WO2007121104A2 - Electro-optic displays, and materials for use therein - Google Patents

Electro-optic displays, and materials for use therein Download PDF

Info

Publication number
WO2007121104A2
WO2007121104A2 PCT/US2007/066035 US2007066035W WO2007121104A2 WO 2007121104 A2 WO2007121104 A2 WO 2007121104A2 US 2007066035 W US2007066035 W US 2007066035W WO 2007121104 A2 WO2007121104 A2 WO 2007121104A2
Authority
WO
WIPO (PCT)
Prior art keywords
electro
adhesive layer
cross
layer
display
Prior art date
Application number
PCT/US2007/066035
Other languages
English (en)
French (fr)
Other versions
WO2007121104A3 (en
Inventor
Seungman Sohn
Thomas H. Whitesides
Shamus Ford Patry
Original Assignee
E Ink Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ink Corporation filed Critical E Ink Corporation
Priority to EP07760161A priority Critical patent/EP2005242A4/en
Publication of WO2007121104A2 publication Critical patent/WO2007121104A2/en
Publication of WO2007121104A3 publication Critical patent/WO2007121104A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to electro-optic displays and to materials for use therein. More specifically, this invention relates to adhesive compositions for use in electro-optic displays, and to electro-optic displays incorporating such adhesive compositions.
  • the present invention is especially, though not exclusively, intended for use in displays containing encapsulated electrophoretic media.
  • Electro-optic displays comprise a layer of electro-optic material, a term which is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material.
  • the optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
  • solid electro-optic displays include rotating bichromal member displays, encapsulated electrophoretic displays, microcell electrophoretic displays and encapsulated liquid crystal displays.
  • electro-optic displays are known.
  • One type of electro-optic display is a rotating bichromal member type as described, for example, in U.S. Patents Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791 (although this type of display is often referred to as a "rotating bichromal ball" display, the term "rotating bichromal member" is preferred as more accurate since in some of the patents mentioned above the rotating members are not spherical).
  • Such a display uses a large number of small bodies (typically spherical or cylindrical) which have two or more sections with differing optical characteristics, and an internal dipole. These bodies are suspended within liquid-filled vacuoles within a matrix, the vacuoles being filled with liquid so that the bodies are free to rotate. The appearance of the display is changed by applying an electric field thereto, thus rotating the bodies to various positions and varying which of the sections of the bodies is seen through a viewing surface.
  • This type of electro-optic medium is typically bistable.
  • an electrochromic medium for example an electrochromic medium in the form of a nanochromic film comprising an electrode formed at least in part from a semi-conducting metal oxide and a plurality of dye molecules capable of reversible color change attached to the electrode; see, for example O'Regan, B., et al, Nature 1991, 353, 737; and Wood, D., Information Display, 18(3), 24 (March 2002). See also Bach, U., et al., Adv. Mater., 2002, 14(11), 845. Nanochromic films of this type are also described, for example, in U.S. Patents Nos. 6,301,038; 6,870.657; and 6,950,220. This type of medium is also typically bistable.
  • Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays. Nevertheless, problems with the long-term image quality of these displays have prevented their widespread usage. For example, particles that make up electrophoretic displays tend to settle, resulting in inadequate service-life for these displays.
  • electrophoretic media require the presence of a fluid.
  • this fluid is a liquid, but electrophoretic media can be produced using gaseous fluids; see, for example, Kitamura, T., et al., "Electrical toner movement for electronic paper- like display", IDW Japan, 2001, Paper HCSl-I, and Yamaguchi, Y., et al., "Toner display using insulative particles charged triboelectrically", IDW Japan, 2001, Paper AMD4-4). See also U.S. Patent Publication No.
  • gas-based electrophoretic media appear to be susceptible to the same types of problems due to particle settling as liquid-based electrophoretic media, when the media are used in an orientation which permits such settling, for example in a sign where the medium is disposed in a vertical plane. Indeed, particle settling appears to be a more serious problem in gas-based electrophoretic media than in liquid-based ones, since the lower viscosity of gaseous suspending fluids as compared with liquid ones allows more rapid settling of the electrophoretic particles.
  • encapsulated electrophoretic media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspending medium, and a capsule wall surrounding the internal phase.
  • the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes.
  • Encapsulated media of this type are described, for example, in U.S. Patents Nos.
  • microcell electrophoretic display A related type of electrophoretic display is a so-called "microcell electrophoretic display".
  • the charged particles and the fluid are not encapsulated within microcapsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. See, for example, U.S. Patents Nos. 6,672,921 and 6,788,449, both assigned to Sipix Imaging, Inc.
  • electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode
  • many electrophoretic displays can be made to operate in a so-called "shutter mode" in which one display state is substantially opaque and one is light-transmissive. See, for example, the aforementioned U.S. Patents Nos. 6,130,774 and 6,172,798, and U.S. Patents Nos. 5,872,552; 6,144,361; 6,271,823; 6,225,971; and 6,184,856.
  • Dielectrophoretic displays which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Patent No. 4,418,346.
  • Other types of electro-optic displays may also be capable of operating in shutter mode.
  • An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates.
  • printing is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; electrophoretic deposition (See US Patent Publication Number 2004/0226820); and other similar techniques.)
  • pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating
  • roll coating such as knife over roll coating, forward and reverse roll coating
  • gravure coating dip coating
  • spray coating meniscus coating
  • spin coating spin coating
  • An electro-optic display normally comprises a layer of electro-optic material and at least two other layers disposed on opposed sides of the electro-optic material, one of these two layers being an electrode layer.
  • both the layers are electrode layers, and one or both of the electrode layers are patterned to define the pixels of the display.
  • one electrode layer may be patterned into elongate row electrodes and the other into elongate column electrodes running at right angles to the row electrodes, the pixels being defined by the intersections of the row and column electrodes.
  • one electrode layer has the form of a single continuous electrode and the other electrode layer is patterned into a matrix of pixel electrodes, each of which defines one pixel of the display.
  • electro-optic display which is intended for use with a stylus, print head or similar movable electrode separate from the display
  • only one of the layers adjacent the electro- optic layer comprises an electrode, the layer on the opposed side of the electro-optic layer typically being a protective layer intended to prevent the movable electrode damaging the electro-optic layer.
  • a backplane containing an array of pixel electrodes and an appropriate arrangement of conductors to connect the pixel electrodes to drive circuitry, is prepared.
  • the substrate having the capsule/binder layer thereon is laminated to the backplane using a lamination adhesive.
  • a lamination adhesive A very similar process can be used to prepare an electrophoretic display usable with a stylus or similar movable electrode by replacing the backplane with a simple protective layer, such as a plastic film, over which the stylus or other movable electrode can slide.
  • the backplane is itself flexible and is prepared by printing the pixel electrodes and conductors on a plastic film or other flexible substrate.
  • the obvious lamination technique for mass production of displays by this process is roll lamination using a lamination adhesive.
  • the lamination of the substrate carrying the electro-optic layer to the backplane may advantageously be carried out by vacuum lamination.
  • Vacuum lamination is effective in expelling air from between the two materials being laminated, thus avoiding unwanted air bubbles in the final display; such air bubbles may introduce undesirable artifacts in the images produced on the display.
  • vacuum lamination of the two parts of an electro-optic display in this manner imposes stringent requirements upon the lamination adhesive used, especially in the case of a display using an encapsulated electrophoretic medium.
  • the lamination adhesive should have sufficient adhesive strength to bind the electro-optic layer to the layer (typically an electrode layer) to which it is to be laminated, and in the case of an encapsulated electrophoretic medium, the adhesive should also have sufficient adhesive strength to mechanically hold the capsules together. If the electro-optic display is to be of a flexible type (and one of the important advantages of rotating bichromal member and encapsulated electrophoretic displays is that they can be made flexible), the adhesive should have sufficient flexibility not to introduce defects into the display when the display is flexed.
  • the lamination adhesive should have adequate flow properties at the lamination temperature to ensure high quality lamination, and in this regard, the demands of laminating encapsulated electrophoretic and some other types of electro- optic media are unusually difficult; the lamination has to be conducted at a temperature of not more than about 130 0 C since the medium cannot be exposed to substantially higher temperatures without damage, but the flow of the adhesive must cope with the relatively uneven surface of the capsule-containing layer, the surface of which is rendered irregular by the underlying capsules.
  • the lamination temperature should indeed be kept as low as possible, and room temperature lamination would be ideal, but no commercial adhesive has been found which permits such room temperature lamination.
  • the lamination adhesive should be chemically compatible with all the other materials in the display.
  • the volume resistivity of the adhesive layer should not be too low, or lateral conduction of electric current through the continuous adhesive layer may cause undesirable cross-talk between adjacent electrodes. Also, since the volume resistivity of most materials decreases rapidly with increasing temperature, if the volume resistivity of the adhesive is too low, the performance of the display at temperatures substantially above room temperature is adversely affected. For these reasons, there is an optimum range of lamination adhesive resistivity values for use with any given electro-optic medium, this range varying with the resistivity of the electro- optic medium.
  • the volume resistivities of encapsulated electrophoretic media are typically around 10 10 ohm cm, and the resistivities of other electro-optic media are usually of the same order of magnitude. Accordingly, the volume resistivity of the lamination adhesive should normally be around 10 8 to 10 12 ohm cm, or about 10 9 to 10 11 ohm cm, at the operating temperature of the display, typically around 20 0 C.
  • the lamination adhesive should also have a variation of volume resistivity with temperature which is similar to that of the electro-optic medium itself.
  • the light- transmissive electrically-conductive layer will be carried on a light-transmissive substrate, which is preferably flexible.
  • the term "light-transmissive" is used in this patent and herein to mean that the layer thus designated transmits sufficient light to enable an observer, looking through that layer, to observe the change in display states of the electro-optic medium, which will normally be viewed through the electrically- conductive layer and adjacent substrate (if present); in cases where the electro-optic medium displays a change in reflectivity at non-visible wavelengths, the term “light- transmissive" should of course be interpreted to refer to transmission of the relevant non- visible wavelengths.
  • the substrate will typically be a polymeric film, and will normally have a thickness in the range of about 1 to about 25 mil (25 to 634 ⁇ m), preferably about 2 to about 10 mil (51 to 254 ⁇ m).
  • the electrically-conductive layer is conveniently a thin metal or metal oxide layer of, for example, aluminum or ITO, or may be a conductive polymer.
  • PET Poly(ethylene terephthalate)
  • PET Poly(ethylene terephthalate) films coated with aluminum or ITO are available commercially, for example as "aluminized Mylar” ("Mylar” is a Registered Trade Mark) from E.I. du Pont de Nemours & Company, Wilmington DE, and such commercial materials may be used with good results in the front plane laminate.
  • Mylar is a Registered Trade Mark
  • 6,982,178 also describes a method for testing the electro-optic medium in a front plane laminate prior to incorporation of the front plane laminate into a display.
  • the release sheet is provided with an electrically conductive layer, and a voltage sufficient to change the optical state of the electro-optic medium is applied between this electrically conductive layer and the electrically conductive layer on the opposed side of the electro-optic medium.
  • Observation of the electro-optic medium will then reveal any faults in the medium, thus avoiding laminating faulty electro-optic medium into a display, with the resultant cost of scrapping the entire display, not merely the faulty front plane laminate.
  • Assembly of an electro-optic display using such a front plane laminate may be effected by removing the release sheet from the front plane laminate and contacting the adhesive layer with the backplane under conditions effective to cause the adhesive layer to adhere to the backplane, thereby securing the adhesive layer, electro- optic medium layer and electrically-conductive layer to the backplane.
  • This process is well-adapted to mass production since the front plane laminate may be mass produced, typically using roll-to-roll coating techniques, and then cut into pieces of any size needed for use with specific backplanes.
  • Double release sheet which is essentially a simplified version of the front plane laminate of the aforementioned U.S. Patent No. 6,982,178.
  • One form of the double release sheet comprises a layer of a solid electro-optic medium sandwiched between two adhesive layers, one or both of the adhesive layers being covered by a release sheet.
  • Another form of the double release sheet comprises a layer of a solid electro-optic medium sandwiched between two release sheets.
  • Both forms of the double release film are intended for use in a process generally similar to the process for assembling an electro- optic display from a front plane laminate already described, but involving two separate laminations; typically, in a first lamination the double release sheet is laminated to a front electrode to form a front sub-assembly, and then in a second lamination the front sub-assembly is laminated to a backplane to form the final display, although the order of these two laminations could be reversed if desired.
  • inverted front plane laminate which is a variant of the front plane laminate described in the aforementioned U.S. Patent No. 6,982,178.
  • This inverted front plane laminate comprises, in order, at least one of a light-transmissive protective layer and a light-transmissive electrically-conductive layer; an adhesive layer; a layer of a solid electro-optic medium; and a release sheet.
  • This inverted front plane laminate is used to form an electro-optic display having a layer of lamination adhesive between the electro-optic layer and the front electrode or front substrate; a second, typically thin layer of adhesive may or may not be present between the electro- optic layer and a backplane.
  • electro-optic displays can combine good resolution with good low temperature performance.
  • This Application also describes various methods designed for high volume manufacture of electro-optic displays using inverted front plane laminates; preferred forms of these methods are "multi-up" methods designed to allow lamination of components for a plurality of electro-optic displays at one time.
  • the aforementioned U.S. Patent No. 7,012,735 describes an electro-optic display comprising first and second substrates, and an adhesive layer and a layer of electro-optic material disposed between the first and second substrates, the adhesive layer comprising a mixture of a polymeric adhesive material and a salt or other polyelectrolyte.
  • the salt may be for example a tetraalkylammonium salt such as tetrabutylammonium chloride, or potassium acetate.
  • the polyelectrolyte may be a polymeric material, for example the sodium salt of polyacrylic acid.
  • the salt or polyelectrolyte serves to vary the volume resistivity of the adhesive material but typically does not substantially affect the mechanical properties of this material.
  • This patent also describes an electrophoretic medium comprising a plurality of capsules, each of the capsules comprising a capsule wall, a suspending fluid encapsulated within the capsule wall and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the medium, the medium further comprising a binder surrounding the capsules, the binder comprising a mixture of a polymeric adhesive material and a salt or other polyelectrolyte.
  • the salt or polyelectrolyte may be any of those previously described.
  • the final display be able to withstand substantial temperature changes (such as may occur, for example, when a portable computer or personal digital assistant is removed from an air-conditioned car to outdoor sun on a hot day) without inducing or aggravating the formation of voids, since it has been found that some displays, which initially appear essentially free from voids, can develop objectionable voids when exposed to such temperature changes. This phenomenon may be termed "void re-growth".
  • the aforementioned U.S. Patent No. 7,173,752 describes an electro-optic display generally similar to those described in the aforementioned U.S. Patent No. 7,012,735, but in which the adhesive layer is doped with a hydroxyl containing polymer having a number average molecular weight not greater than about 5000, a preferred dopant being poly(ethylene glycol).
  • the aforementioned U.S. Patent No. 7,012,735 also describes a polymer dispersed electro-optic medium in which the continuous phase comprises a mixture of a polymeric adhesive material and a hydroxyl containing polymer having a number average molecular weight not greater than about 5000.
  • the hydroxyl containing polymer serves the same functions as the dopants described in the aforementioned U.S. Patent No. 7,012,735 but is less likely to lead to corrosion problems and improves the operating temperature range of the display.
  • the hydroxyl containing polymer doped adhesive may be incorporated into a front plane laminate or double release film as described above.
  • Creep is a particular problem is color displays where a color filter array is present on the opposed side of the electro-optic layer from the backplane, since creep in the adhesive layer can lead to relative movement between the backplane and the color filter array, thus leading to mis-alignment between elements of the color filter array and electrodes on the backplane with which these elements are intended to be aligned, and thus adversely affecting the color of an image written on the display.
  • This invention provides a flexible electro-optic display comprising: a layer of solid electro-optic material capable of changing at least one optical characteristic upon application of an electric field thereto; a backplane comprising at least one electrode arranged to apply an electric field to the layer of electro-optic material; and an adhesive layer disposed between the layer of electro-optic material and the backplane and adhesively securing the layer of electro-optic material to the backplane, the adhesive layer having a storage modulus (G') of at least about 10 4 Pascals at 10 ⁇ 3 Hz and 7O 0 C.
  • G' storage modulus
  • the term "flexible” is used herein consistently with its normal meaning in the display art to refer to a display which is capable of being bent repeatedly without macroscopic damage to the display. (For example, a flexible medium could be incorporated into a wrist band which is bent perhaps several times a day as the wrist band is put on and removed from a user's wrist.)
  • Such displays typically have front substrates and backplanes formed from polymeric films having thicknesses not greater than about 300 ⁇ m, and preferably not greater than about 100 ⁇ m,. It is of course necessary to ensure that the conductors, electrodes and any non-linear devices, especially transistors, present on the backplane can withstand repeated flexing, and it may be desirable to use non-linear devices comprising conductive polymers.
  • the displays of the present invention may be "rollable", a term which is used herein to denote a display which can be moved repeatedly between a rolled position (in which the display is wrapped around a mandrel or, for example, the casing of a cellular telephone), and an operating position, in which an image can be viewed on the display.
  • a rollable display requires that the display be moved from its rolled position to its operating position each time the display is to be used, and hence the display must be able to withstand a large number of unrolling/re-rolling cycles during its operating lifetime.
  • a flexible display used on a wrist strap may typically undergo only two (or perhaps four) flexures per day as the wrist strap is placed on and removed from the user's wrist, whereas a rollable display used to provide a large display screen for the display of electronic mail received by a cellular telephone might undergo 20 or more unrolling/re-rolling cycles per day as the user receives numerous electronic mail messages.
  • the adhesive layer used in the display of the present invention must have a storage modulus of at least about 10 4 Pascals at 10 ⁇ 3 Hz and 7O 0 C.
  • the storage modulus is desirably at least about 3 x 10 4 Pascals, and preferably at least about 6 x 10 4 Pascals at 10 "3 Hz and 7O 0 C.
  • the modulus is measured at 7O 0 C, which is typically the upper end of the operating range of electrophoretic and many other electro-optic displays.
  • the modulus of an adhesive layer normally decreases as its temperature rises. Accordingly, creep is more likely to occur at high temperatures. Hence it is appropriate to measure creep at the upper end of the operating range.
  • both or all of the adhesive layers should meet the storage modulus criterion set out above.
  • the cross-linking agent may be an ultra-violet activated cross-linking agent.
  • the cross-linking agent may be a thermally-activated cross-linking agent and may comprise an epoxy group, which may be in the form of a glycidyl grouping (i.e., an epoxymethyl grouping).
  • the cross-linking agent may also comprise a tertiary amine.
  • the cross-linking agent may comprise N,N-diglycidylaniline, which may be present in the adhesive layer in a concentration of at least about 5,000, and preferably at least about 10,000, parts per million by weight.
  • cross-linking agents include epoxy ethers of alkyl or cycloalkyl polyols having at least two hydroxyl groups, and polymers having a main chain and a plurality of epoxy groups depending from the main chain.
  • Specific useful cross-linking agents include 1,4- cyclohexanedimethanol diglycidyl ether, neopentyl glycol diglycidyl ether, 0,0,0- triglycidylglycerol, and homopolymers and copolymers of glycidyl methacrylate.
  • the adhesive layer may comprise a polyurethane as described in the aforementioned U.S. Patent No. 7,173,752, or a polyacrylate. Other types of adhesive material may also be used.
  • This invention also provides a process for producing a flexible electro- optic display, the process comprising: providing an assembly comprising a layer of solid electro-optic material capable of changing at least one optical characteristic upon application of an electric field thereto; a flexible backplane comprising at least one electrode arranged to apply an electric field to the layer of electro-optic material; and an adhesive layer disposed between the layer of electro-optic material and the backplane and adhesively securing the layer of electro-optic material to the backplane, the adhesive layer comprising a cross-linking agent capable of cross-linking the adhesive layer, and exposing the adhesive layer to conditions effective to activate the cross- linking agent, thereby cross-linking the adhesive layer to produce an adhesive layer having a storage modulus (G') of at least about 10 4 Pascals at 10 "3 Hz and 7O 0 C.
  • G' storage modulus
  • This invention also provides an electro-optic display comprising: a layer of solid electro-optic material capable of changing at least one optical characteristic upon application of an electric field thereto; a flexible backplane comprising at least one electrode arranged to apply an electric field to the layer of electro-optic material; and an adhesive layer disposed between the layer of electro-optic material and the backplane and adhesively securing the layer of electro-optic material to the backplane, the adhesive layer having a storage modulus (G') of at least about 10 4
  • Figure 1 of the accompanying drawings is a graph showing the variation with frequency of the storage modulus of cross-linked and non-cross-linked adhesive materials, as measured at 5O 0 C, in the experiments described in the Example below.
  • Figure 2 is a graph showing the variation with frequency of the loss modulus of cross-linked and non-cross-linked adhesive materials, calculated for 5O 0 C, in the experiments described in the Example below.
  • Figure 3 is a graph showing the variation with frequency of tan ⁇ as calculated from the data shown in Figures 1 and 2.
  • Figures 4 to 6 are graphs similar to Figures 1 to 3 respectively but showing data calculated for 7O 0 C in the experiments described in the Example below.
  • the present invention relates to the use, in a flexible electro-optic display, of an adhesive layer having a high storage modulus.
  • This invention also provides a process for producing an electro-optic display with such an adhesive layer, an electro-optic display produced by such a process, and components (namely a front plane laminate, inverted front plane and double release film) useful for forming such displays.
  • the use of such an adhesive layer has been found effective in reducing or eliminating creep in flexible electro-optic displays.
  • the cross-linking agent may be any of those described in the aforementioned U.S. Patent No. 7,173,752; other cross-linking agents may also be used.
  • the adhesive used may be a polyurethane adhesive such as those described in the aforementioned U.S. Patent No. 7,173,752, or a polyacrylate. Any of the dopants previously mentioned may be used to adjust the volume resistivity of the adhesive to the desired range.
  • the displays of the present invention may incorporate any of the types of electro-optic media previously described.
  • the present displays may include an encapsulated electrophoretic, microcell electrophoretic or polymer dispersed electrophoretic medium.
  • the present displays may be manufactured using front plane laminates or double release films as described above.
  • the adhesive samples were subjected to DMA testing at a constant stress of 1000 Pa, and a small deformation (0.01 per cent of strain) was applied over a wide frequency range, and at varying temperatures, to determine the storage (elastic) modulus (G') of the samples; the loss (viscous) modulus (G") and the ratio (tan ⁇ ) of the two moduli.
  • Figures 1 to 3 of the accompanying drawings show the storage moduli, loss moduli and tan ⁇ respectively of the two samples as a function of frequency at 5O 0 C, while Figures 4 to 6 show the same parameters at 7O 0 C; in each case, the measured moduli and temperatures were adjusted to 5O 0 C and 7O 0 C by standard techniques well known to those skilled in effecting DMA measurements.
  • the open circles represent the non-cross-linked samples and the closed circles the cross-linked samples.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
PCT/US2007/066035 2006-04-10 2007-04-05 Electro-optic displays, and materials for use therein WO2007121104A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07760161A EP2005242A4 (en) 2006-04-10 2007-04-05 ELECTRO-OPTICAL SCREENS AND SUBSTANCES FOR USE THEREIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74453106P 2006-04-10 2006-04-10
US60/744,531 2006-04-10

Publications (2)

Publication Number Publication Date
WO2007121104A2 true WO2007121104A2 (en) 2007-10-25
WO2007121104A3 WO2007121104A3 (en) 2008-08-07

Family

ID=38610306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/066035 WO2007121104A2 (en) 2006-04-10 2007-04-05 Electro-optic displays, and materials for use therein

Country Status (3)

Country Link
EP (1) EP2005242A4 (zh)
TW (1) TWI425289B (zh)
WO (1) WO2007121104A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021133541A1 (en) 2019-12-23 2021-07-01 E Ink Corporation Transferable light-transmissive electrode films for electro-optic devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719247A (en) * 1991-12-17 1998-02-17 Minnesota Mining And Manufacturing Company Tack-free elastomeric acrylate microspheres
WO2000011045A1 (fr) * 1998-08-20 2000-03-02 Kaneka Corporation Composition d'un polymere et d'une resine epoxyde
US6656319B1 (en) * 2000-10-25 2003-12-02 3M Innovative Properties Company Fluid-activatable adhesive articles and methods
TWI300157B (en) * 2002-09-10 2008-08-21 Sipix Imaging Inc Electrochromic or electrodeposition display and process for their preparation
US7012735B2 (en) * 2003-03-27 2006-03-14 E Ink Corporaiton Electro-optic assemblies, and materials for use therein
US7173752B2 (en) * 2003-11-05 2007-02-06 E Ink Corporation Electro-optic displays, and materials for use therein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2005242A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021133541A1 (en) 2019-12-23 2021-07-01 E Ink Corporation Transferable light-transmissive electrode films for electro-optic devices

Also Published As

Publication number Publication date
TW200801760A (en) 2008-01-01
EP2005242A4 (en) 2009-12-23
TWI425289B (zh) 2014-02-01
EP2005242A2 (en) 2008-12-24
WO2007121104A3 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US7672040B2 (en) Electro-optic displays, and materials for use therein
EP1680774B9 (en) Electrophoretic medium for electro-optic displays
US10324354B2 (en) Electro-optic displays, and materials for use therein
US7551346B2 (en) Electro-optic displays, and materials for use therein
US9152004B2 (en) Electro-optic displays, and materials for use therein
US7477444B2 (en) Electro-optic display and materials for use therein
US7649666B2 (en) Components and methods for use in electro-optic displays
US7986450B2 (en) Electro-optic display and materials for use therein
EP2309304B1 (en) Methods for production of electro-optic displays
WO2017015561A1 (en) Polymer formulations for use with electro-optic media
WO2005073777A1 (en) Process for sealing electro-optic display
US11934081B2 (en) Transferrable light-transmissive electrode films for electro-optic devices
EP2005242A2 (en) Electro-optic displays, and materials for use therein

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007760161

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07760161

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE