WO2007119793A1 - Fluid conveyance hose - Google Patents

Fluid conveyance hose Download PDF

Info

Publication number
WO2007119793A1
WO2007119793A1 PCT/JP2007/058100 JP2007058100W WO2007119793A1 WO 2007119793 A1 WO2007119793 A1 WO 2007119793A1 JP 2007058100 W JP2007058100 W JP 2007058100W WO 2007119793 A1 WO2007119793 A1 WO 2007119793A1
Authority
WO
WIPO (PCT)
Prior art keywords
hose
fluid transport
strain sensor
transport hose
strain
Prior art date
Application number
PCT/JP2007/058100
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Kumagai
Tomohiro Kobayashi
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006109970A external-priority patent/JP2007285321A/en
Priority claimed from JP2006110919A external-priority patent/JP2007285349A/en
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2007119793A1 publication Critical patent/WO2007119793A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • F16L11/133Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting buoyant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/02Flanged joints the flanges being connected by members tensioned axially
    • F16L23/024Flanged joints the flanges being connected by members tensioned axially characterised by how the flanges are joined to, or form an extension of, the pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/01Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses adapted for hoses having a multi-layer wall

Definitions

  • the present invention for example, connects a plurality of pipes to form a hose line to detect a fluid transport hose suitable for transporting a fluid that can be made into a liquid, in particular, distortion generated in the hose.
  • the present invention relates to a strain sensor mounting structure for taking out.
  • hoses used to load or unload crude oil, refined oil, or other liquids to tankers moored offshore, etc.
  • These hose lines are laid on the water, in the water or at the bottom of the water, and supply liquid between tankers and buoys or quay facilities, between buoys and quay facilities, etc. It works as much as possible.
  • Such a hose line is, for example, under the non-use condition of the hose line due to the influence of waves, winds, etc., the resistance of water during towing, etc. Since the deformation is caused by the transport pressure of the transport fluid at the time of stoppage, the stress deterioration due to the strain history of the hose line and thus each transport hose constituting it is inevitable.
  • Patent Document 1 a fluid transport hose as disclosed in Patent Document 1 has been proposed for the purpose of accurately estimating the replacement time for each fluid transport hose in use.
  • This fluid transport hose comprises a hose body and connecting flanges attached to both ends thereof.
  • the end portion of the pressure-resistant reinforcing layer embedded in the hose body is provided on the outer peripheral surface of the cylindrical portion provided on the connecting flange and inserted into the hose body via an annular rib disposed on the outer peripheral surface.
  • a strain sensor that detects the stress generated in the hose and outputs an electric signal corresponding to the stress value on the outer peripheral surface of the cylindrical portion covered by the outer rubber layer, the cover rubber layer, etc. of the intermediate rubber
  • a transbonder is provided that accesses information in its storage unit by an electromagnetic wave signal of a predetermined frequency.
  • the stress generated in the hose is detected by a strain sensor and output to the information storage means of the transbonder, and the information storage means uses the stress value equal to or higher than a predetermined threshold value.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-153284
  • a strain sensor and a transbonder disposed on the outer peripheral surface of the cylindrical portion of the connecting flange are disposed inside the outer rubber layer and the cover rubber layer of the intermediate rubber.
  • These strain sensors, etc. are to be buried, and it is necessary to arrange them in the cylindrical part of the connecting flange during the production process of the transport hose.
  • the rubber layer and cover rubber layer, etc. are not damaged, it is necessary to peel off the cylinder part once.After repair and replacement, etc., they are liquid-tight again. And There was a problem that it was necessary to embed with a predetermined pressure resistance.
  • the first invention is to solve the first problem of the prior art, and its object is to provide heat resistance and pressure resistance to a strain sensor and the like. Providing a fluid transport hose that makes it easy and easy to attach, remove, repair, and replace strain sensors without affecting the hose body. There is.
  • the second invention has an object to solve the second problem of the prior art, and the object is to sacrifice the durability of the strain sensor.
  • the purpose of the present invention is to provide a fluid transport hose capable of detecting stress with high accuracy.
  • the fluid transport hose includes a hose body having a plurality of pressure-proof reinforcement layers and the like, and a cylindrical portion inserted into the hose body.
  • a pair of connecting flanges attached to the hose body, and at least one of the connecting flanges, and at least a strain sensor on the outer peripheral surface of the cylindrical portion of the exposed portion from the hose body.
  • the physical strength is also provided independently, and preferably, the strain sensor is protected by a waterproof means that also has an equal force of a polymer material.
  • the strain sensor is disposed on the protruding base portion of the rigid protection member provided with the cylindrical partial force protruding radially outward, and preferably, the connection flange of the rigid protection member is provided.
  • the shape in the radial cross section including the axis is L-shaped to cover the strain sensor in a bowl shape, and more preferably, this L-shaped rigid protection member projects in a bowl shape toward the flange portion side of the connecting flange. Arrange in a posture to
  • the strain sensors are disposed at least at four locations spaced equally in the circumferential direction of the cylindrical portion.
  • the information processing member can be disposed adjacent to the inside or outside of the cylindrical portion in the radial direction or adjacent to the axial direction thereof.
  • the rigid protective member is provided continuously over the entire circumference of the cylindrical portion.
  • a fluid transport hose includes a pair of connecting flanges, a hose body having an end joined to each of the cylindrical portions serving as the bases thereof, and a stress state of the hose body.
  • the strain sensor is spaced from the connection flange at a longitudinal position where the flange face of the connection flange is also separated by a distance of 1.5 m or less. It is the fluid transport hose which arranges.
  • the strain sensor may be disposed on the surface of the hose body, or may be disposed embedded in the hose body. It is preferable that the strain sensors are arranged in four or more places on the circumference. Further, a power supply wiring for supplying the strain sensor, and a signal wiring for extracting a signal from the strain sensor. It is even more preferable to connect the wiring to a terminal connector provided on the connecting flange.
  • the strain sensor detects the strain generated in the fluid transport hose, directly on the connection flange, on the outer peripheral surface of the exposed portion of the cylindrical portion of the connection flange from the hose body.
  • the strain sensor can be attached to a predetermined position of the cylindrical portion after the vulcanization molding of the hose body is completed. In addition to eliminating the need to provide heat resistance and pressure resistance to the sensor, and repairing and replacing the mounted strain sensor without affecting the hose body, it is simple and quick. be able to.
  • the strain sensor when the strain sensor is protected by a waterproof means having a force equal to that of a polymer material, the waterproof means is required to be attached or detached when the sensor is repaired or replaced. As such, since it is completely unrelated to the pressure resistance and other performance of the hose body, it can be removed and attached relatively easily.
  • the strain sensor can effectively protect against the force such as the collision between the hoses and the collision with the foreign matter.
  • the strain sensor is provided to protrude radially outward from the cylindrical portion. It is effective to dispose it on the protruding base of the rigid protection member and to support various external forces on the rigid protection member.
  • the rigidity protection member has an L-shaped cross-section in the radial direction that covers the strain sensor like a bowl, so that the rigidity protection member can exert an external force support function over a wider range. There are benefits to get.
  • such an L-shaped rigidity protecting member is provided in a posture that protrudes like a hook toward the flange portion side of the connecting flange, so that the attachment / detachment work of the strain sensor and the like can be facilitated.
  • This is suitable for clarifying the boundary between the exposed part from the hose body and the non-exposed part of the hose body, and realizing sufficient support by the protective member of the external force due to deformation of the hose body. .
  • the strain sensors are arranged at four or more positions that are equally spaced in the circumferential direction of the cylindrical portion, for example, the fluid transport hose that floats on the water surface, and thus the hose line, is in the horizontal plane. It is possible to detect the generated strain in each direction sufficiently accurately, for example, when bending deformation is applied in Fig. 1 or when bending deformation occurs in a vertical plane.
  • the storage unit stores the strain amount, the stress value, and the like detected by each strain sensor together with time data, and the central processing unit performs necessary processing on the stored information. Can be applied.
  • a required number of strain sensors may be provided at a required position in the circumferential direction by, for example, on-site construction. It can be simply arranged as expected.
  • the strain sensor is disposed at a position in the longitudinal direction within a distance force of 1.5 m from the flange surface of the connection flange and separated from the connection flange force, so that details will be described later.
  • the strain measurement can be performed with high accuracy, and the strain sensor can be prevented from being damaged by bending deformation, thereby ensuring durability.
  • strain sensor when the strain sensor is affixed to the surface of the hose body, maintenance of the strain sensor can be facilitated, while when the strain sensor is embedded in the hose body. Can make the strain measurement accurate by strengthening the adhesion between the strain sensor and the surrounding rubber part. In addition, by placing strain sensors at four or more locations on the circumference, stress in multiple directions can be obtained. Furthermore, a power supply wiring to be supplied to the strain sensor and a signal wiring for taking out a signal from the strain sensor are provided, and these wirings are connected to a terminal connector provided on the connecting flange, for example, at one point mooring. The stress state of the fluid transport hose can be centrally managed with the equipment installed in the buoy.
  • FIG. 1 is a schematic perspective view showing an example of forming a hose line by a fluid transport hose according to the first invention.
  • FIG. 2 is a cross-sectional view of a principal part showing a fluid transport hose according to an embodiment of the first invention in a radial cross section including a central axis.
  • FIG. 3 is a partially enlarged view showing a connecting portion to a mooring buoy at one end of a hose line.
  • FIG. 4 is a block diagram illustrating an information management system for a fluid transport hose.
  • FIG. 5 is a schematic perspective view showing an example of forming a hose line by a fluid transport hose according to the second invention.
  • FIG. 6 is a cross-sectional view of an essential part showing a fluid transport hose according to an embodiment of the second invention in a radial cross section including a central axis.
  • FIG. 7 is a cross-sectional view of the main part showing a modification of the embodiment according to the second invention in a radial cross section including a central axis.
  • FIG. 1 is a schematic perspective view showing an application example of the fluid transport hose according to the first invention.
  • 1 shows the fluid transport hose according to the present invention
  • 2 shows its hose body
  • 3 Shows a pair of connecting flanges attached to respective end portions of each hose body 2.
  • hose line 4 Usually, dozens to dozens of fluid transport hoses 1 are interconnected by connecting flanges 2 to form a hose line 4 as shown in the figure.
  • the tanker 5 and the quay can be used to transfer liquids and other fluids, such as crude oil and refined oil, through the buoy hose 7 and a submarine nove (not shown). Can be used to load or unload from a facility.
  • the fluid transport hose 1 floating on the sea surface can be an float float hose itself having a buoyancy material, or a so-called bead float hose in which the buoyancy material is detachable. In this latter hose, the buoyancy material must be attached and detached, but the hose can be kept small in outer diameter, and the size of the buoyancy can be selected as appropriate.
  • Fig. 2 is a cross-sectional view of the principal part showing one end portion of the latter type of fluid transport hose 1 in a radial cross section including the central axis thereof.
  • the fluid transport hose 1 shown in the figure has an inner rubber layer 9 of the hose body 2 on the outer peripheral surface of the cylindrical portion 8 under the insertion posture of the cylindrical portion 8 of the connecting flange 3 into the hose body 2.
  • the end portions of the three pressure-proof reinforcing layers 10, 11, 12 that are vulcanized and bonded sequentially to the outer peripheral side of the inner rubber 9 are connected to the three strips provided in the middle position of the cylindrical portion 8.
  • Each annular rib 13, 14, 15 [against each hoofed fibre 16, 17, 18 is fixed by turning and between the pressure-proof reinforcement layers 11, 12, the body
  • An intermediate rubber layer 20 formed by embedding a wire 19 in a helical shape is interposed, and an outer rubber layer 21 is laminated on the outer peripheral side of the outermost pressure-resistant reinforcing layer 12, and this outer rubber layer 21 and each The basic structure is to vulcanize and bond the intermediate rubber 22 to the cylindrical portion 8.
  • the rigid protective member 23 having a cross-sectional force-like shape is provided so as to protrude outward in the radial direction of the outer peripheral surface force of the cylindrical member 8.
  • the arrangement form is such that the bent end portion 23a protrudes in a hook shape toward the flange portion 24 side of the connecting flange 3.
  • a plurality of such rigid protective members 23 can be arranged at predetermined intervals in the circumferential direction of the cylindrical portion 8, but preferably, one protective member 23 is cylindrical. Provided continuously throughout the entire circumference of part 8.
  • the outer rubber layer 21 is vulcanized and bonded to the cylindrical portion 8 on the flange portion 24 side of the annular rib 15 closest to the shaft end side, and is continuous over the entire circumference of the cylindrical portion 8.
  • the rigid protective member 23 is also vulcanized and bonded to the radially outward projecting portion 23b, thereby increasing the strength of the outer rubber layer 21, and consequently the hose body 2, to the connecting flange 3.
  • the outer rubber layer 21 can be vulcanized and bonded only to the peripheral surface of the cylindrical portion 8 as indicated by phantom lines in the figure.
  • the protruding portion 23 b of the rigid protection member 23 is covered with the bent end portion 23 a like a bowl at a position adjacent to the flange portion 24 side.
  • the strain sensors 25 are preferably arranged at four or more locations, for example, four locations, spaced at equal intervals in the circumferential direction. [0037] These four strain sensors 25 function to detect, for example, each of tensile strain and compressive strain for each bending deformation of the fluid transport hose 1 in the horizontal plane and in the vertical plane. be able to.
  • strain sensors 25 at six or more locations that oppose each other in the diametrical direction, strain due to bending deformation in the fluid transport hose 19 and other surfaces can also be detected effectively.
  • strain sensor 25 disposed in this way is entirely covered with a waterproofing means 26 having a polymer material or other force.
  • an information processing member including a central processing unit, a clock unit, a storage unit, and the like is connected to the strain sensor 25, for example, inside or outside in the radial direction of the cylindrical portion 8, or inside the axial direction. Alternatively, it can be arranged adjacent to the outside.
  • the fluid transport hose 1 having the above-described configuration is required after vulcanization adhesion between the connecting flange 3 and the hose body 2 before or after mounting the rigidity protection member 23, etc. It can be manufactured by fixing the strain sensor 25 etc. to this part and applying waterproof treatment.
  • the wiring for supplying power to the strain sensor 25 and taking out the output signal from the strain sensor 25 can be embedded in the outer rubber layer 21, for example.
  • the end can be connected, for example, to a terminal connector located on the nearest flange portion 24. According to this, power is supplied from the single point mooring buoy 6 to the strain sensors 25 of all the fluid transport hoses 1 connected in series, and the signal of each strain sensor 25 force is sent to the single point mooring buoy 6. You can collect.
  • each strain sensor 25 of the fluid transport hose 1 is performed by, for example, as shown in FIG. 3, the connection flange 3 of the fluid transport hose 1 at one end of the hose line 4 at one point. This can be done by using a management system such as that illustrated in the block diagram of FIG. 4 that is disposed in the mooring buoy 6 while being connected to the connecting portion 27 of FIG.
  • This management system includes a terminal 27 at the connecting part 27 to which the wiring from the fluid transport hose 1 is connected.
  • the information accumulating device 29 for accumulating information transmitted from the strain sensor 25 of each fluid transport hose 1 through the null connector 28 and the information accumulating device 29 are operated, and the fluid transport hose 1 is connected via the wiring.
  • the information integration device 29 is provided on the upper surface of the single-point mooring buoy 6 and connected to the portable combitor 31.
  • the external connection part 32 for taking out the information from each strain sensor 25 integrated in the outside as data is provided.
  • the external connection portion 32 is always covered with a waterproof cap or the like.
  • the information accumulating device 29 instructs the information processing member of each fluid transport hose 1 from the terminal connector 28 of the connecting portion 27 to read the information of each strain sensor 25 from the information processing member.
  • a central processing unit (CPU) 33 for collecting information and a recording unit 34 for recording signals transmitted from each fluid transport hose 1 are provided.
  • each fluid transport hose 1 is Electric power can be continuously supplied to the sensor 25, and the distortion generated in the hose can be continuously detected in each fluid transport hose 1.
  • each fluid transport hose 1 since the power supply device 30 for supplying power to the strain sensor 25 of each fluid transport hose 1 is installed in the single-point mooring buoy 6 that is a mooring facility, each fluid transport Compared with the case where the hose 1 is equipped with a power supply device, large electric power can be stably supplied to the strain sensor, and information on the fluid transport hose can be obtained stably.
  • the power supply device 30 is installed only at the mooring facility, there is an advantage that the maintenance of the power supply device is easier than when each fluid transport hose 1 is provided with the power supply device.
  • the strain sensor 25 in each fluid transport hose 1 constantly detects the strain in the fluid transport hose 1. For example, in the central processing section of the information processing member in the hose, the strain sensor 25 has a strain greater than the minimum set value. Detects the stress value at that time together with the time data of the clock part.
  • the central processing unit 33 of the information accumulating device 29 calls and executes the program stored in the storage unit 34, and sequentially executes the information processing member of each fluid transport hose 1 through the wiring at regular intervals.
  • the unique identification information and information read command are output.
  • each fluid transport hose 1 receives the unique identification information and information read command from the wiring, and the fluid transport hose stored in the received unique identification information and the storage unit in the information processing member If the identification information matches, the information processing member of the matched fluid transport hose 1 reads the distortion information together with the time data information from the storage unit, The information is output together with the unique identification information to the information accumulation device 29 of the single mooring buoy 6 through the wiring.
  • the central processing unit 33 of the information accumulation device 29 When the central processing unit 33 of the information accumulation device 29 receives strain information and time data information from each fluid transport hose 1, the central processing unit 33 stores the information in the storage unit 34 for each fluid transport hose.
  • the storage unit 34 stores the information of each sensor 25 for each fluid transport hose for a certain period in the past.
  • This information is transferred to the buoy 6 by the maintenance worker of the fluid transport hose, and the portable computer 31 as the information acquisition means is connected to the external connection portion 32 of the buoy 6.
  • the portable computer 31 As the information acquisition means is connected to the external connection portion 32 of the buoy 6.
  • Computer 31 force By displaying this information on the display unit, it is possible to detect the fluid transport hose 1 to which an abnormal or many external force has been applied, and based on this, the fluid transport hose 1 is damaged. It is possible to replace the hose with a new one at an appropriate time.
  • the maintenance worker needs to approach the individual fluid transport hose 1 and read the information of the strain sensor 25 from the individual fluid transport hose 1, so that the fluid transport hose from the single-point mooring buoy 6 does not need to be read.
  • This information can be read in a batch and the fluid transport hose 1 that may be damaged can be detected, so that the maintenance worker's working time can be reduced and labor can be reduced.
  • a transmission / reception device is provided, and information from the strain sensor 25 output from the central processing unit 29 is installed on land by radio. It can be output to a computer that is an external information acquisition means via a transceiver.
  • a strain sensor is provided in every other fluid transport hose. It can be applied even when the sensor is installed on every other hose, and when necessary, at least one hose of the plurality of hoses is equipped with a sensor. Even can be applied.
  • FIG. 5 is a schematic perspective view showing an application example of the fluid transport hose according to the first invention, and FIG. 5 shows the fluid transport hose 1 of the first invention in FIG.
  • hose body 2 in FIG. 1 is replaced with hose body 105
  • connection flange 3 is replaced with connection flange 102.
  • the embodiment is as described for the fluid transport hose 1 of the first invention, and the detailed description is omitted.
  • FIG. 2 is a cross-sectional view showing the end of the fluid transport hose 101.
  • the fluid transport hose 101 is formed by joining metal connecting flanges 102 to both ends of the hose body 105, and the hose of the connecting flange 102.
  • the flange base portion 122 which is a joint portion with the main body 105, is configured by integrally providing one or more annular ribs 125A, 125B, and 125C protruding outward in the radial direction of the cylindrical portion 124.
  • the hose body 105 has an inner rubber layer 103 that hermetically seals the liquid to be transported, one or more pressure-resistant reinforcing layers 104A, 104B, 104C, and a body wire 113 arranged in a spiral shape.
  • the rubber layer 109 and the outer rubber layer 108 that protects the outer surface are laminated in this order from the inside in the radial direction to the outside, and each pressure-resistant reinforcing layer 104A, 104B, 104C is attached to both ends of the hose body 105. Folding around the provided clamping wires 106A, 106B, 106C Further, it is locked to the tightening wires 106A, 106B, and 106C.
  • the hose body 105 and the flange base 122 are joined by connecting the inner rubber layer 103, the pressure-resistant reinforcing layers 104A, 104B, and 104C, the intermediate rubber layer 109, and the outer rubber layer 108, respectively. It is made by adhering to the base 122 and restraining the displacement of the fastening wires 106A, 106B, 106C in the hose length direction by the annular ribs 125A, 125B, 125C.
  • the fluid transport hose 101 is provided with a strain sensor 110 that detects the stress state of the hose body 105 at a position away from the flange base 122 that is not directly attached to the flange base 122.
  • the strain sensor 110 is attached to the surface of the hose body 105.
  • the strain sensor 110 is covered to the outside of the strain sensor 110 so that the strain sensor 110 is not directly exposed to damage. Affix rubber sheet 119.
  • the strain sensor 110 needs to be arranged at a distance of 1.5 m or less measured along the hose length direction from the flange surface 102a.
  • the second invention is characterized by the position where the strain sensor is attached. If the strain sensor is attached directly to the flange base 122, the rigidity of the metal flange 102 is high, so the same stress is applied. Therefore, the signal level from the strain sensor 110 becomes weaker and the S / N ratio cannot be increased, and the accuracy of the strain data deteriorates. On the other hand, in the second invention, since the strain sensor is arranged in the rubber part that is located away from the flange base 122 and can obtain a large amount of deformation even with the same stress, the S / N ratio is sufficient. It can be taken high and distortion can be measured with high accuracy.
  • the strain sensor 110 when the strain sensor 110 is disposed at a position in the longitudinal direction at a distance exceeding 1.5 m, it is away from the highly rigid flange 102, so that the strain sensor is immediately subjected to local bending deformation.
  • the correlation with the stress at the point where the degree of fatigue of the hose body 105 becomes higher becomes lower, making it difficult to use for prediction of the life of the hose body 105, etc. End up.
  • the strain sensors 110 be spaced apart from each other by four or more force points in the circumferential direction.
  • the strain sensors 110 are spaced in the longitudinal direction by 90 ° in the circumferential direction. It is possible to detect bending strains in two directions perpendicular to each other in the orthogonal plane, and tensile and compression strains in the longitudinal direction. These strains correspond to the point of highest fatigue in the hose body. By obtaining the correlation with the force in advance, the stress in each direction acting on the point with the highest degree of fatigue can be estimated at any time.
  • the entire fluid transport hose 101 is vulcanized and completed, and then the strain sensor 110 is attached to the surface of the hose body 105. After that, it is easy to replace and repair even if the strain sensor 110, which is preferably pasted with the cover rubber sheet 119, breaks down.
  • a wiring 127 for power supply to the strain sensor 110 and a signal output from the strain sensor 110 is embedded in the outer rubber 108, and the end of the wiring 127 opposite to the strain sensor 110 side is embedded. It is preferable to connect to a terminal connector 116 disposed on the nearest flange 102. Power is supplied from the single point mooring buoy 6 to the strain sensors 110 of all the fluid transport hoses 101 connected in series, and the signals from these strain sensors 110 are collected in the single point mooring buoy 6. be able to.
  • the information processing unit 115 includes a central processing unit (CPU), a clock unit, and a storage unit.
  • the clock unit outputs time data
  • the storage unit outputs a stress value by the strain gauge 110.
  • the storage unit stores unique identification information for each fluid transport hose 1.
  • the information processing unit 115 and the terminal connector 16 are connected by a signal line, and these may be integrated.
  • the wiring 128 is preferably wound in a spiral shape or embedded in the hose in a zigzag shape.
  • the terminal connector 116 of the fluid transport hose 1 farthest from the mooring facility may be left open if it does not affect the information collection from the fluid transport hose 1, but if there is an effect, the terminal connector 116 is connected to the terminal connector 16. It is better to put on.
  • FIG. 7 is a modification in which the arrangement of the strain sensor 110 in the fluid transport hose 101 of the embodiment according to the first invention shown in FIG. 6 is changed.
  • the strain sensor 110A is Unlike the fluid transport hose 101 of the above-described embodiment, only the force embedded in the hose body 105, for example, the intermediate rubber layer 109 and the outer rubber layer 108, is not attached to the surface of the hose body 105.
  • Other points, eg strain sensor 1 About the point that 10A is provided at a position away from the flange base 122 force that is not directly attached to the flange base 122, and that it is located within 1.5m from the flange surface 102a Is exactly the same as the fluid transport hose 101 of the above embodiment.
  • the strain sensor 110A can be vulcanized in this state by burying the entire fluid transport hose in rubber before vulcanization.
  • the fluid transport hose 1 of the first invention is as described above with reference to FIGS. 3 and 4, and a detailed description thereof is omitted.
  • the fluid transport hose 1 of the first invention in FIG. 3 is the fluid transport hose 101
  • the hose body 2 is the hose body.
  • the present invention relates to a floating type fluid transport hose that is used while constantly floating and the sea surface. It can also be applied to the submarine type used below, and the floating transportation hose that floats on the sea surface when used and sinks to the seabed when not in use.
  • the present invention can also be applied to a buoy hose used between a one-point mooring buoy and a submarine pipe laid or buried on the seabed connected to an onshore tank or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

A fluid conveyance hose where a strain sensor is not required to resistant to heat and pressure and attachment/detachment, repair, and replacement of the strain sensor can be easily performed without any affection to the hose body. The fluid conveyance hose has the hose body (2) and a pair of connection flanges (3) with circular tube-like sections (8) that are inserted and fitted to the ends of the hose body (2). The strain sensor (25) is disposed on a portion of the outer peripheral surface of the circular tube-like section (8) of at least one connection flange (3), and the portion is exposed from the hose body (2).

Description

明 細 書  Specification
流体輸送ホース  Fluid transport hose
技術分野  Technical field
[0001] この発明は、たとえば、複数本を連結してホースラインを形成し、液体とすることがで きる流体を輸送するのに好適な流体輸送ホース、なかでも、ホースに発生した歪を検 出するための歪センサの取付け構造に関する。  [0001] The present invention, for example, connects a plurality of pipes to form a hose line to detect a fluid transport hose suitable for transporting a fluid that can be made into a liquid, in particular, distortion generated in the hose. The present invention relates to a strain sensor mounting structure for taking out.
背景技術  Background art
[0002] たとえば、沖合に係留されたタンカー等に対して、原油、精製油その他の液体を荷 積みし、または荷下しするために使用される、複数本の流体輸送ホースを相互に連 結してなるホースラインは、水上、水中または水底に敷設されて、タンカーとブイまた は岸壁施設との間、ブイと岸壁施設との間等を連続して、それらの間で液体を送給 するべく機能する。  [0002] For example, a plurality of fluid transport hoses used to load or unload crude oil, refined oil, or other liquids to tankers moored offshore, etc. These hose lines are laid on the water, in the water or at the bottom of the water, and supply liquid between tankers and buoys or quay facilities, between buoys and quay facilities, etc. It works as much as possible.
[0003] このようなホースラインは、たとえば、それの不使用状態の下では、波、風等の影響 および、曳航時の水の抵抗その他によって、また、それの使用時および、液体の送 給停止時には、輸送流体の輸送圧力によって変形を受けることから、ホースライン、 ひいては、それを構成する各個の輸送ホースの、歪履歴に起因する応力劣化は不 可避なものである。  [0003] Such a hose line is, for example, under the non-use condition of the hose line due to the influence of waves, winds, etc., the resistance of water during towing, etc. Since the deformation is caused by the transport pressure of the transport fluid at the time of stoppage, the stress deterioration due to the strain history of the hose line and thus each transport hose constituting it is inevitable.
[0004] しかるに、この種の劣化は、流体輸送ホースそれ自体の外観目視検査によっては 識別不能である一方で、その輸送ホースを、それの寿命が尽きるまで使用するときは 、ホースの破損に起因する輸送流体の洩出、ひいては、広範な海上汚損が免れない ことから、従来は、経験則に基いて、一定期間使用したホースについては、各個のホ ースにつ 、ての具体的な劣化程度の 、かんにかかわらず、廃棄等の処分とすること を余儀なくされていた。  [0004] However, this type of degradation is indistinguishable by visual inspection of the fluid transport hose itself, but when the transport hose is used until it reaches the end of its lifetime, it is due to hose breakage. In the past, based on empirical rules, the hose used for a certain period has to be concretely degraded for each individual hose. Regardless of the degree, they were forced to dispose of them.
[0005] そこで、使用中のそれぞれの流体輸送ホースの各個について、交換時期を的確に 推定することを目的として、特許文献 1に開示されているような流体輸送ホースが提 案されている。  [0005] Therefore, a fluid transport hose as disclosed in Patent Document 1 has been proposed for the purpose of accurately estimating the replacement time for each fluid transport hose in use.
[0006] この流体輸送ホースは、ホース本体と、その両端に取付けた連結フランジとを具え るものにおいて、連結フランジに設けられてホース本体内に挿入される円筒部の外 周面に、ホース本体に埋設した耐圧補強層の端部を、その外周面上に配設した環状 リブを介して保留させるとともに、中間ゴムの外皮ゴム層、カバーゴム層等をもって覆 われる円筒部外周面に、ホース内に生じる応力を検知して、その応力値に応じた電 気信号を出力する歪センサおよび、所定周波数の電磁波信号によって、自身の記憶 部内の情報にアクセスするトランスボンダを配設したものである。 [0006] This fluid transport hose comprises a hose body and connecting flanges attached to both ends thereof. In this case, the end portion of the pressure-resistant reinforcing layer embedded in the hose body is provided on the outer peripheral surface of the cylindrical portion provided on the connecting flange and inserted into the hose body via an annular rib disposed on the outer peripheral surface. A strain sensor that detects the stress generated in the hose and outputs an electric signal corresponding to the stress value on the outer peripheral surface of the cylindrical portion covered by the outer rubber layer, the cover rubber layer, etc. of the intermediate rubber A transbonder is provided that accesses information in its storage unit by an electromagnetic wave signal of a predetermined frequency.
[0007] このようなホースでは、ホースの内部に生じた応力を、歪センサによって検知すると ともに、トランスボンダの情報記憶手段に出力して、その情報記憶手段で、所定の閾 値以上の応力値を記憶しておくことで、ホースの保守作業員が、トランスボンダの情 報記憶手段内に蓄積されている情報にアクセスすることにより、ホースの内部に、閾 値以上の応力が生じた回数、 日時、応力の大きさ等を知ることができるとする。  [0007] In such a hose, the stress generated in the hose is detected by a strain sensor and output to the information storage means of the transbonder, and the information storage means uses the stress value equal to or higher than a predetermined threshold value. By storing this information, the number of times that stress exceeding the threshold value has occurred inside the hose by the hose maintenance worker accessing the information stored in the information storage means of the transponder, Suppose you can know the date and time, the magnitude of stress, and so on.
特許文献 1:特開平 11— 153284号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-153284
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかるにこの従来技術では、第一の問題点として、連結フランジの円筒部の外周面 上に配設した歪センサおよびトランスボンダを、中間ゴムの外皮ゴム層およびカバー ゴム層等の内部に埋設することとしており、それらの歪センサ等は、輸送ホースの製 造工程の途中で、連結フランジの円筒部に配設することが必要になるため、それらの 歪センサ等に、成型されたホースの加硫成形時の加熱および加圧力に対抗できるだ けの耐熱性および耐圧性を付与することが必要になる他、歪センサおよびトランスポ ンダの修理、交換等に当っては、中間ゴムの外皮ゴム層およびカバーゴム層等を、そ れら自身には損傷等がないにもかかわらず、円筒部力 一旦剥離させることが必要 になり、修理、交換等の完了後は、それらを再び液密に、かつ所定の耐圧性をもって 埋め込むことが必要になるという問題があった。  [0008] However, in this prior art, as a first problem, a strain sensor and a transbonder disposed on the outer peripheral surface of the cylindrical portion of the connecting flange are disposed inside the outer rubber layer and the cover rubber layer of the intermediate rubber. These strain sensors, etc. are to be buried, and it is necessary to arrange them in the cylindrical part of the connecting flange during the production process of the transport hose. It is necessary to provide heat resistance and pressure resistance that can resist the heating and pressure applied during vulcanization molding of the rubber, and when repairing or replacing strain sensors and transponders, the outer rubber sheath Although the rubber layer and cover rubber layer, etc. are not damaged, it is necessary to peel off the cylinder part once.After repair and replacement, etc., they are liquid-tight again. And There was a problem that it was necessary to embed with a predetermined pressure resistance.
[0009] また、第二の問題点として、歪センサを、連結フランジの円筒部の外周面上に取り 付けることによってその変形が少ない分、耐久性は確保しやすくなるものの、歪みが 小さいため、ノイズ成分に対する S/N比が大きくとれず、歪みの検知精度が低下し、 寿命予測や歪みの検知精度が低下するという問題もあった。 [0010] 第一の発明は、従来技術が抱える前記第一の問題点を解決することを課題とする ものであり、それの目的とするところは、歪センサ等に、耐熱性および耐圧性を付与 することを不要とするとともに、歪センサ等の着脱、修理、交換その他の作業を、ホー ス本体に何の影響をも及ぼすことなぐ簡単かつ容易に行うことができる流体輸送ホ ースを提供するにある。 [0009] In addition, as a second problem, since the strain sensor is attached to the outer peripheral surface of the cylindrical portion of the connecting flange, its deformation is small, and durability is easily ensured, but the strain is small. There was also a problem that the S / N ratio for the noise component could not be increased, the accuracy of distortion detection was reduced, and the life prediction and the accuracy of distortion detection were reduced. [0010] The first invention is to solve the first problem of the prior art, and its object is to provide heat resistance and pressure resistance to a strain sensor and the like. Providing a fluid transport hose that makes it easy and easy to attach, remove, repair, and replace strain sensors without affecting the hose body. There is.
[0011] また、第二の発明は、従来技術が抱える前記第二の問題点を解決することを課題と するものであり、それの目的とするところは、歪センサの耐久性を犠牲にすることなぐ 高精度な応力の検知を行うことのできる流体輸送ホースを提供するにある。  [0011] Further, the second invention has an object to solve the second problem of the prior art, and the object is to sacrifice the durability of the strain sensor. The purpose of the present invention is to provide a fluid transport hose capable of detecting stress with high accuracy.
課題を解決するための手段  Means for solving the problem
[0012] 第一の発明に係る流体輸送ホースは、複数枚の耐圧補強層等を具えるホース本体 と、このホース本体内への円筒状部分の挿入姿勢で、ホース本体のそれぞれの端部 分に取付けた一対の連結フランジとを具えるものであって、少なくとも一方の連結フラ ンジで、それの円筒状部分の、ホース本体からの露出部の外周面に、少なくとも歪セ ンサを、ホース本体力も独立させて配設し、好適には、その歪センサを、高分子材料 等力もなる防水手段をもって保護したものである。  [0012] The fluid transport hose according to the first aspect of the present invention includes a hose body having a plurality of pressure-proof reinforcement layers and the like, and a cylindrical portion inserted into the hose body. A pair of connecting flanges attached to the hose body, and at least one of the connecting flanges, and at least a strain sensor on the outer peripheral surface of the cylindrical portion of the exposed portion from the hose body. The physical strength is also provided independently, and preferably, the strain sensor is protected by a waterproof means that also has an equal force of a polymer material.
[0013] ここで、好ましくは、歪センサを、円筒状部分力も半径方向外方へ突出させて設け た剛性保護部材の突出基部に配設し、また好ましくは、この剛性保護部材の、連結 フランジ軸線を含む半径方向断面内での形状を、歪センサを庇状に蓋う L字状とし、 より好ましくは、この L字状の剛性保護部材を、連結フランジのフランジ部分側へ庇状 に突出する姿勢で配設する。  [0013] Here, preferably, the strain sensor is disposed on the protruding base portion of the rigid protection member provided with the cylindrical partial force protruding radially outward, and preferably, the connection flange of the rigid protection member is provided. The shape in the radial cross section including the axis is L-shaped to cover the strain sensor in a bowl shape, and more preferably, this L-shaped rigid protection member projects in a bowl shape toward the flange portion side of the connecting flange. Arrange in a posture to
[0014] 第一の発明に係る流体輸送ホースにおいて、歪センサは、円筒状部分の、円周方 向に等間隔をおく少なくとも四個所に配設することが好ましぐまた、以上のようにして 配設される歪センサに対しては、円筒状部分の半径方向の内もしくは外に隣接させ て、または、それの軸線方向に隣接させて情報処理部材を配設することもでき、さら にまた、好ましくは、剛性保護部材を、円筒状部分の全周にわたって連続させて設け るのがよい。  [0014] In the fluid transport hose according to the first invention, it is preferable that the strain sensors are disposed at least at four locations spaced equally in the circumferential direction of the cylindrical portion. For the strain sensor to be disposed, the information processing member can be disposed adjacent to the inside or outside of the cylindrical portion in the radial direction or adjacent to the axial direction thereof. Preferably, the rigid protective member is provided continuously over the entire circumference of the cylindrical portion.
[0015] 第二の発明に係る流体輸送ホースは、一対の連結フランジと、それらの基部となる 円筒状部分のそれぞれに端部を接合したホース本体と、ホース本体の応力状態を検 知する歪センサとを具えた流体輸送ホースにおいて、前記歪センサを、前記連結フラ ンジのフランジ面カも 1.5m以内の距離だけ離れた長さ方向位置に、前記連結フラン ジから間隔をおいて配置してなる流体輸送ホースである。 [0015] A fluid transport hose according to a second aspect of the present invention includes a pair of connecting flanges, a hose body having an end joined to each of the cylindrical portions serving as the bases thereof, and a stress state of the hose body. In a fluid transport hose comprising a known strain sensor, the strain sensor is spaced from the connection flange at a longitudinal position where the flange face of the connection flange is also separated by a distance of 1.5 m or less. It is the fluid transport hose which arranges.
[0016] 第二の発明に係る流体輸送ホースにおいては、前記歪センサを、ホース本体の表 面に貼り付けた配置とすることも、ホース本体内部に埋設した配置とすることもでき、 また、前記歪センサを、周上の 4力所以上に配置する態様とするのが好ましぐさらに は、前記歪センサに供給する電源用配線と、前記歪センサからの信号を取り出す信 号用配線とを設け、これらの配線を前記連結フランジに設けられたターミナルコネクタ に接続させるのが一層好まし 、。 [0016] In the fluid transport hose according to the second invention, the strain sensor may be disposed on the surface of the hose body, or may be disposed embedded in the hose body. It is preferable that the strain sensors are arranged in four or more places on the circumference. Further, a power supply wiring for supplying the strain sensor, and a signal wiring for extracting a signal from the strain sensor. It is even more preferable to connect the wiring to a terminal connector provided on the connecting flange.
発明の効果  The invention's effect
[0017] 第一の発明に係る流体輸送ホースの効果について以下に説明する。すなわち、こ の流体輸送ホースにおいては、連結フランジの円筒状部分の、ホース本体からの露 出部外周面に、流体輸送ホース、直接的には、連結フランジに発生する歪を検出す る歪センサを、ホース本体力 独立させて配設する構造を採用することで、ホース本 体に対する加硫成形の終了後に、その歪センサを、円筒状部分の所定の位置に取 付けることができるので、歪センサに耐熱性および耐圧性を付与することが不要にな る他、ー且取付けた歪センサの、修理、交換等をホース本体に何の影響をも及ぼす ことなく、簡易に、かつ迅速に行うことができる。  [0017] The effect of the fluid transport hose according to the first invention will be described below. That is, in this fluid transport hose, the strain sensor detects the strain generated in the fluid transport hose, directly on the connection flange, on the outer peripheral surface of the exposed portion of the cylindrical portion of the connection flange from the hose body. By adopting a structure in which the hose body force is arranged independently, the strain sensor can be attached to a predetermined position of the cylindrical portion after the vulcanization molding of the hose body is completed. In addition to eliminating the need to provide heat resistance and pressure resistance to the sensor, and repairing and replacing the mounted strain sensor without affecting the hose body, it is simple and quick. be able to.
[0018] なおここで、歪センサを、高分子材料等力もなる防水手段をもって保護するときは、 そのセンサの修理、交換等に当って、その防水手段の脱着は必要になるも、防水手 段をそれ自体は、ホース本体の耐圧性その他の性能とは全く無関係であるので、そ の脱着は比較的容易に行うことができる。  [0018] Here, when the strain sensor is protected by a waterproof means having a force equal to that of a polymer material, the waterproof means is required to be attached or detached when the sensor is repaired or replaced. As such, since it is completely unrelated to the pressure resistance and other performance of the hose body, it can be removed and attached relatively easily.
[0019] またこの場合は、防水手段に高い剛性を付与することで、歪センサを、ホース同士 の衝突、異物との衝突等力も有効に保護することができる。  [0019] In this case, by imparting high rigidity to the waterproof means, the strain sensor can effectively protect against the force such as the collision between the hoses and the collision with the foreign matter.
[0020] ところで、円筒状部分に取付けた歪センサを、そこへの外力の作用等力もより有効 に保護するためには、その歪センサを、円筒状部分から半径方向外方へ突出させて 設けた剛性保護部材の突出基部に配設して、その剛性保護部材に各種の外力を支 持させることが効果的である。 [0021] そしてこの場合は、剛性保護部材の半径方向断面形状を、歪センサを庇状に蓋う L 字状とすることにより、その剛性保護部材に、より広い範囲にわたる外力支持機能を 発揮させ得る利点がある。 [0020] By the way, in order to more effectively protect the strain sensor attached to the cylindrical portion from the action force of the external force applied thereto, the strain sensor is provided to protrude radially outward from the cylindrical portion. It is effective to dispose it on the protruding base of the rigid protection member and to support various external forces on the rigid protection member. [0021] In this case, the rigidity protection member has an L-shaped cross-section in the radial direction that covers the strain sensor like a bowl, so that the rigidity protection member can exert an external force support function over a wider range. There are benefits to get.
[0022] またここで、このような L字状の剛性保護部材は、連結フランジのフランジ部分側へ 庇状に突出する姿勢で設けることが、歪センサの脱着作業等を容易にするとともに、 円筒状部分の、ホース本体からの露出部と、非露出部との境界を明確にし、そして、 ホース本体の変形に起因する外力の、その保護部材による十分なる支持を実現する 上等で好適である。  [0022] Here, such an L-shaped rigidity protecting member is provided in a posture that protrudes like a hook toward the flange portion side of the connecting flange, so that the attachment / detachment work of the strain sensor and the like can be facilitated. This is suitable for clarifying the boundary between the exposed part from the hose body and the non-exposed part of the hose body, and realizing sufficient support by the protective member of the external force due to deformation of the hose body. .
[0023] そしてさらに、歪センサを、円筒状部分の周方向に等間隔をおく四個所以上に配 設したときは、たとえば、水面上に浮いた流体輸送ホース、ひいては、ホースラインが 、水平面内で曲げ変形を受けた場合および、垂直面内で曲げ変形を受けた場合等 の、それぞれの方向の発生歪を十分に正確に検出することができる。  [0023] Furthermore, when the strain sensors are arranged at four or more positions that are equally spaced in the circumferential direction of the cylindrical portion, for example, the fluid transport hose that floats on the water surface, and thus the hose line, is in the horizontal plane. It is possible to detect the generated strain in each direction sufficiently accurately, for example, when bending deformation is applied in Fig. 1 or when bending deformation occurs in a vertical plane.
[0024] また、歪センサに隣接されて、たとえば、中央処理部(CPU)と、時計部と、記憶部と を具える情報処理部材を配設した場合には、その情報処理部材の修理、交換等をも また、ホース本体に何の影響をも及ぼすことなく行うことができる。  [0024] When an information processing member including a central processing unit (CPU), a clock unit, and a storage unit is disposed adjacent to the strain sensor, for example, repair of the information processing member, Replacement can also be performed without affecting the hose body.
ここで、このような情報処理部材では、記憶部に、それぞれの歪センサで検出した 歪量、応力値等を時刻データとともに記憶させ、また、中央処理部で、その記憶情報 に所要の処理を施すことができる。  Here, in such an information processing member, the storage unit stores the strain amount, the stress value, and the like detected by each strain sensor together with time data, and the central processing unit performs necessary processing on the stored information. Can be applied.
[0025] なお、剛性保護部材を、円筒状部材の全周にわたって連続させて設けたときは、円 周方向の所要の位置に、所要の個数の歪センサを、たとえば現場施工等によっても 、所期した通りに簡易に配設することができる。  [0025] When the rigid protection member is continuously provided over the entire circumference of the cylindrical member, a required number of strain sensors may be provided at a required position in the circumferential direction by, for example, on-site construction. It can be simply arranged as expected.
[0026] 次に、第二の発明に係る流体輸送ホースの効果について以下に説明する。この流 体輸送ホースによれば、歪センサを、前記連結フランジのフランジ面からの距離力 1.5 m以内にある長さ方向位置に、前記連結フランジ力 離して配置したので、詳細を後 述するように、歪み測定を高精度なものにするとともに、曲げ変形による歪センサの 損傷を防止し、耐久性を確保することができる。  Next, the effect of the fluid transport hose according to the second invention will be described below. According to this fluid transport hose, the strain sensor is disposed at a position in the longitudinal direction within a distance force of 1.5 m from the flange surface of the connection flange and separated from the connection flange force, so that details will be described later. In addition, the strain measurement can be performed with high accuracy, and the strain sensor can be prevented from being damaged by bending deformation, thereby ensuring durability.
[0027] ここで、歪センサを、ホース本体の表面に貼り付けた場合には、歪センサのメンテナ ンスを容易にすることができ、一方、歪センサを、ホース本体内部に埋設した場合に は、歪センサと周囲のゴム部分の接着を強固にして歪み測定を正確なものにすること ができる。また、歪センサを、周上の 4力所以上に配置することにより、複数の方向の 応力を求めることができる。さらに、歪センサに供給する電源用配線と、前記歪センサ からの信号を取り出す信号用配線とを設け、これらの配線を前記連結フランジに設け られたターミナルコネクタに接続させることにより、例えば、一点係留ブイに設けた装 置で流体輸送ホースの応力状態を集中管理することができる。 [0027] Here, when the strain sensor is affixed to the surface of the hose body, maintenance of the strain sensor can be facilitated, while when the strain sensor is embedded in the hose body. Can make the strain measurement accurate by strengthening the adhesion between the strain sensor and the surrounding rubber part. In addition, by placing strain sensors at four or more locations on the circumference, stress in multiple directions can be obtained. Furthermore, a power supply wiring to be supplied to the strain sensor and a signal wiring for taking out a signal from the strain sensor are provided, and these wirings are connected to a terminal connector provided on the connecting flange, for example, at one point mooring. The stress state of the fluid transport hose can be centrally managed with the equipment installed in the buoy.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]第一発明に係る流体輸送ホースによるホースラインの形成例を示す略線斜視 図である。  FIG. 1 is a schematic perspective view showing an example of forming a hose line by a fluid transport hose according to the first invention.
[図 2]第一発明に係る実施形態の流体輸送ホースを、中心軸線を含む半径方向断面 で示す要部断面図である。  FIG. 2 is a cross-sectional view of a principal part showing a fluid transport hose according to an embodiment of the first invention in a radial cross section including a central axis.
[図 3]ホースラインの一端の、係留ブイへの連結部を示す部分拡大図である。  FIG. 3 is a partially enlarged view showing a connecting portion to a mooring buoy at one end of a hose line.
[図 4]流体輸送ホースの情報管理システムを例示するブロック線図である。  FIG. 4 is a block diagram illustrating an information management system for a fluid transport hose.
[図 5]第二発明に係る流体輸送ホースによるホースラインの形成例を示す略線斜視 図である。  FIG. 5 is a schematic perspective view showing an example of forming a hose line by a fluid transport hose according to the second invention.
[図 6]第二発明に係る実施形態の流体輸送ホースを、中心軸線を含む半径方向断面 で示す要部断面図である。  [Fig. 6] Fig. 6 is a cross-sectional view of an essential part showing a fluid transport hose according to an embodiment of the second invention in a radial cross section including a central axis.
[図 7]第二発明に係る実施形態の変形例を、中心軸線を含む半径方向断面で示す 要部断面図である。  FIG. 7 is a cross-sectional view of the main part showing a modification of the embodiment according to the second invention in a radial cross section including a central axis.
符号の説明  Explanation of symbols
[0029] 1 流体輸送ホース [0029] 1 Fluid transport hose
2 ホース本体  2 Hose body
3 連結フランジ  3 Connecting flange
4 ホースライン  4 Hose line
5 タンカー  5 Tanker
6 一点係留ブイ  6 Single mooring buoy
7 ブイ下ホース  7 Buoy lower hose
8 円筒状部分 内面ゴム層 8 Cylindrical part Inner rubber layer
、 11、 12 耐圧補強層 、 14、 15 環状リブ 、 17、 18 締付ワイヤ ボディワイヤ , 11, 12 Pressure-resistant reinforcement layer, 14, 15 Annular ribs, 17, 18 Clamping wire Body wire
中間ゴム層  Intermediate rubber layer
外皮ゴム層  Outer rubber layer
間ゴム  Rubber
剛性保護部材 Rigid protective member
a 折曲端部分a Bent edge
b 突出部分 b Protruding part
フランジ部  Flange part
歪センサ  Strain sensor
防水手段  Waterproof means
連結部  Connecting part
ターミナルコネクタ 情報集積装置  Terminal connector Information integration device
電源装置  Power supply
コンピュータ  Computer
外部接続部  External connection
中央処理部  Central processing unit
記憶部 Memory
1、 101 A 流体輸送ホー2 連結フランジ1, 101 A Fluid transport ho 2 Connecting flange
2a フランジ面2a Flange surface
3 内面ゴム層3 Internal rubber layer
A、 104B、 104C 而圧ネ ホース本体 106A、 106B、 106C 締付ワイヤ A, 104B, 104C Metanesis hose body 106A, 106B, 106C Clamping wire
108 外皮ゴム層  108 Outer rubber layer
109 中間ゴム層  109 Intermediate rubber layer
110、 11 OA 歪センサ  110, 11 OA strain sensor
113 ボディワイヤ  113 Body wire
115 情報処理部  115 Information processing department
116 ターミナノレコネ、クタ  116 Terminano Recone, Kuta
119 カノく一ゴムシート  119 Kanoko rubber sheet
122 フランジ基咅  122 Flange base
124 フランジの円筒部  124 Flange cylinder
125A、 125B、 125C 環状ジブ  125A, 125B, 125C annular jib
127、 128 配線  127, 128 wiring
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] まず、第一の発明の実施形態について説明する。図 1は、第一の発明に係る流体 輸送ホースの適用例を示す略線斜視図であり、図中 1は、この発明に係る流体輸送 ホースを示し、 2はそれのホース本体を、そして 3は、各ホース本体 2のそれぞれの端 部分に取付けた一対の連結フランジをそれぞれ示す。  First, an embodiment of the first invention will be described. FIG. 1 is a schematic perspective view showing an application example of the fluid transport hose according to the first invention. In the figure, 1 shows the fluid transport hose according to the present invention, 2 shows its hose body, and 3 Shows a pair of connecting flanges attached to respective end portions of each hose body 2.
[0031] 流体輸送ホース 1は通常、それの十数本〜数十本を連結フランジ 2によって相互連 結されて、図示のようなホースライン 4を形成し、このホースライン 4は、たとえば、その 一端をタンカー 5に、他端を一点係留ブイ 6にそれぞれ連結することで、ブイ下ホース 7および、図示しない海底ノイブを介して、原油、精製油等の液体その他の流体を、 タンカー 5と岸壁施設との間で、荷積みし、または荷下しするために用いることができ る。  [0031] Usually, dozens to dozens of fluid transport hoses 1 are interconnected by connecting flanges 2 to form a hose line 4 as shown in the figure. By connecting one end to the tanker 5 and the other end to the one-point mooring buoy 6, the tanker 5 and the quay can be used to transfer liquids and other fluids, such as crude oil and refined oil, through the buoy hose 7 and a submarine nove (not shown). Can be used to load or unload from a facility.
[0032] なお、ここでは海面上に浮かぶ流体輸送ホース 1は、それ自体が浮力材を具えるェ バーフロートホースとすることができる他、浮力材を着脱自在とした、いわゆるビーズ フロートホースとすることもでき、この後者のホースでは、浮力材の着脱作業が必須と なるも、ホースの外径を小さく抑えることができる他、浮力の大小を所要に応じて適宜 に選択することができる。 [0033] 図 2は、後者のタイプとした流体輸送ホース 1の一方の端部分を、それの中心軸線 を含む半径方向断面で示す要部断面図である。 [0032] Here, the fluid transport hose 1 floating on the sea surface can be an float float hose itself having a buoyancy material, or a so-called bead float hose in which the buoyancy material is detachable. In this latter hose, the buoyancy material must be attached and detached, but the hose can be kept small in outer diameter, and the size of the buoyancy can be selected as appropriate. [0033] Fig. 2 is a cross-sectional view of the principal part showing one end portion of the latter type of fluid transport hose 1 in a radial cross section including the central axis thereof.
図示のこの流体輸送ホース 1は、連結フランジ 3の円筒状部分 8の、ホース本体 2内 への挿入姿勢の下で、ホース本体 2の内面ゴム層 9を、その円筒状部分 8の外周面 に加硫接着させ、また、この内面ゴム 9の外周側に順次配設した三枚の耐圧補強層 1 0、 11、 12のそれぞれの端部分を、円筒状部分 8の中間位置に設けた三条のそれぞ れの環状リブ 13、 14、 15【こ対して、それぞれの蹄付フィャ 16、 17、 18の周り【こ卷返 すことにより固定し、そして、耐圧補強層 11、 12間に、ボディワイヤ 19をヘリカル状に 埋設してなる中間ゴム層 20を介装するとともに、最外側の耐圧補強層 12の外周側に 外皮ゴム層 21を積層し、さらに、この外皮ゴム層 21および、それぞれの間ゴム 22を 円筒状部分 8に加硫接着させることを基本構造とするものである。  The fluid transport hose 1 shown in the figure has an inner rubber layer 9 of the hose body 2 on the outer peripheral surface of the cylindrical portion 8 under the insertion posture of the cylindrical portion 8 of the connecting flange 3 into the hose body 2. The end portions of the three pressure-proof reinforcing layers 10, 11, 12 that are vulcanized and bonded sequentially to the outer peripheral side of the inner rubber 9 are connected to the three strips provided in the middle position of the cylindrical portion 8. Each annular rib 13, 14, 15 [against each hoofed fibre 16, 17, 18 is fixed by turning and between the pressure-proof reinforcement layers 11, 12, the body An intermediate rubber layer 20 formed by embedding a wire 19 in a helical shape is interposed, and an outer rubber layer 21 is laminated on the outer peripheral side of the outermost pressure-resistant reinforcing layer 12, and this outer rubber layer 21 and each The basic structure is to vulcanize and bond the intermediate rubber 22 to the cylindrical portion 8.
[0034] そしてこの図に示すところでは、断面形状力 字状をなす剛性保護部材 23を、円筒 状部材 8の外周面力 半径方向外方へ突出させて設けるとともに、この剛性保護部 材 23の配設形態を、それの折曲端部分 23aが、連結フランジ 3のフランジ部分 24側 へ庇状に突出する姿勢とする。  As shown in this figure, the rigid protective member 23 having a cross-sectional force-like shape is provided so as to protrude outward in the radial direction of the outer peripheral surface force of the cylindrical member 8. The arrangement form is such that the bent end portion 23a protrudes in a hook shape toward the flange portion 24 side of the connecting flange 3.
このような剛性保護部材 23は、円筒状部分 8の円周方向に所定の間隔をおいて複 数個配設し得ることはもちろんであるが、好ましくは、一の保護部材 23を、円筒状部 分 8の全周にわたつて連続させて設ける。  Of course, a plurality of such rigid protective members 23 can be arranged at predetermined intervals in the circumferential direction of the cylindrical portion 8, but preferably, one protective member 23 is cylindrical. Provided continuously throughout the entire circumference of part 8.
[0035] ところでこの図では、外皮ゴム層 21を、最も軸端側の環状リブ 15よりフランジ部分 2 4側で円筒状部分 8に加硫接着させるとともに、円筒状部分 8の全周にわたって連続 する剛性保護部材 23の、半径方向外方への突出部分 23bにもまた加硫接着させ、 これによつて、外皮ゴム層 21、ひいては、ホース本体 2の、連結フランジ 3への固着強 度を高めているも、その外皮ゴム層 21は、図に仮想線で示すように、円筒状部分 8の 周面だけに加硫接着させることもできる。  In this figure, the outer rubber layer 21 is vulcanized and bonded to the cylindrical portion 8 on the flange portion 24 side of the annular rib 15 closest to the shaft end side, and is continuous over the entire circumference of the cylindrical portion 8. The rigid protective member 23 is also vulcanized and bonded to the radially outward projecting portion 23b, thereby increasing the strength of the outer rubber layer 21, and consequently the hose body 2, to the connecting flange 3. However, the outer rubber layer 21 can be vulcanized and bonded only to the peripheral surface of the cylindrical portion 8 as indicated by phantom lines in the figure.
[0036] さらにここでは、円筒状部分 8の外周面上で、剛性保護部材 23の突出部分 23bの 、フランジ部分 24側に隣接する位置に、それの折曲端部分 23aに庇状に蓋われる歪 センサ 25を、好ましくは、円周方向に等間隔をおいた四個所以上、たとえば四個所 に固着させて配置する。 [0037] これらの四個の歪センサ 25は、たとえば、流体輸送ホース 1の、水平面内および垂 直面内でのそれぞれの曲げ変形に対して、引張り歪みおよび圧縮歪みのそれぞれ を検出するべく機能することができる。 Furthermore, here, on the outer peripheral surface of the cylindrical portion 8, the protruding portion 23 b of the rigid protection member 23 is covered with the bent end portion 23 a like a bowl at a position adjacent to the flange portion 24 side. The strain sensors 25 are preferably arranged at four or more locations, for example, four locations, spaced at equal intervals in the circumferential direction. [0037] These four strain sensors 25 function to detect, for example, each of tensile strain and compressive strain for each bending deformation of the fluid transport hose 1 in the horizontal plane and in the vertical plane. be able to.
従ってここでは、直径方向に対抗する六個所以上に歪センサ 25を配設することで、 流体輸送ホース 19、他の面内での曲げ変形に起因する歪をもまた有効に検出する ことができる。  Therefore, here, by disposing the strain sensors 25 at six or more locations that oppose each other in the diametrical direction, strain due to bending deformation in the fluid transport hose 19 and other surfaces can also be detected effectively. .
[0038] このようにして配設される歪センサ 25は、高分子材料その他力もなる防水手段 26 によってその全体をカバーすることが好まし 、。  [0038] It is preferable that the strain sensor 25 disposed in this way is entirely covered with a waterproofing means 26 having a polymer material or other force.
[0039] なお、図示はしないが、以上のような輸送ホース 1においては、そもそもが耐熱'性お よび耐圧性に乏しぐまた、ホース本体 2に比して故障等の発生のおそれの高い、た とえば、中央処理部、時計部、記憶部等を具える情報処理部材を、歪センサ 25に対 し、たとえば円筒状部分 8の半径方向の内もしくは外に、または、軸線方向の内もしく は外に隣接させて配設することもできる。  [0039] Although not shown in the drawings, in the transport hose 1 as described above, the heat resistance and pressure resistance are poor in the first place, and there is a high risk of occurrence of failure as compared with the hose body 2. For example, an information processing member including a central processing unit, a clock unit, a storage unit, and the like is connected to the strain sensor 25, for example, inside or outside in the radial direction of the cylindrical portion 8, or inside the axial direction. Alternatively, it can be arranged adjacent to the outside.
[0040] 以上のような構成を具える流体輸送ホース 1は、剛性保護部材 23を取付ける前の、 もしくは取付けた後の、連結フランジ 3と、ホース本体 2との加硫接着等の後、所要の 個所に歪センサ 25等を固着するとともに、防水処理等を施すことによって製造するこ とがでさる。  [0040] The fluid transport hose 1 having the above-described configuration is required after vulcanization adhesion between the connecting flange 3 and the hose body 2 before or after mounting the rigidity protection member 23, etc. It can be manufactured by fixing the strain sensor 25 etc. to this part and applying waterproof treatment.
なおこの場合、歪センサ 25への電力の供給や、歪センサ 25からの出力信号の取 出しのための配線は、たとえば外皮ゴム層 21内に埋設することができ、このような配 線の遊端は、たとえば、最寄りのフランジ部分 24に配置したターミナルコネクタに接 続することができる。このことによれば、直列的に連結した全ての流体輸送ホース 1の 歪センサ 25に対して、一点係留ブイ 6から電力を供給したり、それぞれの歪センサ 25 力 の信号を一点係留ブイ 6に集めたりすることができる。  In this case, the wiring for supplying power to the strain sensor 25 and taking out the output signal from the strain sensor 25 can be embedded in the outer rubber layer 21, for example. The end can be connected, for example, to a terminal connector located on the nearest flange portion 24. According to this, power is supplied from the single point mooring buoy 6 to the strain sensors 25 of all the fluid transport hoses 1 connected in series, and the signal of each strain sensor 25 force is sent to the single point mooring buoy 6. You can collect.
[0041] このような流体輸送ホース 1の各歪センサ 25からの出力情報の管理は、たとえば図 3に示すように、ホースライン 4の一端の流体輸送ホース 1の連結フランジ 3を一点係 留ブイ 6の連結部 27に連結した状態で、その係留ブイ 6内に配設した、図 4にブロッ ク線図で例示するような管理システムを用いることにより行うことができる。 [0041] The management of output information from each strain sensor 25 of the fluid transport hose 1 is performed by, for example, as shown in FIG. 3, the connection flange 3 of the fluid transport hose 1 at one end of the hose line 4 at one point. This can be done by using a management system such as that illustrated in the block diagram of FIG. 4 that is disposed in the mooring buoy 6 while being connected to the connecting portion 27 of FIG.
この管理システムは、流体輸送ホース 1からの配線が接続された連結部 27のターミ ナルコネクタ 28を介して、各流体輸送ホース 1の歪センサ 25から伝達される情報を 集積する情報集積装置 29と、この情報集積装置 29を作動させるとともに、配線を介 して流体輸送ホース 1の歪センサ 25および情報処理部材に電力を供給する電源装 置 30とを具える他、たとえば、一点係留ブイ 6の上面に設けられて、携帯型のコンビ タ 31を接続して、情報集積装置 29に集積されている各歪センサ 25からの情報 をデータとして外部に取出すための外部接続部 32を具える。なお、この外部接続部 32は、常時は防水キャップ等にて覆われる。 This management system includes a terminal 27 at the connecting part 27 to which the wiring from the fluid transport hose 1 is connected. The information accumulating device 29 for accumulating information transmitted from the strain sensor 25 of each fluid transport hose 1 through the null connector 28 and the information accumulating device 29 are operated, and the fluid transport hose 1 is connected via the wiring. In addition to the strain sensor 25 and the power supply device 30 that supplies power to the information processing member, for example, the information integration device 29 is provided on the upper surface of the single-point mooring buoy 6 and connected to the portable combitor 31. The external connection part 32 for taking out the information from each strain sensor 25 integrated in the outside as data is provided. The external connection portion 32 is always covered with a waterproof cap or the like.
[0042] ここにおいて、情報集積装置 29は、連結部 27のターミナルコネクタ 28から各流体 輸送ホース 1の情報処理部材に対して、各歪センサ 25の情報を読み出す指示を出 して情報処理部材から情報を集積する中央処理部(CPU) 33と、各流体輸送ホース 1から伝達された信号を記録する記録部 34とを具えている。  [0042] Here, the information accumulating device 29 instructs the information processing member of each fluid transport hose 1 from the terminal connector 28 of the connecting portion 27 to read the information of each strain sensor 25 from the information processing member. A central processing unit (CPU) 33 for collecting information and a recording unit 34 for recording signals transmitted from each fluid transport hose 1 are provided.
[0043] なお、電源装置 30には、ソーラーバッテリーやバッテリーを用いることも可能であり、 ソーラーバッテリーを用いた場合には、太陽光により常時充電が行われるので、各流 体輸送ホース 1の歪センサ 25に、連続して電力を供給でき、各流体輸送ホース 1に おいて、ホース内に生ずる歪を連続的に検出することができる。  [0043] It is also possible to use a solar battery or a battery for the power supply device 30, and in the case of using a solar battery, since charging is always performed by sunlight, the distortion of each fluid transport hose 1 is Electric power can be continuously supplied to the sensor 25, and the distortion generated in the hose can be continuously detected in each fluid transport hose 1.
[0044] このような管理システムによれば、係留施設である一点係留ブイ 6に、各流体輸送 ホース 1の歪センサ 25に電力を供給するための電源装置 30を設置するので、各流 体輸送ホース 1に電源装置を備える場合と比べて、大きな電力を歪センサに安定し て供給できて、流体輸送ホースの情報を安定して得ることができる。  According to such a management system, since the power supply device 30 for supplying power to the strain sensor 25 of each fluid transport hose 1 is installed in the single-point mooring buoy 6 that is a mooring facility, each fluid transport Compared with the case where the hose 1 is equipped with a power supply device, large electric power can be stably supplied to the strain sensor, and information on the fluid transport hose can be obtained stably.
さらに、係留施設にのみ電源装置 30を設置するので、各流体輸送ホース 1に電源 装置を具える場合と比べて、電源装置のメンテナンスが容易になる利点がある。  Furthermore, since the power supply device 30 is installed only at the mooring facility, there is an advantage that the maintenance of the power supply device is easier than when each fluid transport hose 1 is provided with the power supply device.
[0045] このような情報管理システムの動作を図 4を参照して以下に説明する。  The operation of such an information management system will be described below with reference to FIG.
各流体輸送ホース 1内の歪センサ 25は、流体輸送ホース 1内の歪を常時検出して おり、たとえば、ホース内の情報処理部材の中央処理部は、歪センサ 25が最小設定 値以上の歪を検出した時は、そのときの応力値を時計部の時刻データと共に記憶部 B己 ΐ す 0  The strain sensor 25 in each fluid transport hose 1 constantly detects the strain in the fluid transport hose 1. For example, in the central processing section of the information processing member in the hose, the strain sensor 25 has a strain greater than the minimum set value. Detects the stress value at that time together with the time data of the clock part.
[0046] 情報集積装置 29の中央処理部 33は、記憶部 34に記憶されているプログラムを呼 び出して実行し、一定周期で配線を介して各流体輸送ホース 1の情報処理部材に順 に固有の識別情報と情報読み出し命令を出力する。 [0046] The central processing unit 33 of the information accumulating device 29 calls and executes the program stored in the storage unit 34, and sequentially executes the information processing member of each fluid transport hose 1 through the wiring at regular intervals. The unique identification information and information read command are output.
[0047] 各流体輸送ホース 1の情報処理部材は、配線から固有の識別情報と情報読み出し 命令を受信し、受信した固有の識別情報と情報処理部材内の記憶部に記憶されて いる流体輸送ホース 1の固有の識別情報と比較し、識別情報が一致すれば、一致し た流体輸送ホース 1の情報処理部材は、記憶部から、歪の情報を時刻データの情報 と共に読み出し処理を行い、これらの情報を固有の識別情報と共に配線を介して一 点係留ブイ 6の情報集積装置 29に出力する。  [0047] The information processing member of each fluid transport hose 1 receives the unique identification information and information read command from the wiring, and the fluid transport hose stored in the received unique identification information and the storage unit in the information processing member If the identification information matches, the information processing member of the matched fluid transport hose 1 reads the distortion information together with the time data information from the storage unit, The information is output together with the unique identification information to the information accumulation device 29 of the single mooring buoy 6 through the wiring.
[0048] 情報集積装置 29の中央処理部 33は、各流体輸送ホース 1から歪の情報および時 刻データの情報を受信すると、記憶部 34に流体輸送ホース毎にその情報を記憶す る。 When the central processing unit 33 of the information accumulation device 29 receives strain information and time data information from each fluid transport hose 1, the central processing unit 33 stores the information in the storage unit 34 for each fluid transport hose.
このようにして、記憶部 34には、流体輸送ホース毎に各センサ 25の情報を過去の 一定期間にわたって記憶しておく。  In this way, the storage unit 34 stores the information of each sensor 25 for each fluid transport hose for a certain period in the past.
[0049] この情報を、流体輸送ホースの保守作業員が、船でブイ 6まで行って、ブイ 6の外部 接続部 32に情報取得手段である携帯型のコンピュータ 31を接続して、コンピュータ 31内に取り込む。そして、コンピュータ 31力 この情報を表示部に表示することにより 、異常な、または多数回の外力が加わった流体輸送ホース 1を検知することができ、 これに基づいて流体輸送ホース 1が破損する前の適当な時期に新しいホースに交換 することが可能となる。 [0049] This information is transferred to the buoy 6 by the maintenance worker of the fluid transport hose, and the portable computer 31 as the information acquisition means is connected to the external connection portion 32 of the buoy 6. Into. Computer 31 force By displaying this information on the display unit, it is possible to detect the fluid transport hose 1 to which an abnormal or many external force has been applied, and based on this, the fluid transport hose 1 is damaged. It is possible to replace the hose with a new one at an appropriate time.
[0050] このようにここでは、保守作業員が、個々の流体輸送ホース 1に近づいて、個々の 流体輸送ホース 1から歪センサ 25の情報を読み出す必要がなぐ一点係留ブイ 6か ら流体輸送ホースの情報を一括して読み出して、破損の生じるおそれのある流体輸 送ホース 1を検知することができるので、保守作業員の作業時間を少なくし、労力を 軽減することができる。  [0050] Thus, here, the maintenance worker needs to approach the individual fluid transport hose 1 and read the information of the strain sensor 25 from the individual fluid transport hose 1, so that the fluid transport hose from the single-point mooring buoy 6 does not need to be read. This information can be read in a batch and the fluid transport hose 1 that may be damaged can be detected, so that the maintenance worker's working time can be reduced and labor can be reduced.
[0051] なおここで、図示のような管理システムの外部接続部 32の代わりに、送受信装置を 設け、中央処理装置 29から出力される歪センサ 25からの情報を無線によって、陸上 に設置された送受信装置を経由して外部の情報取得手段であるコンピュータに出力 することちでさる。  [0051] Here, instead of the external connection unit 32 of the management system as shown in the figure, a transmission / reception device is provided, and information from the strain sensor 25 output from the central processing unit 29 is installed on land by radio. It can be output to a computer that is an external information acquisition means via a transceiver.
この場合、送受信装置には、電源装置 30から電力が供給される。ここにおいて、ブ ィ側および陸上側のそれぞれの送受信装置には携帯電話機を用いることも可能であ り、これらの送受信装置を用いた場合には、一点係留ブイ 6から流体輸送ホース 1の 情報を一括して読み出すことによって、保守作業員の作業時間をより少なくして労力 を軽減するだけでなぐ一点係留ブイ 6から無線により直ちに送受信装置を介してコ ンピュータに情報が送られてくるので、異常な外力、多数回の外力等が加わった流 体輸送ホース 1をリアルタイムに検知することができる。 In this case, power is supplied from the power supply device 30 to the transmission / reception device. Where It is also possible to use a mobile phone for each of the transmitter / receiver on the shore side and the land side. When these transmitters / receivers are used, the information of the fluid transport hose 1 is read from the single mooring buoy 6 in a batch. As a result, information is sent to the computer via the transceiver immediately from the single-point mooring buoy 6 that reduces the labor by reducing the work hours of the maintenance workers. It is possible to detect the fluid transport hose 1 with external force applied in real time in real time.
[0052] ところで、以上のような情報管理システムは、連結した複数本の流体輸送ホースの 全てが一個以上の歪センサを具える場合のほか、一本おきの流体輸送ホースに歪セ ンサを設ける場合や、二本おきのホースにセンサを設ける場合にっ ヽても適用するこ とができ、必要に応じて、複数本のホースのうちの少なくとも一本のホースがセンサを 具える場合であっても適用することができる。  [0052] By the way, in the information management system as described above, in addition to the case where all of a plurality of connected fluid transport hoses have one or more strain sensors, a strain sensor is provided in every other fluid transport hose. It can be applied even when the sensor is installed on every other hose, and when necessary, at least one hose of the plurality of hoses is equipped with a sensor. Even can be applied.
[0053] 次に、第二の発明に係る実施形態の流体輸送ホースについて説明する。図 5は、 第一の発明に係る流体輸送ホースの適用例を示す略線斜視図であり、図 5は、先に 示した図 1における第一の発明の流体輸送ホース 1を、流体輸送ホース 101に置換 したものであり、同様にして、図 1におけるホース本体 2をホース本体 105に、連結フ ランジ 3を連結フランジ 102にそれぞれ置換したものであり、したがって、流体輸送ホ ース 101の適用態様は、第一の発明の流体輸送ホース 1について説明した通りであ り、詳細の説明を省略する。  Next, a fluid transport hose according to an embodiment of the second invention will be described. FIG. 5 is a schematic perspective view showing an application example of the fluid transport hose according to the first invention, and FIG. 5 shows the fluid transport hose 1 of the first invention in FIG. In the same manner, hose body 2 in FIG. 1 is replaced with hose body 105, and connection flange 3 is replaced with connection flange 102. The embodiment is as described for the fluid transport hose 1 of the first invention, and the detailed description is omitted.
図 2は、流体輸送ホース 101の端部を示す断面図であり、流体輸送ホース 101は、 ホース本体 105の両端のそれぞれに金属製の連結フランジ 102を接合してなり、連 結フランジ 102のホース本体 105との接合部分であるフランジ基部 122は、円筒部 1 24に、その半径方向外側に突出した 1個以上の環状リブ 125A、 125B、 125Cを一 体的に設けて構成される。  FIG. 2 is a cross-sectional view showing the end of the fluid transport hose 101. The fluid transport hose 101 is formed by joining metal connecting flanges 102 to both ends of the hose body 105, and the hose of the connecting flange 102. The flange base portion 122, which is a joint portion with the main body 105, is configured by integrally providing one or more annular ribs 125A, 125B, and 125C protruding outward in the radial direction of the cylindrical portion 124.
[0054] ホース本体 105は、輸送する液体を気密に封止する内面ゴム層 103と、 1層以上の 耐圧補強層 104A、 104B、 104Cと、ボディワイヤ 113をスパイラル状に配置してな る中間ゴム層 109と、外部表面を保護する外皮ゴム層 108とを、半径方向内側から外 側へこの順に積層して構成され、各耐圧補強層 104A、 104B、 104Cは、ホース本 体 105の両端に設けられた締付ワイヤ 106A、 106B、 106Cの周囲を折り返すことに より締付ワイヤ 106A、 106B、 106Cに係止される。 [0054] The hose body 105 has an inner rubber layer 103 that hermetically seals the liquid to be transported, one or more pressure-resistant reinforcing layers 104A, 104B, 104C, and a body wire 113 arranged in a spiral shape. The rubber layer 109 and the outer rubber layer 108 that protects the outer surface are laminated in this order from the inside in the radial direction to the outside, and each pressure-resistant reinforcing layer 104A, 104B, 104C is attached to both ends of the hose body 105. Folding around the provided clamping wires 106A, 106B, 106C Further, it is locked to the tightening wires 106A, 106B, and 106C.
[0055] そして、ホース本体 105とフランジ基部 122との接合は、内面ゴム層 103と、耐圧補 強層 104A、 104B、 104Cと、中間ゴム層 109と、外皮ゴム層 108とのそれぞれをフ ランジ基部 122に接着させるとともに、締付ワイヤ 106A、 106B、 106Cのホース長さ 方向の変位を環状リブ 125A、 125B、 125Cで拘束することによってなされる。  [0055] Then, the hose body 105 and the flange base 122 are joined by connecting the inner rubber layer 103, the pressure-resistant reinforcing layers 104A, 104B, and 104C, the intermediate rubber layer 109, and the outer rubber layer 108, respectively. It is made by adhering to the base 122 and restraining the displacement of the fastening wires 106A, 106B, 106C in the hose length direction by the annular ribs 125A, 125B, 125C.
[0056] そして、流体輸送ホース 101には、ホース本体 105の応力状態を検知する歪セン サ 110が、フランジ基部 122に直接貼り付けるのではなぐフランジ基部 122から離れ た位置に設けられる。図 6に示した例の場合、歪センサ 110を、ホース本体 105の表 面に貼り付けて設けられ、この場合、歪センサ 110が直接外部に露出して損傷しない よう歪センサ 110の外側にカバーゴムシート 119を貼り付ける。また、歪センサ 110は 、フランジ面 102aからホース長さ方向に沿って測った 1.5m以内の距離に配置する必 要がある。  [0056] Then, the fluid transport hose 101 is provided with a strain sensor 110 that detects the stress state of the hose body 105 at a position away from the flange base 122 that is not directly attached to the flange base 122. In the case of the example shown in FIG. 6, the strain sensor 110 is attached to the surface of the hose body 105. In this case, the strain sensor 110 is covered to the outside of the strain sensor 110 so that the strain sensor 110 is not directly exposed to damage. Affix rubber sheet 119. Further, the strain sensor 110 needs to be arranged at a distance of 1.5 m or less measured along the hose length direction from the flange surface 102a.
[0057] 第二の発明は、歪センサを貼り付ける位置に特徴があり、もし、これをフランジ基部 122に直接貼り付けた場合には、金属製のフランジ 102の剛性が高いため、同じ応 力に対して得られる歪みが小さぐその分、歪センサ 110からの信号レベルが弱くなり S/N比を高くすることができず、歪みデータの精度が悪化する。これに対して、第二の 発明においては、フランジ基部 122から離れて位置する、同じ応力に対しても大きな 変形量を得ることのできるゴム部分に歪センサを配置したので S/N比を十分高くとるこ とができ、高精度に歪みを測定することができる。  [0057] The second invention is characterized by the position where the strain sensor is attached. If the strain sensor is attached directly to the flange base 122, the rigidity of the metal flange 102 is high, so the same stress is applied. Therefore, the signal level from the strain sensor 110 becomes weaker and the S / N ratio cannot be increased, and the accuracy of the strain data deteriorates. On the other hand, in the second invention, since the strain sensor is arranged in the rubber part that is located away from the flange base 122 and can obtain a large amount of deformation even with the same stress, the S / N ratio is sufficient. It can be taken high and distortion can be measured with high accuracy.
[0058] また、この歪センサ 110を、 1.5mを超える距離にある長さ方向位置に配置した場合 には、剛性の高いフランジ 102から離れているため、局所的曲げ変形を受けやすぐ 歪センサを壊してしまう可能性があり、また、ホース本体 105における疲労度のもっと も高くなる点の応力との相関が低くなつてしまい、ホース本体 105の寿命予測等に利 用するのが難しくなつてしまう。  [0058] Further, when the strain sensor 110 is disposed at a position in the longitudinal direction at a distance exceeding 1.5 m, it is away from the highly rigid flange 102, so that the strain sensor is immediately subjected to local bending deformation. In addition, the correlation with the stress at the point where the degree of fatigue of the hose body 105 becomes higher becomes lower, making it difficult to use for prediction of the life of the hose body 105, etc. End up.
[0059] ここで、歪センサ 110は周方向 4力所以上相互に離隔して配置するのが好ましぐ 例えば、周方向に 90° ずつ、間隔を開けて配置することにより、長さ方向に直交する 面内の、相互に直交する 2方向の曲げ歪みと、長さ方向の引張、圧縮歪みと検出す ることができ、これらの歪みと、ホース本体における疲労度のもっとも高くなる点の応 力との相関関係を予め求めておくことにより、疲労度のもっとも高くなる点に作用する それぞれの方向の応力を随時推定することができる。 [0059] Here, it is preferable that the strain sensors 110 be spaced apart from each other by four or more force points in the circumferential direction. For example, the strain sensors 110 are spaced in the longitudinal direction by 90 ° in the circumferential direction. It is possible to detect bending strains in two directions perpendicular to each other in the orthogonal plane, and tensile and compression strains in the longitudinal direction. These strains correspond to the point of highest fatigue in the hose body. By obtaining the correlation with the force in advance, the stress in each direction acting on the point with the highest degree of fatigue can be estimated at any time.
[0060] この場合の、第二発明に係る流体輸送ホース 101の製造方法としては、流体輸送 ホース 101全体を加硫して完成させたあと、歪センサ 110をホース本体 105の表面に 貼り付け、そのあとカバーゴムシート 119を貼り付けるのが好ましぐ歪センサ 110が 故障してもすぐ交換修理することが容易になる。  [0060] In this case, as a method of manufacturing the fluid transport hose 101 according to the second invention, the entire fluid transport hose 101 is vulcanized and completed, and then the strain sensor 110 is attached to the surface of the hose body 105. After that, it is easy to replace and repair even if the strain sensor 110, which is preferably pasted with the cover rubber sheet 119, breaks down.
[0061] また、歪センサ 110への電源供給や歪センサ 110からの信号の出力を取り出すた めの配線 127を外皮ゴム 108に埋設し、配線 127の、歪センサ 110側と反対側の端 を、最寄りのフランジ 102に配置したターミナルコネクタ 116に接続するのが好ましい 。直列的に連結されたすベての流体輸送ホース 101の歪センサ 110に対して、一点 係留ブイ 6から電源を供給したり、これらの歪センサ 110からの信号を一点係留ブイ 6 に集めたりすることができる。  [0061] Further, a wiring 127 for power supply to the strain sensor 110 and a signal output from the strain sensor 110 is embedded in the outer rubber 108, and the end of the wiring 127 opposite to the strain sensor 110 side is embedded. It is preferable to connect to a terminal connector 116 disposed on the nearest flange 102. Power is supplied from the single point mooring buoy 6 to the strain sensors 110 of all the fluid transport hoses 101 connected in series, and the signals from these strain sensors 110 are collected in the single point mooring buoy 6. be able to.
[0062] さらに、連結フランジ 102には、情報処理部 115を取り付けるのが好ましい。ここで、 情報処理部 115は、中央処理部(CPU)と時計部と記憶部とから構成されており、時 計部は、時刻データを出力し、記憶部は、歪ゲージ 110による応力値の情報を時刻 データとともに記憶する。また、記憶部は、流体輸送ホース 1毎に固有の識別情報を 記憶して 、る。情報処理部 115とターミナルコネクタ 16とは信号線で接続されて 、る 力 これらは、一体化されていてもよい。  Furthermore, it is preferable to attach an information processing unit 115 to the connecting flange 102. Here, the information processing unit 115 includes a central processing unit (CPU), a clock unit, and a storage unit. The clock unit outputs time data, and the storage unit outputs a stress value by the strain gauge 110. Store information along with time data. The storage unit stores unique identification information for each fluid transport hose 1. The information processing unit 115 and the terminal connector 16 are connected by a signal line, and these may be integrated.
[0063] なお、この配線 128は、ホースの曲げに耐えるために、スパイラル状に巻かれて、あ るいはジグザグ形状でホース内に埋め込まれているのが好ましい。また、係留施設か ら最も遠い流体輸送ホース 1のターミナルコネクタ 116は、流体輸送ホース 1からの情 報収集に影響がなければ開放のままでも良いが、影響があればターミナルコネクタ 1 6に終端装置を付けるのがよい。  [0063] In order to withstand bending of the hose, the wiring 128 is preferably wound in a spiral shape or embedded in the hose in a zigzag shape. In addition, the terminal connector 116 of the fluid transport hose 1 farthest from the mooring facility may be left open if it does not affect the information collection from the fluid transport hose 1, but if there is an effect, the terminal connector 116 is connected to the terminal connector 16. It is better to put on.
[0064] 図 7は、図 6に示した第一発明に係る実施形態の流体輸送ホース 101における歪 センサ 110の配置を変えた変形例であり、流体輸送ホース 101Aにおいては、歪セン サ 110Aは、ホース本体 105の表面に貼付けられるのではなぐホース本体 105内部 、例えば、中間ゴム層 109や外皮ゴム層 108に埋設されて配置される点だけ力 上 記実施形態の流体輸送ホース 101と異なっており、その他の点、例えば、歪センサ 1 10Aが、フランジ基部 122に直接貼り付けられているのではなぐフランジ基部 122 力も離れた位置に設けられている点、また、これが、フランジ面 102aから 1.5m以内の 位置に配置されている点については、前記実施形態の流体輸送ホース 101と全く同 じである。 FIG. 7 is a modification in which the arrangement of the strain sensor 110 in the fluid transport hose 101 of the embodiment according to the first invention shown in FIG. 6 is changed. In the fluid transport hose 101A, the strain sensor 110A is Unlike the fluid transport hose 101 of the above-described embodiment, only the force embedded in the hose body 105, for example, the intermediate rubber layer 109 and the outer rubber layer 108, is not attached to the surface of the hose body 105. Other points, eg strain sensor 1 About the point that 10A is provided at a position away from the flange base 122 force that is not directly attached to the flange base 122, and that it is located within 1.5m from the flange surface 102a Is exactly the same as the fluid transport hose 101 of the above embodiment.
[0065] 上記変形例の場合には、歪センサ 110Aは、流体輸送ホース全体を加硫する前の ゴムに埋設しておき、この状態のまま加硫することができる。  [0065] In the case of the above modification, the strain sensor 110A can be vulcanized in this state by burying the entire fluid transport hose in rubber before vulcanization.
[0066] このような流体輸送ホース 101の各歪センサ 25からの出力情報の管理につしては[0066] Regarding management of output information from each strain sensor 25 of the fluid transport hose 101 as described above,
、先に第一の発明の流体輸送ホース 1について、図 3および図 4を参照して説明した 通りであり、詳細な説明を省略する。 The fluid transport hose 1 of the first invention is as described above with reference to FIGS. 3 and 4, and a detailed description thereof is omitted.
なお、第二の発明の実施形態の流体輸送ホース 101については、図 3における第 一の発明の流体輸送ホース 1を、流体輸送ホース 101に、ホース本体 2をホース本体 As for the fluid transport hose 101 of the second embodiment of the invention, the fluid transport hose 1 of the first invention in FIG. 3 is the fluid transport hose 101, and the hose body 2 is the hose body.
105に、そして、図 3および図 4における連結フランジ 3を連結フランジ 102にそれぞ れ置換して参照するればょ ヽ。 Refer to 105, and replace the connecting flange 3 in FIGS. 3 and 4 with the connecting flange 102, respectively.
産業上の利用可能性  Industrial applicability
[0067] 以上、流体輸送ホースを、浮力材を着脱するタイプのものとした場合にっ 、て説明 したが、この発明は、常時浮上したまま使用するフローティングタイプの流体輸送ホ ースおよび、海面下で使用するサブマリンタイプや、使用時には海面に浮力ゝせ、非使 用時には海底に沈めておく浮沈タイプの流体輸送ホースにも適用することができる。  [0067] Although the fluid transport hose has been described above in the case where the buoyancy material is attached / detached, the present invention relates to a floating type fluid transport hose that is used while constantly floating and the sea surface. It can also be applied to the submarine type used below, and the floating transportation hose that floats on the sea surface when used and sinks to the seabed when not in use.
[0068] また、この発明は、陸上のタンク等と繋がれた、海底に敷設若しくは埋設された海底 パイプと一点係留ブイとの間に使用されているブイ下ホースにも適用することができる  [0068] Further, the present invention can also be applied to a buoy hose used between a one-point mooring buoy and a submarine pipe laid or buried on the seabed connected to an onshore tank or the like.

Claims

請求の範囲 The scope of the claims
[1] ホース本体と、円筒状部分の、そのホース本体内への挿入姿勢でホース本体のそ れぞれの端部分に取付けた一対の連結フランジとを具える流体輸送ホースであって 少なくとも一方の連結フランジで、それの円筒状部分の、ホース本体からの露出部 の外周面に歪センサを配設してなる流体輸送ホース。  [1] A fluid transport hose comprising a hose body and a pair of connecting flanges attached to respective end portions of the hose body in a posture of inserting the cylindrical portion into the hose body. A fluid transport hose in which a strain sensor is arranged on the outer peripheral surface of the exposed portion from the hose body of the cylindrical portion of the connecting flange.
[2] 円筒状部分力 半径方向外方へ突出させて設けた剛性保護部材の突出基部に歪 センサを配設してなる請求項 1に記載の流体輸送ホース。  [2] The fluid transportation hose according to claim 1, wherein a strain sensor is disposed on a projecting base portion of a rigid protection member provided so as to project outward in the radial direction of the cylindrical part.
[3] 剛性保護部材の、連結フランジ軸線を含む半径方向断面内での形状を、歪センサ を庇状に蓋う L字状としてなる請求項 2に記載の流体輸送ホース。 3. The fluid transport hose according to claim 2, wherein the shape of the rigidity protection member in the radial cross section including the connecting flange axis is an L shape that covers the strain sensor like a bowl.
[4] L字状の剛性保護部材を、連結フランジのフランジ部分側へ庇状に突出する姿勢 で設けてなる請求 3に記載の流体輸送ホース。 [4] The fluid transport hose according to claim 3, wherein the L-shaped rigid protection member is provided in a posture protruding in a hook shape toward the flange portion side of the connecting flange.
[5] 円筒状部分の、円周方向に等間隔をおく少なくとも四個所に歪センサを配設してな る請求項 1〜4のいずれかに記載の流体輸送ホース。 5. The fluid transport hose according to any one of claims 1 to 4, wherein strain sensors are arranged at least at four locations that are equally spaced in the circumferential direction of the cylindrical portion.
[6] 歪センサに隣接させて情報処理部材を配設してなる請求項 1〜5のいずれかに記 載の流体輸送ホース。 6. The fluid transport hose according to any one of claims 1 to 5, wherein an information processing member is disposed adjacent to the strain sensor.
[7] 剛性保護部材を円筒状部分の全周にわたって連続させて設けてなる請求項 2〜6 の!、ずれかに記載の流体輸送ホース。  [7] Claims 2-6, wherein the rigid protective member is provided continuously over the entire circumference of the cylindrical portion! The fluid transport hose according to any one of the above.
[8] 一対の連結フランジと、それらの基部のそれぞれに端部を接合したホース本体と、 ホース本体の応力状態を検知する歪センサとを具えた流体輸送ホースにおいて、 前記歪センサを、前記連結フランジのフランジ面カもの距離が 1.5m以内にある長さ 方向位置に、前記連結フランジカも離して配置してなる流体輸送ホース。 [8] A fluid transport hose comprising a pair of connecting flanges, a hose body having an end joined to each of the bases, and a strain sensor for detecting a stress state of the hose body, wherein the strain sensor is connected to the connection hose. A fluid transport hose in which the connecting flange is also disposed at a longitudinal position where the distance between the flange faces is within 1.5 m.
[9] 前記歪センサを、ホース本体の表面に貼り付けてなる請求項 8に記載の流体輸送 ホース。 9. The fluid transport hose according to claim 8, wherein the strain sensor is attached to the surface of the hose body.
[10] 前記歪センサを、ホース本体内部に埋設してなる請求項 9に記載の流体輸送ホー ス。  10. The fluid transport hose according to claim 9, wherein the strain sensor is embedded in the hose body.
[11] 前記歪センサを、周上の 4力所以上に配置してなる請求項 8〜10のいずれかに記 載の流体輸送ホース。 前記歪センサに供給する電源用配線と、前記歪センサ力 の信号を取り出す信号 用配線とを配設し、これらの配線を前記連結フランジに設けられたターミナルコネクタ に接続させてなる請求項 8〜: L 1の 、ずれかに記載の流体輸送ホース。 [11] The fluid transport hose according to any one of claims 8 to 10, wherein the strain sensors are arranged at four or more force points on the circumference. The power supply wiring supplied to the strain sensor and the signal wiring for extracting the strain sensor force signal are provided, and these wirings are connected to a terminal connector provided on the connecting flange. : The fluid transport hose described in L1.
PCT/JP2007/058100 2006-04-12 2007-04-12 Fluid conveyance hose WO2007119793A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-109970 2006-04-12
JP2006109970A JP2007285321A (en) 2006-04-12 2006-04-12 Fluid transfer hose
JP2006-110919 2006-04-13
JP2006110919A JP2007285349A (en) 2006-04-13 2006-04-13 Fluid transfer hose

Publications (1)

Publication Number Publication Date
WO2007119793A1 true WO2007119793A1 (en) 2007-10-25

Family

ID=38609553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058100 WO2007119793A1 (en) 2006-04-12 2007-04-12 Fluid conveyance hose

Country Status (1)

Country Link
WO (1) WO2007119793A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002037A (en) * 2008-06-23 2010-01-07 Yokohama Rubber Co Ltd:The Life detecting device for high pressure hose
CN102174970A (en) * 2011-02-24 2011-09-07 中国海洋石油总公司 Floating-type oil hose and method for preparing glue stock thereof
WO2017135019A1 (en) * 2016-02-04 2017-08-10 横浜ゴム株式会社 Marine hose status monitoring system
CN109404740A (en) * 2018-11-12 2019-03-01 孙琳琳 A kind of automatic robot for overhauling of oil-gas pipeline

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533946A (en) * 1978-08-31 1980-03-10 Bridgestone Tire Co Ltd Hose for transport
JPH11153284A (en) * 1997-11-21 1999-06-08 Yokohama Rubber Co Ltd:The Hose
JPH11182748A (en) * 1997-12-19 1999-07-06 Yokohama Rubber Co Ltd:The Marine hose abnormality recording device
JPH11325378A (en) * 1998-05-18 1999-11-26 Yokohama Rubber Co Ltd:The Damage detection device for marine hose damage detection
JP2004239280A (en) * 2003-02-03 2004-08-26 Bridgestone Corp Information integrating flange

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533946A (en) * 1978-08-31 1980-03-10 Bridgestone Tire Co Ltd Hose for transport
JPH11153284A (en) * 1997-11-21 1999-06-08 Yokohama Rubber Co Ltd:The Hose
JPH11182748A (en) * 1997-12-19 1999-07-06 Yokohama Rubber Co Ltd:The Marine hose abnormality recording device
JPH11325378A (en) * 1998-05-18 1999-11-26 Yokohama Rubber Co Ltd:The Damage detection device for marine hose damage detection
JP2004239280A (en) * 2003-02-03 2004-08-26 Bridgestone Corp Information integrating flange

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002037A (en) * 2008-06-23 2010-01-07 Yokohama Rubber Co Ltd:The Life detecting device for high pressure hose
CN102174970A (en) * 2011-02-24 2011-09-07 中国海洋石油总公司 Floating-type oil hose and method for preparing glue stock thereof
WO2017135019A1 (en) * 2016-02-04 2017-08-10 横浜ゴム株式会社 Marine hose status monitoring system
CN109404740A (en) * 2018-11-12 2019-03-01 孙琳琳 A kind of automatic robot for overhauling of oil-gas pipeline

Similar Documents

Publication Publication Date Title
EP1832798A1 (en) Management system for marine hose
EP3412951B1 (en) Marine hose status monitoring system
WO2011137539A1 (en) Protective liner with wear detection
US20110259115A1 (en) Structural load monitoring using collars and connecting elements with strain sensors
EP3412952B1 (en) Marine hose status monitoring system
US9404609B2 (en) Flexible pipe terminal end-attachment device
EP3901503B1 (en) Fluid leakage detection system and method for marine hose and method thereof
EP2635832A1 (en) Flexible pipe and end fitting with integrated sensor
CN111594768B (en) Fluid leakage sensing system for marine hose
JP4747834B2 (en) Marine hose fluid leak detection system
WO2007119793A1 (en) Fluid conveyance hose
WO2014001249A1 (en) Monitoring apparatus and method
CN104565670B (en) The detection method and detecting system leaked in flexible joint, connector
JP2007218839A (en) Leakage-detection type pipe joint
JP2006206031A (en) Management system for marine hose
CN101095006A (en) Management system for marine hose
JP4784547B2 (en) Marine hose hose line monitoring system
JP2007285349A (en) Fluid transfer hose
JP2007285324A (en) Fluid transfer hose
JP2007285321A (en) Fluid transfer hose
JP4117052B2 (en) Marine hose abnormality recording device
EP4191109B1 (en) Marine hose fluid leakage detection system
JP4415741B2 (en) Hose line shape monitoring system
JP2006207799A (en) Management system for marine hose
CN210770755U (en) Floating output hose with optical fiber sensing and detecting functions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741536

Country of ref document: EP

Kind code of ref document: A1