetermined value X.
  • the number of processes for the entire image is represented as n.
  • step S107 may be a step of determining how many pixel forces S of the remaining energy amount E are equal to or greater than the predetermined value X. In this case, even if there are some pixels with a residual energy amount E that is equal to or greater than the predetermined value X, the restoration data R can be regarded as being sufficiently approximate to the original image data Img if the number is small. .
  • steps S102, S103, S104, S105, S106 and S107 are performed.
  • the transition pixel energy F is obtained by multiplying the reciprocal of the remaining energy E ⁇ , the barycentric value Ga of the point spread function (the largest value of the change factor information data G) (step S102).
  • the transfer pixel energy F is transferred to the restored image data area, and new restored data R is obtained. That is, the current transition pixel energy F is added to the restored data R of the restored image data area restored up to the previous (n ⁇ 1) to obtain new restored data R.
  • the pixel energy T obtained by the superposition integration (step S104) of the transition pixel energy F and the change factor information data G is removed from the original image data area, and a new remaining energy E is obtained (step S105).
  • step S106 it is determined whether or not the remaining energy amount maximum value E force S max max is less than a predetermined value X (step S107). If E is greater than or equal to the predetermined value X,
  • Original image data Img force If the change factor information data G changes to the original image data Img ', the original image data Img' is constructed using the change factor information data G that is the same filter. If all of the original image pixel energy E in all pixels is transferred to the restored image data area, the restored data R in the restored image data area should theoretically approach the original image data Img.
  • FIGS. 3 and 4 details of the camera shake restoration processing method shown in FIGS. 3 and 4 (repeated processing of steps S102, S103, S104, S1 05, S106 and S107) are shown in FIGS. This will be described with reference to FIGS.
  • the pixels are designated as S—1, S, S + 1, S + 2, S + 3,.
  • the pixel energy during the exposure time is concentrated on that pixel, so the pixel energy concentration is “1.0”. This state is shown in Fig. 5.
  • an example of the shooting results when there is no image degradation is shown in the table of Fig. 6.
  • the image shown in Fig. 6 is the correct image data Img when there is no deterioration. Each data is represented by 8-bit (0 to 255) data.
  • Image degradation due to blurring or the like occurs during the exposure time, and 50% of the exposure time is S-th.
  • 30% of the time is on the S + lth pixel and 20% of the time is on the S + 2nd pixel.
  • the distribution method of pixel energy is as shown in the table in Fig.7. This is data G of change factor information.
  • the barycentric value Ga of the point spread function is the value of the portion where the energy is most concentrated, and is the value “0.5” of the portion that has been shifted by 50% of the exposure time.
  • the blurring is uniform for all pixels, and the upper blurring (vertical blurring) is not blurred.
  • the blurring situation that is, the pixel energy of each pixel.
  • “S-3” pixel is “60”
  • “S-2” pixel is “36”
  • “105” which is the pixel energy of “S-2” becomes “52.5” in “S-2”, “31.5” in “S-1”, “21” in “S”. scatter.
  • the pixel energy is distributed to other pixels.
  • Equation (3) can also be applied to cases where blurring occurs over the range of less than or exceeding the range of three pixels as shown in Fig. 7. Furthermore, even if the centroid Ga of the point spread function is in a portion such as “
  • the pixel energy to be removed from the pixel “S + 1” in the original image data area is “kXA'Za X j8”, and the pixel energy to be removed from the pixel “S + 2” in the original image data area is “ kXA'Za X ⁇ ". Then, the sum of these removed pixel energies becomes the pixel energy amount “A” transferred to the pixel “S” in the restored image data area.
  • k 0.8”.
  • FIG. 8 and FIG. 9 show the original image pixel energy “E” shown in the first step S101 of the iterative process.
  • this original image pixel energy E is the energy E to be processed.
  • the pixel energy of “95.52” is transferred from the data area to the pixel “S-2” in the restored image data area (F (S-2) in FIG. 9), and the pixel “S—2” in the restored image data area
  • the restored data R of “” becomes “95.52”, and the restored image data (R (S ⁇ 2) in FIG. 9) becomes “96”, “95.52”, “0”,.
  • the pixels “S-2” to “47.76”, “28.656” from the pixel “S-1”, and “19.104” from the pixel “S” are removed from the original image data area.
  • the remaining energy amount E of each pixel in the photographic data that is, the original image data area is removed from the transition (“T (S-2)” in FIG.
  • the pixel energy of “60.23” is transferred from the image data area to the pixel “S-1” in the restored image data area (F (S—1) in FIG. 9), and the pixel “S—
  • the restored data R of “1” is “60.23”
  • the restored image data (R (S-1) in FIG. 9) is “96” “95.52” “60.23” “0”.
  • Become. Then, “30. 115” is removed from the pixels “S ⁇ 1”, “18.069” from the pixel “S”, and “12. 046” from the pixel “S + 1” in the original image data area.
  • the captured data that is, the remaining energy amount E of each pixel in the original image data area
  • T (S-1) the transition
  • pixel “S-3” the pixel “S-3” is removed.
  • pixel "S-2” force ⁇ 11.94 “, pixel” S-1 "” 7.529 “, pixel” S “” 51. 827 “, pixel” S + 1 " “104. 954”, and the other pixels are “105”, “114”, and “142” as before (“E (S-1)” in FIG. 9).
  • n max “19.02” in the pixel “S + 4”) is stored in the memory of the control unit 4 (step S106). Whether the maximum remaining energy E is less than a predetermined value X (for example, “5” in this example).
  • step S107 It is determined whether or not (step S107). As a result of the above processing, E> X, so the same
  • the restoration data R may exceed a predetermined upper limit value, or the remaining energy amount E may be a negative value. .
  • the occurrence of this condition means that the transition pixel energy F has been set to an inappropriate value. Therefore, the following explains how to review the transition value without any contradiction as a whole even in such a case.
  • Pixels with a negative residual energy amount are removed at that time by using the value of the previous process as it is without transferring the transition pixel energy F that should be moved to the restored image data area.
  • the pixel energy will not be an inappropriate value.
  • the remaining energy amount of the surrounding pixels will decrease, and the pixel energy value to be removed from the pixels that will become negative if it moves this time, that is, the pixel energy value to be extracted will be smaller than this time.
  • the remaining energy amount of the processed pixel such as the pixels “S-2” and “S-1” is set to “0”. If you get close to it, it will not be restored even if you reach it, and it will not converge. Therefore, in this case, it is desirable to review the restoration values of the pixels “S-2” and “S-1”.
  • correction energy cE correction amount
  • E the remaining energy amount
  • the correction energy cE is superimposed and integrated with the data G of the change factor information and returned to the original image data area. Then, the transition value can be reviewed without any contradiction as a whole.
  • the transition value review process for setting the remaining energy amount E which is a negative value based on the above-described idea, to “0” will be described.
  • the pixel energy transfer processing of FIG. 9 is performed in the order of the pixels “S-3”, “S-2” & “S + 4”, and the repetition processing is continued.
  • the remaining energy amount E 1S "of the pixel" S-1 in the original image data area during the pixel energy transfer process to the pixel" S-3 "in the restored data area -0.624 ".
  • the correction energy cE is returned to the original image data area.
  • the pixel energy was dispersed as follows.
  • transition value review process ends.
  • cE is the restored data R of the pixel “S-3” in the restored image data area.
  • cE: cE P: Q.
  • “J8” is the pixel “S-3” in the restored image data area. ”Is the ratio of the pixel energy force S to the pixel“ S -2 ”in the original image data area (FIG. 7), and“ ⁇ ”is the pixel energy of the pixel“ S-3 ”in the restored image data area. This is the ratio (Fig. 7) distributed to pixel “S-1” in the original image data area.
  • S-3 and cE are pixels “S-3” in the original image data area before the transfer process
  • correction energy cE and cE are respectively applied to pixels “S-3”, “S-2”, “S-1”, and “S” in the original image data area, and “return amount 1” and “return amount” in FIG. Return as the sum of 2
  • the transition value to the pixel “S-1” in the restored image data area of the previous time (n 2 times in FIG. 3) that affects the pixel “S-1” in the original image data area “1. Review of the above transition value on the assumption that "156" is inappropriate The same processing as in methods 2 and 3 is performed. The process will be described below based on the table in FIG.
  • the correction energy cE is returned to the original image data area.
  • the pixel energy is distributed as follows according to the distribution method of the pixel energy shown in FIG. Can be considered.
  • the value review process ends.
  • the advantage of this review method 4 is that the transition value can be reviewed by assuming that the transition value to the same pixel as the pixel that has less than the remaining energy E force O in the original image data area is inappropriate. is there.
  • transition values of all pixel energy transition processes that have the effect of remaining energy in the original image data area to be less than E ⁇ according to the review method of review methods 2, 3, and 4 above. You can also.
  • the value of the remaining energy in the original image data area that is less than E force ⁇ is set to a value exceeding “0” in the process of setting it to “0”. It can also be processed. For example, when it is considered that noise is included in the original image data area, it is preferable to perform a process of setting a value exceeding “0” (a value obtained by adding noise to “0”).
  • step S105 in the processing flow of FIG. 3 it is determined whether the remaining energy amount E is a negative value (step S201). If E is not a negative value, the processing after step S106 in FIG. 3 is performed (step S202). If E is a negative value, the transition value review method 1, 2, 3, or 4 described above is performed (step S203), and then the process proceeds to step S202.
  • the number of processing times and the criterion value for determining whether or not the remaining energy E force has been approximated to "0" in advance can be set.
  • the number of processing can be set to any number, such as 20 or 50 times.
  • the remaining energy E that stops processing is set to “5” in 8 bits (0 to 255) as to whether or not the remaining energy E has approximated “0”, the processing ends when it becomes 5 or less.
  • “0.5” can be set and the processing can be terminated when the value falls below “0.5”. This set value can be set arbitrarily.
  • the processing is stopped when either one is satisfied.
  • the determination reference value may be prioritized, and if the predetermined number of processes does not fall within the determination reference value, the predetermined number of processes may be repeated.
  • the power using the data stored in the recording unit of the processing unit 4 without using the information stored in the factor information storage unit 7 is stored here.
  • Known degradation factors such as optical aberrations and lens distortions may be used.
  • Restoration processing with optical aberration information after processing with information May be performed.
  • the factor information storage unit 7 may not be installed, and the image may be corrected or restored only by dynamic factors at the time of shooting, such as blurring, recorded in the processing unit 4.
  • the set number of times may be changed by the data G of the change factor information. good. For example, when the data of a certain pixel is distributed over many pixels due to blurring, the number of repetitions may be increased, and when the dispersion is small, the number of repetitions may be decreased.
  • the restoration algorithm of this embodiment has an advantage that the data area of the signal processing device 1 can be reduced. The reason is that only the original image data area and the restored image data area are necessary for the restoration process. Further, in the restoration process, the restoration algorithm of this embodiment only repeats the movement of the pixel energy using the data G of the known change factor information, so that a rapid process is possible. Also, the data area may be processed after setting a temporary data area that is not permanent.
  • the processing performed by the processing unit 4 may be configured by hardware that also has a component power that is configured to share a part of processing for each of the power configured by software.
  • the change factor information data G is inferior. It includes information that simply changes the image, not just the data of the conversion factor information, and information that improves the image as opposed to deterioration. Further, in the repeated processing, the maximum value E of the remaining energy amount E that each pixel has is not compared with the predetermined value (X), and the comparison is made.
  • the remaining energy amount E can be compared with the average value or the total value. By doing so, the processing speed is improved. Furthermore, the maximum value E, the average value, or the total value of the remaining energy amount E that each pixel has, and each of these values.
  • Comparison with a plurality of corresponding predetermined values can also be performed.
  • the set number of times may be changed by the data G of the change factor information. good. For example, when the data of a certain pixel is distributed to a large number of pixels due to blurring, the number of iterations may be increased, and when the variance is small, the number of iterations may be reduced.
  • the restoration target is taken as image data.
  • these restore processing concepts and methods and review methods can be applied to any data restoration process. For example, it can be applied to restoration of audio data and earthquake wave data. Further, in the above-described embodiment, these ideas are applied to an image that varies depending on the position of the power pixel shown in the example where the image data is blurred in each place, and a non-linear image such as gamma correction. And methods and review methods can be applied.
  • each processing method and review method described above may be programmed! Further, the program may be stored in a storage medium such as a CD (Compact Disc) DVD or a USB (Universa 1 Serial Bus) memory so that it can be read by a computer.
  • the signal processing apparatus 1 has means for reading a program in the storage medium.
  • the program may be put into a server outside the signal processing device 1 and downloaded and used as necessary.
  • the signal processing device 1 has communication means for downloading the program in the storage medium.

Abstract

A signal processing apparatus wherein a changed signal, such as a degraded signal or the like, can be restored with realizability achieved without increasing the apparatus scale. The signal processing apparatus (1) has a processing part (4) that restores a source signal data, which is, for example, a signal before being changed, from an original signal data in which the change, such as degradation, has occurred (and which will be referred to as “changed data” hereinafter). There are provided a changed data area in which the changed data is stored and a restored data area in which the signal data as restored is stored each time the restoring process is done. The processing part performs a repetitive processing for obtaining the source signal. When the energy value of the residual data is less than zero during the repetitive processing, some of the energy having already moved to the restored data area is placed, by use of change factor information, back to the changed data area such that the energy value of the residual data becomes equal to or greater than zero. In this way, the repetitive processing is performed such that the data formed in the restored data area after completion of the repetitive processing will be used as the source signal data.

Description

明 細 書  Specification
信号処理装置  Signal processing device
技術分野  Technical field
[0001] 本発明は、信号処理装置に関する。  [0001] The present invention relates to a signal processing device.
背景技術  Background art
[0002] 従来から、カメラ等の画像処理装置で撮影した際には、画像には時々劣化が生ず ることが知られている。画像劣化の要因としては撮影時の手ぶれ、光学系の各種の 収差、レンズの歪み等がある。  Conventionally, it has been known that when an image is processed by an image processing apparatus such as a camera, the image sometimes deteriorates. Causes of image degradation include camera shake during shooting, various aberrations of the optical system, and lens distortion.
[0003] 撮影時の手ぶれを補正するには、レンズを動かす方式と、回路処理する方式とが 知られている。たとえば、レンズを動かす方式としては、カメラの手ぶれを検出し、所 定のレンズを、その検出した手ぶれに合わせて動かすことで補正する方式が知られ ている(特許文献 1参照)。また、回路処理する方式としては、カメラの光軸の変動を 角加速度センサで検出し、検出した角速度等力 撮影時のぼけ状態を表す伝達関 数を取得し、撮影画像に対し、取得した伝達関数の逆変換を行い、画像を復元する ものが知られて 、る (特許文献 2参照)。  [0003] To correct camera shake during shooting, a method of moving a lens and a method of circuit processing are known. For example, as a method for moving a lens, a method is known in which camera shake is detected and correction is performed by moving a predetermined lens in accordance with the detected camera shake (see Patent Document 1). In addition, as a circuit processing method, a change in the optical axis of the camera is detected by an angular acceleration sensor, and a transfer function representing a blurring state at the time of photographing the detected angular velocity is taken. It is known that an image is restored by performing inverse transformation of a function (see Patent Document 2).
[0004] また、一般の撮影画像以外にも、音声、 X線写真、顕微鏡画像、地震波形等、種々 の信号がぶれやその他の原因によって劣化したり、変化したりすることが知られてい る。  [0004] In addition to general captured images, various signals such as sound, X-ray photographs, microscopic images, and seismic waveforms are known to deteriorate or change due to blurring or other causes. .
[0005] 特許文献 1:特開平 6— 317824号公報 (要約書参照)  [0005] Patent Document 1: Japanese Patent Laid-Open No. 6-317824 (see abstract)
特許文献 2:特開平 11 24122号公報 (要約書参照)  Patent Document 2: JP-A-11 24122 (see abstract)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 特許文献 1記載の手ぶれ補正を採用したカメラは、モータ等、レンズを駆動するハ 一ドウエアのスペースが必要となり大型化してしまう。また、そのようなハードウェア自 体やそのハードウェアを動かす駆動回路が必要となり、コストアップとなってしまう。ま た特許文献 2記載の手ぶれ補正の場合は、上述した問題点はなくなるものの、次の ような問題を有する。すなわち取得した伝達関数の逆変換で画像復元がなされること は理論上成り立つが、実際問題として、以下の 2つの理由で、画像復元が困難である [0006] The camera adopting the camera shake correction described in Patent Document 1 requires a hardware space for driving a lens, such as a motor, and becomes large. In addition, such hardware itself and a drive circuit for moving the hardware are required, which increases costs. In addition, in the case of camera shake correction described in Patent Document 2, the above-described problems are eliminated, but the following problems are present. In other words, image restoration is performed by inverse transformation of the acquired transfer function. Theoretically holds true, but as a practical matter, image restoration is difficult for the following two reasons:
[0007] 第 1に、取得する伝達関数は、ノイズやぶれ情報誤差等に非常に弱ぐこれらのわ ずかな変動により、値が大きく変動する。このため、逆変換で得られる補正画像は、 手ぶれがな 、状態で撮影した画像とはほど遠 、ものとなり、実際上は利用できな 、。 第 2に、ノイズ等を考慮した逆変換を行う場合、連立方程式の解の特異値分解等で 解を推定する方法も採用できるが、その推定のための計算値が天文学的な大きさに なり、実際的には解くことができなくなるリスクが高い。 [0007] First, the value of the transfer function to be obtained fluctuates greatly due to these slight fluctuations that are very vulnerable to noise and blur information errors. For this reason, the corrected image obtained by the inverse transformation has no camera shake and is far from the image shot in the state, and cannot be used in practice. Second, when performing inverse transformation considering noise, etc., a method of estimating the solution by singular value decomposition of the solution of simultaneous equations can be adopted, but the calculated value for the estimation becomes astronomical. In practice, there is a high risk of being unable to solve.
[0008] 画像に生ずる上述した問題は、一般の種々のデータにも現れ、伝達関数の逆変換 で信号の復元を行うことは、取得した伝達関数が不正確な場合はもちろんのこと、正 確であったとしても、困難となっている。し力も、 100%正確な伝達関数を得ることは、 自然界を対象とする場合は、あり得ない状況である。  [0008] The above-mentioned problems that occur in images also appear in various general data, and signal restoration by inverse transformation of the transfer function is not only accurate when the acquired transfer function is inaccurate, but also accurate. Even so, it is difficult. However, it is impossible to obtain a transfer function that is 100% accurate when the natural world is targeted.
[0009] 上述したように、本発明の課題は、信号を復元するに当たり、装置の大型化を防止 すると共に、現実性のある回路処理方式を有する信号処理装置を提供することであ る。  [0009] As described above, an object of the present invention is to provide a signal processing device that prevents a device from becoming large and restores a signal and has a realistic circuit processing method.
課題を解決するための手段  Means for solving the problem
[0010] 上記課題を解決するため、本発明の信号処理装置は、劣化等の変化が生じた原 信号のデータ (以下、変化データという。)から、変化する前の信号もしくは本来取得 されるべきであった信号またはそれらの近似信号のデータ(以下、元信号データと!/、 う)の復元をする処理部を有し、変化データが格納される変化データ領域と、毎回の 復元処理毎にその復元処理された信号のデータ(以下、復元データという。)が格納 される復元データ領域とを設け、処理部が、変化データのエネルギーを、変化の要 因となる変化要因情報データを利用して、変化データ領域から復元データ領域へと 移行させ、復元データを生成し、その移行により残存する変化データ領域の残部デ ータを、変化データに置き換えて同様の処理を繰り返す繰り返し処理を行い、繰り返 し処理の過程で残部データのエネルギー値が零未満となる場合に、既に復元データ 領域へと移行したエネルギーの一部を、変化要因情報を利用して、残部データのェ ネルギー値が零以上となるよう変化データ領域へと戻す処理を行いながら繰り返し処 理を進行させ、繰り返し処理終了時の復元データ領域に形成されるデータを元信号 データとしている。 [0010] In order to solve the above problems, the signal processing apparatus of the present invention should acquire the signal before the change or the original signal data from the original signal data (hereinafter referred to as change data) in which a change such as deterioration has occurred. A processing unit that restores the data of the signal or the approximate signal thereof (hereinafter referred to as the original signal data! /, Etc.), the change data area in which the change data is stored, and each restoration process A restoration data area for storing the restored signal data (hereinafter referred to as restoration data) is provided, and the processing unit uses the energy of the change data and the change factor information data that causes the change. The transition from the changed data area to the restored data area is generated, the restored data is generated, and the remaining data of the changed data area remaining by the migration is replaced with the changed data, and the same process is repeated. When the energy value of the remaining data becomes less than zero in the process of repeated processing, a part of the energy that has already been transferred to the restored data area is converted to the remaining data using the change factor information. Repeat the process while returning to the change data area so that the energy value becomes zero or more. The data formed in the restored data area at the end of repeated processing is used as the original signal data.
[0011] この発明によれば、元信号データが、変化要因情報データに従って変化データへ と変化したことを前提とするので、同一のフィルタとなる変化要因情報データ利用する ことにより、変化データのエネルギーを復元データ領域に移行すれば、復元データ 領域において元信号データが復元データとして確実に復元される。また。エネルギ 一の移行の結果、残部データのエネルギー値が零未満となるという、理論的には起 こり得ない事態を回避できるため、復元データの復元精度を向上させることができる。 ここで、変化データ領域に格納される変化データは、変化データを構成するエネル ギ一の状態をそのままにした上で、変化データに加工等が施されたものであっても良 い(以下同じ)。また、復元データ領域に格納される復元データは、復元データを構 成するエネルギーの状態をそのままにした上で、復元データに加工等が施されたも のであっても良い(以下同じ)。さらに、「移行」は、変化データ領域から復元データ領 域への、字義通りエネルギー値を移動すること、および、変化データ領域力 そのェ ネルギーを除去し、復元データ領域に新たにそのエネルギーを生成することも含む( 以下同じ)。さらに、変化データ領域および復元データ領域は、一時的に形成される ものまたは恒久的に形成されるものの両者を含む(以下同じ)。  [0011] According to the present invention, since the original signal data is assumed to have changed to change data according to the change factor information data, the energy of the change data can be obtained by using the change factor information data that forms the same filter. Is transferred to the restoration data area, the original signal data is reliably restored as restoration data in the restoration data area. Also. As a result of the energy shift, it is possible to avoid a situation that could not occur theoretically, that is, the energy value of the remaining data is less than zero, so the restoration accuracy of the restoration data can be improved. Here, the change data stored in the change data area may be obtained by processing the change data while keeping the energy state of the change data as it is (the same applies hereinafter). ). In addition, the restoration data stored in the restoration data area may be the restoration data that has been processed after the state of energy constituting the restoration data is left as it is (the same applies hereinafter). Furthermore, “migration” literally moves the energy value from the changed data area to the restored data area, and removes the energy from the changed data area power and generates new energy in the restored data area. (Including the same). Further, the change data area and the restored data area include both temporarily formed areas and permanently formed areas (the same applies hereinafter).
[0012] 他の発明は、上述の発明に加え、残部データのエネルギー値が零未満となる場合 に、その値が零以上となるように処理している。残部データのエネルギー値が零にな れば、変化データから復元した復元データの復元精度が、非常に良好となっていると 考えることができる。  In another invention, in addition to the above-described invention, when the energy value of the remaining data is less than zero, the value is processed to be zero or more. If the energy value of the remaining data becomes zero, it can be considered that the restoration accuracy of the restoration data restored from the change data is very good.
[0013] 他の発明は、上述の発明に加え、繰返し処理の際、その繰返しの都度復元データ 領域へ移行するエネルギーを既に復元データ領域に格納された復元データに加算 する処理をし、残部データのエネルギー値を零以上の範囲で零に近づける処理を行 つている。残部データが零以上の範囲で零に近づけば、変化データ領域のエネルギ 一の殆どが復元データ領域へと移行することとなるため、復元データが元信号データ へと近づく。  [0013] In addition to the above-described invention, another invention performs a process of adding energy transferred to the restoration data area to the restoration data already stored in the restoration data area at the time of repetition processing, and the remaining data The energy value of is close to zero in the range of zero or more. If the remaining data approaches zero in the range of zero or more, most of the energy in the changed data area shifts to the restored data area, so that the restored data approaches the original signal data.
[0014] 上記課題を解決するため、他の本発明の信号処理装置は、複数の要素からなる変 化データから、複数の要素力 なる元信号データの復元をする処理部を有し、変化 データが格納される変化データ領域と、毎回の復元処理毎にその復元処理された信 号のデータ(以下、復元データという。)が格納される復元データ領域とを設け、処理 部が、変化データの一の要素における要素エネルギーを、変化の要因となる変化要 因情報データが有する応答特性関数の重心値を利用して、変化データ領域力 復 元データ領域へと移行させ、移行させた要素エネルギーに相当する要素エネルギー を、変化データ領域力も変化要因情報データを利用して除外する処理を行い、また この一の要素に対する処理を他の要素についても順次行い、復元データ領域に復 元データを生成し、除外により残存する変化データ領域の残部データを、変化デー タに置き換えて同様の処理を各要素毎に繰り返し、その繰り返しの都度復元データ 領域へ移行する要素エネルギーを復元データに加算して、新たな復元データを生成 する処理を行い、これら一連の処理の過程で、残部データのうちのいずれかの要素 エネルギー値が零未満となる場合に、既に復元データ領域へと移行した要素エネル ギ一の一部を、変化要因情報を利用して、零未満となる要素エネルギー値が零以上 となるよう変化データ領域へと戻す処理を行 、ながら一連の処理を進行させ、残部デ 一タを零以上の範囲で零に近づける処理を行い、処理終了時の復元データ領域に 形成される復元データを元信号データとして!、る。 [0014] In order to solve the above-described problem, another signal processing apparatus of the present invention includes a plurality of elements. The processing unit that restores the original signal data, which has multiple elemental forces, from the digitized data, the change data area in which the change data is stored, and the data of the restored signal for each restoration process (hereinafter, , The restoration data area for storing the data, and the processing unit uses the element energy of one element of the change data as the center of gravity value of the response characteristic function of the change factor information data that causes the change. Is used to move to the change data area power restoration data area, and the element energy corresponding to the transferred element energy is also excluded using the change data area data. The process for one element is also performed sequentially for the other elements, and restored data is generated in the restored data area, and the remaining data in the changed data area remaining after the exclusion is changed to the change data. The same process is repeated for each element, and the element energy that moves to the restoration data area is added to the restoration data each time it is repeated. If any element energy value of the remaining data becomes less than zero in the process of the above, a part of the element energy that has already moved to the restored data area is less than zero using the change factor information. The process returns to the change data area so that the element energy value becomes zero or more, while proceeding with a series of processes, the process to bring the remaining data closer to zero within the range of zero or more, and at the end of the process The restored data formed in the restored data area is used as the original signal data!
この発明によれば、元信号のデータが、変化要因情報データに従って変化データ へと変化したことを前提とするので、同一のフィルタとなる変化要因情報データである 応答特性関数の重心値 (エネルギーが最も集中して 、る部分の値)の逆数を用いる ことにより、変化データのエネルギーの多くを復元データ領域に移行し、移行させた エネルギーに相当する要素エネルギーを、変化データ領域力も変化要因情報デー タを利用して除外して、残部データのエネルギー値 (以下、残部エネルギー量という) を、零に近づけることができれば、復元データ領域において元信号データが復元デ ータとして確実に復元される。また、エネルギーの移行の結果、残部データを構成す るいずれかの要素のエネルギー値が零未満となるという、理論的には起こり得ない事 態を回避できるため、復元データの復元精度を向上させることができる。応答特性関 数には、インパルス応答関数およびユニット応答関数等を含む。そして信号のデータ を画像のデータとした場合には、インパルス応答関数は点像関数となる。 According to the present invention, since it is assumed that the data of the original signal has changed to change data according to the change factor information data, the centroid value of the response characteristic function (energy is the energy) By using the reciprocal of the most concentrated value), most of the energy of the change data is transferred to the restoration data area, and the element energy corresponding to the transferred energy is also changed in the change data area power. If the energy value of the remaining data (hereinafter referred to as the remaining energy amount) can be made close to zero, the original signal data is reliably restored as restored data in the restored data area. Furthermore, as a result of energy transfer, it is possible to avoid a theoretically impossible situation where the energy value of any of the elements constituting the remaining data is less than zero, thus improving the restoration accuracy of the restoration data. be able to. Response characteristic functions include impulse response functions and unit response functions. And signal data Is an image data, the impulse response function is a point spread function.
[0016] 他の発明に係る信号処理装置は、上述した発明にカ卩え、処理部は、復元データの 生成の際、残部データのエネルギー値力 零以上の範囲の所定値以下または所定 値より小さくなつたら、停止させる処理を行っている。この構成を採用した場合、残部 エネルギー量が「0」にならなくても処理を停止させるので、処理の長時間化を防止す ることができる。また、所定値以下としているので、近似する復元データは変化データ の元となる変化前 (劣化等する前)の元信号データにより近いものとなる。さらに、ノィ ズなどがあった場合、残部エネルギー量が「0」になることが現実的にはあり得ない状 況が生じがちである力 そのような場合であっても無限に処理を繰り返すことにはなら ない。  [0016] A signal processing device according to another invention is based on the above-described invention, and the processing unit, when generating the restoration data, uses a predetermined value less than or equal to a predetermined value within a range of the energy value power of zero or more of the remaining data. When it gets smaller, it is stopped. When this configuration is adopted, the processing is stopped even if the remaining energy amount does not become “0”, so that it is possible to prevent a long processing time. In addition, since the value is less than the predetermined value, the restored data to be approximated is closer to the original signal data before the change (before deterioration, etc.) that is the source of the change data. Furthermore, if there is a noise, etc., the force that tends to cause a situation in which the remaining energy amount cannot be “0” in reality. Even in such a case, the process is repeated indefinitely. It will not be.
[0017] 他の発明に係る信号処理装置は、上述した発明に加え、処理部は、復元データの 生成の際、復元データを生成する回数が所定回数となったら停止させる処理を行つ ている。この構成を採用した場合、残部エネルギー量が「0」になってもならなくても処 理を停止させるので、処理の長時間化を防止することができる。また、所定回数まで 処理を継続させて!/ヽるので、近似する復元データは変化データの元となる劣化等す る前の元信号データにより近いものとなる。さらに、ノイズなどがあった場合、残部ェ ネルギー量が「0」にならない状況が現実的には生じがちである力 そのような場合で あっても所定回数で終了させているので、無限に処理を繰り返すことにはならない。  [0017] In addition to the above-described invention, in the signal processing device according to another invention, the processing unit performs a process of stopping when the number of times of generating the restoration data reaches a predetermined number when generating the restoration data. . When this configuration is adopted, the processing is stopped regardless of whether the remaining energy amount becomes “0”, so that the processing can be prevented from being prolonged. In addition, since the processing is continued until a predetermined number of times, the approximate restoration data is closer to the original signal data before the deterioration that is the source of the change data. In addition, when there is noise, the power that tends to cause a situation where the remaining energy amount does not become “0” in reality. Will not be repeated.
[0018] 他の発明に係る信号処理装置は、上述した発明にカ卩え、処理部は、復元データの 生成の際、復元データを生成する回数が所定回数に到達したときの残部データのェ ネルギー値が零以上の範囲の所定値以下または所定値より小さ 、場合は停止し、所 定値より超えるまたは所定値以上の場合は、さらに所定回数繰り返す処理を行って いる。この発明では、処理の回数と、残部エネルギー量とを組み合わせて行うようにし ているので、単に処理回数に制限を加えたり、残部エネルギー量に制限を行う場合 に比較して、復元精度の良さと処理時間の短さのバランスが取れた処理とすることが できる。  [0018] A signal processing device according to another invention is based on the above-described invention, and the processing unit, when generating the restored data, checks the remaining data when the number of times the restored data is generated reaches a predetermined number. If the energy value is less than or equal to a predetermined value in the range of zero or more, or is smaller than the predetermined value, the process is stopped. In the present invention, since the number of times of processing and the remaining energy amount are combined, the restoration accuracy is improved compared to the case where the number of processing times is simply limited or the remaining energy amount is limited. Processing that balances the shortness of processing time can be achieved.
[0019] 上記課題を解決するため、他の本発明の信号処理装置は、複数の要素からなる変 化データから、複数の要素力 なる元信号データの復元をする処理部を有し、変化 データが格納される変化データ領域と、毎回の復元処理毎にその復元処理された信 号のデータ(以下、復元データという。)が格納される復元データ領域とを設け、処理 部が、変化データの一の要素におけるエネルギーを、変化の要因となる変化要因情 報データを利用して、変化データ領域から復元データ領域へと移行させ、移行させ たエネルギーに相当するエネルギーを、変化データ領域力 変化要因情報データを 利用して除外する処理を行い、また一の要素に対する処理を他の全ての要素につい ても順次行い、復元データ領域に復元データを生成し、その移行により残存する変 化データ領域の残部データの値が零以上の範囲の所定値以下または所定値より小 さい場合は処理を停止し、復元データを元信号データとして扱い、残部データの値 力 所定値より大きいまたは所定値以上の場合は、残部データを変化データに置き 換えて同様の処理を繰り返し、その繰り返しの都度復元データ領域へ移行する要素 エネルギーを復元データに加算して、新たな復元データを生成する処理を行い、残 部データのうちいずれかの要素エネルギー値が零未満となる場合は、既に復元デー タ領域へと移行した要素エネルギーの一部を、変化要因情報を利用して、残部デー タの零未満となる要素エネルギー値が零以上となるよう変化データ領域へと戻す処 理を行 、つつ残部データ量と所定値との比較を行って 、る。 [0019] In order to solve the above-described problem, another signal processing apparatus of the present invention includes a processing unit that restores original signal data having a plurality of elemental forces from change data including a plurality of elements, and A change data area in which data is stored and a restoration data area in which data of the restored signal (hereinafter referred to as restoration data) is stored for each restoration process are provided. The energy in one element is transferred from the change data area to the restoration data area using the change factor information data that causes the change, and the energy corresponding to the transferred energy is changed in the change data area. Perform the exclusion process using the factor information data, perform the process for one element for all other elements in sequence, generate the restored data in the restored data area, and change data area remaining by the migration If the remaining data value is less than or equal to a predetermined value within the range of zero or more, the processing is stopped and the restored data is treated as the original signal data. If the value is greater than the specified value or greater than or equal to the specified value, the remaining data is replaced with the change data and the same process is repeated, and the element energy that moves to the restored data area is added to the restored data each time it is repeated. If any element energy value of the remaining data is less than zero when processing to generate new restoration data is performed, a part of the element energy that has already moved to the restoration data area is displayed as the change factor information. The remaining data amount is compared with a predetermined value while performing a process of returning to the change data area so that the element energy value that becomes less than zero of the remaining data becomes zero or more.
この発明によれば、元信号のデータが、変化要因情報データに従って変化データ へと変化したことを前提とするので、同一のフィルタとなる変化要因情報データを利 用することにより、変化データのエネルギーを復元データ領域に移行できれば、復元 データ領域において元信号データが確実に復元される。また、エネルギーの移行の 結果、残部データを構成するいずれかの要素のエネルギー値が零未満となるという、 理論的には起こり得ない事態を回避できるため、復元データの復元精度を向上させ ることができる。また、変化要因情報を利用して、変化データ領域から復元データ領 域へとエネルギーを移行し、変化データ領域の各要素における残部エネルギー量の 値が所定値を超える、または所定値以上のときのみ残部データを変化データに置き 換えて、同様の処理を繰り返すため、復元処理を迅速にできる。さらに、変化データ 領域から復元データ領域へとエネルギーを移行することで復元処理が行われるため 、 ハードウ ア的な増加はほとんど無ぐ装置が大型化しない。このため、信号の復元 に当たって、現実性のある回路処理方式を有する信号処理装置とすることができる。 According to the present invention, since it is assumed that the data of the original signal has changed to change data according to the change factor information data, the energy of the change data can be obtained by using the change factor information data that is the same filter. Can be restored to the restored data area, the original signal data is reliably restored in the restored data area. Furthermore, as a result of energy transfer, it is possible to avoid a situation that could not occur theoretically, in which the energy value of any element constituting the remaining data is less than zero. Can do. Also, change energy information is used to transfer energy from the change data area to the restoration data area, and only when the remaining energy amount in each element of the change data area exceeds the specified value or exceeds the specified value. Since the remaining data is replaced with change data and the same process is repeated, the restoration process can be performed quickly. Furthermore, since restoration processing is performed by transferring energy from the change data area to the restoration data area, the apparatus does not increase in size with little hardware increase. Because of this, signal restoration In this case, a signal processing apparatus having a realistic circuit processing method can be obtained.
[0021] 他の発明に係る信号処理装置は、上述した発明に加え、処理部は、復元データの 生成の際、復元データを生成する回数が所定回数となったら停止させる処理を行つ ている。この構成を採用した場合、残部エネルギー量が「0」になってもならなくても処 理を停止させるので、処理の長時間化を防止することができる。また、所定回数まで 処理を継続させているので、復元データは元信号データにより近いものとなる。さらに 、ノイズなどがあった場合、残部エネルギー量が「0」にならない状況が現実的には生 じがちであるが、そのような場合、無限に処理を繰り返すことになつてしまうが、この構 成を採用すると、そのような問題が生じない。  In the signal processing device according to another invention, in addition to the above-described invention, the processing unit performs a process of stopping when the number of times of generating the restored data reaches a predetermined number when generating the restored data. . When this configuration is adopted, the processing is stopped regardless of whether the remaining energy amount becomes “0”, so that the processing can be prevented from being prolonged. Further, since the processing is continued up to a predetermined number of times, the restored data is closer to the original signal data. Furthermore, when there is noise or the like, a situation where the remaining energy amount does not become “0” is likely to occur in reality, but in such a case, the processing is repeated indefinitely. Such a problem does not occur when the composition is adopted.
[0022] 他の発明に係る信号処理装置は、上述した発明に加え、復元データの生成の際、 各要素が各々有する残部データの値の最大値、平均値または総和値のうちの一つ または複数について、所定値との比較を行っている。この構成を採用した場合、変化 データを構成する各要素における残部エネルギー量を零に近づけることができるた め、復元データと元信号データとの近似度をより高めることができる。  [0022] In addition to the above-described invention, the signal processing device according to another invention may be one of the maximum value, the average value, or the total value of the remaining data values of each element when the restoration data is generated or Comparison with a predetermined value is performed for a plurality. When this configuration is adopted, the remaining energy amount in each element constituting the change data can be brought close to zero, so that the degree of approximation between the restored data and the original signal data can be further increased.
[0023] 他の発明に係る信号処理装置は、上述した発明に加え、戻す処理は、復元データ の生成が 1回または複数回行われる場合に、残部データのいずれかの要素エネルギ 一値が零未満となったその回以前に復元データ領域へ移行した要素エネルギーを 対象として行っている。この構成を採用した場合、エネルギーの移行の結果、残部デ ータのいずれかの要素におけるエネルギー値が零未満となるという、理論的には起こ り得ない事態を回避し得るため、画像の復元精度を向上させることができる。  [0023] In the signal processing device according to another invention, in addition to the above-described invention, the returning process is performed when the element energy value of any one of the remaining data is zero when the restoration data is generated once or a plurality of times. The target energy is the element energy that has moved to the restored data area before that time. When this configuration is adopted, it is possible to avoid a situation that could not occur theoretically, where the energy value in any element of the remaining data becomes less than zero as a result of energy transfer. Accuracy can be improved.
[0024] 他の発明に係る信号処理装置は、上述した発明に加え、信号のデータを画像のデ ータとしている。これにより、カメラの手ぶれによる画像劣化が生じても、劣化等の生じ た原画像から、変化する前の画像もしくは本来撮影されるべきであった画像またはそ れらの近似画像 (以下、元画像という。)の復元をすることができる。  [0024] In addition to the above-described invention, a signal processing apparatus according to another invention uses signal data as image data. As a result, even if image degradation occurs due to camera shake, the original image that has undergone degradation, the image before the change, the image that should have been taken, or an approximate image thereof (hereinafter referred to as the original image). Can be restored.
発明の効果  The invention's effect
[0025] 本発明では、劣化等変化した信号を復元するに当たり、装置の大型化を防止でき ると共に、現実性のある信号処理装置を提供することができる。  [0025] According to the present invention, in restoring a signal that has changed due to deterioration or the like, it is possible to prevent an increase in the size of the apparatus and to provide a realistic signal processing apparatus.
図面の簡単な説明 [図 1]本発明の実施の形態に係る信号処理装置の主要構成を示すブロック図である 圆 2]図 1に示す信号処理装置の概要を示す外観斜視図で、角速度センサの配置位 置を説明するための図である。 Brief Description of Drawings FIG. 1 is a block diagram showing a main configuration of a signal processing device according to an embodiment of the present invention. 圆 2] An external perspective view showing an outline of the signal processing device shown in FIG. It is a figure for demonstrating.
[図 3]図 1に示す信号処理装置の処理部で行う画像復元処理方法 (繰返しの処理)に 係る処理ルーチンを説明するための処理フロー図である。  3 is a processing flow diagram for explaining a processing routine related to an image restoration processing method (repetitive processing) performed by a processing unit of the signal processing device shown in FIG. 1.
圆 4]図 1に示す信号処理装置の処理部で行う処理方法の概念を説明するための図 である。 [4] FIG. 4 is a diagram for explaining the concept of the processing method performed by the processing unit of the signal processing device shown in FIG.
[図 5]図 3に示す処理方法を、手ぶれを例にして具体的に説明するための図で、手ぶ れのないときの画素エネルギーの集中を示す表である。  FIG. 5 is a diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example, and is a table showing the concentration of pixel energy when there is no camera shake.
[図 6]図 3に示す処理方法を、手ぶれを例にして具体的に説明するための図で、手ぶ れのな 、ときの画像データを示す図である。  FIG. 6 is a diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example, and is a diagram showing image data when there is no camera shake.
[図 7]図 3に示す処理方法を、手ぶれを例にして具体的に説明するための図で、手ぶ れが生じたときの画素エネルギーの分散を示す図である。  FIG. 7 is a diagram for specifically explaining the processing method shown in FIG. 3 with an example of camera shake, and a diagram showing dispersion of pixel energy when camera shake occurs.
[図 8]図 7に示す画素エネルギーの分散があつたときの手ぶれの状況の一例を説明 するための図である。  FIG. 8 is a diagram for explaining an example of a camera shake situation when the pixel energy dispersion shown in FIG. 7 occurs.
[図 9]図 3に示す処理方法を、手ぶれで劣化した図 8に示す画像データを例にして説 明している図である。  FIG. 9 is a diagram illustrating the processing method shown in FIG. 3 using the image data shown in FIG. 8 degraded by camera shake as an example.
[図 10]図 3に示す処理方法を実行した際の移行処理における移行値の見直し方法 の考え方を示す概念図である。  FIG. 10 is a conceptual diagram showing a concept of a method for reviewing transition values in transition processing when the processing method shown in FIG. 3 is executed.
[図 11]図 8に示す画像データを、図 3における処理方法での処理の様子であって、「 n= 2」の段階の処理の様子を示す図である。  FIG. 11 is a diagram showing a state of processing of the image data shown in FIG. 8 by the processing method in FIG. 3, and a state of processing at the stage of “n = 2”.
[図 12]図 8に示す画像データを、図 3における処理方法での処理の様子であって、「 n= 3」の段階の処理の様子を示す図である。  FIG. 12 is a diagram showing a state of processing of the image data shown in FIG. 8 by the processing method in FIG. 3, and a state of processing at the stage of “n = 3”.
[図 13]図 3に示す処理を実行した際の移行処理における移行値の見直し方法 2の一 例を説明するための図である。  FIG. 13 is a diagram for explaining an example of a transition value review method 2 in the transition process when the process shown in FIG. 3 is executed.
[図 14]図 3に示す処理を実行した際の移行処理における移行値の見直し方法 3の一 例を説明するための図である。 [図 15]図 3に示す処理を実行した際の移行処理における移行値の見直し方法 4の一 例を説明するための図である。 FIG. 14 is a diagram for explaining an example of a transition value review method 3 in the transition process when the process shown in FIG. 3 is executed. FIG. 15 is a diagram for explaining an example of a transition value review method 4 in the transition process when the process shown in FIG. 3 is executed.
[図 16]図 3に示す処理方法を実行した際の移行値の見直し方法に係る処理ルーチ ンを説明するための処理フロー図である。  FIG. 16 is a process flow diagram for explaining a processing routine according to a method for reviewing transition values when the processing method shown in FIG. 3 is executed.
符号の説明  Explanation of symbols
[0027] 1 信号処理装置 [0027] 1 Signal processing device
2 受信部 (撮影部)  2 Receiver (shooting unit)
3 制御系部  3 Control system
4 処理部  4 Processing section
5 記録部  5 Recording section
6 検出部  6 Detector
7 要因情報保存部  7 Factor information storage
G 変化要因情報のデータ (劣化要因情報のデータ)  G Change factor information data (degradation factor information data)
Ga 点像関数の重心値  Centroid value of Ga point spread function
Img ' 原画像のデータ (撮影された画像)  Img 'Original image data (captured image)
Img 劣化のな!、本来の正し!/、画像のデータ(元画像)  Img No deterioration! Original correctness! / Image data (original image)
E 原画像画素エネルギー  E Original image pixel energy
F 移行画素エネルギー  F transition pixel energy
R 復元データ  R Restored data
cE ネ if正エネルギー  cE ne if positive energy
E 残部エネルギー量 (処理対象となるエネルギー)  E Remaining energy (energy to be processed)
X 残部エネルギー量の所定値  X Predetermined value of remaining energy
τ 原画像データ領域から除去する画素エネルギー量  τ Pixel energy removed from the original image data area
cE 補正エネルギー  cE correction energy
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、本発明の実施の形態に係る信号処理装置 1について図を参照しながら説明 する。なお、この信号処理装置 1は画像処理装置になっており、民生用のカメラとして 用いられるものである力 監視用カメラ、テレビ用カメラ、ハンディタイプのビデオカメ ラ、内視鏡カメラ、等他の用途のカメラとしたり、顕微鏡、双眼鏡、さらには NMR撮影 等の画像診断装置等、カメラ以外の機器にも適用できる。 [0028] Hereinafter, a signal processing device 1 according to an embodiment of the present invention will be described with reference to the drawings. The signal processing device 1 is an image processing device, which is used as a consumer camera, such as a force monitoring camera, a television camera, and a handy video camera. It can also be applied to devices other than cameras, such as a camera for other uses such as a camera, an endoscopic camera, a diagnostic microscope such as a microscope, binoculars, and NMR imaging.
[0029] 図 1には信号処理装置 1の構成の概要を示している。信号処理装置 1は、人物等の 画像を撮影する撮影部 2と、その撮影部 2を駆動する制御系部 3と、撮影部 2で撮影 された画像を処理する処理部 4と、を有している。また、この実施の形態に係る信号 処理装置 1は、さらに処理部 4で処理された画像を記録する記録部 5と、角速度セン サ等力 なり、画像劣化など変化の要因となる変化要因情報を検知する検出部 6と、 画像劣化等を生じさせる既知の変化要因情報を保存する要因情報保存部 7を有す る。なお、信号処理装置 1が画像処理装置以外のものとして適用される場合、撮影部 2は、音声信号等の種々の入力信号を受信する受信部 2 (以下では、適宜、撮影部 2 と受信部 2とを使い分けることとする。)となる。  FIG. 1 shows an outline of the configuration of the signal processing device 1. The signal processing apparatus 1 includes a photographing unit 2 that captures an image of a person or the like, a control system unit 3 that drives the photographing unit 2, and a processing unit 4 that processes an image captured by the capturing unit 2. ing. In addition, the signal processing device 1 according to this embodiment further includes a recording unit 5 that records an image processed by the processing unit 4 and change factor information that causes an angular velocity sensor and other factors that cause changes such as image degradation. It has a detection unit 6 for detecting, and a factor information storage unit 7 for storing known change factor information that causes image degradation and the like. When the signal processing device 1 is applied as a device other than an image processing device, the photographing unit 2 is a receiving unit 2 that receives various input signals such as an audio signal (hereinafter, the photographing unit 2 and the receiving unit are appropriately described). 2).
[0030] 撮影部 2は、レンズを有する撮影光学系やレンズを通過した光を電気信号に変換 する CCDや C— MOS等の撮影素子を備える部分である。制御系部 3は、撮影部 2, 処理部 4,記録部 5,検出部 6,及び要因情報保存部 7等、信号処理装置 1内の各部 を制御するものである。  The imaging unit 2 is a part that includes an imaging optical system having a lens and an imaging element such as a CCD or C-MOS that converts light that has passed through the lens into an electrical signal. The control system unit 3 controls each unit in the signal processing device 1 such as the imaging unit 2, processing unit 4, recording unit 5, detection unit 6, and factor information storage unit 7.
[0031] 処理部 4は、画像処理プロセサで構成されており、 ASIC(Application Specific Integ rated Circuit)のようなハードウェアで構成されている。処理部 4は、検出する手ぶれ 等の振動検出のためのサンプリング周波数を発生させていると共にそのサンプリング 周波数を検出部 6に供給している。また処理部 4は、振動検出の開始と終了を制御し ている。なお、信号処理装置 1が画像処理装置以外のものとして適用される場合、受 信部 2の受信感度を入力信号の大きさ等によって変えることができる。  The processing unit 4 is composed of an image processing processor, and is composed of hardware such as an ASIC (Application Specific Integrated Circuit). The processing unit 4 generates a sampling frequency for detecting vibrations such as camera shake to be detected, and supplies the sampling frequency to the detection unit 6. The processing unit 4 controls the start and end of vibration detection. When the signal processing device 1 is applied as a device other than the image processing device, the receiving sensitivity of the receiving unit 2 can be changed depending on the magnitude of the input signal or the like.
[0032] また、この処理部 4は、 ASICのようなハードウェアとして構成されるのではなく、ソフ トウエアで処理する構成としても良い。この処理部 4には、変化データ領域となる原画 像データ領域と復元データ領域となる復元画像データ領域が恒久的に配置されて 、 る。また処理部 4は、後述する各画素の残部エネルギー量の最大値「E 」を記憶す  [0032] Further, the processing unit 4 may be configured not to be configured as hardware such as an ASIC but to be processed by software. In the processing unit 4, an original image data area serving as a change data area and a restored image data area serving as a restored data area are permanently arranged. The processing unit 4 also stores a maximum value “E” of the remaining energy amount of each pixel described later.
max  max
る。また記録部 5は、半導体メモリで構成されている力 ハードディスクドライブ等の磁 気記録手段、または DVD等を使用する光記録手段等を採用しても良い。なお、この 記録部 5に変化データ領域や復元データ領域を設けるようにしても良ぐまた残部ェ ネルギー量の最大値「E 」を記憶させるようにしてもよ!、。 The The recording unit 5 may employ magnetic recording means such as a force hard disk drive constituted by a semiconductor memory, or optical recording means using a DVD or the like. The recording unit 5 may be provided with a change data area and a restoration data area. You may try to memorize the maximum energy amount “E”!
max  max
[0033] 検出部 6は、図 2に示すように、信号処理装置 1の光軸である Z軸に対して垂直方 向となる X軸、 Y軸の回りの速度を検出する 2つの角速度センサを備えるものである。 ところで、カメラで撮影する際の手ぶれは、 X方向、 Y方向、 Z方向の各方向への移動 、 Z軸回りの回転も生ずる力 各変動により最も大きな影響を受けるのは、 Y軸回りの 回転と X軸回りの回転である。これら 2つの変動は、ほんのわずかに変動しただけで、 その撮影された画像は大きくぼける。このため、この実施の形態では、図 2の X軸回り と Y軸回りの 2つの角速度センサのみを配置している。し力し、より完全を期すため Z 軸回りの角速度センサをさらに付加したり、 X方向や Y方向への移動を検出するセン サを付加しても良い。また、使用するセンサとしては、角速度センサではなぐ角加速 度センサとしても良い。  As shown in FIG. 2, the detection unit 6 includes two angular velocity sensors that detect the speeds around the X and Y axes that are perpendicular to the Z axis that is the optical axis of the signal processing device 1. Is provided. By the way, the camera shake when shooting with the camera is the movement that moves in the X, Y, and Z directions, and the force that also rotates around the Z axis. And rotation around the X axis. These two variations are only a slight variation, and the captured image is greatly blurred. Therefore, in this embodiment, only two angular velocity sensors around the X axis and the Y axis in FIG. 2 are arranged. For the sake of completeness, an additional angular velocity sensor around the Z axis or a sensor that detects movement in the X or Y direction may be added. In addition, the sensor used may be an angular acceleration sensor that is not an angular velocity sensor.
[0034] 要因情報保存部 7は、既知の劣化要因情報などの変化要因情報、たとえば光学系 の収差および Zまたは検出された振動に基づいて算出された点像関数等を保存し ておく記録部である。要因情報保存部 7で記録された点像関数は、たとえばその算 出後の直近に撮影された劣化等の変化が生じた画像である原画像の復元処理の際 に、処理部 4で用いられる。ここで、原画像の復元処理を実行する時期は、撮影用の 電源がオフされている時、処理部 4が稼働していない時、処理部 4の稼働率が低い 時等、原画像を撮影した時期から遅らせた時期とすることができる。その場合には、 記録部 5に保存された原画像のデータおよび、要因情報保存部 7に保存された、そ の原画像についての点像関数等の変化要因情報が、それぞれが関連づけられた状 態で長期間に渡り保存される。このように、原画像の復元処理を実行する時期を、原 画像を撮影した時期から遅らせる利点は、種々の処理を伴う撮影時の処理部 4の負 担を軽減できることである。なお、信号処理装置 1が画像処理装置以外のものとして 適用される場合は、検出部 6で検出される温度、湿度等が受信部 2の受信特性ゃシ ステム全体の特性を変化させることもあるので、それらを記録し、変化要因情報として 用いることができる。また、システムのインパルス応答等、予めわ力つているシステム の応答特性関数等を要因情報保存部 7に保存することもできる。  [0034] The factor information storage unit 7 stores a change factor information such as known deterioration factor information, for example, a point spread function calculated based on the aberration of the optical system and Z or the detected vibration. It is. The point spread function recorded by the factor information storage unit 7 is used by the processing unit 4 when restoring the original image, which is an image that has undergone changes such as degradation that was taken immediately after the calculation, for example. . Here, when the original image restoration process is executed, the original image is taken when the imaging power is turned off, when the processing unit 4 is not operating, or when the operating rate of the processing unit 4 is low. It can be a period delayed from In this case, the original image data stored in the recording unit 5 and the change factor information such as the point spread function for the original image stored in the factor information storage unit 7 are associated with each other. Stored for a long time. As described above, the advantage of delaying the timing of executing the restoration processing of the original image from the timing of shooting the original image is that the burden of the processing unit 4 at the time of shooting involving various processes can be reduced. When the signal processing device 1 is applied as a device other than an image processing device, the temperature, humidity, etc. detected by the detection unit 6 may change the reception characteristics of the reception unit 2 or the characteristics of the entire system. Therefore, they can be recorded and used as change factor information. In addition, the response characteristic function of the system that is already working, such as the impulse response of the system, can be stored in the factor information storage unit 7.
[0035] 次に、以上のように構成された信号処理装置 1である画像処理装置の処理部 4によ り行われる画像復元処理方法の一例の概要を、図 3に基づいて説明する。 Next, the processing unit 4 of the image processing apparatus which is the signal processing apparatus 1 configured as described above. An outline of an example of the image restoration processing method performed will be described with reference to FIG.
[0036] 図 3中、「E」は、劣化等の変化が生じた原画像データ Img' (詳細は後述する。 )の 各画素各々が有する光エネルギー (原画像画素エネルギー)であり、変化データ領 域となる原画像データ領域に格納される。「F」は、 n回目の変化領域となる原画像デ ータ領域から復元データ領域となる復元画像データ領域に移された画素エネルギー (以下、移行画素エネルギーという)である。「E」は、 1回目力も n回目までの n回に渡 る移行エネルギー Fの移行により変化データ領域である原画像データ領域に残存 する残部エネルギー量であり、処理対象となるエネルギーである。「R」は、復元デー タ領域となる復元画像データ領域に格納される復元データであり、図 3に示す画像復 元処理の遂行により、元画像データ「Img」の近似データとなる。「X」は、残部エネル ギー量 Eの所定の値である。「G」は、検出部 6で検出された変化要因情報(=劣化 要因情報(点像関数))のデータで、処理部 4の記録部に保存されるものである。「Ga 」は、検出部 6で検出された変化要因情報 G (=劣化要因情報 (点像関数) )のデータ の点像関数の重心値である。「Img」は、元画像、すなわち、本来撮影されるべきであ つた画像のデータであり、元信号データである。なお、元信号データは、この元画像 I mg (本来取得されるべきであった信号)以外に、変化する前の信号やそれらの近似 信号のデータを含むものとして、この明細書では定義される。原画像データ Img'は、 撮影された画像、すなわち劣化した画像のデータを指す。ここで、 Imgと Img'との関 係は、次の(1)式で表されるとする。 In FIG. 3, “E” is the light energy (original image pixel energy) of each pixel of original image data Img ′ (details will be described later) in which changes such as deterioration have occurred, and the change data Stored in the original image data area. “F” is the pixel energy transferred from the original image data area as the nth change area to the restored image data area as the restored data area (hereinafter referred to as transition pixel energy). “E” is the amount of remaining energy remaining in the original image data area, which is the change data area, due to the transition of the transition energy F for the first time and n times up to the nth time, and is the energy to be processed. “R” is restored data stored in the restored image data area, which is the restored data area, and becomes approximate data of the original image data “Img” by performing the image restoration process shown in FIG. “X” is a predetermined value of the remaining energy amount E. “G” is data of change factor information (= deterioration factor information (point spread function)) detected by the detection unit 6 and is stored in the recording unit of the processing unit 4. “Ga” is the barycentric value of the point spread function of the data of the change factor information G (= degradation factor information (point spread function)) detected by the detector 6. “Img” is data of an original image, that is, an image that should have been originally taken, and is original signal data. Note that the original signal data is defined in this specification as including the original image I mg (the signal that should have been acquired) and the data before the change and the approximate signal data thereof. . Original image data Img 'refers to the data of a captured image, that is, a deteriorated image. Here, the relationship between Img and Img 'is expressed by the following equation (1).
Img,=Img水 G (1)  Img, = Img water G (1)
ここで、「*」は、重畳積分を表す演算子である。  Here, “*” is an operator representing a superposition integral.
[0037] また図 3に示す「T」は、移行画素エネルギー Fに相当する画素エネルギーを原画 像データ領域から除去する画素エネルギー量であり、移行画素エネルギー Fと同量 となる。「Ε 」は、原画像データ領域における各画素の残部エネルギー量の最大値 “T” shown in FIG. 3 is a pixel energy amount for removing pixel energy corresponding to the transition pixel energy F from the original image data area, and is the same amount as the transition pixel energy F. “Ε” is the maximum value of the remaining energy of each pixel in the original image data area.
max  max
である。ここで、原画像データ領域における各画素の残部エネルギー量 Eと移行画 素エネルギー Fとの関係は、次の(2)式で表されるとする。すなわち移行画素ェネル ギー Fは、原画像データ領域における各画素の残部エネルギー量 E (処理対象とな るエネルギー)を変化要因情報のデータ Gである点像関数の重心値 Gaの逆数を用 いること〖こより得ることができる。ここで「k」とは、撮影された原画像データ Img'の特 定の画素のエネルギーに含まれる、元画像 Imgにおけるその特定の画素に相当する 画素のエネルギーに対する成分比である。また、「k」は未知であるため「0<k≤ 1」の 範囲で任意に設定できる。 It is. Here, it is assumed that the relationship between the remaining energy amount E and the transition pixel energy F of each pixel in the original image data area is expressed by the following equation (2). In other words, the transition pixel energy F uses the reciprocal of the centroid value Ga of the point spread function which is the data G of the change factor information, using the remaining energy amount E (energy to be processed) of each pixel in the original image data area. You can get more than that. Here, “k” is a component ratio with respect to the energy of a pixel corresponding to the specific pixel in the original image Img, which is included in the energy of a specific pixel of the captured original image data Img ′. Since “k” is unknown, it can be set arbitrarily within the range of “0 <k ≦ 1”.
F =kX E /Ga…… (2)  F = kX E / Ga …… (2)
[0038] 図 3の処理部 4の処理ルーチンは、まず、原画像データ Img'を構成する一の要素 の画素エネルギーを原画像画素エネルギー Eとして抽出すること力も始まる (ステップ S101)。ここで、現段階 (n=0)では、 E =E (原画像データ)であり、復元画像デー [0038] The processing routine of the processing unit 4 in Fig. 3 also begins to extract the pixel energy of one element constituting the original image data Img 'as the original image pixel energy E (step S101). Here, at the current stage (n = 0), E = E (original image data) and the restored image data
0  0
タ領域の復元データ R =0である。 1回目の処理 (n= l)では、まず原画像画素エネ  Restoration data in the data area R = 0. In the first processing (n = l), first the original image pixel energy
0  0
ルギー E = Eに点像関数の重心値 Ga (変化要因情報データ Gの最も大きな値)の逆  Lugi E = E is the inverse of the center of gravity Ga of the point spread function Ga (the largest value of the change factor information data G)
0  0
数をかけることにより、移行画素エネルギー Fを得る(ステップ S 102)。次いで、移行 画素エネルギー Fを復元画像データ領域の復元データ Rへ移行する。すなわち、 移行画素エネルギー Fを復元画像データ領域の復元データ Rへ加算して 1回目の  Multiply the number to obtain the transition pixel energy F (step S102). Next, the transfer pixel energy F is transferred to the restored data R in the restored image data area. That is, the transition pixel energy F is added to the restored data R in the restored image data area to
1 0  Ten
復元データ Rとする(ステップ S 103)。  The restored data is R (step S103).
[0039] 次に、復元画像データ領域へ移行させた移行画素エネルギー F分の画素エネル ギーを原画像データ領域力も除去する。その際には、変化要因情報データ Gである 点像関数を利用する。何故ならば、データの劣化は、変化要因情報データ Gというフ ィルタを通ることによるものであり、劣化の前後で矛盾が無いように移行画素エネルギ 一 Fを原画像データ領域力も除去することができるためである。そこで、移行画素ェ ネルギー Fと変化要因情報データ Gとの重畳積分 (ステップ S 104)で得られた画素 エネルギー量 Tを原画像データ領域から除去し、残存エネルギーである原画像デ ータ領域の残部ネルギー量 Eを得る(ステップ S 105)。  [0039] Next, the original image data region force is removed from the pixel energy F of the transition pixel energy F transferred to the restored image data region. In that case, the point spread function which is the change factor information data G is used. This is because the deterioration of the data is caused by passing through a filter called change factor information data G, and the transition pixel energy 1 F can be removed from the original image data area force so that there is no contradiction before and after the deterioration. Because. Therefore, the pixel energy amount T obtained by the superposition integration (step S104) of the transition pixel energy F and the change factor information data G is removed from the original image data area, and the residual energy in the original image data area is removed. The remaining energy amount E is obtained (step S 105).
[0040] 以上のステップ S102, S103, S104および S105の過程を、原画像データ領域に ある原画像データ Img,を構成する残りの全ての画素について順次行う。このとき、ス テツプ S102における処理対象となるエネルギー Eは、周囲の画素のエネルギー移  [0040] The above steps S102, S103, S104 and S105 are sequentially performed on all remaining pixels constituting the original image data Img in the original image data area. At this time, the energy E to be processed in step S102 is the energy transfer of surrounding pixels.
0  0
行処理における原画像データ領域から移行画素エネルギー Fを除去する際に、重 畳積分によって得られる当該画素に対応する量が除去された値となっている。そして 、全ての画素につ!ヽて、以上のステップ S102, S103, S104および S105力行われ た後、原画像データ領域の残部エネルギー量 Eの最大値 E を記憶する (ステップ When the transition pixel energy F is removed from the original image data area in the row processing, the value corresponding to the pixel obtained by the multiplication integration is removed. Then, for all the pixels, the above steps S102, S103, S104 and S105 are performed. After that, the maximum value E of the remaining energy amount E in the original image data area is stored (step
1 max  1 max
S106)。  S106).
[0041] 次いで残部エネルギー量 Eの最大値 E が所定値 X未満カゝ否カゝ、すなわち当初  [0041] Next, the maximum value E of the remaining energy amount E is less than a predetermined value X, that is, the initial value.
1 max  1 max
原画像データ領域に存した原画像画素エネルギー E = Eの多くが、復元画像データ  Most of the original image pixel energy E = E existing in the original image data area is restored image data.
0  0
領域に移され、復元画像データ領域の復元データ Rが元画像データ Imgとみなすこ とができるかの判断を行う(ステップ S107)。本例では、所定値 Xを「0」以外の「0」に 近い値としておき、 E が所定値 X未満になるかどうかを判断し、所定値 X以上のとき max  It is determined whether the restored data R in the restored image data area can be regarded as the original image data Img (step S107). In this example, the predetermined value X is set to a value close to “0” other than “0”, and it is determined whether E is less than the predetermined value X.
は、「n=n+ l」= 2として、全ての画素につ!ヽて、ステップ S102, S103, S104, S1 05, S106および S107の処理を再度行う。図 3の処理手順で、「n=n+ l」は、全て の画素についてステップ S102, S103, S104および S105の処理を終えて、ステツ プ S 106および S 107を行ったときに行う。すなわち画像全体の処理回数を nとして表 している。なお、ステップ S 107は、所定値 X以上となる残部エネルギー量 Eの画素 力 Sいくつあるかの判断を行うステップとしても良い。この場合、所定値 X以上となる残 部エネルギー量 Eとなっている画素がいくつか存在しても、その数が少なければ復 元データ Rは元画像データ Imgに十分近似されたとみなすことができる。  In step S102, S103, S104, S1 05, S106 and S107, all of the pixels are set as “n = n + 1” = 2. In the processing procedure of FIG. 3, “n = n + 1” is performed when the processing of steps S102, S103, S104, and S105 is completed for all the pixels, and steps S106 and S107 are performed. In other words, the number of processes for the entire image is represented as n. Note that step S107 may be a step of determining how many pixel forces S of the remaining energy amount E are equal to or greater than the predetermined value X. In this case, even if there are some pixels with a residual energy amount E that is equal to or greater than the predetermined value X, the restoration data R can be regarded as being sufficiently approximate to the original image data Img if the number is small. .
[0042] ステップ S107において、残部エネルギー量の最大値 E が所定値 X以上のときの max [0042] max when the maximum value E of the remaining energy amount is equal to or greater than a predetermined value X in step S107.
処理を説明する。 E は、所定値 X以上であるため、 n=n+ 1として、全ての画素に max  Processing will be described. Since E is greater than or equal to the predetermined value X, n = n + 1 and max for all pixels
ついて、ステップ S102, S103, S104, S105, S106および S107の処理を行う。す なわち、残部エネルギー E 〖こ、点像関数の重心値 Ga (変化要因情報データ Gの 最も大きな値)の逆数をかけることにより、移行画素エネルギー Fを得る (ステップ S1 02)。次いで、移行画素エネルギー Fを復元画像データ領域へ移行し、新たな復元 データ Rを得る。すなわち、前回 (n— 1)までに復元された復元画像データ領域の復 元データ R へ今回の移行画素エネルギー Fを加算して新たな復元データ Rとす る。次いで、移行画素エネルギー Fと変化要因情報データ Gとの重畳積分 (ステップ S 104)で得られた画素エネルギー Tを原画像データ領域から除去し、新たな残部 エネルギー Eを得る(ステップ S 105)。  Subsequently, steps S102, S103, S104, S105, S106 and S107 are performed. In other words, the transition pixel energy F is obtained by multiplying the reciprocal of the remaining energy E 〖, the barycentric value Ga of the point spread function (the largest value of the change factor information data G) (step S102). Next, the transfer pixel energy F is transferred to the restored image data area, and new restored data R is obtained. That is, the current transition pixel energy F is added to the restored data R of the restored image data area restored up to the previous (n−1) to obtain new restored data R. Next, the pixel energy T obtained by the superposition integration (step S104) of the transition pixel energy F and the change factor information data G is removed from the original image data area, and a new remaining energy E is obtained (step S105).
[0043] 以上のステップ S102, S103, S104および S105の過程を、原画像データ領域に ある残りの全ての画素について順次行う。そして、各画素における残部エネルギー量 最大値「E 」を記憶する (ステップ S 106)。そして残部エネルギー量最大値 E 力 S max max 所定値 X未満か否かの判断を行う(ステップ S 107)。 E が所定値 X以上であれば、 [0043] The above steps S102, S103, S104 and S105 are sequentially performed on all remaining pixels in the original image data area. And the remaining energy amount in each pixel The maximum value “E” is stored (step S106). Then, it is determined whether or not the remaining energy amount maximum value E force S max max is less than a predetermined value X (step S107). If E is greater than or equal to the predetermined value X,
max  max
「n=n+ l」として、ステップ S102, S103, S104, S105, S106および S107の処 理を繰り返す。 E が所定値 X未満となったら、復元データ Rは、元画像データ Img  As “n = n + 1”, the processes of steps S102, S103, S104, S105, S106 and S107 are repeated. When E becomes less than the predetermined value X, the restored data R becomes the original image data Img.
max n  max n
と十分に近似できたと判断し、復元処理は終了する (ステップ S 108)。  And the restoration process ends (step S108).
[0044] 図 4に基づき、この実施の形態に係る手ぶれの復元処理の考え方を以下述べる。  Based on FIG. 4, the concept of the camera shake restoration processing according to this embodiment will be described below.
元画像のデータ Img力 変化要因情報のデータ Gにより原画像データ Img'へと変化 したのなら、同一のフィルタとなる変化要因情報のデータ Gを利用して、原画像デー タ Img 'を構成する全ての画素における原画像画素エネルギー Eの全てを復元画像 データ領域に移行すれば、復元画像データ領域の復元データ Rは、元画像のデー タ Imgへと理論上近づくはずである。  Original image data Img force If the change factor information data G changes to the original image data Img ', the original image data Img' is constructed using the change factor information data G that is the same filter. If all of the original image pixel energy E in all pixels is transferred to the restored image data area, the restored data R in the restored image data area should theoretically approach the original image data Img.
[0045] 次に、図 3,図 4に示す手ぶれの復元処理方法 (ステップ S102, S103, S104, S1 05, S106および S107の繰返しの処理)の詳細を、図 5,図 6,図 7,図 8および図 9 に基づいて説明する。  Next, details of the camera shake restoration processing method shown in FIGS. 3 and 4 (repeated processing of steps S102, S103, S104, S1 05, S106 and S107) are shown in FIGS. This will be described with reference to FIGS.
[0046] (復元アルゴリズム)  [0046] (Restore algorithm)
手ぶれ等による画像劣化が無いとき、所定の画素に対応する光エネルギー(画素 エネルギー)は、露光時間中、その画素に集中する。また、手ぶれがある場合、画素 エネルギーは、露光時間中にぶれた画素に分散する。さらに、露光時間中のぶれが わかれば、露光時間中の画素エネルギーの分散の仕方がわ力るため、ぶれた画像 からぶれの無 、画像を作ることが可能となる。  When there is no image degradation due to camera shake or the like, light energy (pixel energy) corresponding to a predetermined pixel is concentrated on that pixel during the exposure time. Also, when there is camera shake, the pixel energy is distributed to the pixels that are shaken during the exposure time. Further, if the blur during the exposure time is known, the method of dispersion of the pixel energy during the exposure time is influential, so that it is possible to create an image with no blur from the blurred image.
[0047] 以下、簡単のため、横一次元で説明する。画素を左から順に S— 1, S, S + l, S + 2, S + 3, ···,とし、ある画素 Sに注目する。ぶれ等による画像劣化が無いとき、露光 時間中の画素エネルギーは、その画素に集中するため、画素エネルギーの集中度 は「1. 0」である。この状態を図 5に示す。また、図 5に示すように、画像劣化が無いと きの撮影結果の一例を、図 6の表に示す。図 6に示すものが、劣化しなカゝつた場合の 正しい画像データ Imgとなる。なお、各データは、 8ビット(0〜255)のデータで表し ている。  [0047] Hereinafter, for the sake of simplicity, the description will be made in one horizontal dimension. The pixels are designated as S—1, S, S + 1, S + 2, S + 3,. When there is no image degradation due to blurring, etc., the pixel energy during the exposure time is concentrated on that pixel, so the pixel energy concentration is “1.0”. This state is shown in Fig. 5. In addition, as shown in Fig. 5, an example of the shooting results when there is no image degradation is shown in the table of Fig. 6. The image shown in Fig. 6 is the correct image data Img when there is no deterioration. Each data is represented by 8-bit (0 to 255) data.
[0048] 露光時間中にぶれ等による画像劣化があり、露光時間中の 50%の時間は S番目 の画素に、 30%の時間は S + l番目の画素に、 20%の時間は S + 2番目の画素にそ れぞれぶれていたとする。画素エネルギーの分散の仕方は、図 7に示す表のとおりと なる。これが変化要因情報のデータ Gとなる。また、点像関数の重心値 Gaは、ェネル ギ一が最も集中している部分の値であるから、露光時間中の 50%の時間ぶれていた 部分の値「0. 5」である。 [0048] Image degradation due to blurring or the like occurs during the exposure time, and 50% of the exposure time is S-th. Suppose that 30% of the time is on the S + lth pixel and 20% of the time is on the S + 2nd pixel. The distribution method of pixel energy is as shown in the table in Fig.7. This is data G of change factor information. In addition, the barycentric value Ga of the point spread function is the value of the portion where the energy is most concentrated, and is the value “0.5” of the portion that has been shifted by 50% of the exposure time.
[0049] ぶれは、全ての画素で一様であり、上ぶれ (縦ぶれ)が無ぐぶれが図 7に示すよう に三画素分の範囲とすると、ぶれの状況、すなわち各画素の画素エネルギー分散状 況は、具体的には、たとえば図 8に示すように、「S— 3」の画素の「120」は、ぶれ情 報である変化要因情報のデータ Gの「 α =0. 5」「 j8 =0. 3」「 γ =0. 2」(図 7)の分 散比に従い、「S— 3」の画素に「60」、「S— 2]の画素に「36」、「S— 1」の画素に「24 」というように分散する。同様に、「S— 2」の画素エネルギーである「105」は、「S— 2」 に「52. 5」、「S— 1」に「31. 5」、「S」に「21」として分散する。他の画素も同様に画素 エネルギーが分散する。  [0049] The blurring is uniform for all pixels, and the upper blurring (vertical blurring) is not blurred. As shown in Fig. 7, the blurring situation, that is, the pixel energy of each pixel, Specifically, as shown in FIG. 8, for example, “120” of the pixel “S-3” is “α = 0.5” of the variation factor information data G, which is the blur information. According to the dispersion ratios of “j8 = 0.3” and “γ = 0.2” (Fig. 7), “S-3” pixel is “60”, “S-2” pixel is “36”, “S — Distribute to “1” pixels as “24”. Similarly, “105” which is the pixel energy of “S-2” becomes “52.5” in “S-2”, “31.5” in “S-1”, “21” in “S”. scatter. Similarly, the pixel energy is distributed to other pixels.
[0050] 元画像データ Imgの特定の画素のエネルギーである「A」と、撮影された原画像 Im g'におけるその特定の画素に相当する画素のエネルギー「A'」との関係は、一般的 に、以下の(3)式で表される。  [0050] The relationship between "A", which is the energy of a specific pixel in the original image data Img, and energy "A '" of the pixel corresponding to the specific pixel in the captured original image Im g' is generally Is expressed by the following equation (3).
A X Ga=k XA,…(3)  A X Ga = k XA, ... (3)
点像関数の重心値「Ga」は、エネルギーが最も集中している部分の値であるから、 本例では、図 7に示すように、「α =0. 5」である。この「α」は、元画像データ Imgの 特定の画素のエネルギー「A」が、ぶれにより、撮影された原画像 Img'におけるその 特定の画素に相当する画素のエネルギー「Α'」へと分散したエネルギー分散比であ り、「八'」は「八 α」の他、「Α」の近傍の他の画素のエネルギーから、 α以外の分散 比(図 7における /3および γ等)により分散される画素エネルギーとの総和により構成 される。この(3)式は、「α =0. 5」(図 7)以外の α値であっても適用できることは言う までもない。また(3)式は、図 7に示すような三画素分の範囲未満またはその範囲を 超える範囲に渡り、ぶれが生じた場合にも適用できる。さらに、仮に、点像関数の重 心値 Gaが、図 7に示す「|8」または「γ」等の部分にある場合でも、(3)式は適用でき る。 [0051] 次に、原画像データ領域から復元画像データ領域の特定の画素へ、どのように画 素エネルギーを移行させるべきかを考える。ここで、復元画像データ領域に元画像デ ータ Imgを復元するのだから、元画像データ Imgの特定の画素のエネルギー「A」を 求めるために、原画像データ領域から復元画像データ領域の「A」に相当する特定の 画素へと移行するべきである。よって、(3)式より、「A=kXA'Za」を原画像データ 領域から復元画像データ領域の「A」に相当する特定の画素へと移行する。そして、「 AJに相当する画素エネルギーを原画像データ領域から除去する。このとき、全体とし て矛盾のな 、ように原画像データ領域力 画素エネルギーを除去するため、変化要 因情報のデータ Gを利用する。たとえば、「A」に相当する特定の画素を図 7に示す画 素「S」とすると、原画像データ領域の画素「S」から除去すべき画素エネルギーは「k ΧΑ'/α Χ α」、原画像データ領域の画素「S + 1」から除去すべき画素エネルギー は「kXA'Za X j8」、原画像データ領域の画素「S + 2」から除去すべき画素エネル ギ一は「kXA'Za X γ」となる。すると、これら除去した画素エネルギーの和が復元 画像データ領域の画素「S」へと移行させた画素エネルギー量「A」となる。本例では 、「k=0.8」と設定して、具体的な画素エネルギーの移行の様子を以下に述べる。 Since the center-of-gravity value “Ga” of the point spread function is the value where the energy is most concentrated, in this example, as shown in FIG. 7, “α = 0.5”. In this “α”, the energy “A” of a specific pixel in the original image data Img is dispersed into the energy “Α ′” of a pixel corresponding to the specific pixel in the original image Img ′ taken due to blurring. “8 '” is dispersed from the energy of other pixels in the vicinity of “Α” by a dispersion ratio other than α (such as / 3 and γ in FIG. 7). It consists of the sum of the pixel energy. Needless to say, this equation (3) can be applied to α values other than “α = 0.5” (Fig. 7). Equation (3) can also be applied to cases where blurring occurs over the range of less than or exceeding the range of three pixels as shown in Fig. 7. Furthermore, even if the centroid Ga of the point spread function is in a portion such as “| 8” or “γ” shown in FIG. 7, Equation (3) can be applied. [0051] Next, consider how the pixel energy should be transferred from the original image data area to a specific pixel in the restored image data area. Here, since the original image data Img is restored to the restored image data area, in order to obtain the energy “A” of a specific pixel of the original image data Img, “A” of the restored image data area is obtained from the original image data area. It should move to a specific pixel corresponding to “”. Therefore, from equation (3), “A = kXA′Za” is shifted from the original image data area to a specific pixel corresponding to “A” in the restored image data area. Then, the pixel energy corresponding to AJ is removed from the original image data area. At this time, in order to remove the original image data area force pixel energy so that there is no contradiction as a whole, the data G of the change factor information is removed. For example, if the specific pixel corresponding to “A” is the pixel “S” shown in FIG. 7, the pixel energy to be removed from the pixel “S” in the original image data area is “k ΧΑ ′ / α Χ”. α, the pixel energy to be removed from the pixel “S + 1” in the original image data area is “kXA'Za X j8”, and the pixel energy to be removed from the pixel “S + 2” in the original image data area is “ kXA'Za X γ ". Then, the sum of these removed pixel energies becomes the pixel energy amount “A” transferred to the pixel “S” in the restored image data area. In this example, a specific state of pixel energy transition will be described below by setting “k = 0.8”.
[0052] 繰り返し処理の 1回目のステップ S101に示す原画像画素エネルギー「E」が、図 8, 図 9に示されている。最初に処理する画素では、この原画像画素エネルギー Eが処 理対象のエネルギー Eであり、それに対し、ステップ S 102で点像関数の重心値 Ga  FIG. 8 and FIG. 9 show the original image pixel energy “E” shown in the first step S101 of the iterative process. In the pixel to be processed first, this original image pixel energy E is the energy E to be processed. On the other hand, in step S102, the barycentric value Ga of the point spread function
0  0
の逆数をかけて、移行画素エネルギー Fを得る。たとえば、画素「S— 3」に注目した 場合、原画像データ (撮影データ)(図 9で「E」)の点像関数の重心値 Gaは「0. 5」だ 力 、(3)式より、「0.8X60/0. 5 = 96」を原画像データ領域から復元画像データ 領域の画素「S— 3」へと移行する(ステップ S 103) (図 9では F (S— 3))。そして、原 画像データ領域から「96」の画素エネルギーを除去する。すると、復元画像データ( 図 9では R (S— 3))は「96」、「0」…となる。ここで、変化要因情報のデータ Gは、上 述のように「0. 5」「0. 3」「0. 2」であるので、原画像データ領域の画素「S— 3」からは 「96X0. 5=48」、画素「S— 2」からは「96X0. 3 = 28.8」、画素「S— 1」からは「9 6X0. 2=19. 2」が除去されるべきである(図 9では T (S— 3))。よって、原画像デ ータ領域の画素「S— 3」から「48」、画素「S— 2」から「28.8」、画素「S— 1」から「19 . 2」のエネルギーを取り去る(ステップ S 104)。このとき、原画像データ領域の各画 素の残部エネルギー量 Eは、それぞれ移行分が取り去られ、画素「S— 3」が「12」、 画素「S— 2」が「59. 7」、画素「S— 1」が「66. 3」となり、その他の画素は元のとおり「 89」「117」「105」「114」「142」となる(ステップ S105) (図 9で「E (S— 3)」)。 Multiply the inverse of to get the transition pixel energy F. For example, when focusing on the pixel “S-3”, the center of gravity Ga of the point spread function of the original image data (photographed data) (“E” in FIG. 9) is “0.5”. Then, “0.8X60 / 0.5 = 96” is transferred from the original image data area to the pixel “S-3” in the restored image data area (step S103) (F (S-3) in FIG. 9). Then, the pixel energy of “96” is removed from the original image data area. Then, the restored image data (R (S-3) in FIG. 9) becomes “96”, “0”. Here, since the data G of the change factor information is “0.5”, “0.3”, “0.2” as described above, the pixel “S-3” in the original image data area is “96X0”. 5 = 48 ”,“ 96X0.3 = 28.8 ”from pixel“ S-2 ”, and“ 9 6X0.2.1 = 29.2 ”from pixel“ S-1 ”should be removed (FIG. 9). Then T (S—3)). Therefore, pixels “S-3” to “48”, pixels “S-2” to “28.8”, and pixels “S-1” to “19” in the original image data area. 2 ”energy is removed (step S104). At this time, the remaining energy amount E of each pixel in the original image data area is removed, the pixel “S-3” is “12”, the pixel “S-2” is “59.7”, Pixel “S-1” becomes “66.3”, and other pixels become “89”, “117”, “105”, “114”, “142” (Step S105) (“E (S — 3) ").
[0053] 次に、画素「S— 2」に注目すると、現在は「59. 7」のエネルギーが処理対象のエネ ルギー Eとして残っている。上述した画素「S— 3」と同様の処理をすると、原画像デ Next, when attention is paid to the pixel “S-2”, the energy of “59.7” remains as the energy E to be processed. If the same processing as the pixel “S-3” described above is performed, the original image
0  0
ータ領域から復元画像データ領域の画素「S— 2」へ「95. 52」の画素エネルギーが 移行して(図 9では F (S— 2) )、復元画像データ領域の画素「S— 2」の復元データ R は、「95. 52」となり、復元画像データ(図 9では R (S— 2) )は「96」「95. 52」「0」· ·· となる。そして、原画像データ領域の画素「S— 2」から「47. 76」、画素「S— 1」からは 「28. 656」、画素「S」からは「19. 104」を取り去る。この結果、撮影データ、すなわ ち原画像データ領域の各画素の残部エネルギー量 Eは、それぞれ移行分が取り去 られ(図 9で「T (S— 2)」)、画素「S— 3」が「12」、画素「S— 2」が「11. 94」、画素「S 1」が「37. 644」、画素「S」が「69. 896」となり、その他の画素は元のとおり「117」 「105」「114」「142」となる(図 9で「E (S— 2)」)。  The pixel energy of “95.52” is transferred from the data area to the pixel “S-2” in the restored image data area (F (S-2) in FIG. 9), and the pixel “S—2” in the restored image data area The restored data R of “” becomes “95.52”, and the restored image data (R (S−2) in FIG. 9) becomes “96”, “95.52”, “0”,. Then, the pixels “S-2” to “47.76”, “28.656” from the pixel “S-1”, and “19.104” from the pixel “S” are removed from the original image data area. As a result, the remaining energy amount E of each pixel in the photographic data, that is, the original image data area is removed from the transition (“T (S-2)” in FIG. 9), and the pixel “S-3” Is “12”, pixel “S-2” is “11. 94”, pixel “S 1” is “37. 644”, pixel “S” is “69. 896”, and other pixels are 117, “105”, “114” and “142” (“E (S-2)” in FIG. 9).
[0054] 次に、画素「S— 1」に着目し、上述した画素「S - 3」と同様の処理をする。現在は「 37. 644」のエネルギーが処理対象のエネルギー Eとして残っている。そして、原画 Next, paying attention to the pixel “S-1”, the same processing as the above-described pixel “S-3” is performed. Currently, the energy of “37. 644” remains as energy E to be processed. And the original picture
0  0
像データ領域から復元画像データ領域の画素「S— 1」へ「60. 23」の画素エネルギ 一が移行して(図 9では F (S— 1) )、復元画像データ領域の画素「S— 1」の復元デ ータ Rは、「60. 23」となり、復元画像データ(図 9では R (S— 1) )は「96」「95. 52」 「60. 23」「0」···となる。そして、原画像データ領域の画素「S— 1」から「30. 115」、 画素「S」からは「18. 069」、画素「S + 1」からは「12. 046」を取り去る。この結果、撮 影データ、すなわち原画像データ領域の各画素の残部エネルギー量 Eは、それぞ れ移行分が取り去られ(図 9で「T (S— 1)」)、画素「S— 3」が「12」、画素「S— 2」力^ 11. 94」、画素「S— 1」が「7. 529」、画素「S」が「51. 827」、画素「S + 1」が「104. 954」となり、その他の画素は元のとおり「105」「114」「142」となる(図 9で「E (S— 1 )」)。  The pixel energy of “60.23” is transferred from the image data area to the pixel “S-1” in the restored image data area (F (S—1) in FIG. 9), and the pixel “S— The restored data R of “1” is “60.23”, and the restored image data (R (S-1) in FIG. 9) is “96” “95.52” “60.23” “0”. · Become. Then, “30. 115” is removed from the pixels “S−1”, “18.069” from the pixel “S”, and “12. 046” from the pixel “S + 1” in the original image data area. As a result, the captured data, that is, the remaining energy amount E of each pixel in the original image data area, is removed from the transition (“T (S-1)” in FIG. 9), and the pixel “S-3” is removed. "12", pixel "S-2" force ^ 11.94 ", pixel" S-1 "" 7.529 ", pixel" S "" 51. 827 ", pixel" S + 1 " “104. 954”, and the other pixels are “105”, “114”, and “142” as before (“E (S-1)” in FIG. 9).
[0055] このように、すべての画素につ 、て順次画素エネルギーを移行して 、く。そして 1回 目(n= 1)の処理では、全ての画素「S— 3」「S— 2」「S— 1」…「S +4」の原画像画素 エネルギー Eが復元画像データ領域に移動せず、原画像データ領域の各画素の残 部エネルギー量 Eが大きな値として残る。ここでの残部エネルギー量最大値「E 」( In this way, the pixel energy is sequentially shifted for all the pixels. And once In the processing of the eye (n = 1), the original image pixel energy E of all the pixels “S-3”, “S-2”, “S-1” ... “S + 4” does not move to the restored image data area, The remaining energy E of each pixel in the original image data area remains as a large value. The remaining energy maximum value “E” (
n max 画素「S +4」における「19. 02」)を制御部 4のメモリに記憶する (ステップ S 106)。そ して残部エネルギー量最大値 E が所定値 X(たとえば本例では「5」とする)未満か  n max “19.02” in the pixel “S + 4”) is stored in the memory of the control unit 4 (step S106). Whether the maximum remaining energy E is less than a predetermined value X (for example, “5” in this example).
max  max
否かの判断を行う(ステップ S 107)。以上の処理の結果、 E >Xであるから、同様  It is determined whether or not (step S107). As a result of the above processing, E> X, so the same
max  max
の画素エネルギー移行処理を第 2回目(n= 2)として行う。そしてその後、 E >Xを  The pixel energy transfer process is performed for the second time (n = 2). And then E> X
max 満足するまで (全ての画素における残部エネルギー量 E力「0」に近づくまで)、同様 の移行処理を繰り返す。  The same transition process is repeated until max is satisfied (until the remaining energy amount E force of all pixels approaches “0”).
[0056] ここで、図 9の特定の画素が、移行画素エネルギー Fを移行した結果、復元データ Rが所定の上限値を上回ってしまったり、残部エネルギー量 Eがマイナスの値となる ことがある。この状態が発生することは、移行画素エネルギー Fを不適切な値に設定 してしまっていることを意味する。そこで、以下にこのような場合であっても、全体とし て矛盾無く移行値を見直す方法を説明する。  Here, as a result of the specific pixel in FIG. 9 shifting the transition pixel energy F, the restoration data R may exceed a predetermined upper limit value, or the remaining energy amount E may be a negative value. . The occurrence of this condition means that the transition pixel energy F has been set to an inappropriate value. Therefore, the following explains how to review the transition value without any contradiction as a whole even in such a case.
[0057] (移行値の見直し方法 1)  [0057] (Transition value review method 1)
残部エネルギー量がマイナスとなる画素については復元画像データ領域に移動す べき移行画素エネルギー Fを移行せず、前回の処理の値をそのまま使用し、次回の 移行処理に供することで、その際に除去する画素エネルギーが不適切な値にならな くなることを期待する。次回は、周囲の画素の残部エネルギー量が少なくなり、今回 移行するとマイナスとなってしまう画素から除去する画素エネルギー値、すなわち抜 き去られる画素エネルギー値が今回よりも小さくなるため、残部エネルギー量が「0」 以上となる可能性が大きい。しかし、たとえば画素「S」がマイナスとなったときに前の 値をそのまま使用した場合、画素「S— 2」「S— 1」等、処理済みの画素の残部エネル ギー量が「0」に近づ 、て 、る場合は、 、つまでたっても復元されな 、ままで収束しな い。よって、この場合には、画素「S— 2」「S— 1」等の復元値の見直しを行うことが望 ましい。  Pixels with a negative residual energy amount are removed at that time by using the value of the previous process as it is without transferring the transition pixel energy F that should be moved to the restored image data area. We expect that the pixel energy will not be an inappropriate value. Next time, the remaining energy amount of the surrounding pixels will decrease, and the pixel energy value to be removed from the pixels that will become negative if it moves this time, that is, the pixel energy value to be extracted will be smaller than this time. There is a high possibility of becoming “0” or more. However, for example, if the previous value is used as it is when the pixel “S” becomes negative, the remaining energy amount of the processed pixel such as the pixels “S-2” and “S-1” is set to “0”. If you get close to it, it will not be restored even if you reach it, and it will not converge. Therefore, in this case, it is desirable to review the restoration values of the pixels “S-2” and “S-1”.
[0058] (移行値の見直し方法 2)  [0058] (Transition value review method 2)
移行後の見直し方法の考え方を図 10に示す概念図に基づいて説明する。既に復 元画像データ領域に移行した画素エネルギーの一部を補正分 (以下、補正エネルギ 一 cEという)として原画像データ領域に戻し、残部エネルギー量 Eを 0以上にする。 このとき、補正エネルギー cEは、変化要因情報のデータ Gで重畳積分して原画像デ ータ領域に戻す。すると全体として矛盾無く移行値を見直すことができる。 The concept of the review method after migration will be explained based on the conceptual diagram shown in Fig. 10. Already recovered A part of the pixel energy transferred to the original image data area is returned to the original image data area as a correction amount (hereinafter referred to as correction energy cE), and the remaining energy amount E is set to 0 or more. At this time, the correction energy cE is superimposed and integrated with the data G of the change factor information and returned to the original image data area. Then, the transition value can be reviewed without any contradiction as a whole.
[0059] 次に、上述の考えに基づいてマイナス値となった残部エネルギー量 Eを「0」にする 移行値の見直し処理について説明する。具体的には、図 3の処理ルーチンに従って 図 9の画素エネルギー移行処理を画素「S— 3」「S— 2」……「S +4」の順に行い、そ の繰り返し処理を継続させると、 3回目(図 3における n= 3のとき)の復元データ領域 の画素「S— 3」への画素エネルギー移行処理の際、原画像データ領域の画素「S— 1」の残部エネルギー量 E 1S 「ー0. 624」となる。参考として、図 3における n= 2のと きの処理の様子を図 11に、図 3における n= 3のときの処理の様子を図 12に示す(小 数点以下 3桁のみ表示する。以下図 13、図 14、図 15の説明に際して同じ。 )0そこで 、その「ー0. 624」の値を「0」にする処理について説明する。この処理においては、 図 7に示す画素エネルギーの分散の仕方により、原画像データ領域の画素「S— 1」 に影響を与える、復元画像データ領域の画素「S— 3」への移行値 (n= 3の回)が不 適切であるとの前提で以下の処理をする。以下、その処理を図 13の表に基づいて説 明する。 Next, the transition value review process for setting the remaining energy amount E, which is a negative value based on the above-described idea, to “0” will be described. Specifically, according to the processing routine of FIG. 3, the pixel energy transfer processing of FIG. 9 is performed in the order of the pixels “S-3”, “S-2” …… “S + 4”, and the repetition processing is continued. In the third time (when n = 3 in Fig. 3), the remaining energy amount E 1S "of the pixel" S-1 "in the original image data area during the pixel energy transfer process to the pixel" S-3 "in the restored data area -0.624 ". For reference, Fig. 11 shows the processing when n = 2 in Fig. 3, and Fig. 12 shows the processing when n = 3 in Fig. 3 (only three decimal places are displayed. The same applies to the description of FIG.13, FIG.14, and FIG.15.) 0 Therefore, the process of setting the value of "-0.624" to "0" will be described. In this process, the pixel energy distribution shown in Fig. 7 affects the pixel "S-1" in the original image data area, and the transition value (n The following processing is performed on the assumption that (3) is inappropriate. The process will be described below based on the table in FIG.
[0060] 原画像データ領域の画素「S— 1」の残部エネルギー量 E (=—0. 624)を「0」に するためには、復元画像データ領域における画素「S— 3」の復元データ R ( = 119. 040)から、補正エネルギー cEを原画像データ領域へ戻す。ここで、復元画像データ 領域の画素「S— 3」の画素エネルギーが、原画像データ領域における画素「S— 1」 へ分散する比は、図 7のエネルギー分散比より、「γ =0. 2」である。よって、補正ェ ネルギー cEは、 cE X γ =— Eより、 cE=— Ε / γ =— (― 0. 624) /0. 2 = 3. 1 20、となる。  [0060] In order to set the remaining energy amount E (= —0. 624) of the pixel “S-1” in the original image data area to “0”, the restored data of the pixel “S-3” in the restored image data area From R (= 119.040), the correction energy cE is returned to the original image data area. Here, the ratio in which the pixel energy of the pixel “S-3” in the restored image data area is dispersed to the pixel “S-1” in the original image data area is “γ = 0. It is. Therefore, the correction energy cE is cE = —Ε / γ = — (— 0.624) /0.2.3=1.20 from cE X γ = —E.
[0061] 復元画像データ領域の画素「S— 3」への補正エネルギー cE ( = 3. 120)は、原画 像データ領域の画素「S— 1」、「S— 2」、「S— 3」では、図 7に示すエネルギー分散比 より、以下のように画素エネルギーが分散していたとみなすことができる。  [0061] The correction energy cE (= 3.120) to the pixel “S-3” in the restored image data area is the pixel “S-1”, “S-2”, “S-3” in the original image data area. Thus, from the energy dispersion ratio shown in Fig. 7, it can be considered that the pixel energy was dispersed as follows.
(1)画素「S— 3」:分散 it力 0. 5」 力ら、 3. 120 X 0. 5 = 1. 560 (2)画素「S— 2」:分散 it力 S「0. 3」 力ら、 3. 120 X 0. 3 = 0. 936 (1) Pixel “S-3”: distributed it force 0.5 force, 3. 120 X 0.5 = 1. 560 (2) Pixel “S-2”: Distributed it force S “0.3” force, 3. 120 X 0.3 = 0. 936
(3)画素「S— 1」:分散比が「0. 2」だから、 3. 120 X 0. 2 = 0. 624  (3) Pixel “S-1”: Since the dispersion ratio is “0.2”, 3. 120 X 0.2 = 0.624
[0062] 復元画像領域の画素「S— 3」から、補正エネルギー cE ( = 3. 120)を取り去り、原 画像領域へ図 7に示すエネルギー分散比に従 、、その補正エネルギーを戻すことで 、移行値の見直し処理が終了する。移行値の見直し方法 2では、原画像データ領域 の画素「S— 1」に影響を与える、復元画像データ領域の画素「S— 3」への移行値 (n = 3の回)が不適切であるとの前提で処理をした力 原画像データ領域の画素「S— 1 」に影響を与える、復元画像データ領域の画素「S— 2」への移行値 (n= 3の回)が不 適切であるとの前提で、同様の考え方に基づ 、て処理することができる。  [0062] By removing the correction energy cE (= 3.120) from the pixel "S-3" in the restored image area and returning the correction energy to the original image area according to the energy dispersion ratio shown in FIG. The transition value review process ends. In the transition value review method 2, the transition value (n = 3 times) to the pixel “S—3” in the restored image data area, which affects the pixel “S—1” in the original image data area, is inappropriate. Force of processing on the premise that there is an improper transition value (n = 3 times) to the pixel “S—2” in the restored image data area, which affects the pixel “S—1” in the original image data area Based on the assumption that it is, it can be processed based on the same idea.
[0063] (移行値の見直し方法 3)  [0063] (Transition value review method 3)
移行値の見直し方法 3についても、移行値の見直し方法 2同様、図 3における n= 3 のときの原画像データ領域の画素「S— 1」の残部エネルギー量 E 1S 図 14の表に示 すように「ー0. 624」となるのを「0」にする。そのために、図 7に示す画素エネルギー の分散の仕方により、原画像データ領域の画素「S— 1」に影響を与える、復元画像 データ領域の画素「S— 3」および「S— 2」への移行値が不適切であるとの前提で処 理をする。以下、その処理を図 14の表に基づいて説明する。  For the transition value review method 3, as with the transition value review method 2, the remaining energy amount of the pixel “S-1” in the original image data area when n = 3 in FIG. 3 E 1S is shown in the table of FIG. In this way, set “0.624” to “0”. Therefore, the pixel energy distribution shown in Fig. 7 affects the pixels "S-3" and "S-2" in the restored image data area, which affects the pixel "S-1" in the original image data area. Processes on the assumption that the migration value is inappropriate. Hereinafter, the process will be described with reference to the table of FIG.
[0064] 原画像データ領域の画素「S— 1」の残部エネルギー量 E (=—0. 624)を「0」に するためには、復元画像データ領域における画素「S— 3」の復元データ R ( = 119. 040)から、以下の(4)式力 導かれる補正エネルギー cE を原画像データ領域へ  [0064] In order to set the remaining energy amount E (= -0.624) of the pixel "S-1" in the original image data area to "0", the restored data of the pixel "S-3" in the restored image data area From R (= 119.040), the correction energy cE derived from the following equation (4) is transferred to the original image data area:
S-3  S-3
戻す。ここで「cE 」は、復元画像データ領域における画素「S— 3」の復元データ R  return. Here, “cE” is the restored data R of the pixel “S-3” in the restored image data area.
S- 3 n の補正エネルギーであり、原画像データ領域へ戻す総エネルギーである。また、画 素「S— 2」の復元データ R ( = 105. 408)から、以下の(5)式から導かれる補正エネ ルギー cEを原画像データ領域へ戻す。ここで「cE 」は、復元画像データ領域に  This is the correction energy of S- 3 n and the total energy returned to the original image data area. Also, the correction energy cE derived from the following equation (5) is returned to the original image data area from the restored data R (= 105.408) of the pixel “S-2”. Here, “cE” is displayed in the restored image data area.
S S-2  S S-2
おける画素「S— 2」の復元データ Rの補正エネルギーであり、原画像データ領域へ 戻す総エネルギーである。  This is the correction energy for the restoration data R of the pixel “S-2” in this case, and the total energy returned to the original image data area.
[0065] cE = -Ε Χ Ρ/ (Ρ Χ γ +Q X β )……(4)  [0065] cE = -Ε Χ Ρ / (Ρ Χ γ + Q X β) …… (4)
S-3 η  S-3 η
cE = -Ε X Q/ (P X γ +Q X j8 )……(5)  cE = -Ε X Q / (P X γ + Q X j8) …… (5)
S-2 n  S-2 n
ここで、 cE : cE = P : Q、とする。「 j8」は、復元画像データ領域の画素「S— 3 」の画素エネルギー力 S、原画像データ領域における画素「S— 2」へ分散する比(図 7 )であり、「 γ」は、復元画像データ領域の画素「S— 3」の画素エネルギーが、原画像 データ領域における画素「S— 1」へ分散する比(図 7)である。 Here, cE: cE = P: Q. “J8” is the pixel “S-3” in the restored image data area. ”Is the ratio of the pixel energy force S to the pixel“ S -2 ”in the original image data area (FIG. 7), and“ γ ”is the pixel energy of the pixel“ S-3 ”in the restored image data area. This is the ratio (Fig. 7) distributed to pixel “S-1” in the original image data area.
[0066] 本例では「P:Q = 1:1」として処理を進める。この Pと Qとの比は、任意に設定できる 。たとえば、原画像データ領域の画素「S— 1」への分散比に対応して、 P:Q = γ: |8 、とすることもできる。本例では「j8 =0. 3」、「γ =0. 2」であるから、(4)式、(5)式は 、以下のようになる。 In this example, the process proceeds with “P: Q = 1: 1”. The ratio of P and Q can be set arbitrarily. For example, P: Q = γ: | 8 can be set corresponding to the dispersion ratio of the original image data area to the pixel “S−1”. In this example, “j8 = 0.3” and “γ = 0.2”, so equations (4) and (5) are as follows.
cE =-(-0.624) Χ1/(1ΧΟ. 2+1X0. 3)=1. 248  cE =-(-0.624) Χ1 / (1ΧΟ. 2 + 1X0. 3) = 1. 248
S-3  S-3
cE =-(-0.624) Χ1/(1ΧΟ. 2+1X0. 3)=1. 248  cE =-(-0.624) Χ1 / (1ΧΟ. 2 + 1X0. 3) = 1. 248
S-2  S-2
[0067] そして復元画像データ領域の画素「S— 3」および「S— 2」の補正エネルギー cE  [0067] The correction energy cE of the pixels “S-3” and “S-2” in the restored image data area
S-3 および cE ( = 1. 248)は、移行処理する前の原画像データ領域の画素「S— 3」、  S-3 and cE (= 1.248) are pixels “S-3” in the original image data area before the transfer process,
S-2  S-2
「S— 2」、「S— 1」、「S」では、図 7に示す画素エネルギーの分散の仕方により、以下 のように画素エネルギーが分散して 、たとみなすことができる。  In “S-2”, “S-1”, and “S”, the pixel energy is dispersed as follows according to the dispersion method of the pixel energy shown in FIG.
(1)画素「S— 3」:cE の分散比が「0. 5」だから、 1. 248X0. 5 = 0.624  (1) Pixel “S-3”: Since the dispersion ratio of cE is “0.5”, 1. 248X0.5 = 0.624
S-3  S-3
(2)画素「S— 2」: cE の分散比が「0. 3」、また cE の分散比が「0. 5」だから、 1  (2) Pixel “S-2”: Since the dispersion ratio of cE is “0.3” and the dispersion ratio of cE is “0.5”, 1
S-3 S-2  S-3 S-2
. 248X0. 3 + 1. 248X0. 5 = 0. 998  248X0. 3 + 1. 248X0. 5 = 0. 998
(3)画素「S— 1」: cE の分散比が「0. 2」また、 cE の分散比が「0. 3」だから、 1  (3) Pixel “S-1”: Since the dispersion ratio of cE is “0.2” and the dispersion ratio of cE is “0.3”, 1
S-3 S-2  S-3 S-2
. 248X0. 2+1. 248X0. 3 = 0.624  248X0. 2 + 1. 248X0. 3 = 0.624
(4)画素「S」:cE の分散 it力 0. 2」だ、力ら、 1. 248X0. 2 = 0. 250  (4) Pixel “S”: cE dispersion it force 0.2 ”, force et al. 1. 248X0.2 = 0.250
S-2  S-2
そして、原画像データ領域の画素「S— 3」、「S— 2」、「S— 1」、「S」にそれぞれ補正 エネルギー cE および cE を、図 14の「戻し量 1」と「戻し量 2」の和の値として戻  Then, correction energy cE and cE are respectively applied to pixels “S-3”, “S-2”, “S-1”, and “S” in the original image data area, and “return amount 1” and “return amount” in FIG. Return as the sum of 2
S-3 S-2  S-3 S-2
すことで、移行値の見直し処理が終了する。  This completes the transition value review process.
[0068] (移行値の見直し方法 4)  [0068] (Transition value review method 4)
移行値の見直し方法 4は、移行値の見直し方法 2および 3同様、図 3における n= 3 のときの原画像データ領域の画素「S— 1」の残部エネルギー量 E 1S 図 15の表に示 すように「― 0.624」となるのを「0」以上にする。そのために、原画像データ領域の画 素「S— 1」に影響を与える、前回(図 3における n= 2の回)の復元画像データ領域の 画素「S— 1」への移行値「 1. 156」が不適切であるとの前提で上述の移行値の見直 し方法 2および 3と同様の処理をする。以下、その処理を図 15の表に基づいて説明 する。 The transition value review method 4 is the same as the transition value review methods 2 and 3, but the remaining energy amount E 1S of the pixel “S-1” in the original image data area when n = 3 in FIG. 3 is shown in the table of FIG. In this way, set “-0.624” to “0” or more. For this purpose, the transition value to the pixel “S-1” in the restored image data area of the previous time (n = 2 times in FIG. 3) that affects the pixel “S-1” in the original image data area “1. Review of the above transition value on the assumption that "156" is inappropriate The same processing as in methods 2 and 3 is performed. The process will be described below based on the table in FIG.
[0069] 原画像データ領域の画素「S— 1」の残部エネルギー量 E (=—0. 624)を「0」に するためには、復元画像データ領域における画素「S— 1」の復元データ Rから、補 正エネルギー cEを原画像データ領域へ戻す。ここで、復元画像データ領域の画素「 S 1」の画素エネルギー力 原画像データ領域における画素「S— 1」へ分散する比 は、図 7のエネルギー分散比より、「α =0. 5」である。よって、補正エネルギー cEは 、 cE X γ =— Eより、 cE= -E / γ =— (― 0. 624) /0. 5 = 1. 248、となる。そ して原画像データ領域の画素「S— 1」、「S」、「S + 1」では、図 7に示す画素エネルギ 一の分散の仕方により、以下のように画素エネルギーが分散していたとみなすことが できる。  [0069] In order to set the remaining energy E (= —0.624) of the pixel “S-1” in the original image data area to “0”, the restored data of the pixel “S-1” in the restored image data area From R, the correction energy cE is returned to the original image data area. Here, the pixel energy force of the pixel “S 1” in the restored image data area is dispersed to the pixel “S-1” in the original image data area by the formula “α = 0.5” from the energy dispersion ratio in FIG. is there. Therefore, the correction energy cE becomes cE = −E / γ = — (− 0.624) /0.5=1.248 from cE X γ = —E. Then, in the pixels “S-1”, “S”, and “S + 1” in the original image data area, the pixel energy is distributed as follows according to the distribution method of the pixel energy shown in FIG. Can be considered.
(1)画素「S— 1」:分散比が「0. 5」だから、 1. 248 X 0. 5 = 0. 624  (1) Pixel “S-1”: Since the dispersion ratio is “0.5”, 1. 248 X 0.5 = 0.624
(2)画素「S」:分散 it力 0. 3」だ力ら、 1. 248 X 0. 3 = 0. 374  (2) Pixel “S”: Dispersion it force 0.3 ”, 1. 248 X 0.3 = 0.374
(3)画素「S + 1」:分散比が「0. 2」だから、 1. 248 X 0. 2 = 0. 250  (3) Pixel “S + 1”: Since the dispersion ratio is “0.2”, 1. 248 X 0.2 = 0.250
そして、復元画像領域の画素「S— 1」から、補正エネルギー cE ( = l. 248)を取り去 り、原画像領域へ図 7に示すエネルギー分散比に従い、その補正エネルギーを戻す ことで、移行値の見直し処理が終了する。この見直し方法 4の利点は、原画像データ 領域の残部エネルギー量 E力O未満になった画素と同一の画素への移行値が不適 切であるとして、移行値の見直し処理をすることができることである。  Then, the correction energy cE (= l. 248) is removed from the pixel “S-1” in the restored image area, and the correction energy is returned to the original image area according to the energy dispersion ratio shown in FIG. The value review process ends. The advantage of this review method 4 is that the transition value can be reviewed by assuming that the transition value to the same pixel as the pixel that has less than the remaining energy E force O in the original image data area is inappropriate. is there.
[0070] (他の移行値の見直し方法) [0070] (Other methods for reviewing transition values)
原画像データ領域の残部エネルギー量 E力 ^未満になる影響がある全ての画素ェ ネルギー移行処理の移行値を、上述の移行値の見直し方法 2、 3、および 4の見直し 処理の考え方に従って見直すこともできる。また、上述の移行値の見直し方法 2、 3お よび 4において、原画像データ領域の残部エネルギー量 E力 ^未満になったものを「 0」にする処理ではなぐ「0」を越える値とする処理にすることもできる。たとえば、原画 像データ領域にノイズが含まれて 、ると考えられる場合には、「0」を超える値(「0」に ノイズ分を加えた値)とする処理を行うことが好ましい。さら〖こ、上述の移行値の見直し 方法 2, 3,および 4において、図 3における n= 3のときの原画像データ領域の画素 の残部エネルギー量 Enがマイナス値となるの力 前回(n= 3のとき)以前の回の復元 画像データ領域の画素への移行値が不適切であるとの前提で移行値の見直しをす ることがでさる。 Review the transition values of all pixel energy transition processes that have the effect of remaining energy in the original image data area to be less than E ^ according to the review method of review methods 2, 3, and 4 above. You can also. In addition, in the above-mentioned transition value review methods 2, 3 and 4, the value of the remaining energy in the original image data area that is less than E force ^ is set to a value exceeding “0” in the process of setting it to “0”. It can also be processed. For example, when it is considered that noise is included in the original image data area, it is preferable to perform a process of setting a value exceeding “0” (a value obtained by adding noise to “0”). Furthermore, in the above-mentioned methods 2, 3, and 4 for reviewing the transition value, pixels in the original image data area when n = 3 in FIG. Remaining energy amount E n is a negative value Restoring the previous time (when n = 3) The transition value is reviewed on the assumption that the transition value to the pixel in the image data area is inappropriate It can be done.
[0071] 上述の移行値の見直し方法 1における「移行させな!/、処理」、または上述の移行値 の見直し方法 2, 3,または 4における「戻す処理」を、図 3に示す処理中に実行した 際の移行値の見直し方法に係る処理ルーチンを説明するための処理フロー図を図 1 6に示す。図 3の処理フローの中のステップ S105の後で、残部エネルギー量 Eがマ イナス値か否かの判断を行う(ステップ S201)。 Eがマイナス値でないなら、図 3にお けるステップ S106以降の処理を行う(ステップ S202)。 Eがマイナス値なら、上述の 移行値の見直し方法 1, 2, 3,または 4のエネルギー移行値見直し処理を行い (ステ ップ S203)、その後ステップ S202へと進む。  [0071] During the process shown in FIG. 3, the “Do not shift! /, Process” in the above-mentioned transition value review method 1 or the “return process” in the above-described transition value review method 2, 3, or 4 Figure 16 shows a processing flowchart for explaining the processing routine related to the method for reviewing the transition value when it is executed. After step S105 in the processing flow of FIG. 3, it is determined whether the remaining energy amount E is a negative value (step S201). If E is not a negative value, the processing after step S106 in FIG. 3 is performed (step S202). If E is a negative value, the transition value review method 1, 2, 3, or 4 described above is performed (step S203), and then the process proceeds to step S202.
[0072] 上述した本実施の形態に係る信号処理装置 1では、処理するに当たり、ステップ S1 04、 S107において、事前に処理回数と、残部エネルギー E力「0」に近似してきたか どうかの判断基準値のいずれか一方または両者を設定できる。たとえば処理回数とし て 20回、 50回等任意の回数を設定できる。また、処理を停止させる残部エネルギー Eが「0」に近似してきたかどうかの近似値の値を 8ビット(0〜255)中の「5」と設定し 、 5以下になったら処理を終了させたり、「0. 5」と設定し「0. 5」以下になったら処理 を終了させることができる。この設定値を任意に設定できる。処理回数と判断基準値 の両者を入力する構成とした場合、いずれか一方が満足されたときに処理は停止さ れるようにするのが好ましい。なお、両者の設定を可能としたとき、判断基準値を優先 し、所定の回数の処理では判断基準値内に入らな力つた場合、更に所定回数の処 理を繰り返すようにしても良い。  [0072] In the signal processing device 1 according to the present embodiment described above, in the processing, in steps S104 and S107, the number of processing times and the criterion value for determining whether or not the remaining energy E force has been approximated to "0" in advance. Either or both can be set. For example, the number of processing can be set to any number, such as 20 or 50 times. Also, if the remaining energy E that stops processing is set to “5” in 8 bits (0 to 255) as to whether or not the remaining energy E has approximated “0”, the processing ends when it becomes 5 or less. , “0.5” can be set and the processing can be terminated when the value falls below “0.5”. This set value can be set arbitrarily. When the configuration is such that both the number of processing times and the criterion value are input, it is preferable that the processing is stopped when either one is satisfied. Note that when both settings are possible, the determination reference value may be prioritized, and if the predetermined number of processes does not fall within the determination reference value, the predetermined number of processes may be repeated.
[0073] 本実施の形態の説明の中では、要因情報保存部 7に保存されている情報を利用せ ず、処理部 4の記録部に保存されているデータを使用した力 ここに保存されている 既知の劣化要因、たとえば光学収差やレンズのひずみなどのデータを使用するよう にしても良い。その場合、たとえば、先の例(図 3)の処理方法 (繰返しの処理)では、 ぶれの情報と光学収差の情報を合わせて 1つの劣化要因として捉えて処理を行うの が好ましいが、ぶれの情報での処理を終了した後に光学収差の情報での復元処理 を行うようにしても良い。また、この要因情報保存部 7を設置しないようにして、処理部 4に記録されて 、る撮影時の動的要因、たとえばぶれのみで画像を修正したり復元し たりしても良い。 [0073] In the description of the present embodiment, the power using the data stored in the recording unit of the processing unit 4 without using the information stored in the factor information storage unit 7 is stored here. Yes Known degradation factors such as optical aberrations and lens distortions may be used. In this case, for example, in the processing method (repetitive processing) in the previous example (repetitive processing), it is preferable to perform processing by combining the blur information and the optical aberration information as one deterioration factor. Restoration processing with optical aberration information after processing with information May be performed. In addition, the factor information storage unit 7 may not be installed, and the image may be corrected or restored only by dynamic factors at the time of shooting, such as blurring, recorded in the processing unit 4.
[0074] また、処理の繰返しの回数が信号処理装置 1側で自動的にまたは固定的に設定さ れている場合、その設定された回数を変化要因情報のデータ Gによって変更するよう にしても良い。たとえば、ある画素のデータがぶれにより多数の画素に分散している 場合は、繰返しの回数を多くし、分散が少ない場合は繰返しの回数を少なくするよう にしても良い。  [0074] If the number of repetitions of processing is set automatically or fixedly on the signal processing device 1, the set number of times may be changed by the data G of the change factor information. good. For example, when the data of a certain pixel is distributed over many pixels due to blurring, the number of repetitions may be increased, and when the dispersion is small, the number of repetitions may be decreased.
[0075] また、出力画像となる復元データ Rを生成する際、変化要因情報のデータ Gによつ ては、復元させようとする画像の領域外へ出てしまうようなデータが発生する場合があ る。このような場合、領域外へはみ出るデータは反対側へ入れる。また、領域外から 入ってくるべきデータがある場合は、そのデータは反対側から持ってくるようにしても 良い。たとえば、領域内の最も下に位置する画素 XN1のデータから、さらに下の画素 に割り振られるデータが発生した場合、その位置は領域外になる。そこで、そのデー タは画素 XN1の真上で最も上に位置する画素 XI Iに割り振られる処理をする。画素 XN1の隣の画素 N2についても同様に真上で最上覧の画素 X12 ( =画素 XI Iの隣 り)に割り振ることとなる。  [0075] Further, when generating the restoration data R to be an output image, the data G of the change factor information may generate data that goes out of the area of the image to be restored. is there. In such a case, data that protrudes outside the area is input to the opposite side. Also, if there is data that should come from outside the area, the data may be brought from the opposite side. For example, if the data assigned to the lower pixel is generated from the data of the pixel XN1 located at the bottom of the area, the position is outside the area. Therefore, the data is assigned to the pixel XI I located at the top right above the pixel XN1. Similarly, the pixel N2 adjacent to the pixel XN1 is assigned to the topmost pixel X12 (= next to the pixel XI I) just above.
[0076] この実施の形態の復元アルゴリズムでは、信号処理装置 1が有するデータ領域を小 さくできる利点がある。その理由は、復元処理に際し、必要なデータ領域は、原画像 データ領域および復元画像データ領域のみで足りるためである。また、復元処理に 際し、この実施の形態の復元アルゴリズムでは、既知の変化要因情報のデータ Gを 利用して画素エネルギーの移動を繰り返すだけだから、迅速な処理が可能となる。ま た、データ領域は、恒久的なものではなぐ一時的なデータ領域を設定した上で処理 を行っても良い。  [0076] The restoration algorithm of this embodiment has an advantage that the data area of the signal processing device 1 can be reduced. The reason is that only the original image data area and the restored image data area are necessary for the restoration process. Further, in the restoration process, the restoration algorithm of this embodiment only repeats the movement of the pixel energy using the data G of the known change factor information, so that a rapid process is possible. Also, the data area may be processed after setting a temporary data area that is not permanent.
[0077] 以上、この実施の形態における信号処理装置 1について説明したが、本発明の要 旨を逸脱しない限り種々変更実施可能である。たとえば、処理部 4で行った処理は、 ソフトウェアで構成している力 それぞれ、一部の処理を分担して行うようにした部品 力もなるハードウェアで構成しても良い。また、変化要因情報のデータ Gとしては、劣 化要因情報のデータのみではなぐ単に画像を変化させる情報や、劣化とは逆に、 画像を良くする情報を含むものとする。さらに、繰り返しの処理の際、各画素が各々 有する残部エネルギー量 Eの値の最大値 E と所定値 (X)との比較を行わずに、そ Although the signal processing apparatus 1 in this embodiment has been described above, various modifications can be made without departing from the gist of the present invention. For example, the processing performed by the processing unit 4 may be configured by hardware that also has a component power that is configured to share a part of processing for each of the power configured by software. In addition, the change factor information data G is inferior. It includes information that simply changes the image, not just the data of the conversion factor information, and information that improves the image as opposed to deterioration. Further, in the repeated processing, the maximum value E of the remaining energy amount E that each pixel has is not compared with the predetermined value (X), and the comparison is made.
n max  n max
の残部エネルギー量 Eの平均値または総和値との比較を行うことができる。そうする ことにより、処理速度が向上する。さらに、各画素が各々有する残部エネルギー量 E の値の最大値 E 、平均値または総和値のうちの複数と、これらの値それぞれに対  The remaining energy amount E can be compared with the average value or the total value. By doing so, the processing speed is improved. Furthermore, the maximum value E, the average value, or the total value of the remaining energy amount E that each pixel has, and each of these values.
max  max
応する複数の所定値との比較を行うこともできる。  Comparison with a plurality of corresponding predetermined values can also be performed.
[0078] また、繰返しの処理の回数が信号処理装置 1側で自動的にまたは固定的に設定さ れている場合、その設定された回数を変化要因情報のデータ Gによって変更するよう にしても良い。たとえば、ある画素のデータがぶれにより多数の画素に分散している 場合は、繰り返しの処理回数を多くし、分散が少ない場合は繰り返しの処理回数を少 なくするようにしても良い。  [0078] Also, when the number of repetition processing is set automatically or fixedly on the signal processing device 1, the set number of times may be changed by the data G of the change factor information. good. For example, when the data of a certain pixel is distributed to a large number of pixels due to blurring, the number of iterations may be increased, and when the variance is small, the number of iterations may be reduced.
[0079] 上述の実施の形態では、復元対象を画像データとして 、る。しかし、これらの復元 処理の考え方および手法ならびに見直し方法は、あらゆるデータの復元処理に適用 できる。たとえば、音声データの復元、地震波データの復元等への適用が可能であ る。また、上述の実施の形態では、画像データの各場所で同じようにぶれる例を示し た力 画素の位置によって異なるぶれとなる画像や、ガンマ補正のように非線形なも のにも、これらの考え方および手法ならびに見直し方法を適用することができる。  In the above-described embodiment, the restoration target is taken as image data. However, these restore processing concepts and methods and review methods can be applied to any data restoration process. For example, it can be applied to restoration of audio data and earthquake wave data. Further, in the above-described embodiment, these ideas are applied to an image that varies depending on the position of the power pixel shown in the example where the image data is blurred in each place, and a non-linear image such as gamma correction. And methods and review methods can be applied.
[0080] また、上述した各処理方法や見直し方法は、プログラム化されても良!、。また、プロ グラム化されたものが記憶媒体、たとえば CD (Compact Disc) DVD, USB (Universa 1 Serial Bus)メモリに入れられ、コンピュータによって読みとり可能とされても良い。こ の場合、信号処理装置 1は、その記憶媒体内のプログラムを読み込む手段を持つこ ととなる。さらには、そのプログラム化されたものが信号処理装置 1の外部のサーバに 入れられ、必要によりダウンロードされ、使用されるようにしても良い。この場合、信号 処理装置 1は、その記憶媒体内のプログラムをダウンロードする通信手段を持つこと となる。  [0080] Each processing method and review method described above may be programmed! Further, the program may be stored in a storage medium such as a CD (Compact Disc) DVD or a USB (Universa 1 Serial Bus) memory so that it can be read by a computer. In this case, the signal processing apparatus 1 has means for reading a program in the storage medium. Further, the program may be put into a server outside the signal processing device 1 and downloaded and used as necessary. In this case, the signal processing device 1 has communication means for downloading the program in the storage medium.

Claims

請求の範囲 The scope of the claims
[1] 劣化等の変化が生じた原信号のデータ (以下、変化データと 、う。)から、変化する 前の信号もしくは本来取得されるべきであった信号またはそれらの近似信号のデー タ(以下、元信号データと 、う)の復元をする処理部を有する信号処理装置にぉ 、て 上記変化データが格納される変化データ領域と、毎回の復元処理毎にその復元処 理された信号のデータ(以下、復元データという。)が格納される復元データ領域とを 設け、上記処理部が、上記変化データのエネルギーを、変化の要因となる変化要因 情報データを利用して、上記変化データ領域から上記復元データ領域へと移行させ 、上記復元データを生成し、その移行により残存する上記変化データ領域の残部デ ータを、上記変化データに置き換えて同様の処理を繰り返す繰り返し処理を行 ヽ、 上記繰り返し処理の過程で上記残部データのエネルギー値が零未満となる場合に、 既に上記復元データ領域へと移行した上記エネルギーの一部を、上記変化要因情 報を利用して、上記残部データのエネルギー値が零以上となるよう上記変化データ 領域へと戻す処理を行!、ながら上記繰り返し処理を進行させ、上記繰り返し処理終 了時の上記復元データ領域に形成されるデータを上記元信号データとすることを特 徴とする信号処理装置。  [1] From the original signal data (hereinafter referred to as “change data”) in which changes such as deterioration have occurred, the signal before the change, the signal that should have been originally acquired, or the data of those approximate signals ( Hereinafter, the signal processing apparatus having the processing unit for restoring the original signal data)), the change data area in which the change data is stored, and the signal of the restored signal for each restoration process. A restoration data area in which data (hereinafter referred to as restoration data) is stored, and the processing unit uses the change factor information data that causes the change data to use the energy of the change data. Is transferred to the restored data area, the restored data is generated, the remaining data of the changed data area remaining by the migration is replaced with the changed data, and the same processing is repeated. When the energy value of the remaining data becomes less than zero during the above repeated processing, a part of the energy already transferred to the restored data area is used by using the change factor information. Thus, the process of returning to the change data area is performed so that the energy value of the remaining data becomes zero or more! The data is formed in the restored data area when the repetition process is completed while the repetition process is completed. A signal processing device characterized in that the original signal data is used.
[2] 前記残部データのエネルギー値が零未満となる場合に、その値が零以上となるよう に処理することを特徴とする請求項 1記載の信号処理装置。  2. The signal processing device according to claim 1, wherein when the energy value of the remaining data is less than zero, processing is performed so that the value becomes zero or more.
[3] 前記繰返し処理の際、その繰返しの都度前記復元データ領域へ移行する前記ェ ネルギーを既に前記復元データ領域に格納された前記復元データに加算する処理 をし、前記残部データのエネルギー値を零以上の範囲で零に近づける処理を行うこ とを特徴とする請求項 1または 2記載の信号処理装置。 [3] At the time of the iterative process, the energy that shifts to the restored data area is added to the restored data that has already been stored in the restored data area, and the energy value of the remaining data is calculated. 3. The signal processing device according to claim 1, wherein processing for approaching zero in a range of zero or more is performed.
[4] 複数の要素力 なる変化データから、複数の要素力 なる元信号データの復元を する処理部を有する信号処理装置にお!ヽて、 [4] A signal processing apparatus having a processing unit for restoring original signal data having a plurality of element forces from change data having a plurality of element forces.
上記変化データが格納される変化データ領域と、毎回の復元処理毎にその復元処 理された信号のデータ(以下、復元データという。)が格納される復元データ領域とを 設け、上記処理部が、上記変化データの一の要素における要素エネルギーを、変化 の要因となる変化要因情報データが有する応答特性関数の重心値を利用して、上 記変化データ領域から上記復元データ領域へと移行させ、上記移行させた上記要 素エネルギーに相当する要素エネルギーを、上記変化データ領域から変化要因情 報データを利用して除外する処理を行い、またこの一の要素に対する処理を他の要 素についても順次行い、上記復元データ領域に上記復元データを生成し、上記除 外により残存する上記変化データ領域の残部データを、上記変化データに置き換え て同様の処理を各要素毎に繰り返し、その繰り返しの都度上記復元データ領域へ移 行する上記要素エネルギーを上記復元データに加算して、新たな復元データを生成 する処理を行い、これら一連の処理の過程で、上記残部データのいずれかの要素ェ ネルギー値が零未満となる場合に、既に上記復元データ領域へと移行した要素エネ ルギ一の一部を、上記変化要因情報を利用して、上記零未満となる要素エネルギー 値が零以上となるよう上記変化データ領域へと戻す処理を行いながら上記一連の処 理を進行させ、上記残部データを零以上の範囲で零に近づける処理を行い、処理終 了時の上記復元データ領域に形成される上記復元データを上記元信号データとす ることを特徴とする信号処理装置。 A change data area in which the change data is stored, and a restoration data area in which the data of the restored signal (hereinafter referred to as restoration data) is stored for each restoration process. , Change the element energy in one element of the above change data, Using the centroid value of the response characteristic function included in the change factor information data that causes the change factor information, the shift is made from the change data region to the restored data region, and the element energy corresponding to the transferred element energy is calculated. The process of excluding the change factor information data from the change data area is performed, the process for this one element is also sequentially performed for other elements, and the restore data is generated in the restore data area. The remaining data of the change data area remaining after the exclusion is replaced with the change data, and the same processing is repeated for each element, and the element energy transferred to the restoration data area is repeated each time it is repeated. In addition to the above, a process for generating new restored data is performed, and in the course of these series of processes, any element element of the remaining data is processed. When the energy value is less than zero, the element energy value that is less than zero is greater than or equal to zero by using the change factor information for a part of the element energy that has already moved to the restored data area. The above-mentioned series of processing is performed while performing processing to return to the change data area, and the remaining data is processed to approach zero in a range of zero or more, and is formed in the restored data area at the end of processing. A signal processing apparatus, wherein the restored data is the original signal data.
[5] 前記処理部は、前記復元データの生成の際、前記残部データのエネルギー値が、 零以上の範囲の所定値以下または上記所定値より小さくなつたら、停止させる処理を 行うことを特徴とする請求項 1から 4のいずれか 1項に記載の信号処理装置。  [5] The processing unit performs a process of stopping when the energy value of the remaining data is equal to or less than a predetermined value in a range of zero or more or smaller than the predetermined value when generating the restored data. The signal processing device according to any one of claims 1 to 4.
[6] 前記処理部は、前記復元データの生成の際、前記復元データを生成する回数が 所定回数となったら停止させる処理を行うことを特徴とする請求項 1から 4のいずれか 1項に記載の信号処理装置。  6. The processing unit according to any one of claims 1 to 4, wherein, when generating the restored data, the processing unit performs a process of stopping when the number of times the restored data is generated reaches a predetermined number. The signal processing apparatus as described.
[7] 前記処理部は、前記復元データの生成の際、前記復元データを生成する回数が 所定回数に到達したときの前記残部データのエネルギー値が零以上の範囲の所定 値以下または上記所定値より小さ!/、場合は停止し、上記所定値より超えるまたは上 記所定値以上の場合は、さらに所定回数繰り返す処理を行うことを特徴とする請求 項 1から 4のいずれか 1項に記載の信号処理装置。  [7] In the generation of the restoration data, the processing unit is configured to generate the restoration data at a predetermined number of times, or when the number of times the restoration data is generated reaches a predetermined number, 5. The process according to any one of claims 1 to 4, characterized in that if it is smaller than /, it stops, and if it exceeds the predetermined value or exceeds the predetermined value, it repeats a predetermined number of times. Signal processing device.
[8] 複数の要素力 なる変化データから、複数の要素力 なる元信号データの復元を する処理部を有する信号処理装置にお!ヽて、 上記変化データが格納される変化データ領域と、毎回の復元処理毎にその復元処 理された信号のデータ(以下、復元データという。)が格納される復元データ領域とを 設け、上記処理部が、上記変化データの一の要素におけるエネルギーを、変化の要 因となる変化要因情報データを利用して、上記変化データ領域から上記復元データ 領域へと移行させ、上記移行させた上記エネルギーに相当するエネルギーを、上記 変化データ領域力 上記変化要因情報データを利用して除外する処理を行い、また 上記一の要素に対する処理を他の全ての要素についても順次行い、上記復元デー タ領域に上記復元データを生成し、その移行により残存する上記変化データ領域の 残部データの値が零以上の範囲の所定値以下または上記所定値より小さい場合は 処理を停止し、上記復元データを上記元信号データとして扱い、上記残部データの 値力 上記所定値より大きいまたは上記所定値以上の場合は、上記残部データを上 記変化データに置き換えて同様の処理を繰り返し、その繰り返しの都度上記復元デ ータ領域へ移行する上記要素エネルギーを上記復元データに加算して、新たな復 元データを生成する処理を行 、、上記残部データのうち 、ずれかの要素エネルギー 値が零未満となる場合は、既に上記復元データ領域へと移行した要素エネルギーの 一部を、上記変化要因情報を利用して、上記残部データの零未満となる要素エネル ギー値が零以上となるよう上記変化データ領域へと戻す処理を行いつつ上記残部デ ータ量と上記所定値との比較を行うことを特徴とする信号処理装置。 [8] A signal processing apparatus having a processing unit for restoring original signal data having a plurality of element forces from change data having a plurality of element forces. A change data area in which the change data is stored, and a restoration data area in which the data of the restored signal (hereinafter referred to as restoration data) is stored for each restoration process. The energy in one element of the change data is transferred from the change data area to the restored data area using the change factor information data that causes the change, and corresponds to the transferred energy. The energy is excluded from the change data area power using the change factor information data, and the process for the one element is sequentially executed for all the other elements, and the restoration data area is restored to the restoration data area. If the value of the remaining data in the change data area remaining after the transition is less than or equal to a predetermined value in the range of zero or more or smaller than the predetermined value The processing is stopped, the restored data is treated as the original signal data, and the remaining data value is greater than the predetermined value or greater than or equal to the predetermined value, the same processing is performed by replacing the remaining data with the change data. Each time, the element energy that shifts to the restoration data area is added to the restoration data to generate new restoration data, and any of the remaining data is shifted. When the element energy value is less than zero, the element energy value that is less than zero in the remaining data is obtained by using a part of the element energy that has already been transferred to the restored data area, using the change factor information. A signal processing apparatus, wherein the remaining data amount is compared with the predetermined value while performing the process of returning to the change data area so as to achieve the above.
[9] 前記処理部は、前記復元データの生成の際、前記復元データを生成する回数が 所定回数となったら停止させる処理を行うことを特徴とする請求項 8記載の信号処理 装置。  9. The signal processing device according to claim 8, wherein the processing unit performs a process of stopping when the restoration data is generated when the number of times the restoration data is generated reaches a predetermined number.
[10] 前記処理部は、前記復元データの生成の際、各要素が各々有する前記残部デー タの値の最大値、平均値または総和値のうちの一つまたは複数について、前記所定 値との比較を行うことを特徴とする請求項 8記載の信号処理装置。  [10] When the restoration data is generated, the processing unit determines whether one or more of a maximum value, an average value, or a sum value of the remaining data values of each element has the predetermined value. 9. The signal processing apparatus according to claim 8, wherein comparison is performed.
[11] 前記戻す処理は、前記復元データの生成が 1回または複数回行われる場合に、前 記残部データの前記いずれかの要素エネルギー値が零未満となったその回以前に 前記復元データ領域へ移行した要素エネルギーを対象として行うことを特徴とする請 求項 4または 8に記載の信号処理装置。 前記信号のデータを画像のデータとしたことを特徴とする請求項 1から 11のいずれ 1項に記載の信号処理装置。 [11] In the restoration process, when the restoration data is generated once or a plurality of times, the restoration data area is generated before the time when any one of the element energy values of the remaining data becomes less than zero. 9. The signal processing device according to claim 4 or 8, wherein the signal processing device is applied to the element energy transferred to the target. 12. The signal processing apparatus according to claim 1, wherein the signal data is image data.
PCT/JP2007/054547 2006-04-24 2007-03-08 Signal processing apparatus WO2007122883A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200780008768.1A CN101401417B (en) 2006-04-24 2007-03-08 Image processing apparatus
JP2008512003A JP4982484B2 (en) 2006-04-24 2007-03-08 Signal processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-119467 2006-04-24
JP2006119467 2006-04-24

Publications (1)

Publication Number Publication Date
WO2007122883A1 true WO2007122883A1 (en) 2007-11-01

Family

ID=38624797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054547 WO2007122883A1 (en) 2006-04-24 2007-03-08 Signal processing apparatus

Country Status (3)

Country Link
JP (1) JP4982484B2 (en)
CN (1) CN101401417B (en)
WO (1) WO2007122883A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317824A (en) * 1993-05-06 1994-11-15 Nikon Corp Camera shake correction camera
JPH1124122A (en) * 1997-07-03 1999-01-29 Ricoh Co Ltd Method and device for correcting camera shake image, and recording medium with recorded program for executing the same method by computer and capable of being read by computer
JP2002300459A (en) * 2001-03-30 2002-10-11 Minolta Co Ltd Image restoring device through iteration method, image restoring method and its program, and recording medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060916A (en) * 2001-08-16 2003-02-28 Minolta Co Ltd Image processor, image processing method, program and recording medium
JP3867680B2 (en) * 2003-04-01 2007-01-10 ソニー株式会社 Imaging apparatus and camera shake correction method
JP4634752B2 (en) * 2004-07-09 2011-02-16 Hoya株式会社 Camera with image blur correction function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317824A (en) * 1993-05-06 1994-11-15 Nikon Corp Camera shake correction camera
JPH1124122A (en) * 1997-07-03 1999-01-29 Ricoh Co Ltd Method and device for correcting camera shake image, and recording medium with recorded program for executing the same method by computer and capable of being read by computer
JP2002300459A (en) * 2001-03-30 2002-10-11 Minolta Co Ltd Image restoring device through iteration method, image restoring method and its program, and recording medium

Also Published As

Publication number Publication date
JPWO2007122883A1 (en) 2009-09-03
CN101401417A (en) 2009-04-01
CN101401417B (en) 2011-05-04
JP4982484B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5007241B2 (en) Image processing device
JP3895357B2 (en) Signal processing device
JP2011059813A (en) Image processing apparatus, photographing device and program
US7903897B2 (en) Image processing apparatus
JP5133070B2 (en) Signal processing device
JP4885150B2 (en) Image processing device
US20230308760A1 (en) Method and apparatus for implementing a digital graduated filter for an imaging apparatus
JP4926450B2 (en) Image processing device
WO2007122883A1 (en) Signal processing apparatus
JP4602860B2 (en) Image processing device
JP4598623B2 (en) Image processing device
JP5005319B2 (en) Signal processing apparatus and signal processing method
JP4606976B2 (en) Image processing device
JP4629537B2 (en) Image processing device
JP4763419B2 (en) Image processing device
JP4718618B2 (en) Signal processing device
JP5007234B2 (en) Image processing device
WO2007032148A1 (en) Image processor
JP2007116332A (en) Image processing apparatus
WO2007077733A1 (en) Image processing device
JP5007245B2 (en) Signal processing device
JP5005553B2 (en) Signal processing device
JP4629622B2 (en) Image processing device
JP4974176B2 (en) Method for generating data of change factor information and signal processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008512003

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780008768.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738038

Country of ref document: EP

Kind code of ref document: A1