WO2007122854A1 - Magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device Download PDF

Info

Publication number
WO2007122854A1
WO2007122854A1 PCT/JP2007/053390 JP2007053390W WO2007122854A1 WO 2007122854 A1 WO2007122854 A1 WO 2007122854A1 JP 2007053390 W JP2007053390 W JP 2007053390W WO 2007122854 A1 WO2007122854 A1 WO 2007122854A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic resonance
magnetic field
image
inspection object
imaging apparatus
Prior art date
Application number
PCT/JP2007/053390
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Kurokawa
Yo Taniguchi
Hisaaki Ochi
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2008511985A priority Critical patent/JP4832510B2/en
Publication of WO2007122854A1 publication Critical patent/WO2007122854A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention uses a movable table in an inspection apparatus (MRI: Magnetic Resonance Imaging) using nuclear magnetic resonance, and uses a movable table to image a field of view larger than the imageable area limited in the apparatus. More particularly, the present invention relates to an image reconstruction method in the imaging technique.
  • MRI Magnetic Resonance Imaging
  • An MRI system causes nuclear magnetic resonance to occur in hydrogen nuclei contained in a tissue to be examined placed in a static magnetic field space, and obtains a tomographic image of the examination object from the generated nuclear magnetic resonance signal.
  • Device In the MRI system, the area where signals can be acquired is limited to the static magnetic field space. Conventionally, only a relatively small area can be imaged, but in recent years it has become possible to perform whole-body imaging by moving the table. A new development of whole-body screening using is being started.
  • Non-Patent Document 1 multi-station imaging
  • Patent Document 1 moving table imaging
  • sub FOV limited field of view
  • Multi-station imaging is an imaging method in which the whole body is divided into sub FOVs and the whole images are created by joining these images.
  • the shooting with each sub FOV is the same as the normal shooting method, so there is an advantage that it is easy to apply the conventional shooting technique, but the image is connected at the part where it is connected due to the static magnetic field inhomogeneity and the gradient magnetic field nonlinearity.
  • Disadvantages are that the distortion and joints are not smooth, and that shooting is not possible while the table is moving. If the field of view in the table movement direction is narrow, the number of times that the table is moved after interruption is increased, and the shooting time becomes longer, which is a problem.
  • the moving table imaging method is an imaging method in which a signal is acquired while moving the table, and the lead-out direction must be the moving direction of the table.
  • the lead-out direction must be the moving direction of the table.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-135429
  • Non-Patent Document 1 Thomas K. F. Foo'Vincent B. Ho, Maureen N. Hood, Hani B. Marcos, Sandra L. Hess, and Peter L. Choyke, Radiology. 2001: 219: 835—841.
  • Patent Document 2 David G. Kruger, Stephen J. Riederer, Roger C. Grimmk, and Phillip J. Rossman, Magn. Reson. Med. 2002: 47: 224-231.
  • the shooting time is almost proportional to the number of phase encodes, and is less affected by the number of samples in the frequency encode direction. Therefore, it takes the same time to acquire data for one sub FOV when the sub FOV is narrow or wide in the table movement direction, and when the sub FOV is narrow in the table movement direction, the shooting time of the enlarged field of view is long. become longer.
  • the present invention obtains a signal by applying an encoding by a gradient magnetic field in the table moving direction, and calculates a magnetic distribution of an inspection object from a nuclear magnetic resonance signal measured by actual imaging using apparatus characteristic data.
  • a new imaging method that reconstructs an image by independently obtaining the imaginary part of the real part by approximation, so that even if the sub FOV in the table moving direction is narrow, the total FOV image can be obtained.
  • the objective is to provide an MRI system that can capture images in a short time.
  • the MRI apparatus of the present invention receives a nuclear magnetic resonance signal a plurality of times while moving a table (moving means), applies a gradient magnetic field in the direction of table movement before reception, and stores data every time data is acquired. Change the applied amount (strength and application time) of the gradient magnetic field in the bull movement direction. Encoding with this gradient magnetic field in the direction of table movement is a new encoding (referred to as sliding phase encoding (SPE)) in which one series of phase encoding is performed at different positions to be inspected, unlike conventional phase encoding. As with conventional encoding, it is impossible to apply the Fourier transform to image reconstruction.
  • SPE sliding phase encoding
  • the magnetization distribution of the total FOV in the inspection object is reconstructed by obtaining the magnetic field distribution by approximation independently of the real part imaginary part based on the relational expression between the received signal and the magnetization distribution. To do.
  • Device characteristic data such as gradient magnetic field nonlinearity, static magnetic field inhomogeneity, irradiation coil excitation distribution, and reception coil sensitivity distribution are used in the relational expression between the received signal and the magnetization distribution.
  • the MRI apparatus of the present invention performs measurement of nuclear magnetic resonance signals (hereinafter referred to as apparatus characteristic measurement and! / ⁇ ⁇ ) to obtain the apparatus characteristics, and the apparatus characteristics calculated from the measured nuclear magnetic resonance signal values. Image reconstruction is performed using the data.
  • the measurement of the device characteristic data may be performed separately from the measurement of the nuclear magnetic resonance signal for obtaining the magnetization distribution of the inspection object (hereinafter referred to as main imaging), or may be performed simultaneously with the main imaging.
  • device characteristics are measured by the multi-station imaging method. That is, the moving means is moved between a plurality of stations, and the apparatus characteristic measurement is executed at each station of the moving means.
  • a part of the nuclear magnetic resonance signal measured in the main imaging can also be used as a signal for obtaining device characteristic data.
  • the MRI apparatus of the present invention can be applied to both a vertical magnetic field type and a horizontal magnetic field type. Since sliding phase encoding can be performed independently of frequency encoding and phase encoding, it can be applied to 2D, 3D, and multi-slice imaging.
  • the sliding phase encoding for the sub FOV is reduced correspondingly. Can do.
  • the time required to encode the unit distance in the table movement direction is almost constant, so that high-speed shooting can be performed regardless of the length of the sub FOV in the table movement direction.
  • the magnetic phase distribution is obtained by approximation based on the relational expression between the received signal and the magnetization distribution, and the real part imaginary part is obtained by approximation. Even if encoding is performed, the image including the phase can be reconstructed, and even when the phase of the magnetic field distribution is disturbed, the image quality equivalent to that of conventional moving table imaging can be obtained.
  • approximate device characteristic data can be easily obtained in a relatively short time by measuring device characteristic data required for reconstruction by a multi-station imaging method. it can. Further, by performing the apparatus characteristic data simultaneously with the main photographing, it is possible to save time for acquiring the apparatus characteristic data and to perform the entire photographing at a high speed.
  • FIG. 1 (a) and (b) Each is an overview of a horizontal magnetic field type MRI apparatus and a vertical magnetic field type MRI apparatus.
  • the MRI apparatus of the present invention can also be applied to misaligned type MRI apparatuses.
  • a horizontal magnetic field type MRI apparatus employs a solenoid type static magnetic field magnet 101 that generates a static magnetic field in the horizontal direction, and the object 103 is lying on the table 301 and placed in the bore of the magnet. Carry in and take a picture.
  • a pair of static magnetic field magnets 101 are arranged above and below the space in which the subject 103 is placed, and the subject 103 is carried into the static magnetic field space while being laid down on the table 301.
  • the arrow r indicates the moving direction of the table.
  • the horizontal magnetic field type MRI apparatus shown in (a) it coincides with the static magnetic field direction force ⁇ direction.
  • the moving direction of the table is a direction orthogonal to the static magnetic field direction.
  • FIG. 2 is a block diagram showing a schematic configuration of the MRI apparatus, and the same components as those in FIG. 1 are denoted by the same reference numerals.
  • a static magnetic field space (imaging space) generated by the static magnetic field magnet 101
  • a shim coil 112 for increasing the uniformity of the static magnetic field
  • a gradient magnetic field coil 102 for imparting a gradient to the static magnetic field
  • An irradiation coil 107 for generating a high-frequency magnetic field that excites an atomic nucleus (usually proton) that constitutes a (human) tissue
  • a receiving coil 114 for detecting a nuclear magnetic resonance signal generated from an examination object Etc.
  • the table 301 that places the subject 103 on the bed is controlled by the table control device 302, and the subject 103 is carried into the imaging space and moved in the space.
  • the table controller 302 can control and monitor the speed and position of the table.
  • the shim coil 112, the gradient magnetic field coil 102, the irradiation coil 107, and the reception coil 114 are connected to the shim power source 113, the gradient magnetic field power source 105, the high-frequency magnetic field generator 106, and the receiver 108, respectively.
  • the operation is controlled by 104.
  • the sequencer 104 performs control such that these devices operate at preprogrammed timing and intensity (pulse sequence), and performs control such as starting a pulse sequence in accordance with the drive of the table control device.
  • the MRI apparatus includes a computer 109, a display 110, a storage medium 111, and the like as a signal processing system.
  • the high frequency magnetic field generated by the high frequency magnetic field generator 106 is applied to the inspection object 103 through the irradiation coil 107.
  • the nuclear magnetic resonance signal generated from the inspection object 103 is received by the receiving coil 114 and detected by the receiver 108. Base of detection
  • the quasi nuclear magnetic resonance frequency is set by the sequencer 104.
  • the detected signal is sent to the computer 109 where signal processing such as image reconstruction is performed. In the present invention, in addition to calculations such as normal correction calculation and Fourier transform, image reconstruction calculation unique to moving table shooting described later is performed.
  • the processing result of the computer 109 is displayed on the display 110 and recorded on the storage medium 111.
  • the storage medium 111 can store a detected signal and measurement conditions as necessary.
  • Fig. 3 shows the relationship between the field of view (sub FOV) at the time of one signal acquisition and the wide field of view intended for imaging (in this case, the total FOV of the subject), and Fig. 4 shows the procedure for imaging and image reconstruction processing. Show.
  • moving table imaging imaging is performed while moving the table 301 (inspection object 103) in the direction of the arrow 303 as shown in FIG.
  • the receiving coil 114 a receiving coil fixed in the apparatus as shown in FIG. 3 is used.
  • the field of view (sub FOV) 304 at the time of signal acquisition can be set arbitrarily, but optimally, it should be set to the same size as the area where a sufficiently large signal can be received.
  • the field of view at the time of signal acquisition is limited, the field of view (total FOV) 305 such as the whole body is captured by moving while moving the table 301. Shooting is possible in both 2D and 3D, and the sliding phase encoding direction is set to the table moving direction.
  • the cross section is not limited as long as the cross section includes an axis in the table moving direction that can be either a coronal plane or a sagittal plane.
  • the lead-out direction is selected in a direction perpendicular to the table moving direction.
  • the force described in 2D is increased by one encoding other than the sliding phase encoding.
  • the imaging is performed by step 601 (device characteristic measurement) for acquiring device characteristic data 604, step 602 (main imaging) for acquiring data 605 to be inspected, And step 603 for calculating the reconstructed image 606 to be inspected using the characteristic data and the inspection target data.
  • step 601 device characteristic measurement
  • step 602 main imaging
  • step 603 for calculating the reconstructed image 606 to be inspected using the characteristic data and the inspection target data.
  • Device characteristic data includes gradient magnetic field non-linearity, static magnetic field non-uniformity, excitation coil excitation distribution, reception It is useful for the sensitivity distribution of the coil.
  • gradient magnetic field non-linearity hardly depends on the subject, so there is no need to acquire it every time, and data measured by other measurements such as imaging using a phantom is stored in a storage medium in advance.
  • apparatus characteristic data relating to powerful signal intensity and phase such as signal intensity distribution due to non-uniform static magnetic field, excitation distribution of irradiation coil 107 and sensitivity distribution of reception coil 114 are obtained. Take a picture.
  • FIG. 4 (b) The details of the apparatus characteristic measurement step 601 are shown in FIG. 4 (b). As shown in the figure, this imaging is performed by multi-station imaging by moving the table between stations and repeating the steps of RF transmission and reception at each station to obtain image data of each station (step 63 Do in this case)
  • a well-known 2D imaging method or 3D imaging method can be adopted for the device characteristics data generally changes smoothly, so low-resolution imaging is sufficient, and imaging time can be shortened.
  • the device characteristic data can be obtained by dividing by the uniform image of the image otal FOV obtained at each station.
  • a uniform image is an image obtained when the coil sensitivity is uniform, and a uniform image of total FOV can be created by combining the images of each station (step 632, 633).
  • the sub FOV for obtaining device characteristic data is set sufficiently large so as to cover the entire range in which signal acquisition is possible as shown in FIG. .
  • some sub FOVs are overlapped between stations. This makes it easy to synthesize uniform images and interpolate device characteristic data.
  • another coil such as a body coil!
  • image data is obtained by photographing at each station, a uniform image of total FOV is synthesized from the images obtained at each station. Next, the image obtained at each station is replaced with a uniform image of this total FOV, and the signal intensity distribution due to the static magnetic field inhomogeneity in the positional relationship between the subject and the coil at each station, the excitation distribution of the irradiation coil, Receive Obtain device characteristic data that matches the sensitivity distribution of the file. In this calculation, if necessary, a low-pass filter is applied to the obtained image, or an area without a subject is masked. This makes it possible to acquire device characteristic data stably against noise.
  • the device characteristic data acquired in this way is data for each station.
  • device characteristic data at each position of the subject that changes continuously in the main imaging is required.
  • the device characteristic data at the nearest station may be used, but it is preferably created by interpolating the device characteristic data between the stations.
  • step 602 shows the procedure for the actual shooting
  • Fig. 6 (b) shows the procedure for image reconstruction.
  • step 602 as shown in detail in FIG. 6 (a), the table is first moved (step 607).
  • R F is transmitted and received (step 608).
  • RF transmission / reception is repeated until the table is moved to cover the total FOV (step 609).
  • the data acquisition is terminated (step 610).
  • the table movement range for covering the total FOV is the inspection object 103 and the table position 301 drawn with a solid line from the subject and table position drawn with a broken line. Up to is the movement range to cover the total FOV.
  • the front force table is moved from the moving range as a run-up zone so that the table can be moved at a constant speed, and data is acquired at a position where one end of the total FOV is the center of the signal acquisition area. Acquisition starts, and data acquisition ends when the other end of the total FOV reaches the center of the signal acquisition area.
  • the table position is detected by the table controller 302 and the information is sent to the sequencer.
  • FIG. 7 shows an example of a pulse sequence employed in step 608 for imaging.
  • RF represents an excitation radio frequency pulse
  • Gs represents a slice selective gradient magnetic field
  • Gp represents a sliding phase encoding gradient magnetic field
  • Gr represents a readout gradient magnetic field.
  • This pulse sequence is similar in appearance to a general 2D gradient echo pulse sequence.
  • the force Gp axis coincides with the table movement direction, and the acquisition position differs in the table movement direction. It differs in that the gradient magnetic field is applied by changing the applied amount (intensity and application time) for each data.
  • such a Gp-axis gradient magnetic field is called a sliding phase encoding gradient magnetic field.
  • a dephasing slice gradient magnetic field 203 is applied to an inspection target, and a gradient magnetic field applied by a subsequent slice gradient magnetic field 202 is prepared so as to be balanced.
  • an excitation high-frequency pulse 201 is applied simultaneously with the slice gradient magnetic field 202 to excite only a desired slice. As a result, only a specific slice generates the magnetic resonance signal 208.
  • the slice gradient magnetic field 204 for reference is applied, and the amount dephased by the slice gradient magnetic field 202 is restored.
  • a sliding phase encoding gradient magnetic field 205 is applied.
  • the read gradient magnetic field 206 for dephase is applied, and the gradient magnetic field applied by the subsequent read gradient magnetic field 207 is prepared so as to be balanced.
  • the read gradient magnetic field 207 is applied, and the signal is measured when the magnetic resonance signal 208 once attenuated by the dephase read gradient magnetic field 206 becomes large again.
  • the sliding phase encoding gradient magnetic field 209 and the reference reading gradient magnetic field 210 are applied, the encoding at the time of acquisition of the magnetic resonance signal 208 is restored, and the next excitation high-frequency pulse 211 is prepared.
  • Excitation is performed with excitation high-frequency pulse 211 after time TR from excitation high-frequency pulse 201, and application of a gradient magnetic field and signal measurement are repeated in the same manner as described above. However, during this repetition, the sliding phase encoding gradient magnetic field 205 and the rephasing sliding phase encoding gradient magnetic field 209 are each changed to give position information in the sliding phase encoding direction.
  • the moving speed of the table may be constant or variable!
  • the table controller can grasp the table position rtable (n) when the nth signal is acquired, so the sliding phase encoding amount changes from - ⁇ to ⁇ while the table position changes by sub FOV as shown in Fig. 9. Set the encoding amount k (n) when receiving each signal.
  • the signal S (n, ky) is obtained.
  • ky represents a coordinate in the k space corresponding to the y direction (reading direction).
  • S (n, ky) is the signal value at the point ky in the k space of the nth received magnetic resonance signal.
  • Signal S (n, ky) is measured as image data for image reconstruction as shown in 08 (a).
  • FIG. 8 is a diagram schematically showing a calculation added to the measurement data and a memory for storing the result.
  • the image reconstruction calculation is performed using the measurement data 605 to be inspected and the device characteristic data 604 obtained in step 601.
  • the magnetic moment distribution to be inspected is determined by obtaining the magnetization distribution independently of the real part and the imaginary part by approximation based on the relational expression between the received signal and the magnetization distribution. The details will be described below.
  • the measured signal S (n, ky) can be expressed by the following equation (1) using the position information of the table.
  • Rtable (n) is the amount of table movement when the nth magnetic resonance signal is acquired. It is.
  • k (n) corresponds to the phase rotation by the sliding phase encoding gradient magnetic field G (n) received by the nth magnetic resonance signal, and is defined by the following equation (4).
  • Figure 9 shows the relationship between the table movement amount rtable (n) and the graph.
  • is the gyromagnetic ratio
  • the function wn (r ') is a function representing the magnitude and phase of the signal obtained from the magnetization of magnitude 1 and phase 0 at position r' in the positional relationship between the subject and the coil at the time of obtaining the n-th signal. It is determined by the distribution of the static magnetic field, the excitation distribution of the RF coil, and the sensitivity distribution of the receiving coil. These are obtained by measuring device characteristic data in step 601. The static magnetic field distribution, RF coil excitation distribution, and receiver coil sensitivity distribution are uniform within the signal acquisition area (sub FOV, the length of the table movement direction is FOVsub), and the receiver coil has sensitivity outside the sub FOV. If not, wn (r ') is a step function as shown in Fig. 10.
  • m (r, y) is the magnetization at the position (r, y) of the subject, that is, the image of the object to be examined, and M (r, ky) is m (r, y) Is equivalent to the inverse Fourier transform of.
  • the signal s (n, y) obtained by Fourier-transforming the signal S (n, ky) in the readout direction is stored in the intermediate memory 402 as shown in Fig. 8 (b). Since this signal s (n, y) is phase-encoded from - ⁇ to ⁇ at a different position to be examined, m (r, y) Cannot be asked. S (n, y) and m (r, y) Since there is a relationship of equation (2) between them, in the present invention, m (r, y) is obtained by solving equation (2) in reverse.
  • Equation (3) K (n) is defined by equation (4), and is set for the table position rtable (n) when the nth signal is acquired, that is, for n, as shown in FIG. (L + d (r ')) is data representing the nonlinearity of the gradient magnetic field and can be measured in advance, and wn (r') is obtained by the measurement in step 601.
  • the present invention enables stable image reconstruction by obtaining the magnetic flux distribution independently of the real part by approximation.
  • Equation (6) r 'is represented by equation (3') similar to equation (3).
  • Ar is the size of the pixel in the r direction at each j.
  • N is the number of signals
  • J is the number of pixels in the r direction.
  • matrix A has each element A (n, j)
  • the procedure for performing such image reconstruction is shown in FIG. 6 (b).
  • the inverse matrix (703, 704) is obtained (steps 701, 702).
  • the inverse matrix (703,704) and the measured data force obtained are also used to obtain the real part imaginary part (707,708) of the magnetic flux distribution using equation (18) (steps 705,706).
  • these real and imaginary parts are combined to obtain a reconstructed image (step 709).
  • the m (r, y) thus obtained is stored in the image memory 403 as shown in FIG.
  • imaging is performed in which sliding phase encoding is given in the moving direction of the table, and the magnetization distribution is approximated based on the relational expression between the received signal and the magnetization distribution.
  • the Knock sequence of FIG. 7 is illustrated as an imaging method.
  • phase encoding in the slice direction can be given to perform 3D imaging.
  • image reconstruction can be similarly performed only by increasing the position dimension of the signal to be processed.
  • the configuration of the apparatus is the same as that of the first embodiment described above.
  • device characteristic data is acquired in the first step (601), and in the next step, an inverse matrix necessary for image reconstruction is calculated.
  • a reconstructed image of the inspection object is calculated using the apparatus characteristic data and the inspection object data in parallel with the main photographing (722).
  • the method for acquiring the device characteristic data is the same as in the first embodiment. After obtaining the device characteristic data, the inverse matrix of the matrix defined by equations (14) and (15) is obtained. This inverse matrix is required for image reconstruction according to Equation (18).
  • Parallel processing of the main photographing and image reconstruction is realized by performing an element force that can calculate the calculation of Expression (18). For example, as shown in FIG. 1 ib, the main imaging is performed while moving the table in the same manner as the main imaging of the first embodiment, and the reconstructed image is updated as necessary after RF transmission / reception.
  • the reconstructed image is updated by obtaining the magnetization distribution (updated) from the newly acquired data and adding it to the magnetization distribution before the update. .
  • the update of the magnetic distribution is obtained by setting the S'y element in Eq. (18) to 0 except for the newly acquired data element. Re (m) and Im (m) obtained in this way are
  • FIG. 12 a second embodiment of the present invention, a method for acquiring apparatus characteristic data at the same time as main imaging will be described with reference to FIGS. 12 and 13.
  • FIG. 12 a method for acquiring apparatus characteristic data at the same time as main imaging will be described with reference to FIGS. 12 and 13.
  • the configuration of the apparatus is the same as that of the first embodiment described above.
  • the device characteristic data acquisition and the main photographing are simultaneously performed in the first step (625), and the device characteristic data is obtained in the next step.
  • the reconstructed image of the inspection object is calculated using the inspection object data (626).
  • FIG. 13 shows an example of the relationship between the sliding phase encoding and the table position and the processing of the obtained data in photographing according to the present embodiment.
  • densely measured low-frequency data is extracted from the SPE data obtained by such imaging, and the origin is first corrected (Fig. 13, step 641). Since the main shooting is performed while moving the table position, the origin position differs in each signal acquisition. Different origin positions mean that the offset value of the gradient magnetic field is shifted.
  • the correction of the origin position is a correction that corrects such a deviation of the offset value of the gradient magnetic field, and exp (-ir (n) k (n) (l + d (r '))) is applied to the signal.
  • Equation (19) includes a nonlinear term of the gradient magnetic field, but if the nonlinearity of the gradient magnetic field is negligible, exp (-ir (n) k (n)) may be applied to the signal. . Processing in that case
  • step 642 After correcting the origin position, as shown in Fig. 13, zero-filling the high-frequency data is performed to fill the k-space and create k-space data for one low-pass image (step 642).
  • a low-pass image at one table position can be acquired by Fourier transforming this k-space data (step 643).
  • the FOV In sliding phase encoding that performs phase encoding in the table movement direction, the FOV differs for each data acquisition, so image reconstruction by Fourier transform is usually not possible. However, if only low-frequency data is used, the table Since the FOV does not change much with little change in position, it is possible to reconstruct the image by Fourier transform approximately if the origin position of each data is corrected.
  • This low-pass image can be obtained for each loop of sliding phase encoding, and device characteristic data can be created using the low-pass image data at each position in the same manner as in the first embodiment. That is, device characteristic data can be obtained by dividing each low-pass image data by the total FOV uniform image data. Overall device characteristic data is created by interpolation from the device characteristic data obtained at each position (644).
  • the interval between positions where the device characteristic data can be acquired is determined by the number of sliding phase encoding loops.
  • the interval between the acquisition positions can be narrowed by increasing the sliding phase encoding loop as shown in 014 (a) by sparse the force sliding phase encoding step that slows the table moving speed.
  • the number of signal acquisition times increases, and thus the imaging time of the main imaging increases.
  • the number of signal acquisitions may be reduced by increasing the sliding phase encoding step, for example, by 2 each in the high frequency range.
  • the frequency domain is divided into three, and the sliding phase encoding step is increased by 0.5 in the low frequency range and increased by 2 in the high frequency range.
  • This change in the amount of sliding phase encoding is shown in Fig. 14 (b).
  • Figure 16 shows the SPE data obtained by shooting using such a sliding phase encoding step.
  • the calculation method for reconstructing an image using the device characteristic data acquired in this way and the image data acquired at the same time is the same as that in the first embodiment.
  • shooting for acquiring device characteristic data is performed separately from main shooting. Since it is not necessary to do so, the overall shooting time can be shortened.
  • the apparatus characteristic measurement 601 is performed prior to the main photographing 602, and the image reconstruction 603 is performed using the apparatus characteristic data in the first embodiment shown in FIG. 4 (a). Is the same.
  • the coil 114 since the coil 114 is fixed to the subject 103, the coil 114 moves with the movement of the subject (table 301), and a plurality of images are taken to capture the total FOV. Switch the coil for use. When switching multiple coils, you can use multiple coils at the same time to receive.
  • the signal S (n, ky, c) that is Fourier-transformed in the readout direction (y direction) can be expressed by the following equation (22).
  • is the size of the pixel in the r direction at each j.
  • N is the number of signals
  • C is the number of coils
  • J is the number of pixels in the r direction.
  • the matrix A has each element A" ((n-1) X C + c, j)
  • FIG. 18 is a diagram showing the coil position with respect to the center of the static magnetic field at the time of signal acquisition.
  • both the static magnetic field distribution and the excitation coil excitation distribution have a uniform regional force.
  • the station should be covered so that the sensitivity area of the receiving coil is covered by one or more imaging. Set. By cutting out and joining areas with uniform imaging results, it is possible to create an image of the entire sensitivity area of the receiving coil when the static magnetic field and irradiation are uniform.
  • the image 1601b of the region where the static magnetic field and the irradiation are uniform in the image 1602 of the second station, the magnetostatic field and the irradiation are uniform.
  • an image 1603 of the entire sensitivity area of the receiving coil is obtained.
  • An image representing this sensitivity distribution is represented by a uniform image 1600 created by using the usual multi-station imaging method.
  • the sensitivity distribution of the coil can be obtained.
  • the image 1603 shows the image obtained with the c-th coil, so that the remaining device characteristics, that is, the static magnetic field inhomogeneity and the irradiation coil excitation distribution, can be obtained.
  • the device characteristic data w (r ′) of the c-th coil can be obtained by multiplying the receiving coil sensitivity distribution, the static magnetic field non-uniformity, and the irradiation coil excitation distribution.
  • the steps of acquiring the inspection object data 605 and calculating the inspection object reconstructed image 606 using the apparatus characteristic data and the inspection object data are as follows:
  • the configuration of the apparatus is the same as that of the third embodiment described above.
  • the imaging procedure is to simultaneously acquire the apparatus characteristic data and the main imaging in step 625, and in step 626, use the apparatus characteristic data 604 and the inspection object data 605.
  • a reconstructed image 606 to be inspected is calculated.
  • Fig. 18 shows the force indicating the coil position in the multi-station.
  • the center position of the first loop (from ⁇ force to ⁇ ) of the sliding phase encoding (low)
  • the position when the frequency component is acquired) is the first shooting position in FIG. 18, and the center position of the second loop (the position when acquiring the low frequency component) is the second shooting position in FIG.
  • the method of cutting out low-frequency data and reconstructing one image, such as SPE data is the same as in the second embodiment.
  • the images obtained by executing the first and second loops are used.
  • the low frequency data is cut out from each of the images, the origin is corrected, the high frequency data is zero-filled, and the image is reconstructed by the Fourier transform.
  • a uniform image is created from each image reconstructed in this way.
  • a uniform image may be obtained by adding the images together, cutting out only the uniform part, or by using multi-station shooting.
  • Device characteristic data is obtained from the images of the coils thus obtained and the created uniform image in the same manner as in the third embodiment. That is, first, the sensitivity distribution of the c-th coil is obtained by dividing the image obtained by combining the images at the respective acquisition positions with respect to the c-th coil by the uniform distribution image. Next, device characteristics other than the sensitivity distribution at each acquisition position can be obtained by dividing the image at each acquisition position with the image obtained by combining the images at the acquisition positions for the c-th coil.
  • the entire device characteristic data can be obtained.
  • the device characteristic data obtained at each acquisition position may be interpolated, or the device characteristic data at the nearest acquisition position may be used for image reconstruction.
  • an image is reconstructed from a signal obtained by actual imaging and a signal calculated using device characteristic data.
  • OV 320 mm X 960 mm (256 pixels X 384 pixels).
  • the r-axis direction is the direction of table movement, sliding phase encoding is performed in this direction, and the y-axis direction perpendicular to the table movement direction is the readout direction.
  • FIG. 20 (a) shows a reconstructed image obtained by the first embodiment.
  • Fig. 20 (b) shows a reconstructed image obtained by the reconstruction method that obtains only the magnitude of the magnetic flux distribution without using the approximation divided into reality.
  • the reconstruction method for obtaining only the magnitude of the magnetization distribution a large signal is missing in a striped pattern, but it is certain that the lack of signal is improved by the reconstruction method of the present invention.
  • Fig. 21 (a) shows an image reconstructed by the present invention in Fig. 21 (a)
  • Fig. 21 (b) shows an FSE sequence that is difficult to shoot with a conventional table moving imaging method that performs frequency encoding in the table moving direction.
  • An image reconstructed by the method described in Non-Patent Document 2 is shown. As shown in these, it was confirmed that the FSE sequence can be reconstructed in the present invention. Similar results were obtained for other examples.
  • the imaging time is extended by that amount.
  • the imaging that requires a high-resolution image for acquiring the device characteristic data is completed in a short time.
  • the device characteristic data can be acquired in a shorter time by interpolating. Also, if device characteristic data is acquired simultaneously, the shooting time will not increase.
  • FIG. 1 A view showing an overview of an MRI apparatus to which the present invention is applied, in which (a) shows a horizontal magnetic field type apparatus and (b) shows a vertical magnetic field type apparatus.
  • FIG. 2 is a diagram showing a configuration example of an MRI apparatus to which the present invention is applied.
  • FIG. 3 is a diagram showing the relationship between the total FOV to be examined and the signal acquisition area.
  • FIG. 4 is a diagram showing a procedure for shooting a moving table according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a relationship between a sub FOV for acquiring device characteristic data and a sub FOV for actual photographing.
  • FIG. 6 is a diagram showing a procedure of main photographing according to the first embodiment.
  • FIG. 7 is a diagram showing an example of a pulse sequence used for moving table imaging.
  • FIG. 8 is a diagram showing signals and processing results used for image reconstruction in 2D imaging.
  • FIG. 9 is a diagram showing the relationship between table position and sliding phase encoding.
  • FIG. 10 is a diagram showing device characteristics in a signal acquisition region.
  • FIG. 11a is a diagram showing a modification example of the photographing procedure according to the first embodiment.
  • FIG. Lib A diagram showing an example of a change in imaging procedure according to the first embodiment.
  • FIG. 11c is a diagram showing a modification example of the photographing procedure according to the first embodiment.
  • FIG. 12 is a diagram showing an example of a moving table photographing procedure according to the second embodiment of the present invention.
  • FIG. 13 is a diagram showing an apparatus characteristic data acquisition procedure according to the second embodiment of the present invention.
  • FIG. 14 (a) and (b) are diagrams each showing a relationship between a sliding phase encoding and a table position in a modification of the second embodiment.
  • FIG. 15 is a diagram showing a modified example of the procedure of the second embodiment.
  • FIG. 16 is a diagram showing SPE data obtained by a modified example of the procedure of the second embodiment.
  • FIG. 17 is a diagram showing a relationship between an inspection object and a coil in the third and fourth embodiments.
  • FIG. 18 is a diagram for explaining a coil position in apparatus characteristic measurement according to the third and fourth embodiments.
  • FIG. 19 is a diagram showing an inspection object in the example.
  • FIG. 20 is a diagram showing a reconstructed image of the inspection object in FIG. 17 according to the first embodiment.
  • FIG. 21 is a diagram showing a reconstructed image of the inspection object in FIG. 17 according to the first embodiment.
  • FIG. 22 Comparison of shooting time between the conventional method and the present invention.
  • 101 'Magnet that generates static magnetic field 102 ...' Gradient magnetic field coil, 103 ... 'Inspection object, 10 4 ⁇ ' Sequencer, 105 ⁇ 'Gradient magnetic field power supply, 106 ⁇ ⁇ High frequency magnetic field generator, ⁇ ⁇ ⁇ Coil for irradiation, 108 ⁇ ⁇ 'Receiver, 109 ⁇ ⁇ ' Calculator, 110 ⁇ ⁇ 'Display, 111 ⁇ ⁇ ' Storage medium, 112 ⁇ • 'Shim coil, 113 ⁇ ⁇ ' Sim power supply, 114 ⁇ ⁇ 'Receiving coil, 301 ⁇ ' Table, 302 ⁇ 'Table control device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

A magnetic resonance imaging device is provided with features of image reconstructions that can be done in various sequences of a wider viewing field and high speed photographing method carries out photographing while continuously moving a table even in the case that a small moving direction is available for a signal acquisition region. When a magnetic resonance signal is received at a plurality of times while moving a table (moving means), a magnetic field is applied at a slant with respect to the moving direction and an application amount (strength and applying time) of the magnetic field at the slant with respect to the moving direction is changed at every data acquisition. Encoding in accordance with the slant magnetic field of the table moving direction, which is different from conventional phase encoding, is carried out for a series of phase encoding at different places of a test subject. When a magnetizing distribution of the test subject is obtained from a nuclear magnetic resonance signal, an imaginary part is independently sought by approximation, so that the magnetizing distribution of the test subject is stably determined in a viewing field that is wider than in a photographing space.

Description

明 細 書  Specification
磁気共鳴撮影装置  Magnetic resonance imaging device
技術分野  Technical field
[0001] 本発明は、核磁気共鳴を用いた検査装置(MRI : Magnetic Resonance Imaging) において移動式のテーブルを使用して、装置内に限定される撮影可能領域より大き な視野を撮像する新規な撮像技術に関し、特に、当該撮像技術における画像再構 成方法に関する。  [0001] The present invention uses a movable table in an inspection apparatus (MRI: Magnetic Resonance Imaging) using nuclear magnetic resonance, and uses a movable table to image a field of view larger than the imageable area limited in the apparatus. More particularly, the present invention relates to an image reconstruction method in the imaging technique.
背景技術  Background art
[0002] MRI装置は、静磁場空間内に置かれた検査対象の組織内に含まれる水素原子核 に核磁気共鳴を起こさせ、発生する核磁気共鳴信号から検査対象の断層像を得る 医用画像診断装置である。 MRI装置にお ヽて信号を取得可能な領域は静磁場空間 に限られるため、従来、比較的狭い領域しか撮影することができな力つたが、近年で はテーブル移動による全身撮影が可能となり MRIを用いた全身スクリーニングという 新しい展開が始まりつつある。  [0002] An MRI system causes nuclear magnetic resonance to occur in hydrogen nuclei contained in a tissue to be examined placed in a static magnetic field space, and obtains a tomographic image of the examination object from the generated nuclear magnetic resonance signal. Device. In the MRI system, the area where signals can be acquired is limited to the static magnetic field space. Conventionally, only a relatively small area can be imaged, but in recent years it has become possible to perform whole-body imaging by moving the table. A new development of whole-body screening using is being started.
[0003] 全身撮影には大きく分けてマルチステーション撮影法 (非特許文献 1)とムービング テーブル撮影法 (特許文献 1、非特許文献 2)の二種類がある。どちらも、 1回の信号 取得時の限られた視野 (sub FOVと呼ぶ)で、より広い領域 (total FOVと呼ぶ)を撮影 する手法である。マルチステーション撮影法とは全身を sub FOVにわけて撮影を行い 、それらの画像をつなぎ合わせて全身画像を作る撮影法である。各 sub FOVでの撮 影は通常の撮影法と同じであるため従来からの撮影テクニックを適用しやすいという 長所はあるが、静磁場不均一や傾斜磁場の非線形性からつなぎ合わせる部分で画 像がひずみ、つなぎ合わせ部分が滑らかでないという短所や、テーブル移動中は撮 影が行えないため、その分撮影時間が長くなるという短所がある。テーブル移動方向 の視野が狭い場合には、撮影を中断してテーブルを移動する回数が増え、さらに撮 影時間が長くなり、問題である。  There are two types of whole body imaging: multi-station imaging (Non-Patent Document 1) and moving table imaging (Patent Document 1, Non-Patent Document 2). In both cases, a wider field (called total FOV) is taken with a limited field of view (called sub FOV) at the time of signal acquisition. Multi-station imaging is an imaging method in which the whole body is divided into sub FOVs and the whole images are created by joining these images. The shooting with each sub FOV is the same as the normal shooting method, so there is an advantage that it is easy to apply the conventional shooting technique, but the image is connected at the part where it is connected due to the static magnetic field inhomogeneity and the gradient magnetic field nonlinearity. Disadvantages are that the distortion and joints are not smooth, and that shooting is not possible while the table is moving. If the field of view in the table movement direction is narrow, the number of times that the table is moved after interruption is increased, and the shooting time becomes longer, which is a problem.
[0004] 一方、ムービングテーブル撮影法はテーブルを移動させながら信号を取得する撮 影法であり、リードアウト方向をテーブルの移動方向にしなくてはならないが、継ぎ目 のな 、画像が短 、時間で取得できると 、う長所がある。 [0004] On the other hand, the moving table imaging method is an imaging method in which a signal is acquired while moving the table, and the lead-out direction must be the moving direction of the table. However, there is an advantage in that images can be acquired in a short time.
[0005] 特許文献 1 :特開 2003— 135429号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-135429
非特許文献 1 : Thomas K. F. Foo'Vincent B. Ho, Maureen N. Hood, Hani B. Marcos , Sandra L. Hess, and Peter L.Choyke, Radiology. 2001:219:835—841.  Non-Patent Document 1: Thomas K. F. Foo'Vincent B. Ho, Maureen N. Hood, Hani B. Marcos, Sandra L. Hess, and Peter L. Choyke, Radiology. 2001: 219: 835—841.
特許文献 2 : DavidG. Kruger, Stephen J. Riederer, Roger C. Grimmk, and Phillip J. Rossman, Magn. Reson. Med. 2002:47:224-231.  Patent Document 2: David G. Kruger, Stephen J. Riederer, Roger C. Grimmk, and Phillip J. Rossman, Magn. Reson. Med. 2002: 47: 224-231.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 上述したようにムービングテーブル撮影法では、継ぎ目のな 、画像を短時間で得る ことができるが、リードアウト方向がテーブル移動方向でなくてはならないという制限 から、 sub FOVが移動方向に狭くなつた場合には撮影時間が増大するという問題が ある。 [0006] As described above, with the moving table imaging method, an image can be obtained in a short time without a seam, but the sub FOV moves in the moving direction due to the restriction that the lead-out direction must be the table moving direction. If it gets narrower, there is a problem that the shooting time increases.
[0007] すなわちテーブル移動方向に sub FOVが狭くなつた場合、同じ解像度の画像を得 るには周波数エンコード方向(リードアウト方向)のサンプル数を減らすことになり、位 相エンコード数は変化しな 、。一般に撮影時間は位相エンコード数にほぼ比例し、 周波数エンコード方向のサンプル数力 受ける影響は少ない。よって、テーブル移動 方向に sub FOVが狭い場合も広い場合も 1つの sub FOVのためのデータ取得には同 じ時間がかかり、テーブル移動方向に sub FOVが狭い場合は拡大された視野の撮影 時間が長くなる。  [0007] That is, when the sub FOV becomes narrower in the table moving direction, the number of samples in the frequency encoding direction (lead-out direction) is reduced to obtain the same resolution image, and the phase encoding number does not change. ,. In general, the shooting time is almost proportional to the number of phase encodes, and is less affected by the number of samples in the frequency encode direction. Therefore, it takes the same time to acquire data for one sub FOV when the sub FOV is narrow or wide in the table movement direction, and when the sub FOV is narrow in the table movement direction, the shooting time of the enlarged field of view is long. become longer.
[0008] この問題の解決には、テーブル移動方向に位相エンコードを行うことが考えられる 力 再構成にフーリエ変換を使う従来の考え方ではテーブル移動方向に位相ェンコ ードを行うのは困難であった。理由は、以下の通りである。ムービングテーブル撮影 法では、テーブル移動方向には常に励起される範囲が変化していく。リードアウトで あれば一つの信号計測の間で、すなわち励起範囲の変化を無視できる時間で全ェ ンコードが完了するが、位相エンコードの場合には一つの信号計測毎に異なるェン コードを付与するので、全エンコードが完了するまでに励起範囲が大きく変わってし まう。フーリエ変換を利用した画像再構成では対象画像範囲力 S1シリーズのェンコ一 ドを受けるのが前提であり、このような場合には適用できない。 [0009] そこで本発明は、テーブル移動方向に傾斜磁場によるエンコードを付与して信号を 取得するとともに、装置特性データを用いて本撮影で計測した核磁気共鳴信号から 検査対象の磁ィ匕分布を求めるにあたり、近似により実部虚部を独立に求めることによ り画像を再構成する新規な撮像手法を提供し、これによりテーブル移動方向の sub F OVが狭い場合にも、 total FOVの画像を短時間で撮影することが可能な MRI装置を 提供することを目的とする。 [0008] To solve this problem, it is possible to perform phase encoding in the direction of table movement. It was difficult to perform phase encoding in the direction of table movement with the conventional concept of using Fourier transform for reconstruction. . The reason is as follows. In the moving table imaging method, the excitation range always changes in the table moving direction. In the case of readout, all encoding is completed during one signal measurement, that is, in a time when the change in excitation range can be ignored. In the case of phase encoding, a different encoding is assigned for each signal measurement. Therefore, the excitation range will change greatly until the entire encoding is completed. Image reconstruction using Fourier transform is premised on receiving the target image range force S1 series encoding, and is not applicable in such cases. [0009] Therefore, the present invention obtains a signal by applying an encoding by a gradient magnetic field in the table moving direction, and calculates a magnetic distribution of an inspection object from a nuclear magnetic resonance signal measured by actual imaging using apparatus characteristic data. In order to obtain this, we provide a new imaging method that reconstructs an image by independently obtaining the imaginary part of the real part by approximation, so that even if the sub FOV in the table moving direction is narrow, the total FOV image can be obtained. The objective is to provide an MRI system that can capture images in a short time.
[0010] また、本発明は、上記新規な撮像手法において、仮定的な信号の算出に用いられ る装置特性データを効率よく取得する手段を提供することを目的とする。  [0010] It is another object of the present invention to provide means for efficiently acquiring device characteristic data used for calculation of a hypothetical signal in the novel imaging method.
課題を解決するための手段  Means for solving the problem
[0011] 本発明の MRI装置は、テーブル (移動手段)を移動しながら、核磁気共鳴信号を複 数回受信し、受信前にテーブル移動方向に傾斜磁場を印加し、データ取得ごとにテ 一ブル移動方向の傾斜磁場の印加量 (強度や印加時間)を変える。このテーブル移 動方向の傾斜磁場によるエンコードは、従来の位相エンコードと異なり、 1シリーズの 位相エンコードが検査対象の異なる位置で行なわれる新規なエンコード (スライディ ング位相エンコード (SPE)と呼ぶ)であり、従来のエンコードのように画像再構成にフ 一リエ変換を適用できない。そこで本発明の MRI装置では、検査対象における total FOVの磁化分布を、受信された信号と磁化分布の関係式に基づき、近似により磁ィ匕 分布を実部虚部独立に求めることにより、再構成する。 [0011] The MRI apparatus of the present invention receives a nuclear magnetic resonance signal a plurality of times while moving a table (moving means), applies a gradient magnetic field in the direction of table movement before reception, and stores data every time data is acquired. Change the applied amount (strength and application time) of the gradient magnetic field in the bull movement direction. Encoding with this gradient magnetic field in the direction of table movement is a new encoding (referred to as sliding phase encoding (SPE)) in which one series of phase encoding is performed at different positions to be inspected, unlike conventional phase encoding. As with conventional encoding, it is impossible to apply the Fourier transform to image reconstruction. Thus, in the MRI apparatus of the present invention, the magnetization distribution of the total FOV in the inspection object is reconstructed by obtaining the magnetic field distribution by approximation independently of the real part imaginary part based on the relational expression between the received signal and the magnetization distribution. To do.
[0012] 受信された信号と磁化分布の関係式には、傾斜磁場非線形、静磁場不均一、照射 コイル励起分布、受信コイル感度分布などの装置特性データが用いられる。本発明 の MRI装置は、この装置特性を求めるための核磁気共鳴信号の計測(以下、装置特 性計測と!/ヽぅ)を行 ヽ、計測した核磁気共鳴信号カゝら算出した装置特性データを用い て画像再構成を行う。装置特性データの計測は、検査対象の磁化分布を求めるため の核磁気共鳴信号の計測(以下、本撮影という)とは別個に行ってもよいし、本撮影と 同時に行ってもよい。前者の場合、例えば、装置特性計測はマルチステーション撮 影法により行う。即ち、移動手段を複数のステーション間で移動し、装置特性計測を 移動手段の各ステーションで実行する。また後者の場合、本撮影で計測した核磁気 共鳴信号の一部を、装置特性データを求めるための信号として兼用することができる 。兼用する一部の核磁気共鳴信号は、低周波領域データであることが好ましい。 [0012] Device characteristic data such as gradient magnetic field nonlinearity, static magnetic field inhomogeneity, irradiation coil excitation distribution, and reception coil sensitivity distribution are used in the relational expression between the received signal and the magnetization distribution. The MRI apparatus of the present invention performs measurement of nuclear magnetic resonance signals (hereinafter referred to as apparatus characteristic measurement and! / ヽ ぅ) to obtain the apparatus characteristics, and the apparatus characteristics calculated from the measured nuclear magnetic resonance signal values. Image reconstruction is performed using the data. The measurement of the device characteristic data may be performed separately from the measurement of the nuclear magnetic resonance signal for obtaining the magnetization distribution of the inspection object (hereinafter referred to as main imaging), or may be performed simultaneously with the main imaging. In the former case, for example, device characteristics are measured by the multi-station imaging method. That is, the moving means is moved between a plurality of stations, and the apparatus characteristic measurement is executed at each station of the moving means. In the latter case, a part of the nuclear magnetic resonance signal measured in the main imaging can also be used as a signal for obtaining device characteristic data. . It is preferable that some of the combined nuclear magnetic resonance signals are low frequency region data.
[0013] 本発明の MRI装置は垂直磁場型、水平磁場型のいずれにも適用できる。またスラ イデイング位相エンコードは周波数エンコードや位相エンコードと独立に行えるため、 2D、 3D、マルチスライスのいずれの撮影にも適用可能である。 The MRI apparatus of the present invention can be applied to both a vertical magnetic field type and a horizontal magnetic field type. Since sliding phase encoding can be performed independently of frequency encoding and phase encoding, it can be applied to 2D, 3D, and multi-slice imaging.
発明の効果  The invention's effect
[0014] 本発明によれば、テーブル移動方向にスライディング位相エンコードを行うことによ り、テーブル移動方向の sub FOVが縮小された場合には、それに対応して sub FOV に対するスライディング位相エンコードを減らすことができる。これによりテーブル移 動方向の単位距離をエンコードするのに必要な時間はほぼ一定となるので、テープ ル移動方向の sub FOVの長さに影響されず、高速な撮影を行うことができる。  [0014] According to the present invention, when the sub FOV in the table moving direction is reduced by performing the sliding phase encoding in the table moving direction, the sliding phase encoding for the sub FOV is reduced correspondingly. Can do. As a result, the time required to encode the unit distance in the table movement direction is almost constant, so that high-speed shooting can be performed regardless of the length of the sub FOV in the table movement direction.
[0015] また画像再構成法としてフーリエ変換に代わり、受信された信号と磁化分布の関係 式に基づき、近似により磁ィ匕分布を実部虚部独立に求めることにより、テーブル移動 方向にスライディング位相エンコードを行なっても位相を含めて画像再構成すること ができ、磁ィ匕分布の位相が乱れる場合にも、従来のムービングテーブル撮影と同等 の画質が得られる。  [0015] Further, instead of Fourier transform as an image reconstruction method, the magnetic phase distribution is obtained by approximation based on the relational expression between the received signal and the magnetization distribution, and the real part imaginary part is obtained by approximation. Even if encoding is performed, the image including the phase can be reconstructed, and even when the phase of the magnetic field distribution is disturbed, the image quality equivalent to that of conventional moving table imaging can be obtained.
[0016] また、従来のムービングテーブル撮影法では、テーブル移動方向に一般的に強度 の強いリードアウト傾斜磁場を印加するため、傾斜磁場方向の被検体の動きの影響 を受けやすい FSE (ファーストスピンエコー)などの撮影シーケンスによる撮影は困難だ 力 本発明によればテーブル移動方向にリードアウト傾斜磁場を印加しな ヽ撮影が 可能となるため、傾斜磁場方向の動きに弱 、撮影シーケンスによるテーブル移動撮 影も容易となる。  [0016] In addition, in the conventional moving table imaging method, a generally strong readout gradient magnetic field is applied in the table moving direction, so that FSE (first spin echo) is easily affected by the movement of the subject in the gradient magnetic field direction. In this invention, it is difficult to shoot without applying a readout gradient magnetic field in the direction of table movement. Shadows are also easy.
[0017] さらに本発明によれば、再構成に必要となる装置特性データを、マルチステーショ ン撮影法により計測することにより、近似的な装置特性データを比較的短時間に容 易に得ることができる。また装置特性データを本撮影と同時に行うことにより、装置特 性データ取得のための時間を省くことができ、撮影全体を高速に行うこともできる。 発明を実施するための最良の形態  Furthermore, according to the present invention, approximate device characteristic data can be easily obtained in a relatively short time by measuring device characteristic data required for reconstruction by a multi-station imaging method. it can. Further, by performing the apparatus characteristic data simultaneously with the main photographing, it is possible to save time for acquiring the apparatus characteristic data and to perform the entire photographing at a high speed. BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の実施の形態を、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
まず、本発明が適用される MRI装置の構成について説明する。図 1 (a)、(b)はそ れぞれ水平磁場型の MRI装置及び垂直磁場型の MRI装置の概観図であり、本発 明の MRI装置は!、ずれの型の MRI装置にも適用できる。水平磁場型の MRI装置で は、水平方向の静磁場を発生するソレノイド型等の静磁場磁石 101が採用され、被検 体 103はテーブル 301に寝カゝせられた状態で磁石のボア内に搬入され、撮影が行な われる。また垂直磁場型の MRI装置は、被検体 103が置かれる空間の上下に一対の 静磁場磁石 101が配置され、被検体 103はテーブル 301に寝かせられた状態で静磁 場空間内に搬入される。なお図中矢印 rはテーブルの移動方向を示し、(a)に示す水 平磁場型の MRI装置では、静磁場方向力^方向と一致し、(b)に示す垂直磁場型の MRI装置では、テーブルの移動方向は静磁場方向と直交する方向である。 First, the configuration of an MRI apparatus to which the present invention is applied will be described. Figures 1 (a) and (b) Each is an overview of a horizontal magnetic field type MRI apparatus and a vertical magnetic field type MRI apparatus. The MRI apparatus of the present invention can also be applied to misaligned type MRI apparatuses. A horizontal magnetic field type MRI apparatus employs a solenoid type static magnetic field magnet 101 that generates a static magnetic field in the horizontal direction, and the object 103 is lying on the table 301 and placed in the bore of the magnet. Carry in and take a picture. In the vertical magnetic field type MRI apparatus, a pair of static magnetic field magnets 101 are arranged above and below the space in which the subject 103 is placed, and the subject 103 is carried into the static magnetic field space while being laid down on the table 301. . In the figure, the arrow r indicates the moving direction of the table. In the horizontal magnetic field type MRI apparatus shown in (a), it coincides with the static magnetic field direction force ^ direction. In the vertical magnetic field type MRI apparatus shown in (b), The moving direction of the table is a direction orthogonal to the static magnetic field direction.
[0019] 図 2は MRI装置の概略構成を示すブロック図であり、図 1と同じ構成要素は同じ符 号で示している。図示するように、静磁場磁石 101が発生する静磁場空間 (撮影空間 )内には、静磁場の均一度を高めるためのシムコイル 112と、静磁場に勾配を与える 傾斜磁場コイル 102と、検査対象 (ヒト)の組織を構成する原子の原子核 (通常プロトン )を励起する高周波磁場を発生するための照射用コイル 107と、検査対象から発生す る核磁気共鳴信号を検出するための受信コイル 114となどが配置されている。被検体 103を寝力せるテーブル 301は、テーブル制御装置 302で制御され、被検体 103を撮 影空間内に搬入するとともに空間内で移動させる。テーブル制御装置 302は、テープ ルの速度、位置の制御およびモニターが可能である。  FIG. 2 is a block diagram showing a schematic configuration of the MRI apparatus, and the same components as those in FIG. 1 are denoted by the same reference numerals. As shown in the figure, in a static magnetic field space (imaging space) generated by the static magnetic field magnet 101, a shim coil 112 for increasing the uniformity of the static magnetic field, a gradient magnetic field coil 102 for imparting a gradient to the static magnetic field, and an inspection object An irradiation coil 107 for generating a high-frequency magnetic field that excites an atomic nucleus (usually proton) that constitutes a (human) tissue, and a receiving coil 114 for detecting a nuclear magnetic resonance signal generated from an examination object Etc. are arranged. The table 301 that places the subject 103 on the bed is controlled by the table control device 302, and the subject 103 is carried into the imaging space and moved in the space. The table controller 302 can control and monitor the speed and position of the table.
[0020] 上述したシムコイル 112、傾斜磁場コイル 102、照射用コイル 107、受信コイル 114は、 それぞれシム電源 113、傾斜磁場電源 105、高周波磁場発生器 106、受信器 108に接 続されており、シーケンサ 104により動作が制御される。シーケンサ 104は、予めプログ ラムされたタイミング、強度 (パルスシーケンス)でこれら装置が動作するように制御を 行うとともに、テーブル制御装置の駆動に合わせてパルスシーケンスを起動するなど の制御を行なう。また MRI装置は、信号処理系として、計算機 109、ディスプレイ 110、 記憶媒体 111などを備えて 、る。  [0020] The shim coil 112, the gradient magnetic field coil 102, the irradiation coil 107, and the reception coil 114 are connected to the shim power source 113, the gradient magnetic field power source 105, the high-frequency magnetic field generator 106, and the receiver 108, respectively. The operation is controlled by 104. The sequencer 104 performs control such that these devices operate at preprogrammed timing and intensity (pulse sequence), and performs control such as starting a pulse sequence in accordance with the drive of the table control device. The MRI apparatus includes a computer 109, a display 110, a storage medium 111, and the like as a signal processing system.
[0021] このような構成において、高周波磁場発生器 106が発生した高周波磁場は、照射用 コイル 107を通じて検査対象 103に印加される。検査対象 103から発生した核磁気共 鳴信号は受信コイル 114によって受波され、受信器 108で検波が行われる。検波の基 準とする核磁気共鳴周波数は、シーケンサ 104によりセットされる。検波された信号は 計算機 109に送られ、ここで画像再構成などの信号処理が行われる。本発明におい ては、特に通常の補正計算、フーリエ変換などの演算に加え、後述するムービングテ 一ブル撮影独自の画像再構成演算を行う。計算機 109の処理結果は、ディスプレイ 1 10に表示されるとともに記憶媒体 111に記録される。記憶媒体 111には、必要に応じて 、検波された信号や測定条件を記憶させることもできる。 In such a configuration, the high frequency magnetic field generated by the high frequency magnetic field generator 106 is applied to the inspection object 103 through the irradiation coil 107. The nuclear magnetic resonance signal generated from the inspection object 103 is received by the receiving coil 114 and detected by the receiver 108. Base of detection The quasi nuclear magnetic resonance frequency is set by the sequencer 104. The detected signal is sent to the computer 109 where signal processing such as image reconstruction is performed. In the present invention, in addition to calculations such as normal correction calculation and Fourier transform, image reconstruction calculation unique to moving table shooting described later is performed. The processing result of the computer 109 is displayed on the display 110 and recorded on the storage medium 111. The storage medium 111 can store a detected signal and measurement conditions as necessary.
[0022] 次に本発明で採用するムービングテーブル撮影法の第 1の実施の形態にっ ヽて説 明する。図 3に、 1回の信号取得時の視野 (sub FOV)と撮影目的とする広視野 (ここ では被検体の全身 total FOV)との関係を、図 4に撮影及び画像再構成処理の手順 を示す。 [0022] Next, a moving table photographing method employed in the present invention will be described in the first embodiment. Fig. 3 shows the relationship between the field of view (sub FOV) at the time of one signal acquisition and the wide field of view intended for imaging (in this case, the total FOV of the subject), and Fig. 4 shows the procedure for imaging and image reconstruction processing. Show.
[0023] ムービングテーブル撮影では、図 3に示すように、テーブル 301 (検査対象 103)を矢 印 303の方向に移動させながら、撮影を行なう。受信コイル 114は図 3に示されるような 装置内に固定された受信コイルを用いる。 1回の信号取得時の視野 (sub FOV) 304 は任意に設定できるが、最適には十分大きな信号を受信できる領域と同じ程度の大 きさに設定する。 1回の信号取得時の視野は限られた大きさだが、テーブル 301を移 動させながら撮影することによって全身などの拡大された視野 (total FOV) 305を撮 影する。撮影は 2D、 3Dどちらも可能であり、スライディング位相エンコード方向をテー ブル移動方向に設定する。例えば 2Dでは、断面は、コロナル面、サジタル面のいず れでもよぐテーブル移動方向の軸を面内に含む断面であれば限定されない。リード アウト方向はテーブル移動方向と直交する方向に選択される。以下の実施例におい ては 2Dで説明する力 スライディング位相エンコード以外のエンコードを一つ増やせ ば 3Dのケースとなる。  In moving table imaging, imaging is performed while moving the table 301 (inspection object 103) in the direction of the arrow 303 as shown in FIG. As the receiving coil 114, a receiving coil fixed in the apparatus as shown in FIG. 3 is used. The field of view (sub FOV) 304 at the time of signal acquisition can be set arbitrarily, but optimally, it should be set to the same size as the area where a sufficiently large signal can be received. Although the field of view at the time of signal acquisition is limited, the field of view (total FOV) 305 such as the whole body is captured by moving while moving the table 301. Shooting is possible in both 2D and 3D, and the sliding phase encoding direction is set to the table moving direction. For example, in 2D, the cross section is not limited as long as the cross section includes an axis in the table moving direction that can be either a coronal plane or a sagittal plane. The lead-out direction is selected in a direction perpendicular to the table moving direction. In the following examples, the force described in 2D is increased by one encoding other than the sliding phase encoding.
[0024] 撮影は、図 4 (a)に示すように、装置特性データ 604を取得するステップ 601 (装置特 性計測)と、検査対象のデータ 605を取得するステップ 602 (本撮影)と、装置特性デ ータと検査対象データを用いて検査対象の再構成画像 606を計算するステップ 603と からなる。  [0024] As shown in FIG. 4 (a), the imaging is performed by step 601 (device characteristic measurement) for acquiring device characteristic data 604, step 602 (main imaging) for acquiring data 605 to be inspected, And step 603 for calculating the reconstructed image 606 to be inspected using the characteristic data and the inspection target data.
[0025] まず装置特性計測について説明する。  First, device characteristic measurement will be described.
装置特性データは傾斜磁場非線形、静磁場不均一、照射用コイルの励起分布、受 信コイルの感度分布など力 なる。このうち傾斜磁場非線形は被検体にほとんど依存 しないため、毎回の撮影で取得する必要は無ぐファントムを用いた撮影など他の計 測で測定したデータをあらかじめ記憶媒体に保存しておく。 Device characteristic data includes gradient magnetic field non-linearity, static magnetic field non-uniformity, excitation coil excitation distribution, reception It is useful for the sensitivity distribution of the coil. Of these, gradient magnetic field non-linearity hardly depends on the subject, so there is no need to acquire it every time, and data measured by other measurements such as imaging using a phantom is stored in a storage medium in advance.
[0026] したがって装置特性計測ステップ 601では、静磁場不均一による信号強度の分布、 照射用コイル 107の励起分布及び受信コイル 114の感度分布など力 なる信号強度と 位相に関する装置特性データを求めるための撮影を行なう。  Therefore, in apparatus characteristic measurement step 601, apparatus characteristic data relating to powerful signal intensity and phase such as signal intensity distribution due to non-uniform static magnetic field, excitation distribution of irradiation coil 107 and sensitivity distribution of reception coil 114 are obtained. Take a picture.
[0027] 装置特性計測ステップ 601の詳細を図 4 (b)に示す。図示するように、この撮影は、 テーブルをステーション間で移動し、各ステーションで RF送受信を行うステップを繰り 返すマルチステーション撮影で行い、各ステーションの画像データを得る(ステップ 63 D oこの場合の撮影は、公知の 2D撮影法或いは 3D撮影法を採用することができる。 装置特性データは一般的には滑らかに変化するので、低解像度の撮影で十分であ り、撮影時間は短くできる。  The details of the apparatus characteristic measurement step 601 are shown in FIG. 4 (b). As shown in the figure, this imaging is performed by multi-station imaging by moving the table between stations and repeating the steps of RF transmission and reception at each station to obtain image data of each station (step 63 Do in this case) A well-known 2D imaging method or 3D imaging method can be adopted for the device characteristics data generally changes smoothly, so low-resolution imaging is sufficient, and imaging time can be shortened.
[0028] 装置特性データは、各ステーションで得られた画像 otal FOVの均一画像で割る ことにより求めることができる。均一画像とはコイル感度などが均一だとした場合に得 られる画像のことであり、 total FOVの均一画像は、例えば、各ステーションの画像を 合成すること〖こより作成することができる(ステップ 632、 633)。  [0028] The device characteristic data can be obtained by dividing by the uniform image of the image otal FOV obtained at each station. A uniform image is an image obtained when the coil sensitivity is uniform, and a uniform image of total FOV can be created by combining the images of each station (step 632, 633).
[0029] 装置特性データのための撮影にぉ 、て、装置特性データ取得用の sub FOVは、図 5に示すように、本撮影における信号取得可能な範囲全体をカバーするように十分 大きく設定する。また、ステーション間である程度 sub FOVを重ねるようにする。これに より均一画像の合成、装置特性データの補間をしやすくする。正確な装置特性デー タを得るためには、各ステーション画像の均一とみなせる領域のみで total FOVを力 バーできるように sub FOVを重ねることが好ましい。また正確さより撮影時間の短縮を 優先させる場合は、より重なりを少なくする。より均一な total FOV画像を作成するた めに、ボディコイルなど別のコイルを使用した撮影を追カ卩しても良!、。  [0029] When photographing for device characteristic data, the sub FOV for obtaining device characteristic data is set sufficiently large so as to cover the entire range in which signal acquisition is possible as shown in FIG. . In addition, some sub FOVs are overlapped between stations. This makes it easy to synthesize uniform images and interpolate device characteristic data. In order to obtain accurate device characteristic data, it is preferable to overlap the sub FOV so that the total FOV can be covered only in the area that can be regarded as uniform in each station image. If priority is given to shortening the shooting time over accuracy, the overlap should be reduced. In order to create a more uniform total FOV image, it is possible to add shooting using another coil such as a body coil!
[0030] 各ステーションの撮影により画像データが得られたならば、各ステーションで得られ た画像から total FOVの均一画像を合成する。次いで、各ステーションで得られた画 像をこの total FOVの均一画像でわり、各ステーションにおける被検体とコイルの位置 関係での、静磁場不均一による信号強度の分布、照射用コイルの励起分布、受信コ ィルの感度分布をあわせた装置特性データを得る。なお、この計算において、必要 に応じて、得られた画像にローノ スフィルタをかけたり、被写体の無い領域をマスクし て計算を行う。これによりノイズに対して安定に装置特性データを取得することができ る。 [0030] If image data is obtained by photographing at each station, a uniform image of total FOV is synthesized from the images obtained at each station. Next, the image obtained at each station is replaced with a uniform image of this total FOV, and the signal intensity distribution due to the static magnetic field inhomogeneity in the positional relationship between the subject and the coil at each station, the excitation distribution of the irradiation coil, Receive Obtain device characteristic data that matches the sensitivity distribution of the file. In this calculation, if necessary, a low-pass filter is applied to the obtained image, or an area without a subject is masked. This makes it possible to acquire device characteristic data stably against noise.
[0031] こうして取得される装置特性データはステーション毎のデータである力 画像再構 成においては、本撮影において連続的に変化する被検体の各位置における装置特 性データが必要となる。画像再構成に際し、最も近傍のステーションでの装置特性デ ータを使うこととしてもよいが、好適には、各ステーション間の装置特性データを補間 することにより作成する。  [0031] The device characteristic data acquired in this way is data for each station. In force image reconstruction, device characteristic data at each position of the subject that changes continuously in the main imaging is required. When reconstructing an image, the device characteristic data at the nearest station may be used, but it is preferably created by interpolating the device characteristic data between the stations.
[0032] 次に本撮影 (検査対象のデータの取得)を、図 6を参照して説明する。図 6 (a)は本 撮影の手順を示し、図 6 (b)は画像再構成の手順を示す。このステップ 602では、その 詳細を図 6 (a)に示すように、まずテーブルの移動を開始する (ステップ 607)。次に、 R Fの送受信を行う(ステップ 608)。 RFの送受信は total FOVをカバーするだけテープ ルを移動するまで繰り返す (ステップ 609)。 total FOVをカバーするだけテーブルを移 動したらデータの取得を終了する(ステップ 610)。  Next, main imaging (acquisition of data to be inspected) will be described with reference to FIG. Fig. 6 (a) shows the procedure for the actual shooting, and Fig. 6 (b) shows the procedure for image reconstruction. In step 602, as shown in detail in FIG. 6 (a), the table is first moved (step 607). Next, R F is transmitted and received (step 608). RF transmission / reception is repeated until the table is moved to cover the total FOV (step 609). When the table is moved to cover the total FOV, the data acquisition is terminated (step 610).
[0033] total FOVをカバーするためのテーブル移動範囲は、図 3に示す全身撮影の場合、 破線で描かれた被検体およびテーブルの位置から実線で描かれた検査対象 103お よびテーブルの位置 301までが total FOVをカバーするための移動範囲である。通常 は、テーブルの移動速度が一定となって力 データ取得を開始できるように、助走区 間として移動範囲より前力 テーブルを移動し、 total FOVの一端が信号取得領域の 中心になる位置でデータ取得を開始し、 total FOVの他端が信号取得領域の中心の 位置となった時点でデータ取得を終了する。テーブル位置は、テーブル制御装置 30 2が検出し、その情報をシーケンサに送る。  [0033] In the case of whole body imaging shown in FIG. 3, the table movement range for covering the total FOV is the inspection object 103 and the table position 301 drawn with a solid line from the subject and table position drawn with a broken line. Up to is the movement range to cover the total FOV. Normally, the front force table is moved from the moving range as a run-up zone so that the table can be moved at a constant speed, and data is acquired at a position where one end of the total FOV is the center of the signal acquisition area. Acquisition starts, and data acquisition ends when the other end of the total FOV reaches the center of the signal acquisition area. The table position is detected by the table controller 302 and the information is sent to the sequencer.
[0034] ステップ 608の撮影で採用されるパルスシーケンスの一例を図 7に示す。なお図 7中 、 RFは励起高周波パルス、 Gsはスライス選択傾斜磁場、 Gpはスライディング位相ェ ンコード傾斜磁場、 Grはリードアウト傾斜磁場を示す。このパルスシーケンスは、外見 上は一般的な 2Dグラディエントエコー系パルスシーケンスと同様である力 Gp軸が テーブルの移動方向と一致し、テーブル移動方向における取得位置が異なる取得 データ毎に印加量 (強度や印加時間)を変えて傾斜磁場が印加される点で異なる。 本発明では、このような Gp軸の傾斜磁場をスライディング位相エンコード傾斜磁場と 呼ぶ。 FIG. 7 shows an example of a pulse sequence employed in step 608 for imaging. In FIG. 7, RF represents an excitation radio frequency pulse, Gs represents a slice selective gradient magnetic field, Gp represents a sliding phase encoding gradient magnetic field, and Gr represents a readout gradient magnetic field. This pulse sequence is similar in appearance to a general 2D gradient echo pulse sequence. The force Gp axis coincides with the table movement direction, and the acquisition position differs in the table movement direction. It differs in that the gradient magnetic field is applied by changing the applied amount (intensity and application time) for each data. In the present invention, such a Gp-axis gradient magnetic field is called a sliding phase encoding gradient magnetic field.
[0035] 撮影では、まず検査対象にディフェーズ用スライス傾斜磁場 203を印加し、あとのス ライス傾斜磁場 202で印加する傾斜磁場とバランスがとれるように備える。次にスライ ス傾斜磁場 202と同時に励起高周波パルス 201を印加し、所望のスライスのみを励起 する。これにより、特定のスライスのみが磁気共鳴信号 208を発生するようになる。また 、すぐにリフエーズ用スライス傾斜磁場 204を印加し、スライス傾斜磁場 202によりディ フェーズされた分を元に戻す。次に、スライディング位相エンコード傾斜磁場 205を印 加する。同時にディフェーズ用読み取り傾斜磁場 206を印加し、あとの読み取り傾斜 磁場 207で印加する傾斜磁場とバランスがとれるように備える。次に読み取り傾斜磁 場 207を印加し、ディフェーズ用読み取り傾斜磁場 206で一度減衰した磁気共鳴信号 208が再び大きくなつた時点で信号を計測する。最後に、リフエーズ用スライディング 位相エンコード傾斜磁場 209とリフエーズ用読み取り傾斜磁場 210を印加し、磁気共 鳴信号 208の取得時のエンコードを元に戻し、次の励起高周波パルス 211に備える。  In imaging, first, a dephasing slice gradient magnetic field 203 is applied to an inspection target, and a gradient magnetic field applied by a subsequent slice gradient magnetic field 202 is prepared so as to be balanced. Next, an excitation high-frequency pulse 201 is applied simultaneously with the slice gradient magnetic field 202 to excite only a desired slice. As a result, only a specific slice generates the magnetic resonance signal 208. Immediately, the slice gradient magnetic field 204 for reference is applied, and the amount dephased by the slice gradient magnetic field 202 is restored. Next, a sliding phase encoding gradient magnetic field 205 is applied. At the same time, the read gradient magnetic field 206 for dephase is applied, and the gradient magnetic field applied by the subsequent read gradient magnetic field 207 is prepared so as to be balanced. Next, the read gradient magnetic field 207 is applied, and the signal is measured when the magnetic resonance signal 208 once attenuated by the dephase read gradient magnetic field 206 becomes large again. Finally, the sliding phase encoding gradient magnetic field 209 and the reference reading gradient magnetic field 210 are applied, the encoding at the time of acquisition of the magnetic resonance signal 208 is restored, and the next excitation high-frequency pulse 211 is prepared.
[0036] 励起高周波パルス 201から時間 TR後に励起高周波パルス 211で励起を行い、上述 したのと同様に傾斜磁場の印加と信号の計測を繰り返す。但し、この繰返しの際には スライディング位相エンコード傾斜磁場 205、リフェーズ用スライディング位相ェンコ一 ド傾斜磁場 209をそれぞれ変化させ、スライディング位相エンコード方向の位置情報 を付与する。  [0036] Excitation is performed with excitation high-frequency pulse 211 after time TR from excitation high-frequency pulse 201, and application of a gradient magnetic field and signal measurement are repeated in the same manner as described above. However, during this repetition, the sliding phase encoding gradient magnetic field 205 and the rephasing sliding phase encoding gradient magnetic field 209 are each changed to give position information in the sliding phase encoding direction.
[0037] テーブルの移動速度は等速でも可変でも良!、。テーブル制御装置により、 n番目の 信号取得時のテーブル位置 rtable(n)は把握できるため、図 9のようにテーブル位置が sub FOVだけ変化する間にスライディング位相エンコード量が- πから πまで変化す るように各信号受信時のエンコード量 k(n)を設定する。  [0037] The moving speed of the table may be constant or variable! The table controller can grasp the table position rtable (n) when the nth signal is acquired, so the sliding phase encoding amount changes from -π to π while the table position changes by sub FOV as shown in Fig. 9. Set the encoding amount k (n) when receiving each signal.
[0038] このようにスライディング位相エンコードを付与することにより、信号 S(n,ky)が得られ る。 S(n,ky)において、 kyは y方向(読み取り方向)に対応する k空間上の座標を表す。 S(n,ky)は n番目に受信した磁気共鳴信号の k空間上の点 kyにおける信号値である。 信号 S(n,ky)は、 08 (a)に示すように計測データとして画像再構成のために計測メモ リ 401に格納される。なお図 8は、計測データに加えられる演算と、その結果を格納す るメモリを模式的に示す図である。 [0038] By applying the sliding phase encoding in this way, the signal S (n, ky) is obtained. In S (n, ky), ky represents a coordinate in the k space corresponding to the y direction (reading direction). S (n, ky) is the signal value at the point ky in the k space of the nth received magnetic resonance signal. Signal S (n, ky) is measured as image data for image reconstruction as shown in 08 (a). Stored in the RE 401. FIG. 8 is a diagram schematically showing a calculation added to the measurement data and a memory for storing the result.
[0039] 再構成画像の計算(図 4:ステップ 603)では、このような検査対象の計測データ 605 とステップ 601で得られた装置特性データ 604を用いて画像再構成演算を行う。画像 再構成演算は、受信された信号と磁化分布の関係式に基づき、近似により磁化分布 を実部虚部独立に求めることにより、検査対象の磁気モーメント分布を決定する。以 下、その詳細を説明する。 In the calculation of the reconstructed image (FIG. 4: step 603), the image reconstruction calculation is performed using the measurement data 605 to be inspected and the device characteristic data 604 obtained in step 601. In the image reconstruction calculation, the magnetic moment distribution to be inspected is determined by obtaining the magnetization distribution independently of the real part and the imaginary part by approximation based on the relational expression between the received signal and the magnetization distribution. The details will be described below.
[0040] 計測された信号 S(n,ky)は、テーブルの位置情報を用いて次式(1)で表すことがで さ、 [0040] The measured signal S (n, ky) can be expressed by the following equation (1) using the position information of the table.
[数 1]  [Number 1]
( 1 )  (1)
S(n,kv) = f r, ky) exp(-irfk(n)(l + d (rr)))wn {r')dr S (n, k v ) = fr, k y ) exp (-ir f k (n) (l + d (r r ))) w n (r ') dr
[0041] 信号 S(n,ky)をリードアウト方向(y方向)にフーリエ変換したものは次式(2)で表すこと ができる。 [0041] The signal S (n, ky) Fourier-transformed in the readout direction (y direction) can be expressed by the following equation (2).
[数 2]  [Equation 2]
( 2 ) s(n, y) = { m(r, y) ex.p(-ir'k(n)(l + d (rf)))wn (rf)dr これら式(1)、 (2)において、 iは虚数単位、 rは被検体に固定した座標系でのテープ ルの移動方向の位置、 r'は装置全体に固定した静止座標系でのテーブル移動方向 の位置で、 (2) s (n, y) = (m (r, y) ex.p (-ir'k (n) (l + d (r f ))) w n (r f ) dr These equations (1) In (2), i is the imaginary unit, r is the position in the moving direction of the table in the coordinate system fixed to the subject, r 'is the position in the moving direction of the table in the stationary coordinate system fixed to the entire apparatus,
[0042] [数 3] [0042] [Equation 3]
( 3 ) (3)
rf = r - rtahle{n) である。なお、 rtable(n)は n番目の磁気共鳴信号取得時におけるテーブルの移動量 である。 r f = r-r tahle (n). Rtable (n) is the amount of table movement when the nth magnetic resonance signal is acquired. It is.
[0043] また k(n)は n番目の磁気共鳴信号が受けたスライディング位相エンコード傾斜磁場 G(n)による位相回転に対応し、次式 (4)で定義される。テーブル移動量 rtable(n)との 関係をグラフに表すと図 9に示すようになる。  [0043] k (n) corresponds to the phase rotation by the sliding phase encoding gradient magnetic field G (n) received by the nth magnetic resonance signal, and is defined by the following equation (4). Figure 9 shows the relationship between the table movement amount rtable (n) and the graph.
[0044]
Figure imgf000013_0001
[0044]
Figure imgf000013_0001
式中、 γは磁気回転比である。  Where γ is the gyromagnetic ratio.
[0045] 傾斜磁場の非線形が存在し、 G(n)の大きさの傾斜磁場力 SG(n)(l+d(r'))とずれる場合 、実際の傾斜磁場による位相回転は、  [0045] When there is a gradient magnetic field non-linearity and the gradient magnetic field force SG (n) (l + d (r ')) has a magnitude G (n), the phase rotation by the actual gradient magnetic field is
[数 5]  [Equation 5]
( 5 ) ( Five )
= (1 + (r')) (w) = (1 + (r ')) (w)
Figure imgf000013_0002
Figure imgf000013_0002
となる。式(1)、 (2)の k(n)(l+d(r'))の項は傾斜磁場非線形を考慮した項である。  It becomes. The terms of k (n) (l + d (r ')) in Eqs. (1) and (2) are terms that consider gradient magnetic field nonlinearity.
[0046] 関数 wn(r')は n番目の信号取得時における被検体とコイルの位置関係において、位 置 r'における大きさ 1、位相 0の磁化から得られる信号の大きさと位相を表す関数であ り、静磁場の分布、 RFコイルの励起分布、および受信コイルの感度分布により決まる 。これらはステップ 601で装置特性データを計測することにより得られる。信号取得領 域(sub FOV、テーブル移動方向の長さは FOVsub)内で静磁場の分布、 RFコイルの 励起分布、受信コイルの感度分布が一様で、 sub FOV外で受信コイルが感度を持た ない場合、 wn(r')は図 10に示すような階段状の関数となる。 [0046] The function wn (r ') is a function representing the magnitude and phase of the signal obtained from the magnetization of magnitude 1 and phase 0 at position r' in the positional relationship between the subject and the coil at the time of obtaining the n-th signal. It is determined by the distribution of the static magnetic field, the excitation distribution of the RF coil, and the sensitivity distribution of the receiving coil. These are obtained by measuring device characteristic data in step 601. The static magnetic field distribution, RF coil excitation distribution, and receiver coil sensitivity distribution are uniform within the signal acquisition area (sub FOV, the length of the table movement direction is FOVsub), and the receiver coil has sensitivity outside the sub FOV. If not, wn (r ') is a step function as shown in Fig. 10.
[0047] m(r,y)は、被検体の位置 (r,y)における磁化すなわち求めようとする検査対象の画 像であり、 M(r,ky)は m(r,y)を yに関して逆フーリエ変換したものに相当する。  [0047] m (r, y) is the magnetization at the position (r, y) of the subject, that is, the image of the object to be examined, and M (r, ky) is m (r, y) Is equivalent to the inverse Fourier transform of.
[0048] 信号 S(n,ky)をリードアウト方向にフーリエ変換することによって得られた信号 s(n,y) は、図 8 (b)に示すように中間メモリ 402に格納される。この信号 s(n,y)は、- πから πま での 1シリーズの位相エンコードが検査対象の異なる位置で行われて 、るため、従来 のようにフーリエ変換法により m(r,y)を求めることはできない。し力し、 s(n,y)と m(r,y)の 間には式(2)の関係があるので、本発明では、式(2)を逆に解くことにより m(r,y)を求 める。式(2)を m(r,y)について解くためには、!:,、 k(n)、 (l + d(r'))、 wn(r')、 s(n,y) を知る必要がある力 上述したように、 r'は式(3)から求めることができ、 k(n)は式 (4) で定義され、図 9のように、 n番目の信号取得時のテーブル位置 rtable(n)に対して、 つまり nに対して設定される。また(l + d(r'))は傾斜磁場の非線形性を表すデータ であって予め計測できるものであり、 wn(r')はステップ 601の計測により求められる。 したがって、 s(n,y)を計測すれば、未知数は m(r,y)のみになりこれを解くことで画像再 構成が可能となる。ただし、単純に方程式を解いては解が不安定になるため、本発 明では、近似により磁ィ匕分布を実部虚部独立に求めることにより安定な画像再構成 を可能とする。 [0048] The signal s (n, y) obtained by Fourier-transforming the signal S (n, ky) in the readout direction is stored in the intermediate memory 402 as shown in Fig. 8 (b). Since this signal s (n, y) is phase-encoded from -π to π at a different position to be examined, m (r, y) Cannot be asked. S (n, y) and m (r, y) Since there is a relationship of equation (2) between them, in the present invention, m (r, y) is obtained by solving equation (2) in reverse. To solve equation (2) for m (r, y): : ,, k (n), (l + d (r ')), wn (r'), force that needs to know s (n, y) As mentioned above, r 'is obtained from equation (3) K (n) is defined by equation (4), and is set for the table position rtable (n) when the nth signal is acquired, that is, for n, as shown in FIG. (L + d (r ')) is data representing the nonlinearity of the gradient magnetic field and can be measured in advance, and wn (r') is obtained by the measurement in step 601. Therefore, if s (n, y) is measured, the unknown is only m (r, y), and solving this enables image reconstruction. However, since the solution becomes unstable if the equation is simply solved, the present invention enables stable image reconstruction by obtaining the magnetic flux distribution independently of the real part by approximation.
[0049] 画像再構成にあたり、連続的な rに対して m(r,y)を求める必要はなぐ画像の各画素 の代表位置 rにおける磁ィ匕分布 m(r,y)を求めれば十分である。また各画素内での磁 化分布の変化は無視して、式 (2)は次式のように離散化される。  [0049] For image reconstruction, it is not necessary to obtain m (r, y) for continuous r. It is sufficient to obtain the magnetic distribution m (r, y) at the representative position r of each pixel of the image. is there. In addition, ignoring changes in the magnetic distribution within each pixel, Eq. (2) is discretized as follows.
[0050] 園  [0050] Garden
(6) s(n, ) = … m(rj , y) exp ( ( (1 + d{r)))wn ( Α(6) s (n,) =… m (rj, y) exp (((1 + d (r))) w n
(3)
Figure imgf000014_0001
(3)
Figure imgf000014_0001
[0051] 式(6)中, r'は式(3)と同様の式(3')で表される。 [0051] In equation (6), r 'is represented by equation (3') similar to equation (3).
[0052] また, Arは各 jにおける r方向の画素の大きさである。 [0052] Ar is the size of the pixel in the r direction at each j.
J  J
離散化された上式は行列で表すことができ、  The above discretized equation can be expressed as a matrix,
[0053] [数 7] [0053] [Equation 7]
(7) (7)
となる。ここで、 s , mは次式で表されるベクトルである。 [0054] [数 8] It becomes. Here, s and m are vectors represented by the following equations. [0054] [Equation 8]
Figure imgf000015_0001
Figure imgf000015_0001
[0055] [数 9] [0055] [Equation 9]
(9) (9)
Figure imgf000015_0002
Figure imgf000015_0002
[0056] ここで、 Nは信号の数、 Jは r方向の画素数である。 [0056] Here, N is the number of signals, and J is the number of pixels in the r direction.
また、行列 Aは各要素 A(n,j)が  Also, matrix A has each element A (n, j)
[0057] [数 10]  [0057] [Equation 10]
(10)  (Ten)
A(n, j) = exp(-ir!k(n)(l + d(r')))wn (ή)Αη で表される行列である。 A (n, j) = exp (−ir! K (n) (l + d (r ′))) w n (ή) Αη
さらに、実部虚部を考慮して式 (7)を展開すると、  Furthermore, when formula (7) is expanded considering the real part imaginary part,
[0058] [数 11] (1 1) [0058] [Equation 11] (1 1)
Re(sy)+Im(sy) x i=(Re(A)+Im(A) i)(Re(my)+Im(my) xi) となり、これを実部虚部ごとに分けると  Re (sy) + Im (sy) x i = (Re (A) + Im (A) i) (Re (my) + Im (my) xi)
[0059] [数 12]  [0059] [Equation 12]
(12)(12)
e(sy ) = Re(A) Re(my ) - Im(A) Im(my ) e (s y ) = Re (A) Re (m y )-Im (A) Im (m y )
Im(s y) = Im( A) Re(m y) + Re(A) Im(m y ) となる。この二つの式を一つにまとめるために、ベクトル s'と行列 Ar、 Aiを以下のよう Im (s y ) = Im (A) Re (m y ) + Re (A) Im (m y ) To combine these two expressions into one, the vector s' and the matrices Ar and Ai are
y  y
に定義する。  Defined in
[0060] [数 13] [0060] [Equation 13]
(13) (13)
Figure imgf000016_0001
Figure imgf000016_0001
[0061] [数 14] (14) [0061] [Equation 14] (14)
ί Re(A) 、  ί Re (A),
V Im(A)ノ  V Im (A)
[0062] [数 15]  [0062] [Equation 15]
(15) (15)
ί -Im(A) 、  ί -Im (A),
Re(A)ノ この定義により式(12)は  Re (A) No By this definition, equation (12) becomes
[数 16]  [Equation 16]
(16)
Figure imgf000017_0001
となる。
(16)
Figure imgf000017_0001
It becomes.
Ar,Aiの逆行列により  By inverse matrix of Ar and Ai
[0064] [数 17] [0064] [Equation 17]
(17) (17)
一 1  One 1
Re(ni ) = A——rr s ~' j - Ar At- Im(m y ) Im(ray) = Aj s'r A " Ar Re(my) となる。
Figure imgf000017_0002
Re (ni) = A-- rr s ~ a 'j - - A r A t Im (my) Im (ra y) = Aj s' r A "A r Re (m y).
Figure imgf000017_0002
[数 18]
Figure imgf000018_0001
[Equation 18]
Figure imgf000018_0001
となる。この式で磁ィ匕分布を求めることができる。  It becomes. With this formula, the magnetic flux distribution can be obtained.
なお,後で述べるが,
Figure imgf000018_0002
値である。
As will be described later,
Figure imgf000018_0002
Value.
[0066] このような画像再構成を行なうための手順を、図 6 (b)に示す。まず装置特性データ 力 式(14)、 (15)で定義される行列の要素の値が確定するので、その逆行列 (703, 704)を求める(ステップ 701, 702)。次に得られた逆行列 (703,704)と計測データ力も式 (18)により磁ィ匕分布の実部虚部 (707,708)を求める (ステップ 705,706)。最後にこれら 実部虚部を合成し、再構成画像を得る (ステップ 709)。こうして求めた m(r,y)は、図 8 (c)に示すように画像メモリ 403に格納される。 The procedure for performing such image reconstruction is shown in FIG. 6 (b). First, since the values of the matrix elements defined by the device characteristic data force equations (14) and (15) are determined, the inverse matrix (703, 704) is obtained (steps 701, 702). Next, the inverse matrix (703,704) and the measured data force obtained are also used to obtain the real part imaginary part (707,708) of the magnetic flux distribution using equation (18) (steps 705,706). Finally, these real and imaginary parts are combined to obtain a reconstructed image (step 709). The m (r, y) thus obtained is stored in the image memory 403 as shown in FIG.
[0067] 以上説明したように本実施の形態によれば、テーブルの移動方向にスライディング 位相エンコードを付与する撮影を行うとともに、受信された信号と磁化分布の関係式 に基づき、近似により磁化分布を実部虚部独立に求める演算によって画像再構成す ることにより、テーブル移動方向の撮影可能領域 (sub FOV)が狭い場合にも撮影時 間が長くなることなぐ従来法と同等の画質を維持し視野を拡大した撮影が可能とな る。 [0067] As described above, according to the present embodiment, imaging is performed in which sliding phase encoding is given in the moving direction of the table, and the magnetization distribution is approximated based on the relational expression between the received signal and the magnetization distribution. By reconstructing the image by calculating the real part and the imaginary part independently, the image quality equivalent to that of the conventional method is maintained even when the shootable area (sub FOV) in the direction of table movement is small, without increasing the shooting time. Shooting with an expanded field of view is possible.
[0068] なお上記実施の形態では、撮影方法として図 7のノ ルスシーケンスを例示したが、 これに例えばスライス方向の位相エンコードを付与し、 3D撮影を行うことも可能であ る。この場合には、処理する信号の、位置の次元が増加するのみで同様に画像再構 成を行うことができる。  In the above-described embodiment, the Knock sequence of FIG. 7 is illustrated as an imaging method. However, for example, phase encoding in the slice direction can be given to perform 3D imaging. In this case, image reconstruction can be similarly performed only by increasing the position dimension of the signal to be processed.
[0069] また上記実施の形態では、全てのデータを取得した後に画像再構成を行う場合を 説明したが、画像再構成はデータ取得と平行して行うこともできる。以下、本発明の 第 1の実施の形態の変更例として、画像再構成を本撮影と平行して行う方法を図 11a 〜l lcを参照して説明する。  [0069] In the above embodiment, the case where image reconstruction is performed after all data has been acquired has been described. However, image reconstruction can also be performed in parallel with data acquisition. Hereinafter, as a modification of the first embodiment of the present invention, a method for performing image reconstruction in parallel with the main imaging will be described with reference to FIGS. 11a to 11c.
[0070] 本実施の形態においても、装置の構成は、上述した第 1の実施の形態と同様である 。ただし、本実施の形態では、撮影の手順は図 11aのように、最初のステップで装置 特性データの取得を行い (601)、次のステップで、画像再構成に必要となる逆行列を 計算し (720)、最後のステップで、本撮影と平行して装置特性データと検査対象デー タを用いて検査対象の再構成画像を計算する (722)。 [0070] Also in the present embodiment, the configuration of the apparatus is the same as that of the first embodiment described above. . However, in the present embodiment, as shown in FIG. 11a, in the present embodiment, device characteristic data is acquired in the first step (601), and in the next step, an inverse matrix necessary for image reconstruction is calculated. (720) In the last step, a reconstructed image of the inspection object is calculated using the apparatus characteristic data and the inspection object data in parallel with the main photographing (722).
[0071] 装置特性データを取得する方法は第 1の実施の形態と同様である。装置特性デー タの取得後に式(14)、(15)で定義される行列の逆行列を求める。この逆行列は式( 18)による画像再構成に必要となる。  [0071] The method for acquiring the device characteristic data is the same as in the first embodiment. After obtaining the device characteristic data, the inverse matrix of the matrix defined by equations (14) and (15) is obtained. This inverse matrix is required for image reconstruction according to Equation (18).
[0072] 本撮影と画像再構成の平行処理は、式(18)の計算を計算できる要素力 行ってい くことにより実現する。例えば、図 l ibに示すように、本撮影は第 1の実施の形態の本 撮影と同様にテーブルを移動しながら撮影を行い、 RF送受信後に必要に応じて再 構成画像の更新を行う。  [0072] Parallel processing of the main photographing and image reconstruction is realized by performing an element force that can calculate the calculation of Expression (18). For example, as shown in FIG. 1 ib, the main imaging is performed while moving the table in the same manner as the main imaging of the first embodiment, and the reconstructed image is updated as necessary after RF transmission / reception.
[0073] 再構成画像の更新は図 11cに示すように、新規に取得したデータに対して磁化分 布 (更新分)を求め、更新前の磁化分布に加算することにより再構成画像を更新する。 磁ィ匕分布の更新分は具体的には、式(18)の S'yの要素を新規に取得したデータの 要素以外は 0にして求める。こうして得られた Re(m )、 Im(m )が磁ィ匕分布の更新分と  [0073] As shown in FIG. 11c, the reconstructed image is updated by obtaining the magnetization distribution (updated) from the newly acquired data and adding it to the magnetization distribution before the update. . Specifically, the update of the magnetic distribution is obtained by setting the S'y element in Eq. (18) to 0 except for the newly acquired data element. Re (m) and Im (m) obtained in this way are
y y  y y
なる。  Become.
[0074] また上記実施の形態では、装置特性データを取得するにあたり、本撮影とは別に 撮影を行う場合を説明したが、装置特性データの取得は本撮影と同時に行うこともで きる。以下、本発明の第 2の実施の形態として、装置特性データの取得を本撮影と同 時に行う方法を図 12および図 13を参照して説明する。  In the above-described embodiment, the case has been described in which shooting is performed separately from the main shooting when acquiring the device characteristic data. However, the device characteristic data can be acquired simultaneously with the main shooting. Hereinafter, as a second embodiment of the present invention, a method for acquiring apparatus characteristic data at the same time as main imaging will be described with reference to FIGS. 12 and 13. FIG.
[0075] 本実施の形態においても、装置の構成は、上述した第 1の実施の形態と同様である 。ただし、本実施の形態では、撮影の手順は図 12 (a)のように、最初のステップで装 置特性データの取得と本撮影を同時に行い (625)、次のステップで、装置特性デー タと検査対象データを用いて検査対象の再構成画像を計算する(626)。  Also in the present embodiment, the configuration of the apparatus is the same as that of the first embodiment described above. However, in the present embodiment, as shown in FIG. 12 (a), in the present embodiment, the device characteristic data acquisition and the main photographing are simultaneously performed in the first step (625), and the device characteristic data is obtained in the next step. The reconstructed image of the inspection object is calculated using the inspection object data (626).
[0076] 装置特性データの同時取得は、本撮影において周波数領域の低域データのみを 利用することにより実現する。すなわち、本撮影で取得した SPEデータのうち低域の みを切り出し、フーリエ変換により装置データ用のローパス画像を取得する。この際、 信号取得可能な領域が sub FOV内に収まらない場合は、低域データを密に取り、 FO Vを拡張する。例えば、図 12 (b)に示すように、本撮影は第 1の実施形態の本撮影と 同様にテーブルを移動しながら撮影を行い(627、 628)、スライディング位相ェンコ一 ドステップを低域のみ 0.5ずつ増加する(629)。 [0076] Simultaneous acquisition of device characteristic data is realized by using only low-frequency data in the frequency domain in actual imaging. In other words, only the low-frequency region is cut out from the SPE data acquired in this shooting, and a low-pass image for device data is acquired by Fourier transform. At this time, if the area where the signal can be acquired does not fit within the sub FOV, the low-frequency data is taken densely and the FO Extend V. For example, as shown in FIG. 12 (b), the main shooting is performed while moving the table in the same manner as the main shooting in the first embodiment (627, 628), and the sliding phase encoding step is performed only in the low frequency range. Increase by 0.5 (629).
[0077] 本実施の形態の撮影におけるスライディング位相エンコードとテーブル位置との関 係および得られたデータの処理の一例を図 13に示す。まず、このような撮影により得 られた SPEデータから、密に計測された低域データを切り出し、まず原点補正を行う ( 図 13、ステップ 641)。本撮影は、テーブル位置を移動しながら行う撮影であるため、 各信号取得において原点位置が異なることになる。原点位置が異なることは傾斜磁 場のオフセット値がずれることを意味する。原点位置の補正は、このような傾斜磁場 のオフセット値のずれを補正する補正であり、信号に exp(-ir (n)k(n)( l+d(r')))をか FIG. 13 shows an example of the relationship between the sliding phase encoding and the table position and the processing of the obtained data in photographing according to the present embodiment. First, densely measured low-frequency data is extracted from the SPE data obtained by such imaging, and the origin is first corrected (Fig. 13, step 641). Since the main shooting is performed while moving the table position, the origin position differs in each signal acquisition. Different origin positions mean that the offset value of the gradient magnetic field is shifted. The correction of the origin position is a correction that corrects such a deviation of the offset value of the gradient magnetic field, and exp (-ir (n) k (n) (l + d (r '))) is applied to the signal.
table  table
けることにより補正することができる。即ち、次式(19)の処理を行う。  Correction can be made. That is, the processing of the following equation (19) is performed.
[0078] [数 19] [0078] [Equation 19]
( 1 9 ) )wn (r')dr
Figure imgf000020_0001
上式(19)では、傾斜磁場の非線形の項を含むが、傾斜磁場の非線形が無視でき る程度の場合には、信号に exp(-ir (n)k(n))を信号にかけてもよい。その場合の処理
(1 9)) w n (r ') dr
Figure imgf000020_0001
The above equation (19) includes a nonlinear term of the gradient magnetic field, but if the nonlinearity of the gradient magnetic field is negligible, exp (-ir (n) k (n)) may be applied to the signal. . Processing in that case
table  table
は次式(20)で表される。  Is represented by the following equation (20).
[0079] [数 20] [0079] [Equation 20]
( 2 0 )  (2 0)
S(nt ky) x exp(-/rtoWe (n)k(n)) S (n t k y ) x exp (-/ r toWe (n) k (n))
M(r, k ) cxp(~~irk(n))wn (rr)dr M (r, k) cxp (~~ irk (n)) w n (r r ) dr
[0080] 原点位置を補正した後、図 13に示すように、高域データのゼロフィルを行うことによ り k- spaceを埋めて 1枚のローパス画像用の k- spaceデータを作成する(ステップ 642)。 この k-spaceデータをフーリエ変換することにより、 1つのテーブル位置でのローパス 画像を取得できる (ステップ 643)。なおテーブル移動方向に位相エンコードを行うス ライディング位相エンコードにおいては、データ取得ごとに FOVが異なるため、通常 は、フーリエ変換による画像再構成が行えないが、低域データのみを使用する場合 は、テーブル位置の変化が少なぐ FOVがそれほど変わらないため、各データの原 点位置の補正さえ行えば、近似的にフーリエ変換による画像再構成が可能となる。 [0080] After correcting the origin position, as shown in Fig. 13, zero-filling the high-frequency data is performed to fill the k-space and create k-space data for one low-pass image (step 642). A low-pass image at one table position can be acquired by Fourier transforming this k-space data (step 643). In sliding phase encoding that performs phase encoding in the table movement direction, the FOV differs for each data acquisition, so image reconstruction by Fourier transform is usually not possible. However, if only low-frequency data is used, the table Since the FOV does not change much with little change in position, it is possible to reconstruct the image by Fourier transform approximately if the origin position of each data is corrected.
[0081] このローパス画像は、スライディング位相エンコードの 1ループ毎に得ることができ、 各位置のローパス画像データを用いて、第 1の実施の形態と同様に装置特性データ を作成することができる。すなわち各ローパス画像データを、 total FOVの均一画像 データで割ることにより装置特性データを得ることができる。各位置で得られた装置 特性データから補間することにより全体としての装置特性データを作成する(644)。  This low-pass image can be obtained for each loop of sliding phase encoding, and device characteristic data can be created using the low-pass image data at each position in the same manner as in the first embodiment. That is, device characteristic data can be obtained by dividing each low-pass image data by the total FOV uniform image data. Overall device characteristic data is created by interpolation from the device characteristic data obtained at each position (644).
[0082] なお装置特性データが取得できる位置の間隔は、スライディング位相エンコードの ループ数によって決まる。間隔が狭いほど、即ち、装置特性データ取得用の各画像 の取得位置が密であるほど、均一な画像の作成や、装置特性データの補間が正確 になる。本実施の形態において、取得位置の間隔は、テーブル移動速度を遅くする 力 スライディング位相エンコードステップをまばらにし、 014 (a)に示すようにスライ デイング位相エンコードのループを増やすことにより狭めることができる。  It should be noted that the interval between positions where the device characteristic data can be acquired is determined by the number of sliding phase encoding loops. The narrower the interval, that is, the denser the acquisition position of each image for acquiring device characteristic data, the more accurate the creation of a uniform image and the interpolation of device characteristic data. In this embodiment, the interval between the acquisition positions can be narrowed by increasing the sliding phase encoding loop as shown in 014 (a) by sparse the force sliding phase encoding step that slows the table moving speed.
[0083] また低域のスライディング位相エンコードステップを 0.5ずつ増加する場合を説明し たが、この場合は、信号取得回数が増えるため、本撮影の撮影時間が増加する。本 撮影の撮影時間の増加を抑えるには、図 15に示すように、高域において例えば 2ず つスライディング位相エンコードステップを増加することにより信号取得回数を減らせ ばよい。図 15に示すフローでは、周波数領域を 3つに分けて、低域ではスライディン グ位相エンコードステップを 0.5ずつ増加し、高域では 2ずつ増加している。このような スライディング位相エンコード量の変化を図 14 (b)に示す。また図 16に、このようなス ライディング位相エンコードステップによる撮影で得られた SPEデータを示す。  In addition, although the case where the low-frequency sliding phase encoding step is increased by 0.5 has been described, in this case, the number of signal acquisition times increases, and thus the imaging time of the main imaging increases. In order to suppress the increase in the shooting time of the main shooting, as shown in FIG. 15, the number of signal acquisitions may be reduced by increasing the sliding phase encoding step, for example, by 2 each in the high frequency range. In the flow shown in Fig. 15, the frequency domain is divided into three, and the sliding phase encoding step is increased by 0.5 in the low frequency range and increased by 2 in the high frequency range. This change in the amount of sliding phase encoding is shown in Fig. 14 (b). Figure 16 shows the SPE data obtained by shooting using such a sliding phase encoding step.
[0084] こうして取得した装置特性データと、また同時に取得した画像データを用いて画像 再構成する計算法は第 1の実施の形態と同様である。  The calculation method for reconstructing an image using the device characteristic data acquired in this way and the image data acquired at the same time is the same as that in the first embodiment.
[0085] 本実施の形態によれば、本撮影とは別に装置特性データを取得するための撮影を 行う必要がな 、ので、全体としての撮影時間を短縮することができる。 According to the present embodiment, shooting for acquiring device characteristic data is performed separately from main shooting. Since it is not necessary to do so, the overall shooting time can be shortened.
[0086] なお以上の実施の形態では、受信コイルが装置に固定されている場合を説明した 力 被検体に固定されている場合にも適用することができる。  In the above-described embodiment, the case where the receiving coil is fixed to the apparatus has been described. The present invention can also be applied to the case where the receiving coil is fixed to the subject.
まず第 3の実施の形態として、被検体に固定されたコイルを用い、あらかじめ装置 特性データを取得して力ゝら本撮影を行う方法を説明する。  First, as a third embodiment, a method will be described in which device characteristics data is acquired in advance using a coil fixed to a subject, and main imaging is performed by force.
[0087] 本実施の形態でも、本撮影 602に先立って装置特性計測 601を行い、装置特性デ ータを用いて画像再構成 603することは図 4 (a)に示す第 1の実施の形態と同様であ る。ただし、本実施の形態では、図 17に示すように、コイル 114は被検体 103に固定さ れているので被検体 (テーブル 301)の移動に伴い移動し、 total FOVを撮影するため に複数のコイルを切り替えて用いる。複数のコイルを切り替える場合、同時に複数の コイルを用 、て受信しても良 、。  In the present embodiment, the apparatus characteristic measurement 601 is performed prior to the main photographing 602, and the image reconstruction 603 is performed using the apparatus characteristic data in the first embodiment shown in FIG. 4 (a). Is the same. However, in the present embodiment, as shown in FIG. 17, since the coil 114 is fixed to the subject 103, the coil 114 moves with the movement of the subject (table 301), and a plurality of images are taken to capture the total FOV. Switch the coil for use. When switching multiple coils, you can use multiple coils at the same time to receive.
[0088] このような撮影によって得られる信号は、各コイル力 得られる信号を区別するため に、コイルの番号に相当する次元が追加され、式 (8)を適用した画像再構成が実行 される。例えば、 c番目のコイル力 得られる信号 S(n,ky,c)は、次式(21)で表される。  [0088] In the signal obtained by such imaging, a dimension corresponding to the coil number is added to distinguish the signal obtained by each coil force, and image reconstruction applying Formula (8) is executed. . For example, the signal S (n, ky, c) obtained by the c-th coil force is expressed by the following equation (21).
[0089] [数 21]  [0089] [Equation 21]
( 2 1 ) ( twenty one )
S(n. kv, c) - (r, ky ) e p(-ir'k(n)(l + d(r')))wn c (r')dr S (n. K v , c)-(r, k y ) ep (-ir'k (n) (l + d (r '))) w nc (r') dr
=0  = 0
[0090] 信号 S(n,ky,c)をリードアウト方向(y方向)にフーリエ変換したものは次式(22)で表す ことができる。  [0090] The signal S (n, ky, c) that is Fourier-transformed in the readout direction (y direction) can be expressed by the following equation (22).
[0091] [数 22] [0091] [Equation 22]
( 2 2 ) s(n, , c) =「 (r, ) cxp(-ir'k(n)(l + ')) ,c (rr)dr (2 2) s (n,, c) = ((r,) cxp (-ir'k (n) (l + ')), c (r r ) dr
Jr-0  Jr-0
[0092] 画像再構成にあたり、連続的な rに対して m(r,y)を求める必要はなぐ画像の各画素 の代表位置 rにおける磁ィ匕分布 m(r ,y)を求めれば十分である。また各画素内での磁 化分布の変化は無視して、式 (22)は次式のように離散化される。 [0092] For image reconstruction, it is not necessary to obtain m (r, y) for continuous r. It is sufficient to obtain the magnetic distribution m (r, y) at the representative position r of each pixel of the image. is there. In addition, ignoring changes in the magnetic distribution in each pixel, Eq. (22) is discretized as follows.
[0093] [数 23] s(n, , c) = ^J m(r. , y) exp (—/' + (r')))w„c (rj)Ar. ここで, r'は式(3)と同様の次式で表される。 [0093] [Equation 23] s (n,, c) = ^ J m (r., y) exp (— / '+ (r'))) w „ c (rj) Ar. where r 'is the same as in equation (3) It is expressed by the following formula.
[0094] [数 24] [0094] [Equation 24]
(24) ' = - - ( (24) '=--(
また, ΔΓは各 jにおける r方向の画素の大きさである。  ΔΓ is the size of the pixel in the r direction at each j.
離散化された上式は行列で表すことができ、  The above discretized equation can be expressed as a matrix,
[0095] [数 25] sy = A my となる。ここで、 s" mは次式で表されるベクトルである。 [0095] the [number 25] s y = A m y . Here, s "m is a vector represented by the following equation.
y y  y y
[0096] [数 26]  [0096] [Equation 26]
(26)  (26)
( s(hy )ヽ  (s (hy) ヽ
5(2, , 1) [0097] [数 27] 5 (2,, 1) [0097] [Numerical 27]
(27) (27)
Figure imgf000024_0001
(r )
Figure imgf000024_0001
(r)
ノ ここで、 Nは信号の数、 Cはコイルの数、 Jは r方向の画素数である。  Where N is the number of signals, C is the number of coils, and J is the number of pixels in the r direction.
また、行列 A"は各要素 A"((n-1) X C+c,j)が  The matrix A "has each element A" ((n-1) X C + c, j)
[0098] [数 28] [0098] [Equation 28]
(28) (28)
A (n ~1)XC + C,J) = exp(~^(«)(l + (r'))) „>c ( ) Δ で表される行列である。 A (n ~ 1) XC + C, J) = exp (~ ^ («) (l + (r '))) A matrix represented by > c () Δ.
さらに、実部虚部を考慮して式 (25)を展開すると、  Furthermore, when formula (25) is expanded considering the real part imaginary part,
[0099] [数 29] [0099] [Equation 29]
(29)  (29)
Re(s"y)+Im(s"y) Xi=(Re(Aff)+Im(A") Xi)(Re(my)+Im(my) Xi) となる。これを実部虚部ごとに分けると、 Re (s "y) + Im (s" y) Xi = (Re (A ff ) + Im (A ") Xi) (Re (my) + Im (my) Xi). When divided into
[0100] [数 30]  [0100] [Equation 30]
(30)  (30)
Re« ) - Re(A") Re(my )― Im(A") Im(my ) Re «)-Re (A") Re (m y ) ― Im (A ") Im (m y )
Im(s ) = Ira(A") Re(my ) + Re(Aff) Im(my) Im (s) = Ira (A ") Re (m y ) + Re (A ff ) Im (m y )
[0101] となる。この二つの式を一つにまとめるために、ベクトル s"'と行列 A"r,A"iを以下のよ [0101] To combine these two expressions into one, the vector s "'and the matrix A" r, A "i are
y  y
うに定義する。 [0102] [数 31] Define as follows. [0102] [Equation 31]
1) 1)
Re(^(2?j)) tlf Re (^ (2 ? J)) tlf
Sy ― Im( (l, )) S y ― Im ((l,))
im(S"(2, ))  im (S "(2,))
[0103] [数 32] [0103] [Equation 32]
(32)  (32)
ArA r
V Im(A")ノ  V Im (A ")
[0104] [数 33]  [0104] [Equation 33]
(33) (33)
, - Im(A')、 ,-Im (A '),
A  A
Re(Aff)ノ この定義により式(30)は Re (A ff ) No By this definition, equation (30) becomes
[0105] [数 34] [0105] [Numerical 34]
(34) s: = A:Re(my) + A im(mv) となる。 (34) s: = A: Re (m y ) + A im (m v ) It becomes.
A"r、 A"iの逆行列により、  By the inverse matrix of A "r, A" i,
[0106] [数 35] [0106] [Equation 35]
( 3 5 )
Figure imgf000026_0001
となる。式(17)同様 Ar— i、 Af Arの項を無視できて、
(3 5)
Figure imgf000026_0001
It becomes. As in Equation (17), the terms Ar—i and Af Ar can be ignored,
[0107] [数 36] [0107] [Equation 36]
( 3 6 )
Figure imgf000026_0002
(3 6)
Figure imgf000026_0002
Jim ML. I Ai y となる。この式で磁ィ匕分布を求めることができる。 Jim ML. I A i y . With this formula, the magnetic flux distribution can be obtained.
[0108] 一方、装置特性データの取得 601については、式(21)に示す装置特性データ w ( r')をコイル毎に求めることになる。まず、 c番目のコイルについて、そのコイルから受信 する信号に関する装置特性データを取得する場合を、図 18を参照して説明する。図 18は、信号取得時の静磁場中心に対するコイル位置を示す図である。  On the other hand, for the device characteristic data acquisition 601, the device characteristic data w (r ′) shown in Expression (21) is obtained for each coil. First, with respect to the c-th coil, a case where apparatus characteristic data relating to a signal received from the coil is acquired will be described with reference to FIG. FIG. 18 is a diagram showing the coil position with respect to the center of the static magnetic field at the time of signal acquisition.
[0109] 最適には、図 18に示すように静磁場分布、照射用コイルの励起分布とも均一な領 域力 1回または複数の撮影によって、受信コイルの感度領域をカバーするようにス テーシヨンを設定する。この撮影結果力も均一な領域を切り出してつなぎ合わせるこ とにより、静磁場と照射が均一であるときの受信コイルの感度領域全体の画像を作成 することができる。図 18に示す例では、第 1のステーションの画像 1601のうち、静磁場 と照射が均一である領域の画像 1601bと、第 2のステーションの画像 1602のうち、静磁 場と照射が均一である領域の画像 1602aとを合成することにより、受信コイルの感度 領域全体の画像 1603が得られる。この感度分布をあらわす画像を、通常のマルチス テーシヨン撮影法の手法を用いて作成した均一画像 1600でわることにより、 c番目の コイルの感度分布を得ることができる。 [0109] Optimally, as shown in Fig. 18, both the static magnetic field distribution and the excitation coil excitation distribution have a uniform regional force. The station should be covered so that the sensitivity area of the receiving coil is covered by one or more imaging. Set. By cutting out and joining areas with uniform imaging results, it is possible to create an image of the entire sensitivity area of the receiving coil when the static magnetic field and irradiation are uniform. In the example shown in FIG. 18, in the image 1601 of the first station, the image 1601b of the region where the static magnetic field and the irradiation are uniform and in the image 1602 of the second station, the magnetostatic field and the irradiation are uniform. By combining the image 1602a of the area, an image 1603 of the entire sensitivity area of the receiving coil is obtained. An image representing this sensitivity distribution is represented by a uniform image 1600 created by using the usual multi-station imaging method. The sensitivity distribution of the coil can be obtained.
<画像 1603 > ÷ <均一画像 1600 > = < c番目のコイルの感度分布 >  <Image 1603> ÷ <uniform image 1600> = <sensitivity distribution of c-th coil>
[0110] 次に、画像 1603で、 c番目のコイルで得られた画像をわることにより、残りの装置特 性である、静磁場不均一、照射コイル励起分布を得ることができる。 [0110] Next, the image 1603 shows the image obtained with the c-th coil, so that the remaining device characteristics, that is, the static magnetic field inhomogeneity and the irradiation coil excitation distribution, can be obtained.
[0111] 図 18の例では、合成画像 1603で、ステーション 1で得られた画像 1601、ステーショ ン 2で得られた 1602をそれぞれ割ることにより、ステーション 1、ステーション 2における 感度分布以外の装置特性データが得られる。 In the example of FIG. 18, by dividing the image 1601 obtained at station 1 and the 1602 obtained at station 2 in the composite image 1603, device characteristic data other than the sensitivity distribution at station 1 and station 2, respectively. Is obtained.
[0112] <画像 1601 > ÷ <画像 1603 > = <ステーション 1の装置特性 > [0112] <Image 1601> ÷ <Image 1603> = <Device characteristics of station 1>
<画像 1602 > ÷ <画像 1603 > = <ステーション 2の装置特性 >  <Image 1602> ÷ <Image 1603> = <Device characteristics of station 2>
c番目のコイルにっ 、ての装置特性データ w (r')は、これら受信コイル感度分布、 静磁場不均一、照射コイル励起分布をかけあわせることにより取得することができる。  The device characteristic data w (r ′) of the c-th coil can be obtained by multiplying the receiving coil sensitivity distribution, the static magnetic field non-uniformity, and the irradiation coil excitation distribution.
[0113] 他のコイルに対しても同様な処理を行うことにより、すべてのコイルについて、感度 分布を含む装置特性データ w (r')が得られる。 [0113] By performing the same process for other coils, device characteristic data w (r ') including sensitivity distribution is obtained for all coils.
[0114] 装置特性データ取得後は、検査対象のデータ 605を取得するステップと、装置特性 データと検査対象データを用いて検査対象の再構成画像 606を計算するステップは[0114] After the apparatus characteristic data is acquired, the steps of acquiring the inspection object data 605 and calculating the inspection object reconstructed image 606 using the apparatus characteristic data and the inspection object data are as follows:
、上述したように第 1の実施の形態と同様に行うことができる。 As described above, this can be performed in the same manner as in the first embodiment.
[0115] 次に第 4の実施の形態として、被検体に固定されたコイルを用い、装置特性データ の取得を本撮影と同時に行う方法を説明する。この場合、第 2の実施の形態と同様な 撮影を行!ヽ、装置特性データの取得にお!、ては第 3の実施の形態のように c番目の コイル力 得られる信号を S(n,ky,c)としてそれぞれのコイルを区別して考えることにな る。 [0115] Next, as a fourth embodiment, a method of acquiring apparatus characteristic data simultaneously with main imaging using a coil fixed to a subject will be described. In this case, the same shooting as in the second embodiment is performed! To acquire the device characteristic data! As in the third embodiment, the c-th coil force is obtained as S (n , ky, c), each coil is considered separately.
[0116] まず、本実施の形態においても、装置の構成は、上述した第 3の実施の形態と同様 である。撮影の手順は第 2の実施の形態の図 12のように、ステップ 625で装置特性デ ータの取得と本撮影を同時に行い、ステップ 626で、装置特性データ 604と検査対象 データ 605を用いて検査対象の再構成画像 606を計算する。  [0116] First, also in the present embodiment, the configuration of the apparatus is the same as that of the third embodiment described above. As shown in FIG. 12 of the second embodiment, the imaging procedure is to simultaneously acquire the apparatus characteristic data and the main imaging in step 625, and in step 626, use the apparatus characteristic data 604 and the inspection object data 605. A reconstructed image 606 to be inspected is calculated.
[0117] 装置特性データの同時取得は、本実施の形態においても周波数領域の低域デー タのみを利用し、各データの原点位置の補正を行い、近似的にフーリエ変換による 画像再構成を行うことは第 2の実施の形態と同じである。ただし、本実施の形態では 、装置特性データを第 3の実施の形態と同様にコイル毎に取得する。 [0117] For simultaneous acquisition of device characteristic data, only the low frequency data in the frequency domain is used in this embodiment, the origin position of each data is corrected, and image reconstruction is performed approximately by Fourier transform. This is the same as in the second embodiment. However, in this embodiment The device characteristic data is acquired for each coil as in the third embodiment.
[0118] まず、 c番目のコイルに着目し、そのコイル力 受信する信号に関する装置特性デ ータを取得する場合を考える。  [0118] First, pay attention to the c-th coil, and consider the case where device characteristic data relating to the received signal is received.
[0119] 最適には、図 18に示すように静磁場分布、照射用コイルの励起分布とも均一な領 域が、 1回または複数の撮影によって、受信コイルの感度領域をカバーするように低 域データ取得位置を設定する。すなわち図 18はマルチステーションにおけるコイル 位置を示している力 図 13に示すようにスライディング位相エンコードステップを設定 した場合のスライディング位相エンコードの第 1のループ( π力ら πまで)の中心位 置 (低周波成分取得時の位置)が図 18の第 1の撮影位置であり、第 2のループの中 心位置 (低周波成分取得時の位置)が図 18の第 2の撮影位置であるように、テープ ル (すなわちコイル)を移動しながらスライディング位相エンコードステップを実行する 。 SPEデータ力ゝら低域データを切り出して 1枚の画像を再構成する方法は第 2の実施 の形態と同様であり、ここでは第 1のループおよび第 2のループの実行により得られた 画像からそれぞれ低域データを切り出し、原点補正し、高域データをゼロフィルし、フ 一リエ変換し画像を再構成する。  [0119] Optimally, as shown in Fig. 18, the area where both the static magnetic field distribution and the excitation coil excitation distribution are uniform covers the sensitivity area of the receiving coil by one or more imaging. Set the data acquisition position. In other words, Fig. 18 shows the force indicating the coil position in the multi-station. As shown in Fig. 13, when the sliding phase encoding step is set, the center position of the first loop (from π force to π) of the sliding phase encoding (low) The position when the frequency component is acquired) is the first shooting position in FIG. 18, and the center position of the second loop (the position when acquiring the low frequency component) is the second shooting position in FIG. Perform a sliding phase encoding step while moving the table (ie coil). The method of cutting out low-frequency data and reconstructing one image, such as SPE data, is the same as in the second embodiment. Here, the images obtained by executing the first and second loops are used. The low frequency data is cut out from each of the images, the origin is corrected, the high frequency data is zero-filled, and the image is reconstructed by the Fourier transform.
[0120] 次にこうして再構成した各画像から均一な画像を作成する。均一画像は、各画像を 足し合わせても良いし、均一な部分のみを切り出して使っても良いし、あら力じめマル チステーション撮影により取得してもよ 、。  Next, a uniform image is created from each image reconstructed in this way. A uniform image may be obtained by adding the images together, cutting out only the uniform part, or by using multi-station shooting.
[0121] このように得られた各コイルの画像と作成した均一画像から、第 3の実施の形態と同 様に装置特性データを得る。すなわち、まず、 c番目のコイルについて各取得位置の 画像を合成した画像を均一分布画像で割ることにより、 c番目のコイルの感度分布を 得る。つぎに c番目のコイルについて各取得位置の画像を合成した画像で、各取得 位置の画像を割ることにより、各取得位置における感度分布以外の装置特性が得ら れる。  Device characteristic data is obtained from the images of the coils thus obtained and the created uniform image in the same manner as in the third embodiment. That is, first, the sensitivity distribution of the c-th coil is obtained by dividing the image obtained by combining the images at the respective acquisition positions with respect to the c-th coil by the uniform distribution image. Next, device characteristics other than the sensitivity distribution at each acquisition position can be obtained by dividing the image at each acquisition position with the image obtained by combining the images at the acquisition positions for the c-th coil.
[0122] <画像 1603 > ÷ <均一画像 1600 > = < c番目のコイルの感度分布 >  [0122] <image 1603> ÷ <uniform image 1600> = <sensitivity distribution of c-th coil>
<画像 1601 > ÷ <感度分布のみの影響を含む画像 1603 > = <取得位置 1の装 置特性 >  <Image 1601> ÷ <Image 1603 including the effect of sensitivity distribution only> = <Device characteristics at acquisition position 1>
<画像 1602 > ÷ <感度分布のみの影響を含む画像 1603 > = <取得位置 2の装 置特性 > <Image 1602> ÷ <image 1603 including the effect of sensitivity distribution only> = <device at acquisition position 2 Setting characteristics>
こうして得られた感度分布、静磁場不均一、照射コイルの励起分布を掛け合わせる ことにより、全体の装置特性データが得られる。この場合にも、各取得位置で得られ た装置特性データを補間してもよいし、画像再構成に際し、最も近傍の取得位置の 装置特性データを使うこととしてもょ 、。  By multiplying the sensitivity distribution, static magnetic field inhomogeneity, and excitation coil excitation distribution obtained in this way, the entire device characteristic data can be obtained. In this case as well, the device characteristic data obtained at each acquisition position may be interpolated, or the device characteristic data at the nearest acquisition position may be used for image reconstruction.
[0123] 本撮影により得た信号と、装置特性データを用いて計算した信号とから、画像を再 構成することは上記第 1〜第 3の実施の形態と同様である。  [0123] As in the first to third embodiments, an image is reconstructed from a signal obtained by actual imaging and a signal calculated using device characteristic data.
実施例  Example
[0124] 本発明の効果を確認するために、図 19に示すような検査対象を用いて、第 1の実 施の形態によるムービングテーブル撮影のシミュレーション実験を行なった。図 19に ぉ ヽて白で示される領域が検査対象の存在する領域である。  [0124] In order to confirm the effect of the present invention, a moving table photographing simulation experiment according to the first embodiment was performed using an inspection object as shown in FIG. The area shown in white in Fig. 19 is the area where the inspection object exists.
[0125] 撮影パラメータは sub FOV = 320mm X 320mm (256ピクセル X 128ピクセル)、 total F[0125] The shooting parameters are sub FOV = 320mm x 320mm (256 pixels x 128 pixels), total F
OV = 320mm X 960mm (256ピクセル X 384ピクセル)とした。 OV = 320 mm X 960 mm (256 pixels X 384 pixels).
[0126] 第 1の実施の形態による撮影では、 r軸方向をテーブルの移動する方向とし、この方 向にスライディング位相エンコードを行 ヽ、テーブルの移動方向に垂直な y軸方向を リードアウト方向とした。 [0126] In the shooting according to the first embodiment, the r-axis direction is the direction of table movement, sliding phase encoding is performed in this direction, and the y-axis direction perpendicular to the table movement direction is the readout direction. .
[0127] 図 20の (a)に第 1の実施の形態により得られる再構成画像を示す。また、図 20の (b) に本発明の実虚に分けた近似を用いずに磁ィ匕分布の大きさのみを求める再構成法 による再構成画像を示す。磁化分布の大きさのみを求める再構成法で縞状に大きく 信号が欠落していたが、本発明の再構成法により信号の欠落が改善されることが確 f*i¾ れ 。  FIG. 20 (a) shows a reconstructed image obtained by the first embodiment. In addition, Fig. 20 (b) shows a reconstructed image obtained by the reconstruction method that obtains only the magnitude of the magnetic flux distribution without using the approximation divided into reality. In the reconstruction method for obtaining only the magnitude of the magnetization distribution, a large signal is missing in a striped pattern, but it is certain that the lack of signal is improved by the reconstruction method of the present invention.
また、テーブル移動方向に周波数エンコードを行う従来のテーブル移動撮影法で は大きなゴーストが生じ撮影が困難な FSEシーケンスについて、図 21(a)に本発明に より再構成した画像を、(b)に非特許文献 2に記載の方法により再構成した画像を示 す。これらに示される通り、 FSEシーケンスについても本発明では再構成できることが 確認された。なお、他の実施例に対しても同様な結果が得られた。  Also, Fig. 21 (a) shows an image reconstructed by the present invention in Fig. 21 (a), and Fig. 21 (b) shows an FSE sequence that is difficult to shoot with a conventional table moving imaging method that performs frequency encoding in the table moving direction. An image reconstructed by the method described in Non-Patent Document 2 is shown. As shown in these, it was confirmed that the FSE sequence can be reconstructed in the present invention. Similar results were obtained for other examples.
[0128] 一方、撮影時間については、図 22に示すように、従来のムービングテーブル撮影 法の撮影時間 501は、テーブル移動方向の sub FOV=40cmのときの撮影時間を 1と すると、 sub FOVが狭くなるにつれ時間が長くなるのに対し、本実施の形態では sub F OVの縮小に対応して sub FOVに対するスライディング位相エンコード数が減少する ので撮影時間 502は変わらな 、。 On the other hand, as shown in FIG. 22, the shooting time 501 of the conventional moving table shooting method is set to 1 when sub FOV = 40 cm in the table moving direction. Then, the time becomes longer as the sub FOV becomes narrower, whereas in the present embodiment, the number of sliding phase encodings for the sub FOV decreases corresponding to the reduction of the sub FOV, so the shooting time 502 remains unchanged.
[0129] なお、装置特性データの取得を別に行う場合、その分撮影時間が延長するが、装 置特性データの取得に高解像度な画像は必要なぐ撮影は短時間で終わる。さらに 、装置特性データを補間することでさらに少ない時間で取得することができる。また、 装置特性データを同時に取得する場合は、撮影時間は増カロしない。 [0129] When the device characteristic data is separately acquired, the imaging time is extended by that amount. However, the imaging that requires a high-resolution image for acquiring the device characteristic data is completed in a short time. Furthermore, the device characteristic data can be acquired in a shorter time by interpolating. Also, if device characteristic data is acquired simultaneously, the shooting time will not increase.
産業上の利用可能性  Industrial applicability
[0130] 本発明によれば、テーブル移動方向に信号取得領域が狭 ヽ場合にも撮影時間が 長くなることなくムービングテーブル撮影を行うことができる。テーブル移動方向に撮 影可能領域が狭い装置でも高速に全身撮影が可能となり有用である。 [0130] According to the present invention, it is possible to perform moving table imaging without increasing the imaging time even when the signal acquisition area is narrow in the table movement direction. Even a device with a narrow imageable area in the direction of table movement is useful because it enables full-body imaging at high speed.
図面の簡単な説明  Brief Description of Drawings
[0131] [図 1]本発明が適用される MRI装置の概観を示す図で、(a)は水平磁場型装置、 (b) は垂直磁場型装置を示す。  [0131] [FIG. 1] A view showing an overview of an MRI apparatus to which the present invention is applied, in which (a) shows a horizontal magnetic field type apparatus and (b) shows a vertical magnetic field type apparatus.
[図 2]本発明が適用される MRI装置の構成例を示す図。  FIG. 2 is a diagram showing a configuration example of an MRI apparatus to which the present invention is applied.
[図 3]検査対象の total FOVと信号取得領域の関係を示す図。  FIG. 3 is a diagram showing the relationship between the total FOV to be examined and the signal acquisition area.
[図 4]本発明の第 1の実施の形態によるムービングテーブル撮影の手順を示す図。  FIG. 4 is a diagram showing a procedure for shooting a moving table according to the first embodiment of the present invention.
[図 5]装置特性データ取得用の sub FOVと本撮影の sub FOVとの関係を示す図。  FIG. 5 is a diagram showing a relationship between a sub FOV for acquiring device characteristic data and a sub FOV for actual photographing.
[図 6]第 1の実施の形態による本撮影の手順を示す図。  FIG. 6 is a diagram showing a procedure of main photographing according to the first embodiment.
[図 7]ムービングテーブル撮影に用いるパルスシーケンスの一例を示す図。  FIG. 7 is a diagram showing an example of a pulse sequence used for moving table imaging.
[図 8] 2D撮影において画像再構成に用いる信号と処理結果を示す図。  FIG. 8 is a diagram showing signals and processing results used for image reconstruction in 2D imaging.
[図 9]テーブル位置とスライディング位相エンコードの関係を示す図。  FIG. 9 is a diagram showing the relationship between table position and sliding phase encoding.
[図 10]信号取得領域の装置特性を示す図。  FIG. 10 is a diagram showing device characteristics in a signal acquisition region.
[図 11a]第 1の実施の形態による撮影手順の変更例を示す図。  FIG. 11a is a diagram showing a modification example of the photographing procedure according to the first embodiment.
[図 lib]第 1の実施の形態による撮影手順の変更例を示す図。  [Fig. Lib] A diagram showing an example of a change in imaging procedure according to the first embodiment.
[図 11c]第 1の実施の形態による撮影手順の変更例を示す図。  FIG. 11c is a diagram showing a modification example of the photographing procedure according to the first embodiment.
[図 12]本発明の第 2の実施の形態によるムービングテーブル撮影の手順の一例を示 す図。 [図 13]本発明の第 2の実施の形態による装置特性データ取得手順を示す図。 FIG. 12 is a diagram showing an example of a moving table photographing procedure according to the second embodiment of the present invention. FIG. 13 is a diagram showing an apparatus characteristic data acquisition procedure according to the second embodiment of the present invention.
[図 14] (a)、 (b)はそれぞれ第 2の実施の形態の変更例におけるスライディング位相ェ ンコードとテーブル位置との関係を示す図。  [FIG. 14] (a) and (b) are diagrams each showing a relationship between a sliding phase encoding and a table position in a modification of the second embodiment.
[図 15]第 2の実施の形態の手順の変更例を示す図。  FIG. 15 is a diagram showing a modified example of the procedure of the second embodiment.
[図 16]第 2の実施の形態の手順の変更例で得られる SPEデータを示す図。  FIG. 16 is a diagram showing SPE data obtained by a modified example of the procedure of the second embodiment.
[図 17]第 3および第 4の実施の形態における検査対象とコイルとの関係を示す図。  FIG. 17 is a diagram showing a relationship between an inspection object and a coil in the third and fourth embodiments.
[図 18]第 3および第 4の実施の形態による装置特性計測におけるコイル位置を説明 する図。  FIG. 18 is a diagram for explaining a coil position in apparatus characteristic measurement according to the third and fourth embodiments.
[図 19]実施例における検査対象を示す図。  FIG. 19 is a diagram showing an inspection object in the example.
[図 20]第 1の実施の形態による図 17の検査対象の再構成画像を示す図。  20 is a diagram showing a reconstructed image of the inspection object in FIG. 17 according to the first embodiment.
[図 21]第 1の実施の形態による図 17の検査対象の再構成画像を示す図。 FIG. 21 is a diagram showing a reconstructed image of the inspection object in FIG. 17 according to the first embodiment.
[図 22]従来法と本発明の撮影時間の比較。 [Fig. 22] Comparison of shooting time between the conventional method and the present invention.
符号の説明 Explanation of symbols
101·· '静磁場を発生するマグネット、 102·· '傾斜磁場コイル、 103·· '検査対象、 10 4· · 'シーケンサ、 105· · '傾斜磁場電源、 106· ··高周波磁場発生器、 107· · ·照射用 コイル、 108· · '受信器、 109· · '計算機、 110· · 'ディスプレイ、 111· · '記憶媒体、 112· • 'シムコイル、 113· · 'シム電源、 114·· '受信コイル、 301·· 'テーブル、 302·· 'テープ ル制御装置。  101 'Magnet that generates static magnetic field, 102 ...' Gradient magnetic field coil, 103 ... 'Inspection object, 10 4 ·' Sequencer, 105 · 'Gradient magnetic field power supply, 106 · · High frequency magnetic field generator, · · · Coil for irradiation, 108 · · 'Receiver, 109 · ·' Calculator, 110 · · 'Display, 111 · ·' Storage medium, 112 · • 'Shim coil, 113 · ·' Sim power supply, 114 · · 'Receiving coil, 301 ··' Table, 302 ·· 'Table control device.

Claims

請求の範囲 The scope of the claims
[1] 静磁場が発生された撮影空間に置かれた検査対象に印加する高周波磁場を発生 する高周波磁場発生手段と、前記検査対象に印加する傾斜磁場を発生する傾斜磁 場発生手段と、前記検査対象を搭載する移動可能な移動手段と、前記検査対象か ら発生する核磁気共鳴信号を受信する受信手段と、受信された前記核磁気共鳴信 号に基づいて、前記検査対象の画像を再構成する画像再構成手段と、前記各手段 の動作を制御する制御手段と、再構成された前記画像を表示する表示手段とを有す る磁気共鳴撮影装置であって、  [1] A high-frequency magnetic field generating means for generating a high-frequency magnetic field to be applied to an inspection object placed in an imaging space where a static magnetic field is generated, a gradient magnetic field generating means for generating a gradient magnetic field to be applied to the inspection object, Based on the received nuclear magnetic resonance signal, the image of the inspection object is reproduced again based on the movable moving means for mounting the inspection object, the receiving means for receiving the nuclear magnetic resonance signal generated from the inspection object. A magnetic resonance imaging apparatus comprising: an image reconstructing unit that configures; a control unit that controls the operation of each of the units; and a display unit that displays the reconstructed image.
前記制御手段は、装置特性計測として装置特性データを求めるための核磁気共鳴 信号の計測と、本撮影として前記検査対象の磁化分布を求めるための核磁気共鳴 信号の計測とを行い、前記本撮影において、前記移動手段の移動中に前記核磁気 共鳴信号を複数回受信し、前記移動手段の移動方向の傾斜磁場の印加量を受信ご とに変えるように前記傾斜磁場発生手段および前記受信手段を制御し、  The control means performs measurement of a nuclear magnetic resonance signal for obtaining device characteristic data as device characteristic measurement, and measurement of a nuclear magnetic resonance signal for obtaining the magnetization distribution of the inspection object as main imaging. The gradient magnetic field generating means and the reception means are configured to receive the nuclear magnetic resonance signal a plurality of times during the movement of the movement means and to change the amount of gradient magnetic field applied in the movement direction of the movement means for each reception. Control
前記画像再構成手段は、前記装置特性計測で計測した核磁気共鳴信号を用いて 装置特性を算出し、当該装置特性を用いて前記本撮影で計測した核磁気共鳴信号 力も前記検査対象の磁ィ匕分布を求めるため、近似により実部虚部を求め,前記撮影 空間よりも広い視野における前記検査対象の磁化分布を決定することを特徴とする 磁気共鳴撮影装置。  The image reconstruction means calculates a device characteristic using the nuclear magnetic resonance signal measured in the device characteristic measurement, and the nuclear magnetic resonance signal force measured in the main imaging using the device characteristic is also the magnetic field of the inspection object. A magnetic resonance imaging apparatus characterized in that, in order to obtain a wrinkle distribution, a real part imaginary part is obtained by approximation, and a magnetization distribution of the inspection object in a field of view wider than the imaging space is determined.
[2] 静磁場が発生された撮影空間に置かれた検査対象に印加する高周波磁場を発生 する高周波磁場発生手段と、前記検査対象に印加する傾斜磁場を発生する傾斜磁 場発生手段と、前記検査対象を搭載する移動可能な移動手段と、前記検査対象か ら発生する核磁気共鳴信号を受信する受信手段と、受信された前記核磁気共鳴信 号に基づいて、前記検査対象の画像を再構成する画像再構成手段と、前記各手段 の動作を制御する制御手段と、再構成された前記画像を表示する表示手段とを有す る磁気共鳴撮影装置であって、  [2] A high-frequency magnetic field generating means for generating a high-frequency magnetic field to be applied to an inspection object placed in an imaging space where a static magnetic field is generated, a gradient magnetic field generating means for generating a gradient magnetic field to be applied to the inspection object, Based on the received nuclear magnetic resonance signal, the image of the inspection object is reproduced again based on the movable moving means for mounting the inspection object, the receiving means for receiving the nuclear magnetic resonance signal generated from the inspection object. A magnetic resonance imaging apparatus comprising: an image reconstructing unit that configures; a control unit that controls the operation of each of the units; and a display unit that displays the reconstructed image.
前記制御手段は、装置特性計測として装置特性データを求めるための核磁気共鳴 信号の計測と、本撮影として前記検査対象の磁化分布を求めるための核磁気共鳴 信号の計測とを行い、前記本撮影において、前記移動手段の移動中に前記核磁気 共鳴信号を複数回受信し、前記移動手段の移動方向の傾斜磁場の印加量を受信ご とに変えるように前記傾斜磁場発生手段および前記受信手段を制御し、 The control means performs measurement of a nuclear magnetic resonance signal for obtaining device characteristic data as device characteristic measurement, and measurement of a nuclear magnetic resonance signal for obtaining the magnetization distribution of the inspection object as main imaging. The magnetic means during movement of the moving means Receiving the resonance signal a plurality of times, controlling the gradient magnetic field generating means and the receiving means so as to change the application amount of the gradient magnetic field in the moving direction of the moving means for each reception;
前記画像再構成手段は、前記装置特性計測で計測した核磁気共鳴信号を用いて 装置特性を算出し、当該装置特性を用いて前記本撮影で計測した核磁気共鳴信号 カゝら前記検査対象の磁ィ匕分布を求めるため、近似により、磁化分布を表すために同 時に求めるべき変数の数を減じ,前記撮影空間よりも広 、視野における前記検査対 象の磁化分布を決定することを特徴とする磁気共鳴撮影装置。  The image reconstruction means calculates a device characteristic using the nuclear magnetic resonance signal measured in the device characteristic measurement, and uses the device characteristic to measure the nuclear magnetic resonance signal measured in the main imaging. In order to obtain the magnetic distribution, the number of variables to be obtained at the same time in order to represent the magnetization distribution is reduced by approximation, and the magnetization distribution of the inspection object in the field of view that is wider than the imaging space is determined. Magnetic resonance imaging device.
[3] 請求項 1又は 2記載の磁気共鳴撮影装置において、  [3] In the magnetic resonance imaging apparatus according to claim 1 or 2,
前記制御手段は、前記移動手段を複数のステーション間で移動し、前記装置特性 計測を前記移動手段の各ステーションで実行するよう制御することを特徴とする磁気 共鳴撮影装置。  The magnetic resonance imaging apparatus characterized in that the control means controls the movement means to move between a plurality of stations and performs the apparatus characteristic measurement at each station of the movement means.
[4] 請求項 1又は 2記載の磁気共鳴撮影装置にお 、て、  [4] In the magnetic resonance imaging apparatus according to claim 1 or 2,
前記制御手段は、前記装置特性計測を、前記本撮影と同時に行うことを特徴とする 磁気共鳴撮影装置。  The magnetic resonance imaging apparatus characterized in that the control means performs the apparatus characteristic measurement simultaneously with the main imaging.
[5] 請求項 4記載の磁気共鳴撮影装置において、 [5] The magnetic resonance imaging apparatus according to claim 4,
前記画像再構成手段は、前記本撮影で計測した核磁気共鳴信号の一部を、前記 装置特性を求めるための核磁気共鳴信号に用いることを特徴とする磁気共鳴撮影装 置。  The magnetic resonance imaging apparatus characterized in that the image reconstruction means uses a part of the nuclear magnetic resonance signal measured in the main imaging as a nuclear magnetic resonance signal for obtaining the device characteristics.
[6] 請求項 1な!、し 5 、ずれか 1項に記載の磁気共鳴撮影装置にぉ 、て、  [6] The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic resonance imaging apparatus according to claim 1 is
前記受信手段は、装置に固定された受信コイルを備え、  The receiving means comprises a receiving coil fixed to the device;
前記画像再構成手段は、装置に固定された受信コイルが受信した信号を用いて、 前記本撮影において核磁気共鳴信号を計測する際の各移動手段位置における装 置特性を算出することを特徴とする磁気共鳴撮影装置。  The image reconstructing means calculates device characteristics at each moving means position when measuring a nuclear magnetic resonance signal in the main imaging, using a signal received by a receiving coil fixed to the apparatus. Magnetic resonance imaging device.
[7] 請求項 1な!、し 5 、ずれか 1項に記載の磁気共鳴撮影装置にぉ 、て、 [7] The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic resonance imaging apparatus according to claim 1 is
前記受信手段は、検査対象に固定された受信コイルを備え、  The receiving means includes a receiving coil fixed to an inspection object,
前記画像再構成手段は、検査対象に固定された受信コイルが受信した信号を用い て、前記本撮影にお!ヽて核磁気共鳴信号を計測する際の各移動手段位置における 装置特性を算出することを特徴とする磁気共鳴撮影装置。 The image reconstruction means uses the signal received by the receiving coil fixed to the inspection object to calculate the apparatus characteristics at each moving means position when measuring the nuclear magnetic resonance signal for the main imaging. A magnetic resonance imaging apparatus.
[8] 請求項 1又は 2記載の磁気共鳴撮影装置にお 、て、 [8] In the magnetic resonance imaging apparatus according to claim 1 or 2,
前記画像再構成手段は、前記磁化分布の実部から核磁気共鳴信号への対応関係 と、前記磁気分布の虚部から核磁気共鳴信号への対応関係とについて一次独立と 近似して、磁ィ匕分布の実部及び虚部を求めることを特徴とする磁気共鳴撮影装置。  The image reconstruction means approximates the correspondence from the real part of the magnetization distribution to the nuclear magnetic resonance signal and the correspondence from the imaginary part of the magnetic distribution to the nuclear magnetic resonance signal as linearly independent. A magnetic resonance imaging apparatus for obtaining a real part and an imaginary part of a wrinkle distribution.
[9] 請求項 6又は 7記載の磁気共鳴撮影装置にお 、て、 [9] In the magnetic resonance imaging apparatus according to claim 6 or 7,
前記受信手段は、複数の前記受信コイルを備え、前記画像再構成手段は、複数の 前記受信コイルが各々受信した信号を用いて、前記本撮影にぉ ヽて核磁気共鳴信 号を計測する際の各移動手段位置における装置特性を算出することを特徴とする磁 気共鳴撮影装置。  The receiving unit includes a plurality of the receiving coils, and the image reconstruction unit uses the signals received by the plurality of receiving coils to measure a nuclear magnetic resonance signal during the main imaging. A magnetic resonance imaging apparatus characterized in that the apparatus characteristics at each moving means position are calculated.
[10] 請求項 7記載の磁気共鳴撮影装置にぉ 、て、 [10] In the magnetic resonance imaging apparatus according to claim 7,
前記受信手段は、切り替えて使用される複数の前記受信コイルを備えることを特徴 とする磁気共鳴撮影装置。  The magnetic resonance imaging apparatus, wherein the receiving means includes a plurality of the receiving coils that are used by switching.
PCT/JP2007/053390 2006-04-19 2007-02-23 Magnetic resonance imaging device WO2007122854A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008511985A JP4832510B2 (en) 2006-04-19 2007-02-23 Magnetic resonance imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-115150 2006-04-19
JP2006115150 2006-04-19

Publications (1)

Publication Number Publication Date
WO2007122854A1 true WO2007122854A1 (en) 2007-11-01

Family

ID=38624771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053390 WO2007122854A1 (en) 2006-04-19 2007-02-23 Magnetic resonance imaging device

Country Status (2)

Country Link
JP (1) JP4832510B2 (en)
WO (1) WO2007122854A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142522A (en) * 2007-12-17 2009-07-02 Hitachi Medical Corp Magnetic resonance imaging apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229073A (en) * 1998-12-24 2000-08-22 Marconi Electronic Syst Ltd Magnetic resonance imaging instrument
JP2002248089A (en) * 2001-02-23 2002-09-03 Hitachi Medical Corp Apparatus and method for magnetic resonance imaging
JP2004097826A (en) * 2002-09-12 2004-04-02 General Electric Co <Ge> Method and system for imaging extended volume using mri with parallel reception
US20040207401A1 (en) * 2003-01-16 2004-10-21 Rainer Kirsch Magnetic resonance imaging (MRI) with continuous table motion
WO2006117922A1 (en) * 2005-04-28 2006-11-09 Hitachi Medical Corporation Magnetic resonance imaging apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229073A (en) * 1998-12-24 2000-08-22 Marconi Electronic Syst Ltd Magnetic resonance imaging instrument
JP2002248089A (en) * 2001-02-23 2002-09-03 Hitachi Medical Corp Apparatus and method for magnetic resonance imaging
JP2004097826A (en) * 2002-09-12 2004-04-02 General Electric Co <Ge> Method and system for imaging extended volume using mri with parallel reception
US20040207401A1 (en) * 2003-01-16 2004-10-21 Rainer Kirsch Magnetic resonance imaging (MRI) with continuous table motion
WO2006117922A1 (en) * 2005-04-28 2006-11-09 Hitachi Medical Corporation Magnetic resonance imaging apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DIETRICH O. ET AL.: "Extending the coverage of true volume scans by continuous movement of the subject", PROC. INTL. SOC. MAG. RESON. MED., vol. 7, May 1999 (1999-05-01), pages 1653, XP002394029 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142522A (en) * 2007-12-17 2009-07-02 Hitachi Medical Corp Magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP4832510B2 (en) 2011-12-07
JPWO2007122854A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4610611B2 (en) Magnetic resonance imaging device
Vannesjo et al. Retrospective correction of physiological field fluctuations in high‐field brain MRI using concurrent field monitoring
US9317917B2 (en) Method, reconstruction device, and magnetic resonance apparatus for reconstructing magnetic resonance raw data
JP4152381B2 (en) Magnetic resonance imaging system
US10203394B2 (en) Metal resistant MR imaging
JPH11113878A (en) Magnetic resonance imaging method
WO2001017428A1 (en) Magnetic resonance imaging device and method therefor
CN109564268B (en) Retrospective correction of field fluctuations in multi-gradient echo MRI
US20170261577A1 (en) Zero echo time mr imaging
JP5385499B2 (en) Artifact removal method in magnetic resonance images acquired by continuous table movement
US6906515B2 (en) Magnetic resonance imaging device and method
KR101630903B1 (en) Method to generate magnetic resonance-based slice exposures
JP7023954B2 (en) Propeller MR imaging
JP4065121B2 (en) Phase correction method for real-time MR imaging
JP2010233907A (en) Magnetic resonance imaging apparatus and sensitivity correcting method
JP4330247B2 (en) Nuclear magnetic resonance imaging system
JP4390328B2 (en) Magnetic resonance imaging system
JP4832510B2 (en) Magnetic resonance imaging device
US11226385B2 (en) Dixon type water/fat separation MR imaging with improved fat shift correction
JP2004089275A (en) Phase correction method in magnetic resonance imaging device
JP4685496B2 (en) Magnetic resonance imaging system
JP3907944B2 (en) Magnetic resonance imaging method and apparatus
JP4901627B2 (en) Magnetic resonance imaging device
JP2005168868A (en) Magnetic resonance imaging apparatus
JP3041691B2 (en) Magnetic resonance imaging equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714861

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008511985

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714861

Country of ref document: EP

Kind code of ref document: A1