WO2007119798A1 - Radio wave shielding body and method of producing the same - Google Patents

Radio wave shielding body and method of producing the same Download PDF

Info

Publication number
WO2007119798A1
WO2007119798A1 PCT/JP2007/058106 JP2007058106W WO2007119798A1 WO 2007119798 A1 WO2007119798 A1 WO 2007119798A1 JP 2007058106 W JP2007058106 W JP 2007058106W WO 2007119798 A1 WO2007119798 A1 WO 2007119798A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
antenna
antennas
modification
shield
Prior art date
Application number
PCT/JP2007/058106
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyuki Kashihara
Toshio Kudo
Satoshi Sakai
Original Assignee
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries, Ltd. filed Critical Mitsubishi Cable Industries, Ltd.
Priority to KR1020087028038A priority Critical patent/KR101050026B1/en
Priority to GB0820928A priority patent/GB2451389B/en
Publication of WO2007119798A1 publication Critical patent/WO2007119798A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0001Rooms or chambers
    • H05K9/0003Shielded walls, floors, ceilings, e.g. wallpaper, wall panel, electro-conductive plaster, concrete, cement, mortar
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0001Rooms or chambers
    • H05K9/0005Shielded windows
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B2001/925Protection against harmful electro-magnetic or radio-active radiations, e.g. X-rays
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor

Definitions

  • the present invention relates to a radio wave shield and a method for manufacturing the same.
  • Patent Document 1 discloses an electromagnetic shield capable of information communication using radio waves of an arbitrary frequency in a wide frequency band by adding an electromagnetic shield member such as metal or ferrite to a building frame.
  • an electromagnetic shield member such as metal or ferrite
  • radio wave shielding members radio wave reflectors such as iron plates, metal nets, metal meshes, metal foils, and radio wave absorbers such as flight are disclosed.
  • Patent Document 2 discloses an electromagnetic shielding building characterized in that an electromagnetic shielding space is secured in a building by an electromagnetic shielding surface in which "Y" -shaped linear antennas are regularly arranged. ing.
  • the “ ⁇ ” -shaped linear antenna is composed of three line-shaped element parts extending radially with the antenna central force approximately the same length.
  • Patent Document 2 describes that according to the electromagnetic shielding building disclosed in Patent Document 2, it is possible to select an electromagnetic wave of a necessary frequency and perform electromagnetic shielding.
  • Patent Document 1 Japanese Patent Publication No. 6-99972
  • Patent Document 2 JP-A-10-169039 Disclosure of the invention
  • a method for forming an antenna it is generally performed by liquefying a radio wave reflecting material and applying and drying (that is, by a wet method).
  • the method is usually not suitable for forming an antenna because it requires a large-scale device with high cost and is relatively time-consuming.
  • the antenna is formed by using a dry method such as a sputtering method without using a liquid material
  • problems such as bleeding of the liquid material to the base material do not occur, but a large-scale device is used. This leads to problems such as necessity, high manufacturing costs, and complicated manufacturing processes.
  • the present invention has been made in view of such various points, and a main object thereof is to provide a radio wave shield having a desired radio wave shielding property while being easily manufactured. .
  • a radio wave shield a substrate having at least one of a plurality of micropores and a plurality of irregularities on the surface, and formed on the surface of the substrate. And a plurality of radio wave reflecting antennas formed on the coating film using a radio wave reflecting material as a specification material. That is, the plurality of radio wave reflecting antennas are not directly in contact with the substrate surface, but are disposed on the coating film.
  • the coating film substantially eliminates holes and irregularities present on the surface of the base material and flattens the base material surface, and forms a radio wave reflecting antenna on such a coating film. This makes it possible to obtain a desired radio wave shielding property.
  • the base material has at least one of fine holes and irregularities on the surface, that is, the base material surface is not flat.
  • a base material includes a cloth-like body (woven fabric, non-woven fabric, knitted fabric, lace, felt, paper, etc.), and a porous body (foam).
  • the above-mentioned coating film is a film that can suppress bleeding of a material that reflects an electric wave to the base material (specifically, the surface of the base material) when the base material has a plurality of fine holes. If the substrate has a plurality of irregularities, the coating film is a flattened one, specifically, one that closes the open ends of the micropores present on the surface of the substrate that causes bleeding. There is no particular limitation as long as the surface of the base material is smoothed and the entire thickness (the thickness of the base material + coating film) is made uniform. Those having edge properties are preferred. Specific examples of the coating film material include inorganic materials such as resin and glass, and rubber.
  • the radio wave reflecting material is a liquid material (for example, in the form of ink, in the present specification, "liquid material” is a solution composed of a solvent and a solute, or a fine particle in a liquid (a solvent only or a solvent and a solute). It is a concept that includes a dispersion in which a child or a colloidal substance is dispersed and mixed.
  • the term “material” refers to all materials including at least a liquid. ) Is preferable.
  • a solution (ink) in which a substance that reflects radio waves is melted a solution (ink) that contains a substance that reflects colloidal radio waves, and fine particles that substantially consist of substances that reflect radio waves are dispersed and mixed. It may be a fine particle dispersion (ink) or the like.
  • examples of the substance that reflects radio waves include conductive substances.
  • examples of the conductive material include copper, aluminum, and silver.
  • the radio wave reflecting antenna is preferably one that selectively reflects radio waves of a specific frequency or a specific frequency band.
  • an antenna include a so-called Jerusalem cross-type antenna and a “Y” -shaped antenna.
  • each of the radio wave reflecting antennas has three linear first element portions that extend radially with substantially the same length at an antenna central force of approximately 120 ° from each other, and each first element portion.
  • a second element portion having a line shape coupled to the outer end of the antenna and reflecting a radio wave of a specific frequency (in this specification, an antenna of this shape is referred to as a “ ⁇ - ⁇ type antenna”) May be called.).
  • the manufacturing method according to the present invention is a method for manufacturing a radio wave shield provided with a plurality of radio wave reflecting antennas formed on a substrate having fine holes and ridges or irregularities on the surface.
  • the manufacturing method according to the present invention is characterized in that a plurality of radio wave reflecting antennas are formed of a material that reflects radio waves after the surface of a base material is coated with a coating film.
  • the substrate surface is smoothed (the entire thickness (substrate + coating film thickness) is uniform). Accordingly, bleeding of the material on the surface of the base material is suppressed, and a radio wave reflecting antenna having a desired shape and dimension can be easily and accurately manufactured. Therefore, according to this manufacturing method, it is possible to easily manufacture a radio wave shield having high radio wave shielding properties.
  • FIG. 1 is a plan view showing a configuration of a radio wave shield according to an embodiment of the present invention.
  • FIG. 2 is an enlarged plan view showing a part of the radio wave shield.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is an enlarged plan view showing the antenna.
  • FIG. 5 is a plan view schematically showing an enlarged part of a base material that also has a woven cloth force.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG.
  • FIG. 7 is a cross-sectional view showing a state in which the radio wave shield is attached to the wall on the base material side.
  • FIG. 8 is an explanatory view showing the entire roll-shaped radio wave shielding body in which an adhesive and a protective film are formed on the substrate side, and a partially enlarged cross section thereof.
  • FIG. 9 is a view corresponding to FIG. 7, showing a state in which the radio wave shield is attached to the wall on the reflective layer side.
  • FIG. 10 is a view corresponding to FIG. 8 showing the entire roll-shaped radio wave shielding body in which a pressure-sensitive adhesive and a protective film are formed on the reflective layer side, and a partially enlarged cross section thereof.
  • FIG. 11 is a characteristic diagram showing the relationship between the frequency of radio waves transmitted through the radio wave shield and the amount of transmission attenuation.
  • FIG. 12 is a characteristic diagram showing the relationship between the element length of an antenna and the frequency (matching frequency) of a radio wave reflected by the antenna.
  • FIG. 13 is a view corresponding to FIG. 1, showing a first modification of the radio wave shielding body.
  • FIG. 14 is an enlarged plan view showing the antenna of the first modification.
  • FIG. 15 is a view corresponding to FIG. 1, showing a second modification example of the radio wave shield.
  • FIG. 16 is a view corresponding to FIG. 1 and showing a third modification example of the radio wave shield.
  • FIG. 17 is a view corresponding to FIG. 1 and showing a fourth modification example of the radio wave shielding body.
  • FIG. 18 is a view corresponding to FIG. 1 and showing a fifth modification example of the radio wave shield.
  • FIG. 19 is a view corresponding to FIG.
  • FIG. 20 is a characteristic diagram showing the relationship between the radio wave frequency and radio wave shielding amount (radio wave transmission attenuation amount) in Modification 6.
  • FIG. 21 is a view corresponding to FIG. 1 and showing a modification example 7 of the radio wave shielding body.
  • FIG. 22 is a view corresponding to FIG. 1, showing a modification 8 of the radio wave shield.
  • FIG. 23 is a view corresponding to FIG. 1, showing a modification 9 of the radio wave shielding body.
  • FIG. 24 is a view corresponding to FIG. 1 and showing a tenth modification of the radio wave shielding body.
  • FIG. 25 is a view corresponding to FIG. 1 and showing a modification 11 of the radio wave shielding body.
  • FIG. 26 is a characteristic diagram showing the relationship between the frequency of radio waves and the amount of transmitted water loss when the radio wave shield of modification 2 is used as an example, together with the comparative example.
  • Antenna (radio-reflection antenna)
  • FIG. 1 is a diagram showing a configuration of a radio wave shielding body according to the present embodiment
  • FIG. 2 is an enlarged plan view showing a part of the radio wave shielding body
  • FIG. Fig. 4 is a cross-sectional view taken along line III-III of Fig. 2, and Fig. 4 is a plan view showing the antenna enlarged.
  • the radio wave shield 1 includes a substrate 10 having a surface having at least one of a plurality of fine holes and a plurality of irregularities, a coating film 11, and a reflective layer 12.
  • the radio wave shield 1 may be, for example, a mode that imparts radio wave shielding characteristics to an existing object (eg, a window, a wall, a ceiling, a floor, a partition, a desk, etc.) in a room.
  • the substrate 10 is preferably in a shape having a flat surface such as a plate shape, a sheet shape, or a film shape.
  • the substrate 10 is not limited as long as it has at least one of a plurality of fine holes and a plurality of irregularities on the surface.
  • the base material 10 can be appropriately selected according to the intended use of the radio wave shield 1.
  • the base material 10 may be made of resin, glass, paper, cloth, rubber, gypsum, tile, wood, or the like.
  • the base material 10 is made of urethane resin, polyethylene (PE) resin, polystyrene resin resin, etc., wood (including plywood), or woven fabric (for example, plain weave) or non-woven fabric, Cloths such as knitting, lace, felt, and paper (for example, curtains, walls and floors, ceilings, windows, desks, cloths that stick to or stick to partitions, etc.) etc.!
  • PE polyethylene
  • PE polystyrene resin
  • wood including plywood
  • woven fabric for example, plain weave
  • Cloths such as knitting, lace, felt, and paper (for example, curtains, walls and floors, ceilings, windows, desks, cloths that stick to or stick to partitions, etc.) etc.!
  • FIG. 5 is an enlarged plan view schematically showing a part of the base material 10 also having a woven cloth force
  • FIG. 6 is a sectional view taken along line VI-VI in FIG.
  • the base material 10 includes a plurality of first woven fibers 40 extending in parallel with each other, and intersecting the first woven fibers 40.
  • each of the plurality of spaces defined by the first woven fabric 40 and the second woven fabric 41 constitutes the fine holes 42.
  • the first woven fabric 40 passes between the plurality of first woven fabrics 40, and similarly, the first woven fabric 40 also passes between the plurality of second woven fabrics 41 and is serpentine. Therefore, a plurality of concave portions 43 and convex portions 44 (that is, concave and convex portions) are formed on the surface 10a of the base material 10 on which the coating film 11 is formed.
  • the coating film 11 is for filling the fine holes 42 (specifically, openings of the fine holes 42) and flattening the concave portions 43 and the convex portions 44.
  • the radio wave shield 1 in which the reflective layer 12 is formed on the surface of the base material 10 on an existing object in the room (for example, a window, a wall, a ceiling, a floor, a partition, a desk, etc.) At least one of the surface on which the reflective layer 12 is formed and the surface on the opposite side thereof is coated with an adhesive or an adhesive (or is subjected to adsorption processing), and the surface of the adhesive or the adhesive is applied to the surface. It is good also as an aspect which provides a protective layer, rolls (rolls in the shape of toilet paper), and can cut
  • FIG. 7 is a cross-sectional view showing a state in which the radio wave shield 1 is attached to the wall 30 on the base material 10 side.
  • the radio wave shield 1 is the base material 10 of the radio wave shield 1. It is attached to the wall 30 by the adhesive 31 provided on the side.
  • FIG. 8 shows a schematic diagram of the radio wave shield 1 in which the adhesive 31 and the protective film 32 are formed on the substrate 10 side and are rolled in the form of toilet paper. In this case, the radio wave shield 1 is cut according to the required length.
  • the protective film 32 can be peeled off and attached to a wall or the like.
  • FIG. 7 is a cross-sectional view showing a state in which the radio wave shield 1 is attached to the wall 30 on the base material 10 side.
  • the radio wave shield 1 is the base material 10 of the radio wave shield 1. It is attached to the wall 30 by the adhesive 31 provided on the side.
  • FIG. 8 shows a schematic diagram of the radio wave shield 1 in which the adhesive 31 and the protective film 32 are formed on the substrate
  • FIG. 9 is a cross-sectional view showing a state in which the radio wave shield 1 is adhered to the wall 30 on the reflective layer 12 side. In this case, the adhesive 31 is reflected from the radio wave shield 1. It is provided on the layer 12 side.
  • FIG. 10 is a schematic diagram of the radio wave shield 1 in which the pressure-sensitive adhesive 31 and the protective film 32 are formed on the reflective layer 12 side and rolled in the form of toilet paper. In this case, the radio wave shield 1 is cut according to the required length.
  • the protective film 32 can be peeled off and adhered to a wall or the like.
  • the base material 10 has various properties (light transmissibility, non-flammability, flame retardancy, etc.) as well as just a role as a base material (for example, a role to ensure the mechanical durability of the radio wave shield 1). It is particularly preferred that it plays a role of imparting non-halogenity, flexibility, impact resistance, heat resistance, etc.) to the radio wave shield.
  • the reflective layer 12 selectively reflects radio waves having a specific frequency.
  • the reflective layer 12 includes a plurality of antennas 13 that are two-dimensionally arranged to form a pattern. Each antenna 13 selectively reflects radio waves having a specific frequency.
  • the plurality of antennas 13 are formed by applying a radio wave reflecting material (preferably in a liquid state).
  • the coating film 11 is formed on the surface of the substrate 10 having a plurality of fine holes so as to cover the surface.
  • the coating film 11 has a radio wave reflecting material (for example, a radio wave reflecting liquid material) for forming the antenna 13 described in detail later on the base material 10 (a radio wave reflecting material toward the surface of the base material (for example, a radio wave reflecting liquid) (Impregnation of the material)) and the unintentional spread of the radio wave reflecting material (for example, radio wave reflecting liquid material) on the surface of the base material 10 is suppressed.
  • the coating film 11 is preferably one that densifies and flattens the surface of the substrate 10 having at least one of a plurality of fine holes and a plurality of irregularities (for example, porous).
  • the surface of the base material 10 is densified and flattened and the thickness of the base material 10 is made uniform.
  • the coating film 11 is a material that is low in swelling property with respect to a radio wave reflecting material (for example, radio wave reflecting liquid material) (a material that is difficult to be impregnated with a radio wave reflecting material (for example, radio wave reflecting liquid material)).
  • the coating film 11 can be formed of resin (for example, urethane resin, acrylic resin, polyester resin, etc.).
  • the coating film 11 is formed on the substrate 10. Specifically, the surface of the substrate 10 having at least one of a plurality of fine holes and a plurality of irregularities is flattened (that is, the surface is smoothed and the entire thickness (substrate 10 + coating film The coating film 11 is formed so that the thickness (11) is uniform.
  • the coating film 11 can be formed by, for example, a roll coater method, a slit die coater method, a doctor knife coater method, or a gravure coater method.
  • the radio wave shield 1 is completed by producing the antenna 13 and forming the reflective layer 12 using a radio wave reflecting material (for example, a liquid radio wave reflecting material).
  • a radio wave reflecting material for example, a liquid radio wave reflecting material
  • the reflective layer 12 is formed by applying a liquid radio wave reflecting material, drying, and firing as necessary to produce a plurality of antennas 13.
  • the application of the radio wave reflecting liquid material is mist coating method, silk printing method, spin coating method, doctor blade method, discharge coating method, spray coating method, ink jet method, letterpress printing method, intaglio printing method, screen printing method.
  • the microgravure coating method can be used.
  • the base material 10 is impregnated with the radio wave reflecting liquid material (the liquid radio wave reflecting material is impregnated toward the base material surface).
  • the liquid radio wave reflecting material is blurred. Therefore, it is very difficult to manufacture the antenna 13 having a desired shape and size.
  • the shape of the formed antenna 13 becomes broad (for example, when the antenna 13 is a linear antenna, the line width is wider than the design value, And it will shake.)
  • variations in the shape and dimensions of the antenna occur. Specifically, when the TY-shaped antenna 13 shown in the present embodiment is formed, variations occur in the length of the first element portion 13a and the length of the second element portion 13b. In addition, part of the antenna 13 may be cut (electrically).
  • the liquid radio wave reflection material unintentionally flows from the convex part into the adjacent concave part, or the liquid radio wave reflective material is concentrated in the concave part. Therefore, it becomes difficult to manufacture the antenna 13 having a desired shape and size. That is, there is a possibility that the shape and size of the antenna 13 obtained may vary, or that the shape and size of the antenna 13 may be different from the desired shape.
  • the surface of the substrate 10 is coated with the coating film 11 and is V.
  • the coating film 11 fills the fine pores and recesses present on the surface of the substrate 10, and the surface is flattened. Therefore, bleeding (impregnation, particularly impregnation of the liquid radio wave reflection material in the surface direction of the base material 10) of the liquid radio wave reflection material and unintended flow of the liquid radio wave reflection material are suppressed. Therefore, a shading method using a liquid radio wave reflecting material that does not require a large facility or the like and can be easily and inexpensively performed is used.
  • a plurality of antennas 13 having a small shape and little variation in shape dimensions (for example, when the antenna 13 is a linear antenna, the line width is substantially equal to the design value and the line width is stable.
  • An antenna 13) having a stable part length can be formed. That is, the radio wave shield 1 according to the present embodiment can be easily and inexpensively manufactured and has high radio wave shielding properties.
  • the liquid radio wave reflecting material is a liquid or paste in which fine particles or colloids substantially made of a radio wave reflecting substance such as a conductive substance are dispersed and mixed (hereinafter sometimes referred to as "conductive paste"). Or a solution in which a radio wave reflecting material is melted.
  • the conductive material examples include aluminum, silver, copper, gold, platinum, iron, carbon, graphite, indium tin oxide (ITO), indium zinc oxide (IZO), a mixture or an alloy thereof.
  • the antenna 13 includes at least one of copper, aluminum, and silver having high conductivity and relatively inexpensive.
  • examples of the medium containing a conductive material include a resin (eg, polyester resin) and a solvent.
  • the content of the conductive material is not less than 40% by weight and not more than 80% by weight. More preferably, the content of the conductive material is not less than 50 weight percent and not more than 70 weight percent. If the content of the conductive material is less than 40 weight percent, the conductivity of the antenna 13 tends to decrease. On the other hand, when the content of the conductive material is more than 80 weight percent, it tends to be difficult to uniformly disperse and mix it in the resin.
  • Resin is made of conductive material
  • the drying (firing) conditions of the applied liquid radio wave reflective material can be determined as appropriate depending on the composition of the liquid radio wave reflective material, for example, 100 ° C to 200 ° C and 10 minutes to 5 hours. This is better to dry.
  • the antenna 13 includes a material that is relatively easily oxidized, such as silver.
  • an anti-oxidation film may be formed on the antenna 13 so as to cover the antenna 13.
  • the reflective layer 12 has frequency selectivity arranged in a matrix at equal intervals.
  • the plurality of antennas 13 are configured. That is, the antenna 13 selectively reflects radio waves having a specific frequency. For this reason, the radio wave shield 1 can selectively shield radio waves of a specific frequency and transmit other radio waves.
  • the antenna 13 has three first element portions 13a and three second element portions 13b.
  • the three first element portions 13a extend outward from the antenna center C1 at an angle of 120 ° to each other.
  • Each second element portion 13b is coupled to the outer end of the first element portion 13a.
  • the lengths of the first element portions 13a are preferably substantially the same.
  • the lengths of the second element portions 13b are preferably substantially the same. By doing so, the frequency selectivity of the reflective layer 12 can be made higher.
  • the length (L2) of the second element portion 13b is not less than 0.5 times and not more than 2.0 times the length (L1) of the first element portion 13a (0 5'L1 ⁇ L2 ⁇ 2'L1) is preferred. More preferably, it is from 0.75 times to 2 times (0.75'L1 ⁇ L2 ⁇ 2'L1).
  • the width of the first element portion 13a and the width of the second element portion 13b may be different from each other or the same. In the present embodiment, the width of the first element portion 13a and the width of the second element portion 13b are substantially the same width (L3).
  • the antenna 13 includes the three second element portions 13b coupled to the outer ends of the first element portions 13a.
  • the antenna 13 is a “Y” -shaped linear antenna (a linear antenna including only the three first element portions extending radially of the antenna central force and having no second element portion), or a so-called antenna.
  • Jerusalem cross-type antennas (each having four line-shaped first element portions extending radially at substantially the same length from each other at an angle of 90 ° from the center of the antenna, and the outer ends of the first element portions) Line segments connected to The antenna has a higher frequency selectivity than the antenna having the second element portion. Therefore, the radio wave shield 1 having high frequency selectivity can be realized.
  • the antenna 13 includes the second element portion 13b
  • the second element portions 13b are opposed to each other between the adjacent antennas 13, 13 (more preferably, the second elements facing each other). It is easy to place a plurality of antennas 13 by placing the parts 13b close to each other (however, the distance dimension between both the second element parts 13b and 13b ⁇ 0). This can improve the radio wave shielding rate against radio waves of a specific frequency, especially when the second element part 13b is in close contact with the liquid radio wave reflection material and the unintentional liquid radio wave reflection material.
  • the opposing second element parts 13b may be connected to each other, and if the second element parts 13b are connected to each other, desired radio wave shielding characteristics (radio wave shielding rate and frequency selectivity) can be obtained. Et For this reason, the coating film 11 can be provided particularly when the second element portions 13b of the antenna 13 located adjacent to each other are arranged so as to face each other (more closely). It is valid.
  • the second element portion 13b is coupled to the outer end of the first element portion 13a at the center, Further, it is preferable that the second element portion 13b and the first element portion 13a form a right angle. Further, it is preferable that the length of the second element portion 13b and the length of the first element portion 13a are substantially the same.
  • the length of the first element portion 13a and the length of the second element portion 13b correlate with the frequency (specific frequency) of the radio wave to be reflected by the antenna 13. For this reason, the length of the first element portion 13a and the length of the second element portion 13b can be appropriately determined according to the frequency (specific frequency) of the radio wave to be shielded by the radio wave shield 1. For example, when the length of the first element portion 13a is the same as the length of the second element portion 13b, the specific frequency is lowered by increasing the length of the first element portion 13a and the second element portion 13b. It can be made. Further, the specific frequency can be increased by reducing the lengths of the first element portion 13a and the second element portion 13b.
  • the length L1 of the first element portion 13a and the length L2 of the second element portion 13b are the same.
  • L1 and L2 are collectively referred to as the element length L.
  • the radio wave shielding characteristics of the radio wave shield 1 will be described in detail with reference to FIGS. Fig. 11 is a characteristic diagram showing the relationship between the frequency of radio waves and the transmission attenuation of radio waves when passing through the radio wave shield 1.
  • the transmittance of radio waves having a specific frequency (about 2.7 GHz) among radio waves incident on the radio wave shield 1 is selectively attenuated.
  • the radio wave shield 1 selectively shields radio waves having a specific frequency among radio waves incident on the radio wave shield 1. This is because the radio wave of the specific frequency is selectively reflected among the radio waves incident on the reflection layer 12 of the radio wave shield 1, specifically, the plurality of antennas 13 included in the reflection layer 12.
  • FIG. 12 is a characteristic diagram showing the relationship between the element length L and the frequency of the radio wave reflected by the antenna 13. As can be seen from this figure, the frequency of the radio wave reflected by the antenna 13 decreases as the element length L increases. On the contrary, the frequency of the radio wave reflected by the antenna 13 becomes higher as the element length L becomes shorter.
  • the specific frequency can be adjusted by fixing the length L1 of the first element portion 13a and adjusting the length L2 of the second element portion 13b. Specifically, the specific frequency can be lowered by increasing the length L2 of the second element portion 13b. Further, the specific frequency can be increased by shortening the length L2 of the second element portion 13b.
  • the thickness of the antenna 13 is preferably 10 ⁇ m or more and 20 ⁇ m or less (10 to 20 ⁇ m). That's right. If the thickness of the antenna 13 is smaller than 10 / zm, the conductivity of the antenna 13 tends to decrease. On the other hand, when the thickness of the antenna 13 is larger than 20 m, the formability of the antenna 13 tends to be lowered.
  • the radio wave shield 1 As described above, the radio wave shield 1 according to the present embodiment has been described in detail, but the shape and size of the radio wave shield 1 is not limited at all.
  • the radio wave shield 1 may be a small one with a length of several millimeters square on one side or a large one with a few meters or more on one side.
  • the radio wave shield 1 may have any shape such as a triangle, a quadrilateral (rectangle, square), a polygon, a circle, an ellipse, or the like in plan view.
  • the number of antennas 13 included per unit area of the radio wave shield 1 is not limited at all.
  • the number of antennas 13 included per unit area of the radio wave shield 1 can be appropriately changed depending on the use of the radio wave shield 1 and the like. By increasing the number of antennas 13 included per unit area of the radio wave shield 1, high radio wave shielding can be realized.
  • the shape, dimensions, and the like of the antenna constituting the reflective layer 12 are not particularly limited, and the antenna 13 described here is merely an example.
  • the reflective layer 12 may include a plurality of antennas 13 and one or a plurality of types of antennas having different shape dimensions from the antenna 13! /.
  • FIG. 13 is a plan view of the reflective layer 12a in Modification 1
  • FIG. 14 is an enlarged plan view of a part of the reflective layer 12a.
  • the reflection layer 12 is arranged so that a plurality of antennas 13 constitute a plurality of antenna assemblies 15 arranged in a matrix at predetermined intervals.
  • each of the plurality of antennas 13 constitutes a plurality of antenna units 14 having a pair of forces and disposed so that the second element portions 13b face each other, and further, the plurality of antenna units 14 Are arranged so that the second element parts 13b face each other and are continuous in two dimensions.
  • a plurality of hexagonal antenna assemblies 15 are formed. That is, each antenna assembly 15 includes three antennas arranged in a ring shape with the second element portions 13b facing each other.
  • the antenna assembly 15 includes six antennas 13 arranged in a ring shape with the second element portions 13b facing each other.
  • 12 second element portions 13b among the 18 second element portions 13b constituting the antenna assembly 15 are provided so as to face each other substantially in parallel.
  • the radio wave reflectance (radio wave shielding rate) of the antenna 13 with respect to radio waves of a specific frequency is further improved. be able to. Therefore, it is possible to realize a radio wave shielding body having a high radio wave shielding rate with respect to radio waves of a specific frequency.
  • the distance XI between the opposing second element portions 13b is 0.4 mm or more and 3 mm or less (0.4 mm ⁇ Xl ⁇ 3mm). 0.6 mm or more and lmm or less (0.6 mm ⁇ XI ⁇ lmm).
  • the distance XI is shorter than 0.4 mm (XI ⁇ 0.4 mm)
  • the opposing second element parts 13b may contact each other undesirably, while the distance XI is longer than 3 mm (XI> 3mm).
  • the radio wave shielding rate tends to decrease.
  • the antenna assembly 15 is preferably hexagonal (preferably substantially regular hexagonal). Accordingly, it is preferable that the first element portion 13a and the second element portion 13b are perpendicular to each other. Good. Further, it is preferable that the second element portion 13b is coupled to the first element portion 13a at the center thereof.
  • FIG. 15 is a plan view of the reflective layer 12b in the second modification.
  • the antenna assembly 15 is arranged so that the second element portions 13b are opposed to each other (in a so-called “Harcam” shape). For this reason, in the second modification, all the second element portions 13b face each other. As described above, by disposing the antenna 13, it is possible to increase the number of second element portions 13 b provided so as to face each other more than in the first modification. For this reason, a radio wave shield having a higher radio wave shielding rate can be realized.
  • the coating film 11 is very effective even in the case of the antenna arrangement in the second modification.
  • FIG. 16 is a plan view of the reflective layer 12c in the third modification.
  • the reflection layer is composed of only one type of antenna, whereas in Modification 3, there are multiple types of reflection layer 12c. It is composed of antennas.
  • the reflective layer 12c has two types of antennas 16, 17 including a relatively small antenna 16 and a plurality of relatively large antennas 17. Each of the antenna 16 and the antenna 17 is a so-called TY antenna.
  • the plurality of antennas 16 and the plurality of antennas 17 are arranged in an alternating pattern and in a matrix so as not to interfere with each other.
  • the antenna 16 and the antenna 17 may be similar to each other or may be non-similar.
  • the reflective layer 12c may further include an antenna other than the antenna 16 and the antenna 17.
  • the relatively small antenna 16 and the relatively large antenna 17 have mutually different frequency selectivity. That is, the frequencies of the reflected radio waves are different from each other. others Therefore, according to the third modification, it is possible to realize a radio wave shield capable of selectively shielding two types of radio waves having different frequencies.
  • the radio wave shielding body according to the third modification uses radio waves of two types of frequency, 2.4 GHz band radio waves and 5.2 GHz band radio waves. Yes. This is especially useful in environments where wireless LAN is used and environments where radio waves of two different frequencies are used.
  • the reflective layer 12c may be configured by three or more types of antennas having different sizes.
  • FIG. 17 is a plan view of the reflective layer 12d in Modification 4.
  • each of the plurality of antennas 16 has a plurality of force pairs that are arranged so that the second element portions 16b face each other.
  • the antenna unit 18 is configured, and the plurality of antenna units 18 are arranged so that the second element portions 16b are opposed to each other, and a plurality of hexagonal antenna assemblies 19 that are continuously developed in two dimensions are provided. It is composed.
  • each antenna assembly 19 includes three antenna units 18 arranged in a ring shape with the second element portions 16b facing each other.
  • the antenna assembly 19 includes six antennas 13 arranged in an annular shape with the second element portions 16b facing each other.
  • the antenna assembly 19 is further arranged so as to face the second element portions 13b (in a so-called “Hercam” shape).
  • the plurality of antennas 17 constitutes a plurality of antenna units 20 each having a pair of forces arranged so that the second element portions 17b face each other, similarly to the plurality of antennas 13 in Modification 1.
  • the plurality of antenna units 20 constitutes a plurality of hexagonal antenna assemblies 21 that are arranged so that the second element portions 17b face each other and are continuously developed in two dimensions.
  • Each antenna assembly 21 is arranged so as to be surrounded by the antenna assembly 19. According to such an arrangement, the second element portions 16b of the antenna 16 and the second element portions 17b of the antenna 17 are opposed to each other with a high probability, and both the antennas 16 and 17 have substantially the same density. Can be arranged. Therefore, both the radio wave reflected by the antenna 16 and the radio wave reflected by the antenna 17 are more It is possible to shield with high frequency selectivity and higher shielding rate.
  • Modification 4 it is preferable that the lengths of the second element portions 16b and 17b are relatively short. By doing so, contact between the antenna 16 and the antenna 17 can be suppressed. Therefore, the dimensional freedom of the antenna 17 constituting the antenna assembly 21 surrounded by the antenna assembly 19 can be further increased. As a result, for example, a radio wave shield capable of selectively shielding two types of radio waves having relatively close frequencies can be realized.
  • FIG. 18 is a plan view of the reflective layer 12e in Modification 5.
  • This Modification 5 is a further modification of Modification 4 described above.
  • the antenna assembly 19 and the antenna assembly 21 are inclined with respect to each other so as to have different symmetry axes (specifically, line symmetry axes extending in the arrangement direction of the antennas 16 and 17).
  • symmetry axes specifically, line symmetry axes extending in the arrangement direction of the antennas 16 and 17.
  • the relative positions of the second element portion 16b and the second element portion 17b facing each other are shifted.
  • the relative size of the antenna 17 with respect to the antenna 16 can be made relatively large. Therefore, antenna 16 and antenna 1
  • the degree of freedom in designing the shape dimensions with 7 can be expanded. As a result, it is possible to shield the two waves that are close in frequency (ratio of the first frequency to the second frequency (first frequency ⁇ second frequency) is 0.45 or more).
  • the substantially hexagonal antenna assembly 19 and the antenna assembly 21 are arranged in a close-packed manner, but depending on a desired radio wave shielding rate, they are not arranged in a close-packed manner, but in a substantially hexagonal shape. Adjust the number of antenna assemblies 19 and 21 as appropriate.
  • the reflection layer is configured by a plurality of types of antennas that selectively reflect radio waves of different specific frequencies so that radio waves of specific frequency bands can be selectively shielded.
  • the reflective layer 12f is configured by three types of antennas 22a, 22b, and 22c will be described.
  • Frequency band refers to a frequency range where the ratio band exceeds 10%.
  • a radio wave shield that selectively shields radio waves in a specific frequency band is a radio wave shield that has a 10 dB ratio band (preferably a 20 dB ratio band, more preferably a 30 dB ratio band) exceeding 10%. It means the body.
  • a radio wave shield that “selectively blocks radio waves of a specific frequency” refers to a radio wave shield with a 10 dB ratio band of 10% or less.
  • the 10dB bandwidth is 10dB or more, where F is the maximum frequency of the radio wave that is shielded by 10dB or more.
  • FIG. 19 is a plan view of the reflective layer 12f.
  • the reflection layer 12f includes a plurality of types of antennas 22 that selectively reflect radio waves having different specific frequencies, specifically, the first antenna 22a, the second antenna 22b, and the third antenna 22c. It is composed of different types of antennas.
  • the first antenna 22a, the second antenna 22b, and the third antenna 22c have their respective radio wave reflection spectrum peaks that are not independent of each other. In other words, each radio wave reflection spectrum peak is continuous.
  • the reflective layer 12f according to this modification has a frequency having a predetermined width. Radio waves in a band (for example, a frequency band from 815 MHz to 925 MHz) can be selectively reflected.
  • the reflective layer 12f has a radio wave shielding characteristic (radio transmission attenuation characteristic) as shown in FIG.
  • the size of each antenna 22 included in the reflection layer 12f is ⁇ 15% of the size of the reference type antenna 22 of the antennas 22 (preferably ⁇ 10%, more preferably within ⁇ 5%).
  • FIG. 20 is a graph illustrating the correlation between the radio wave shielding amount (radio wave transmission attenuation amount) of the reflective layer 12f and the frequency.
  • the spectrum peak P2 of the first antenna 22a, the spectrum peak P3 of the second antenna 22b, and the spectrum peak P1 of the third antenna 22c are not independent of each other and are continuous. .
  • the ratio of the depth H2 from the base line BL of the valley to the depth HI from the base line BL of P1, which is the largest peak is 50% or less (3 dB or more).
  • the radio waves in the entire frequency band between the peaks P1 to P3 are shielded (reflected) with a high shielding rate of 10 dB or more. It is also preferable that the 10 dB bandwidth is greater than 10%.
  • Radio reflection spectrum peaks are independent of each other (continuously! /, Ru)" means that the largest spectrum of radio wave reflection (shielding) spectra of an electromagnetic shield is present.
  • the ratio of the minimum radio wave reflection (shielding) rate in the valley between the spectral peaks to the radio wave reflection (shielding) rate of the peak (peak) is greater than 50% (the peak (peak) radio wave with the largest spectrum)
  • the difference between the reflection (shielding) rate and the minimum radio wave reflection (shielding) rate in the valley is less than 3 dB).
  • radio wave reflection spectrum peaks are independent of each other (not continuous)” means that the radio wave at the peak (peak) of the largest spectrum of the radio wave shielding spectrum (radio wave reflection spectrum) of the radio wave shield.
  • the ratio of the minimum radio wave reflection (shielding) rate at the valley between the spectral peaks to the reflection (shielding) rate is 50% or less
  • the difference from the radio wave reflection (shielding) rate is 3 dB or more).
  • each of the first antenna 22a, the second antenna 22b, and the third antenna 22c is the TY antenna described above.
  • each of the first antenna 22a, the second antenna 22b, and the third antenna 22c is, for example, a “Y” -shaped antenna, so-called Elsa. It may be a remcross type antenna or the like.
  • the first antenna 22a, the second antenna 22b, and the third antenna 22c may be antennas having different shapes from each other or may be similar to each other.
  • the reflective layer 12f includes a plurality of first antennas 22a, a plurality of second antennas 22b, and a plurality of third antennas 22c, which are respectively a first antenna 22a, a second antenna 22b, and a first antenna.
  • the antennas 22c are two-dimensionally arranged so as to form a plurality of antenna rows 23 that are alternately arranged in this order in the negative direction.
  • the reflective layer 12f is formed by arranging a plurality of antenna arrays 23 in which the first antenna 22a, the second antenna 22b, and the third antenna 22c are alternately arranged in this order in the negative direction. is there.
  • each first antenna 22a is adjacent to the second antenna 22b and the third antenna 22c belonging to the antenna row 23 adjacent to the antenna row 23 to which the first antenna 22a belongs.
  • each second antenna 22b is adjacent to the first antenna 22a and the third antenna 22c belonging to the antenna row 23 adjacent to the antenna row 23 to which the second antenna 22b belongs.
  • Each third antenna 22c is adjacent to the second antenna 22b and the first antenna 22a belonging to the antenna row 23 adjacent to the antenna row 23 to which the third antenna 22c belongs.
  • the antenna center of the first antenna 22a and the first antenna 22a adjacent to the first antenna 22a belonging to the antenna array 23 located on both sides of the antenna array 23 to which the first antenna 22a belongs is triangular (preferably Are arranged to form an equilateral triangle).
  • the antenna center of the first antenna 22a and the second antenna 22b adjacent to the second antenna 22b belonging to the antenna array 23 located on both sides of the antenna array 23 to which the second antenna 22b belongs is a triangle ( Preferably, they are arranged to form an equilateral triangle.
  • the antenna center between the first antenna 22a and the third antenna 22c adjacent to the third antenna 22c belonging to the antenna array 23 located on both sides of the antenna array 23 to which the third antenna 22c belongs is triangular (preferably Are arranged to form an equilateral triangle).
  • a plurality of second elements 22a of the first antenna 22a are inserted between the second antenna 22b and the third antenna 22c belonging to the adjacent antenna row 23.
  • the antenna columns 23 can be densely arranged in the row direction.
  • the antennas 22 can be densely arranged in such a manner that the second element portion of the adjacent antenna 22 enters the region R where the second antenna 22b is arranged. Therefore, more antennas 22a, 22b, and 22c can be arranged more closely per unit area.
  • the radio wave shielding rate correlates with the number of antennas 22 per unit area, and as the number of antennas 22 per unit area increases, the radio wave shielding rate also increases. According to the arrangement of the antenna 22, a high radio wave shielding rate can be realized. In addition, since the number of the first antenna 22a, the second antenna 22b, and the third antenna 22c included in the unit area can be made substantially the same, it is possible to suppress radio wave shielding unevenness in the frequency band. From the viewpoint of increasing the number of antennas 22 per unit area, the second element portion is preferably shorter than the first element portion (L2> L1).
  • the plurality of antennas 22 are arranged so that the second element portions do not face each other in parallel. For this reason, the frequency selectivity of the antenna 22 can be kept relatively low. In other words, the specific band of the antenna 22 can be kept relatively wide. Therefore, it is possible to realize a favorable radio wave shielding rate with little bias to radio waves in the entire specific frequency band.
  • the reflective layer 12f in Modification 6 reflects radio waves in a specific frequency band, and has a frequency selectivity lower than that of the reflective layer described in Embodiment 1 etc. If the length of the element part varies or the length of the second element part varies, the desired frequency selectivity cannot be obtained. Therefore, it is effective to provide the coating film 11 even in the case of the antenna arrangement as in Modification 6. Is.
  • the reflective layer 12 configured by the TY antenna has been described above.
  • the reflective layer 12 may be configured by an antenna other than the TY antenna.
  • the reflective layer 12g may be composed of a plurality of “Y” -shaped antennas 24 arranged in a matrix. Each antenna 24 is constituted by three line-shaped first element portions 24a extending radially at substantially the same length at an angle of 120 ° from the antenna center.
  • the present modification 8 is a further modification of the modification 7.
  • the reflective layer 12 2g is composed of only one type of antenna 24, whereas in Modification 8, the reflective layer 12h has two types of “Y” characters with different sizes.
  • the antennas 25 and 26 are used. According to this configuration, it is possible to realize a radio wave shield that can shield multiple types of radio waves having different frequencies.
  • relatively large antennas 25 are arranged so that the first element portions face each other. Specifically, the first element parts of different antennas 25 are arranged in parallel and densely in each of the three first element parts of an antenna 25. One relatively small antenna 24 is disposed in each of the hexagonal regions defined by the relatively large antenna 25. By adopting such an arrangement, it is possible to improve the radio wave shielding rate of the antenna 25 against radio waves of a specific frequency.
  • FIG. 23 is a plan view of the reflective layer 12i in Modification 9.
  • the reflective layer 12i is composed of a plurality of so-called Jerusalem cross-type antennas 27.
  • Each antenna 27 has four linear first element portions 27a extending radially with substantially the same length at an angle of 90 ° to each other, and the outer end of each first element portion.
  • Line-shaped second element connected to each other typically vertically
  • the reflective layer By configuring the reflective layer with the antenna 27 having such a shape, a frequency selectivity higher than that in the case where the reflective layer is configured with the “Y” -shaped antenna described in the modified examples 7 and 8 (however, the so-called ⁇ —Frequency selectivity lower than in the case where the reflecting layer is formed by a saddle type antenna can be realized.
  • the plurality of antennas 27 are arranged in a matrix so that the second element portions 27b of the adjacent antennas 27 face each other (preferably so as to face each other in parallel and densely). According to this arrangement, it is possible to further improve the radio wave shielding rate of the antenna 27 with respect to radio waves of a specific frequency.
  • each of the element portions is similar to the case where the T-Y antenna and the "Y" -shaped antenna are arranged. If the length varies, a desired radio wave shielding characteristic cannot be obtained. Therefore, it is effective to provide the coating film 11 even when the Jerusalem cross-type antenna is arranged like the reflective layer 12i.
  • FIG. 24 is a plan view of the reflecting layer 13 ⁇ 4 in the modified example 10.
  • the present modification 10 is a further modification of the modification 9.
  • the reflection layer 12i is composed of only one type of antenna 27, whereas in this Modification 10, the reflection layer 12j has two types of Jerusalem cross-type antennas having different sizes. It consists of 28 and 29. According to this configuration, it is possible to shield a plurality of types of radio waves having different frequencies. It is possible to realize a radio wave shield capable of.
  • the plurality of antennas 28 are arranged so that the second element portions 28b of the antennas 28 arranged adjacent to each other face each other (preferably in parallel and densely). Are arranged in a matrix).
  • One relatively small antenna 29 is arranged in each of the areas partitioned by the relatively large antenna 28.
  • FIG. 25 is a plan view of the reflective layer 12k in Modification 11.
  • This modification 11 is a further modification of the modification 10 in which only the arrangement of the antennas 28 and 29 is different.
  • a radio wave shield having the configuration shown in Fig. 15 (Modification 3) was produced and used as an example. Specifically, first, the surface of a dough (base material) made of Toyo Senka Co., Ltd. # 0717- CU (beige) was coated using urethane roll resin using a roll coater method.
  • an antenna was prepared by screen printing on the surface of the fabric coated with urethane resin using silver paste in which 63% by weight of silver fine particles were dispersed and mixed in polyester resin. On the fabricated antenna, almost no silver paste bleeding was visible.
  • the line width of the first element part and the second element part was 1.58 mm, the length of the first element part was 12.94 mm, and the length of the second element part was 9.32 mm.
  • the transmission attenuation of the obtained radio wave shield was measured using a network analyzer manufactured by Agilent.
  • a radio wave shield was produced by the same process as in the above example except that a coating film of urethane resin was not formed, and the transmission attenuation was measured in the same manner. In the comparative example, bleeding of the silver paste was visually recognized on the manufactured antenna.
  • FIG. 26 is a characteristic diagram showing the transmission attenuation amounts of the example and the comparative example together.
  • a strong peak was observed around 2.4 GHz. From this, it was found that the example has a relatively high frequency selectivity.
  • the comparative example although the transmission attenuation increased slightly in the vicinity of 2.4 GHz, the peak-like peak was not observed. From this, it was found that the comparative example has almost no frequency selectivity.
  • the radio wave shielding body according to the present invention has high radio wave shielding properties against radio waves of a specific frequency, and includes wallpaper, partitions (partitions), cloth (roll screens), window glass, outer walls. It is useful as a panel, roof panel, ceiling panel, inner wall panel, floor panel, radio wave shield, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)
  • Building Environments (AREA)
  • Special Wing (AREA)

Abstract

A radio wave shielding body easily produceable and having desired radio wave shielding ability. The radio wave shielding body has a base (10) having on its surface at least either pores or projections/recesses, a coating film (11) formed on the surface of the base (10), and antennas (13) formed on the coating film (11) from a radio wave reflecting material.

Description

明 細 書  Specification
電波遮蔽体及びその製造方法  Radio wave shield and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、電波遮蔽体及びその製造方法に関する。  The present invention relates to a radio wave shield and a method for manufacturing the same.
背景技術  Background art
[0002] 近年、事業所内 PHSや無線 LAN等に代表される無線機器の利用が広がりを見せ るなか、情報の漏洩防止といった観点や、外部からの侵入電波による誤動作やノイズ 防止といった観点から、オフィス内での電波環境を整えることが不可欠になっている。 従来、オフィス等の電波環境の整備用部材として、種々のタイプのものが提案されて いる(例えば、特許文献 1、 2等)。  [0002] In recent years, as the use of wireless devices such as PHS and wireless LAN in offices has expanded, offices can be used from the standpoint of preventing information leakage and preventing malfunctions and noise caused by incoming radio waves from outside. It is indispensable to prepare the radio wave environment in the house. Conventionally, various types of members have been proposed as members for maintenance of radio wave environments such as offices (for example, Patent Documents 1 and 2).
[0003] 例えば、特許文献 1には、金属やフェライトなどの電磁シールド部材をビルの躯体 に付加することで、広 、周波数帯域で任意の周波数の電波を使って情報通信ができ る電磁シールド 'インテルジヱントビルが開示されている。電波シールド部材としては 、鉄板、金属網、金属メッシュ、金属箔などの電波反射体やフ ライトなどの電波吸収 体が開示されている。  [0003] For example, Patent Document 1 discloses an electromagnetic shield capable of information communication using radio waves of an arbitrary frequency in a wide frequency band by adding an electromagnetic shield member such as metal or ferrite to a building frame. Intel Genetville is disclosed. As radio wave shielding members, radio wave reflectors such as iron plates, metal nets, metal meshes, metal foils, and radio wave absorbers such as flight are disclosed.
[0004] しかし、これらの電波反射体や電波吸収体は周波数選択性を有さな!/、。このため、 特許文献 1に開示された電磁シールド 'インテルジェントビルでは特定周波数の電波 を選択的に遮蔽することができず、遮蔽しょうとする周波数以外の電波まで遮蔽して しまうという問題がある。  [0004] However, these radio wave reflectors and radio wave absorbers do not have frequency selectivity! For this reason, the electromagnetic shield 'Intelgent Building' disclosed in Patent Document 1 cannot selectively shield radio waves of a specific frequency, and has a problem that it shields radio waves other than the frequency to be shielded.
[0005] 一方、特許文献 2には、「Y」字形の線状アンテナを定期的に配列させた電磁遮蔽 面で建物内に電磁遮蔽空間を確保することを特徴とする電磁遮蔽建物が開示されて いる。「Υ」字形の線状アンテナはアンテナ中心力も略同一長さでもって放射状に延 びる線分状の 3本のエレメント部からなる。特許文献 2には、特許文献 2に開示された 電磁遮蔽建物によれば、必要な周波数の電波を選択して電磁シールドすることが可 能である、と記載されている。  [0005] On the other hand, Patent Document 2 discloses an electromagnetic shielding building characterized in that an electromagnetic shielding space is secured in a building by an electromagnetic shielding surface in which "Y" -shaped linear antennas are regularly arranged. ing. The “Υ” -shaped linear antenna is composed of three line-shaped element parts extending radially with the antenna central force approximately the same length. Patent Document 2 describes that according to the electromagnetic shielding building disclosed in Patent Document 2, it is possible to select an electromagnetic wave of a necessary frequency and perform electromagnetic shielding.
特許文献 1:特公平 6— 99972号公報  Patent Document 1: Japanese Patent Publication No. 6-99972
特許文献 2 :特開平 10— 169039号公報 発明の開示 Patent Document 2: JP-A-10-169039 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] ところで、室内の電波環境を整える場合、カーテン、壁'天井等に貼着されたクロス 、コンクリート製の壁等にも、所望の周波数の電波のみを遮蔽する電波遮蔽性を付与 することが好ましい。その場合、カーテン、壁'天井等に貼着されるクロス等の布状体 や、コンクリート製の壁と!/、つた表面に多数の微細孔が存在する基材の上に電波反 射性のアンテナを形成する必要がある。  [0006] By the way, when preparing the indoor radio wave environment, it is also necessary to provide a radio wave shielding property that shields only radio waves of a desired frequency on curtains, cloths attached to walls and ceilings, concrete walls, and the like. Is preferred. In that case, cloth-like objects such as cloths stuck to curtains, walls, ceilings, etc., and concrete walls! It is necessary to form an antenna.
[0007] 一方、アンテナの形成方法としては、電波反射材料を液状化して塗布 ·乾燥するこ とにより(つまり湿式法により)行われるのが一般的であり、スパッタ法ゃ蒸着法といつ た乾式法は、通常、コストが高ぐ大型の装置が必要で、且つ比較的手間がかかるこ とから、アンテナの形成には好適ではない。  [0007] On the other hand, as a method for forming an antenna, it is generally performed by liquefying a radio wave reflecting material and applying and drying (that is, by a wet method). The method is usually not suitable for forming an antenna because it requires a large-scale device with high cost and is relatively time-consuming.
[0008] し力しながら、表面に微細孔が存在する基材 (例えば、布状体など)に電波反射材 料により特許文献 2に記載されたようなアンテナを形成しょうとすると、微細孔の毛細 管現象により液状材料が基材に滲み (例えば、織布の場合、繊維の配列方向に大き く滲む傾向がある)、そのために、所望の形状寸法のアンテナを形成することが困難 であり、所望の電波遮蔽性が得られにくい。  [0008] While trying to form an antenna as described in Patent Document 2 using a radio wave reflecting material on a base material (for example, a cloth-like body) having micropores on its surface, Due to the capillary phenomenon, the liquid material bleeds into the substrate (for example, in the case of a woven fabric, it tends to bleed in the fiber arrangement direction), and it is difficult to form an antenna with a desired shape and dimension. It is difficult to obtain a desired radio wave shielding property.
[0009] また、表面に凹凸が存在する基材に電波を反射させる材料により特許文献 2に記 載されたようなアンテナを形成する場合でも、形成されるアンテナの寸法が不正確と なりやすぐやはり、所望の電波遮蔽性を得ることが難しい。  [0009] Even when an antenna such as that described in Patent Document 2 is formed of a material that reflects radio waves on a base material having unevenness on the surface, the dimensions of the formed antenna become inaccurate and soon. After all, it is difficult to obtain a desired radio wave shielding property.
[0010] さりとて、液状材料を用いずに、スパッタ法等の乾式法を用いてアンテナを形成す る場合は、液状材料の基材への滲みといった問題はさして発生しないが、大型の装 置が必要になる、製造コストが高くなる、煩雑な作製工程を要する等の問題を招くこと になる。  [0010] In the case where the antenna is formed by using a dry method such as a sputtering method without using a liquid material, problems such as bleeding of the liquid material to the base material do not occur, but a large-scale device is used. This leads to problems such as necessity, high manufacturing costs, and complicated manufacturing processes.
[0011] 本発明は、斯カる諸点に鑑みてなされたものであり、その主な目的は、容易に作製 可能でありながら、所望の電波遮蔽性を有する電波遮蔽体を提供することにある。 課題を解決するための手段  The present invention has been made in view of such various points, and a main object thereof is to provide a radio wave shield having a desired radio wave shielding property while being easily manufactured. . Means for solving the problem
[0012] 上記の目的を解決すベぐ本発明では、電波遮蔽体として、表面に複数の微細孔 及び複数の凹凸のうちの少なくとも一方を有する基材と、この基材の表面上に形成さ れたコーティング膜と、このコーティング膜の上に電波反射材料を仕様材料として形 成された複数の電波反射アンテナとを備えるようにした。すなわち、複数の電波反射 アンテナは、基材表面に直接には接しておらず、コーティング膜の上に配置されてい る。 [0012] In the present invention that solves the above object, as a radio wave shield, a substrate having at least one of a plurality of micropores and a plurality of irregularities on the surface, and formed on the surface of the substrate. And a plurality of radio wave reflecting antennas formed on the coating film using a radio wave reflecting material as a specification material. That is, the plurality of radio wave reflecting antennas are not directly in contact with the substrate surface, but are disposed on the coating film.
[0013] 上記の構成においては、基材の表面上にコーティング膜を設けることによって、基 材表面に存在する微細孔 (特には微細孔の開口部)が塞がれたり、凹凸が平坦化さ れるため、電波を反射する材料が上記微細孔に浸入して起こる滲み (含浸、詳細に は基材表面方向への含浸)が抑制されたり、基材表面の凹凸に起因する電波を反射 する材料によって形成される電波反射アンテナの寸法のばらつき、不正確さ(所望す る電波反射アンテナの寸法からのずれ)を低減することが可能となる。  [0013] In the above configuration, by providing a coating film on the surface of the base material, micropores (particularly, openings of the micropores) existing on the surface of the base material are blocked, or unevenness is flattened. Therefore, a material that reflects radio waves caused by unevenness on the surface of the base material, which suppresses bleeding (impregnation, specifically impregnation in the direction of the base material surface) that occurs when a material that reflects radio waves penetrates into the micropores, is provided. Thus, it is possible to reduce the dimensional variation and inaccuracy (deviation from the desired size of the radio wave reflecting antenna) of the radio wave reflecting antenna formed by the above.
[0014] つまり、コーティング膜は、基材表面に存在する孔、凹凸を実質的になくし、基材表 面を平らにするものであり、そのようなコーティング膜の上に電波反射アンテナを形成 させることで、所望の電波遮蔽性を得ることが可能となる。  That is, the coating film substantially eliminates holes and irregularities present on the surface of the base material and flattens the base material surface, and forms a radio wave reflecting antenna on such a coating film. This makes it possible to obtain a desired radio wave shielding property.
[0015] 尚、上記構成の電波遮蔽体において、基材とは、表面に微細孔及び凹凸のうちの 少なくとも一方を有するもの、つまりは、基材表面が、平らでないものである。例えば、 そのような基材としては、布状体 (織布、不織布、編み物、レース、フェルト、紙など) が挙げられ、また、多孔体 (発泡体)などが挙げられる。  [0015] In the radio wave shield configured as described above, the base material has at least one of fine holes and irregularities on the surface, that is, the base material surface is not flat. For example, such a base material includes a cloth-like body (woven fabric, non-woven fabric, knitted fabric, lace, felt, paper, etc.), and a porous body (foam).
[0016] 上記のコーティング膜とは、基材が複数の微細孔を有する場合には、基材への電 波を反射する材料の滲みを抑制することができるもの(詳しくは、基材表面を平らに するもの、具体的には、滲みの原因となる基材の表面に存在する微細孔の開口端を 塞ぐもの)であり、基材が複数の凹凸を有する場合には、コーティング膜は、基材表 面を平滑化すると共に、全体の厚み (基材 +コーティング膜の厚み)を均一にするも のであれば、特に限定されるものではないが、さらには、電波遮蔽性に影響しない絶 縁性を有するものが好適である。具体的なコーティング膜の材料としては、榭脂、ガラ ス等の無機材料、ゴムなどが挙げられる。  [0016] The above-mentioned coating film is a film that can suppress bleeding of a material that reflects an electric wave to the base material (specifically, the surface of the base material) when the base material has a plurality of fine holes. If the substrate has a plurality of irregularities, the coating film is a flattened one, specifically, one that closes the open ends of the micropores present on the surface of the substrate that causes bleeding. There is no particular limitation as long as the surface of the base material is smoothed and the entire thickness (the thickness of the base material + coating film) is made uniform. Those having edge properties are preferred. Specific examples of the coating film material include inorganic materials such as resin and glass, and rubber.
[0017] 上記の電波反射材料とは、液状材料 (例えばインク状、本明細書にぉ 、て、「液状 材料」は溶媒及び溶質からなる溶液、液体 (溶媒のみ又は溶媒及び溶質)中に微粒 子やコロイド状物質が分散混入された分散液を含む概念である。すなわち、液状材 料とは少なくとも液体を含むすべての材料をいう。)であることが好ましい。具体的に は、電波を反射させる物質が熔解した溶液 (インク)、コロイド状の電波を反射させる 物質を含む溶液 (インク)、電波を反射させる物質から実質的になる微粒子が分散混 入された微粒子分散液 (インク)等であってもよい。ここで、電波を反射させる物質とし ては、例えば導電物質が挙げられる。具体的に、導電物質としては、銅、アルミニウム 、銀等が挙げられる。 [0017] The radio wave reflecting material is a liquid material (for example, in the form of ink, in the present specification, "liquid material" is a solution composed of a solvent and a solute, or a fine particle in a liquid (a solvent only or a solvent and a solute). It is a concept that includes a dispersion in which a child or a colloidal substance is dispersed and mixed. The term “material” refers to all materials including at least a liquid. ) Is preferable. Specifically, a solution (ink) in which a substance that reflects radio waves is melted, a solution (ink) that contains a substance that reflects colloidal radio waves, and fine particles that substantially consist of substances that reflect radio waves are dispersed and mixed. It may be a fine particle dispersion (ink) or the like. Here, examples of the substance that reflects radio waves include conductive substances. Specifically, examples of the conductive material include copper, aluminum, and silver.
[0018] 上記の電波反射アンテナは、特定周波数又は特定周波数帯域の電波を選択的に 反射させるものであることが好ましい。そのようなアンテナの具体例としては、所謂ェ ルサレムクロス型のアンテナや、「Y」字状のアンテナが挙げられる。また、電波反射 アンテナは、各々、アンテナ中心力も相互に略 120° の角度をなして放射状に略同 一長さでもって延びる 3本の線分状の第 1エレメント部と、各第 1エレメント部の外側端 に結合された線分状の第 2エレメント部とを有し、特定の周波数の電波を反射させる もの(本明細書にぉ 、て、この形状のアンテナを「Τ— Υ型アンテナ」と呼ぶことがある 。)であってもよい。  [0018] The radio wave reflecting antenna is preferably one that selectively reflects radio waves of a specific frequency or a specific frequency band. Specific examples of such an antenna include a so-called Jerusalem cross-type antenna and a “Y” -shaped antenna. In addition, each of the radio wave reflecting antennas has three linear first element portions that extend radially with substantially the same length at an antenna central force of approximately 120 ° from each other, and each first element portion. And a second element portion having a line shape coupled to the outer end of the antenna and reflecting a radio wave of a specific frequency (in this specification, an antenna of this shape is referred to as a “Τ-Υ type antenna”) May be called.).
[0019] また、本発明に係る製造方法は、表面に微細孔及び Ζ又は凹凸を有する基材上に 形成された複数の電波反射アンテナを備えた電波遮蔽体を製造するための方法で ある。本発明に係る製造方法は、基材の表面をコーティング膜で被覆した後に、電波 を反射させる材料で複数の電波反射アンテナを形成することを特徴とする。  [0019] The manufacturing method according to the present invention is a method for manufacturing a radio wave shield provided with a plurality of radio wave reflecting antennas formed on a substrate having fine holes and ridges or irregularities on the surface. The manufacturing method according to the present invention is characterized in that a plurality of radio wave reflecting antennas are formed of a material that reflects radio waves after the surface of a base material is coated with a coating film.
[0020] このように、電波反射アンテナの形成に先立って基材表面にコーティング膜を形成 しておくことによって、基材表面を平滑化 (全体の厚み (基材 +コーティング膜の厚み )を均一化)することができる。従って、基材表面への材料の滲み等が抑制され、所望 の形状寸法の電波反射アンテナを容易且つ高精度に作製することができる。従って 、この製造方法によれば、高い電波遮蔽性を有する電波遮蔽体を容易に製造するこ とがでさる。  [0020] Thus, by forming a coating film on the substrate surface prior to the formation of the radio wave reflecting antenna, the substrate surface is smoothed (the entire thickness (substrate + coating film thickness) is uniform). ). Accordingly, bleeding of the material on the surface of the base material is suppressed, and a radio wave reflecting antenna having a desired shape and dimension can be easily and accurately manufactured. Therefore, according to this manufacturing method, it is possible to easily manufacture a radio wave shield having high radio wave shielding properties.
発明の効果  The invention's effect
[0021] 本発明によれば、容易に作製可能でありながら、所望の電波遮蔽性を有する電波 遮蔽体を提供することができる。  [0021] According to the present invention, it is possible to provide a radio wave shielding body that can be easily manufactured and has desired radio wave shielding properties.
図面の簡単な説明 [図 1]図 1は、本発明の実施形態に係る電波遮蔽体の構成を示す平面図である。 Brief Description of Drawings FIG. 1 is a plan view showing a configuration of a radio wave shield according to an embodiment of the present invention.
[図 2]図 2は、電波遮蔽体の一部を拡大して示す平面図である。 FIG. 2 is an enlarged plan view showing a part of the radio wave shield.
[図 3]図 3は、図 2の III III線断面図である。 FIG. 3 is a cross-sectional view taken along line III-III in FIG.
[図 4]図 4は、アンテナを拡大して示す平面図である。 FIG. 4 is an enlarged plan view showing the antenna.
[図 5]図 5は、織布力もなる基材の一部を拡大して模式的に示す平面図である。  FIG. 5 is a plan view schematically showing an enlarged part of a base material that also has a woven cloth force.
[図 6]図 6は、図 5の VI-VI線断面図である。 FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG.
[図 7]図 7は、電波遮蔽体がその基材側において壁に貼着された状態を示す断面図 である。  FIG. 7 is a cross-sectional view showing a state in which the radio wave shield is attached to the wall on the base material side.
[図 8]図 8は、基材側に粘着剤及び保護膜が形成されてなるロール状の電波遮蔽体 の全体とその一部拡大断面とを併せて示す説明図である。  [FIG. 8] FIG. 8 is an explanatory view showing the entire roll-shaped radio wave shielding body in which an adhesive and a protective film are formed on the substrate side, and a partially enlarged cross section thereof.
[図 9]図 9は、電波遮蔽体がその反射層側において壁に貼着された状態を示す図 7 相当図である。  FIG. 9 is a view corresponding to FIG. 7, showing a state in which the radio wave shield is attached to the wall on the reflective layer side.
[図 10]図 10は、反射層側に粘着剤及び保護膜が形成されてなるロール状の電波遮 蔽体の全体とその一部拡大断面とを併せて示す図 8相当図である。  [FIG. 10] FIG. 10 is a view corresponding to FIG. 8 showing the entire roll-shaped radio wave shielding body in which a pressure-sensitive adhesive and a protective film are formed on the reflective layer side, and a partially enlarged cross section thereof.
[図 11]図 11は、電波遮蔽体を透過する電波の周波数とその透過減衰量との関係を 示す特性図である。 [FIG. 11] FIG. 11 is a characteristic diagram showing the relationship between the frequency of radio waves transmitted through the radio wave shield and the amount of transmission attenuation.
[図 12]図 12は、アンテナのエレメント長と該アンテナにより反射される電波の周波数 ( 整合周波数)との関係を示す特性図である。  FIG. 12 is a characteristic diagram showing the relationship between the element length of an antenna and the frequency (matching frequency) of a radio wave reflected by the antenna.
[図 13]図 13は、電波遮蔽体の変形例 1を示す図 1相当図である。  FIG. 13 is a view corresponding to FIG. 1, showing a first modification of the radio wave shielding body.
[図 14]図 14は、変形例 1のアンテナを拡大して示す平面図である。  FIG. 14 is an enlarged plan view showing the antenna of the first modification.
[図 15]図 15は、電波遮蔽体の変形例 2を示す図 1相当図である。  FIG. 15 is a view corresponding to FIG. 1, showing a second modification example of the radio wave shield.
[図 16]図 16は、電波遮蔽体の変形例 3を示す図 1相当図である。  FIG. 16 is a view corresponding to FIG. 1 and showing a third modification example of the radio wave shield.
[図 17]図 17は、電波遮蔽体の変形例 4を示す図 1相当図である。  FIG. 17 is a view corresponding to FIG. 1 and showing a fourth modification example of the radio wave shielding body.
[図 18]図 18は、電波遮蔽体の変形例 5を示す図 1相当図である。  FIG. 18 is a view corresponding to FIG. 1 and showing a fifth modification example of the radio wave shield.
[図 19]図 19は、電波遮蔽体の変形例 6を示す図 1相当図である。  [FIG. 19] FIG. 19 is a view corresponding to FIG.
[図 20]図 20は、変形例 6における電波の周波数と電波遮蔽量 (電波の透過減衰量) との関係を示す特性図である。  FIG. 20 is a characteristic diagram showing the relationship between the radio wave frequency and radio wave shielding amount (radio wave transmission attenuation amount) in Modification 6.
[図 21]図 21は、電波遮蔽体の変形例 7を示す図 1相当図である。 [図 22]図 22は、電波遮蔽体の変形例 8を示す図 1相当図である。 FIG. 21 is a view corresponding to FIG. 1 and showing a modification example 7 of the radio wave shielding body. FIG. 22 is a view corresponding to FIG. 1, showing a modification 8 of the radio wave shield.
[図 23]図 23は、電波遮蔽体の変形例 9を示す図 1相当図である。 FIG. 23 is a view corresponding to FIG. 1, showing a modification 9 of the radio wave shielding body.
[図 24]図 24は、電波遮蔽体の変形例 10を示す図 1相当図である。 FIG. 24 is a view corresponding to FIG. 1 and showing a tenth modification of the radio wave shielding body.
[図 25]図 25は、電波遮蔽体の変形例 11を示す図 1相当図である。 FIG. 25 is a view corresponding to FIG. 1 and showing a modification 11 of the radio wave shielding body.
[図 26]図 26は、変形例 2の電波遮蔽体を実施例とした場合の電波の周波数と透過減 水量との関係を比較例の場合と併せて示す特性図である。 FIG. 26 is a characteristic diagram showing the relationship between the frequency of radio waves and the amount of transmitted water loss when the radio wave shield of modification 2 is used as an example, together with the comparative example.
符号の説明 Explanation of symbols
1 電波遮蔽体  1 Radio wave shield
10 基材  10 Substrate
10a 基材表面  10a Substrate surface
11 コーティング膜  11 Coating film
12 反射層  12 Reflective layer
13、 16、 17、 22、 24、 25、 26、 27、 28、 29  13, 16, 17, 22, 24, 25, 26, 27, 28, 29
アンテナ(電波反射アンテナ)  Antenna (radio-reflection antenna)
13a, 24a, 27a  13a, 24a, 27a
第 1エレメント部  First element part
13b、 16b、 17b、 27b, 28b, 29b  13b, 16b, 17b, 27b, 28b, 29b
第 2エレメント部  Second element part
14、 18、 20  14, 18, 20
アンテナユニット  Antenna unit
15、 19、 21  15, 19, 21
アンテナ集合体  Antenna assembly
30 壁  30 walls
31 粘着剤  31 Adhesive
32 保護膜  32 Protective film
40、 41  40, 41
織維  Weaving
42 微細孔 43 凹部(凹凸) 42 micropores 43 Concave (Uneven)
44 凸部(凹凸)  44 Convex part
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0025] 図 1は、本実施形態に係る電波遮蔽体の構成を示す図であり、図 2は、その電波遮 蔽体の一部を拡大して示す平面図であり、図 3は、図 2の III III線断面図であり、図 4 は、アンテナを拡大して示す平面図である。  FIG. 1 is a diagram showing a configuration of a radio wave shielding body according to the present embodiment, FIG. 2 is an enlarged plan view showing a part of the radio wave shielding body, and FIG. Fig. 4 is a cross-sectional view taken along line III-III of Fig. 2, and Fig. 4 is a plan view showing the antenna enlarged.
[0026] 電波遮蔽体 1は、表面に複数の微細孔及び複数の凹凸のうちの少なくとも一方を 有する基材 10と、コーティング膜 11と、反射層 12とを備えている。尚、電波遮蔽体 1 は、例えば、室内の既設対象物(例えば、窓、壁、天井、床、パーティション、机等)に 電波遮蔽特性を付与する態様のものであってもよい。この場合、基材 10は、板状、シ ート状、又はフィルム状等の平面を有する形状であることが好まし 、。  The radio wave shield 1 includes a substrate 10 having a surface having at least one of a plurality of fine holes and a plurality of irregularities, a coating film 11, and a reflective layer 12. Note that the radio wave shield 1 may be, for example, a mode that imparts radio wave shielding characteristics to an existing object (eg, a window, a wall, a ceiling, a floor, a partition, a desk, etc.) in a room. In this case, the substrate 10 is preferably in a shape having a flat surface such as a plate shape, a sheet shape, or a film shape.
[0027] 本実施形態において、基材 10は、表面に複数の微細孔及び複数の凹凸のうちの 少なくとも一方を有するものである限り、何ら限定されるものではない。その限りにお いて、基材 10は、電波遮蔽体 1の使用用途に応じて適宜選択することができる。基 材 10は、例えば、榭脂、ガラス、紙、布、ゴム、石膏、タイル、木材等力もなるものであ つてもよい。具体的に、基材 10は、ウレタン榭脂、ポリエチレン (PE)榭脂、ポリスチロ 一ル榭脂等の発泡体、木材 (合板を含む)、又は、織布 (例えば、平織等)ゃ不織布 、編み物、レース、フェルト、紙などの布状体 (例えば、カーテン、壁や床、天井、窓、 机上、パーティション等に貼着又は粘着させるクロス等)等であってもよ!/、。  In the present embodiment, the substrate 10 is not limited as long as it has at least one of a plurality of fine holes and a plurality of irregularities on the surface. As long as that is the case, the base material 10 can be appropriately selected according to the intended use of the radio wave shield 1. For example, the base material 10 may be made of resin, glass, paper, cloth, rubber, gypsum, tile, wood, or the like. Specifically, the base material 10 is made of urethane resin, polyethylene (PE) resin, polystyrene resin resin, etc., wood (including plywood), or woven fabric (for example, plain weave) or non-woven fabric, Cloths such as knitting, lace, felt, and paper (for example, curtains, walls and floors, ceilings, windows, desks, cloths that stick to or stick to partitions, etc.) etc.!
[0028] ここで、基材 10を織布により構成した場合を例に挙げて、基材 10の表面に存在す る「微細孔」及び「凹凸」について、図 5及び図 6を参照しながら具体的に説明する。 尚、図 5は、織布力もなる基材 10の一部を拡大して模式的に示す平面図であり、図 6 は、図 5の VI— VI線断面図である。  Here, taking as an example the case where the base material 10 is made of woven fabric, “micropores” and “unevenness” existing on the surface of the base material 10 will be described with reference to FIGS. 5 and 6. This will be specifically described. FIG. 5 is an enlarged plan view schematically showing a part of the base material 10 also having a woven cloth force, and FIG. 6 is a sectional view taken along line VI-VI in FIG.
[0029] 基材 10は、相互に並行に延びる複数の第 1の織維 40と、第 1の織維 40と交差して  [0029] The base material 10 includes a plurality of first woven fibers 40 extending in parallel with each other, and intersecting the first woven fibers 40.
(典型的には直交して)相互に並行に延びる第 2の織維 41とにより構成されている。 そして平面視において第 1の織維 40と第 2の織維 41とにより区画形成された複数の 空間のそれぞれが微細孔 42を構成している。また、図 6に示すように、第 2の織維 41 は複数の第 1の織維 40相互間を通過して蛇行状となっており、同様に、第 1の織維 4 0も複数の第 2の織維 41相互間を通過して蛇行状となっているため、コーティング膜 11が形成される基材 10の表面 10aには複数の凹部 43及び凸部 44が(すなわち凹 凸が)形成されている。以下に詳述するように、コーティング膜 11はこの微細孔 42 ( 詳細には微細孔 42の開口部)を埋め、凹部 43及び凸部 44を平坦ィ匕するためのもの である。 And second textiles 41 extending in parallel (typically orthogonal) to each other. In plan view, each of the plurality of spaces defined by the first woven fabric 40 and the second woven fabric 41 constitutes the fine holes 42. In addition, as shown in FIG. In the same manner, the first woven fabric 40 passes between the plurality of first woven fabrics 40, and similarly, the first woven fabric 40 also passes between the plurality of second woven fabrics 41 and is serpentine. Therefore, a plurality of concave portions 43 and convex portions 44 (that is, concave and convex portions) are formed on the surface 10a of the base material 10 on which the coating film 11 is formed. As will be described in detail below, the coating film 11 is for filling the fine holes 42 (specifically, openings of the fine holes 42) and flattening the concave portions 43 and the convex portions 44.
[0030] 尚、基材 10の表面に反射層 12が形成された電波遮蔽体 1を、室内の既存対象物( 例えば、窓、壁、天井、床、パーティション、机上等)に設置するため、反射層 12を形 成した側の面、及びその反対側の面のうち少なくとも一方に、粘着剤又は接着剤を 塗布する(あるいは、吸着加工を施す)と共に、その接着剤又は粘着剤の表面に保護 層を設けてロールし(トイレットペーパー状にロールし)、必要長に応じて切断できる 態様としてもよい。  [0030] In order to install the radio wave shield 1 in which the reflective layer 12 is formed on the surface of the base material 10 on an existing object in the room (for example, a window, a wall, a ceiling, a floor, a partition, a desk, etc.) At least one of the surface on which the reflective layer 12 is formed and the surface on the opposite side thereof is coated with an adhesive or an adhesive (or is subjected to adsorption processing), and the surface of the adhesive or the adhesive is applied to the surface. It is good also as an aspect which provides a protective layer, rolls (rolls in the shape of toilet paper), and can cut | disconnect according to required length.
[0031] 本実施形態に係る電波遮蔽体 1の製品パターン (使用状況)を、図 7〜図 10に例示 する。図 7は、壁 30に対し、電波遮蔽体 1をその基材 10側において貼着した状態を 示す断面図であり、この場合には、電波遮蔽体 1は、電波遮蔽体 1の基材 10側に設 けられた粘着剤 31により壁 30に貼着されている。図 8に示すのは、基材 10側に粘着 剤 31及び保護膜 32が形成されていてトイレットペーパー状にロールされた電波遮蔽 体 1の模式図であり、この場合、必要長に応じて切断し、保護膜 32を剥がして壁等に 貼着した状態で使用することができる。一方、図 9は、壁 30に対し、電波遮蔽体 1をそ の反射層 12側において貼着した状態を示す断面図であり、この場合には、粘着剤 3 1は電波遮蔽体 1の反射層 12側に設けられている。図 10は、反射層 12側に粘着剤 31及び保護膜 32が形成されていてトイレットペーパー状にロールされた電波遮蔽体 1の模式図であり、この場合には、必要長に応じて切断し、保護膜 32を剥がして壁等 に粘着した状態で使用することができる。尚、基材 10は、単に基材としての役割 (例 えば、電波遮蔽体 1の機械的耐久性を担保する役割)だけでなぐ様々な特性 (光透 過性、不燃性、難燃性、非ハロゲン性、柔軟性、耐衝撃性、耐熱性等)を電波遮蔽体 に付与する役割を果たすものであることが特に好ましい。  [0031] Fig. 7 to Fig. 10 illustrate product patterns (usage status) of the radio wave shield 1 according to the present embodiment. FIG. 7 is a cross-sectional view showing a state in which the radio wave shield 1 is attached to the wall 30 on the base material 10 side. In this case, the radio wave shield 1 is the base material 10 of the radio wave shield 1. It is attached to the wall 30 by the adhesive 31 provided on the side. FIG. 8 shows a schematic diagram of the radio wave shield 1 in which the adhesive 31 and the protective film 32 are formed on the substrate 10 side and are rolled in the form of toilet paper. In this case, the radio wave shield 1 is cut according to the required length. The protective film 32 can be peeled off and attached to a wall or the like. On the other hand, FIG. 9 is a cross-sectional view showing a state in which the radio wave shield 1 is adhered to the wall 30 on the reflective layer 12 side. In this case, the adhesive 31 is reflected from the radio wave shield 1. It is provided on the layer 12 side. FIG. 10 is a schematic diagram of the radio wave shield 1 in which the pressure-sensitive adhesive 31 and the protective film 32 are formed on the reflective layer 12 side and rolled in the form of toilet paper. In this case, the radio wave shield 1 is cut according to the required length. The protective film 32 can be peeled off and adhered to a wall or the like. Note that the base material 10 has various properties (light transmissibility, non-flammability, flame retardancy, etc.) as well as just a role as a base material (for example, a role to ensure the mechanical durability of the radio wave shield 1). It is particularly preferred that it plays a role of imparting non-halogenity, flexibility, impact resistance, heat resistance, etc.) to the radio wave shield.
[0032] 本実施形態において、反射層 12は、特定の周波数の電波を選択的に反射させる ものである。具体的に、反射層 12は、模様を構成するように二次元的に配列された 複数のアンテナ 13によって構成されている。各アンテナ 13は、特定の周波数の電波 を選択的に反射させるものである。複数のアンテナ 13は、電波反射材料 (液状である ことが好ましい)を塗布することにより形成されるものである。 In the present embodiment, the reflective layer 12 selectively reflects radio waves having a specific frequency. Is. Specifically, the reflective layer 12 includes a plurality of antennas 13 that are two-dimensionally arranged to form a pattern. Each antenna 13 selectively reflects radio waves having a specific frequency. The plurality of antennas 13 are formed by applying a radio wave reflecting material (preferably in a liquid state).
[0033] コーティング膜 11は、複数の微細孔を有する基材 10の表面の上に、その表面を被 覆するように形成されている。このコーティング膜 11は、後に詳述するアンテナ 13を 形成するための電波反射材料 (例えば、電波反射液状材料)が基材 10に滲む (基材 表面方向への電波反射材料 (例えば、電波反射液状材料)の含浸が生ずる)こと、基 材 10の表面に意図せず電波反射材料 (例えば、電波反射液状材料)が広がってしま うこと等を抑制するものである。コーティング膜 11は、複数の微細孔及び複数の凹凸 のうちの少なくとも一方を有する (例えば、多孔質な)基材 10の表面を緻密化、平坦 化するようなものであることが好ましい。さら〖こは、基材 10の表面を緻密化、平坦化す ると共に、基材 10の厚みを均一化するものであることが好ましい。また、コーティング 膜 11は、電波反射材料 (例えば、電波反射液状材料)に対する膨潤性が低いもの( 電波反射材料 (例えば、電波反射液状材料)が含浸されにくいもの)であることが好ま しい。例えば、コーティング膜 11は、榭脂(例えば、ウレタン榭脂、アクリル榭脂、ポリ エステル榭脂等)により形成することができる。  [0033] The coating film 11 is formed on the surface of the substrate 10 having a plurality of fine holes so as to cover the surface. The coating film 11 has a radio wave reflecting material (for example, a radio wave reflecting liquid material) for forming the antenna 13 described in detail later on the base material 10 (a radio wave reflecting material toward the surface of the base material (for example, a radio wave reflecting liquid) (Impregnation of the material)) and the unintentional spread of the radio wave reflecting material (for example, radio wave reflecting liquid material) on the surface of the base material 10 is suppressed. The coating film 11 is preferably one that densifies and flattens the surface of the substrate 10 having at least one of a plurality of fine holes and a plurality of irregularities (for example, porous). In addition, it is preferable that the surface of the base material 10 is densified and flattened and the thickness of the base material 10 is made uniform. Further, it is preferable that the coating film 11 is a material that is low in swelling property with respect to a radio wave reflecting material (for example, radio wave reflecting liquid material) (a material that is difficult to be impregnated with a radio wave reflecting material (for example, radio wave reflecting liquid material)). For example, the coating film 11 can be formed of resin (for example, urethane resin, acrylic resin, polyester resin, etc.).
[0034] 次に、本実施形態に係る電波遮蔽体 1の製造方法について説明する。まず、基材 1 0の上にコーティング膜 11を形成する。具体的には、複数の微細孔及び複数の凹凸 のうちの少なくとも一方を有する基材 10の表面を平らにする(つまり、表面を平滑ィ匕 すると共に、全体の厚み (基材 10 +コーティング膜 11の厚み)を均一にする)ようにコ 一ティング膜 11を形成する。そのようなコーティング膜 11の形成は、例えば、ロール コーター法、スリットダイコーター法、ドクターナイフコーター法、グラビアコーター法な どによって行うことができる。  Next, a method for manufacturing the radio wave shield 1 according to the present embodiment will be described. First, the coating film 11 is formed on the substrate 10. Specifically, the surface of the substrate 10 having at least one of a plurality of fine holes and a plurality of irregularities is flattened (that is, the surface is smoothed and the entire thickness (substrate 10 + coating film The coating film 11 is formed so that the thickness (11) is uniform. The coating film 11 can be formed by, for example, a roll coater method, a slit die coater method, a doctor knife coater method, or a gravure coater method.
[0035] コーティング膜 11を形成した後に、電波反射材料 (例えば、液状の電波反射材料) を用いてアンテナ 13を作製して反射層 12を形成することにより電波遮蔽体 1を完成 させる。具体的には、例えば、液状の電波反射材料を塗布し、乾燥及び必要に応じ て焼成することにより複数のアンテナ 13を作製することにより反射層 12を形成する。 尚、電波反射液状材料の塗布は、ミスト塗装法、シルク印刷法、スピンコート法、ドク ターブレード法、吐出コート法、スプレーコート法、インクジェット法、凸版印刷法、凹 版印刷法、スクリーン印刷法、マイクログラビアコート法等により行うことができる。 [0035] After the coating film 11 is formed, the radio wave shield 1 is completed by producing the antenna 13 and forming the reflective layer 12 using a radio wave reflecting material (for example, a liquid radio wave reflecting material). Specifically, for example, the reflective layer 12 is formed by applying a liquid radio wave reflecting material, drying, and firing as necessary to produce a plurality of antennas 13. The application of the radio wave reflecting liquid material is mist coating method, silk printing method, spin coating method, doctor blade method, discharge coating method, spray coating method, ink jet method, letterpress printing method, intaglio printing method, screen printing method. The microgravure coating method can be used.
[0036] 例えば、コーティング膜 11を形成せずに、基材 10の表面に直接に液状の電波反 射材料を塗布した場合、基材 10の表面に微細孔が存在するため、毛細管現象によ り電波反射液状材料が基材 10に含浸してしまう(基材表面方向への液状電波反射 材料の含浸が生じてしまう)。その結果、液状電波反射材料が滲むこととなる。従って 、所望の形状寸法のアンテナ 13を作製するのが非常に困難である。詳細には、液状 電波反射材料が滲んでしまった場合、形成されるアンテナ 13の形状がブロードとな つてしまう(例えば、アンテナ 13が線状アンテナである場合、線幅が設計値よりも広く 、且つ揺らいでしまう)。また、アンテナの形状や寸法にばらつきが生じてしまう。具体 的に、本実施形態に示す T—Y字状のアンテナ 13が形成されている場合、第 1エレメ ント部 13aの長さ、第 2エレメント部 13bの長さにばらつきが生じてしまう。さらに、アン テナ 13の一部が(電気的に)切断されてしまう虡もある。  [0036] For example, when a liquid radio wave reflecting material is applied directly to the surface of the base material 10 without forming the coating film 11, micropores exist on the surface of the base material 10, and therefore, due to capillary action. Thus, the base material 10 is impregnated with the radio wave reflecting liquid material (the liquid radio wave reflecting material is impregnated toward the base material surface). As a result, the liquid radio wave reflecting material is blurred. Therefore, it is very difficult to manufacture the antenna 13 having a desired shape and size. In detail, when the liquid radio wave reflecting material is spread, the shape of the formed antenna 13 becomes broad (for example, when the antenna 13 is a linear antenna, the line width is wider than the design value, And it will shake.) In addition, variations in the shape and dimensions of the antenna occur. Specifically, when the TY-shaped antenna 13 shown in the present embodiment is formed, variations occur in the length of the first element portion 13a and the length of the second element portion 13b. In addition, part of the antenna 13 may be cut (electrically).
[0037] また、基材 10の表面には凹凸が存在するため、意図せずして液状電波反射材料 が凸部から隣接する凹部に流れ込んでしまつたり、凹部に液状電波反射材料が集中 的にたまってしまったりするため、所望の形状寸法のアンテナ 13の作製が困難となる 。すなわち、得られるアンテナ 13の形状寸法にばらつきが生じたり、アンテナ 13の形 状寸法が所望の形状寸法と異なるものとなってしまう虞がある。  [0037] In addition, since the surface of the substrate 10 has irregularities, the liquid radio wave reflection material unintentionally flows from the convex part into the adjacent concave part, or the liquid radio wave reflective material is concentrated in the concave part. Therefore, it becomes difficult to manufacture the antenna 13 having a desired shape and size. That is, there is a possibility that the shape and size of the antenna 13 obtained may vary, or that the shape and size of the antenna 13 may be different from the desired shape.
[0038] 例えば、基材 10にスパッタ法等の乾式法を用いてアンテナ 13を形成することも考 えられるが、その場合、液状電波反射材料の滲みといった問題は生じないものの、大 型の設備が必要となり、製造コストが高くなり、さらに製造工程が煩雑になる。  [0038] For example, it is conceivable to form the antenna 13 on the base material 10 by using a dry method such as a sputtering method. In this case, although there is no problem such as bleeding of the liquid radio wave reflecting material, a large facility Is required, the manufacturing cost is increased, and the manufacturing process is complicated.
[0039] それに対して、本実施形態では、基材 10の表面がコーティング膜 11で被覆されて V、る。そしてこのコーティング膜 11によって基材 10の表面に存在する微細孔ゃ凹部 が埋められ、当該表面が平坦化されている。このため、液状電波反射材料の基材 10 への滲み (含浸、特に、基材 10の表面方向への液状電波反射材料の含浸)や意図 しない液状電波反射材料の流動が抑制される。従って、大型の設備等を要さず、容 易且つ安価に行うことができる液状電波反射材料を用いた形成方法によって、シャ ープな形状で形状寸法のばらつきの少ない複数のアンテナ 13 (例えば、アンテナ 13 が線状アンテナである場合、線幅が設計値と略等しぐ且つ線幅が安定しおり、さら に、各エレメント部の長さが安定したアンテナ 13)を形成することができる。すなわち、 本実施形態に係る電波遮蔽体 1は、容易且つ安価に製造可能で、高い電波遮蔽性 を有するものである。 On the other hand, in this embodiment, the surface of the substrate 10 is coated with the coating film 11 and is V. The coating film 11 fills the fine pores and recesses present on the surface of the substrate 10, and the surface is flattened. Therefore, bleeding (impregnation, particularly impregnation of the liquid radio wave reflection material in the surface direction of the base material 10) of the liquid radio wave reflection material and unintended flow of the liquid radio wave reflection material are suppressed. Therefore, a shading method using a liquid radio wave reflecting material that does not require a large facility or the like and can be easily and inexpensively performed is used. A plurality of antennas 13 having a small shape and little variation in shape dimensions (for example, when the antenna 13 is a linear antenna, the line width is substantially equal to the design value and the line width is stable. An antenna 13) having a stable part length can be formed. That is, the radio wave shield 1 according to the present embodiment can be easily and inexpensively manufactured and has high radio wave shielding properties.
[0040] 尚、液状電波反射材料は、導電物質等の電波反射物質から実質的になる微粒子 やコロイドが分散混入された液又はペースト状 (以下、「導電性ペースト」とすることが ある。)のもの、電波反射物質が熔解した溶液等であってもよい。  [0040] The liquid radio wave reflecting material is a liquid or paste in which fine particles or colloids substantially made of a radio wave reflecting substance such as a conductive substance are dispersed and mixed (hereinafter sometimes referred to as "conductive paste"). Or a solution in which a radio wave reflecting material is melted.
[0041] 導電物質としては、アルミニウム、銀、銅、金、白金、鉄、カーボン、黒鉛、酸化イン ジゥムスズ (ITO)、インジウム亜鉛酸ィ匕物 (IZO)、これらの混合物又は合金等が挙げ られる。アンテナ 13は、これらの中でも、高い導電率を有し、比較的安価な銅、アルミ ユウム、銀のうち少なくとも 、ずれかを含むものであることが好まし 、。 [0041] Examples of the conductive material include aluminum, silver, copper, gold, platinum, iron, carbon, graphite, indium tin oxide (ITO), indium zinc oxide (IZO), a mixture or an alloy thereof. . Among these, it is preferable that the antenna 13 includes at least one of copper, aluminum, and silver having high conductivity and relatively inexpensive.
[0042] 一方、導電物質を含む媒体としては、榭脂 (例えば、ポリエステル榭脂等)や、溶媒 [0042] On the other hand, examples of the medium containing a conductive material include a resin (eg, polyester resin) and a solvent.
(有機溶媒、水等)等が挙げられる。導電物質を含む微粒子を榭脂に分散混入させ る場合、導電性材料の含有率は 40重量パーセント以上 80重量パーセント以下であ ることが好ま U、。導電性材料の含有率は 50重量パーセント以上 70重量パーセント 以下であることがより好ま 、。導電性材料の含有率が 40重量パーセント未満である とアンテナ 13の導電性が低下する傾向となる。一方、導電性材料の含有率が 80重 量パーセントより多いと榭脂中に均一に分散混入させることが困難となる傾向がある 。尚、樹脂は導電性材料と  (Organic solvent, water, etc.). When fine particles containing conductive material are dispersed and mixed in the resin, it is preferable that the content of the conductive material is not less than 40% by weight and not more than 80% by weight. More preferably, the content of the conductive material is not less than 50 weight percent and not more than 70 weight percent. If the content of the conductive material is less than 40 weight percent, the conductivity of the antenna 13 tends to decrease. On the other hand, when the content of the conductive material is more than 80 weight percent, it tends to be difficult to uniformly disperse and mix it in the resin. Resin is made of conductive material
基材 10とを接着させる接着剤としての役割を兼ねたものであってもよい。  It may also serve as an adhesive that bonds the substrate 10.
[0043] 塗布した液状電波反射材料の乾燥 (焼成)条件は、液状電波反射材料の組成等に よって適宜決定することができる力 例えば、 100°C以上 200°C以下で 10分以上 5 時間以下乾燥させることがこのまし 、。 [0043] The drying (firing) conditions of the applied liquid radio wave reflective material can be determined as appropriate depending on the composition of the liquid radio wave reflective material, for example, 100 ° C to 200 ° C and 10 minutes to 5 hours. This is better to dry.
[0044] 尚、アンテナ 13が銀等の比較的酸ィ匕されやすい材料を含んでいるような場合には[0044] In the case where the antenna 13 includes a material that is relatively easily oxidized, such as silver.
、アンテナ 13の上にアンテナ 13を覆うように酸ィ匕防止膜をさらに形成してもよ 、。 Further, an anti-oxidation film may be formed on the antenna 13 so as to cover the antenna 13.
[0045] 次に、本実施形態における反射層 12の構成についてさらに詳細に説明する。本実 施形態では、反射層 12は、等間隔にマトリクス状に配列された、周波数選択性を有 する複数のアンテナ 13により構成されている。すなわち、アンテナ 13は特定周波数 の電波を選択的に反射するものである。このため、電波遮蔽体 1は特定周波数の電 波を選択的に遮蔽し、それ以外の電波を透過させることができるものである。 [0045] Next, the configuration of the reflective layer 12 in the present embodiment will be described in more detail. In this embodiment, the reflective layer 12 has frequency selectivity arranged in a matrix at equal intervals. The plurality of antennas 13 are configured. That is, the antenna 13 selectively reflects radio waves having a specific frequency. For this reason, the radio wave shield 1 can selectively shield radio waves of a specific frequency and transmit other radio waves.
[0046] 具体的に、図 4に示すように、アンテナ 13は、 3本の第 1エレメント部 13aと、 3本の 第 2エレメント部 13bとを有する。 3本の第 1エレメント部 13aは、相互に 120° の角度 をなしてアンテナ中心 C1から外方に延びている。  Specifically, as shown in FIG. 4, the antenna 13 has three first element portions 13a and three second element portions 13b. The three first element portions 13a extend outward from the antenna center C1 at an angle of 120 ° to each other.
[0047] 各第 2エレメント部 13bは第 1エレメント部 13aの外側端に結合されている。各第 1ェ レメント部 13aの長さは相互に略同一であることが好ましい。また、各第 2エレメント部 13bの長さも相互に略同一であることが好ましい。そうすることによって、反射層 12の 周波数選択性をより高くすることができる。  [0047] Each second element portion 13b is coupled to the outer end of the first element portion 13a. The lengths of the first element portions 13a are preferably substantially the same. The lengths of the second element portions 13b are preferably substantially the same. By doing so, the frequency selectivity of the reflective layer 12 can be made higher.
[0048] 尚、第 1エレメント部 13aの長さ(L1)と第 2エレメント部 13bの長さ(L2)とは、相互に 異なって (L1≠L2)いてもよぐまた同一(L1 =L2)であってもよい。第 1エレメント部 13aの長さ(L1)と第 2エレメント部 13bの長さ(L2)とは、 0<L2く 2 (3) 1/2 ZL1とい う関係式を満たすことが好ましい。 L2が、 2 (3) 1/2 ZL1以上 (L2≥2 (3) 1/2 /L1) である場合は、隣接する第 2エレメント部 13b同士が接触してしまい、所望の電波遮 蔽効果が得られなくなるからである。特定周波数の高 、遮蔽率を実現する観点から、 第 2エレメント部 13bの長さ(L2)は、第 1エレメント部 13aの長さ(L1)の 0. 5倍以上 2 . 0倍以下(0. 5 'L1≤L2≤2'L1)であることが好ましい。さらに好ましくは、 0. 75倍 以上 2倍以下(0. 75 'L1≤L2≤2'L1)である。一方、第 1エレメント部 13aの幅と第 2エレメント部 13bの幅とについては、これらは相互に異なっていてもよぐまた、同一 であってもよい。本実施形態においては、第 1エレメント部 13aの幅と第 2エレメント部 13bの幅とは、略同一の幅(L3)とする。 [0048] Note that the length (L1) of the first element portion 13a and the length (L2) of the second element portion 13b may be different from each other (L1 ≠ L2) (L1 = L2). ). It is preferable that the length (L1) of the first element portion 13a and the length (L2) of the second element portion 13b satisfy the relational expression of 0 <L2 2 (3) 1/2 ZL1. If L2 is 2 (3) 1/2 ZL1 or more (L2≥2 (3) 1/2 / L1), the adjacent second element parts 13b come in contact with each other, and the desired radio wave shielding effect It is because it becomes impossible to obtain. From the viewpoint of realizing a high specific frequency and shielding rate, the length (L2) of the second element portion 13b is not less than 0.5 times and not more than 2.0 times the length (L1) of the first element portion 13a (0 5'L1≤L2≤2'L1) is preferred. More preferably, it is from 0.75 times to 2 times (0.75'L1≤L2≤2'L1). On the other hand, the width of the first element portion 13a and the width of the second element portion 13b may be different from each other or the same. In the present embodiment, the width of the first element portion 13a and the width of the second element portion 13b are substantially the same width (L3).
[0049] 尚、上述のように、アンテナ 13は、各第 1エレメント部 13aの外側端に結合された 3 本の第 2エレメント部 13bを有する。このため、アンテナ 13は「Y」字形の線状アンテ ナ(アンテナ中心力 放射状に延びる 3本の第 1エレメント部のみにより構成され、第 2エレメント部を有さな 、線状アンテナ)や、所謂エルサレムクロス型アンテナ(各々、 アンテナ中心から相互に 90° の角度をなして放射状に略同一長さでもって延びる 4 本の線分状の第 1エレメント部と、該各第 1エレメント部の外側端に結合された線分状 の第 2エレメント部とを有するアンテナ)よりも高い周波数選択性を有する。従って、高 い周波数選択性を有する電波遮蔽体 1を実現することができる。 [0049] As described above, the antenna 13 includes the three second element portions 13b coupled to the outer ends of the first element portions 13a. For this reason, the antenna 13 is a “Y” -shaped linear antenna (a linear antenna including only the three first element portions extending radially of the antenna central force and having no second element portion), or a so-called antenna. Jerusalem cross-type antennas (each having four line-shaped first element portions extending radially at substantially the same length from each other at an angle of 90 ° from the center of the antenna, and the outer ends of the first element portions) Line segments connected to The antenna has a higher frequency selectivity than the antenna having the second element portion. Therefore, the radio wave shield 1 having high frequency selectivity can be realized.
[0050] また、アンテナ 13は第 2エレメント部 13bを有するので、相隣接するアンテナ 13, 1 3間において、第 2エレメント部 13b同士を相対向させて(より好ましくは、相対向する 第 2エレメント部 13b同士を近接させ (但し、両第 2エレメント部 13b, 13b間の間隔寸 法≠ 0)て複数のアンテナ 13を配置することが容易である。このように複数のアンテナ 13を配置することによって、より特定周波数の電波に対する電波遮蔽率を向上する ことができる。特に第 2エレメント部 13bを緊密に対向させたような場合に液状電波反 射材料の滲みや意図せぬ液状電波反射材料の流動が生じると、対向する第 2エレメ ント部 13b同士がつながってしまう虞がある。第 2エレメント部 13b同士がつながって しまうと、所望の電波遮蔽特性 (電波遮蔽率及び周波数選択性)が得られなくなって しまう。このため、隣接は位置されたアンテナ 13の第 2エレメント部 13b同士を対向し て(さらには緊密に対向して)配置するような場合は、特にコーティング膜 11を設ける ことが有効である。 [0050] Since the antenna 13 includes the second element portion 13b, the second element portions 13b are opposed to each other between the adjacent antennas 13, 13 (more preferably, the second elements facing each other). It is easy to place a plurality of antennas 13 by placing the parts 13b close to each other (however, the distance dimension between both the second element parts 13b and 13b ≠ 0). This can improve the radio wave shielding rate against radio waves of a specific frequency, especially when the second element part 13b is in close contact with the liquid radio wave reflection material and the unintentional liquid radio wave reflection material. If flow occurs, the opposing second element parts 13b may be connected to each other, and if the second element parts 13b are connected to each other, desired radio wave shielding characteristics (radio wave shielding rate and frequency selectivity) can be obtained. Et For this reason, the coating film 11 can be provided particularly when the second element portions 13b of the antenna 13 located adjacent to each other are arranged so as to face each other (more closely). It is valid.
[0051] 第 2エレメント部 13b同士を対向させると共に、単位面積あたりにより多くのアンテナ 13を配置する観点から、第 2エレメント部 13bはその中心において第 1エレメント部 1 3aの外側端に結合され、且つ第 2エレメント部 13bと第 1エレメント部 13aとが直角を なすことが好ましい。また、第 2エレメント部 13bの長さと第 1エレメント部 13aの長さと が略同一であることが好まし 、。  [0051] From the viewpoint of making the second element portions 13b face each other and disposing more antennas 13 per unit area, the second element portion 13b is coupled to the outer end of the first element portion 13a at the center, Further, it is preferable that the second element portion 13b and the first element portion 13a form a right angle. Further, it is preferable that the length of the second element portion 13b and the length of the first element portion 13a are substantially the same.
[0052] 第 1エレメント部 13aの長さ及び第 2エレメント部 13bの長さと、アンテナ 13に反射さ せようとする電波の周波数 (特定周波数)とは相関する。このため、第 1エレメント部 1 3aの長さと第 2エレメント部 13bの長さとは、電波遮蔽体 1により遮蔽させようとする電 波の周波数 (特定周波数)に応じて適宜決定することができる。例えば、第 1エレメン ト部 13aの長さと第 2エレメント部 13bの長さとが同一である場合は、第 1エレメント部 1 3a及び第 2エレメント部 13bの長さを長くすることによって特定周波数を低下させるこ とができる。また、第 1エレメント部 13a及び第 2エレメント部 13bの長さを短くすること によって特定周波数を高くすることができる。  [0052] The length of the first element portion 13a and the length of the second element portion 13b correlate with the frequency (specific frequency) of the radio wave to be reflected by the antenna 13. For this reason, the length of the first element portion 13a and the length of the second element portion 13b can be appropriately determined according to the frequency (specific frequency) of the radio wave to be shielded by the radio wave shield 1. For example, when the length of the first element portion 13a is the same as the length of the second element portion 13b, the specific frequency is lowered by increasing the length of the first element portion 13a and the second element portion 13b. It can be made. Further, the specific frequency can be increased by reducing the lengths of the first element portion 13a and the second element portion 13b.
[0053] 以下、第 1エレメント部 13aの長さ L1と、第 2エレメント部 13bの長さ L2とが同一であ る場合 (ここでは、「L1」及び「L2」を総称してエレメント長 Lとする。)の電波遮蔽体 1 の電波遮蔽特性について、図 11及び図 12を参照しながら詳細に説明する。図 11は 、電波の周波数と、電波遮蔽体 1を透過した際の電波の透過減衰量との関係を示す 特性図であり、図示する例では、長さ L1及び L2は共に 10. 6mm(Ll =L2= 10. 6 mm)であり、幅 L3は 0. 7mm(L3 = 0. 7mm)である。 [0053] Hereinafter, the length L1 of the first element portion 13a and the length L2 of the second element portion 13b are the same. (Hereinafter, “L1” and “L2” are collectively referred to as the element length L.) The radio wave shielding characteristics of the radio wave shield 1 will be described in detail with reference to FIGS. Fig. 11 is a characteristic diagram showing the relationship between the frequency of radio waves and the transmission attenuation of radio waves when passing through the radio wave shield 1. In the example shown, the lengths L1 and L2 are both 10.6 mm (Ll = L2 = 10.6 mm) and the width L3 is 0.7 mm (L3 = 0.7 mm).
[0054] 図 11に示すように、電波遮蔽体 1に入射した電波のうち特定周波数 (約 2. 7GHz) の電波の透過率が選択的に減衰する。換言すれば、電波遮蔽体 1により、電波遮蔽 体 1に入射した電波のうち特定周波数の電波が選択的に遮蔽される。これは、電波 遮蔽体 1の反射層 12、詳細には反射層 12に含まれる複数のアンテナ 13のそれぞれ 力 入射した電波のうち特定周波数の電波を選択的に反射するためである。アンテ ナ 13によって反射される電波の周波数は、第 1エレメント部 13aの長さ LI ( = L)と第 2エレメント部 13bとの長さ L2 (=L)によって決定される。  As shown in FIG. 11, the transmittance of radio waves having a specific frequency (about 2.7 GHz) among radio waves incident on the radio wave shield 1 is selectively attenuated. In other words, the radio wave shield 1 selectively shields radio waves having a specific frequency among radio waves incident on the radio wave shield 1. This is because the radio wave of the specific frequency is selectively reflected among the radio waves incident on the reflection layer 12 of the radio wave shield 1, specifically, the plurality of antennas 13 included in the reflection layer 12. The frequency of the radio wave reflected by the antenna 13 is determined by the length LI (= L) of the first element portion 13a and the length L2 (= L) of the second element portion 13b.
[0055] 図 12は、エレメント長 Lとアンテナ 13によって反射される電波の周波数との関係を 示す特性図である。この図から判るように、アンテナ 13によって反射される電波の周 波数は、エレメント長 Lが長くなるほど低くなる。逆に、アンテナ 13によって反射される 電波の周波数は、エレメント長 Lが短くなるほど高くなる。  FIG. 12 is a characteristic diagram showing the relationship between the element length L and the frequency of the radio wave reflected by the antenna 13. As can be seen from this figure, the frequency of the radio wave reflected by the antenna 13 decreases as the element length L increases. On the contrary, the frequency of the radio wave reflected by the antenna 13 becomes higher as the element length L becomes shorter.
[0056] 一方、反射される電波の周波数は幅 L3と大きく相関しない。すなわち、反射される 電波の周波数は、主として、エレメント長 Lによって決定される。従って、図 12に示す ようなエレメント長 Lと選択周波数との関係に基づいて、アンテナ 13により反射させた V、電波の周波数 (特定周波数)力もエレメント長 Lを算出決定することができる。例え ば、周波数 5GHzの電波を遮蔽させる電波遮蔽体 1を作成する場合は、図 12より、 エレメント長 Lを約 6mm (L=6mm)にすればよ!、ことがわかる。  [0056] On the other hand, the frequency of the reflected radio wave does not greatly correlate with the width L3. That is, the frequency of the reflected radio wave is mainly determined by the element length L. Therefore, based on the relationship between the element length L and the selected frequency as shown in FIG. 12, the element length L can also be calculated and determined for the V reflected by the antenna 13 and the frequency (specific frequency) force of the radio wave. For example, when creating radio wave shield 1 that shields radio waves with a frequency of 5 GHz, it can be seen from Fig. 12 that the element length L should be about 6 mm (L = 6 mm)!
[0057] また、例えば、第 1エレメント部 13aの長さ L1を固定し、第 2エレメント部 13bの長さ L 2を調整することにより特定周波数を調整することも可能である。具体的には、第 2ェ レメント部 13bの長さ L2を長くすることにより特定周波数を低くすることができる。また 、第 2エレメント部 13bの長さ L2を短くすることにより特定周波数を高くすることが可能 である。  [0057] For example, the specific frequency can be adjusted by fixing the length L1 of the first element portion 13a and adjusting the length L2 of the second element portion 13b. Specifically, the specific frequency can be lowered by increasing the length L2 of the second element portion 13b. Further, the specific frequency can be increased by shortening the length L2 of the second element portion 13b.
[0058] 尚、アンテナ 13の厚さは 10 μ m以上 20 μ m以下(10〜20 μ m)であることが好ま しい。アンテナ 13の厚さが 10 /z mより小さいとアンテナ 13の導電性が低下する傾向 にある。一方、アンテナ 13の厚さが 20 mより大きいと、アンテナ 13の形成性が低下 する傾向にある。 [0058] The thickness of the antenna 13 is preferably 10 μm or more and 20 μm or less (10 to 20 μm). That's right. If the thickness of the antenna 13 is smaller than 10 / zm, the conductivity of the antenna 13 tends to decrease. On the other hand, when the thickness of the antenna 13 is larger than 20 m, the formability of the antenna 13 tends to be lowered.
[0059] 以上、本実施形態に係る電波遮蔽体 1について詳細に説明してきたが、電波遮蔽 体 1の形状寸法は何ら制限されるものではない。電波遮蔽体 1は一辺の長さが数ミリ メートル角の小さなものであっても、一辺が数メートル、又はそれ以上の大きなもので あってもよい。  As described above, the radio wave shield 1 according to the present embodiment has been described in detail, but the shape and size of the radio wave shield 1 is not limited at all. The radio wave shield 1 may be a small one with a length of several millimeters square on one side or a large one with a few meters or more on one side.
[0060] また、電波遮蔽体 1は、平面視において、三角形、四辺形 (長方形、正方形)、多角 形、円形、楕円形等の任意の形状のものであってもよい。  [0060] In addition, the radio wave shield 1 may have any shape such as a triangle, a quadrilateral (rectangle, square), a polygon, a circle, an ellipse, or the like in plan view.
[0061] また、電波遮蔽体 1の単位面積あたりに含まれるアンテナ 13の個数も何ら限定され るものではない。電波遮蔽体 1の単位面積あたりに含まれるアンテナ 13の個数は、電 波遮蔽体 1の用途等により適宜変更することができる。電波遮蔽体 1の単位面積あた りに含まれるアンテナ 13の数量を増やすことにより高い電波遮蔽性を実現することが できる。  Further, the number of antennas 13 included per unit area of the radio wave shield 1 is not limited at all. The number of antennas 13 included per unit area of the radio wave shield 1 can be appropriately changed depending on the use of the radio wave shield 1 and the like. By increasing the number of antennas 13 included per unit area of the radio wave shield 1, high radio wave shielding can be realized.
[0062] また、本発明において、反射層 12を構成するアンテナの形状、寸法等は特に限定 されるものではなぐここで説明するアンテナ 13は単なる例示である。また、反射層 1 2は、複数のアンテナ 13と共に、アンテナ 13とは形状寸法が異なる 1種類又は複数 種類のアンテナをさらに含むものであってもよ!/、。  [0062] In the present invention, the shape, dimensions, and the like of the antenna constituting the reflective layer 12 are not particularly limited, and the antenna 13 described here is merely an example. In addition, the reflective layer 12 may include a plurality of antennas 13 and one or a plurality of types of antennas having different shape dimensions from the antenna 13! /.
[0063] 以下、本実施形態の変形例として、反射層 12の構成 (アンテナ 13の形状及び配置 )が異なる種々の電波遮蔽体につ!、て説明する。  Hereinafter, as a modification of the present embodiment, various radio wave shields having different configurations of the reflective layer 12 (the shape and arrangement of the antenna 13) will be described.
[0064] (変形例 1)  [Variation 1]
図 13は、変形例 1における反射層 12aの平面図であり、図 14は、反射層 12aの一 部分を拡大した平面図である。  FIG. 13 is a plan view of the reflective layer 12a in Modification 1, and FIG. 14 is an enlarged plan view of a part of the reflective layer 12a.
[0065] 本変形例 1では、反射層 12は、複数のアンテナ 13が、所定間隔でマトリクス状に配 列された複数のアンテナ集合体 15を構成するように配列されている。具体的には、 複数のアンテナ 13は、各々、第 2エレメント部 13b同士が対向するように配設された 一対力もなる複数のアンテナユニット 14を構成しており、さらに、その複数のアンテナ ユニット 14は、第 2エレメント部 13b同士が対向するように配設されて二次元に連続 展開した六角形状の複数のアンテナ集合体 15を構成している。すなわち、各アンテ ナ集合体 15は、第 2エレメント部 13b同士を対向させて環状に配置された 3つのアン テナュニ In the first modification, the reflection layer 12 is arranged so that a plurality of antennas 13 constitute a plurality of antenna assemblies 15 arranged in a matrix at predetermined intervals. Specifically, each of the plurality of antennas 13 constitutes a plurality of antenna units 14 having a pair of forces and disposed so that the second element portions 13b face each other, and further, the plurality of antenna units 14 Are arranged so that the second element parts 13b face each other and are continuous in two dimensions. A plurality of hexagonal antenna assemblies 15 are formed. That is, each antenna assembly 15 includes three antennas arranged in a ring shape with the second element portions 13b facing each other.
ット 14からなる。言い換えれば、アンテナ集合体 15は、第 2エレメント部 13b同士を対 向させて環状に配置された 6つのアンテナ 13からなる。  14 In other words, the antenna assembly 15 includes six antennas 13 arranged in a ring shape with the second element portions 13b facing each other.
[0066] 本変形例 1のように、特に第 2エレメント部 13bを緊密に対向させたような場合に液 状電波反射材料の滲みや意図せぬ液状電波反射材料の流動が生じると、対向する 第 2エレメント部 13b同士がつながってしまう虞がある。第 2エレメント部 13b同士がつ ながってしまうと、所望の電波遮蔽特性 (電波遮蔽率及び周波数選択性)が得られな くなつてしまう。このため、隣接は位置されたアンテナ 13の第 2エレメント部 13b同士 を対向して(さらには緊密に対向して)配置するような場合は、特にコーティング膜 11 を設けることが有効である。  [0066] As in Modification 1, particularly when the second element portion 13b is closely opposed, if the liquid radio wave reflecting material bleeds or an unintentional flow of the liquid radio wave reflecting material occurs, the second element portion 13b faces. There is a possibility that the second element portions 13b are connected to each other. If the second element portions 13b are connected to each other, desired radio wave shielding characteristics (radio wave shielding rate and frequency selectivity) cannot be obtained. For this reason, it is particularly effective to provide the coating film 11 in the case where the second element portions 13b of the antenna 13 located adjacent to each other are arranged facing each other (more closely facing each other).
[0067] 本変形例 1では、アンテナ集合体 15を構成する 18本の第 2エレメント部 13bのうち 12本の第 2エレメント部 13bが相互に略平行に対向するように設けられている。この ように、比較的多くの第 2エレメント部 13b同士が対向するようにアンテナ 13を配置構 成することによって、アンテナ 13の特定周波数の電波に対する電波反射率 (電波遮 蔽率)をより向上することができる。従って、特定周波数の電波に対する高い電波遮 蔽率を有する電波遮蔽体を実現することができる。  In the first modification, 12 second element portions 13b among the 18 second element portions 13b constituting the antenna assembly 15 are provided so as to face each other substantially in parallel. Thus, by arranging and configuring the antenna 13 so that a relatively large number of the second element portions 13b face each other, the radio wave reflectance (radio wave shielding rate) of the antenna 13 with respect to radio waves of a specific frequency is further improved. be able to. Therefore, it is possible to realize a radio wave shielding body having a high radio wave shielding rate with respect to radio waves of a specific frequency.
[0068] 尚、対向する第 2エレメント部 13b間の距離 XIを短くするほど、アンテナの電波反 射率 (電波遮蔽体の電波遮蔽率)が高くなる。具体的には、対向する第 2エレメント部 13b間の距離 XI (図 14参照)が、 0. 4mm以上 3mm以下(0. 4mm≤Xl≤3mm) であることが好ましぐより好ましい範囲は、 0. 6mm以上 lmm以下(0. 6mm≤ XI ≤ lmm)である。因みに、距離 XIが 0. 4mmより短い(XI < 0. 4mm)と、対向する 第 2エレメント部 13b同士が不所望に接触する虞があり、一方、距離 XIが 3mmより長 い (XI > 3mm)と電波遮蔽率が低下する傾向にある。  [0068] Note that the shorter the distance XI between the opposing second element portions 13b, the higher the radio wave reflectivity of the antenna (the radio wave shield rate of the radio wave shield). Specifically, it is preferable that the distance XI (see FIG. 14) between the opposing second element portions 13b is 0.4 mm or more and 3 mm or less (0.4 mm≤Xl≤3mm). 0.6 mm or more and lmm or less (0.6 mm ≤ XI ≤ lmm). Incidentally, if the distance XI is shorter than 0.4 mm (XI <0.4 mm), the opposing second element parts 13b may contact each other undesirably, while the distance XI is longer than 3 mm (XI> 3mm). ) And the radio wave shielding rate tends to decrease.
[0069] また、種々の入射角で入射する電波に対して一定した電波遮蔽性を実現する観点 から、アンテナ集合体 15は六角形状 (好ましくは略正六角形状)であることが好まし い。従って、第 1エレメント部 13aと第 2エレメント部 13bとが直角をなしていることが好 ましい。また、第 2エレメント部 13bがその中心において第 1エレメント部 13aと結合し ていることが好ましい。 [0069] From the viewpoint of realizing constant radio wave shielding against radio waves incident at various incident angles, the antenna assembly 15 is preferably hexagonal (preferably substantially regular hexagonal). Accordingly, it is preferable that the first element portion 13a and the second element portion 13b are perpendicular to each other. Good. Further, it is preferable that the second element portion 13b is coupled to the first element portion 13a at the center thereof.
[0070] (変形例 2)  [0070] (Modification 2)
図 15は、変形例 2における反射層 12bの平面図である。  FIG. 15 is a plan view of the reflective layer 12b in the second modification.
[0071] 本変形例 2では、アンテナ集合体 15がさらに第 2エレメント部 13b同士が対向する ように (所謂ハ-カム状に)配置されている。このため、変形例 2においては、略すベ ての第 2エレメント部 13b同士が対向している。このように、アンテナ 13を配置すること によって、変形例 1よりもさらに、相互に対向するように設けられた第 2エレメント部 13 bを多くすることができる。このため、さらに高い電波遮蔽率を有する電波遮蔽体を実 現することができる。  [0071] In the second modification, the antenna assembly 15 is arranged so that the second element portions 13b are opposed to each other (in a so-called “Harcam” shape). For this reason, in the second modification, all the second element portions 13b face each other. As described above, by disposing the antenna 13, it is possible to increase the number of second element portions 13 b provided so as to face each other more than in the first modification. For this reason, a radio wave shield having a higher radio wave shielding rate can be realized.
[0072] 本変形例 2のようなアンテナ配列の場合に、液状電波反射材料の滲みや意図せぬ 液状電波反射材料の流動が生じて対向する第 2エレメント部 13b同士が接触してしま うと、結果として反射層 12は周波数選択性がほとんどないものとなってしまう虞がある 。このため、変形例 2におけるアンテナ配列の場合にもコーティング膜 11は非常に有 効である。  [0072] In the case of the antenna arrangement as in the second modification example, if the liquid radio wave reflection material bleeds or an unintended flow of the liquid radio wave reflection material occurs and the opposing second element parts 13b come into contact with each other, As a result, the reflective layer 12 may have little frequency selectivity. Therefore, the coating film 11 is very effective even in the case of the antenna arrangement in the second modification.
[0073] (変形例 3)  [Modification 3]
図 16は、本変形例 3における反射層 12cの平面図である。  FIG. 16 is a plan view of the reflective layer 12c in the third modification.
[0074] 図 1に示した例及び変形例 1、 2の例では、反射層は 1種類のアンテナのみにより構 成されているのに対して、本変形例 3では、反射層 12cは複数種類のアンテナにより 構成されている。具体的には、反射層 12cは、比較的小さなアンテナ 16及び比較的 大きな複数のアンテナ 17の 2種類のアンテナ 16, 17を有する。アンテナ 16及びアン テナ 17のそれぞれは、所謂 T—Y型アンテナである。  [0074] In the example shown in Fig. 1 and the examples of Modifications 1 and 2, the reflection layer is composed of only one type of antenna, whereas in Modification 3, there are multiple types of reflection layer 12c. It is composed of antennas. Specifically, the reflective layer 12c has two types of antennas 16, 17 including a relatively small antenna 16 and a plurality of relatively large antennas 17. Each of the antenna 16 and the antenna 17 is a so-called TY antenna.
[0075] 複数のアンテナ 16及び複数のアンテナ 17は、交番状に、且つ相互に干渉しないよ うにマトリクス状に配置されている。アンテナ 16とアンテナ 17とは相互に相似形であ つてもよく、また、非相似形であってもよい。さらに、反射層 12cはアンテナ 16及びァ ンテナ 17以外のアンテナをさらに含むものであってもよい。  [0075] The plurality of antennas 16 and the plurality of antennas 17 are arranged in an alternating pattern and in a matrix so as not to interfere with each other. The antenna 16 and the antenna 17 may be similar to each other or may be non-similar. Further, the reflective layer 12c may further include an antenna other than the antenna 16 and the antenna 17.
[0076] 比較的小さなアンテナ 16と比較的大きなアンテナ 17とは、相互に異なる周波数選 択性を有する。すなわち、反射する電波の周波数が相互に異なるものである。このた め、本変形例 3によれば、相互に周波数が異なる 2種の電波を選択的に遮蔽すること ができる電波遮蔽体を実現することができる。 [0076] The relatively small antenna 16 and the relatively large antenna 17 have mutually different frequency selectivity. That is, the frequencies of the reflected radio waves are different from each other. others Therefore, according to the third modification, it is possible to realize a radio wave shield capable of selectively shielding two types of radio waves having different frequencies.
[0077] 本変形例 3に係る電波遮蔽体は、例えば、無線 LANでは、 2. 4GHz帯の周波数 の電波と、 5. 2GHz帯の周波数の電波との 2種の周波数の電波が使用されている。 このように無線 LANを使用する環境等と 、つた 2種の周波数の電波を使用するような 環境に特に有用である。  [0077] For example, in the wireless LAN, the radio wave shielding body according to the third modification uses radio waves of two types of frequency, 2.4 GHz band radio waves and 5.2 GHz band radio waves. Yes. This is especially useful in environments where wireless LAN is used and environments where radio waves of two different frequencies are used.
[0078] また、 3種類以上の周波数の電波が使用されるような環境においては、相互に大き さの異なる 3種類以上のアンテナにより反射層 12cを構成してもよ 、。  [0078] In an environment where radio waves of three or more types of frequencies are used, the reflective layer 12c may be configured by three or more types of antennas having different sizes.
[0079] (変形例 4)  [0079] (Modification 4)
図 17は、変形例 4における反射層 12dの平面図である。  FIG. 17 is a plan view of the reflective layer 12d in Modification 4.
[0080] 本変形例 4では、複数のアンテナ 16は、変形例 2における複数のアンテナ 13と同 様に、各々、第 2エレメント部 16b同士が対向するように配設された一対力もなる複数 のアンテナユニット 18を構成しており、さらに、その複数のアンテナユニット 18は、第 2エレメント部 16b同士が対向するように配設されて二次元に連続展開した六角形状 の複数のアンテナ集合体 19を構成している。すなわち、各アンテナ集合体 19は、第 2エレメント部 16b同士を対向させて環状に配置された 3つのアンテナユニット 18から なる。言い換えれば、アンテナ集合体 19は、第 2エレメント部 16b同士を対向させて 環状に配置された 6つのアンテナ 13からなる。そして、アンテナ集合体 19がさらに第 2エレメント部 13b同士が対向するように (所謂ハ-カム状に)配置されている。  [0080] In the fourth modification, like the plurality of antennas 13 in the second modification, each of the plurality of antennas 16 has a plurality of force pairs that are arranged so that the second element portions 16b face each other. The antenna unit 18 is configured, and the plurality of antenna units 18 are arranged so that the second element portions 16b are opposed to each other, and a plurality of hexagonal antenna assemblies 19 that are continuously developed in two dimensions are provided. It is composed. In other words, each antenna assembly 19 includes three antenna units 18 arranged in a ring shape with the second element portions 16b facing each other. In other words, the antenna assembly 19 includes six antennas 13 arranged in an annular shape with the second element portions 16b facing each other. The antenna assembly 19 is further arranged so as to face the second element portions 13b (in a so-called “Hercam” shape).
[0081] 一方、複数のアンテナ 17は、変形例 1における複数のアンテナ 13と同様に、各々、 第 2エレメント部 17b同士が対向するように配設された一対力もなる複数のアンテナ ユニット 20を構成しており、さらに、その複数のアンテナユニット 20は、第 2エレメント 部 17b同士が対向するように配設されて二次元に連続展開した六角形状の複数の アンテナ集合体 21を構成している。そして、各アンテナ集合体 21はアンテナ集合体 19により包囲されるように配置されている。このような配列によれば、アンテナ 16の第 2エレメント部 16b同士、アンテナ 17の第 2エレメント部 17b同士をそれぞれ高!、確率 で対向させて、且つ両アンテナ 16及び 17を略同様の密度で配置することができる。 従って、アンテナ 16が反射する電波及びアンテナ 17が反射する電波の両方を、より 高い周波数選択性で、且つより高い遮蔽率で遮蔽することができる。 On the other hand, the plurality of antennas 17 constitutes a plurality of antenna units 20 each having a pair of forces arranged so that the second element portions 17b face each other, similarly to the plurality of antennas 13 in Modification 1. In addition, the plurality of antenna units 20 constitutes a plurality of hexagonal antenna assemblies 21 that are arranged so that the second element portions 17b face each other and are continuously developed in two dimensions. Each antenna assembly 21 is arranged so as to be surrounded by the antenna assembly 19. According to such an arrangement, the second element portions 16b of the antenna 16 and the second element portions 17b of the antenna 17 are opposed to each other with a high probability, and both the antennas 16 and 17 have substantially the same density. Can be arranged. Therefore, both the radio wave reflected by the antenna 16 and the radio wave reflected by the antenna 17 are more It is possible to shield with high frequency selectivity and higher shielding rate.
[0082] 本変形例 4の場合にも、上記変形例 1や変形例 2の場合と同様に、液状電波反射 材料の滲みや意図せぬ液状電波反射材料の流動が生じると、対向する第 2エレメン ト部 13b同士が接触してしまい所望の電波遮蔽特性が得られなくなる虞があるため、 コーティング膜  [0082] In the case of Modification 4, as in the case of Modification 1 and Modification 2, if the liquid radio wave reflecting material bleeds or the unintended flow of the liquid radio wave reflecting material occurs, the opposing second Since the element part 13b may come into contact with each other and the desired radio wave shielding characteristics may not be obtained, the coating film
11を形成しておくことが有効である。  It is effective to form 11.
[0083] 本変形例 4では、第 2エレメント部 16b、 17bの長さが比較的短いことが好ましい。そ うすることによって、アンテナ 16とアンテナ 17との接触を抑制することができる。従つ て、アンテナ集合体 19に包囲されるアンテナ集合体 21を構成するアンテナ 17の寸 法自由度をより大きくすることができる。その結果、例えば比較的周波数の近い 2種 の電波を選択的に遮蔽可能な電波遮蔽体が実現可能となる。  [0083] In Modification 4, it is preferable that the lengths of the second element portions 16b and 17b are relatively short. By doing so, contact between the antenna 16 and the antenna 17 can be suppressed. Therefore, the dimensional freedom of the antenna 17 constituting the antenna assembly 21 surrounded by the antenna assembly 19 can be further increased. As a result, for example, a radio wave shield capable of selectively shielding two types of radio waves having relatively close frequencies can be realized.
[0084] (変形例 5)  [0084] (Modification 5)
図 18は、変形例 5における反射層 12eの平面図である。  FIG. 18 is a plan view of the reflective layer 12e in Modification 5.
[0085] 本変形例 5は、上記変形例 4のさらなる変形例である。本変形例 5では、アンテナ集 合体 19とアンテナ集合体 21とは、相互に異なる対称軸 (詳細には、アンテナ 16、 17 の配列方向に延びる線対称軸)を有するように、相互に傾斜するように配置されて 、 る。  This Modification 5 is a further modification of Modification 4 described above. In Modification 5, the antenna assembly 19 and the antenna assembly 21 are inclined with respect to each other so as to have different symmetry axes (specifically, line symmetry axes extending in the arrangement direction of the antennas 16 and 17). Are arranged as follows.
[0086] アンテナ集合体 19によりアンテナ集合体 21を包囲させるためには、アンテナ集合 体 21を構成するアンテナ 17の寸法を、アンテナ集合体 19を構成するアンテナ 16の 寸法より小さくする必要がある。変形例 4に示すように、アンテナ集合体 19とアンテナ 集合体 21とを傾斜させることなく配置させた場合、アンテナ 16とアンテナ 17とが相互 に干渉しな 、ようにアンテナ 17をアンテナ 16に対して非常に小さくしなければならず 、アンテナ 16とアンテナ 17との設計自由度が低くなる。  In order to surround the antenna assembly 21 with the antenna assembly 19, it is necessary to make the dimensions of the antenna 17 constituting the antenna assembly 21 smaller than the dimensions of the antenna 16 constituting the antenna assembly 19. As shown in Modification 4, when antenna assembly 19 and antenna assembly 21 are arranged without being inclined, antenna 16 and antenna 17 are not interfered with each other so that antenna 16 and antenna 17 do not interfere with each other. Therefore, the design flexibility of the antenna 16 and the antenna 17 is reduced.
[0087] それに対して、本変形例 5に示すように、アンテナ集合体 19とアンテナ集合体 21と を傾斜 (例えば図 18では、 0 = 10° )させて配列した場合は、相互に対向する第 2 エレメント部 16bと、相互に対向する第 2エレメント部 17bとの相対位置がずれる。この ため、本変形例 5では、変形例 4に示す場合と比較して、アンテナ 16に対するアンテ ナ 17の相対大きさを比較的大きくすることができる。従って、アンテナ 16とアンテナ 1 7との形状寸法の設計自由度を広げることができる。この結果、周波数の近い (第 1周 波数との第 2周波数との比 (第 1周波数 <第 2周波数)が 0. 45以上) 2波に対する電 波遮蔽が可能となる。 On the other hand, as shown in the fifth modification, when the antenna assembly 19 and the antenna assembly 21 are arranged with an inclination (for example, 0 = 10 ° in FIG. 18), they face each other. The relative positions of the second element portion 16b and the second element portion 17b facing each other are shifted. For this reason, in the fifth modification, compared to the case shown in the fourth modification, the relative size of the antenna 17 with respect to the antenna 16 can be made relatively large. Therefore, antenna 16 and antenna 1 The degree of freedom in designing the shape dimensions with 7 can be expanded. As a result, it is possible to shield the two waves that are close in frequency (ratio of the first frequency to the second frequency (first frequency <second frequency) is 0.45 or more).
[0088] また、図 18では、略六角形状のアンテナ集合体 19、アンテナ集合体 21を最密に 配置しているが、所望の電波遮蔽率によっては、最密に配置せず、略六角形状のァ ンテナ集合体 19、 21の数をそれぞれ適宜調整すればょ 、。  Further, in FIG. 18, the substantially hexagonal antenna assembly 19 and the antenna assembly 21 are arranged in a close-packed manner, but depending on a desired radio wave shielding rate, they are not arranged in a close-packed manner, but in a substantially hexagonal shape. Adjust the number of antenna assemblies 19 and 21 as appropriate.
[0089] (変形例 6)  [0089] (Modification 6)
変形例 6では、特定の周波数帯域の電波を選択的に遮蔽可能なように、それぞれ 異なる特定の周波数の電波を選択的に反射させる複数種類のアンテナにより反射層 を構成した例について説明する。具体的には、 3種類のアンテナ 22a、 22b、 22cに より反射層 12fを構成した例につ 、て説明する。  In Modification 6, an example will be described in which the reflection layer is configured by a plurality of types of antennas that selectively reflect radio waves of different specific frequencies so that radio waves of specific frequency bands can be selectively shielded. Specifically, an example in which the reflective layer 12f is configured by three types of antennas 22a, 22b, and 22c will be described.
[0090] 尚、「周波数帯域」とは比帯域が 10%を超える周波数の領域のことをいう。また、「 特定の周波数帯域の電波を選択的に遮蔽する」電波遮蔽体とは、 10dBの比帯域( 好ましくは 20dBの比帯域、さらに好ましくは 30dBの比帯域)が 10%を超える電波遮 蔽体のことをいう。それに対して、「特定の周波数の電波を選択的に遮蔽する」電波 遮蔽体とは、 10dBの比帯域が 10%以下である電波遮蔽体のことをいう。尚、 10dB の比帯域は、 10dB以上遮蔽される電波の周波数の最大値を F とし、 10dB以上  [0090] "Frequency band" refers to a frequency range where the ratio band exceeds 10%. A radio wave shield that selectively shields radio waves in a specific frequency band is a radio wave shield that has a 10 dB ratio band (preferably a 20 dB ratio band, more preferably a 30 dB ratio band) exceeding 10%. It means the body. On the other hand, a radio wave shield that “selectively blocks radio waves of a specific frequency” refers to a radio wave shield with a 10 dB ratio band of 10% or less. The 10dB bandwidth is 10dB or more, where F is the maximum frequency of the radio wave that is shielded by 10dB or more.
max  max
 Blocking
蔽される電波の周波数の最小値を F とした場合、 2 (F — F ) / {Y +F )で  If the minimum frequency of the radio wave to be covered is F, 2 (F — F) / (Y + F)
mm max min max min 表される。  mm max min max min Expressed.
[0091] 以下、図 19を参照しながら、本変形例 6における反射層 12fの構成について詳細 に説明する。図 19は、反射層 12fの平面図である。  Hereinafter, the configuration of the reflective layer 12f in Modification 6 will be described in detail with reference to FIG. FIG. 19 is a plan view of the reflective layer 12f.
[0092] 反射層 12fは、相互に異なる特定の周波数の電波を選択的に反射させる複数種類 のアンテナ 22、具体的には、第 1アンテナ 22a、第 2アンテナ 22b、及び第 3アンテナ 22cの 3種類のアンテナによって構成されている。第 1アンテナ 22a、第 2アンテナ 22 b、及び第 3アンテナ 22cは、それぞれの電波反射スペクトルピークが相互に独立し ていないものである。言い換えれば、それぞれの電波反射スペクトルピークが連続し ているものである。このため、本変形例に係る反射層 12fは所定の幅を持った周波数 帯域 (例えば、 815MHz以上 925MHz以下の周波数帯域)の電波を選択的に反射 させることができる。例えば、反射層 12fは、図 20で示されるような電波遮蔽特性 (電 波の透過減衰特性)を有する。電波反射スペクトルピークのより高い連続性を実現す る観点から、反射層 12fに含まれる各アンテナ 22の寸法は、アンテナ 22のうち基準と なる種類のアンテナ 22の寸法の ± 15% (好ましくは ± 10%、より好ましくは ± 5%) 以内であることが好ましい。 [0092] The reflection layer 12f includes a plurality of types of antennas 22 that selectively reflect radio waves having different specific frequencies, specifically, the first antenna 22a, the second antenna 22b, and the third antenna 22c. It is composed of different types of antennas. The first antenna 22a, the second antenna 22b, and the third antenna 22c have their respective radio wave reflection spectrum peaks that are not independent of each other. In other words, each radio wave reflection spectrum peak is continuous. For this reason, the reflective layer 12f according to this modification has a frequency having a predetermined width. Radio waves in a band (for example, a frequency band from 815 MHz to 925 MHz) can be selectively reflected. For example, the reflective layer 12f has a radio wave shielding characteristic (radio transmission attenuation characteristic) as shown in FIG. From the viewpoint of achieving higher continuity of the radio wave reflection spectrum peak, the size of each antenna 22 included in the reflection layer 12f is ± 15% of the size of the reference type antenna 22 of the antennas 22 (preferably ± 10%, more preferably within ± 5%).
[0093] 図 20は、反射層 12fの電波遮蔽量 (電波の透過減衰量)と周波数との相関を例示 するグラフである。同図に示すように、第 1アンテナ 22aのスペクトルピーク P2と、第 2 アンテナ 22bのスペクトルピーク P3と、第 3アンテナ 22cのスペクトルピーク P1とは相 互に独立しておらず、連続している。すなわち、最も大きなピークである P1のベース ライン BLからの深さ HIに対する、谷部のベースライン BLからの深さ H2との比が 50 %以下(3dB以上)である。そして、反射層 12fによれば、ピーク P1〜P3の間の周波 数帯域の全域の電波が 10dB以上という高い遮蔽率で遮蔽 (反射)される。また、 10d Bの比帯域が 10%よりも大き 、ことが好ま 、。  FIG. 20 is a graph illustrating the correlation between the radio wave shielding amount (radio wave transmission attenuation amount) of the reflective layer 12f and the frequency. As shown in the figure, the spectrum peak P2 of the first antenna 22a, the spectrum peak P3 of the second antenna 22b, and the spectrum peak P1 of the third antenna 22c are not independent of each other and are continuous. . In other words, the ratio of the depth H2 from the base line BL of the valley to the depth HI from the base line BL of P1, which is the largest peak, is 50% or less (3 dB or more). According to the reflection layer 12f, the radio waves in the entire frequency band between the peaks P1 to P3 are shielded (reflected) with a high shielding rate of 10 dB or more. It is also preferable that the 10 dB bandwidth is greater than 10%.
[0094] 尚、「電波反射スペクトルピークが相互に独立して 、な 、 (連続して!/、る)」とは、電 波遮蔽体の有する電波反射 (遮蔽)スペクトルのうち最も大きなスペクトルの山部(ピ ーク)の電波反射 (遮蔽)率に対するスペクトルピーク間の谷部における最小の電波 反射 (遮蔽)率の比が 50%より大き 、(最も大きなスペクトルの山部(ピーク)の電波反 射 (遮蔽)率と谷部における最小の電波反射 (遮蔽)率との差が 3dBより小さ 、)ことを いう。一方、「電波反射スペクトルピークが相互に独立している(連続していない)」と は、電波遮蔽体の有する電波遮蔽スペクトル (電波反射スペクトル)のうち最も大きな スペクトルの山部(ピーク)の電波反射 (遮蔽)率に対するスペクトルピーク間の谷部 における最小の電波反射 (遮蔽)率の比が 50%以下 (最も大きなスペクトルの山部( ピーク)の電波反射 (遮蔽)率と谷部における最小の電波反射 (遮蔽)率との差が 3dB 以上)であることをいう。  [0094] "Radio reflection spectrum peaks are independent of each other (continuously! /, Ru)" means that the largest spectrum of radio wave reflection (shielding) spectra of an electromagnetic shield is present. The ratio of the minimum radio wave reflection (shielding) rate in the valley between the spectral peaks to the radio wave reflection (shielding) rate of the peak (peak) is greater than 50% (the peak (peak) radio wave with the largest spectrum) The difference between the reflection (shielding) rate and the minimum radio wave reflection (shielding) rate in the valley is less than 3 dB). On the other hand, “radiowave reflection spectrum peaks are independent of each other (not continuous)” means that the radio wave at the peak (peak) of the largest spectrum of the radio wave shielding spectrum (radio wave reflection spectrum) of the radio wave shield. The ratio of the minimum radio wave reflection (shielding) rate at the valley between the spectral peaks to the reflection (shielding) rate is 50% or less The difference from the radio wave reflection (shielding) rate is 3 dB or more).
[0095] 本変形例 6では、第 1アンテナ 22a、第 2アンテナ 22b、及び第 3アンテナ 22cのそ れぞれは、上述した T—Y型アンテナである。しかし、第 1アンテナ 22a、第 2アンテナ 22b、及び第 3アンテナ 22cのそれぞれは、例えば「Y」字状のアンテナ、所謂エルサ レムクロス型のアンテナ等であってもよい。また、第 1アンテナ 22a、第 2アンテナ 22b 、及び第 3アンテナ 22cは、相互に異なる形状のアンテナであってもよぐまた、相互 に相似形のアンテナであってもよ 、。 In Modification 6, each of the first antenna 22a, the second antenna 22b, and the third antenna 22c is the TY antenna described above. However, each of the first antenna 22a, the second antenna 22b, and the third antenna 22c is, for example, a “Y” -shaped antenna, so-called Elsa. It may be a remcross type antenna or the like. Further, the first antenna 22a, the second antenna 22b, and the third antenna 22c may be antennas having different shapes from each other or may be similar to each other.
[0096] 次に、本変形例 6におけるアンテナ 22の配置について詳細に説明する。図 19に示 すように、反射層 12fには、複数の第 1アンテナ 22a、複数の第 2アンテナ 22b、及び 複数の第 3アンテナ 22cが、それぞれ第 1アンテナ 22a、第 2アンテナ 22b、及び第 3 アンテナ 22cがー方向にこの順で交番状に配列されてなる複数のアンテナ列 23を構 成するように二次元配列されている。言い換えれば、反射層 12fは、それぞれ第 1ァ ンテナ 22a、第 2アンテナ 22b、及び第 3アンテナ 22cがー方向にこの順で交番状に 配列された複数のアンテナ列 23が配置されてなるものである。  [0096] Next, the arrangement of the antenna 22 in Modification 6 will be described in detail. As shown in FIG. 19, the reflective layer 12f includes a plurality of first antennas 22a, a plurality of second antennas 22b, and a plurality of third antennas 22c, which are respectively a first antenna 22a, a second antenna 22b, and a first antenna. 3 The antennas 22c are two-dimensionally arranged so as to form a plurality of antenna rows 23 that are alternately arranged in this order in the negative direction. In other words, the reflective layer 12f is formed by arranging a plurality of antenna arrays 23 in which the first antenna 22a, the second antenna 22b, and the third antenna 22c are alternately arranged in this order in the negative direction. is there.
[0097] 反射層 12fにおいて、各第 1アンテナ 22aはその第 1アンテナ 22aが属するアンテ ナ列 23の隣のアンテナ列 23に属する第 2アンテナ 22b及び第 3アンテナ 22cに隣接 している。同様に、各第 2アンテナ 22bはその第 2アンテナ 22bが属するアンテナ列 2 3の隣のアンテナ列 23に属する第 1アンテナ 22a及び第 3アンテナ 22cに隣接してい る。各第 3アンテナ 22cはその第 3アンテナ 22cが属するアンテナ列 23の隣のアンテ ナ列 23に属する第 2アンテナ 22b及び第 1アンテナ 22aに隣接している。言い換えれ ば、第 1アンテナ 22aと、その第 1アンテナ 22aが属するアンテナ列 23の両側に位置 するアンテナ列 23に属する、その第 1アンテナ 22aに隣接する第 1アンテナ 22aとの アンテナ中心が三角形 (好ましくは正三角形)を構成するように配置されて 、る。且つ 、第 1アンテナ 22aと、その第 2アンテナ 22bが属するアンテナ列 23の両側に位置す るアンテナ列 23に属する、その第 2アンテナ 22bに隣接する第 2アンテナ 22bとのァ ンテナ中心が三角形 (好ましくは正三角形)を構成するように配置されて 、る。且つ、 第 1アンテナ 22aと、その第 3アンテナ 22cが属するアンテナ列 23の両側に位置する アンテナ列 23に属する、その第 3アンテナ 22cに隣接する第 3アンテナ 22cとのアン テナ中心が三角形 (好ましくは正三角形)を構成するように配置されて 、る。  In the reflective layer 12f, each first antenna 22a is adjacent to the second antenna 22b and the third antenna 22c belonging to the antenna row 23 adjacent to the antenna row 23 to which the first antenna 22a belongs. Similarly, each second antenna 22b is adjacent to the first antenna 22a and the third antenna 22c belonging to the antenna row 23 adjacent to the antenna row 23 to which the second antenna 22b belongs. Each third antenna 22c is adjacent to the second antenna 22b and the first antenna 22a belonging to the antenna row 23 adjacent to the antenna row 23 to which the third antenna 22c belongs. In other words, the antenna center of the first antenna 22a and the first antenna 22a adjacent to the first antenna 22a belonging to the antenna array 23 located on both sides of the antenna array 23 to which the first antenna 22a belongs is triangular (preferably Are arranged to form an equilateral triangle). The antenna center of the first antenna 22a and the second antenna 22b adjacent to the second antenna 22b belonging to the antenna array 23 located on both sides of the antenna array 23 to which the second antenna 22b belongs is a triangle ( Preferably, they are arranged to form an equilateral triangle. The antenna center between the first antenna 22a and the third antenna 22c adjacent to the third antenna 22c belonging to the antenna array 23 located on both sides of the antenna array 23 to which the third antenna 22c belongs is triangular (preferably Are arranged to form an equilateral triangle).
[0098] このような配置にすることによって、例えば、第 1アンテナ 22aの第 2エレメント部が 隣のアンテナ列 23に属する第 2アンテナ 22bと第 3アンテナ 22cとの間に入り込むよ うに、複数のアンテナ列 23を行方向に密に配列することが可能となる。言い換えれば 、図 19に示すように、第 2アンテナ 22bが配置された領域 R内に隣接するアンテナ 22 の第 2エレメント部が入り込むような態様で密にアンテナ 22を配置することが可能とな る。よって、単位面積あたりにより多くのアンテナ 22a、 22b、 22cを密に配置すること ができる。 [0098] With this arrangement, for example, a plurality of second elements 22a of the first antenna 22a are inserted between the second antenna 22b and the third antenna 22c belonging to the adjacent antenna row 23. The antenna columns 23 can be densely arranged in the row direction. In other words As shown in FIG. 19, the antennas 22 can be densely arranged in such a manner that the second element portion of the adjacent antenna 22 enters the region R where the second antenna 22b is arranged. Therefore, more antennas 22a, 22b, and 22c can be arranged more closely per unit area.
[0099] ここで、電波の遮蔽率は単位面積あたりのアンテナ 22の数量と相関し、単位面積あ たりのアンテナ 22の数量が増加すると電波の遮蔽率も増加するため、本変形例 6に おけるアンテナ 22の配置によれば高 、電波遮蔽率を実現することが可能となる。ま た、第 1アンテナ 22a、第 2アンテナ 22b、及び第 3アンテナ 22cの単位面積あたりに 含まれる個数を略同一にすることができるため、周波数帯域における電波遮蔽ムラを 抑制することができる。尚、より単位面積あたりのアンテナ 22の数量を多くする観点か ら、第 2エレメント部は第 1エレメント部よりも短 、方が好ま 、 (L2>L1)。  [0099] Here, the radio wave shielding rate correlates with the number of antennas 22 per unit area, and as the number of antennas 22 per unit area increases, the radio wave shielding rate also increases. According to the arrangement of the antenna 22, a high radio wave shielding rate can be realized. In addition, since the number of the first antenna 22a, the second antenna 22b, and the third antenna 22c included in the unit area can be made substantially the same, it is possible to suppress radio wave shielding unevenness in the frequency band. From the viewpoint of increasing the number of antennas 22 per unit area, the second element portion is preferably shorter than the first element portion (L2> L1).
[0100] また、本変形例 6におけるアンテナ 22の配列では、複数のアンテナ 22が第 2エレメ ント部同士が平行に対向しないように配列されている。このため、アンテナ 22の周波 数選択性を比較的低く保つことができる。言い換えれば、アンテナ 22の比帯域を比 較的広く保つことができる。従って、特定の周波数帯域全域の電波に対する偏りの少 な 、良好な電波遮蔽率を実現することができる。  [0100] Further, in the arrangement of the antennas 22 in Modification 6, the plurality of antennas 22 are arranged so that the second element portions do not face each other in parallel. For this reason, the frequency selectivity of the antenna 22 can be kept relatively low. In other words, the specific band of the antenna 22 can be kept relatively wide. Therefore, it is possible to realize a favorable radio wave shielding rate with little bias to radio waves in the entire specific frequency band.
[0101] 本変形例 6におけるアンテナ配列の場合、隣接して配置されたアンテナ 22の第 2ェ レメント部は対向していない。このため、隣接して配置されたアンテナ 22の第 2エレメ ント部 13b同士が接触することはあまり考えられない。し力しながら、高い電波遮蔽特 性  [0101] In the case of the antenna arrangement in Modification 6, the second element portions of the antennas 22 arranged adjacent to each other are not opposed to each other. For this reason, it is unlikely that the second element portions 13b of the antennas 22 arranged adjacent to each other contact each other. High electromagnetic shielding characteristics
を実現すベぐアンテナ 22を密に配列して単位面積当たりに含まれるアンテナ 22の 数量を多くしたような場合には特に、第 1エレメント部と隣接するアンテナの第 2エレメ ント部とが接触してしまい、所望の電波遮蔽特性が得られなくなる虞がある。また、本 変形例 6における反射層 12fは特定の周波数帯域の電波を反射させるものであり、 上記実施形態 1等に記載された反射層よりは周波数選択性が低いものであるものの 、やはり第 1エレメント部の長さにばらつきが生じた場合や、第 2エレメント部の長さに ばらつきが生じた場合には所望の周波数選択性が得られなくなる。従って、本変形 例 6のようなアンテナ配列の場合であってもコーティング膜 11を設けておくことが効果 的である。 In particular, when the number of antennas 22 included per unit area is increased by arranging closely the antennas 22 that realize the above, the first element part and the second element part of the adjacent antenna are in contact with each other. As a result, the desired radio wave shielding characteristics may not be obtained. In addition, the reflective layer 12f in Modification 6 reflects radio waves in a specific frequency band, and has a frequency selectivity lower than that of the reflective layer described in Embodiment 1 etc. If the length of the element part varies or the length of the second element part varies, the desired frequency selectivity cannot be obtained. Therefore, it is effective to provide the coating film 11 even in the case of the antenna arrangement as in Modification 6. Is.
[0102] (変形例 7)  [0102] (Variation 7)
以上、 T—Y型アンテナにより構成された反射層 12の例について説明してきたが、 反射層 12は T—Y型アンテナ以外のアンテナにより構成されて 、てもよ 、。例えば、 図 21に示すように、反射層 12gは、マトリクス状に配列された複数の「Y」字状のアン テナ 24により構成されていてもよい。尚、各アンテナ 24は、各々、アンテナ中心から 相互に 120° の角度をなして放射状に略同一長さでもって延びる 3本の線分状の第 1エレメント部 24aにより構成されて 、る。  The example of the reflective layer 12 configured by the TY antenna has been described above. However, the reflective layer 12 may be configured by an antenna other than the TY antenna. For example, as shown in FIG. 21, the reflective layer 12g may be composed of a plurality of “Y” -shaped antennas 24 arranged in a matrix. Each antenna 24 is constituted by three line-shaped first element portions 24a extending radially at substantially the same length at an angle of 120 ° from the antenna center.
[0103] このように、「Y」字状のアンテナが配列されて 、る場合であっても、液状電波反射 材料の滲みや意図せぬ液状電波反射材料の流動が生じると、第 1エレメント部 24a の長さにばらつきが生じるため、所望の電波遮蔽特性が得られなくなる。従って、反 射層 12gのように、「Y」字状のアンテナが配列されている場合においても、コーティン グ膜 11を設けておくことが有効である。  [0103] As described above, even when the "Y" -shaped antenna is arranged, if the liquid radio wave reflecting material bleeds or the unintended flow of the liquid radio wave reflecting material occurs, the first element portion Since the length of 24a varies, the desired radio wave shielding characteristics cannot be obtained. Therefore, it is effective to provide the coating film 11 even when “Y” -shaped antennas are arranged like the reflective layer 12g.
[0104] (変形例 8)  [Variation 8]
本変形例 8は、上記変形例 7のさらなる変形例である。上記変形例 7では、反射層 1 2gが 1種類のアンテナ 24のみにより構成されているのに対し、本変形例 8では、反射 層 12hは、相互に大きさの異なる 2種類の「Y」字状アンテナ 25、 26により構成されて いる。この構成によれば、相互に周波数の異なる複数種類の電波の遮蔽が可能な電 波遮蔽体を実現することができる。  The present modification 8 is a further modification of the modification 7. In Modification 7 above, the reflective layer 12 2g is composed of only one type of antenna 24, whereas in Modification 8, the reflective layer 12h has two types of “Y” characters with different sizes. The antennas 25 and 26 are used. According to this configuration, it is possible to realize a radio wave shield that can shield multiple types of radio waves having different frequencies.
[0105] 図 22に示すように、本変形例 8では、比較的大きなアンテナ 25が、第 1エレメント部 同士を対向させるように配列されている。具体的には、あるアンテナ 25の 3本の第 1 エレメント部のそれぞれに異なるアンテナ 25の第 1エレメント部が平行に且つ密に対 向するように配列されている。そして、比較的大きなアンテナ 25により区画形成され た六角形状の領域のそれぞれに、比較的小さなアンテナ 24がひとつずつ配置され ている。このような配列にすることによって、アンテナ 25の特定周波数の電波に対す る電波遮蔽率を向上することができる。  As shown in FIG. 22, in Modification 8, relatively large antennas 25 are arranged so that the first element portions face each other. Specifically, the first element parts of different antennas 25 are arranged in parallel and densely in each of the three first element parts of an antenna 25. One relatively small antenna 24 is disposed in each of the hexagonal regions defined by the relatively large antenna 25. By adopting such an arrangement, it is possible to improve the radio wave shielding rate of the antenna 25 against radio waves of a specific frequency.
[0106] 本変形例 8の場合は、アンテナ 25の第 1エレメント部同士が緊密に対向しているた め、液状電波反射材料の滲みや意図せぬ液状電波反射材料の流動により、特に隣 接するアンテナ 25が相互に接触してしまいやすい。従って、本変形例 8のようなアン テナ配列の場合は、特にコーティング膜 11を設けることが有効である。 [0106] In the case of Modification 8, since the first element portions of the antenna 25 are closely opposed to each other, the liquid radio wave reflection material may spread out and the liquid radio wave reflection material may flow unintentionally. The antennas 25 in contact with each other are likely to come into contact with each other. Therefore, in the case of the antenna arrangement as in Modification 8, it is particularly effective to provide the coating film 11.
[0107] (変形例 9)  [0107] (Modification 9)
図 23は、変形例 9における反射層 12iの平面図である。  FIG. 23 is a plan view of the reflective layer 12i in Modification 9.
[0108] 本実施例 10では、反射層 12iは、所謂エルサレムクロス型の複数のアンテナ 27に より構成されている。各アンテナ 27は、各々、アンテナ中心力も相互に 90° の角度 をなして放射状に略同一長さでもって延びる 4本の線分状の第 1エレメント部 27aと、 各第 1エレメント部の外側端に(典型的には垂直に)結合された線分状の第 2エレメン ト部  In the tenth embodiment, the reflective layer 12i is composed of a plurality of so-called Jerusalem cross-type antennas 27. Each antenna 27 has four linear first element portions 27a extending radially with substantially the same length at an angle of 90 ° to each other, and the outer end of each first element portion. Line-shaped second element connected to each other (typically vertically)
27bとを有するものである。このような形状のアンテナ 27により反射層を構成すること によって、上記変形例 7、 8で説明した「Y」字状のアンテナにより反射層を構成する 場合よりも高い周波数選択性 (但し、所謂 Τ—Υ型アンテナにより反射層を構成した 場合よりは低い周波数選択性)を実現することができる。  27b. By configuring the reflective layer with the antenna 27 having such a shape, a frequency selectivity higher than that in the case where the reflective layer is configured with the “Y” -shaped antenna described in the modified examples 7 and 8 (however, the so-called Τ —Frequency selectivity lower than in the case where the reflecting layer is formed by a saddle type antenna can be realized.
[0109] 複数のアンテナ 27は、隣接するアンテナ 27の第 2エレメント部 27b同士が対向する ように (好ましくは、平行に且つ密に対向するように)マトリクス状に配列されている。こ の配列によれば、アンテナ 27の特定周波数の電波に対する電波遮蔽率をさらに向 上することができる。 The plurality of antennas 27 are arranged in a matrix so that the second element portions 27b of the adjacent antennas 27 face each other (preferably so as to face each other in parallel and densely). According to this arrangement, it is possible to further improve the radio wave shielding rate of the antenna 27 with respect to radio waves of a specific frequency.
[0110] このように、エルサレムクロス型アンテナが配列されている場合であっても、上記 T —Y型アンテナや「Y」字状のアンテナが配列されている場合と同様に、各エレメント 部の長さにばらつきが生じると所望の電波遮蔽特性が得られなくなる。従って、反射 層 12iのように、エルサレムクロス型アンテナが配列されている場合においても、コー ティング膜 11を設けておくことが有効である。  [0110] As described above, even when the Jerusalem cross-type antenna is arranged, each of the element portions is similar to the case where the T-Y antenna and the "Y" -shaped antenna are arranged. If the length varies, a desired radio wave shielding characteristic cannot be obtained. Therefore, it is effective to provide the coating film 11 even when the Jerusalem cross-type antenna is arranged like the reflective layer 12i.
[0111] (変形例 10)  [0111] (Modification 10)
図 24は、変形例 10における反射層 1¾の平面図である。  FIG. 24 is a plan view of the reflecting layer 1¾ in the modified example 10.
[0112] 本変形例 10は、上記変形例 9のさらなる変形例である。上記変形例 9では、反射層 12iが 1種類のアンテナ 27のみにより構成されているのに対し、本変形例 10では、反 射層 12jは、相互に大きさの異なる 2種類のエルサレムクロス型アンテナ 28、 29により 構成されている。この構成によれば、相互に周波数の異なる複数種類の電波の遮蔽 が可能な電波遮蔽体を実現することができる。 [0112] The present modification 10 is a further modification of the modification 9. In Modification 9 above, the reflection layer 12i is composed of only one type of antenna 27, whereas in this Modification 10, the reflection layer 12j has two types of Jerusalem cross-type antennas having different sizes. It consists of 28 and 29. According to this configuration, it is possible to shield a plurality of types of radio waves having different frequencies. It is possible to realize a radio wave shield capable of.
[0113] 図 24に示すように、本変形例 10では、複数のアンテナ 28が、隣接して配置された アンテナ 28の第 2エレメント部 28b同士が対向するように (好ましくは、平行に且つ密 に対向するように)マトリクス状に配列されている。そして、比較的大きなアンテナ 28 により区画形成された領域のそれぞれに、比較的小さなアンテナ 29がひとつずつ配 置されている。  [0113] As shown in Fig. 24, in Modification 10, the plurality of antennas 28 are arranged so that the second element portions 28b of the antennas 28 arranged adjacent to each other face each other (preferably in parallel and densely). Are arranged in a matrix). One relatively small antenna 29 is arranged in each of the areas partitioned by the relatively large antenna 28.
[0114] このような配列にすることによって、アンテナ 28の特定周波数の電波に対する電波 遮蔽率を向上することができる。  [0114] With such an arrangement, it is possible to improve the radio wave shielding rate with respect to radio waves of a specific frequency of the antenna 28.
[0115] 本変形例 10のようなアンテナ配列の場合、液状電波反射材料の滲みや意図せぬ 液状電波反射材料の流動が生じると、緊密に対向配置された第 2エレメント部 28b同 士が接触してしまう虞がある。また、近接しているアンテナ 28の第 2エレメント部 28bと アンテナ 29の第 2エレメント部 29bとが接触してしまう虡もある。従って、本変形例 10 のようなアンテナ配列の場合にもコーティング膜 11を設けることが有効である。  [0115] In the case of the antenna arrangement as in Modification 10, if the liquid radio wave reflecting material bleeds or the unintentional flow of the liquid radio wave reflecting material occurs, the second element part 28b arranged in close contact with each other comes into contact with each other. There is a risk of it. In addition, the second element portion 28b of the antenna 28 and the second element portion 29b of the antenna 29 that are close to each other may come into contact with each other. Therefore, it is effective to provide the coating film 11 even in the case of the antenna arrangement as in the modification 10.
[0116] (変形例 11)  [0116] (Modification 11)
図 25は、変形例 11における反射層 12kの平面図である。  FIG. 25 is a plan view of the reflective layer 12k in Modification 11.
[0117] 本変形例 11は、アンテナ 28、 29の配列のみを異にする上記変形例 10のさらなる 変形例である。  [0117] This modification 11 is a further modification of the modification 10 in which only the arrangement of the antennas 28 and 29 is different.
[0118] 本変形例 11では、図 25において横方向に第 2エレメント部 28b同士が対向する( 好ましくは、平行に且つ密に対向する)ように配列されたアンテナ 28の列と、同方向 に第 2エレメント部 29b同士が対向する(好ましくは、平行に且つ密に対向する)ように 配列されたアンテナ 29の列と力 図 25において縦方向に交互に配列されている。こ の  [0118] In Modification 11, in the same direction as the array of antennas 28 arranged so that the second element portions 28b face each other in the lateral direction in FIG. 25 (preferably, face in parallel and densely). The rows of antennas 29 arranged in such a manner that the second element portions 29b face each other (preferably in parallel and close to each other) and the force are alternately arranged in the vertical direction in FIG. this
ように配列することによって、アンテナ 28、 29それぞれの特定周波数の電波に対す る電波遮蔽率を向上することができる。  By arranging in this way, it is possible to improve the radio wave shielding rate against radio waves of specific frequencies of the antennas 28 and 29, respectively.
[0119] 本変形例 11の場合も上記変形例 10の場合と同様に、第 2エレメント部 28b相互間 、第 2エレメント部 29b相互間、第 2エレメント部 28bと第 2エレメント部 29bとの間で接 触が生じないように、且つ各エレメント部の長さにばらつきが生じないように、コーティ ング膜 11を形成しておくことが有効である。 実施例 [0119] In the case of Modification 11 as well, in the case of Modification 10 above, between the second element portions 28b, between the second element portions 29b, and between the second element portion 28b and the second element portion 29b. It is effective to form the coating film 11 so that contact does not occur and the length of each element portion does not vary. Example
[0120] 図 15 (変形例 3)に示す構成の電波遮蔽体を作製し、それを実施例とした。具体的 には、まず、東洋染化社製 # 0717— CU (ベージュ)からなる生地 (基材)表面をウレ タン榭脂によりロールコ一ター法を用 ヽてコ一ティングした。  [0120] A radio wave shield having the configuration shown in Fig. 15 (Modification 3) was produced and used as an example. Specifically, first, the surface of a dough (base material) made of Toyo Senka Co., Ltd. # 0717- CU (beige) was coated using urethane roll resin using a roll coater method.
[0121] 次に、ポリエステル榭脂中に銀微粒子が 63wt%で分散混入させた銀ペーストを用 いて、ウレタン榭脂にてコーティングした生地表面に、スクリーン印刷法によりアンテ ナを作製した。作製されたアンテナには、銀ペーストの滲みはほとんど視認されなか つた。尚、第 1エレメント部及び第 2エレメント部の線幅は 1. 58mm、第 1エレメント部 の長さは 12. 94mm,第 2エレメント部の長さは 9. 32mmとした。  [0121] Next, an antenna was prepared by screen printing on the surface of the fabric coated with urethane resin using silver paste in which 63% by weight of silver fine particles were dispersed and mixed in polyester resin. On the fabricated antenna, almost no silver paste bleeding was visible. The line width of the first element part and the second element part was 1.58 mm, the length of the first element part was 12.94 mm, and the length of the second element part was 9.32 mm.
[0122] 得られた電波遮蔽体の透過減衰量を、アジレント社製ネットワークアナライザを用い て測定した。  [0122] The transmission attenuation of the obtained radio wave shield was measured using a network analyzer manufactured by Agilent.
[0123] 比較例として、ウレタン榭脂によるコーティング膜を形成しないこと以外は上記実施 例と同様の工程により電波遮蔽体を作製し、同様に、透過減衰量を測定した。尚、比 較例では、作製されたアンテナに、銀ペーストの滲みが視認された。  [0123] As a comparative example, a radio wave shield was produced by the same process as in the above example except that a coating film of urethane resin was not formed, and the transmission attenuation was measured in the same manner. In the comparative example, bleeding of the silver paste was visually recognized on the manufactured antenna.
[0124] 図 26は、実施例及び比較例の各透過減衰量を併せて示す特性図である。この図 力も判るように、実施例では、 2. 4GHz付近に強いピークが観測された。このことより 、実施例は、比較的高い周波数選択性を有するものであることが判った。それに対し て、比較例に関しては、 2. 4GHz付近で若干透過減衰量が大きくなつているものの、 ピークらしいピークは観測されな力つた。このことより、比較例は、ほとんど周波数選 択性を有さな 、ものであることが判った。  FIG. 26 is a characteristic diagram showing the transmission attenuation amounts of the example and the comparative example together. As can be seen from this graph, in the example, a strong peak was observed around 2.4 GHz. From this, it was found that the example has a relatively high frequency selectivity. On the other hand, in the comparative example, although the transmission attenuation increased slightly in the vicinity of 2.4 GHz, the peak-like peak was not observed. From this, it was found that the comparative example has almost no frequency selectivity.
[0125] 以上の結果より、アンテナの形成に先立て生地の表面に榭脂コーティングを施して おくことによって、銀ペーストの滲みを抑制することができ、周波数選択性の高い電 波遮蔽体を作製できることが判った。  [0125] From the above results, it is possible to suppress the bleeding of the silver paste by applying the grease coating on the surface of the fabric prior to the formation of the antenna, and to produce a radio frequency shield with high frequency selectivity. I found that I can do it.
産業上の利用可能性  Industrial applicability
[0126] 以上説明したように、本発明に係る電波遮蔽体は、特定周波数の電波に対する高 い電波遮蔽性を有し、壁紙、間仕切り(パーティション)、布(ロールスクリーン)、窓ガ ラス、外壁パネル、屋根板、天井板、内壁パネル、床板、電波遮蔽体等として有用で ある。 [0126] As described above, the radio wave shielding body according to the present invention has high radio wave shielding properties against radio waves of a specific frequency, and includes wallpaper, partitions (partitions), cloth (roll screens), window glass, outer walls. It is useful as a panel, roof panel, ceiling panel, inner wall panel, floor panel, radio wave shield, etc.

Claims

請求の範囲 The scope of the claims
[1] 表面に複数の微細孔及び複数の凹凸のうちの少なくとも一方を有する基材と、 上記基材の表面上に形成されたコーティング膜と、  [1] A substrate having at least one of a plurality of micropores and a plurality of irregularities on the surface, a coating film formed on the surface of the substrate,
上記コーティング膜の上に電波反射材料を使用材料として形成された複数の電波 反射アンテナとを備えて!/ヽることを特徴とする電波遮蔽体。  A radio wave shielding body comprising: a plurality of radio wave reflection antennas formed using a radio wave reflection material as a material on the coating film!
[2] 請求項 1に記載された電波遮蔽体にお!、て、  [2] In the radio wave shield according to claim 1,!
上記基材は、布状体である電波遮蔽体。  The base material is a radio wave shield which is a cloth-like body.
[3] 請求項 1に記載された電波遮蔽体にお!、て、 [3] In the radio wave shield according to claim 1,!
上記コーティング膜は、実質的に榭脂からなる電波遮蔽体。  The coating film is a radio wave shield substantially made of a resin.
[4] 請求項 1に記載された電波遮蔽体にお!、て、 [4] In the radio wave shield according to claim 1,!
上記電波反射材料は、導電性材料を含有してなる電波遮蔽体。  The radio wave reflection material is a radio wave shield containing a conductive material.
[5] 請求項 1に記載された電波遮蔽体にお!、て、 [5] In the radio wave shield according to claim 1,!
上記各電波反射アンテナは、各々、アンテナ中心力も相互に略 120° の角度をな して放射状に略同一長さでもって延びる 3本の線分状の第 1エレメント部と、該各第 1 エレメント部の外側端に結合された線分状の第 2エレメント部とを有する電波遮蔽体。  Each of the radio wave reflecting antennas has three linear first element portions extending radially at substantially the same length at an angle of about 120 ° with respect to the antenna central force, and the first element. A radio wave shield having a line-shaped second element part coupled to the outer end of the part.
[6] 表面に複数の微細孔及び複数の凹凸のうちの少なくとも一方を有する基材と、該基 材上に形成された複数の電波反射アンテナとを備えた電波遮蔽体を製造する方法 であって、 [6] A method of manufacturing a radio wave shielding body including a base material having at least one of a plurality of micropores and a plurality of irregularities on a surface and a plurality of radio wave reflection antennas formed on the base material. And
上記基材の表面をコーティング膜で被覆した後に、電波反射材料を使用して上記 複数の電波反射アンテナを形成することを特徴とする電波遮蔽体の製造方法。  A method of manufacturing a radio wave shield, wherein the plurality of radio wave reflection antennas are formed using a radio wave reflection material after the surface of the substrate is coated with a coating film.
PCT/JP2007/058106 2006-04-18 2007-04-12 Radio wave shielding body and method of producing the same WO2007119798A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020087028038A KR101050026B1 (en) 2006-04-18 2007-04-12 Radio shield and its manufacturing method
GB0820928A GB2451389B (en) 2006-04-18 2007-04-12 Radio shielding member and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006114310A JP4171500B2 (en) 2006-04-18 2006-04-18 Radio wave shield and manufacturing method thereof
JP2006-114310 2006-04-18

Publications (1)

Publication Number Publication Date
WO2007119798A1 true WO2007119798A1 (en) 2007-10-25

Family

ID=38609558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058106 WO2007119798A1 (en) 2006-04-18 2007-04-12 Radio wave shielding body and method of producing the same

Country Status (4)

Country Link
JP (1) JP4171500B2 (en)
KR (1) KR101050026B1 (en)
GB (1) GB2451389B (en)
WO (1) WO2007119798A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148680A1 (en) * 2006-06-19 2007-12-27 Mitsubishi Cable Industries, Ltd. Electromagnetic wave shielding material and electromagnetic wave absorber
CN103811105B (en) * 2012-11-09 2016-11-16 深圳欧菲光科技股份有限公司 Transparent conductive body and preparation method thereof
US9510456B2 (en) 2012-11-09 2016-11-29 Shenzhen O-Film Tech Co., Ltd. Transparent conductor and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251784A (en) * 1997-12-04 1999-09-17 Toppan Printing Co Ltd Electromagnetic shield and production thereof
JP2001262732A (en) * 2000-03-15 2001-09-26 Fdk Corp Electric wave absorbing construction material, and method of manufacturing the same
JP2002185184A (en) * 2000-12-18 2002-06-28 Dainippon Printing Co Ltd Electromagnetic shield member and its manufacturing method
JP2003060430A (en) * 2001-08-17 2003-02-28 Mitsubishi Heavy Ind Ltd Antenna for reducing unwanted radiation
JP2003304087A (en) * 2002-04-10 2003-10-24 Toppan Printing Co Ltd Electromagnetic wave reflecting material
JP2005142748A (en) * 2003-11-05 2005-06-02 Yokohama Rubber Co Ltd:The Method for correcting frequency selection board
JP2005187969A (en) * 2003-12-25 2005-07-14 Toppan Printing Co Ltd Electromagnetic wave shielding paper, paper packaging material and laminated material for paper container using the same
WO2006088063A1 (en) * 2005-02-18 2006-08-24 Mitsubishi Cable Industries, Ltd. Radio wave shielding body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208795A (en) * 2001-01-12 2002-07-26 Toppan Printing Co Ltd Electromagnetic shield material
JP3647447B2 (en) * 2003-05-28 2005-05-11 ニッタ株式会社 Electromagnetic wave absorber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251784A (en) * 1997-12-04 1999-09-17 Toppan Printing Co Ltd Electromagnetic shield and production thereof
JP2001262732A (en) * 2000-03-15 2001-09-26 Fdk Corp Electric wave absorbing construction material, and method of manufacturing the same
JP2002185184A (en) * 2000-12-18 2002-06-28 Dainippon Printing Co Ltd Electromagnetic shield member and its manufacturing method
JP2003060430A (en) * 2001-08-17 2003-02-28 Mitsubishi Heavy Ind Ltd Antenna for reducing unwanted radiation
JP2003304087A (en) * 2002-04-10 2003-10-24 Toppan Printing Co Ltd Electromagnetic wave reflecting material
JP2005142748A (en) * 2003-11-05 2005-06-02 Yokohama Rubber Co Ltd:The Method for correcting frequency selection board
JP2005187969A (en) * 2003-12-25 2005-07-14 Toppan Printing Co Ltd Electromagnetic wave shielding paper, paper packaging material and laminated material for paper container using the same
WO2006088063A1 (en) * 2005-02-18 2006-08-24 Mitsubishi Cable Industries, Ltd. Radio wave shielding body

Also Published As

Publication number Publication date
GB0820928D0 (en) 2008-12-24
GB2451389B (en) 2011-04-06
JP2007285026A (en) 2007-11-01
JP4171500B2 (en) 2008-10-22
KR101050026B1 (en) 2011-07-19
GB2451389A (en) 2009-01-28
KR20080111541A (en) 2008-12-23

Similar Documents

Publication Publication Date Title
WO2006088063A1 (en) Radio wave shielding body
JP4869668B2 (en) Radio wave shield
WO2007142125A1 (en) Radio wave shielding partitioning plane material and method for manufacturing same
KR101306249B1 (en) Electromagnetic wave shielding material and electromagnetic wave absorber
CN108777359A (en) Metamaterial antenna cover based on frequency trigger mechanism
CN102724856A (en) Multi-layer electromagnetic wave-absorbing structure and preparation method
WO2007080368A1 (en) Absorber
WO2007119798A1 (en) Radio wave shielding body and method of producing the same
CN111403917A (en) Ultra-thin broadband metamaterial wave absorber unit
KR101664995B1 (en) Sheet for absorbing electromagnetic wave selectively
TWI521785B (en) Frequency selective surface (fss) structure for improving the quality of wireless communication
JP4838053B2 (en) Radio wave shielding partition surface material and manufacturing method thereof
JP4734121B2 (en) Radio wave shield
JP4838638B2 (en) Radio wave shield and manufacturing method thereof
JP4757169B2 (en) Frequency selective membrane
CN114221139A (en) Band gap type wave absorbing plate with wide reflection band
CN101120628B (en) Radio wave shielding body
JP4644543B2 (en) Radio wave shield
JP2008035232A (en) Radio wave shielding device
JP2006233457A (en) Radio shielding body
CN210489833U (en) Frequency selective surface structure with high angular wave-transmitting rate
JP7492072B1 (en) Electromagnetic wave reflector and electromagnetic wave reflector
JP2007336415A (en) Frequency selection film, its manufacturing method, and radio wave shield material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 0820928

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20070412

WWE Wipo information: entry into national phase

Ref document number: 0820928.0

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 07741542

Country of ref document: EP

Kind code of ref document: A1