WO2007119698A1 - Activated carbon, process for producing the same, and production apparatus - Google Patents

Activated carbon, process for producing the same, and production apparatus Download PDF

Info

Publication number
WO2007119698A1
WO2007119698A1 PCT/JP2007/057759 JP2007057759W WO2007119698A1 WO 2007119698 A1 WO2007119698 A1 WO 2007119698A1 JP 2007057759 W JP2007057759 W JP 2007057759W WO 2007119698 A1 WO2007119698 A1 WO 2007119698A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonization
activated carbon
superheated steam
activation
temperature
Prior art date
Application number
PCT/JP2007/057759
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Yokoi
Ikuyoshi Kohchi
Michio Inagaki
Original Assignee
Intellectual Property Bank Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intellectual Property Bank Corp. filed Critical Intellectual Property Bank Corp.
Publication of WO2007119698A1 publication Critical patent/WO2007119698A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B7/00Coke ovens with mechanical conveying means for the raw material inside the oven
    • C10B7/10Coke ovens with mechanical conveying means for the raw material inside the oven with conveyor-screws
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

An activated carbon that produced from an organic treatment object, such as a woody material, as a raw material, has a large specific surface area and a pore structure suitable for electric double layer capacitor; and a process for producing the same. There is provided an activated carbon produced by subjecting a treatment object composed mainly of a woody material to carbonization treatment and activation treatment continuously performed in an atmosphere of superheated steam, which activated carbon has a total specific surface area of 600 m2/g or greater and such a pore distribution structure that an external specific surface area occupies 20 to 75% of the total specific surface area.

Description

明 細 書  Specification
活性炭及びその製造方法、並びに製造装置  Activated carbon, manufacturing method thereof, and manufacturing apparatus
技術分野  Technical field
[0001] 本発明は、木質系材料を原料に用いて、乾燥、乾留、賦活等の炭化処理を行うこと で得られる活性炭及びその製造方法、並びに製造装置に関する。  [0001] The present invention relates to activated carbon obtained by performing carbonization treatment such as drying, dry distillation, activation, etc. using a woody material as a raw material, a method for producing the same, and a production apparatus.
背景技術  Background art
[0002] 従来、電気二重層キャパシタ電極に用いる活性炭の有力候補の一つとして、フエノ ール樹脂等の石油系炭素前駆体を炭化、賦活処理して得られるものが挙げられる。 そして、このような活性炭については、電気二重層キャパシタに用いる際に適した細 孔分布構造として孔径の小さなミクロ孔の分布を抑制する試みが有機電解液系の電 気二重層キャパシタ用分野で行われている。  Conventionally, as one of the promising candidates for activated carbon used for an electric double layer capacitor electrode, one obtained by carbonizing and activating a petroleum carbon precursor such as a phenol resin can be cited. With regard to such activated carbon, an attempt to suppress the distribution of micropores with a small pore diameter as a pore distribution structure suitable for use in electric double layer capacitors has been made in the field of organic electrolyte type electric double layer capacitors. It has been broken.
[0003] 例えば、(特許文献 1)では、電解液として有機系電解液を使用する活性炭が開示 されており、石油系炭素前駆体に所定の粒径を有する金属化合物の粒子を混合し、 アルゴンや窒素等の非酸化性雰囲気中で 700〜2000°Cの温度で長時間温度を保 持した後に、水蒸気又は二酸化炭素等の酸化性ガス中で加熱することで活性炭を製 造する方法が開示されている。そして、得られた活性炭は、窒素吸着等温線から t_ plot法により算出されるミクロポアに基づく比表面積が全比表面積の 70%以下であ ること力 S示されてレ、る。 [0003] For example, Patent Document 1 discloses activated carbon using an organic electrolytic solution as an electrolytic solution, in which particles of a metal compound having a predetermined particle size are mixed with a petroleum-based carbon precursor, and argon is added. Disclosed is a method for producing activated carbon by heating in an oxidizing gas such as water vapor or carbon dioxide after maintaining the temperature at 700 to 2000 ° C for a long time in a non-oxidizing atmosphere such as nitrogen or nitrogen Has been. The obtained activated carbon is shown to have a force S that the specific surface area based on micropores calculated from the nitrogen adsorption isotherm by the t_plot method is 70% or less of the total specific surface area.
[0004] また、 (特許文献 2)では、炭素化物原料に対して 450°C〜550°Cで:!〜 10時間の 第 1次空気賦活処理を行い、その後、 350〜430°Cで 10〜60時間の第二次空気賦 活処理を行うことを特徴とする活性炭の製造方法が開示されている。そして、メソ孔の 容積が比較的大きレ、活性炭が得られることが示されてレ、る。  [0004] In addition, in (Patent Document 2), a primary air activation treatment is performed on a carbonized material at 450 ° C. to 550 ° C.:! To 10 hours, and then at 350 to 430 ° C. for 10 hours. A method for producing activated carbon characterized by performing a secondary air activation treatment for ˜60 hours is disclosed. It is shown that the mesopore volume is relatively large and activated carbon is obtained.
[0005] さらに、(特許文献 3)では、合成樹脂、石油系ピッチ、石油系ピッチ(原料)を熱処 理 (焼成)したコータス等の炭素化物にアルカリ土類金属化合物の粉末を添加して高 温熱処理することにより所定の活性炭を製造する技術が開示されている。  [0005] Further, in (Patent Document 3), an alkaline earth metal compound powder is added to a carbonized material such as coatas obtained by heat-treating (sintering) synthetic resin, petroleum-based pitch, or petroleum-based pitch (raw material). A technique for producing a predetermined activated carbon by high-temperature heat treatment is disclosed.
[0006] 特許文献 1 :特開 2000— 340470号公報  [0006] Patent Document 1: Japanese Patent Application Laid-Open No. 2000-340470
特許文献 2 :特開 2005— 286170号公報 特許文献 3:特開 2004— 175660号公報 Patent Document 2: JP 2005-286170 A Patent Document 3: Japanese Patent Laid-Open No. 2004-175660
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかしながら、(特許文献:!〜 3)に記載の活性炭の製造方法は、木質材料を出発 原料とするものではなぐいずれも合成樹脂、石炭系ピッチ、石油系ピッチ等を原料 として用いたものであった。そして、従来、木質材料等の原料は、合成樹脂、石炭系 ピッチ、石油系ピッチ等と比較して比表面積や細孔構造を制御することが難しぐ電 気二重層キャパシタとして用いるには性能を適合させにくいという問題があった。また 、(特許文献 1、 3)は電解液としてイオン径の大きい有機系電解液を用いることを想 定したものであり、イオン径の小さな水系電解液を想定したものではなかった。  [0007] However, the methods for producing activated carbon described in (Patent Documents:! To 3) use synthetic resin, coal-based pitch, petroleum-based pitch, etc. as raw materials, all of which do not use woody materials as starting materials. It was a thing. Conventionally, raw materials such as wood materials have performance in order to be used as electric double layer capacitors, which are difficult to control the specific surface area and pore structure compared to synthetic resin, coal-based pitch, petroleum-based pitch, etc. There was a problem that it was difficult to adapt. In addition, (Patent Documents 1 and 3) assume that an organic electrolytic solution having a large ionic diameter is used as the electrolytic solution, and not an aqueous electrolytic solution having a small ionic diameter.
[0008] 上記従来の状況に鑑み、本発明では、木質材料を原料として用いて、大きい比表 面積と、水系電解液の電気二重層キャパシタに適した細孔構造を有する活性炭、及 びその製造方法を提供することを目的とする。  [0008] In view of the above-described conventional situation, the present invention uses a wood material as a raw material, activated carbon having a large specific surface area and a pore structure suitable for an electric double layer capacitor of an aqueous electrolyte, and a method for producing the same The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するため、本発明の活性炭では、木質材料を主成分とした処理対 象物に対して炭化処理、賦活処理を過熱水蒸気雰囲気中において連続して行うこと で製造され、全比表面積が 600m2/g以上を有するとともに、外比表面積が全比表 面積の 20%以上 75%以下を占める細孔分布構造を有することを特徴とする。なお、 全比表面積は、活性炭に対する窒素ガスの吸着量から α プロット法を用いて算出さ [0009] In order to solve the above problems, the activated carbon of the present invention is manufactured by continuously performing a carbonization treatment and an activation treatment in a superheated steam atmosphere on a treatment object mainly composed of a wood material. The total specific surface area is 600 m 2 / g or more, and the outer specific surface area has a pore distribution structure occupying 20% to 75% of the total specific surface area. The total specific surface area was calculated using the α plot method from the amount of nitrogen gas adsorbed on the activated carbon.
S  S
れた活性炭 lg当たりの表面積を表す。また、外比表面積は、同様に α プロット法を  Represents the surface area per lg of activated carbon. In addition, the external specific surface area is similarly calculated using the α plot method.
S  S
用いて算出される数値であり、ミクロ孔(細孔径が 2nm以下のものをいう)以外の大き さの細孔に対する活性炭 lg当たりの表面積を表し、外比表面積の多くはメソ孔による ものである。  This is a numerical value calculated by using the surface area per lg of activated carbon for pores with sizes other than micropores (meaning pore diameters of 2 nm or less), and most of the external specific surface area is due to mesopores. .
[0010] また、本発明の活性炭の製造方法は、木質材料を主成分とした処理対象物を乾燥 する工程と、前記乾燥工程において乾燥された処理対象物を 400°C〜950°Cの過 熱水蒸気雰囲気中に所定時間滞留させることにより炭化処理、賦活処理を連続して 行う炭化 *賦活処理工程とを有し、前記炭化 *賦活処理工程では、賦活処理を行うた めの過熱水蒸気の平均温度を 750°C〜900°Cとすることを特徴とする。また、本発明 の活性炭の製造方法は、上記の製造方法において、炭化'賦活処理工程は、炭化 · 賦活処理を開始する際の過熱水蒸気の温度が 400°C〜700であり、炭化'賦活処理 を終了する際の過熱水蒸気の温度が 750°C〜950°Cであるとともに、炭化'賦活処 理の開始からまで過熱水蒸気の温度を上昇させて行われることを特徴とする。 [0010] Further, the method for producing activated carbon according to the present invention includes a step of drying a treatment object mainly composed of a wood material, and a treatment object dried in the drying step at a temperature of 400 ° C to 950 ° C. Carbonization and activation treatment are continuously performed by retaining in a hot steam atmosphere for a predetermined period of time. * In the carbonization * activation treatment step, the average of superheated steam for performing the activation treatment The temperature is 750 ° C to 900 ° C. In addition, the present invention The activated carbon production method of the present invention is the above-described production method, wherein the carbonization 'activation treatment step is performed when the temperature of the superheated steam at the start of the carbonization activation treatment is 400 ° C to 700 ° C and the carbonization' activation treatment is terminated. The temperature of the superheated steam is 750 ° C to 950 ° C, and the temperature of the superheated steam is increased from the start of the carbonization activation process.
[0011] また、本発明の活性炭の製造装置は、過熱水蒸気を導入するための水蒸気導入 口を備え、木質材料を主成分とした処理対象物に対して炭化処理及び賦活処理を 行う炭化炉を有する活性炭製造装置であって、前記炭化炉は、木質材料を主成分と した処理対象物の供給口側に位置し、該処理対象物を過熱水蒸気に接触すること によって炭化させる炭化部と、前記処理対象物の排出口側に位置し、前記炭化部で 炭化処理された処理対象物を連続して過熱水蒸気に接触することによって賦活処理 を行う賦活部とを有し、前記水蒸気導入口が前記賦活部に少なくとも二つ以上設け られたことを特徴とする。  [0011] In addition, the activated carbon production apparatus of the present invention includes a carbonization furnace that includes a water vapor introduction port for introducing superheated water vapor, and performs carbonization treatment and activation treatment on a processing object mainly composed of a wood material. The carbonization furnace is located on the supply port side of a processing object mainly composed of a wood material, and the carbonization part carbonizes the processing object by contacting with the superheated steam; An activation part that is located on the discharge port side of the object to be treated and performs an activation treatment by continuously contacting the object to be treated carbonized in the carbonization part with superheated steam, and the steam inlet is It is characterized in that at least two or more activation parts are provided.
[0012] また、上記の活性炭製造装置において、水蒸気導入口のいずれか一以上に過熱 水蒸気の流量を制御するための流量制御弁が設けられたことを特徴とする。  [0012] The activated carbon production apparatus is characterized in that a flow rate control valve for controlling the flow rate of superheated steam is provided at any one or more of the steam inlets.
[0013] また、上記の活性炭製造装置において、炭化部には 150〜300°Cのガスを追加的 に導入する低温ガス導入口が設けられたことを特徴とする。  [0013] In the activated carbon production apparatus, the carbonization section is provided with a low-temperature gas inlet for additionally introducing a gas of 150 to 300 ° C.
[0014] また、上記の活性炭製造装置において、炭化炉が炭化部から賦活部に向かって 0 . 1〜: 10° 下方に傾斜するように配置されたことを特徴とする。  [0014] In the activated carbon production apparatus, the carbonization furnace is arranged so as to be inclined downward by 0.1 to 10 degrees from the carbonization part toward the activation part.
[0015] また、上記の活性炭製造装置において、炭化炉の傾斜角度を調整する傾斜角度 制御装置を設けたことを特徴とする。  [0015] In the activated carbon production apparatus, an inclination angle control device for adjusting the inclination angle of the carbonization furnace is provided.
発明の効果  The invention's effect
[0016] 本発明の活性炭によれば、木質材料を主成分とした処理対象物を原料として用い るとともに、大きな比表面積を有するとともに、さらには全比表面積に対して高い外比 表面積の割合を有する。そして、外比表面積の大きさは電気二重層キャパシタの静 電容量の向上に大きく寄与するものであり、電気二重層キャパシタに好適に用いるこ とができる。さらには、木質材料を出発原料に用いているので、近年森林に大量に放 置されてレ、る間伐材を電気二重層キャパシタの電極材料など付加価値の高レ、活性 炭として利用することが可能になる。 図面の簡単な説明 [0016] According to the activated carbon of the present invention, a processing object mainly composed of a wood material is used as a raw material, and it has a large specific surface area, and further has a high ratio of the external specific surface area to the total specific surface area. Have. The size of the outer specific surface area greatly contributes to the improvement of the electrostatic capacity of the electric double layer capacitor, and can be suitably used for the electric double layer capacitor. Furthermore, since woody materials are used as starting materials, in recent years they have been released in large quantities in forests, and it is possible to use thinned wood as high-value-added activated carbon such as electrode materials for electric double layer capacitors. It becomes possible. Brief Description of Drawings
[図 〇 1]本発明の実施の形態(1)に係る活性炭を製造するための活性炭製造用炭化装 置の全体構成図である。 [Fig. 1] is an overall configuration diagram of a carbonization device for producing activated carbon for producing activated carbon according to Embodiment (1) of the present invention.
[図 2]本発明の実施の形態(1)に係る活性炭製造用炭化装置の炭化炉を示す図で ある。  FIG. 2 is a diagram showing a carbonization furnace of a carbonization apparatus for producing activated carbon according to Embodiment (1) of the present invention.
[図 3]本発明の実施の形態(1)に係る炭化炉内での温度分布を示す図である。  FIG. 3 is a view showing a temperature distribution in the carbonization furnace according to Embodiment (1) of the present invention.
[図 4]本発明の実施の形態(2)に係る活性炭製造用炭化装置の炭化炉を示す図で ある。 FIG. 4 is a diagram showing a carbonization furnace of a carbonization apparatus for producing activated carbon according to Embodiment (2) of the present invention.
[図 5]実施の形態(2)に係る炭化炉内での温度分布を示す図である。  FIG. 5 is a view showing a temperature distribution in the carbonization furnace according to Embodiment (2).
符号の説明 Explanation of symbols
活性炭製造用炭化装置  Carbonization equipment for activated carbon production
20 処理対象物供給手段  20 Processing object supply means
22 ホッパ  22 Hopper
24 コンベア  24 conveyor
26 フィーダ  26 Feeder
30 乾燥炉  30 Drying furnace
31 円筒シェル  31 Cylindrical shell
32 処理対象物供給口  32 Processing object supply port
33 円筒部  33 Cylindrical part
34 攪拌羽根  34 Stir blade
35 排出口  35 outlet
36 水蒸気導入口  36 Steam inlet
37 水蒸気排出口  37 Water vapor outlet
40 炭化炉  40 Carbonization furnace
41 円筒シェル  41 Cylindrical shell
42 処理対象物供給口  42 Processing object supply port
43 円筒部  43 Cylindrical part
44 攪拌羽根 46、 46A、 46B、 46C…水蒸気導入口 44 Stirrer blade 46, 46A, 46B, 46C ... Water vapor inlet
47 水蒸気排出口  47 Water vapor outlet
50 排出装置  50 Discharge device
52 冷却ジャケット  52 Cooling jacket
54 製品タンク  54 Product tank
56 スクリューコンベア  56 Screw conveyor
60 高温水蒸気発生装置  60 High temperature steam generator
62 送風機  62 Blower
64 LPGボンべ  64 LPG cylinder
66 ガバナ  66 Governor
68 パーナ  68 Pana
70 脱臭炉  70 Deodorizing furnace
72 脱臭炉ブロワ一  72 Deodorizing furnace blower
74 灯油タンク  74 Kerosene tank
76 灯油ポンプ  76 Kerosene pump
80 廃熱ボイラ  80 Waste heat boiler
90 水供給装置  90 Water supply device
92 軟水器  92 water softener
94 軟水タンク  94 Soft water tank
95 給水ポンプ  95 Water supply pump
96 集塵装置  96 Dust collector
98 排気筒  98 Exhaust pipe
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明を実施するための最良の形態について詳細に説明する。本発明の活 性炭は、木質材料を主成分とした処理対象物に対して炭化処理、賦活処理を過熱 水蒸気雰囲気中において連続して行うことで製造され、全比表面積が 600m2/g以 上を有するとともに、外比表面積が全比表面積の 20%以上 75%以下を占める細孔 分布構造を有する。そして、本発明の活性炭は、全比表面積が 800m2/g以上を有 することが好ましぐ 1000m2/g以上を有することが特に好ましい。また、外比表面 積の全比表面積に占める割合は、 35%以上 75%以下であることが好ましぐ 50%以 上 75。/0以下であることが特に好ましい。 Hereinafter, the best mode for carrying out the present invention will be described in detail. The activated charcoal of the present invention is manufactured by continuously performing carbonization treatment and activation treatment in a superheated steam atmosphere on a processing object mainly composed of a wood material, and has a total specific surface area of 600 m 2 / g or less. Pores with an outer specific surface area of 20% to 75% of the total specific surface area It has a distribution structure. The activated carbon of the present invention preferably has 1000 m 2 / g or more, preferably having a total specific surface area of 800 m 2 / g or more. The ratio of the outer specific surface area to the total specific surface area is preferably 35% or more and 75% or less, preferably 50% or more75. Particularly preferred is / 0 or less.
[0020] 本発明者らは、木質材料を主成分とした処理対象物に対して過熱水蒸気雰囲気中 におレ、て炭化処理、賦活処理を連続して行うことで全比表面積力 S600m2/g以上と いう表面積を有し、さらには外比表面積が全比表面積の 20%以上 75%以下を占め る細孔分布構造を有する活性炭を製造できることを見出し、本発明を完成するに至 つた。すなわち、本発明の活性炭は、細孔径が 2nm以下のミクロ孔を除いた比表面 積である外比表面積が全比表面積の 20%以上 75%以下を占めており、そのほとん どが細孔径が 2〜50nmのメソ孔によるものである。 [0020] The present inventors have continuously performed carbonization treatment and activation treatment in a superheated steam atmosphere on an object to be treated mainly composed of a wood material, thereby providing a total specific surface area force S600m 2 / The inventors have found that activated carbon having a pore distribution structure having a surface area of g or more and an outer specific surface area of 20% to 75% of the total specific surface area can be produced, and the present invention has been completed. That is, in the activated carbon of the present invention, the outer specific surface area, which is the specific surface area excluding micropores having a pore diameter of 2 nm or less, occupies 20% or more and 75% or less of the total specific surface area, and most of them have a pore diameter. This is due to 2-50 nm mesopores.
[0021] なお、本発明における活性炭の全比表面積、及び外比表面積は、窒素吸着測定 装置を用いて以下の手法で測定した。全比表面積の算出に当たっては、 Singにより 提唱された α プロット法を用いた。具体的には、低相対圧における窒素ガスの吸着  [0021] The total specific surface area and the external specific surface area of the activated carbon in the present invention were measured by the following method using a nitrogen adsorption measuring apparatus. The α plot method proposed by Sing was used to calculate the total specific surface area. Specifically, nitrogen gas adsorption at low relative pressure
S  S
量データから α 値に対する窒素ガスの吸着量をプロットした α プロットを作成した。  An α plot was created by plotting the amount of nitrogen gas adsorbed against the α value from the quantitative data.
S S  S S
なお、 α 値とは、式 1に示すように、各相対圧での吸着量 Wを吸着等温線上の Ρ/Ρ As shown in Equation 1, the α value is the amount of adsorption W at each relative pressure expressed as Ρ / Ρ on the adsorption isotherm.
S S
= 0. 4における吸着量 (W = 0. 4)で割った値を示す。  = Indicates the value divided by the amount of adsorption at 0.4 (W = 0.4).
0 Ρ/Ρ0  0 Ρ / Ρ0
a =W/W = 0. 4 · · · (1)  a = W / W = 0.4 (1)
S P/PO  S P / PO
そして、作成した α プロットに基づき、全比表面積 S は、 a プロット中の原点を  And based on the created α plot, the total specific surface area S is the origin in the a plot.
S total S  S total S
通る一本の右上がりの直線部分の傾きから求めた。また、外比表面積 S はミクロ孔  It was calculated from the slope of the straight line that goes up to the right. The outer specific surface area S is a micropore.
ext  ext
以外の比表面積であり、 a プロット中の上部の勾配が小さい直線の傾きから算出し  Is calculated from the slope of a straight line with a small slope at the top in the plot.
S  S
た。そして、ミクロ孔比表面積 S は全比表面積 S から求めた。  It was. The micropore specific surface area S was determined from the total specific surface area S.
micro total  micro total
[0022] また、本発明における活性炭は、 BET法により算出された BET比表面積 SBETを 用いて表した場合 550m2/g以上の比表面積を有する。なお、 BET比表面積につ いては、活性炭に対する窒素ガスの吸着量から BET式を用いて算出した。 [0022] Further, the activated carbon in the present invention has a specific surface area of 550 m 2 / g or more when expressed using BET specific surface area SBET calculated by the BET method. The BET specific surface area was calculated from the amount of nitrogen gas adsorbed on the activated carbon using the BET equation.
[0023] 続いて、上述のような活性炭を製造するための活性炭製造装置について詳しく説 明する。  [0023] Next, an activated carbon production apparatus for producing activated carbon as described above will be described in detail.
図 1は、本発明に実施の形態(1)係る活性炭製造用炭化装置の全体構成図である 。また、図 2は、活性炭製造用炭化装置に用いる炭化炉を示す図である。図 1に示す ように、活性炭製造用炭化装置 10には、木材チップなどの原料を乾燥炉 30に供給 する処理対象物供給手段 20と、炭化炉 40が排出した水蒸気を導入して処理対象物 を乾燥させて乾燥済みの処理対象物と使用済みの水蒸気とを排出する乾燥工程を 行う乾燥炉 30と、乾燥炉 30にて乾燥させた処理対象物を供給し高温水蒸気発生装 置 60から過熱水蒸気を導入して処理対象物を炭化処理、賦活処理させて炭化済み の活性炭と使用済みの水蒸気とを排出する炭化 *賦活処理を行う炭化炉 40と、炭化 炉 40にて炭化した活性炭を冷却して貯蔵する排出装置 50とを設けてある。 FIG. 1 is an overall configuration diagram of a carbonization apparatus for producing activated carbon according to Embodiment (1) of the present invention. . FIG. 2 is a view showing a carbonization furnace used in a carbonization apparatus for producing activated carbon. As shown in FIG. 1, the carbonization apparatus 10 for producing activated carbon introduces the processing object supply means 20 for supplying raw materials such as wood chips to the drying furnace 30, and the steam discharged from the carbonization furnace 40 to introduce the processing object. Is heated by a drying furnace 30 that performs a drying process for discharging the dried processing target and used steam, and the processing target dried in the drying furnace 30 is supplied and heated from the high-temperature steam generator 60. Carbonization is performed by introducing steam and carbonizing and activating the processing target to discharge carbonized carbon and used water vapor. * Carbonization furnace 40 that performs the activation process and activated carbon carbonized in the carbonization furnace 40 are cooled. And a discharge device 50 for storage.
[0024] また、活性炭製造用炭化装置 10には、廃熱ボイラ 80から水蒸気を導入して炭化炉 40に供給する高温の過熱水蒸気を生成する高温水蒸気発生装置 60と、乾燥炉 30 から排出された使用済みの水蒸気に含まれる不純物を加熱して脱臭燃焼させ高温 の排気を排出する脱臭炉 70と、脱臭炉 70から排出される高温の排気を用いて水を 加熱し高温水蒸気発生装置 60に供給するための水蒸気を生成する廃熱ボイラ 80と 、廃熱ボイラ 80に水を供給する水供給装置 90と、脱臭炉 70から排出された後に廃 熱ボイラ 80で熱交換を行なった後の排気に含まれる粉塵や水分を、サイクロン等を 用いて集塵するとともに無臭化、無煙化する集塵装置 96と、集塵した後の排気を大 気に放出する排気筒 98とを設けてレ、る。  [0024] Further, the carbonization apparatus 10 for producing activated carbon is discharged from the high-temperature steam generator 60 for generating high-temperature superheated steam supplied from the waste heat boiler 80 and supplied to the carbonization furnace 40, and the drying furnace 30. The deodorizing furnace 70 that heats the impurities contained in the used steam and deodorizes and burns it to discharge high-temperature exhaust, and the high-temperature exhaust gas discharged from the deodorizing furnace 70 heats the water to the high-temperature steam generator 60. Waste heat boiler 80 that generates steam for supply, water supply device 90 that supplies water to the waste heat boiler 80, and exhaust gas after heat exchange in the waste heat boiler 80 after being discharged from the deodorizing furnace 70 A dust collector 96 that collects the dust and moisture contained in the dust using a cyclone, etc., and makes it odorless and smoke-free, and an exhaust pipe 98 that releases the exhausted air after dust collection to the atmosphere, The
[0025] 処理対象物供給手段 20には、木材チップなどの原料処理対象物を貯蔵するホッ パ 22と、ホッパ 22に貯蔵してある処理対象物をフィーダ 26に供給するコンベア 24と 、乾燥炉 30に処理対象物を計量供給するフィーダ 26とを設けている。  [0025] The processing object supply means 20 includes a hopper 22 that stores a raw material processing object such as wood chips, a conveyor 24 that supplies the processing object stored in the hopper 22 to a feeder 26, and a drying furnace. 30 is provided with a feeder 26 for weighing and processing objects.
[0026] 乾燥炉 30の円筒シェル 31には、フィーダ 26が計量した処理対象物を供給する処 理対象物供給口 32と、処理対象物を乾燥、乾留させつつ攪拌移動させる円筒部 33 と、円筒シェル 31内で処理対象物を乾燥、乾留させつつ攪拌移動させるための 1乃 至複数の回転可能なプロペラフィーダ等の攪拌羽根 34と、乾燥、乾留済みの処理対 象物を排出する排出口 35と、炭化炉 40から排出された使用済みの水蒸気を円筒部 33外側から攪拌羽根 34の回転方向と同じ方向の円筒内面接線方向(タンジェンシ ャル方向)に導入する水蒸気導入口 36と、円筒シェル 31内で処理対象物を加熱し た後の使用済み水蒸気を円筒部 33内面から円筒部外側へ円筒部 33内面の接線方 向(タンジェンシャル方向)に排出する水蒸気排出口 37を設けている。 [0026] In the cylindrical shell 31 of the drying furnace 30, a processing object supply port 32 for supplying the processing object weighed by the feeder 26, a cylindrical part 33 for moving the stirring object while stirring and dry-drying the processing object, Stirring blades 34 such as multiple propeller feeders that can be rotated while stirring and moving the processing object in the cylindrical shell 31 while drying and dry distillation, and an outlet for discharging the dried and dry-distilled processing target 35, a steam inlet 36 for introducing the used steam discharged from the carbonization furnace 40 from the outside of the cylindrical portion 33 in the tangential direction (tangential direction) of the cylinder inner surface in the same direction as the rotation direction of the stirring blade 34, Used steam after heating the processing object in the cylindrical shell 31 from the inner surface of the cylindrical portion 33 to the outer side of the cylindrical portion 33 Water vapor outlet 37 is provided to discharge in the direction (tangential direction).
[0027] 炭化炉 40の円筒シェル 41には、乾燥炉 30の排出口 35から排出されてきた乾燥済 みの処理対象物を供給する処理対象物供給口 42と、処理対象物を炭化、賦活させ つつ攪拌移動させる円筒部 43と、円筒シェル 41内の低酸素状態で処理対象物を炭 ィ匕、賦活させつつ攪拌移動させるための 1乃至複数の回転可能なスクリュー型コンペ ァ、プロペラフィーダ等の攪拌羽根 44と、炭化、賦活済みの処理対象物を排出する 排出口 45と、高温水蒸気発生装置 60から排出された 700〜920°Cの過熱水蒸気を 円筒部 43外側から攪拌羽根 44の回転方向と同じ方向の円筒内面接線方向(タンジ ェンシャル方向)に導入する水蒸気導入口 46と、円筒シェル 41内で処理対象物を加 熱した後の使用済み水蒸気を円筒部 43内面から円筒部外側へ円筒部 43内面の接 線方向(タンジェンシャル方向)に排出する水蒸気排出口 47を設けている。なお、回 転可能に構成された撹拌羽根の回転軸は円筒部 43と平行となるように設けられてい る。また、炭化炉 40は、処理対象物供給口 42から排出口 45に向かって下方に傾斜 するように配置されており、その傾斜角度は 0. 1° 〜: 10° であることが好ましぐ 0. 5 。 〜2° であることが特に好ましい。炭化炉 40が処理対象物供給口 42から排出口 4 5に向かって下方に傾斜しているので、撹拌羽根 44による移動と相俟って処理対象 物を確実かつ安定的に移動させることが可能となる。なお、炭化炉 40を傾斜させるた めの角度制御装置を設けることが好ましい。そして、炭化炉 40の円筒シェル 41は、 木質材料を主成分とした処理対象物を過熱水蒸気に接触することによって炭化させ る炭化部と、前記炭化部で炭化処理された処理対象物を連続して過熱水蒸気に接 触することによって賦活処理を行う賦活部とに区分される。  [0027] In the cylindrical shell 41 of the carbonization furnace 40, a treatment object supply port 42 for supplying the dried treatment object discharged from the discharge port 35 of the drying furnace 30, and the treatment object are carbonized and activated. A cylindrical portion 43 that is stirred and moved, and one or more rotatable screw type compressors, propeller feeders, and the like for moving the object to be stirred while moving in a low oxygen state in the cylindrical shell 41 Of stirring blade 44, discharge port 45 for discharging the carbonized and activated treatment target, and 700 to 920 ° C superheated steam discharged from high-temperature steam generator 60 Rotating stirring blade 44 from the outside of cylindrical part 43 The steam inlet 46 to be introduced in the same direction as the cylinder inner surface tangential direction (tangential direction) and the used steam after heating the processing object in the cylindrical shell 41 from the inner surface of the cylindrical portion 43 to the outer side of the cylindrical portion Tangent direction of inner surface of cylindrical part 43 A water vapor outlet 47 is provided to discharge in the (tangential direction). The rotating shaft of the stirring blade configured to be rotatable is provided so as to be parallel to the cylindrical portion 43. The carbonization furnace 40 is arranged so as to be inclined downward from the processing object supply port 42 toward the discharge port 45, and the inclination angle is preferably 0.1 ° to: 10 °. 0.5. It is particularly preferred that the angle be ˜2 °. Since the carbonization furnace 40 is inclined downward from the treatment object supply port 42 toward the discharge port 45, it is possible to move the treatment object reliably and stably in combination with the movement by the stirring blade 44. It becomes. An angle control device for tilting the carbonization furnace 40 is preferably provided. The cylindrical shell 41 of the carbonization furnace 40 continuously includes a carbonization part that carbonizes a processing object mainly composed of a wood material by contacting with superheated steam, and a processing object carbonized in the carbonization part. In this way, it is classified into an activation part that performs activation treatment by contacting with superheated steam.
[0028] この際、図 2に示すように、過熱水蒸気は炭化炉 40に設けた 1箇所の水蒸気導入 口 46から集中的に導入されるので、水蒸気導入口 46から水蒸気排出口 47へ向か つて過熱水蒸気の温度は低下する。一方、処理対象物側から見た場合には、処理 対象物供給口 42から排出口 45へ向かって撹拌移動されるが、接触する過熱水蒸気 の温度は排出口 45へ向かって上昇することとなる。なお、処理対象物供給口 42にお ける過熱水蒸気の温度は、炭化処理を開始する際の炭化処理開始温度であり 400 。C〜700。C力好ましく、 500。C〜650。Cであること力 S特に好ましレヽ。また、お出口 45 における過熱水蒸気の温度は賦活処理を終了する際の賦活処理終了温度であり 80At this time, as shown in FIG. 2, since the superheated steam is intensively introduced from one steam inlet 46 provided in the carbonization furnace 40, the steam is directed from the steam inlet 46 to the steam outlet 47. Therefore, the temperature of superheated steam falls. On the other hand, when viewed from the processing object side, the agitation is moved from the processing object supply port 42 toward the discharge port 45, but the temperature of the superheated steam that comes into contact rises toward the discharge port 45. . The temperature of the superheated steam at the treatment object supply port 42 is the carbonization start temperature when the carbonization process is started 400. C ~ 700. C force is preferred, 500. C ~ 650. Ability to be C S Exit 45 The temperature of the superheated steam at the end of the activation process is the end temperature of the activation process at the end of the activation process.
0°C〜920°Cであることが好ましぐ 800〜880°Cであることが特に好ましレ、。また、炭 化炉 40に供給する過熱水蒸気又は使用済みの水蒸気の流速は、処理対象物への 熱伝達を進める上で、 5 (m/s)以上の流速であることが望ましい。しかし、 20 (m/s )以上にすると炭化炉 40の内部で使用している部品にエロージョン等の問題が発生 するので、適切な流速の範囲が存在する。水蒸気導入口 46には、水蒸気導入口の 開口面積等を圧力調節機構又は絞りによって調節することで過熱水蒸気の流量を制 御する流量制御弁を設けることが好ましい。 It is preferred to be between 0 ° C and 920 ° C. Particularly preferred is between 800 and 880 ° C. Further, the flow rate of superheated steam or used steam supplied to the carbonization furnace 40 is preferably 5 (m / s) or more in order to promote heat transfer to the object to be treated. However, if it is 20 (m / s) or more, problems such as erosion occur in the parts used in the carbonization furnace 40, so there is an appropriate flow velocity range. The steam inlet 46 is preferably provided with a flow rate control valve that controls the flow rate of superheated steam by adjusting the opening area or the like of the steam inlet by a pressure adjusting mechanism or a throttle.
[0029] 排出装置 50には、炭化炉 40にて炭化、賦活した高温の活性炭を水で冷却する冷 却ジャケット 52と、出来上がった活性炭を冷却しつつ製品タンク 54に送る水冷ジャケ ット付のスクリューコンベア 56とを設けてある。  [0029] The discharge device 50 includes a cooling jacket 52 that cools the activated carbon that has been carbonized and activated in the carbonization furnace 40 with water, and a water-cooled jacket that sends the finished activated carbon to the product tank 54 while cooling the activated carbon. A screw conveyor 56 is provided.
[0030] 高温水蒸気発生装置 60は、廃熱ボイラ 80から水蒸気を、 LPG等をパーナで燃焼 させている雰囲気中に導入して過熱水蒸気を生成する。高温水蒸気発生装置 60に て生成した過熱水蒸気は、炭化炉 40に供給し、処理対象物を乾留、炭化、賦活させ て活性炭を生成する。  [0030] The high-temperature steam generator 60 introduces steam from the waste heat boiler 80 into an atmosphere in which LPG or the like is burned by a panner to generate superheated steam. The superheated steam generated by the high-temperature steam generator 60 is supplied to the carbonization furnace 40, and activated carbon is generated by dry distillation, carbonization, and activation of the object to be treated.
[0031] 脱臭炉 70は、炭化炉 40から排出された使用済みの水蒸気を石油パーナ等の燃焼 雰囲気中に供給して、使用済みの水蒸気に含まれる、アンモニア、メルカブタン、硫 化水素、硫化メチル、二硫化メチル、トリメチルァミン、ァセトアルデヒド、スチレン等の 不純物を脱臭燃焼させ、高温の排気を排出する。  [0031] The deodorization furnace 70 supplies used steam discharged from the carbonization furnace 40 into a combustion atmosphere such as petroleum parner, and includes ammonia, mercabtan, hydrogen sulfide, methyl sulfide contained in the used steam. Deodorizing and burning impurities such as methyl disulfide, trimethylamine, acetoaldehyde, and styrene, and exhausting high-temperature exhaust.
[0032] 廃熱ボイラ 80は、脱臭炉 70から排出される高温の排気を用いて水を多段階に加熱 して水蒸気(ドライスチーム)を生成し、高温水蒸気発生装置 60に供給する。  The waste heat boiler 80 heats water in multiple stages using the high-temperature exhaust discharged from the deodorization furnace 70 to generate steam (dry steam), and supplies the steam to the high-temperature steam generator 60.
[0033] 集塵装置 96は、脱臭炉 70から排出された後に廃熱ボイラ 80で熱交換を行なった 後の排気に含まれる粉塵(固形物など)や水分を、サイクロン等を用いて集塵するとと もに、無煙化する処理を行なう。また、排気筒 98は、集塵した後のクリーンな排気を 大気に放出する。  [0033] The dust collector 96 collects dust (solid matter, etc.) and water contained in the exhaust gas after being exchanged in the waste heat boiler 80 after being discharged from the deodorizing furnace 70 using a cyclone or the like. At the same time, the smoke-free process is performed. In addition, the exhaust pipe 98 discharges clean exhaust air after dust collection to the atmosphere.
[0034] 続いて、活性炭製造用炭化装置 10を用いた活性炭の製造方法について説明する 先ず脱臭炉ブロワ一 72を動作させて脱臭炉 70に燃焼用の空気を供給する。次に 灯油タンク 74から灯油ポンプ 76を用いて灯油を脱臭炉 70に供給して燃焼を開始さ せる。脱臭炉 70からは、 800乃至 1200(°C)の排気が排出され、この高温の排気は 廃熱ボイラ 80に供給する。 Subsequently, a method for producing activated carbon using the carbonization apparatus 10 for producing activated carbon will be described. First, the deodorizing furnace blower 72 is operated to supply combustion air to the deodorizing furnace 70. next Kerosene is supplied from the kerosene tank 74 to the deodorizing furnace 70 using the kerosene pump 76, and combustion is started. From the deodorizing furnace 70, 800 to 1200 (° C) exhaust is discharged, and this high-temperature exhaust is supplied to the waste heat boiler 80.
[0035] 廃熱ボイラ 80の温度が上昇したら、水供給装置 90の軟水器 92を経由して軟水タ ンク 94に貯蔵されている軟水を給水ポンプ 95にて圧送して廃熱ボイラ 80に供給す る。廃熱ボイラ 80の後段では、供給した軟水を高温に加熱する。そして、更に廃熱ボ イラ 80の前段に供給して 150乃至 300 (°C)の過熱水蒸気(ドライスチーム)を生成し て高温水蒸気発生装置 60に供給する。  [0035] When the temperature of the waste heat boiler 80 rises, the soft water stored in the soft water tank 94 is pumped by the feed water pump 95 via the water softener 92 of the water supply device 90 and supplied to the waste heat boiler 80. The In the latter stage of the waste heat boiler 80, the supplied soft water is heated to a high temperature. Further, it is supplied to the front stage of the waste heat boiler 80 to generate 150 to 300 (° C.) superheated steam (dry steam) and supply it to the high temperature steam generator 60.
[0036] 高温水蒸気発生装置 60では、送風機 62を動作させて燃焼用の空気を高温水蒸 気発生装置 60に供給する。次に、水蒸気を加熱するために、 LPGボンべ 64からガ バナ 66を介して LPGをパーナ 68に供給して点火する。すると、廃熱ボイラ 80から導 入した 150°C〜300°Cの水蒸気を更に加熱して 750°C〜950°Cの過熱水蒸気、より 好ましくは 880°C〜920°Cの過熱水蒸気を生成し、炭化炉 40に供給する。  [0036] In the high temperature steam generator 60, the blower 62 is operated to supply combustion air to the high temperature water steam generator 60. Next, in order to heat the water vapor, LPG is supplied from the LPG cylinder 64 through the governor 66 to the panner 68 and ignited. Then, the steam of 150 ° C to 300 ° C introduced from the waste heat boiler 80 is further heated to produce superheated steam of 750 ° C to 950 ° C, more preferably 880 ° C to 920 ° C. And then supplied to the carbonization furnace 40.
[0037] 一方、活性炭のもとになる木質材料等の処理対象物は、予め処理対象物供給手段 20のホッパ 22に投入して貯蔵しておく。ホッパ 22内に貯蔵された処理対象物は、処 理対象物供給手段 20に設けてあるコンベア 24にてフィーダ 26に供給する。フィーダ 26は、所定の量の処理対象物を適宜乾燥炉 30に計量供給する。  [0037] On the other hand, a processing object such as a wood material that is a source of activated carbon is put in the hopper 22 of the processing object supply means 20 and stored in advance. The processing object stored in the hopper 22 is supplied to the feeder 26 by the conveyor 24 provided in the processing object supply means 20. The feeder 26 measures and supplies a predetermined amount of processing object to the drying furnace 30 as appropriate.
[0038] 処理対象物は、乾燥炉 30の円筒シェル 31に設けられている処理対象物供給口 32 力 円筒シェル 31内部に供給される。円筒シェル 31内部では攪拌羽根 34が回転し ているので、円筒シェル 31内の円筒部 33において処理対象物が攪拌されつつ排出 口 35の方向へ徐々に移動する。  The processing object is supplied into the processing object supply port 32 force cylindrical shell 31 provided in the cylindrical shell 31 of the drying furnace 30. Since the stirring blade 34 is rotating inside the cylindrical shell 31, the processing object is gradually moved toward the discharge port 35 while being stirred in the cylindrical portion 33 in the cylindrical shell 31.
[0039] なお、水蒸気導入口 36からは、炭化炉 40から排出された使用済みの 750°C〜95 0°Cの過熱水蒸気が、円筒部 33外側から攪拌羽根 34の回転方向と同じ方向の円筒 内面接線方向(タンジェンシャル方向)に導入されて、強い渦を発生している。したが つて過熱水蒸気は、攪拌羽根 34にて攪拌移動されている処理対象物とよく混合しな 力 ¾加熱分解又は加水分解等の反応を行なう。  [0039] It should be noted that the used superheated steam of 750 ° C to 950 ° C discharged from the carbonization furnace 40 from the steam inlet 36 is in the same direction as the rotation direction of the stirring blade 34 from the outside of the cylindrical portion 33. Cylindrical Introduced in the inner tangential direction (tangential direction), generating strong vortices. Therefore, the superheated steam undergoes a reaction such as heat decomposition or hydrolysis without being mixed well with the object to be treated which is stirred and moved by the stirring blade 34.
[0040] 過熱水蒸気によって処理対象物は、加熱、乾燥、乾留の反応を行いつつ円筒部 3 3を水蒸気排出口 37に向かって進み、使用済み過熱水蒸気は円筒部 33内面から円 筒部外側へ円筒部 33内面の接線方向(タンジェンシャル方向)に排出される。ここで も円筒部 33内面の接線方向に使用済みの過熱水蒸気が排出されるように水蒸気排 出口 37を設けているので、円筒部 33内の過熱水蒸気の旋回流れを維持し処理対 象物との相対流速を高く保ち、伝熱を促進する。 [0040] The object to be treated is heated, dried, and dry-distilled by the superheated steam, and proceeds through the cylindrical part 33 toward the water vapor outlet 37, and the used superheated steam is circular from the inner surface of the cylindrical part 33. To the outside of the cylinder part, the cylinder part 33 is discharged in the tangential direction (tangential direction) of the inner surface. Here again, since the steam outlet 37 is provided so that the used superheated steam is discharged in the tangential direction of the inner surface of the cylindrical part 33, the swirling flow of the superheated steam in the cylindrical part 33 is maintained, and Keeping the relative flow rate high, promote heat transfer.
[0041] なお、過熱水蒸気は、円筒部 33の外側から 5乃至 20 (m/s)の流速にて攪拌羽根 34の回転方向と同じ方向の円筒内面接線方向に導入して、強い水蒸気の渦を発生 するようにしてレ、る。またこの過熱水蒸気は、円筒部 33の製品の排出口 35に近い側 面から円周接線方向に 5乃至 20 (mZs)の流速をもって吹き付け、処理対象物供給 口 32の入口近くに設けた水蒸気排出口 37から、攪拌羽根 34と同一の回転方向の 円周接線方向に向かって排出する。この構造によって、水蒸気は旋回流を伴って被 処理物質との大きな相対速度をある程度継続して持ちながら反応炉内を移動するた めに、処理対象物に対する熱の伝達が促進され、処理対象物の温度が水蒸気の温 度に近づき、乾燥、乾留等の各種反応が促進される。なお、処理対象物供給口 32あ るいは水蒸気排出口 37付近における使用済の過熱水蒸気は、 250°C〜600°Cの温 度を有していることが好ましぐ 300°C〜500°Cの温度を有していることが特に好まし レ、。この使用済みの水蒸気には、窒素化合物等の有害な物質や臭気を含まれており 、脱臭炉 70内において使用済みの水蒸気中に含まれた有害な物質を灯油等ととも に燃焼させて 800°C〜1200°Cの温度に加熱して、有害物質が分解される。  [0041] The superheated steam is introduced from the outside of the cylindrical portion 33 at a flow rate of 5 to 20 (m / s) in the tangential direction of the inner surface of the cylinder in the same direction as the rotation direction of the stirring blade 34. Try to generate a vortex. The superheated steam is sprayed from the side surface of the cylindrical portion 33 near the product outlet 35 at a flow rate of 5 to 20 (mZs) in the circumferential tangential direction, and the steam outlet provided near the inlet of the processing object supply port 32 is used. From the outlet 37, it discharges toward the circumferential tangential direction in the same rotational direction as the stirring blade 34. This structure facilitates the transfer of heat to the object to be processed because the steam moves in the reactor while maintaining a large relative velocity with the object to be processed to some extent with a swirling flow. The temperature of the water approaches that of water vapor, and various reactions such as drying and dry distillation are promoted. In addition, it is preferable that the used superheated steam near the processing object supply port 32 or the steam discharge port 37 has a temperature of 250 ° C to 600 ° C. 300 ° C to 500 ° Especially preferred to have a temperature of C. This used water vapor contains harmful substances such as nitrogen compounds and odors. In the deodorizing furnace 70, the harmful water contained in the used water vapor is burned together with kerosene, etc. 800 Upon heating to a temperature of ° C to 1200 ° C, harmful substances are decomposed.
[0042] 続いて、乾燥炉 30にて乾燥させた処理対象物は排出口 35力ら排出され、次の処 理工程の炭化炉 40に供給される。乾燥炉 30から排出された処理対象物は、乾燥炉 40の円筒シェル 41に設けられてレ、る処理対象物供給口 42力ら円筒シェル 41内部 に供給される。円筒シェル 41内部では攪拌羽根 44が回転しているので、円筒シェル 41内の円筒部 43において処理対象物が攪拌されつつ排出口 45の方向へ徐々に 移動する。  Subsequently, the processing object dried in the drying furnace 30 is discharged from the discharge port 35 and supplied to the carbonization furnace 40 of the next processing step. The object to be processed discharged from the drying furnace 30 is provided in the cylindrical shell 41 of the drying furnace 40 and supplied to the inside of the cylindrical shell 41 through the processing object supply port 42 force. Since the stirring blades 44 are rotating inside the cylindrical shell 41, the processing object is gradually moved toward the discharge port 45 while being stirred in the cylindrical portion 43 in the cylindrical shell 41.
[0043] 水蒸気導入口 46からは、高温水蒸気発生装置 60から供給される過熱水蒸気が、 円筒部 43外側から攪拌羽根 44の回転方向と同じ方向の円筒内面接線方向(タンジ ェンシャル方向)に導入されて、水蒸気の強い旋回流を発生するようにしている。した がって過熱水蒸気は、攪拌羽根 44にて攪拌移動されている処理対象物とよく混合し て反応し、処理対象物を炭化、賦活させつつ円筒部 43を水蒸気排出口 47に向かつ て進み、使用済み水蒸気は円筒部 34内面から円筒部外側へ円筒部 43内面の接線 方向(タンジェンシャル方向)に排出される。ここでも円筒部 43内面の接線方向に使 用済みの水蒸気が排出されるように水蒸気排出口 47を設けているので、処理対象 物とよく混合しながら加熱分解又は加水分解等の反応が促進される。 [0043] The superheated steam supplied from the high-temperature steam generator 60 is introduced from the steam inlet 46 into the cylinder inner surface tangential direction (tangential direction) in the same direction as the rotation direction of the stirring blade 44 from the outer side of the cylindrical portion 43. Thus, a strong swirl flow of water vapor is generated. Therefore, the superheated steam is well mixed with the object to be treated that is being stirred and moved by the stirring blade 44. As the process object carbonizes and activates the object to be processed, the cylindrical part 43 advances toward the water vapor outlet 47, and the used water vapor moves from the inner surface of the cylindrical part 34 to the outer side of the cylindrical part. Direction). Here again, the steam outlet 47 is provided so that the used steam is discharged in the tangential direction of the inner surface of the cylindrical part 43, so that a reaction such as thermal decomposition or hydrolysis is promoted while being well mixed with the object to be treated. The
[0044] 続いて、図 3に、本発明の実施の形態(1)に係る炭化炉内での温度分布を示す。  [0044] Next, FIG. 3 shows a temperature distribution in the carbonization furnace according to Embodiment (1) of the present invention.
図 3に示すように炭化炉 40の処理対象物供給口 42から排出口 45に向かって温度が 上昇し、炭化'賦活処理の開始から終了まで過熱水蒸気の温度が上昇するような炉 内温度分布となるように過熱水蒸気の温度が設定されている。具体的には、木質材 料を主成分とした処理対象物を炭化させる炭化部において過熱水蒸気の温度が 40 0°C〜700°Cであり、炭化部で炭化処理された処理対象物を連続して賦活処理を行 ぅ賦活部における過熱水蒸気の平均温度が 750°C〜900°Cとなるように設定すること が好ましぐ 750°C〜850°Cであることが特に好ましい。このように炭化'賦活処理工 程における温度を設定することで、全比表面積が大きぐかつ外比表面積の割合が 高い活性炭を得ることができる。また、炭化部及び賦活部において上述のような過熱 水蒸気の温度を得るためには、炭化処理を開始する際の処理対象物供給口 42にお ける過熱水蒸気の温度を 400°C〜700°Cとすることが好ましぐ賦活処理を終了する 際の排出口 45における過熱水蒸気の温度を 800°C〜920°Cとすることが好ましぐ 8 00°C〜880°Cであることが特に好ましい。また、装置内で処理対象物の炭化から引 続き移行して行われる賦活部における滞留時間は 10分から 30分程度が好ましい。 滞留時間が不足すれば細孔の発生が不十分となり長過ぎれば細孔の大きさが発達 し過ぎて比表面積が低下する場合がある。  As shown in Fig. 3, the temperature distribution in the furnace is such that the temperature rises from the treatment object supply port 42 to the discharge port 45 of the carbonization furnace 40 and the temperature of the superheated steam rises from the start to the end of the carbonization activation process. The temperature of the superheated steam is set so that Specifically, the temperature of superheated steam is 400 ° C to 700 ° C in the carbonization part that carbonizes the processing object mainly composed of wood material, and the processing object carbonized in the carbonization part is continuous. It is particularly preferable to set the average temperature of the superheated steam in the activation part to be 750 ° C to 900 ° C, particularly preferably 750 ° C to 850 ° C. Thus, by setting the temperature in the carbonization activation process, activated carbon having a large total specific surface area and a high ratio of the external specific surface area can be obtained. In addition, in order to obtain the temperature of the superheated steam as described above in the carbonization part and the activation part, the temperature of the superheated steam at the processing object supply port 42 when starting the carbonization process is set to 400 ° C to 700 ° C. It is particularly preferable that the temperature of the superheated steam at the outlet 45 at the end of the activation process at 800 ° C to 920 ° C is 800 ° C to 880 ° C. preferable. In addition, the residence time in the activation part, which is carried out after the carbonization of the object to be treated in the apparatus, is preferably about 10 to 30 minutes. If the residence time is insufficient, the generation of pores is insufficient, and if the residence time is too long, the pore size develops too much and the specific surface area may decrease.
[0045] 続いて、炭化炉 40にて炭化、賦活させた結果生成した活性炭は排出口 45から排 出され、排出装置 50に供給される。炭化炉 40から排出された高温の活性炭を酸素 雰囲気中に置くと再燃焼してしまう場合があるので、排出装置 50に設けた冷却ジャケ ット 52にて冷去 Pする。更に水冷ジャケット付のスクリューコンベア 56によって活性炭を 冷却しつつ製品タンク 54に送り貯蔵する。  Subsequently, activated carbon generated as a result of carbonization and activation in the carbonization furnace 40 is discharged from the discharge port 45 and supplied to the discharge device 50. If high-temperature activated carbon discharged from the carbonization furnace 40 is placed in an oxygen atmosphere, it may be recombusted. Therefore, it is cooled by a cooling jacket 52 provided in the discharge device 50. Further, the activated carbon is cooled and stored in the product tank 54 by a screw conveyor 56 with a water cooling jacket.
[0046] 上記実施の形態では、乾燥炉 30 (第 1の反応炉)と炭化炉 40 (第 2の反応炉)との 2 種類の反応炉を用いて、有機系の処理対象物を乾燥、乾留、賦活等の炭化処理を 行なう活性炭製造用炭化装置について説明したが、本発明は 2種類の反応炉を用 レ、て炭化処理を行なう例に限定されるものではなレ、。 [0046] In the above-described embodiment, two of the drying furnace 30 (first reaction furnace) and the carbonization furnace 40 (second reaction furnace) Although the carbonization apparatus for producing activated carbon that performs carbonization treatment such as drying, dry distillation, activation, etc., on the organic processing object using various types of reactors has been described, the present invention uses two types of reactors to carbonize. It is not limited to the example of processing.
[0047] 例えば、処理対象物の種類や処理量に応じて、脱臭炉 70から排出される高温の排 気から熱回収を行なった過熱水蒸気を用いて高温の過熱水蒸気を生成し、この高温 の過熱水蒸気を乾燥炭化炉 (第 1の反応炉)に導入して処理対象物を乾燥させるとと もに炭化し、使用済みの水蒸気を排出する処理を行なっても本発明の目的を達成す ることが可能である。 [0047] For example, high-temperature superheated steam is generated by using superheated steam that has been heat-recovered from the high-temperature exhaust discharged from the deodorizing furnace 70 in accordance with the type and amount of the object to be treated. Even if superheated steam is introduced into a dry carbonization furnace (first reactor) to dry the object to be treated, it is carbonized and used steam is discharged to achieve the object of the present invention. It is possible.
[0048] また、過熱水蒸気を導入して処理対象物の炭化を促進させて使用済みの水蒸気を 排出する炭化促進炉 (第 3の反応炉)と、炭化促進炉から排出した水蒸気を導入して 処理対象物を炭化させて使用済みの水蒸気を排出する炭化炉 (第 2の反応炉)と、 炭化炉力 排出した水蒸気を導入して処理対象物を乾燥させて使用済みの水蒸気 を排出する乾燥炉 (第 1の反応炉)と、水蒸気を導入して炭化炉に供給するための高 温の過熱水蒸気を生成する高温水蒸気発生装置と、乾燥炉から排出された使用済 みの水蒸気に含まれる不純物を加熱して脱臭燃焼させて高温の排気を排出する脱 臭炉と、脱臭炉力 排出される高温の排気を用いて水を加熱して高温水蒸気発生装 置に供給する水蒸気を生成する廃熱ボイラとを備え、複数段の反応炉をカスケード 状に利用して処理対象物を炭化させる活性炭製造用炭化装置としても本発明の目 的を達成することが可能である。  [0048] Further, a carbonization promotion furnace (third reaction furnace) that introduces superheated steam to promote carbonization of the object to be processed and discharges used steam, and steam discharged from the carbonization promotion furnace is introduced. Carbonization furnace (second reactor) that discharges used steam by carbonizing the object to be processed, and drying that discharges used steam by introducing the steam discharged from the carbonization furnace power and drying the object to be processed Included in the furnace (first reactor), high-temperature steam generator that generates high-temperature superheated steam to introduce steam into the carbonization furnace, and used steam discharged from the drying furnace A deodorizing furnace that heats impurities to deodorize and burn high-temperature exhaust, and a waste that generates water to heat and supply steam to the high-temperature steam generator using the high-temperature exhaust discharged from the deodorizing furnace. A multi-stage reactor is cascaded with a thermal boiler Also it is possible to achieve the purposes of the present invention as active carbon for producing carbide device for carbonizing the treated object by use.
[0049] 続いて、本発明の実施の形態(2)に係る活性炭製造用炭化装置の炭化炉につい て図 4及び図 5に基づき説明する。図 4は、本発明の実施の形態(2)に係る活性炭製 造用炭化装置の炭化炉を示す。また、図 5に、実施の形態(2)に係る炭化炉内にお ける炉内温度分布を示す。  [0049] Next, the carbonization furnace of the carbonization apparatus for producing activated carbon according to Embodiment (2) of the present invention will be described with reference to Figs. FIG. 4 shows a carbonizing furnace of the carbonizing apparatus for producing activated carbon according to the embodiment (2) of the present invention. FIG. 5 shows the furnace temperature distribution in the carbonization furnace according to Embodiment (2).
[0050] 上記実施の形態(2)では、図 2に示すように炭化炉 40に水蒸気導入口 46を 1箇所 設けた例で説明したが、図 4に示すように、炭化炉 40の賦活部にのみ水蒸気導入口 46、 46A、 46Bを複数設けるようにしてもよレ、。炭化炉 40に複数の水蒸気導入口 46 、 46A、 46Bを設けることで賦活部において処理対象物を均質な状態で高温に加温 すること力 S可能となる。この場合、炭化炉 40の賦活部内における過熱水蒸気の平均 温度は 750°C〜900°Cであることが好ましぐ 750°C〜850°Cであることが特に好まし レ、。また、各水蒸気導入口 46、 46A、 46Bからの過熱水蒸気は、処理対象物供給口 42側に向かって水蒸気導入口 46、 46A、 46Bの順で導入量を多くすることが好まし レ、。これにより排出口 45側の水蒸気導入口 46、 46Aから供給された過熱水蒸気の 温度が賦活部において降下することをより効果的に抑制でき、賦活部における過熱 水蒸気の温度を一定に保つことができる。また、炭化部の処理対象物供給口 42付近 には、 150〜300°Cの低温ガスを追加的に導入する低温ガス導入口 48が設けられ ている。低温ガス導入口 48から低温ガスを導入することで炭化部における過熱水蒸 気の温度が過度に上昇しないようにして、処理対象物の炭化初期における炭化を緩 やかに進行させることができる。これにより偏りの少ない均質な炭化処理を行うことが でき、その後の賦活処理において大きい全比表面積を有し、高い外表面積の割合を 有する活性炭を製造するのに最適な炭化状態に制御することが可能となる。また、こ れらの各水蒸気導入口 46、 46A、 46Bは、高温水蒸気発生装置 60から排出された 過熱水蒸気を、円筒部 43外側から攪拌羽根 44の回転方向と同じ方向の円筒内面 接線方向(タンジェンシャル方向)に導入する。なお、必要以上に水蒸気導入口を増 やしてしまうと、水蒸気導入口 1つ当たりの過熱水蒸気流の力が弱まって過熱水蒸気 の旋回流が弱くなることも考えられる。 [0050] In the above embodiment (2), the carbonization furnace 40 is provided with one steam inlet 46 as shown in Fig. 2, but as shown in Fig. 4, the activation part of the carbonization furnace 40 is provided. It is also possible to provide a plurality of steam inlets 46, 46A, 46B only on the side. By providing a plurality of water vapor inlets 46, 46A, 46B in the carbonization furnace 40, it becomes possible to increase the force S to heat the object to be processed to a high temperature in the activation part. In this case, the average superheated steam in the activation part of the carbonization furnace 40 The temperature is preferably 750 ° C to 900 ° C, particularly preferably 750 ° C to 850 ° C. In addition, it is preferable to increase the amount of superheated steam from each of the steam inlets 46, 46A, 46B in the order of the steam inlets 46, 46A, 46B toward the processing object supply port 42 side. As a result, it is possible to more effectively suppress the temperature of the superheated steam supplied from the steam inlet 46, 46A on the discharge port 45 side from dropping in the activation part, and the temperature of the superheated steam in the activation part can be kept constant. . Further, a low temperature gas introduction port 48 for additionally introducing a low temperature gas of 150 to 300 ° C. is provided near the processing object supply port 42 of the carbonization section. By introducing the low temperature gas from the low temperature gas inlet 48, the temperature of the superheated steam in the carbonization part does not rise excessively, and the carbonization of the object to be treated at the initial stage of carbonization can proceed slowly. This makes it possible to perform a uniform carbonization treatment with little bias, and to control the carbonization state to be optimal for producing activated carbon having a large total specific surface area and a high proportion of the outer surface area in the subsequent activation treatment. It becomes possible. In addition, each of these steam inlets 46, 46A, 46B allows superheated steam discharged from the high-temperature steam generator 60 to be tangential to the inner surface of the cylinder in the same direction as the rotation direction of the stirring blade 44 from the outer side of the cylindrical part 43 ( In the tangential direction). If the number of steam inlets is increased more than necessary, the superheated steam flow per steam inlet may be weakened and the swirling flow of superheated steam may be weakened.
実施例 Example
以下、実施例に基づいて本発明について具体的に説明する。  Hereinafter, the present invention will be specifically described based on examples.
(実施例 1) (Example 1)
•活性炭の製造 • Manufacture of activated carbon
処理可能な大きさに加工された檜間伐材チップを予め処理対象物供給手段 20の ホッパ 22に投入して貯蔵しておく。ホッパ 22内に貯蔵された処理対象物は、処理対 象物供給手段 20に設けてあるコンベア 24にてフィーダ 26に供給する。乾燥炉 30に 供給された処理対象物は、円筒シェル 31内部で攪拌羽根 34により処理対象物が攪 拌されつつ排出口 35の方向へ徐々に移動し乾燥される。続いて、乾燥炉 30にて乾 燥させた処理対象物は排出口 35から排出され、次の処理工程の炭化炉 40に供給さ れ、炭化、賦活が行われる。そして、炭化炉 40の内部には、水蒸気導入口 36より 80 0°Cの過熱水蒸気を導入し、攪拌羽根 34にて攪拌移動されてレ、る処理対象物とよく 混合しながら炭化又は賦活等の反応を行なった。なお、導入した過熱水蒸気は炭化 炉 40内の賦活工程における過熱水蒸気の平均温度が 760°Cとなるように設定した。 また、炭化炉 40にて炭化、賦活させた結果生成した活性炭は排出口 45から排出さ れ、得られた活性炭について比表面積、細孔構造評価、電気二重層キャパシタ容量 を測定した。 The thinned wood chips that have been processed to a size that can be processed are put into the hopper 22 of the processing object supply means 20 and stored in advance. The processing object stored in the hopper 22 is supplied to the feeder 26 by the conveyor 24 provided in the processing object supply means 20. The object to be treated supplied to the drying furnace 30 is gradually moved in the direction of the discharge port 35 while being agitated by the stirring blade 34 inside the cylindrical shell 31 and dried. Subsequently, the processing object dried in the drying furnace 30 is discharged from the discharge port 35 and supplied to the carbonization furnace 40 of the next processing step, and carbonization and activation are performed. The inside of the carbonization furnace 40 is 80 from the steam inlet 36. Superheated steam at 0 ° C. was introduced, stirred and moved by the stirring blade 34, and subjected to a reaction such as carbonization or activation while being well mixed with the object to be treated. The introduced superheated steam was set so that the average temperature of the superheated steam in the activation process in the carbonization furnace 40 was 760 ° C. The activated carbon produced as a result of carbonization and activation in the carbonization furnace 40 was discharged from the discharge port 45, and the specific surface area, pore structure evaluation, and electric double layer capacitor capacity of the obtained activated carbon were measured.
[0052] (実施例 2) [0052] (Example 2)
水蒸気導入口より導入する過熱水蒸気の温度を 874°Cと設定し、炭化炉 40内の賦 活工程における過熱水蒸気の平均温度を 840°Cとした以外は、 (実施例 1)と同様に 行った。  The same procedure as in Example 1 was performed except that the temperature of the superheated steam introduced from the steam inlet was set to 874 ° C and the average temperature of the superheated steam in the activation process in the carbonization furnace 40 was set to 840 ° C. It was.
[0053] (実施例 3) [0053] (Example 3)
実施例 3は、水蒸気導入口より導入する過熱水蒸気の温度を 828°Cと設定し、攪拌 羽根 34にて攪拌移動されている処理対象物とよく混合しながら炭化又は賦活等の反 応を行なった ί列である。  In Example 3, the temperature of the superheated steam introduced from the steam inlet is set to 828 ° C, and a reaction such as carbonization or activation is performed while being well mixed with the processing target being stirred and moved by the stirring blade 34. It is a ί row.
[0054] (実施例 4) [Example 4]
実施例 4は、水蒸気導入口より導入する過熱水蒸気の温度を 832°Cと設定し、攪拌 羽根 34にて攪拌移動されている処理対象物とよく混合しながら炭化又は賦活等の反 応を行なった ί列である。  In Example 4, the temperature of the superheated steam introduced from the steam inlet is set to 832 ° C, and the reaction such as carbonization or activation is performed while being well mixed with the processing target being stirred and moved by the stirring blade 34. It is a ί row.
[0055] (実施例 5) [Example 5]
実施例 5は、水蒸気導入口より導入する過熱水蒸気の温度を 849°Cと設定し、攪拌 羽根 34にて攪拌移動されている処理対象物とよく混合しながら炭化又は賦活等の反 応を行なった ί列である。  In Example 5, the temperature of superheated steam introduced from the steam inlet is set to 849 ° C., and the reaction such as carbonization or activation is performed while being well mixed with the object to be stirred and moved by the stirring blade 34. It is a ί row.
[0056] (比較例 1) [0056] (Comparative Example 1)
水蒸気導入口より導入する過熱水蒸気の温度を 780°Cと設定し、炭化炉 40内の賦 活工程における過熱水蒸気の平均温度を 745°Cとした以外は、 (実施例 1)と同様に 行った。  The same procedure as in Example 1 was performed except that the temperature of the superheated steam introduced from the steam inlet was set to 780 ° C and the average temperature of the superheated steam in the activation process in the carbonization furnace 40 was set to 745 ° C. It was.
[0057] (比較例 2) [0057] (Comparative Example 2)
水蒸気導入口より導入する過熱水蒸気の温度を 940°Cと設定し、炭化炉 40内の賦 活工程における過熱水蒸気の平均温度を 905°Cとした以外は、 (実施例 1)と同様に 行った。 The temperature of superheated steam introduced from the steam inlet is set to 940 ° C, and the temperature inside the carbonization furnace 40 is increased. The same procedure as in Example 1 was performed except that the average temperature of superheated steam in the active process was 905 ° C.
[0058] ·比表面積の測定  [0058] · Measurement of specific surface area
各実施例、比較例において製造された活性炭をメノウ乳鉢中で粉砕して活性炭粉 末を得て、得られた活性炭粉末を窒素気流中で 900°Cに 1時間加熱処理する。その 後、ガス吸着測定用シリンダー中で真空中 300°Cで数時間乾燥を行って、活性炭粉 末を秤量した。なお、真空中での飛散を防ぐため活性炭粉末はアルミ箔容器の中に 入れた。そして、 77Kにおいて高純度窒素ガスの吸着曲線を測定した。そして、得ら れた窒素ガスの吸着曲線の窒素ガス相対圧 PZP < 0. 3における窒素ガスの吸着  The activated carbon produced in each Example and Comparative Example is pulverized in an agate mortar to obtain an activated carbon powder, and the obtained activated carbon powder is heat-treated at 900 ° C. for 1 hour in a nitrogen stream. After that, it was dried in a gas adsorption measurement cylinder at 300 ° C for several hours in a vacuum, and the activated carbon powder was weighed. The activated carbon powder was placed in an aluminum foil container to prevent scattering in a vacuum. And the adsorption curve of high purity nitrogen gas was measured at 77K. Then, the adsorption of nitrogen gas at the nitrogen gas relative pressure PZP <0.3 in the obtained nitrogen gas adsorption curve.
0  0
量から BET比表面積 SBETを多点法により測定した。  From the quantity, the BET specific surface area SBET was measured by a multipoint method.
[0059] ·細孔構造評価 [0059] · Pore structure evaluation
ミクロポアの比表面積は Singにより提唱されたひ プロット法により算出した。低相対  The specific surface area of the micropore was calculated by the Hi-Plot method proposed by Sing. Low relative
S  S
圧における窒素ガスの吸着量データから α プロットを作成し、作成した α プロットに  Create an α plot from the adsorption data of nitrogen gas at pressure and add it to the created α plot.
S S  S S
基づき、全比表面積 S 、外比表面積 S ,ミクロ孔比表面積 S を求めた。  Based on this, the total specific surface area S, the outer specific surface area S, and the micropore specific surface area S were determined.
total ext micro  total ext micro
[0060] (実施例:!〜 5)及び (比較例 1、 2)で得られた活性炭の比表面積に関するデータを 表 1に示す。  [0060] Table 1 shows data on the specific surface area of the activated carbon obtained in (Examples:! To 5) and (Comparative Examples 1 and 2).
[0061] [表 1] [0061] [Table 1]
Figure imgf000018_0001
表 1からも明らかなように、実施例 1及び 2で得られた活性炭は BET比表面積及び 全比表面積が大きいだけではなぐ外比表面積の全比表面積に対する割合が、比 匕較 ί列 2の 0. 12、 0. 17に対してそれぞれ 0. 49, 0. 46と^ Ξ常に大きいこと が分かる。
Figure imgf000018_0001
As is clear from Table 1, the activated carbons obtained in Examples 1 and 2 have not only a large BET specific surface area and a large total specific surface area, but also the ratio of the external specific surface area to the total specific surface area. 0. 49, 0. 46 and ^ Ξ always large for 0.12, 0.17 respectively I understand.
[0063] ·電気二重層キャパシタ容量 [0063] · Electric double layer capacitor capacity
活性炭について電気二重層キャパシタを測定した。測定については、 3極式のセル を用いて、 1MH SO電解液中で、電流密度を 50mAから 1000mAで変化させて電  The electric double layer capacitor was measured for the activated carbon. For the measurement, using a 3-pole cell, the current density was changed from 50 mA to 1000 mA in 1 MH SO electrolyte, and the current was changed.
2 4  twenty four
流密度を測定した。実施例 1、 2で得られた活性炭についてそれぞれ測定した結果を 表 2に示す。また、参考例 1として市販のキャパシタ用ヤシ殻活性炭について測定を 行った結果を併せて表 2に示す。なお、測定用の試料には、活性炭をメノウ乳鉢中で 粉砕して得られた活性炭粉末とアセチレンブラックと PTFE粉末とを 80 : 10 : 10の割 合で混合し、フィルム状に成形したものを用いた、なお、フィルムの厚さは約 100〃 m とした。  The flow density was measured. Table 2 shows the measurement results for the activated carbon obtained in Examples 1 and 2. Table 2 also shows the results of measurements on commercially available coconut shell activated carbon for capacitors as Reference Example 1. In addition, the sample for measurement was obtained by mixing activated carbon powder obtained by pulverizing activated carbon in an agate mortar, acetylene black, and PTFE powder at a ratio of 80:10:10 and forming into a film shape. The film thickness used was about 100 mm.
[0064] [表 2] [0064] [Table 2]
Figure imgf000019_0001
Figure imgf000019_0001
[0065] 表 2に示すように、実施例 1、 2、および実施例 6〜9で得られた活性炭は、市販の 活性炭と比較して大きい 0. 63〜0. 77の Rate Performanceを有しており、電気二重 層キャパシタの電極として好適に用いることができることが分かる。また、蒸気入口温 度が 800°C (実施例 1 )、 874°C (実施例 2)、 887°C (実施例 8)、 937°C (実施例 9)の 場合大きい(0. 71以上) Rate Performanceを有する活性炭が得られる。 [0065] As shown in Table 2, the activated carbons obtained in Examples 1 and 2 and Examples 6 to 9 have a rate performance of 0.63 to 0.77 which is larger than that of commercially available activated carbon. It can be seen that it can be suitably used as an electrode of an electric double layer capacitor. Also, the steam inlet temperature is large (0.71 or more) when the temperature is 800 ° C (Example 1), 874 ° C (Example 2), 887 ° C (Example 8), and 937 ° C (Example 9). ) Activated carbon with Rate Performance is obtained.
産業上の利用可能性  Industrial applicability
[0066] この発明は、木質系材料を原料に用いて、乾燥、乾留、賦活等の炭化処理を行うこ とで、大きい比表面積と、水系電解液の電気二重層キャパシタに適した細孔構造を 有する活性炭を製造する目的に利用できる。 [0066] This invention uses a wood-based material as a raw material to perform carbonization treatment such as drying, dry distillation, activation, etc. Thus, it can be used for the purpose of producing activated carbon having a large specific surface area and a pore structure suitable for an electric double layer capacitor of an aqueous electrolyte.

Claims

請求の範囲 The scope of the claims
[1] 木質材料を主成分とした処理対象物に対して炭化処理と賦活処理とを過熱水蒸気 雰囲気中において連続して行うことで製造され、全比表面積が 600m2/g以上を有 するとともに、外比表面積が全比表面積の 20%以上 75%以下を占める細孔分布構 造を有することを特徴とする活性炭。 [1] Manufactured by continuously performing carbonization treatment and activation treatment in a superheated steam atmosphere on an object to be treated mainly composed of a wood material, and has a total specific surface area of 600 m 2 / g or more. An activated carbon having a pore distribution structure in which the outer specific surface area accounts for 20% to 75% of the total specific surface area.
[2] 木質材料を主成分とした処理対象物を乾燥する乾燥工程と、前記乾燥工程におい て乾燥された処理対象物を 400°C〜950°Cの過熱水蒸気雰囲気中に所定時間滞 留させることにより炭化処理及び賦活処理を連続して行う炭化'賦活処理工程とを有 し、前記炭化'賦活処理工程では、賦活処理を行うための過熱水蒸気の平均温度を 750°C〜900°Cとすることを特徴とする活性炭の製造方法。  [2] A drying process for drying a processing object mainly composed of a woody material, and the processing object dried in the drying process is held in a superheated steam atmosphere at 400 ° C to 950 ° C for a predetermined time. The carbonization and activation treatment step for continuously performing the carbonization treatment and activation treatment is performed, and in the carbonization and activation treatment step, the average temperature of the superheated steam for performing the activation treatment is 750 ° C to 900 ° C. And a method for producing activated carbon.
[3] 請求の範囲 2記載の製造方法において、炭化'賦活処理工程は、炭化'賦活処理 を開始する際の過熱水蒸気の温度が 400°C〜700°Cであり、炭化 '賦活処理を終了 する際の過熱水蒸気の温度が 800°C〜920°Cであるとともに、炭化'賦活処理の開 始力 終了まで過熱水蒸気の温度を上昇させて行われることを特徴とする活性炭の 製造方法。  [3] In the manufacturing method according to claim 2, in the carbonization 'activation treatment step, the temperature of the superheated steam at the start of the carbonization' activation treatment is 400 ° C to 700 ° C, and the carbonization 'activation treatment is completed. The method for producing activated carbon is characterized in that the temperature of the superheated steam is 800 ° C to 920 ° C and the temperature of the superheated steam is increased until the start of the carbonization activation process.
[4] 過熱水蒸気を導入するための水蒸気導入口を備え、木質材料を主成分とした処理 対象物に対して炭化処理及び賦活処理を行う炭化炉を有する活性炭製造装置であ つて、前記炭化炉は、木質材料を主成分とした処理対象物の供給口側に位置し、該 処理対象物を過熱水蒸気に接触することによって炭化させる炭化部と、前記処理対 象物の排出口側に位置し、前記炭化部で炭化処理された処理対象物を連続して過 熱水蒸気に接触することによって賦活処理を行う賦活部とを有し、前記水蒸気導入 口が前記賦活部に少なくとも二つ以上設けられた活性炭製造装置。  [4] An activated carbon production apparatus having a steam introduction port for introducing superheated steam, and having a carbonization furnace for performing a carbonization treatment and an activation treatment on a processing object mainly composed of a wood material, the carbonization furnace Is located on the supply port side of a processing object mainly composed of a wood material, and is located on the discharge port side of the processing object, and a carbonization part that carbonizes the processing object by contacting with the superheated steam. And an activation part that performs an activation treatment by continuously contacting the object to be carbonized in the carbonization part with superheated steam, and at least two of the steam inlets are provided in the activation part. Activated carbon production equipment.
[5] 請求の範囲 4記載の活性炭製造装置において、水蒸気導入口のいずれか一以上 に過熱水蒸気の流量を制御するための流量制御弁が設けられたことを特徴とする活 性炭製造装置。 [5] The activated carbon production apparatus according to claim 4, wherein a flow rate control valve for controlling the flow rate of superheated steam is provided at any one or more of the water vapor inlets.
[6] 請求の範囲 4又は 5記載の活性炭製造装置において、炭化炉が炭化部力 賦活部 に向かって 0. 1〜: 10° 下方に傾斜するように配置されたことを特徴とする活性炭製 造装置。 [6] The activated carbon production apparatus according to claim 4 or 5, wherein the carbonization furnace is disposed so as to incline downward from 0.1 to 10 ° toward the carbonization part force activation part. Manufacturing equipment.
[7] 請求の範囲 6記載の活性炭製造装置において、炭化炉の傾斜角度を調整する傾 斜角度制御装置を設けたことを特徴とする活性炭製造装置。 [7] The activated carbon production apparatus according to claim 6, further comprising an inclination angle control device for adjusting an inclination angle of the carbonization furnace.
[8] 請求の範囲 4又は 5記載の活性炭製造装置において、炭化部には 150〜300°Cの ガスを追加的に導入する低温ガス導入口が設けられたことを特徴とする活性炭製造 装置。 [8] The activated carbon production apparatus according to claim 4 or 5, wherein the carbonization section is provided with a low-temperature gas introduction port for additionally introducing a gas of 150 to 300 ° C.
[9] 請求の範囲 8記載の活性炭製造装置において、炭化炉が炭化部力 賦活部に向 かって 0. 1〜: 10° 下方に傾斜するように配置されたことを特徴とする活性炭製造装 置。  [9] The activated carbon production apparatus according to claim 8, wherein the carbonization furnace is arranged so as to incline downward from 0.1 to 10 ° toward the carbonization part force activation part. .
[10] 請求の範囲 9記載の活性炭製造装置において、炭化炉の傾斜角度を調整する傾 斜角度制御装置を設けたことを特徴とする活性炭製造装置。  [10] The activated carbon production apparatus according to claim 9, further comprising a tilt angle control device for adjusting a tilt angle of the carbonization furnace.
PCT/JP2007/057759 2006-04-10 2007-04-06 Activated carbon, process for producing the same, and production apparatus WO2007119698A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-108078 2006-04-10
JP2006108078A JP2009179485A (en) 2006-04-10 2006-04-10 Activated carbon, method for producing the same, and production apparatus

Publications (1)

Publication Number Publication Date
WO2007119698A1 true WO2007119698A1 (en) 2007-10-25

Family

ID=38609459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057759 WO2007119698A1 (en) 2006-04-10 2007-04-06 Activated carbon, process for producing the same, and production apparatus

Country Status (2)

Country Link
JP (1) JP2009179485A (en)
WO (1) WO2007119698A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011003434A1 (en) * 2009-07-10 2011-01-13 BLüCHER GMBH Installation and method for producing active carbon
WO2012060159A1 (en) * 2010-11-04 2012-05-10 新熱工業株式会社 Resin material carbonization treatment method, and carbonization treatment device
CN104609419A (en) * 2015-02-13 2015-05-13 洛阳月星新能源科技有限公司 Activated carbon material and preparation method thereof and supercapacitor
CN105618025A (en) * 2016-01-14 2016-06-01 北京道顺国际技术开发有限责任公司 Method for preparing biomass charcoal by catalyzing organic waste at low temperature with sulfonated char

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935039B2 (en) * 2012-02-23 2016-06-15 地方独立行政法人青森県産業技術センター Activated carbon production method
BR112014026843A2 (en) * 2012-05-02 2017-07-18 Uehara Haruo activated carbon production system
CN103851633A (en) * 2014-02-20 2014-06-11 煤炭科学研究总院 Tail gas purification and waste-heat utilization method for multi-hearth furnace
WO2016208669A1 (en) * 2015-06-26 2016-12-29 サンコール株式会社 Carbonization device
EP4317366A3 (en) * 2017-03-23 2024-04-03 Act&Sorb Carbonization and activation of mdf

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119614A (en) * 1994-10-18 1996-05-14 Mitsubishi Chem Corp Activated carbon, its production and electrode for electric-double-layer capacitor
JPH10212110A (en) * 1997-01-24 1998-08-11 Ube Ind Ltd High-temperature heat treating device of organic waste and the like
JPH11278822A (en) * 1998-03-31 1999-10-12 Nagasaki Kogyosho:Kk Simplified continuous activated carbon producing device
JP2000007316A (en) * 1998-06-29 2000-01-11 Kyocera Corp Solid active carbon and electric double layer capacitor using the same
JP2000154012A (en) * 1998-11-13 2000-06-06 Keihanna Kankyo Kk Process and equipment for producing active carbon
JP2000340470A (en) * 1999-05-28 2000-12-08 Asahi Glass Co Ltd Electric double-layer capacitor and electrode material therefor
JP2002003855A (en) * 2000-06-23 2002-01-09 Ngk Insulators Ltd Manufacturing method of carbide
JP2002338966A (en) * 2001-05-16 2002-11-27 Ngk Insulators Ltd Surface current type fluidization oven and method for manufacturing activated coke by using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119614A (en) * 1994-10-18 1996-05-14 Mitsubishi Chem Corp Activated carbon, its production and electrode for electric-double-layer capacitor
JPH10212110A (en) * 1997-01-24 1998-08-11 Ube Ind Ltd High-temperature heat treating device of organic waste and the like
JPH11278822A (en) * 1998-03-31 1999-10-12 Nagasaki Kogyosho:Kk Simplified continuous activated carbon producing device
JP2000007316A (en) * 1998-06-29 2000-01-11 Kyocera Corp Solid active carbon and electric double layer capacitor using the same
JP2000154012A (en) * 1998-11-13 2000-06-06 Keihanna Kankyo Kk Process and equipment for producing active carbon
JP2000340470A (en) * 1999-05-28 2000-12-08 Asahi Glass Co Ltd Electric double-layer capacitor and electrode material therefor
JP2002003855A (en) * 2000-06-23 2002-01-09 Ngk Insulators Ltd Manufacturing method of carbide
JP2002338966A (en) * 2001-05-16 2002-11-27 Ngk Insulators Ltd Surface current type fluidization oven and method for manufacturing activated coke by using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011003434A1 (en) * 2009-07-10 2011-01-13 BLüCHER GMBH Installation and method for producing active carbon
KR101436864B1 (en) 2009-07-10 2014-09-02 블뤼허 게엠베하 Installation and method for producing active carbon
US8932528B2 (en) 2009-07-10 2015-01-13 BLüCHER GMBH Installation and method for producing active carbon
WO2012060159A1 (en) * 2010-11-04 2012-05-10 新熱工業株式会社 Resin material carbonization treatment method, and carbonization treatment device
CN104609419A (en) * 2015-02-13 2015-05-13 洛阳月星新能源科技有限公司 Activated carbon material and preparation method thereof and supercapacitor
CN104609419B (en) * 2015-02-13 2016-10-05 洛阳月星新能源科技有限公司 A kind of absorbent charcoal material, preparation method and ultracapacitor
CN105618025A (en) * 2016-01-14 2016-06-01 北京道顺国际技术开发有限责任公司 Method for preparing biomass charcoal by catalyzing organic waste at low temperature with sulfonated char
CN105618025B (en) * 2016-01-14 2018-04-17 北京道顺国际技术开发有限责任公司 A kind of method that low-temperature catalyzed organic waste of sulfonation charcoal prepares biomass carbon

Also Published As

Publication number Publication date
JP2009179485A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
WO2007119698A1 (en) Activated carbon, process for producing the same, and production apparatus
CN103221338B (en) Produce the method for carbon graphite alkene and other nano material
Nazem et al. Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes
Marcilla et al. Influence of thermal treatment regime on the density and reactivity of activated carbons from almond shells
JP7171608B2 (en) Method for purification of crude carbon nanotubes
JPWO2005063923A1 (en) Carbonization equipment for activated carbon production
NO20170575A1 (en) Method for producing activated carbon
JP2003500322A (en) Rapid activation method, process, and apparatus for making pelletized activated carbon from carbonaceous waste
CN105329892A (en) Method for producing capacitive carbon from rice husks
US20160200583A1 (en) Chemical activation of carbon using rf and dc plasma
JP4308740B2 (en) Hybrid reactor and high-functional material manufacturing method using the same
Li et al. Production of hydrogen-rich syngas from absorption-enhanced steam gasification of biomass with conch shell-based absorbents
Yeletsky et al. Conversion of natural feedstocks to porous carbons via carbonization in fluidized catalyst bed followed by leaching the feedstock mineral template phase: A comparison of biomass and sedimentary raw materials
Zhang et al. Lignin‐Derived Hard Carbon Microspheres Synthesized via Emulsion‐Solvent Evaporation as Anode for Sodium Storage
JP5071106B2 (en) Carbon material production method and alkali activation device
JP6964448B2 (en) Mold carbon material for fuel cell catalyst carrier, catalyst layer for fuel cell, and fuel cell
JP2008201651A (en) Porous charcoal and its production method
Yakovlev et al. Preparation and investigation of nanostructured carbonaceous composites from the high-ash biomass
JP7110377B2 (en) CARBON MATERIAL FOR CATALYST CARRIER FOR PROTEIN POLYMER FUEL CELL AND METHOD FOR MANUFACTURING THE SAME
Fedorov et al. Thermal treatment of charcoal for synthesis of high-purity carbon materials
CN105883797A (en) Oxidation and carbonization system and method for flue gas internal circulation
JP2017149598A (en) Apparatus for producing hydrogen using biomass as raw material
Taer et al. Suitable Micro/Mesoporous Carbon Derived from Galangal Leaves (Alpinia galanga L.) Biomass for Enhancing Symmetric Electrochemical Double‐layer Capacitor Performances
JP2004182568A (en) Porous material
JPH10335189A (en) Electric double-layer capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741195

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)