WO2007119643A1 - Film bulk acoustic resonator, piezoelectric thin film device and method for manufacturing the piezoelectric thin film device - Google Patents

Film bulk acoustic resonator, piezoelectric thin film device and method for manufacturing the piezoelectric thin film device Download PDF

Info

Publication number
WO2007119643A1
WO2007119643A1 PCT/JP2007/057379 JP2007057379W WO2007119643A1 WO 2007119643 A1 WO2007119643 A1 WO 2007119643A1 JP 2007057379 W JP2007057379 W JP 2007057379W WO 2007119643 A1 WO2007119643 A1 WO 2007119643A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
piezoelectric thin
electrode
piezoelectric
layer
Prior art date
Application number
PCT/JP2007/057379
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Yamada
Keigo Nagao
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to JP2008510910A priority Critical patent/JP4688070B2/en
Publication of WO2007119643A1 publication Critical patent/WO2007119643A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02133Means for compensation or elimination of undesirable effects of stress
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02149Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/582Multiple crystal filters implemented with thin-film techniques
    • H03H9/583Multiple crystal filters implemented with thin-film techniques comprising a plurality of piezoelectric layers acoustically coupled
    • H03H9/585Stacked Crystal Filters [SCF]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/582Multiple crystal filters implemented with thin-film techniques
    • H03H9/586Means for mounting to a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/588Membranes

Definitions

  • Piezoelectric thin film resonator piezoelectric thin film device, and manufacturing method thereof
  • the present invention relates to a piezoelectric thin film used in a wide range of fields such as a thin film resonator, a thin film VCO (voltage controlled oscillator), a thin film filter, a transmission / reception switch, and various sensors used in mobile communication devices.
  • the present invention relates to a resonator and a piezoelectric thin film device which is an element to which the resonator is applied.
  • SAW Wave
  • FB AR Solidly Mounted Bulk Acoustic Wave Resonator
  • SMR Solidly Mounted Bulk Acoustic Wave Resonator
  • Filter Stacked Thin Film Bulk Wave
  • SBAR Acoustic Resonators and Filters
  • A1N in particular has a propagation velocity of elastic waves.
  • Patent Document 2 describes the configuration and manufacturing method of an air bridge type FBARZSBAR device. According to the publication, first, phosphor quartz glass (PSG) is deposited as a sacrificial layer on a silicon wafer, and after CMP, a piezoelectric resonator is fabricated on the sacrificial layer. PSG can be deposited at relatively low temperatures and diluted H
  • a large acoustic impedance which is an acoustic Bragg reflector force
  • a sandwich structure composed of a lower electrode, a piezoelectric thin film, and an upper electrode.
  • Bragg reflectors are made by alternately stacking layers of high acoustic impedance material and low acoustic impedance material. The thickness of each layer is fixed at 1Z4 at the wavelength of the resonance frequency.
  • the effective impedance at the piezoelectric Z-electrode interface can be made much higher than the acoustic impedance of the element, so that the acoustic waves in the piezoelectric body can be effectively confined.
  • the low acoustic impedance layer can also be composed of silicon oxide or aluminum forces, and the high acoustic impedance layer can be composed of tungsten, platinum, molybdenum or gold.
  • the acoustic resonator obtained by this method is called a solid acoustic mirror mounted resonator (SMR) because there is no air gap under the sandwich structure.
  • the lower electrode, the piezoelectric thin film, and the upper electrode are still formed in this order. It is also possible to realize a five-layer structure in which an insulator layer is provided below the lower electrode and above the upper electrode, and the insulator layer Z lower electrode Z piezoelectric thin film Z upper electrode Z insulator layer is formed on the semiconductor substrate. Generally adopted. Furthermore, it is also known that an insulator layer provided below the lower electrode is used as a seed layer for crystal growth, and an insulator layer provided above the upper electrode is used as a protective layer.
  • the RMS fluctuation of the height of the surface of the lower electrode serving as the underlayer is controlled to 50 nm or less, preferably 20 nm or less, and the surface of the lower electrode is remarkably increased.
  • a highly oriented A1N thin film can be deposited.
  • the rocking curve half-width (FWHM) of the (0002) diffraction peak is less than 3.0 °, which indicates good piezoelectric characteristics.
  • Patent Document 4 describes that a pattern of a lower electrode is formed by a lift-off method. Inevitably, this causes a gentle inclination, for example, an inclination having a taper angle of less than 10 °, at the outer peripheral portion of the lower electrode.
  • the taper angle is an angle (inclination angle) between the upper surface of the outer periphery of the lower electrode and the lower surface (that is, a surface in contact with the base insulating layer and parallel to the silicon substrate).
  • FIG. 1A is a schematic plan view showing an example of a piezoelectric thin film resonator
  • FIG. 1B is an XX cross-sectional view thereof
  • FIG. 1C is an enlarged view of a portion surrounded by a dotted line in FIG. 1B.
  • the piezoelectric thin film resonator 10 includes a substrate 11, a vibration space 20 formed by removing a part of the insulator layers 12 and 13 and the insulator layer 12 formed on the upper surface of the substrate 11.
  • the piezoelectric laminated structure 14 is formed so as to straddle the substrate.
  • the piezoelectric laminated structure 14 includes a lower electrode 15 formed on the upper surface of the insulating layer 13, a piezoelectric thin film 16 formed on the upper surface of the insulating layer 13 so as to cover a part of the lower electrode 15, and the piezoelectric thin film 16
  • the upper electrode 17 is formed on the upper surface of the piezoelectric thin film 16.
  • On the substrate 11, a cavity 20 forming a vibration space is formed on the substrate 11, a cavity 20 forming a vibration space is formed. A part of the insulator layer 13 is exposed toward the vibration space 20.
  • abnormal growth of A1N used as the upper insulator layer also occurs from the edge of the outer periphery of the upper electrode, whose inclination angle is almost 90 °, and deep crater-like defects between adjacent columnar A1N grains 31 Is produced.
  • FIG. 2A is a schematic plan view showing an example of another piezoelectric thin film resonator different from the above, and FIGS. 2B and 2C are an XX sectional view and a YY sectional view, respectively.
  • members having the same functions as those in FIGS. 1A to 1C are given the same reference numerals.
  • a piezoelectric thin film resonator 10 includes a substrate 11, an insulator layer 13 formed on the upper surface of the substrate 11, and a piezoelectric laminated structure formed on the upper surface of the insulator layer 13.
  • Has body 14 The piezoelectric laminated structure 14 includes a lower electrode 15 formed on the upper surface of the insulating layer 13, and a piezoelectric thin film 16 formed on the upper surface of the insulating layer 13 so as to cover a part of the lower electrode 15. And an upper electrode 17 formed on the upper surface of the piezoelectric thin film 16.
  • Patent Document 5 by Ruby et al. Discloses oxygen (O 2) and hexafluoride as etching gases.
  • a method for controlling the angle to 60 ° or less is disclosed. According to the publication, by controlling the taper angle to 60 ° or less, it is possible to suppress the generation of voids and discontinuous boundaries in the vicinity of the edge (lower electrode end) of the A1N thin film deposited and grown on the taper angle. Have been. However, in this publication, the effect of reducing voids and discontinuous boundaries in the A1N thin film is as follows: Dielectric breakdown strength, Power handling capacity, and electrostatic: The improvement effect of Electrostatic discharge (ESD)) is just mentioned.
  • ESD Electrostatic discharge
  • Patent Document 6 by Ginsburg et al. Discloses a method in which a taper angle is controlled to 30 ° or less by providing an inclination at the end of the lower electrode by a dry etching method. According to the same report, it is described that by controlling the taper angle to 30 ° or less, the generation of cracks in the vicinity of the edge of the AIN thin film deposited and grown thereon can be suppressed.
  • this publication only reports that the production yield of a die that becomes a piezoelectric thin film resonator is improved by 15 to 80% as an effect of reducing cracks in the A1N thin film.
  • the inclination angle of the upper electrode end is close to 90 °, and the outer periphery of the upper electrode is a membrane 21 above the vibration space 20. Extends beyond the outer perimeter of the insulation Thickness is supported by the substrate 11 through the body layer 13.
  • Patent Document 1 JP-A-60-142607
  • Patent Document 2 JP 2000-69594 A
  • Patent Document 3 JP-A-6-295181
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-236337
  • Patent Document 5 US Patent Application Publication No. 20030141946
  • the present invention solves the above-mentioned characteristic problems associated with the provision of a slope on the outer periphery of the lower electrode or the upper electrode, thereby taking advantage of the features of the A1N thin film,
  • Q value acoustic quality factor
  • the present inventors have determined how the properties of the aluminum nitride thin film, which greatly affects the resonance characteristics of FBAR, SMR, or SBAR, are affected by the shape and material of the outer periphery of the lower electrode or the upper electrode. We studied earnestly about whether to receive. As a result, a side spacer made of a material different from that of the lower electrode or the upper electrode is provided adjacent to the outer peripheral portion of the lower electrode or the upper electrode, and the side spacer and the outer peripheral portion of the lower electrode or the upper electrode are provided.
  • the aluminum nitride thin film formed between the lower electrode and the upper electrode can be locked with high crystallinity without crater-like separation growth, and the half width of the curve (FWHM) 2.0.
  • the acoustic quality factor (Q value) is large, the electromechanical coupling coefficient is large, the loss is low, and the performance is high.
  • the present inventors have found that FBAR, SMR or SBAR can be realized.
  • a side spacer having a different material from that of the electrode is disposed around an outer peripheral portion of at least one of the lower electrode and the upper electrode, and a step at an interface between the side spacer and the electrode.
  • a piezoelectric thin film resonator is provided, characterized in that is less than 25 nm.
  • the piezoelectric thin film is made of aluminum nitride (A1N).
  • the piezoelectric thin film having the aluminum nitride force also has a (0002) diffraction peak rocking 'curve half width (FWHM) of 0.8 to 1.6 °.
  • the step at the interface between the side spacer and the electrode is less than 3 nm.
  • the side spacer 1 has an upper surface formed in a slope shape with respect to the lower surface.
  • the side spacer has an upper surface tilt angle of 3 to 45 degrees with respect to the lower surface.
  • the acoustic impedance of the side spacer is larger than the acoustic impedance of the electrode.
  • the side spacer 1 also has an insulator strength.
  • the side spacer is made of silicon dioxide)), silicon nitride (Si
  • Si ON silicon oxynitride
  • Al nitride Al nitride
  • AIO aluminum oxynitride
  • the side spacer 1 also has a conductor force.
  • the side spacer is made of a conductor whose main component is at least one material selected from a group force including tungsten (W), tungsten silicide (WSi), and iridium (Ir) forces. .
  • At least one of the upper electrode and the lower electrode is also a molybdenum denka. In one embodiment of the present invention, at least one of the upper electrode and the lower electrode is one selected from the group consisting of molybdenum, ruthenium, aluminum, iridium, cobalt, nickel, platinum, and copper metal. It is comprised by the laminated body of.
  • the lower electrode is a laminate of a lower metal layer having a thickness dl and an upper metal layer having a thickness d2, and dlZd2> l and 150 nm ⁇ (dl + d2) ⁇ 450 nm.
  • the upper electrode is a laminate of a lower metal layer having a thickness of d3 and an upper metal layer having a thickness of d4, d4Zd3> l and 150 nm ⁇ (d3 + d4) ⁇ 45 Onm.
  • the vibration region defined as a region where the lower electrode and the upper electrode overlap each other when viewed in the thickness direction of the piezoelectric multilayer structure is the vibration space. Or it is located inside the outer periphery of the acoustic reflection layer.
  • the relational expression 0 ⁇ wZt ⁇ 2 is satisfied.
  • a piezoelectric thin film device configured by combining a plurality of the above-described piezoelectric thin film resonators.
  • the piezoelectric thin film resonator includes a stacked piezoelectric thin film resonator.
  • Examples of the piezoelectric thin film device include, but are not limited to, a VCO (voltage controlled oscillator), a filter, and a transmission / reception switch configured using the piezoelectric thin film resonator and the laminated piezoelectric thin film resonator as described above. It ’s not something. In such a piezoelectric thin film device, the characteristics at a high frequency of 1 GHz or more can be remarkably improved.
  • a piezoelectric process comprising: a sixth step of forming the piezoelectric thin film by patterning the piezoelectric material layer; and a seventh step of forming an upper insulating layer on the piezoelectric thin film and the upper electrode.
  • an insulator or a conductive material having a material different from that of the upper electrode is formed on the exposed surfaces of the upper electrode and the piezoelectric material layer between the fifth step and the sixth step. After the body is deposited, the upper surface of the upper electrode is exposed by etch back, and the step of forming the side spacer for the upper electrode is provided around the outer periphery of the upper electrode.
  • a method of manufacturing a piezoelectric thin film resonator comprising: a seventh step of forming an upper insulating layer on the piezoelectric thin film and the upper electrode;
  • a side surface made of a material different from that of the lower electrode and the upper electrode is formed on the outer periphery of at least one of the lower electrode and the upper electrode.
  • a spacer is provided, and an aluminum nitride thin film is formed between the upper and lower electrodes produced by controlling the caking method so that the step at the interface between the side spacer and the electrode is less than 25 nm.
  • the rocking curve half-width (FWHM) of the (0002) diffraction peak is 2.0 ° or less
  • FWHM rocking curve half-width
  • a highly oriented and highly crystalline c-axis oriented aluminum nitride thin film of 0.8 to 1.6 ° can be formed.
  • the side spacer is formed around the electrode in contact with the side wall of the outer periphery of the electrode.
  • the side spacer By providing the side spacer, the adverse effect on the piezoelectric characteristics caused by the inclination of the lower electrode or the upper electrode end, which has been a problem with conventional piezoelectric thin film resonators, can be eliminated.
  • coupling coefficient k 2 and the piezoelectric thin-film resonator of excellent performance and high reliability in the acoustic quality factor (Q value) can be provided. Therefore, the piezoelectric thin film devices such as VCO (Voltage Controlled Oscillator), filter, and duplexer configured using the same can remarkably improve the characteristics at a frequency higher than 1 GHz.
  • VCO Voltage Controlled Oscillator
  • FIG. 1A is a schematic plan view showing an example of a piezoelectric thin film resonator.
  • FIG. 1B is a cross-sectional view taken along the line XX in FIG. 1A.
  • FIG. 2A is a schematic plan view showing an example of a piezoelectric thin film resonator.
  • 2B is a cross-sectional view taken along the line XX in FIG. 2A.
  • FIG. 2C is a Y-Y sectional view of FIG. 2A.
  • FIG. 3 is a cross-sectional view showing an example in which a gentle slope is provided by changing the cross-sectional shape of the outer periphery of the lower electrode in the piezoelectric thin film resonator of FIGS. 2A to 2C.
  • FIG. 4A is a schematic plan view showing an embodiment of a piezoelectric thin film resonator according to the present invention.
  • FIG. 4B is a cross-sectional view taken along the line XX in FIG. 4A.
  • FIG. 4C is an enlarged view of a portion surrounded by a dotted line in FIG. 4B.
  • FIG. 5A is a schematic cross-sectional view for explaining a step of forming a side spacer around the side wall of the lower electrode.
  • FIG. 6A is a schematic cross-sectional view for explaining a step of forming a side spacer around the side wall of the lower electrode.
  • FIG. 6B is a schematic cross-sectional view for explaining a step of forming a side spacer around the side wall of the lower electrode.
  • FIG. 7A is a schematic plan view showing an embodiment of a piezoelectric thin film resonator according to the present invention.
  • FIG. 7B is a cross-sectional view taken along the line XX in FIG. 7A.
  • FIG. 7D is an enlarged view of a portion surrounded by a dotted line in FIG. 7C.
  • FIG. 8A is a schematic plan view showing an embodiment of a multilayer piezoelectric thin film resonator according to the present invention.
  • FIG. 8B is an XX cross-sectional view of FIG. 8A.
  • FIG. 9 is a schematic plan view of a thin film piezoelectric filter as an embodiment of the piezoelectric thin film device of the present invention.
  • FIG. 4A is a schematic plan view showing an embodiment of a piezoelectric thin film resonator according to the present invention
  • FIG. 4B is an XX cross-sectional view thereof
  • FIG. 4C is an enlarged view of a portion surrounded by a dotted line in FIG. 4B.
  • the piezoelectric thin film resonator 10 includes a substrate 11, an insulating layer 12 formed on the upper surface of the substrate 11, a lower insulating layer 13, and a cavity formed by removing a part of the insulating layer 12.
  • the piezoelectric laminated structure 14 is formed so as to straddle the vibration space 20.
  • substrate said by this invention is comprised by the member which consists of the board
  • the insulating layer 12 is referred to as a substrate insulating layer.
  • a vibration space 20 is formed on the substrate.
  • the piezoelectric laminated structure 14 includes a lower electrode 15 formed on the upper surface of the lower insulating layer 13, and a piezoelectric thin film 16 formed on the upper surface of the lower insulating layer 13 so as to cover a part of the lower electrode 15. And an upper electrode 17 formed on the upper surface of the piezoelectric thin film 16. A part of the lower insulating layer 13 is exposed toward the vibration space 20.
  • the lower electrode 15 and the upper electrode 17 are formed of main portions 15a and 17a formed in a region corresponding to the membrane 21, and terminal portions 15b for connecting the main portions 15a and 17a to an external circuit. 17b.
  • the terminal portions 15b and 17b are located outside the region corresponding to the membrane 21.
  • the vibration space As a method of forming the vibration space 20, via holes 19 penetrating each layer of the piezoelectric multilayer structure and the lower insulating layer 13 are opened, and an etching solution such as a hydrofluoric acid aqueous solution is injected from the via holes 19 to form the substrate insulating layer 12. A method of removing a part of the lower region of the piezoelectric multilayer structure including a part by wet etching is included.
  • the vibration space may be formed by deep etching (Deep RIE) of the lower surface side of the substrate 11.
  • the vibration space may be any shape of cavity or recess as long as it allows vibration of the membrane 21.
  • an acoustic reflection layer (by alternately laminating high acoustic impedance material layers and low high acoustic impedance material layers) It is also possible to form an acoustic mirror type piezoelectric thin film resonator by forming an acoustic Bragg reflector.
  • a silicon oxide film formed by thermal oxidation of the surface of the substrate 11 can be used as the substrate insulating layer 12.
  • the lower insulating layer 13 preferably has a high elastic modulus and material strength.
  • dielectric film mainly composed of aluminum nitride (A1N),
  • Dielectric films composed mainly of tantalum (Ta 2 O 3) and these dielectric films are stacked
  • a laminated film can be used.
  • the main component refers to a component whose content in the dielectric film is 50 equivalent% or more.
  • the dielectric film may be a single layer or a laminate. Furthermore, it may be a multi-layer force with a layer attached to improve adhesion.
  • Examples of the method of forming the lower insulating layer 13 include a sputtering method, a vacuum deposition method, and a CVD method.
  • the lower insulating layer 13 in the region corresponding to the membrane 21 is entirely removed by etching, and the lower electrode 15 is exposed toward the vibration space 20 (that is, the membrane removes the lower insulating layer 13).
  • a piezoelectric thin film resonator having a structure may also be employed.
  • removing all of the insulating layer 13 in the region corresponding to the membrane 21 has an advantage of improving the electromechanical coupling coefficient although the temperature characteristic of the resonance frequency is slightly deteriorated.
  • the lower electrode 15 includes, for example, a metal thin film mainly composed of molybdenum (Mo), a metal thin film mainly composed of ruthenium (Ru), a metal thin film mainly composed of aluminum (A1), and an iridium (Ir ) Metal thin film, cobalt (Co) metal thin film, nickel (I r) metal thin film, platinum (Pt) metal thin film, copper (Cu) At least one metal thin film selected from metal thin films containing as a main component, a metal thin film containing molybdenum as a main component, and a group force consisting of ruthenium, aluminum, iridium, cobalt, nickel, platinum and copper power at least one selected It consists of a stack of metal thin films composed mainly of various metals.
  • a metal thin film mainly composed of molybdenum means that 90% or more of molybdenum is contained.
  • the lower electrode 15 may be formed by stacking an adhesion metal layer (adhesion layer) formed between the metal thin film and the lower insulating layer 13 as necessary. The part of the lower electrode other than the adhesive metal layer is called the lower electrode main layer.
  • Lower electrode 15 Thickness ⁇ , 150-450mn force! / ⁇ .
  • a metal thin film having a thickness d2 (second metal layer: upper metal layer) and a metal thin film having a thickness dl (first metal layer: lower metal layer) can be used.
  • a thin film can be exemplified.
  • the thickness dl is a value including the thickness of the adhesion layer.
  • the thickness d2 of the upper metal layer and the thickness dl of the lower metal layer it is preferable to adopt a film thickness configuration in which d lZd2> l and 150 nm (dl + d2) and 450 nm.
  • a highly oriented upper metal layer for example, a metal thin film mainly composed of molybdenum
  • the lower metal layer for example, a metal thin film mainly composed of aluminum
  • the piezoelectric thin film Is preferable.
  • the upper electrode 17 mainly includes a metal thin film mainly composed of ruthenium, a metal thin film mainly composed of aluminum, and iridium in addition to a metal thin film mainly composed of molybdenum. At least one metal thin film selected from a metal thin film containing cobalt, a metal thin film containing cobalt as a main component, a metal thin film containing nickel as a main component, a metal thin film containing platinum as a main component, and a metal thin film containing copper as a main component And a laminate of a metal thin film mainly composed of molybdenum and a metal thin film composed mainly of at least one metal selected from the group consisting of ruthenium, aluminum, iridium, cobalt, nickel, platinum and copper.
  • the upper electrode 17 may be formed by laminating an adhesion metal layer (adhesion layer) formed between the metal thin film and the piezoelectric thin film 16 as described above. Adhesive metal layer or higher The part of the outer upper electrode is called the upper electrode main layer.
  • the thickness of the upper electrode 17 is preferably 150 to 450 nm.
  • the thickness d4 is a value including the thickness of the adhesion layer.
  • the thickness d3 of the lower metal layer and the thickness d4 of the upper metal layer it is preferable to adopt a film thickness configuration in which d4Zd3> l is 150 nm (d3 + d4) and 450 nm.
  • the lower metal layer for example, a metal thin film mainly composed of molybdenum
  • the upper metal layer for example, a metal thin film mainly composed of aluminum
  • the piezoelectric thin film it is preferable when intervening.
  • an aluminum nitride (A1N), an aluminum oxynitride (AIO N), an aluminum oxide (Al 2 O 3), a silicon nitride (SiN), an acid, or the like is formed on the upper electrode 17 as necessary.
  • Si ON silicon nitride
  • ZrO zirconium oxide
  • Ta 2 O 3 tantalum oxide
  • the inventors have the resonance characteristics such as the material, shape and crystallinity of the lower electrode, or the orientation and crystallinity of the A1N thin film. We examined how it depends on the properties!
  • the piezoelectric laminated structure 14 includes the lower electrode 15 and the upper electrode 17.
  • the side spacer 26 is formed around the outer periphery of at least one of the electrodes and is made of a material different from that of the electrode.
  • the side spacer 26 is made of an insulator or a conductor and is formed in a slope shape.
  • the insulator or conductor used for the side spacers 26 is preferably made of a material other than resin, preferably having a bulk density of 1.6 gZcm 3 or more.
  • a gate electrode of a MOS (Metal—Oxide—Semiconductor) type transistor, a gate insulating film (gate oxide) Sidewall spacer technology that is generally applied to the formation of side walls of the film can be employed.
  • MOS Metal—Oxide—Semiconductor
  • gate oxide gate insulating film
  • FIG. 5A and FIG. 5B are schematic cross-sectional views for explaining a process of forming a side spacer around the outer peripheral portion (side wall) of the lower electrode.
  • the side spacers first, as shown in FIG. 5A, the entire surface of the lower insulating layer 13 is covered by a low-pressure CVD method so as to cover the patterned lower electrode 15 (see FIG. 5A).
  • SiO) (LP—TEOS) force LP—TEOS
  • the upper surface of the lower electrode 15 is exposed by an anisotropic dry etching method using ICP plasma so that the upper surface and the surface of the SiO film are smoothly connected.
  • the side spacer 26 is formed.
  • anisotropic dry etching and surface polishing (CMP) can be used in combination.
  • FIG. 6A and FIG. 6B are also schematic cross-sectional views for explaining the process of forming the side spacer around the side wall of the lower electrode.
  • tungsten (W) by a low temperature CVD method is applied to the entire surface of the lower insulating layer 13 so as to cover the patterned lower electrode 15.
  • LT-W tungsten
  • conductive film 25 300 Deposit to a thickness of ⁇ 900nm.
  • a monosilane-based WSi (LT-WSi) film can be formed by a low temperature CVD method.
  • the upper surface of the lower electrode 15 is exposed by using an anisotropic dry etching method or surface polishing method (CMP) using ECR plasma and a dry etching method in combination. Etch back until the upper surface and the surface of the SiO film are connected smoothly.
  • CMP surface polishing method
  • the side spacer 26 is formed leaving the W film only around the side wall of the lower electrode 15.
  • the etch back conditions are set so that the step at the interface between the electrode and the side spacer is less than 25 nm, preferably less than 10 nm, more preferably less than 3 nm. Is to control.
  • the level difference between the two is 25 nm or more, abnormal growth of A1N due to the level difference is likely to occur, and deep crater-like defects may occur between adjacent columnar AIN grains. This crater is not preferable because it causes damage to the A1N film and impairs its reliability as a piezoelectric thin film resonator.
  • the thickness d5 of the lower insulating layer 13 formed in contact with the lower surface of the lower electrode is 25 to 300 nm, preferably 30 to 200 nm.
  • the crystal orientation of the metal thin film mainly composed of molybdenum, ruthenium, aluminum, iridium, cobalt, nickel, platinum, copper, etc. deposited thereon is poor.
  • the rocking 'curve half-value width of the corresponding X-ray diffraction peak tends to widen.
  • the broadening of the rocking 'curve half-width of the metal thin film that serves as the lower electrode brings about a decrease in the crystal orientation of the A1N thin film deposited on the upper surface. If the thickness of the lower insulating layer 13 exceeds 300 nm, the electromechanical coupling coefficient of the obtained piezoelectric thin film resonator tends to decrease, and the piezoelectric characteristics tend to deteriorate.
  • the thickness d6 of the upper insulating layer 23 formed in contact with the upper surface of the upper electrode is preferably 40 to 600 nm. Furthermore, the ratio between the thickness d5 of the lower insulating layer 13 formed in contact with the lower surface of the lower electrode and the thickness d6 of the upper insulating layer 23 formed in contact with the upper surface of the upper electrode d6 Zd5 force l ⁇ d6Zd5 ⁇ 4 It is preferable to control the thickness d5 and the thickness d6 so as to satisfy the relationship. [0066] By forming the upper insulating layer 23 in contact with the upper surface of the upper electrode, spurious near the resonance peak of the obtained piezoelectric thin film resonator is reduced.
  • the spurious reduction effect is large.
  • the thickness d6 of the upper insulating layer 23 is less than 40 nm, the spurious suppression effect tends to be remarkably reduced.
  • the thickness d6 of the upper insulating layer 23 exceeds 600 nm, the piezoelectric characteristics such as the electromechanical coupling coefficient and the acoustic quality factor (Q value) of the obtained piezoelectric thin film resonator tend to be poor.
  • the upper insulating layer 23 is made of a chemically stable material, and there is an effect that the environmental resistance of the obtained piezoelectric thin film resonator is improved.
  • the rocking 'curve half-value width of the metal thin film such as molybdenum constituting the upper electrode 17 is controlled to be 3 ° or less, a highly oriented upper insulating layer is formed and good spurious Reduction effect and excellent environmental resistance can be realized.
  • the vibration space 20 can be formed as follows. That is, after forming the substrate insulating layer 12 on the upper surface of the substrate 11, a pattern-like sacrificial layer is formed on the vibration space forming region of the substrate insulating layer 12. A lower insulating layer 13 and a piezoelectric laminated structure 14 (and an upper insulating layer 23) are formed thereon. Via hole 19 is formed by deep etching (Deep RIE (Reactive Ion Etching)) from the upper side of the figure (upper insulating layer 23 and) through the layers constituting piezoelectric laminated structure 14 and insulating layer 13 to form a sacrificial layer.
  • Deep RIE Reactive Ion Etching
  • An etching solution is injected from the via hole 19 to remove the sacrificial layer and the substrate insulating layer 12 in the vibration space forming region, thereby forming a vibration space 20 that is a cavity.
  • a thin film laminated on the vibration space 20 constitutes the membrane 21.
  • the A1N thin film 16 on the vibration space 20 the lower electrode 15 and the upper electrode 17 sandwiching the A1N thin film constitute a piezoelectric laminated structure 14, and as described above, the piezoelectric laminated structure 14 At least one of them is aluminum nitride (A1N), aluminum oxynitride (AIO N), aluminum oxide (Al 2 O 3), silicon nitride (SiN), silicon oxynitride (Si ON), zirconium oxide
  • the main component is at least one material selected from (ZrO) and tantalum oxide (TaO).
  • Insulating layers 13 and 23 exist.
  • Examples of the method for forming a metal thin film containing as a main component at least one metal selected from the group consisting of (Cu) include a sputtering method and a vacuum evaporation method.
  • a thin film containing these metals as a main component can usually be easily formed by a DC magnetron sputtering method or an RF magnetron sputtering method.
  • the melting point of molybdenum (Mo), ruthenium (Ru) and iridium (Ir) is high! / Because of its high melting point (melting point of ruthenium 2310 ° C).
  • the melting point of molybdenum is 2620 ° C, the melting point of tungsten is 3410 ° C), and it is difficult to produce a thin film by resistance heating evaporation, so it is necessary to use electron beam evaporation.
  • ruthenium is known to be hexagonal, and molybdenum, aluminum, iridium, conoleto, nickel, platinum and copper are known to be cubic.
  • FWHM rocking curve half-width
  • the thickness and the microstructure of the insulating film serving as a base layer both by controlling the ultra-high vacuum sputtering apparatus (ultimate vacuum: 10 _6 Pa or less, preferably 4xl0_ 7 Pa ) And optimized film formation conditions such as film formation pressure, film formation temperature, DC output or RF output, making it possible to deposit highly oriented metal crystal films.
  • pretreatment such as heat treatment before film formation or soft etching.
  • the present inventors controlled the deposition conditions of the metal thin film used as the lower electrode 15 to improve the crystal orientation, and then nitrided the metal thin film or the metal thin film laminate.
  • a highly oriented and highly crystalline c-axis oriented aluminum nitride thin film with a rocking 'curve half-width (FWHM) of (0002) diffraction peak of 0.8 to 1.6 ° is obtained.
  • FWHM rocking 'curve half-width
  • the lower electrode 15 is formed by forming a metal thin film mainly composed of at least one metal selected from the group consisting of an adhesion metal layer deposited as necessary and the above-mentioned various metals in this order. It is formed by patterning these metal thin films into a predetermined shape using a lithography technique.
  • the A1N thin film 16 can be formed on the upper surface of the lower insulating layer 13 on which the lower electrode 15 is formed by reactive sputtering.
  • the upper electrode 17 is formed by forming a metal thin film mainly composed of at least one metal selected from the group consisting of the various metals described above, and then using the photolithography technique in the same manner as the lower electrode 15.
  • the A1N thin film 16 is patterned into a predetermined shape by etching away a portion of the A1N thin film 16 except for the portion on the vibration space 20 by using a photolithography technique.
  • the present inventors provide a side spacer 26 made of a material different from the electrode around the outer periphery of the lower electrode 15 or the upper electrode 17.
  • the side spacer 26 is formed in a slope shape, and the upper and lower electrodes of the upper and lower electrodes are manufactured by controlling the shielding method so that the step difference at the interface between the electrode and the side spacer 26 is less than 25 nm.
  • Silicon Si ON
  • aluminum nitride A1N
  • aluminum oxynitride AIO N
  • 2 3 2 2 5 Can be formed of an insulator mainly composed of at least one material selected from the group
  • the side spacer 26 also having a conductor force is formed of a conductor mainly composed of at least one material selected from the group force of tungsten (W), tungsten silicide (WSi), and iridium (Ir) forces. can do.
  • the side spacer 26 made of an insulator or a conductor is formed in a slope shape, and the inclination angle with respect to the lower surface of the upper surface of the slope is preferably 3 to 45 °.
  • the inclination angle is smaller than 3 °, the slope length becomes too long, and it becomes difficult to ensure the dimensional accuracy in the plane direction of each layer constituting the piezoelectric thin film resonator. Piezoelectric properties such as coupling coefficient and acoustic quality factor (Q value) tend to deteriorate.
  • Q value acoustic quality factor
  • the inclination angle of the electrode side wall surface with respect to the lower surface of the electrode is 70 to 90 ° (that is, substantially vertical).
  • the acoustic quality factor (Q value) of the obtained piezoelectric thin film resonator is improved, and it has excellent characteristics such as insertion loss, roll-off steepness and cutoff characteristics.
  • a high performance piezoelectric thin film resonator can be manufactured.
  • the piezoelectric thin film resonator of the present invention is a resonator as described above, and is a vibration space or a semiconductor having an acoustic reflection layer.
  • a substrate made of an insulator and a vibration space of the substrate.
  • a piezoelectric thin film resonator having at least a lower electrode, an aluminum nitride piezoelectric thin film, and an upper electrode arranged in order at a position facing the acoustic reflection layer, wherein at least one of the lower electrode and the upper electrode is , Another layer of different material on the outer periphery And there is a step at the interface between the electrode (electrode body) and the side spacer arranged around it.
  • Such a piezoelectric laminated structure has excellent piezoelectric characteristics and high reliability, and a piezoelectric thin film resonator using the piezoelectric laminated structure has excellent frequency characteristics with low loss.
  • the lower electrode 15 and the upper electrode 17 overlap each other in the thickness direction (that is, when viewed in the thickness direction of the piezoelectric laminated structure 14). It is preferable that the vibration region defined as the region is inside the edge of the membrane 21 (that is, the outer peripheral edge of the vibration space 20). By maintaining such a positional relationship, the Q value of the piezoelectric thin film resonator can be increased. When the vibration region extends outside the membrane edge, the Q value of the piezoelectric thin film resonator tends to decrease.
  • the distance between the end (edge) of the vibration region and the membrane edge (corresponding to the outer periphery of the vibration space) is w
  • the thickness of the piezoelectric laminated structure 14 in the vibration region is insulated from the thickness.
  • the resistances of the lower electrode 15 and the upper electrode 17 affect the loss of resonance characteristics. Therefore, in the present invention, it is preferable to control the formation conditions of the metal thin film so that the specific resistance of the lower electrode and the upper electrode, which cause the loss of the input signal, becomes a sufficiently small value.
  • the specific resistance of the electrode is controlled to be 5 to 20 ⁇ 'cm. By setting the specific resistance to a value within this range, it is possible to reduce the loss of the input high-frequency signal and realize good resonance characteristics.
  • a Balta elastic wave is excited by applying a voltage to the upper and lower electrodes 15, 17 of the piezoelectric thin film 16. For this reason, it is necessary to expose the lower electrode 15 to be a terminal electrode. To construct a filter using resonators with this configuration, it is necessary to connect two or more resonators in combination. In this case, if the electric resistance of the metal thin film is large, loss due to the connection wiring occurs. . For this reason, in the present invention, the conditions for forming the metal thin film are controlled so that the specific resistance of the lower electrode 15 and the upper electrode 17 that cause the loss of the input signal becomes a sufficiently small value. For example, by controlling the electrode specific resistance to be 5 to 20 ⁇ 'cm, it is possible to reduce the loss of the input high-frequency signal and realize good filter performance.
  • FIG. 7A is a schematic plan view showing another embodiment of the piezoelectric thin film resonator according to the present invention
  • FIGS. 7B and 7C are an XX sectional view and a YY sectional view, respectively.
  • FIG. 7D is an enlarged view of a portion surrounded by a dotted line in FIG. 7C.
  • members having the same functions as those in FIGS. 4A, 4B and 4C are given the same reference numerals.
  • the piezoelectric thin film resonator 10 includes a substrate 11, a lower insulating layer 13 formed on the upper surface of the substrate 11, and a piezoelectric laminated structure 14 formed on the upper surface of the lower insulating layer 13. Furthermore, an upper insulating layer 23 is formed on the upper surface of the piezoelectric laminated structure 14.
  • the piezoelectric laminated structure 14 includes a lower electrode 15 formed on the upper surface of the insulating layer 13, a piezoelectric thin film 16 formed on the upper surface of the lower insulating layer 13 so as to cover a part of the lower electrode 15, and the piezoelectric thin film 16 An upper electrode 17 formed on the upper surface of the piezoelectric thin film 16 is included.
  • the lower electrode 15 has a shape close to a rectangle and has a main body 15a and a terminal 15b for connecting the main body 15a to an external circuit.
  • the upper electrode 17 has a main body portion 17a formed in a region corresponding to the vibration space 20, and a terminal portion 17b for connecting the main body portion 17a and an external circuit.
  • the terminal portions 15b and 17b are located outside the region corresponding to the vibration space 20.
  • At least one of lower electrode 15 and upper electrode 17 includes a layer containing molybdenum as a main component. It is formed with a metal thin film of ⁇ 450nm.
  • the lower electrode 15 is made of a metal thin film mainly composed of molybdenum and has a thickness of 150 to 450 nm.
  • the upper electrode 17 is a laminate of a metal thin film with a thickness of d3 mainly composed of molybdenum and a metal thin film with a thickness of d4 mainly composed of aluminum, and the thicknesses d3 and d4 of the respective metal thin films are d4 / d3> l Powerful 150nm ⁇ (d3 + d4) ⁇ 450nm and!
  • the d3 metal thin film which has high acoustic impedance and is mainly composed of highly oriented molybdenum thin film, is interposed between the d4 metal thin film, whose main component is aluminum, and the piezoelectric thin film. It is preferable.
  • An upper insulating layer 23 is formed in contact with the upper surface of the upper electrode.
  • lithography 1 Patterned into a predetermined shape by lithography 1 and, if necessary, coated with a photoresist for micromachining, and the same as the SiO mask on the bottom surface of the substrate by photolithography.
  • the vibration space 20 having a depth, a prismatic shape, or a columnar shape with the side walls standing vertically is formed.
  • FIGS. 7B and 7C it is possible to obtain a vibration space in which the membrane 21 and the opening on the back surface of the substrate have substantially the same planar shape and dimensions.
  • a side spacer made of a material different from the electrode is provided around the outer periphery of the lower electrode or the upper electrode, and the side spacer is formed in a slope shape, Crater-like separation is achieved by forming an aluminum nitride piezoelectric thin film between the upper and lower electrodes produced by controlling the processing method so that the step at the interface between the electrode and the side spacer is less than 25 nm.
  • a highly oriented and highly crystalline c-axis oriented aluminum nitride thin film with no growth can be obtained, and the adverse effects on the piezoelectric properties due to the tilt of the edge of the lower electrode or upper electrode can be eliminated.
  • the angle of inclination with respect to the lower surface of the upper surface of the slope in the side spacer formed in a slope shape is defined as 0 1.
  • the tilt angle ⁇ 1 is 3 to 45 °.
  • the inclination angle ⁇ 1 is smaller than 3 °, the slope length becomes too long, and it becomes difficult to ensure the dimensional accuracy in the plane direction of each layer constituting the piezoelectric thin film resonator. Piezoelectric properties such as coupling coefficient and acoustic quality factor (Q value) deteriorate.
  • the inclination angle ⁇ 1 exceeds 45 °, crater-like separated growth of the aluminum nitride piezoelectric thin film tends to occur easily from the boundary between the electrode body and the side spacer or from one end of the side spacer.
  • the inclination angle ⁇ 2 with respect to the lower surface of the upper surface of the electrode body is 70 to 90 ° (ie, vertical).
  • the acoustic quality factor (Q value) of the obtained piezoelectric thin film resonator is improved, and characteristics such as insertion loss, roll-off steepness, and cutoff characteristics are excellent.
  • High performance piezoelectric thin film resonators can be manufactured.
  • the multilayer piezoelectric thin film resonator of the present invention has a substrate 11 made of a semiconductor or an insulator having a vibration space 20 and a surface facing at least the vibration space 20 on the substrate, as shown in FIGS.
  • the lower insulating layer 13 and the piezoelectric laminated structure are sequentially arranged in a region including the region to be processed.
  • the piezoelectric laminated structure has a lower electrode 15, a first aluminum nitride piezoelectric thin film 16-1, an internal electrode 17 ′, a second aluminum nitride piezoelectric thin film 16-2, and an upper electrode 18. At least one of the lower electrode 15, the internal electrode 17 ′, and the upper electrode 18 has a side spacer 26, which is another layer made of a different material, around the outer peripheral portion thereof. The step at the interface with spacer 26 is less than 25 nm.
  • This embodiment is a SBAR having a piezoelectric laminated structure corresponding to a laminate of two piezoelectric laminated structures according to the embodiments shown in FIGS. 7 to 7D. That is, the lower electrode 15, the first piezoelectric thin film 16-1, the internal electrode 17 ', the second piezoelectric thin film 16-2, and the upper electrode 18 are formed on the lower insulating layer 13 in this order.
  • the internal electrode 17 ' has a function as an upper electrode for the first piezoelectric thin film 16-1 and a function as a lower electrode for the second piezoelectric thin film 16-2.
  • the multilayer piezoelectric thin film resonator (SBAR) of the present invention has a structure including the configurations of the lower electrode, the piezoelectric layer, and the upper electrode of the present invention, and the pressure of the present invention. It is one Embodiment of an electrothin film resonator.
  • an input voltage can be applied between the lower electrode 15 and the internal electrode 17 ′, and the voltage between the internal electrode 17 ′ and the upper electrode 18 can be taken out as an output voltage.
  • This itself can be used as a multipole filter.
  • a multipole filter having such a configuration as a component of a passband filter the attenuation characteristics of the stopband are improved and the frequency response as a filter is improved.
  • the resonance frequency f and antiresonance frequency f in the impedance characteristics measured using a microwave prober are related to the electromechanical coupling.
  • the electromechanical coupling coefficient k 2 was calculated using the following force.
  • the resonance frequency and the anti-resonance in the range of 1.5 to 2.5 GHz In the piezoelectric thin film resonator or laminated piezoelectric thin film resonator having the configuration shown in FIGS. 4A to 4C, FIGS. 7A to 7D, and FIGS. 8A and 8B, the resonance frequency and the anti-resonance in the range of 1.5 to 2.5 GHz.
  • the electromechanical coupling coefficient k 2 obtained from the measured resonance frequency is 6.0% or more.
  • the electromechanical coupling coefficient k 2 is less than 6.0%, the bandwidth of the piezoelectric thin film filter manufactured by combining these piezoelectric thin film resonators is reduced, and it is practically used as a piezoelectric thin film device used in a high frequency range. It tends to be difficult to provide.
  • FIG. 9 shows a schematic plan view of a thin film piezoelectric filter as an embodiment of the piezoelectric thin film device of the present invention.
  • five piezoelectric thin film resonators 2 10, 220, 230, 240, and 250 are formed using a common substrate. These piezoelectric thin film resonators are all of the embodiment shown in FIGS. 7A and 7B.
  • the lower electrode terminal portions 15b of the piezoelectric thin film resonators 210, 220, and 240 are connected to each other, and the upper electrode terminal portions 17b of the piezoelectric thin film resonators 220, 230, and 250 are connected to each other.
  • an air gap type piezoelectric thin film resonator is manufactured.
  • an acoustic mirror type piezoelectric thin film resonator can also be manufactured by the same technique.
  • a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows.
  • a 1500 nm thick SiO layer is formed on both sides of a 625 ⁇ m thick Si wafer by thermal oxidation.
  • a 50 nm thick Ti thin film is deposited as a sacrificial layer on the SiO layer on the upper surface of the Si wafer.
  • a pattern was formed into a desired air bridge shape (that is, a shape corresponding to a desired vibration space) by photolithography.
  • the lower insulating layer (lower insulating layer) with the thickness shown in Table 1 is formed on the exposed surfaces of the sacrificial layer and the SiO layer by reactive sputtering.
  • a Mo thin film having the thickness shown in Table 1 was deposited to form a lower electrode (lower electrode layer: lower electrode body), and further patterned by photolithography. Subsequently, a silicon oxide (SiO 2) film was deposited to a thickness of 300 to 900 nm on the exposed surfaces of the lower electrode and the lower insulating layer by a low pressure CVD method using TEOS (Tera-ethoxy silane) as a raw material. Different using ICP plasma
  • the surface of the lower electrode is exposed by anisotropic dry etching, and the SiO
  • O / z m as a piezoelectric thin film was formed by reactive RF magnetron sputtering under the conditions shown in Table 3.
  • Table 3 As a result of evaluating the crystallinity of the A1N thin film by the X-ray diffraction method, only peaks corresponding to the c-plane including the (0002) plane were observed.
  • the rocking 'curve half-width (FWHM) was 1 It was 6 °.
  • the Mo thin film having the thickness shown in Table 2 is deposited on the piezoelectric thin film by DC magnetron sputtering to form the upper electrode (upper electrode layer: upper electrode main body), and photolithography is performed to obtain FIG. 4A. As shown in the figure, it was patterned in a shape close to a rectangle with a plane size of 150 X 170 m (the opposite side was slightly non-parallel). Next, the piezoelectric thin film was patterned into a predetermined shape by dry etching.
  • a photoresist is applied to the exposed surface of the sensor, piezoelectric thin film, upper electrode, upper insulating layer, and lower insulating layer, and a via hole is formed at a position corresponding to the via hole for forming the vibration space shown in FIG. 4B.
  • the vibration space 20 shown in FIG. 4B was created by removing the dies.
  • a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B and 4C was manufactured.
  • Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking curve half width (FWHM). ) And other crystalline properties.
  • Table 1 and Table 2 show the inclination angle ⁇ 1 of the end face of the side spacer 1 and the end face of the electrode body.
  • the inclination angle ⁇ 2 is shown. These are the angles between the end surface (end surface or top surface) and the bottom surface of each layer shown in FIG. 7D.
  • the impedance characteristic between the electrode terminals 15b and 17b of the piezoelectric thin-film resonator is measured using a cascade 'Microtech GSG micro prober and a network analyzer' to obtain the parameter "Scattering". From the measured values of the resonance frequency f and antiresonance frequency f, the electromechanical coupling coefficient k 2 is
  • the peak quality of the peak and antiresonance peak (peak width at a position 3 dB away from the peak top) and the acoustic quality factor Q of the resonance peak and antiresonance peak were also obtained.
  • a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows. That is, the material and thickness of the lower insulating layer and the upper insulating layer, the formation condition and thickness of the lower electrode, the material and inclination angle of the side spacer, the formation condition and thickness of the A1N piezoelectric thin film, and the material of the upper electrode
  • the piezoelectric thin film resonator shown in FIGS. 4A, 4B, and 4C was manufactured using the same method as in Example 1 except that the thickness was changed.
  • the impedance characteristics between the electrode terminals 15b and 17b of the piezoelectric thin film resonator are measured to obtain the 'suttering' parameter. From the measured values of the resonance frequency f and antiresonance frequency f, the electromechanical coupling coefficient k 2 is
  • the peak quality of the peak and antiresonance peak (peak width at a position 3 dB away from the peak top) and the acoustic quality factor Q of the resonance peak and antiresonance peak were also obtained.
  • Thickness vibration fundamental frequency, electromechanical coupling coefficient k 2 , acoustic quality factor Q, insertion loss minimum value (forward transmission coefficient, value at the resonance point of S) and spurious characteristics of the obtained piezoelectric thin film resonator Were as shown in Table 3.
  • a Ti thin film with a thickness of 80 nm was deposited and patterned into a desired air bridge shape by photolithography.
  • the sacrificial layer and the SiO layer are formed by reactive sputtering.
  • a lower insulating layer with the materials and thicknesses listed in Table 1 was formed on the exposed surface.
  • a Mo thin film having a thickness shown in Table 1 was deposited by DC magnetron sputtering to form a lower electrode, and further patterned by photolithography.
  • the resist was exposed to ultraviolet light that was intentionally defocused and developed to make the resist shape into a gentle saddle shape. We focused on controlling the tilt angle ⁇ 2 of the electrode pattern end face (sidewall) during dry etching by providing a gentle slope on the resist end face.
  • the rocking 'curve full width at half maximum (FWHM) was 1. It was 0 °.
  • an upper electrode is formed by depositing a Mo thin film having the thickness shown in Table 2 on the piezoelectric thin film by DC magnetron sputtering, and a planar dimension 150 X 170 as shown in FIG. 4A by photolithography. It is close to the rectangle of m and patterned in a shape (the opposite side is slightly non-parallel).
  • a side spacer was formed.
  • the piezoelectric thin film was patterned into a predetermined shape by dry etching and subsequent wet etching.
  • a thin film of the material and thickness described in Table 2 serving as the upper insulating layer was deposited and patterned.
  • a photoresist is applied on the exposed surface of the lower electrode, piezoelectric thin film, upper electrode and its side spacer, upper insulating layer, and lower insulating layer to form the vibration space shown in FIG. 4B. Dry Ettin using a mixed gas of C1 and Ar with a via hole pattern formed at a position corresponding to the via hole of
  • the Ti sacrificial layer and the SiO layer with a thickness of 1 OOOnm below it were removed by etching by circulating the etching solution through the hole.
  • the vibration space 20 shown in FIG. 4B was created by removing the strike.
  • the piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B and 4C was manufactured by the above manufacturing process.
  • Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking 'curve half width (FWHM).
  • the crystal properties such as
  • the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1.
  • the resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic was as shown in 3.
  • a piezoelectric thin film resonator having the structure shown in FIGS. 7A and 7B was produced as follows.
  • a mask pattern is formed, and the SiO layer in the region corresponding to the pattern is removed by etching. It was. At the same time, the entire SiO layer on the upper surface of the Si substrate was removed by etching. Next, reactive spatter
  • the bottom layer of the materials and thicknesses listed in Table 1 are formed on the SiO layer on the top surface of the Si substrate by the tulling method.
  • the SiO film is left only around the outer peripheral side wall of the patterned lower electrode.
  • Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the rocking curve half-width (FWHM) of the lower MoZCr laminated electrode, and Table 3 shows the A1N piezoelectric thin film formation conditions and rocking 'curve half-width. Crystal properties such as (FWHM) are described.
  • Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode plugging 'curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking' force half width. Crystal properties such as (FWHM) are described.
  • the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1.
  • the resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic was as shown in 3.
  • a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was produced as follows.
  • a low-pressure CVD SiN layer is used as the lower insulator layer, and the material and thickness of the upper and lower insulator layers, the formation conditions and materials and thickness of the lower and upper electrodes, and the formation conditions of the A1N piezoelectric thin film
  • side spacers are provided around the outer peripheral edge for both the lower electrode and the upper electrode.
  • the piezoelectric thin film resonator shown in FIGS. 4A, 4B and 4C was manufactured.
  • Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking 'curve half width (FWHM). The crystal properties such as were described.
  • the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1.
  • the resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic was as shown in 3.
  • a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows. That is, the material and thickness of the lower insulator layer and the upper insulator layer, the formation conditions and material and thickness of the lower electrode and the upper electrode, the material and inclination angle of the side spacer, and the formation conditions of the A1N piezoelectric thin film are changed.
  • a piezoelectric thin film resonator having the structure described in FIGS. 4A, 4B, and 4C was used in the same manner as in Example 3 except that side spacers were provided around the outer peripheral edge of both the lower electrode and the upper electrode. Manufactured.
  • Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking 'curve half width (FWHM).
  • the crystal properties such as
  • the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1.
  • the resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic was as shown in 3.
  • a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows. That is, in the same manner as in Example 3, except that both the lower electrode and the upper electrode are provided with side spacers around the outer peripheral edge to form the lower insulator layer, the lower electrode, the side spacer, and the A1N thin film. After patterning, the top electrode, side spacer, and top insulator layer are formed, as shown in Figures 4A, 4B, and 4C. A piezoelectric thin film resonator having the following structure was manufactured.
  • Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking 'curve half width (FWHM). ) And other crystal properties.
  • the high frequency characteristics and the resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1.
  • the resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic was as shown in 3.
  • a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows. That is, the material and thickness of the lower insulator layer and the upper insulator layer, the material of the lower electrode, the formation conditions and thickness, the material and inclination angle of the side spacer, the formation conditions of the A1N piezoelectric thin film, and the upper electrode layer Using the same method as in Example 3 except that the material and thickness were changed and side spacers were provided around the outer periphery of both the lower electrode and the upper electrode, as shown in FIGS. 4A, 4B, and 4C. A piezoelectric thin film resonator was manufactured.
  • Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking 'curve half width (F WHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking' curve half width (FWHM). ) Etc. were described.
  • the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1.
  • the resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic was as shown in 3.
  • a piezoelectric thin film resonator for comparison with the structure shown in FIGS. 4A, 4B, and 4C was produced as follows. That is, the lower insulator layer and the upper insulator layer are made of a low-pressure CVD SiN layer, the lower electrode adhesion layer is Cr, and the lower electrode main layer is Mo.
  • Table 3 shows the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking 'curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking curve half width (FWHM). The properties are described.
  • the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1.
  • the resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic was as shown in 3.
  • a piezoelectric thin film resonator for comparison with the structure shown in FIGS. 4A, 4B, and 4C was produced as follows. In other words, except that the material and thickness of the lower insulator layer and the upper insulator layer and the material and thickness of the lower electrode and the upper electrode were changed, the same method as in Comparative Example 1 was applied to FIGS. 4A, 4B, and 4C.
  • a piezoelectric thin film resonator having a structure similar to that described was manufactured. Table 1 to Table 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking 'curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking' curve half width (FWHM). Etc. were described.
  • Table 3 shows the fundamental frequency of thickness vibration, electromechanical coupling coefficient 2 , acoustic quality factor Q, minimum insertion loss (forward transmission coefficient, value at the resonance point of S) and spurious characteristics of the obtained piezoelectric thin film resonator. It was as shown in.
  • a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows. In other words, in addition to changing the material and thickness of the lower and upper insulator layers and the material and thickness of the lower and upper electrodes, it is formed around the lower electrode body and its outer peripheral edge.
  • a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was manufactured by the method described in Example 1 except that the step at the interface with the side spacer had a large value of 30 nm.
  • Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking 'curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking' curve half width (FWHM). Etc. were described.
  • the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1.
  • the resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic was as shown in 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

A film bulk acoustic resonator (10) includes substrates (11, 12) having an oscillation space (20), and a piezoelectric laminated structure (14) arranged to face the oscillation space (20). The piezoelectric laminated structure (14) is provided with at least a lower electrode (15), a piezoelectric thin film (16) and an upper electrode (17), which are arranged in sequence from the side close to the oscillation space (20). A lower insulating layer (13) is formed in contact with the lower surface of the lower electrode (15), and an upper insulating layer (23) is formed in contact with the lower surface of the upper electrode (17). A side spacer (26) made of a material different from that of the electrode is arranged on the outer circumference of the lower electrode (15) and the upper electrode (17). A step on an interface between the side spacer (26) and the electrodes (15, 17) is less than 25nm. The piezoelectric thin film (16) is composed of aluminum nitride. The acoustic impedance of the side spacer (26) is larger than the acoustic impedances of the electrodes (15, 17).

Description

明 細 書  Specification
圧電薄膜共振子、圧電薄膜デバイスおよびその製造方法  Piezoelectric thin film resonator, piezoelectric thin film device, and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、移動体通信機等に利用される薄膜共振器、薄膜 VCO (電圧制御発振 器)、薄膜フィルタ及び送受信切替器や、各種センサーなど、広範な分野で用いられ る圧電薄膜共振子と、それを応用した素子である圧電薄膜デバイスに関する。  [0001] The present invention relates to a piezoelectric thin film used in a wide range of fields such as a thin film resonator, a thin film VCO (voltage controlled oscillator), a thin film filter, a transmission / reception switch, and various sensors used in mobile communication devices. The present invention relates to a resonator and a piezoelectric thin film device which is an element to which the resonator is applied.
背景技術  Background art
[0002] 圧電現象を応用した素子は広範な分野で用いられている。携帯機器の小型化と省 力化が進む中で、 RF用および IF用フィルタとして弾性表面波(Surface Acoustic [0002] Devices using the piezoelectric phenomenon are used in a wide range of fields. As mobile devices become smaller and labor-saving, surface acoustic waves (Surface Acoustic) are used as RF and IF filters.
Wave: SAW)素子の使用が拡大して 、る。 SAWフィルタは設計および生産技術 の向上によりユーザーの厳しい要求仕様に対応してきた力 利用周波数の高周波数 ィ匕と共に特性向上の限界に近づき、電極形成の微細化と安定した出力確保の両面 で大きな技術革新が必要となってきている。一方、圧電体薄膜の厚み振動を利用し た薄膜バルタ弾性波共振子(Thin Film Bulk Acoustic Resonator :以下 FB AR、 Solidly Mounted Bulk Acoustic Wave Resonator:以下 SMR)、積 層型薄膜バルタ弾性波共振器およびフィルタ(Stacked Thin Film Bulk WaveThe use of Wave (SAW) elements is expanding. SAW filters have been able to meet the user's strict requirements by improving design and production technology, and approaching the limit of improvement in characteristics along with the high frequency of use frequency, a major technology in both miniaturization of electrode formation and ensuring stable output Innovation is needed. On the other hand, thin film bulk acoustic wave resonators (hereinafter referred to as FB AR, Solidly Mounted Bulk Acoustic Wave Resonator: hereinafter referred to as SMR), layered thin film bulk acoustic wave resonators and Filter (Stacked Thin Film Bulk Wave
Acoustic Resonators and Filters :以下 SBAR)は、基板に設けられた薄い 支持膜の上に、主として圧電体より成る薄膜と、これを駆動する電極を形成したもの であり、ギガへルツ帯での基本共振が可能である。 FBAR, SMRまたは SBARでフ ィルタを構成すれば、著しく小型化でき、かつ低損失'広帯域動作が可能な上に、半 導体集積回路と一体ィ匕することができるので、将来の超小型携帯機器への応用が期 待されている。 Acoustic Resonators and Filters (hereinafter referred to as SBAR) is a thin support film provided on a substrate, on which a thin film consisting mainly of a piezoelectric material and an electrode that drives it are formed. Basic resonance in the gigahertz band Is possible. If the filter is configured with FBAR, SMR or SBAR, it can be remarkably miniaturized, and it can operate in a low loss 'broadband' and can be integrated with a semiconductor integrated circuit. Application to is expected.
[0003] 弾性波を利用した共振器及びフィルタ等に応用される FBAR、 SMR及び SBARな どの圧電体薄膜素子は、以下のようにして製造される。シリコンなどの半導体単結晶 力 なる基板、及びシリコンウェハー上に多結晶ダイヤモンドを形成してなる基板など の上に、種々の薄膜形成方法によって、誘電体薄膜、導電体薄膜、またはこれらを 積層した下地膜を形成する。この下地膜上に圧電体薄膜を形成し、さらに必要に応 じた上部構造を形成する。各層の形成後に、または全層を形成した後に、各々の膜 に物理的処理または化学的処理を施すことにより微細加工またはパターユングを行う 。振動領域の下方に位置する基板部分を異方性エッチングにより除去して浮き構造 を作製した後、最後に 1素子単位に分離することにより圧電体薄膜素子を得る。 [0003] Piezoelectric thin film elements such as FBARs, SMRs, and SBARs that are applied to resonators and filters that use elastic waves are manufactured as follows. A dielectric thin film, a conductive thin film, or these layers are laminated on a substrate made of a semiconductor single crystal such as silicon and a substrate formed of polycrystalline diamond on a silicon wafer by various thin film forming methods. Forms a basement film. A piezoelectric thin film is formed on this base film, and if necessary, Forming a superstructure. After each layer is formed, or after all layers are formed, each film is subjected to physical processing or chemical processing to perform fine processing or patterning. The substrate portion located below the vibration region is removed by anisotropic etching to produce a floating structure, and finally, the piezoelectric thin film element is obtained by separating into one element unit.
[0004] 例えば、特許文献 1に記載された圧電薄膜素子 (FBAR)は、基板上に下地膜、下 部電極、圧電体薄膜及び上部電極を形成した後に、振動領域となる部分の下にある 基板部分を基板裏面側力 除去して振動空間を形成することにより、製造されている 。圧電薄膜素子用の圧電材料としては、窒化アルミニウム (A1N)、酸ィ匕亜鉛 (ZnO) 、硫ィ匕カドミウム(CdS)、チタン酸鉛 (PT(PbTiO;) )、及びチタン酸ジルコン酸鉛 (P [0004] For example, a piezoelectric thin film element (FBAR) described in Patent Document 1 is under a portion that becomes a vibration region after forming a base film, a lower electrode, a piezoelectric thin film, and an upper electrode on a substrate. Manufactured by removing the substrate back side force to form a vibration space. Piezoelectric materials for piezoelectric thin film elements include aluminum nitride (A1N), acid zinc (ZnO), nickel cadmium sulfate (CdS), lead titanate (PT (PbTiO;)), and lead zirconate titanate ( P
3  Three
ZT(Pb (Zr, Ti) 0 ) )などを用いることができる。特に A1Nは、弾性波の伝播速度が  ZT (Pb (Zr, Ti) 0)) or the like can be used. A1N in particular has a propagation velocity of elastic waves.
3  Three
速ぐ高周波帯域で動作する薄膜共振器及び薄膜フィルタ用の圧電材料として適し ている。  It is suitable as a piezoelectric material for thin film resonators and thin film filters that operate in a fast high frequency band.
[0005] 特許文献 2には、エアーブリッジ式の FBARZSBARデバイスの構成と製造方法が 記載されている。同公報によれば、最初に、シリコンウェハーの上に犠牲層(Sacrific ial layer)として燐石英ガラス(PSG)を堆積し、 CMP研磨後、この犠牲層の上に圧 電共振器を製作する。 PSGは、比較的低温で堆積させることができ、且つ、希釈 H  [0005] Patent Document 2 describes the configuration and manufacturing method of an air bridge type FBARZSBAR device. According to the publication, first, phosphor quartz glass (PSG) is deposited as a sacrificial layer on a silicon wafer, and after CMP, a piezoelectric resonator is fabricated on the sacrificial layer. PSG can be deposited at relatively low temperatures and diluted H
2 2
0 :HF溶液で非常に高いエッチング速度でエッチングされる。したがって、プロセス の終点または終点近くに、犠牲層をエッチングにより除去して、振動領域を形成する 。処理はすべてウェハー前面で行なわれるから、この方法は、ウェハー両面における パターンの整列および大面積のウェハー裏面側開口部を必要としな 、。 0: Etched with HF solution at very high etching rate. Therefore, the sacrificial layer is etched away near or at the end of the process to form a vibration region. Since all processing takes place on the front side of the wafer, this method does not require pattern alignment on both sides of the wafer and a large area wafer backside opening.
[0006] 空気 Z結晶境界面を設ける代わりに、適切な音響ミラーを設ける方法もある。この 方法では、例えば特許文献 3に記載のように、下部電極、圧電体薄膜及び上部電極 より構成される挟み込み構造の下に音響的ブラッグ反射鏡力 なる大きな音響インピ 一ダンスが作り出される。ブラッグ反射鏡は、音響インピーダンスの高い材料の層と 音響インピーダンスの低 ヽ材料の層とを交互に積層することにより作られる。各層の 厚さは共振周波数の波長の 1Z4に固定される。十分な層数の積層膜を形成すること により、圧電体 Z電極境界面における有効インピーダンスを、素子の音響インピーダ ンスよりはるかに高くすることができ、したがって、圧電体内の音波を有効に閉じ込め ることができる。低音響インピーダンス層は酸ィ匕シリコンまたはアルミニウム力も構成 することができ、高音響インピーダンス層はタングステン、プラチナ、モリブデンまたは 金から構成することができる。この方法により得られる音響共振器は、挟み込み構造 の下に空隙が存在しないので、固体音響ミラー取付け共振器 (SMR)と呼ばれる。 [0006] Instead of providing an air Z crystal interface, there is a method of providing an appropriate acoustic mirror. In this method, as described in Patent Document 3, for example, a large acoustic impedance, which is an acoustic Bragg reflector force, is created under a sandwich structure composed of a lower electrode, a piezoelectric thin film, and an upper electrode. Bragg reflectors are made by alternately stacking layers of high acoustic impedance material and low acoustic impedance material. The thickness of each layer is fixed at 1Z4 at the wavelength of the resonance frequency. By forming a laminated film with a sufficient number of layers, the effective impedance at the piezoelectric Z-electrode interface can be made much higher than the acoustic impedance of the element, so that the acoustic waves in the piezoelectric body can be effectively confined. Can. The low acoustic impedance layer can also be composed of silicon oxide or aluminum forces, and the high acoustic impedance layer can be composed of tungsten, platinum, molybdenum or gold. The acoustic resonator obtained by this method is called a solid acoustic mirror mounted resonator (SMR) because there is no air gap under the sandwich structure.
[0007] 前記の!/、ずれの圧電薄膜共振子の構造および製造法にぉ 、ても、下部電極、圧 電体薄膜および上部電極が、この順番に形成されていることに変わりは無い。また、 下部電極の下側および上部電極の上側に絶縁体層を設け、半導体基板上に絶縁 体層 Z下部電極 Z圧電体薄膜 Z上部電極 Z絶縁体層より成る 5層構造を実現する ことも一般的に採用されている。さらに、下部電極の下側に設けた絶縁体層を結晶成 長のためのシード層として利用することや上部電極の上側に設けた絶縁体層を保護 層として利用することも知られている。  [0007] Although the structure and manufacturing method of the piezoelectric thin film resonator with the above! / Is shifted, the lower electrode, the piezoelectric thin film, and the upper electrode are still formed in this order. It is also possible to realize a five-layer structure in which an insulator layer is provided below the lower electrode and above the upper electrode, and the insulator layer Z lower electrode Z piezoelectric thin film Z upper electrode Z insulator layer is formed on the semiconductor substrate. Generally adopted. Furthermore, it is also known that an insulator layer provided below the lower electrode is used as a seed layer for crystal growth, and an insulator layer provided above the upper electrode is used as a protective layer.
[0008] 圧電体薄膜として利用される A1N及び ZnOなどの薄膜を形成する方法には種々の 改良が試みられており、電気機械結合係数、音響的品質係数 (Q値)及び周波数温 度係数などの圧電特性に優れた、高配向性で均質な圧電薄膜の形成が望まれて 、 る。反応性スパッタリング法などの薄膜形成方法により成膜される A1N薄膜の品質は 、 A1Nが堆積する下地層の性状に強い影響を受けることが知られている。本発明者 らによる特許文献 4によれば、 A1N薄膜形成においては、下地層となる下部電極の 表面の高さの RMS変動を 50nm以下、好ましくは 20nm以下に制御して、下部電極 表面を著しく平坦なものとすることにより、高配向性の A1N薄膜を堆積させることがで きる。得られた A1N薄膜の X線回折測定によれば、(0002)回折ピークのロッキング- カーブ半値幅 (FWHM)は 3. 0°未満であり、良好な圧電特性を示す。  [0008] Various improvements have been attempted in methods for forming thin films such as A1N and ZnO used as piezoelectric thin films, such as electromechanical coupling coefficient, acoustic quality factor (Q value), and frequency temperature coefficient. It is desired to form a highly oriented and homogeneous piezoelectric thin film with excellent piezoelectric properties. It is known that the quality of the A1N thin film formed by a thin film forming method such as reactive sputtering is strongly influenced by the properties of the underlying layer on which A1N is deposited. According to Patent Document 4 by the present inventors, in forming the A1N thin film, the RMS fluctuation of the height of the surface of the lower electrode serving as the underlayer is controlled to 50 nm or less, preferably 20 nm or less, and the surface of the lower electrode is remarkably increased. By making it flat, a highly oriented A1N thin film can be deposited. According to the X-ray diffraction measurement of the obtained A1N thin film, the rocking curve half-width (FWHM) of the (0002) diffraction peak is less than 3.0 °, which indicates good piezoelectric characteristics.
[0009] 特許文献 4には、リフトオフ法により下部電極のパターン形成を行うことが記載され ている。これによれば、必然的に、下部電極の外周部に緩やかな傾斜たとえば 10° 未満のテーパー角を有する傾斜が生ずる。ここで、テーパー角とは、下部電極外周 部の上面が下面 (即ち、下地絶縁層と接する面であってシリコン基板に平行な面)と 為す角度 (傾斜角)である。  [0009] Patent Document 4 describes that a pattern of a lower electrode is formed by a lift-off method. Inevitably, this causes a gentle inclination, for example, an inclination having a taper angle of less than 10 °, at the outer peripheral portion of the lower electrode. Here, the taper angle is an angle (inclination angle) between the upper surface of the outer periphery of the lower electrode and the lower surface (that is, a surface in contact with the base insulating layer and parallel to the silicon substrate).
[0010] 一方、湿式エッチングにより電極のパターン形成を行う場合には、その外周部はテ 一パー角 70° 以上の急峻な傾斜を生ずる。電極外周部の傾斜角が急峻な圧電薄 膜共振子の一例を、図 1A〜: LCに示す。図 1 Aは圧電薄膜共振子の一例を示す模 式的平面図であり、図 1Bはその X— X断面図であり、図 1Cは図 1Bにおける点線で 囲った部分の拡大図である。これらの図において、圧電薄膜共振子 10は、基板 11、 該基板 11の上面上に形成された絶縁体層 12, 13および該絶縁体層 12の一部を除 去して形成した振動空間 20を跨ぐよう形成された圧電積層構造体 14を有する。圧電 積層構造体 14は、絶縁体層 13の上面上に形成された下部電極 15、該下部電極 15 の一部を覆うようにして絶縁体層 13の上面上に形成された圧電薄膜 16および該圧 電薄膜 16の上面上に形成された上部電極 17からなる。基板 11上には、振動空間を 形成する空洞 20が形成されている。絶縁体層 13の一部は振動空間 20に向けて露 出している。 [0010] On the other hand, when the electrode pattern is formed by wet etching, the outer periphery thereof has a steep inclination with a taper angle of 70 ° or more. Piezoelectric thin film with a steep inclination angle An example of a membrane resonator is shown in FIG. 1A is a schematic plan view showing an example of a piezoelectric thin film resonator, FIG. 1B is an XX cross-sectional view thereof, and FIG. 1C is an enlarged view of a portion surrounded by a dotted line in FIG. 1B. In these drawings, the piezoelectric thin film resonator 10 includes a substrate 11, a vibration space 20 formed by removing a part of the insulator layers 12 and 13 and the insulator layer 12 formed on the upper surface of the substrate 11. The piezoelectric laminated structure 14 is formed so as to straddle the substrate. The piezoelectric laminated structure 14 includes a lower electrode 15 formed on the upper surface of the insulating layer 13, a piezoelectric thin film 16 formed on the upper surface of the insulating layer 13 so as to cover a part of the lower electrode 15, and the piezoelectric thin film 16 The upper electrode 17 is formed on the upper surface of the piezoelectric thin film 16. On the substrate 11, a cavity 20 forming a vibration space is formed. A part of the insulator layer 13 is exposed toward the vibration space 20.
[0011] 下部電極外周部の傾斜角が 45度を超えて急峻になると、図 1Cに示すように下部 電極外周部のエッジで圧電薄膜である A1Nの異常成長 (分離成長)が起こり、隣り合 う柱状の A1N粒子間に深いクレータ状の欠陥 30を生ずる。このクレータ状欠陥は A1 N膜の破壊の原因となり、圧電薄膜共振子の信頼性が損なわれることとなる。  [0011] When the inclination angle of the outer periphery of the lower electrode exceeds 45 degrees and becomes steep, abnormal growth (separated growth) of the piezoelectric thin film A1N occurs at the edge of the outer periphery of the lower electrode as shown in Fig. 1C. Deep crater-like defects 30 occur between the columnar A1N particles. This crater-like defect causes the destruction of the A1 N film and impairs the reliability of the piezoelectric thin film resonator.
[0012] 同様に、傾斜角がほぼ 90° に近い上部電極外周部のエッジからも上部絶縁体層 として使用する A1Nの異常成長が起こり、隣り合う柱状の A1N粒子間に深いクレータ 状の欠陥 31を生ずる。  [0012] Similarly, abnormal growth of A1N used as the upper insulator layer also occurs from the edge of the outer periphery of the upper electrode, whose inclination angle is almost 90 °, and deep crater-like defects between adjacent columnar A1N grains 31 Is produced.
[0013] 図 2Aは前記と異なる別の圧電薄膜共振子の一例を示す模式的平面図であり、図 2 Bおよび図 2Cはそれぞれその X— X断面図および Y— Y断面図である。これらの図 においては、上記図 1A〜図 1Cにおけるものと同様の機能を有する部材には同一の 符号が付されている。  FIG. 2A is a schematic plan view showing an example of another piezoelectric thin film resonator different from the above, and FIGS. 2B and 2C are an XX sectional view and a YY sectional view, respectively. In these drawings, members having the same functions as those in FIGS. 1A to 1C are given the same reference numerals.
[0014] これらの図においては、圧電薄膜共振子 10は、基板 11、該基板 11の上面上に形 成された絶縁体層 13および該絶縁体層 13の上面上に形成された圧電積層構造体 14を有する。圧電積層構造体 14は、絶縁体層 13の上面上に形成された下部電極 1 5、該下部電極 15の一部を覆うようにして絶縁体層 13の上面上に形成された圧電薄 膜 16および該圧電薄膜 16の上面上に形成された上部電極 17からなる。  In these drawings, a piezoelectric thin film resonator 10 includes a substrate 11, an insulator layer 13 formed on the upper surface of the substrate 11, and a piezoelectric laminated structure formed on the upper surface of the insulator layer 13. Has body 14. The piezoelectric laminated structure 14 includes a lower electrode 15 formed on the upper surface of the insulating layer 13, and a piezoelectric thin film 16 formed on the upper surface of the insulating layer 13 so as to cover a part of the lower electrode 15. And an upper electrode 17 formed on the upper surface of the piezoelectric thin film 16.
[0015] 下部電極外周部の傾斜角が 90° (垂直)に近い急峻度であるために、図 2Cに示 すように下部電極外周部のエッジで A1Nの異常成長が起こり、隣り合う柱状の A1N粒 子間に深いクレータ状の欠陥 30を生ずる。このクレータ状欠陥は A1N膜の破壊の原 因となり、圧電薄膜共振子の信頼性が損なわれることとなる。 [0015] Since the inclination angle of the outer periphery of the lower electrode is a steepness close to 90 ° (vertical), abnormal growth of A1N occurs at the edge of the outer periphery of the lower electrode as shown in Fig. 2C. A1N grain Deep crater-like defects 30 occur between the children. This crater-like defect causes the destruction of the A1N film and impairs the reliability of the piezoelectric thin film resonator.
[0016] Rubyらによる特許文献 5には、エッチングガスとして酸素(O )および六フッ化ィォ [0016] Patent Document 5 by Ruby et al. Discloses oxygen (O 2) and hexafluoride as etching gases.
2  2
ゥ(SF )を用いたドライエッチング法により下部電極端部に傾斜を設けて、テーパー The bottom electrode edge is tapered by dry etching using SF (SF) and tapered.
6 6
角を 60° 以下に制御する方法が開示されている。同公報によれば、テーパー角を 6 0° 以下に制御することで、その上に堆積 *成長させる A1N薄膜のエッジ(下部電極 端部)近傍におけるボイド及び不連続境界の発生を抑制できることが記載されて 、る 。し力しながら、同公報においては、 A1N薄膜中のボイド及び不連続境界の低減の 効果として、絶縁而力(Dielectric breakdown strength)、而ォ電力特性(Power handling capacity)および静電: ¾放亀、 Electrostatic discharge (ESD) )の 改善効果が挙げられて 、るに過ぎな、、。  A method for controlling the angle to 60 ° or less is disclosed. According to the publication, by controlling the taper angle to 60 ° or less, it is possible to suppress the generation of voids and discontinuous boundaries in the vicinity of the edge (lower electrode end) of the A1N thin film deposited and grown on the taper angle. Have been. However, in this publication, the effect of reducing voids and discontinuous boundaries in the A1N thin film is as follows: Dielectric breakdown strength, Power handling capacity, and electrostatic: The improvement effect of Electrostatic discharge (ESD)) is just mentioned.
[0017] 同様に、 Ginsburgらによる特許文献 6にも、ドライエッチング法により下部電極端部 に傾斜を設けて、テーパー角を 30° 以下に制御する方法が開示されている。同公 報によれば、テーパー角を 30° 以下に制御することで、その上に堆積'成長させる A IN薄膜のエッジ近傍におけるクラックの発生を抑制できることが記載されて 、る。しか しながら、同公報においても、 A1N薄膜中のクラック低減の効果として、圧電薄膜共 振子となるダイの製造歩留りが 15〜80%改善されることが報告されているのみであ る。 [0017] Similarly, Patent Document 6 by Ginsburg et al. Discloses a method in which a taper angle is controlled to 30 ° or less by providing an inclination at the end of the lower electrode by a dry etching method. According to the same report, it is described that by controlling the taper angle to 30 ° or less, the generation of cracks in the vicinity of the edge of the AIN thin film deposited and grown thereon can be suppressed. However, this publication only reports that the production yield of a die that becomes a piezoelectric thin film resonator is improved by 15 to 80% as an effect of reducing cracks in the A1N thin film.
[0018] 以上の公知文献等から明らかなように、圧電薄膜共振子の製造においては、下部 電極の外周部に緩やかな傾斜を設けて、圧電薄膜の分離成長によるクレータ状の欠 陥の発生を防止することが重要である。  As is apparent from the above-mentioned known literatures and the like, in the manufacture of a piezoelectric thin film resonator, a gentle slope is provided on the outer peripheral portion of the lower electrode, and crater-like defects are generated due to the separate growth of the piezoelectric thin film. It is important to prevent.
[0019] 図 2A〜2Cに示した圧電薄膜共振子において、下部電極外周部の断面形状を変 更し緩やかな傾斜を設けて、 A1N薄膜成長に際して電極外周部のエッジカゝら発生す るクレータ状の分離成長を防止した例を、図 3に示す。下部電極 15の外周部におけ る上面の下面に対する傾斜角 Θを 30° 以下にすることによって、クレータ状の分離 成長が防止される。なお、図 2A〜2Cおよび図 3のそれぞれに示した圧電薄膜共振 子においては、上部電極端部の傾斜角はほぼ 90° に近ぐしかも上部電極外周部 は振動空間 20の上にあるメンブラン 21の外周縁を超えて外側に広がっており、絶縁 体層 13を介して厚 、基板 11により支えられた位置にある。 [0019] In the piezoelectric thin film resonator shown in Figs. 2A to 2C, the cross-sectional shape of the outer periphery of the lower electrode is changed to provide a gentle slope, and a crater shape is generated from the edge edge of the outer periphery of the electrode during A1N thin film growth. Figure 3 shows an example of preventing separate growth. By making the inclination angle Θ with respect to the lower surface of the upper surface at the outer peripheral portion of the lower electrode 15 to be 30 ° or less, crater-like separated growth is prevented. In the piezoelectric thin film resonators shown in FIGS. 2A to 2C and FIG. 3, the inclination angle of the upper electrode end is close to 90 °, and the outer periphery of the upper electrode is a membrane 21 above the vibration space 20. Extends beyond the outer perimeter of the insulation Thickness is supported by the substrate 11 through the body layer 13.
[0020] 特許文献 1:特開昭 60— 142607号公報 [0020] Patent Document 1: JP-A-60-142607
特許文献 2 :特開 2000— 69594号公報  Patent Document 2: JP 2000-69594 A
特許文献 3 :特開平 6— 295181号公報  Patent Document 3: JP-A-6-295181
特許文献 4:特開 2005— 236337号公報  Patent Document 4: Japanese Patent Laid-Open No. 2005-236337
特許文献 5 :米国特許出願公開 20030141946号公報  Patent Document 5: US Patent Application Publication No. 20030141946
特許文献 6:米国特許出願公開 20040263287号公報  Patent Document 6: US Patent Application Publication No. 20040263287
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0021] これまで、 A1N薄膜を FBAR、 SMRまたは SBARに適用するために、種々の検討 が行われてきた。し力しながら、未だ、ギガへルツ帯域で十分な性能を発揮する圧電 薄膜共振器および圧電薄膜フィルタは得られておらず、共振器の音響的品質係数( Q値)および挿入損失の改善が望まれている。音響的品質係数 (Q値)の改善には、 高配向性で均質な A1N薄膜を形成する必要がある。このため、基板上に形成される 下部電極の外周部に緩やかな傾斜を設けて、 A1N薄膜の成長におけるクレータ状の 分離成長を防止する方法が採用されてきた。  [0021] So far, various studies have been conducted to apply the A1N thin film to FBAR, SMR, or SBAR. However, a piezoelectric thin film resonator and a piezoelectric thin film filter that still exhibit sufficient performance in the gigahertz band have not been obtained, and the acoustic quality factor (Q value) and insertion loss of the resonator have been improved. It is desired. To improve the acoustic quality factor (Q value), it is necessary to form a highly oriented and homogeneous A1N thin film. For this reason, a method has been adopted in which a gentle slope is provided on the outer periphery of the lower electrode formed on the substrate to prevent crater-like separation growth during the growth of the A1N thin film.
[0022] し力しながら、下部電極外周部に傾斜を設けるということは、共振子の中央部と外 周部とで弾性波の振動状態が微妙に異なってくるということを意味する。その結果、 下部電極外周部の傾斜が過度に緩やかなものになると、傾斜部の水平距離が長くな り過ぎて、圧電薄膜共振子の音響品質係数 (Q値)が著しく低下するという問題がある 。また、インピーダンス特性における共振ピーク付近に数多くのノイズが発生するよう になる。このように、圧電特性に種々の影響を生ずるので好ましくない。また、上部電 極外周部の傾斜についても、同様の影響が認められる。  [0022] The provision of an inclination in the outer peripheral portion of the lower electrode while applying a force means that the vibration state of the elastic wave is slightly different between the central portion and the outer peripheral portion of the resonator. As a result, if the slope of the outer periphery of the lower electrode becomes excessively gentle, the horizontal distance of the slope becomes too long, and the acoustic quality factor (Q value) of the piezoelectric thin film resonator is significantly reduced. . In addition, many noises are generated near the resonance peak in the impedance characteristics. As described above, various effects are caused on the piezoelectric characteristics, which is not preferable. The same effect is observed for the slope of the outer periphery of the upper electrode.
[0023] そこで、本発明は、下部電極または上部電極の外周部に傾斜を設けることに付随 する以上のような特性面の問題点を解決することによって、 A1N薄膜の特長を活かし つつ、電気機械結合係数が大きぐ音響的品質係数 (Q値)に優れ、挿入損失などの 特性面で従来に比べて著しく高性能な圧電薄膜共振子、及びそれを用いた圧電薄 膜デバイスを提供することを目的とする。 課題を解決するための手段 [0023] Therefore, the present invention solves the above-mentioned characteristic problems associated with the provision of a slope on the outer periphery of the lower electrode or the upper electrode, thereby taking advantage of the features of the A1N thin film, To provide a piezoelectric thin film resonator with excellent acoustic quality factor (Q value) with a large coupling coefficient, and extremely high performance compared to the past in terms of characteristics such as insertion loss, and a piezoelectric thin film device using the same. Objective. Means for solving the problem
[0024] 本発明者らは、 FBAR、 SMRまたは SBARの共振特性に大きく影響を与える窒化 アルミニウム薄膜の性状が、下部電極または上部電極の外周部の形状や材質によつ てどのように影響を受けるかについて鋭意検討を行った。その結果、下部電極または 上部電極の外周部に隣接して、前記下部電極または上部電極とは異なる材質のサ イドスぺーサーを設け、該サイドスぺーサ一と前記下部電極または上部電極の外周 部との界面における段差を 25nm未満とすることで、下部電極及び上部電極の間に 形成される窒化アルミニウム薄膜をクレータ状の分離成長の無い高結晶性でロッキン グ.カーブ半値幅 (FWHM) 2. 0°以下の高配向性の c軸配向窒化アルミニウム薄膜 とすることができ、下部電極または上部電極の外周部の傾斜に起因する圧電特性へ の悪影響を解消できることを突き止めた。さらに、下部電極または上部電極を構成す る金属薄膜を特定の材質、構造および結晶相となるように調製することによって、ロッ キング ·カーブ半値幅(FWHM)が 0. 8〜1. 6°の、さらに配向性及び結晶性に優れ た c軸配向窒化アルミニウム薄膜が得られることを見出した。そして、このような高配向 性及び高結晶性の c軸配向窒化アルミニウム薄膜を使用することにより、電気機械結 合係数が大きぐ音響的品質係数 (Q値)が大きぐ低損失で、高性能な FBAR、 SM Rまたは SBARを実現できることを見出し、本発明に到達した。  [0024] The present inventors have determined how the properties of the aluminum nitride thin film, which greatly affects the resonance characteristics of FBAR, SMR, or SBAR, are affected by the shape and material of the outer periphery of the lower electrode or the upper electrode. We studied earnestly about whether to receive. As a result, a side spacer made of a material different from that of the lower electrode or the upper electrode is provided adjacent to the outer peripheral portion of the lower electrode or the upper electrode, and the side spacer and the outer peripheral portion of the lower electrode or the upper electrode are provided. The aluminum nitride thin film formed between the lower electrode and the upper electrode can be locked with high crystallinity without crater-like separation growth, and the half width of the curve (FWHM) 2.0. It was found that a highly oriented c-axis oriented aluminum nitride thin film of less than 0 ° could be obtained, and the adverse effects on the piezoelectric characteristics due to the inclination of the outer periphery of the lower electrode or the upper electrode could be eliminated. Furthermore, by preparing the metal thin film that constitutes the lower electrode or the upper electrode so as to have a specific material, structure, and crystal phase, the rocking curve half-width (FWHM) is 0.8 to 1.6 °. Further, it was found that a c-axis oriented aluminum nitride thin film having excellent orientation and crystallinity can be obtained. By using such highly oriented and highly crystalline c-axis oriented aluminum nitride thin film, the acoustic quality factor (Q value) is large, the electromechanical coupling coefficient is large, the loss is low, and the performance is high. As a result, the present inventors have found that FBAR, SMR or SBAR can be realized.
[0025] 本発明によれば、上記の目的を達成するものとして、  [0025] According to the present invention, to achieve the above-described object,
振動空間または音響反射層を有する基板と、前記振動空間または音響反射層に 面するように配置された圧電積層構造体とを含んでなり、該圧電積層構造体は振動 空間または音響反射層に近 、側力 順に配置された下部電極、圧電薄膜および上 部電極を少なくとも有する圧電薄膜共振子であって、  A substrate having a vibration space or an acoustic reflection layer; and a piezoelectric multilayer structure disposed so as to face the vibration space or the acoustic reflection layer, the piezoelectric multilayer structure being close to the vibration space or the acoustic reflection layer. A piezoelectric thin film resonator having at least a lower electrode, a piezoelectric thin film and an upper electrode arranged in order of lateral force,
前記下部電極および上部電極のうちの少なくとも一方の電極の外周部の周囲に該 電極とは材質の異なるサイドスぺーサ一が配置されており、該サイドスぺーサ一と前 記電極との界面における段差は 25nm未満であることを特徴とする圧電薄膜共振子 が提供される。  A side spacer having a different material from that of the electrode is disposed around an outer peripheral portion of at least one of the lower electrode and the upper electrode, and a step at an interface between the side spacer and the electrode. A piezoelectric thin film resonator is provided, characterized in that is less than 25 nm.
[0026] 本発明の一態様においては、前記圧電薄膜は窒化アルミニウム (A1N)からなる。 本発明の一態様においては、前記窒化アルミニウム力もなる圧電薄膜の(0002)回 折ピークのロッキング 'カーブ半値幅(FWHM)が 0. 8〜1. 6°である。 In one embodiment of the present invention, the piezoelectric thin film is made of aluminum nitride (A1N). In one aspect of the present invention, the piezoelectric thin film having the aluminum nitride force also has a (0002) diffraction peak rocking 'curve half width (FWHM) of 0.8 to 1.6 °.
[0027] 本発明の一態様においては、前記サイドスぺーサ一と前記電極との界面における 段差は 3nm未満である。本発明の一態様においては、前記サイドスぺーサ一は上面 が下面に対してスロープ状に形成されている。本発明の一態様においては、前記サ イドスぺーサ一は前記下面に対する上面の傾斜角が 3〜45度である。本発明の一態 様にぉ 、ては、前記サイドスぺーサ一の音響インピーダンスは前記電極の音響イン ピーダンスよりも大きい。  [0027] In one embodiment of the present invention, the step at the interface between the side spacer and the electrode is less than 3 nm. In one aspect of the present invention, the side spacer 1 has an upper surface formed in a slope shape with respect to the lower surface. In one aspect of the present invention, the side spacer has an upper surface tilt angle of 3 to 45 degrees with respect to the lower surface. According to one aspect of the present invention, the acoustic impedance of the side spacer is larger than the acoustic impedance of the electrode.
[0028] 本発明の一態様においては、前記サイドスぺーサ一は絶縁体力もなる。本発明の 一態様においては、前記サイドスぺーサ一は、二酸化ケイ素 ば) )、窒化ケィ素(Si  [0028] In one aspect of the present invention, the side spacer 1 also has an insulator strength. In one embodiment of the present invention, the side spacer is made of silicon dioxide)), silicon nitride (Si
2  2
N )、酸窒化ケィ素(Si ON )、窒化アルミニウム(A1N)、酸窒化アルミニウム (AIO  N), silicon oxynitride (Si ON), aluminum nitride (A1N), aluminum oxynitride (AIO
2 2  twenty two
N )、酸化アルミニウム(Al O )、酸化ジルコニウム(ZrO )および酸化タンタル (Ta y 2 3 2 2 o )力 なる群力 選ばれる少なくとも一種の材質を主成分とする絶縁体力 なる。  N), aluminum oxide (Al 2 O 3), zirconium oxide (ZrO 2), and tantalum oxide (Ta y 2 3 2 2 0) force group power It is an insulator power mainly composed of at least one selected material.
5  Five
[0029] 本発明の一態様においては、前記サイドスぺーサ一は導電体力もなる。本発明の 一態様においては、前記サイドスぺーサ一は、タングステン (W)、タングステンシリサ イド (WSi )およびイリジウム (Ir)力もなる群力も選ばれる少なくとも一種の材質を主 成分とする導電体からなる。  In one embodiment of the present invention, the side spacer 1 also has a conductor force. In one aspect of the present invention, the side spacer is made of a conductor whose main component is at least one material selected from a group force including tungsten (W), tungsten silicide (WSi), and iridium (Ir) forces. .
[0030] 本発明の一態様においては、前記上部電極および下部電極の少なくとも一方はモ リブデンカもなる。本発明の一態様においては、前記上部電極および下部電極の少 なくとも一方は、モリブデン、ルテニウム、アルミニウム、イリジウム、コバルト、ニッケル 、白金および銅カゝらなる群カゝら選ばれる 2種類の金属の積層体で構成されている。  [0030] In one embodiment of the present invention, at least one of the upper electrode and the lower electrode is also a molybdenum denka. In one embodiment of the present invention, at least one of the upper electrode and the lower electrode is one selected from the group consisting of molybdenum, ruthenium, aluminum, iridium, cobalt, nickel, platinum, and copper metal. It is comprised by the laminated body of.
[0031] 本発明の一態様においては、前記下部電極は厚さ dlの下側金属層と厚さ d2の上 側金属層との積層体であり、 dlZd2> lであり且つ 150nm< (dl + d2) <450nm である。本発明の一態様においては、前記上部電極は厚さ d3の下側金属層と厚さ d 4の上側金属層との積層体であり、 d4Zd3 > lであり且つ 150nm< (d3 + d4) <45 Onmである。  In one embodiment of the present invention, the lower electrode is a laminate of a lower metal layer having a thickness dl and an upper metal layer having a thickness d2, and dlZd2> l and 150 nm <(dl + d2) <450 nm. In one embodiment of the present invention, the upper electrode is a laminate of a lower metal layer having a thickness of d3 and an upper metal layer having a thickness of d4, d4Zd3> l and 150 nm <(d3 + d4) < 45 Onm.
[0032] 本発明の一態様においては、前記圧電積層構造体の厚み方向に見て、前記下部 電極と上部電極とが互いに重なる領域として定義される振動領域は前記振動空間ま たは音響反射層の外周縁より内側に位置する。本発明の一態様においては、前記 圧電積層構造体の厚み方向に見た前記振動領域の端部と前記振動空間または音 響反射層の外周縁との間の距離 w、および前記振動領域での圧電積層構造体の厚 みと絶縁層の厚みとの合計 t力 関係式 0< wZt≤ 2を満たす。 [0032] In one aspect of the present invention, the vibration region defined as a region where the lower electrode and the upper electrode overlap each other when viewed in the thickness direction of the piezoelectric multilayer structure is the vibration space. Or it is located inside the outer periphery of the acoustic reflection layer. In one aspect of the present invention, the distance w between the end of the vibration region and the outer periphery of the vibration space or the sound reflection layer, as viewed in the thickness direction of the piezoelectric multilayer structure, and the vibration region Total t force between the thickness of the piezoelectric laminated structure and the thickness of the insulating layer. The relational expression 0 <wZt≤2 is satisfied.
[0033] 本発明の一態様においては、前記圧電積層構造体の上面または下面に絶縁層が 付されている。本発明の一態様においては、前記絶縁層は前記下部電極の下面に 接して形成されている。本発明の一態様においては、前記絶縁層は前記上部電極 の上面に接して形成されている。本発明の一態様においては、前記絶縁層は、窒化 アルミニウム (A1N)、酸窒化アルミニウム (AIO N )、酸化アルミニウム(Al O )、窒 In one aspect of the present invention, an insulating layer is attached to the upper surface or the lower surface of the piezoelectric multilayer structure. In one aspect of the present invention, the insulating layer is formed in contact with the lower surface of the lower electrode. In one aspect of the present invention, the insulating layer is formed in contact with the upper surface of the upper electrode. In one embodiment of the present invention, the insulating layer includes aluminum nitride (A1N), aluminum oxynitride (AIO N), aluminum oxide (Al 2 O 3), nitrogen nitride.
2 3 化ケィ素(SiN )、酸窒化ケィ素(Si ON )、酸ィ匕ジルコニウム (ZrO )および酸化タ  2 3 Silicon (SiN), Oxynitride (Si ON), Zirconium Oxide (ZrO) and Titanium Oxide
2 2 2  2 2 2
ンタル (Ta O )からなる群力 選ばれる少なくとも一種の材質を主成分とするもので  Group power consisting of Ta (O), which is composed mainly of at least one selected material.
2 5  twenty five
ある。  is there.
[0034] 本発明の一態様においては、前記下部電極の下面に接して形成される下部絶縁 層の厚さ d5力 S25〜300nmである。本発明の一態様においては、前記上部電極の 上面に接して形成される上部絶縁層の厚さ d6が 40〜600nmである。本発明の一態 様においては、状部絶縁層の厚さ d6と下部絶縁体層の厚さ d5との比率 d6Zd5が関 係式 1≤ d6/d5 < 4を満たす。  In one embodiment of the present invention, the thickness of the lower insulating layer formed in contact with the lower surface of the lower electrode is d5 force S25 to 300 nm. In one embodiment of the present invention, the thickness d6 of the upper insulating layer formed in contact with the upper surface of the upper electrode is 40 to 600 nm. In one embodiment of the present invention, the ratio d6Zd5 between the thickness d6 of the insulating portion and the thickness d5 of the lower insulating layer satisfies the relation 1≤d6 / d5 <4.
[0035] さらに本発明の一態様においては、前記圧電薄膜共振子は、インピーダンス曲線 における反共振ピークの音響品質係数 (Q値)が 1000以上である。  Furthermore, in an aspect of the present invention, the piezoelectric thin film resonator has an acoustic quality factor (Q value) of an anti-resonance peak in an impedance curve of 1000 or more.
[0036] また、本発明によれば、上記の圧電薄膜共振子を複数個組み合せて構成される圧 電薄膜デバイスが提供される。前記圧電薄膜共振子は、積層型圧電薄膜共振子も 含む。圧電薄膜デバイスとしては、以上のような圧電薄膜共振子や積層型圧電薄膜 共振子を用いて構成される VCO (電圧制御発振器)、フィルタおよび送受切替器な どが挙げられるがこれに限定されるものではな 、。このような圧電薄膜デバイスでは、 1GHz以上の高 、周波数での特性を著しく向上させることができる。  [0036] Further, according to the present invention, there is provided a piezoelectric thin film device configured by combining a plurality of the above-described piezoelectric thin film resonators. The piezoelectric thin film resonator includes a stacked piezoelectric thin film resonator. Examples of the piezoelectric thin film device include, but are not limited to, a VCO (voltage controlled oscillator), a filter, and a transmission / reception switch configured using the piezoelectric thin film resonator and the laminated piezoelectric thin film resonator as described above. It ’s not something. In such a piezoelectric thin film device, the characteristics at a high frequency of 1 GHz or more can be remarkably improved.
[0037] 更に、本発明によれば、上記の目的を達成するものとして、  [0037] Further, according to the present invention, the above-mentioned object is achieved as follows:
上記の圧電薄膜共振子を製造する方法であって、  A method of manufacturing the above piezoelectric thin film resonator,
基板上に下部絶縁層を形成する第 1の工程と、 前記下部絶縁層上に前記下部電極を形成する第 2の工程と、 A first step of forming a lower insulating layer on the substrate; A second step of forming the lower electrode on the lower insulating layer;
前記下部電極および下部絶縁層の露出面に前記下部電極とは材質の異なる絶縁 体または導電体を堆積させた後、エッチバックにより前記下部電極の上面を露出させ 、前記下部電極の外周部の周囲に下部電極用の前記サイドスぺーサ一を形成する 第 3の工程と、  After an insulator or conductor having a different material from that of the lower electrode is deposited on the exposed surfaces of the lower electrode and the lower insulating layer, the upper surface of the lower electrode is exposed by etch back, and the periphery of the outer periphery of the lower electrode Forming a side spacer for the lower electrode in a third step;
前記下部電極、下部電極用サイドスぺーサ一および下部絶縁層の露出面に圧電 材料層を形成する第 4の工程と、  A fourth step of forming a piezoelectric material layer on the exposed surfaces of the lower electrode, the lower electrode side spacer and the lower insulating layer;
前記圧電材料層上に前記上部電極を形成する第 5の工程と、  A fifth step of forming the upper electrode on the piezoelectric material layer;
前記圧電材料層をパターユングして前記圧電薄膜を形成する第 6の工程と、 前記圧電薄膜および上部電極上に上部絶縁層を形成する第 7の工程とを有するこ とを特徴とする、圧電薄膜共振子の製造方法、  A piezoelectric process comprising: a sixth step of forming the piezoelectric thin film by patterning the piezoelectric material layer; and a seventh step of forming an upper insulating layer on the piezoelectric thin film and the upper electrode. Manufacturing method of thin film resonator,
が提供される。  Is provided.
[0038] 本発明の一態様においては、前記第 5の工程と第 6の工程との間に、前記上部電 極および圧電材料層の露出面に前記上部電極とは材質の異なる絶縁体または導電 体を堆積させた後、エッチバックにより前記上部電極の上面を露出させ、前記上部電 極の外周部の周囲に上部電極用の前記サイドスぺーサ一を形成する工程を介在さ せる。  [0038] In one embodiment of the present invention, an insulator or a conductive material having a material different from that of the upper electrode is formed on the exposed surfaces of the upper electrode and the piezoelectric material layer between the fifth step and the sixth step. After the body is deposited, the upper surface of the upper electrode is exposed by etch back, and the step of forming the side spacer for the upper electrode is provided around the outer periphery of the upper electrode.
[0039] 更にまた、本発明によれば、上記の目的を達成するものとして、  [0039] Furthermore, according to the present invention, the above-mentioned object is achieved as follows:
上記の圧電薄膜共振子を製造する方法であって、  A method of manufacturing the above piezoelectric thin film resonator,
基板上に下部絶縁層を形成する第 1の工程と、  A first step of forming a lower insulating layer on the substrate;
前記下部絶縁層上に前記下部電極をその端部がスロープ状となるように形成する 第 2の工程と、  A second step of forming the lower electrode on the lower insulating layer so that the end thereof has a slope shape;
前記下部電極および下部絶縁層の露出面に圧電材料層を形成する第 3の工程と、 前記圧電材料層上に前記上部電極を形成する第 4の工程と、  A third step of forming a piezoelectric material layer on the exposed surfaces of the lower electrode and the lower insulating layer; a fourth step of forming the upper electrode on the piezoelectric material layer;
前記圧電材料層をパターユングして前記圧電薄膜を形成する第 5の工程と、 前記上部電極および圧電薄膜の露出面に前記上部電極とは材質の異なる絶縁体 または導電体を堆積させた後、エッチバックにより前記上部電極の上面を露出させ、 前記上部電極の外周部の周囲に上部電極用の前記サイドスぺーサ一を形成する第 6の工程と、 A fifth step of patterning the piezoelectric material layer to form the piezoelectric thin film; and depositing an insulator or conductor having a different material from the upper electrode on the exposed surfaces of the upper electrode and the piezoelectric thin film; The upper surface of the upper electrode is exposed by etch back, and the side spacer for the upper electrode is formed around the outer periphery of the upper electrode. 6 processes,
前記圧電薄膜および上部電極上に上部絶縁層を形成する第 7の工程とを有するこ とを特徴とする、圧電薄膜共振子の製造方法、  A method of manufacturing a piezoelectric thin film resonator, comprising: a seventh step of forming an upper insulating layer on the piezoelectric thin film and the upper electrode;
が提供される。  Is provided.
発明の効果  The invention's effect
[0040] 基板上に配置された下部電極、圧電薄膜および上部電極を少なくとも有する圧電 薄膜共振子において、前記下部電極および上部電極のうちの少なくとも一方の電極 の外周に該電極とは異なる材質のサイドスぺーサ一を設け、該サイドスぺーサ一と電 極との界面の段差が 25nm未満となるようにカ卩ェ方法を制御して作製された上下部 電極の間に窒化アルミニウム薄膜を形成することにより、クレータ状の分離成長の無 い高配向性、高結晶性の c軸配向窒化アルミニウム薄膜が得られる。さらに、該電極 を構成する金属薄膜を特定の材質、構造または結晶相となるように調製することによ つて、(0002)回折ピークのロッキング.カーブ半値幅(FWHM)が 2. 0°以下、好ま しくは 0. 8〜1. 6° である高配向性、高結晶性の c軸配向窒化アルミニウム薄膜を形 成できる。  [0040] In a piezoelectric thin film resonator having at least a lower electrode, a piezoelectric thin film, and an upper electrode disposed on a substrate, a side surface made of a material different from that of the lower electrode and the upper electrode is formed on the outer periphery of at least one of the lower electrode and the upper electrode. A spacer is provided, and an aluminum nitride thin film is formed between the upper and lower electrodes produced by controlling the caking method so that the step at the interface between the side spacer and the electrode is less than 25 nm. As a result, a highly oriented and highly crystalline c-axis oriented aluminum nitride thin film with no crater separation and growth can be obtained. Furthermore, by preparing the metal thin film constituting the electrode to have a specific material, structure or crystal phase, the rocking curve half-width (FWHM) of the (0002) diffraction peak is 2.0 ° or less, Preferably, a highly oriented and highly crystalline c-axis oriented aluminum nitride thin film of 0.8 to 1.6 ° can be formed.
[0041] ここで、前記のサイドスぺーサ一は電極外周部の側壁に接して、該電極の周囲に 形成されるものである。  Here, the side spacer is formed around the electrode in contact with the side wall of the outer periphery of the electrode.
[0042] 前記のサイドスぺーサ一を設けることにより、従来の圧電薄膜共振子で問題となつ ていた下部電極また上部電極端部の傾斜に起因する圧電特性への悪影響を解消で き、更に電気機械結合係数 k 2と音響品質係数 (Q値)に優れた高性能かつ高信頼性 の圧電薄膜共振子が提供できる。したがって、それを用いて構成される VCO (電圧 制御発振器)、フィルタおよび送受切替器等の圧電薄膜デバイスにおいて 1GHz以 上の高 、周波数での特性を著しく向上させることができる。 [0042] By providing the side spacer, the adverse effect on the piezoelectric characteristics caused by the inclination of the lower electrode or the upper electrode end, which has been a problem with conventional piezoelectric thin film resonators, can be eliminated. coupling coefficient k 2 and the piezoelectric thin-film resonator of excellent performance and high reliability in the acoustic quality factor (Q value) can be provided. Therefore, the piezoelectric thin film devices such as VCO (Voltage Controlled Oscillator), filter, and duplexer configured using the same can remarkably improve the characteristics at a frequency higher than 1 GHz.
図面の簡単な説明  Brief Description of Drawings
[0043] [図 1A]圧電薄膜共振子の一例を示す模式的平面図である。  FIG. 1A is a schematic plan view showing an example of a piezoelectric thin film resonator.
[図 1B]図 1Aの X— X断面図である。  1B is a cross-sectional view taken along the line XX in FIG. 1A.
[図 1C]図 1Bにおける点線で囲った部分の拡大図である。  FIG. 1C is an enlarged view of a portion surrounded by a dotted line in FIG. 1B.
[図 2A]圧電薄膜共振子の一例を示す模式的平面図である。 [図 2B]図 2Aの X— X断面図である。 FIG. 2A is a schematic plan view showing an example of a piezoelectric thin film resonator. 2B is a cross-sectional view taken along the line XX in FIG. 2A.
[図 2C]図 2Aの Y— Y断面図である。 FIG. 2C is a Y-Y sectional view of FIG. 2A.
[図 3]図 2A〜2Cの圧電薄膜共振子において、下部電極外周部の断面形状を変更 し緩やかな傾斜を設けた例を示す断面図である。  FIG. 3 is a cross-sectional view showing an example in which a gentle slope is provided by changing the cross-sectional shape of the outer periphery of the lower electrode in the piezoelectric thin film resonator of FIGS. 2A to 2C.
[図 4A]本発明による圧電薄膜共振子の実施形態を示す模式的平面図である。  FIG. 4A is a schematic plan view showing an embodiment of a piezoelectric thin film resonator according to the present invention.
[図 4B]図 4Aの X— X断面図である。  4B is a cross-sectional view taken along the line XX in FIG. 4A.
[図 4C]図 4Bにおける点線で囲った部分の拡大図である。  FIG. 4C is an enlarged view of a portion surrounded by a dotted line in FIG. 4B.
[図 5A]下部電極の側壁の周囲にサイドスぺーサ一を形成する工程を説明するため の模式的断面図である。  FIG. 5A is a schematic cross-sectional view for explaining a step of forming a side spacer around the side wall of the lower electrode.
[図 5B]下部電極の側壁の周囲にサイドスぺーサ一を形成する工程を説明するための 模式的断面図である。  FIG. 5B is a schematic cross-sectional view for explaining a step of forming a side spacer around the side wall of the lower electrode.
[図 6A]下部電極の側壁の周囲にサイドスぺーサ一を形成する工程を説明するため の模式的断面図である。  FIG. 6A is a schematic cross-sectional view for explaining a step of forming a side spacer around the side wall of the lower electrode.
[図 6B]下部電極の側壁の周囲にサイドスぺーサ一を形成する工程を説明するための 模式的断面図である。  FIG. 6B is a schematic cross-sectional view for explaining a step of forming a side spacer around the side wall of the lower electrode.
[図 7A]本発明による圧電薄膜共振子の実施形態を示す模式的平面図である。  FIG. 7A is a schematic plan view showing an embodiment of a piezoelectric thin film resonator according to the present invention.
[図 7B]図 7Aの X— X断面図である。  FIG. 7B is a cross-sectional view taken along the line XX in FIG. 7A.
[図 7C]図 7Aの Y— Y断面図である。  FIG. 7C is a sectional view taken along the line Y—Y in FIG. 7A.
[図 7D]図 7Cにおける点線で囲った部分の拡大図である。  FIG. 7D is an enlarged view of a portion surrounded by a dotted line in FIG. 7C.
[図 8A]本発明による積層型圧電薄膜共振子の実施形態を示す模式的平面図である [図 8B]図 8Aの X— X断面図である。  FIG. 8A is a schematic plan view showing an embodiment of a multilayer piezoelectric thin film resonator according to the present invention. FIG. 8B is an XX cross-sectional view of FIG. 8A.
[図 9]本発明の圧電薄膜デバイスの一実施形態としての薄膜圧電フィルタの模式的 平面図である。  FIG. 9 is a schematic plan view of a thin film piezoelectric filter as an embodiment of the piezoelectric thin film device of the present invention.
符号の説明 Explanation of symbols
10 圧電薄膜共振子 10 Piezoelectric thin film resonator
11 単結晶または多結晶からなる基板  11 Substrate made of single crystal or polycrystal
12 基板絶縁層 13 下部絶縁体層(下部絶縁層) 12 Board insulation layer 13 Lower insulator layer (lower insulator layer)
14 圧電積層構造体  14 Piezoelectric laminated structure
15 下部電極  15 Bottom electrode
15a 下部電極主体部  15a Lower electrode body
15b 下部電極端子部  15b Lower electrode terminal
16, 16- 1, 16- 2 圧電体薄膜 (圧電薄膜)  16, 16- 1, 16- 2 Piezoelectric thin film (piezoelectric thin film)
17 上部電極  17 Upper electrode
17a 上部電極主体部  17a Upper electrode body
17b 上部電極端子部  17b Upper electrode terminal
17' 内部電極  17 'internal electrode
18 積層型圧電薄膜共振子における上部電極  18 Upper electrode in multilayer piezoelectric thin film resonator
18a 積層型圧電薄膜共振子における上部電極の主体部  18a Main part of upper electrode in multilayer piezoelectric thin film resonator
18b 積層型圧電薄膜共振子における上部電極の端子部  18b Terminal part of the upper electrode in the stacked piezoelectric thin film resonator
19 エッチング用のビアホーノレ  19 Via Honoré for etching
20 エッチングによって基板に形成した振動空間  20 Vibration space formed on the substrate by etching
21 振動空間上方に位置するメンブラン  21 Membrane located above the vibration space
23 上部絶縁体層(上部絶縁層)  23 Upper insulator layer (upper insulating layer)
25 サイドスぺーサ一形成のために堆積された薄膜  25 Thin films deposited to form side spacers
26 電極外周部に隣接して形成されたサイドスぺーサ一  26 Side spacer formed adjacent to the outer periphery of the electrode
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0045] 以下に、本発明の実施の形態について詳細に説明する。 [0045] Hereinafter, embodiments of the present invention will be described in detail.
[0046] 図 4Aは本発明による圧電薄膜共振子の実施形態を示す模式的平面図であり、図 4Bはその X— X断面図である。図 4Cは図 4Bにおける点線で囲った部分の拡大図で ある。これらの図において、圧電薄膜共振子 10は、基板 11、該基板 11の上面上に 形成された絶縁層 12、下部絶縁層 13、および絶縁層 12の一部を除去して形成した 空洞からなる振動空間 20を跨ぐよう形成された圧電積層構造体 14を有する。なお、 基板 11と絶縁層 12とからなる部材により本発明でいう基板が構成されるものと見な すことができる。この意味で、絶縁層 12を基板絶縁層という。力べして、本発明でいう 基板に、振動空間 20が形成されている。圧電積層構造体 14は、下部絶縁層 13の上 面上に形成された下部電極 15、該下部電極 15の一部を覆うようにして下部絶縁層 1 3の上面上に形成された圧電薄膜 16、および該圧電薄膜 16の上面上に形成された 上部電極 17を含んでなる。下部絶縁層 13の一部は振動空間 20に向けて露出して いる。この下部絶縁層 13の露出部分、およびこれに対応する圧電積層構造体 14の 部分カ ンブラン (振動メンブラン) 21を構成する。尚、以上のように圧電積層構造体 14と振動空間 20との間には下部絶縁層 13が介在するのである力 このような形態を も含めて、圧電積層構造体 14が振動空間 20に面しているものとする。また、下部電 極 15および上部電極 17は、メンブラン 21に対応する領域内に形成された主体部 15 a, 17a,および該主体部 15a, 17aと外部回路との接続のための端子部 15b, 17bを 有する。端子部 15b, 17bはメンブラン 21に対応する領域外に位置する。 FIG. 4A is a schematic plan view showing an embodiment of a piezoelectric thin film resonator according to the present invention, and FIG. 4B is an XX cross-sectional view thereof. FIG. 4C is an enlarged view of a portion surrounded by a dotted line in FIG. 4B. In these drawings, the piezoelectric thin film resonator 10 includes a substrate 11, an insulating layer 12 formed on the upper surface of the substrate 11, a lower insulating layer 13, and a cavity formed by removing a part of the insulating layer 12. The piezoelectric laminated structure 14 is formed so as to straddle the vibration space 20. In addition, it can be considered that the board | substrate said by this invention is comprised by the member which consists of the board | substrate 11 and the insulating layer 12. FIG. In this sense, the insulating layer 12 is referred to as a substrate insulating layer. In the present invention A vibration space 20 is formed on the substrate. The piezoelectric laminated structure 14 includes a lower electrode 15 formed on the upper surface of the lower insulating layer 13, and a piezoelectric thin film 16 formed on the upper surface of the lower insulating layer 13 so as to cover a part of the lower electrode 15. And an upper electrode 17 formed on the upper surface of the piezoelectric thin film 16. A part of the lower insulating layer 13 is exposed toward the vibration space 20. An exposed portion of the lower insulating layer 13 and a partial membrane (vibration membrane) 21 of the piezoelectric multilayer structure 14 corresponding thereto are configured. In addition, as described above, the force that the lower insulating layer 13 is interposed between the piezoelectric multilayer structure 14 and the vibration space 20, including such a form, the piezoelectric multilayer structure 14 faces the vibration space 20. Suppose you are. The lower electrode 15 and the upper electrode 17 are formed of main portions 15a and 17a formed in a region corresponding to the membrane 21, and terminal portions 15b for connecting the main portions 15a and 17a to an external circuit. 17b. The terminal portions 15b and 17b are located outside the region corresponding to the membrane 21.
基板 11としては、 Si (100)単結晶などの単結晶、または Si単結晶などの基材の表 面にシリコン、ダイヤモンドその他の多結晶膜を形成したものを用いることができる。 基板 11としては、その他の半導体さらには絶縁体力もなるものを用いることも可能で ある。基板 11の固有抵抗値は、たとえば 3k Q ' cm以上、好ましくは 5k Q ' cm以上、 さらに好ましくは 7k Ω ' cm以上である。振動空間 20の形成方法としては、前記圧電 積層構造体の各層および下部絶縁層 13を貫通するビアホール 19を開け、ビアホー ル 19からフッ酸水溶液などのエッチング液を注入して、基板絶縁層 12の一部を含む 前記圧電積層構造体の下方領域の一部を湿式エッチングにより除去する方法が挙 げられる。後述するように、基板 11の下面側力もの深堀りエッチング (Deep RIE)に より振動空間を形成しても良い。なお、振動空間は、メンブラン 21の振動を許容する ものであれば、どのような形状の空洞または凹部であってもよい。さらに、以上のよう な振動空間を形成してエアーギャップタイプの圧電薄膜共振子とする代わりに、高音 響インピーダンス材料層と低高音響インピーダンス材料層とを交互に積層することに より音響反射層 (音響的ブラッグ反射鏡)を形成して音響ミラータイプの圧電薄膜共 振子とすることも可能である。シリコン力もなる基板 11を用いる場合には、基板絶縁 層 12としては、基板 11の表面の熱酸化により形成される酸化シリコン膜を使用するこ とがでさる。 [0048] 下部絶縁層 13としては、弾性率の高 、材料力もなるものが好ま 、。下部絶縁層 1 3としては、例えば、窒化ケィ素(SiN )を主成分とする誘電体膜、酸窒化ケィ素(Si As the substrate 11, a single crystal such as Si (100) single crystal or a substrate in which a polycrystalline film such as silicon, diamond or the like is formed on the surface of a base material such as Si single crystal can be used. As the substrate 11, it is possible to use other semiconductors or those having insulating strength. The specific resistance value of the substrate 11 is, for example, 3 kQ′cm or more, preferably 5 kQ′cm or more, and more preferably 7 kΩ′cm or more. As a method of forming the vibration space 20, via holes 19 penetrating each layer of the piezoelectric multilayer structure and the lower insulating layer 13 are opened, and an etching solution such as a hydrofluoric acid aqueous solution is injected from the via holes 19 to form the substrate insulating layer 12. A method of removing a part of the lower region of the piezoelectric multilayer structure including a part by wet etching is included. As will be described later, the vibration space may be formed by deep etching (Deep RIE) of the lower surface side of the substrate 11. The vibration space may be any shape of cavity or recess as long as it allows vibration of the membrane 21. Furthermore, instead of forming the vibration space as described above to form an air gap type piezoelectric thin film resonator, an acoustic reflection layer (by alternately laminating high acoustic impedance material layers and low high acoustic impedance material layers) It is also possible to form an acoustic mirror type piezoelectric thin film resonator by forming an acoustic Bragg reflector. When the substrate 11 having silicon power is used, a silicon oxide film formed by thermal oxidation of the surface of the substrate 11 can be used as the substrate insulating layer 12. [0048] The lower insulating layer 13 preferably has a high elastic modulus and material strength. As the lower insulating layer 13, for example, a dielectric film mainly composed of silicon nitride (SiN), a silicon oxynitride (Si
2 2
ON )を主成分とする誘電体膜、窒化アルミニウム (A1N)を主成分とする誘電体膜、ON) as a main component, dielectric film mainly composed of aluminum nitride (A1N),
2 2
酸窒化アルミニウム (AIO N )を主成分とする誘電体膜、酸ィ匕アルミニウム (Al O ) y 2 3 を主成分とする誘電体膜、酸化ジルコニウム (ZrO )を主成分とする誘電体膜、酸ィ匕  Dielectric film mainly composed of aluminum oxynitride (AIO N), dielectric film mainly composed of aluminum oxide (Al 2 O 3) y 2 3, dielectric film mainly composed of zirconium oxide (ZrO 2), Acid
2  2
タンタル (Ta O )を主成分とする誘電体膜、およびこれらの誘電体膜を重ね合わせ  Dielectric films composed mainly of tantalum (Ta 2 O 3) and these dielectric films are stacked
2 5  twenty five
た積層膜を用いることができる。この下部絶縁層 13の材質について、主成分とは、誘 電体膜中の含有量が 50当量%以上である成分を指す。誘電体膜は単層からなるも のであっても良いし、積層体であっても良い。さらに、密着性を高めるための層などを 付カロした複数層力もなるものであってもよ 、。  A laminated film can be used. Regarding the material of the lower insulating layer 13, the main component refers to a component whose content in the dielectric film is 50 equivalent% or more. The dielectric film may be a single layer or a laminate. Furthermore, it may be a multi-layer force with a layer attached to improve adhesion.
[0049] 下部絶縁層 13を形成する方法としては、スパッタリング法、真空蒸着法および CV D法などが例示される。また、本発明においては、エッチングにより、メンブラン 21に 対応する領域の下部絶縁層 13を総て除去して、下部電極 15が振動空間 20に向け て露出した構造 (すなわちメンブランが下部絶縁層 13を含まな 、構造)の圧電薄膜 共振子も採用することができる。このように、メンブラン 21に対応する領域の絶縁層 1 3を総て除去することにより、共振周波数の温度特性は若干悪ィ匕するものの、電気機 械結合係数が向上するという利点がある。  [0049] Examples of the method of forming the lower insulating layer 13 include a sputtering method, a vacuum deposition method, and a CVD method. In the present invention, the lower insulating layer 13 in the region corresponding to the membrane 21 is entirely removed by etching, and the lower electrode 15 is exposed toward the vibration space 20 (that is, the membrane removes the lower insulating layer 13). A piezoelectric thin film resonator having a structure) may also be employed. Thus, removing all of the insulating layer 13 in the region corresponding to the membrane 21 has an advantage of improving the electromechanical coupling coefficient although the temperature characteristic of the resonance frequency is slightly deteriorated.
[0050] 下部電極 15は、たとえば、モリブデン (Mo)を主成分とする金属薄膜、ルテニウム( Ru)を主成分とする金属薄膜、アルミニウム (A1)を主成分とする金属薄膜、イリジゥ ム (Ir)を主成分とする金属薄膜、コバルト (Co)を主成分とする金属薄膜、ニッケル (I r)を主成分とする金属薄膜、白金 (Pt)を主成分とする金属薄膜、銅 (Cu)を主成分 とする金属薄膜から選ばれる少なくとも 1種類の金属薄膜、及びモリブデンを主成分 とする金属薄膜とルテニウム、アルミニウム、イリジウム、コバルト、ニッケル、白金およ び銅力 なる群力 選ばれる少なくとも 1種類の金属を主成分とする金属薄膜との積 層体からなる。ここで、例えば、モリブデンを主成分とする金属薄膜とは、 90%以上 のモリブデンを含有していることを意味する。下部電極 15は、また、必要に応じて、以 上のような金属薄膜と下部絶縁層 13との間に形成される密着金属層 (密着層)を積 層したものであっても良い。密着金属層以外の下部電極の部分を下部電極主層とい う。下咅電極 15の厚さ ίま、 150〜450mn力好まし!/ヽ。 [0050] The lower electrode 15 includes, for example, a metal thin film mainly composed of molybdenum (Mo), a metal thin film mainly composed of ruthenium (Ru), a metal thin film mainly composed of aluminum (A1), and an iridium (Ir ) Metal thin film, cobalt (Co) metal thin film, nickel (I r) metal thin film, platinum (Pt) metal thin film, copper (Cu) At least one metal thin film selected from metal thin films containing as a main component, a metal thin film containing molybdenum as a main component, and a group force consisting of ruthenium, aluminum, iridium, cobalt, nickel, platinum and copper power at least one selected It consists of a stack of metal thin films composed mainly of various metals. Here, for example, a metal thin film mainly composed of molybdenum means that 90% or more of molybdenum is contained. The lower electrode 15 may be formed by stacking an adhesion metal layer (adhesion layer) formed between the metal thin film and the lower insulating layer 13 as necessary. The part of the lower electrode other than the adhesive metal layer is called the lower electrode main layer. Yeah. Lower electrode 15 Thickness ί, 150-450mn force! / ヽ.
[0051] また、本発明においては、下部電極 15として、厚さ d2の金属薄膜 (第 2金属層:上 側金属層)と厚さ dlの金属薄膜 (第 1金属層:下側金属層)との積層体を用いることが できる。上側金属層または下側金属層としては、モリブデンを主成分とする金属薄膜 や、ルテニウム、アルミニウム、イリジウム、コバルト、ニッケル、白金または銅からなる 群から選ばれる 1種類の金属を主成分とする金属薄膜が例示できる。ここで、下側金 属層と下部絶縁層 13との間に密着層を有している場合には、厚さ dlは密着層の厚 さを含んだ値である。上側金属層の厚さ d2と下側金属層の厚さ dlとの関係として、 d lZd2> lかつ 150nmく (dl + d2)く 450nmとなるような膜厚構成を採用するのが 好ましい。これは、とくに、下側金属層(例えばアルミニウムを主成分とする金属薄膜) と圧電薄膜との間に音響インピーダンスが高くて高配向性の上側金属層(例えばモリ ブデンを主成分とする金属薄膜)を介在させる場合に、好ましい。これにより、得られ る圧電薄膜共振子の電極ロス [挿入損失] (I. L. )や音響品質係数 (Q値)を向上さ せることができる。特に、インピーダンス特性における反共振ピークの音響品質係数( Q値)が改善され、複数の圧電薄膜共振子を組み合わせて作製される圧電薄膜フィ ルタの通過帯域の高域側におけるロール ·オフ特性が向上する。  In the present invention, as the lower electrode 15, a metal thin film having a thickness d2 (second metal layer: upper metal layer) and a metal thin film having a thickness dl (first metal layer: lower metal layer) Can be used. As the upper metal layer or the lower metal layer, a metal thin film mainly composed of molybdenum, or a metal mainly composed of one kind of metal selected from the group consisting of ruthenium, aluminum, iridium, cobalt, nickel, platinum, or copper. A thin film can be exemplified. Here, when an adhesion layer is provided between the lower metal layer and the lower insulating layer 13, the thickness dl is a value including the thickness of the adhesion layer. As the relationship between the thickness d2 of the upper metal layer and the thickness dl of the lower metal layer, it is preferable to adopt a film thickness configuration in which d lZd2> l and 150 nm (dl + d2) and 450 nm. In particular, this is because a highly oriented upper metal layer (for example, a metal thin film mainly composed of molybdenum) having a high acoustic impedance between the lower metal layer (for example, a metal thin film mainly composed of aluminum) and the piezoelectric thin film. ) Is preferable. As a result, the electrode loss [insertion loss] (IL) and acoustic quality factor (Q value) of the obtained piezoelectric thin film resonator can be improved. In particular, the acoustic quality factor (Q value) of the anti-resonance peak in the impedance characteristic has been improved, and the roll-off characteristics on the high band side of the pass band of the piezoelectric thin film filter produced by combining multiple piezoelectric thin film resonators have been improved. To do.
[0052] 圧電薄膜 16は、窒化アルミニウム (A1N)からなるものが好ましぐその厚さは、例え ば 0. 5〜3. O /z mである。 1GHz程度の周波数で使用する場合には膜厚を厚くし、 5 GHz付近の高周波数で使用する場合には膜厚を薄くする。  The piezoelectric thin film 16 is preferably made of aluminum nitride (A1N), and its thickness is, for example, 0.5 to 3. O / z m. When using at a frequency of about 1 GHz, increase the film thickness. When using at a high frequency around 5 GHz, decrease the film thickness.
[0053] 上部電極 17は、下部電極 15と同様に、モリブデンを主成分とする金属薄膜の他に 、ルテニウムを主成分とする金属薄膜、アルミニウムを主成分とする金属薄膜、イリジ ゥムを主成分とする金属薄膜、コバルトを主成分とする金属薄膜、ニッケルを主成分 とする金属薄膜、白金を主成分とする金属薄膜、銅を主成分とする金属薄膜から選 ばれる少なくとも 1種類の金属薄膜、及びモリブデンを主成分とする金属薄膜とルテ ユウム、アルミニウム、イリジウム、コバルト、ニッケル、白金および銅からなる群力 選 ばれる少なくとも 1種類の金属を主成分とする金属薄膜との積層体を用いることがで きる。また、上部電極 17は、必要に応じて、以上のような金属薄膜と圧電薄膜 16との 間に形成される密着金属層 (密着層)を積層したものであっても良い。密着金属層以 外の上部電極の部分を上部電極主層という。上部電極 17の厚さは、 150〜450nm が好ましい。 Similar to the lower electrode 15, the upper electrode 17 mainly includes a metal thin film mainly composed of ruthenium, a metal thin film mainly composed of aluminum, and iridium in addition to a metal thin film mainly composed of molybdenum. At least one metal thin film selected from a metal thin film containing cobalt, a metal thin film containing cobalt as a main component, a metal thin film containing nickel as a main component, a metal thin film containing platinum as a main component, and a metal thin film containing copper as a main component And a laminate of a metal thin film mainly composed of molybdenum and a metal thin film composed mainly of at least one metal selected from the group consisting of ruthenium, aluminum, iridium, cobalt, nickel, platinum and copper. I can do it. Further, the upper electrode 17 may be formed by laminating an adhesion metal layer (adhesion layer) formed between the metal thin film and the piezoelectric thin film 16 as described above. Adhesive metal layer or higher The part of the outer upper electrode is called the upper electrode main layer. The thickness of the upper electrode 17 is preferably 150 to 450 nm.
[0054] また、本発明においては、上部電極 17として、厚さ d3の金属薄膜 (第 3金属層:下 側金属層)と厚さ d4の金属薄膜 (第 4金属層:上側金属層)との積層体を用いることが できる。下側金属層または上側金属層としては、モリブデンを主成分とする金属薄膜 や、ルテニウム、アルミニウム、イリジウム、コバルト、ニッケル、白金または銅からなる 群から選ばれる 1種類の金属を主成分とする金属薄膜が例示できる。ここで、下側金 属層と圧電薄膜 16との間に密着層を有している場合には、厚さ d3は密着層の厚さを 含んだ値である。また、上側金属層に密着層が付されている場合には、厚さ d4は密 着層の厚さを含んだ値である。下側金属層の厚さ d3と上側金属層の厚さ d4との関係 として、 d4Zd3> l力つ 150nmく (d3 + d4)く 450nmとなるような膜厚構成を採用 するのが好ましい。これは、とくに、上側金属層(例えばアルミニウムを主成分とする 金属薄膜)と圧電薄膜との間に音響インピーダンスが高くて高配向性の下側金属層( 例えばモリブデンを主成分とする金属薄膜)を介在させる場合に、好ましい。これによ り、得られる圧電薄膜共振子の電極ロス [挿入損失] (I. L. )や音響品質係数 (Q値) を向上させることができる。特に、インピーダンス特性における反共振ピークの音響品 質係数 (Q値)が改善され、複数の圧電薄膜共振子を組み合わせて作製される圧電 薄膜フィルタの通過帯域の高域側におけるロール ·オフ特性が向上する。  In the present invention, the upper electrode 17 includes a metal thin film having a thickness d3 (third metal layer: lower metal layer) and a metal thin film having a thickness d4 (fourth metal layer: upper metal layer). It is possible to use a laminated body. As the lower metal layer or the upper metal layer, a metal thin film mainly composed of molybdenum, or a metal mainly composed of one kind of metal selected from the group consisting of ruthenium, aluminum, iridium, cobalt, nickel, platinum or copper. A thin film can be exemplified. Here, when an adhesion layer is provided between the lower metal layer and the piezoelectric thin film 16, the thickness d3 is a value including the thickness of the adhesion layer. In addition, when the adhesion layer is attached to the upper metal layer, the thickness d4 is a value including the thickness of the adhesion layer. As the relationship between the thickness d3 of the lower metal layer and the thickness d4 of the upper metal layer, it is preferable to adopt a film thickness configuration in which d4Zd3> l is 150 nm (d3 + d4) and 450 nm. This is particularly because the lower metal layer (for example, a metal thin film mainly composed of molybdenum) having high acoustic impedance and high orientation between the upper metal layer (for example, a metal thin film mainly composed of aluminum) and the piezoelectric thin film. It is preferable when intervening. As a result, the electrode loss [insertion loss] (IL) and acoustic quality factor (Q value) of the obtained piezoelectric thin film resonator can be improved. In particular, the acoustic quality factor (Q value) of the anti-resonance peak in the impedance characteristics has been improved, and the roll-off characteristics on the high band side of the pass band of the piezoelectric thin film filter produced by combining multiple piezoelectric thin film resonators have been improved. To do.
[0055] 本発明においては、必要に応じて、上部電極 17の上に窒化アルミニウム (A1N)、 酸窒化アルミニウム (AIO N )、酸ィ匕アルミニウム (Al O )、窒化ケィ素(SiN )、酸 y 2 3  In the present invention, if necessary, an aluminum nitride (A1N), an aluminum oxynitride (AIO N), an aluminum oxide (Al 2 O 3), a silicon nitride (SiN), an acid, or the like is formed on the upper electrode 17 as necessary. y 2 3
窒化ケィ素(Si ON;)、酸化ジルコニウム(ZrO )および酸化タンタル (Ta O )からな  Made of silicon nitride (Si ON;), zirconium oxide (ZrO) and tantalum oxide (Ta 2 O 3).
2 2 2 2 5 る群力も選ばれる少なくと一種の材質を主成分とする上部絶縁層 23を積層する。こ の場合、メンブラン 21は、下部絶縁層 13の露出部分、ならびにこれに対応する圧電 積層構造体 14および上部電極層 23の部分により構成される。  An upper insulating layer 23 composed mainly of at least one kind of material is laminated, in which a group force of 2 2 2 2 5 is also selected. In this case, the membrane 21 is constituted by an exposed portion of the lower insulating layer 13 and portions of the piezoelectric multilayer structure 14 and the upper electrode layer 23 corresponding thereto.
[0056] 本発明者らは、これらの図に示した構成の圧電薄膜共振子において、その共振特 性が、下部電極の材質、形状、結晶性、あるいは A1N薄膜の配向性、結晶性などの 性状にどのように依存するかにつ!、て検討した。  [0056] In the piezoelectric thin film resonator having the configuration shown in these drawings, the inventors have the resonance characteristics such as the material, shape and crystallinity of the lower electrode, or the orientation and crystallinity of the A1N thin film. We examined how it depends on the properties!
[0057] 本発明においては、圧電積層構造体 14は、前記下部電極 15および上部電極 17 のうちの少なくとも一方の電極の外周部の周囲に形成され、当該電極とは材質の異 なるサイドスぺーサ一 26を有している。サイドスぺーサ一 26は、絶縁体または導電体 からなり、スロープ形状に形成されている。また、サイドスぺーサ一 26に用いる絶縁 体または導電体は、嵩密度が 1. 6gZcm3以上であるのが好ましぐ榭脂以外の材質 を用いるのが好ましい。 In the present invention, the piezoelectric laminated structure 14 includes the lower electrode 15 and the upper electrode 17. The side spacer 26 is formed around the outer periphery of at least one of the electrodes and is made of a material different from that of the electrode. The side spacer 26 is made of an insulator or a conductor and is formed in a slope shape. In addition, the insulator or conductor used for the side spacers 26 is preferably made of a material other than resin, preferably having a bulk density of 1.6 gZcm 3 or more.
[0058] 以上のような絶縁体または導電体より成るサイドスぺーサ一 26を形成する方法とし ては、 MOS (Metal— Oxide— Semiconductor)型トランジスターのゲート電極、ゲ ート絶縁膜 (ゲート酸ィ匕膜)の側壁層形成に一般的に適用されているサイドウォール スぺーサー技術を採用することができる。サイドウォールスぺーサ一技術により電極 の外周部の周囲に絶縁体より成るサイドスぺーサ一を形成する方法の概要は、以下 の通りである。  [0058] As a method of forming the side spacer 26 made of the insulator or conductor as described above, a gate electrode of a MOS (Metal—Oxide—Semiconductor) type transistor, a gate insulating film (gate oxide) Sidewall spacer technology that is generally applied to the formation of side walls of the film can be employed. The outline of the method of forming a side spacer made of an insulator around the outer periphery of the electrode by the side wall spacer technique is as follows.
[0059] 図 5A,図 5Bは、下部電極の外周部(側壁)の周囲にサイドスぺーサ一を形成する 工程を説明するための模式的断面図である。サイドスぺーサ一形成においては、ま ず、図 5Aに示されているように、パターユングされた下部電極 15を覆うようにして下 部絶縁層 13の全面に低圧 CVD法により酸ィ匕シリコン(SiO ) (LP— TEOS)力もなる  FIG. 5A and FIG. 5B are schematic cross-sectional views for explaining a process of forming a side spacer around the outer peripheral portion (side wall) of the lower electrode. In forming the side spacers, first, as shown in FIG. 5A, the entire surface of the lower insulating layer 13 is covered by a low-pressure CVD method so as to cover the patterned lower electrode 15 (see FIG. 5A). SiO) (LP—TEOS) force
2  2
絶縁膜 25を 300〜900nmの厚さに堆積させる。絶縁膜形成の他の手法としては、 低圧 CVD法による SiN (LP— SiN )膜形成、低圧 CVD法による BPSG (Boron P hosphor Silicate Glass)膜形成、さらに、 LP— SiN膜上に LP— TEOS膜を積 層した SiO /SiN積層膜形成などを例示することができる。  An insulating film 25 is deposited to a thickness of 300 to 900 nm. Other methods of insulating film formation include SiN (LP—SiN) film formation by low pressure CVD method, BPSG (Boron Phosphor Silicate Glass) film formation by low pressure CVD method, and LP—TEOS film on LP—SiN film. An example of this is the formation of a SiO 2 / SiN multilayer film in which layers are stacked.
2  2
[0060] その後、図 5Bに示されているように、 ICPプラズマを用いた異方性ドライエッチング 法で、下部電極 15の上面が露出し該上面と SiO膜の表面とが平滑に繋がるようにな  Thereafter, as shown in FIG. 5B, the upper surface of the lower electrode 15 is exposed by an anisotropic dry etching method using ICP plasma so that the upper surface and the surface of the SiO film are smoothly connected. Na
2  2
るまでエッチバックすること〖こより、下部電極 15の側壁の周囲のみに SiO膜を残して  Etch back until the SiO2 film is left only around the side wall of the lower electrode 15.
2 2
、サイドスぺーサ一 26を形成する。サイドスぺーサ一 26の傾斜角を緩やかにするた めに、異方性ドライエッチングと表面研磨法 (CMP)とを併用することも可能である。 The side spacer 26 is formed. In order to make the inclination angle of the side spacer 26 gentle, anisotropic dry etching and surface polishing (CMP) can be used in combination.
[0061] 図 6A,図 6Bも、下部電極の側壁の周囲にサイドスぺーサ一を形成する工程を説 明するための模式的断面図である。サイドスぺーサ一形成においては、まず、図 6A に示されて 、るように、パターユングされた下部電極 15を覆うようにして下部絶縁層 1 3の全面に低温 CVD法によりタングステン (W) (LT—W)からなる導電膜 25を 300 〜900nmの厚さに堆積させる。導電膜形成の他の手法としては、低温 CVD法によ るモノシラン系の WSi (LT-WSi )膜形成を例示することができる。 FIG. 6A and FIG. 6B are also schematic cross-sectional views for explaining the process of forming the side spacer around the side wall of the lower electrode. In the formation of the side spacer, first, as shown in FIG. 6A, tungsten (W) (by a low temperature CVD method is applied to the entire surface of the lower insulating layer 13 so as to cover the patterned lower electrode 15. LT-W) conductive film 25 300 Deposit to a thickness of ~ 900nm. As another method for forming a conductive film, a monosilane-based WSi (LT-WSi) film can be formed by a low temperature CVD method.
[0062] その後、図 6Bに示されているように、 ECRプラズマを用いた異方性ドライエツチン グ法または表面研磨法 (CMP)とドライエッチング法との併用により、下部電極 15の 上面が露出し該上面と SiO膜の表面とが平滑に繋がるようになるまでエッチバックす [0062] After that, as shown in FIG. 6B, the upper surface of the lower electrode 15 is exposed by using an anisotropic dry etching method or surface polishing method (CMP) using ECR plasma and a dry etching method in combination. Etch back until the upper surface and the surface of the SiO film are connected smoothly.
2  2
ることにより、下部電極 15の側壁の周囲のみに W膜を残して、サイドスぺーサ一 26を 形成する。  As a result, the side spacer 26 is formed leaving the W film only around the side wall of the lower electrode 15.
[0063] 前記のサイドスぺーサ一形成において重要なことは、電極とサイドスぺーサ一との 界面における段差が 25nm未満、好ましくは 10nm未満、さらに好ましくは 3nm未満 となるようにエッチバックの条件を制御することである。両者の界面の段差が 25nm以 上になると、該段差に起因する A1Nの異常成長が起こりやすくなり、隣り合う柱状の A IN粒子間に深いクレータ状の欠陥を生ずることがある。このクレータは、 A1N膜の破 壊の原因となり、圧電薄膜共振子としての信頼性を損なうこととなるので好ましくない  [0063] What is important in the formation of the side spacer is that the etch back conditions are set so that the step at the interface between the electrode and the side spacer is less than 25 nm, preferably less than 10 nm, more preferably less than 3 nm. Is to control. When the level difference between the two is 25 nm or more, abnormal growth of A1N due to the level difference is likely to occur, and deep crater-like defects may occur between adjacent columnar AIN grains. This crater is not preferable because it causes damage to the A1N film and impairs its reliability as a piezoelectric thin film resonator.
[0064] 下部電極の下面に接して形成される下部絶縁層 13の厚さ d5は、 25〜300nm、好 ましくは 30〜200nmであることが望ましい。下部絶縁層 13の厚さが 25nm未満にな ると、その上に堆積するモリブデン、ルテニウム、アルミニウム、イリジウム、コバルト、 ニッケル、白金、銅などを主成分とする金属薄膜の結晶配向性が悪ィヒしゃすくなり、 対応する X線回折ピークのロッキング 'カーブ半値幅が広くなりがちである。下部電極 となる金属薄膜のロッキング 'カーブ半値幅の広がりは、その上面に堆積する A1N薄 膜の結晶配向性の低下をもたらす。下部絶縁層 13の厚さが 300nmを超えると、得ら れる圧電薄膜共振子の電気機械結合係数が低下しやすくなり、圧電特性が悪化し がちである。 [0064] The thickness d5 of the lower insulating layer 13 formed in contact with the lower surface of the lower electrode is 25 to 300 nm, preferably 30 to 200 nm. When the thickness of the lower insulating layer 13 is less than 25 nm, the crystal orientation of the metal thin film mainly composed of molybdenum, ruthenium, aluminum, iridium, cobalt, nickel, platinum, copper, etc. deposited thereon is poor. The rocking 'curve half-value width of the corresponding X-ray diffraction peak tends to widen. The broadening of the rocking 'curve half-width of the metal thin film that serves as the lower electrode brings about a decrease in the crystal orientation of the A1N thin film deposited on the upper surface. If the thickness of the lower insulating layer 13 exceeds 300 nm, the electromechanical coupling coefficient of the obtained piezoelectric thin film resonator tends to decrease, and the piezoelectric characteristics tend to deteriorate.
[0065] また、上部電極の上面に接して形成される上部絶縁層 23の厚さ d6は、 40〜600n mであることが好ましい。さらに、下部電極の下面に接して形成される下部絶縁層 13 の厚さ d5と上部電極の上面に接して形成される上部絶縁層 23の厚さ d6との比率 d6 Zd5力 l≤d6Zd5≤4という関係を満足するように、厚さ d5および厚さ d6を制御す ることが好ましい。 [0066] 上部電極の上面に接する上部絶縁層 23を形成することにより、得られる圧電薄膜 共振子の共振ピーク付近におけるスプリアスが減少する。特に、 d6Zd5力 l≤d6 Zd5≤ 4という関係を満足する場合に、スプリアスの低減効果が大きい。上部絶縁層 23の厚さ d6が 40nm未満になると、スプリアス抑制効果が著しく低下しがちである。 逆に、上部絶縁層 23の厚さ d6が 600nmを超えると、得られる圧電薄膜共振子の電 気機械結合係数および音響品質係数 (Q値)などの圧電特性が悪ィ匕しがちである。 また、上部絶縁層 23は化学的に安定な材質で構成されており、得られる圧電薄膜共 振子の耐環境性が向上するという効果もある。以上のようなスプリアス低減効果およ び耐環境性改善効果を高めるには、上部電極の上面に接して形成される上部絶縁 層 23の結晶配向性を向上させることが重要である。本発明においては、上部電極 17 を構成するモリブデンなどの金属薄膜のロッキング 'カーブ半値幅を 3° 以下となるよ うに制御することにより、高配向性の上部絶縁層を形成して、良好なスプリアス低減 効果と優れた耐環境性を実現することができる。 [0065] The thickness d6 of the upper insulating layer 23 formed in contact with the upper surface of the upper electrode is preferably 40 to 600 nm. Furthermore, the ratio between the thickness d5 of the lower insulating layer 13 formed in contact with the lower surface of the lower electrode and the thickness d6 of the upper insulating layer 23 formed in contact with the upper surface of the upper electrode d6 Zd5 force l≤d6Zd5≤4 It is preferable to control the thickness d5 and the thickness d6 so as to satisfy the relationship. [0066] By forming the upper insulating layer 23 in contact with the upper surface of the upper electrode, spurious near the resonance peak of the obtained piezoelectric thin film resonator is reduced. In particular, when the relationship of d6Zd5 force l≤d6 Zd5≤4 is satisfied, the spurious reduction effect is large. When the thickness d6 of the upper insulating layer 23 is less than 40 nm, the spurious suppression effect tends to be remarkably reduced. Conversely, when the thickness d6 of the upper insulating layer 23 exceeds 600 nm, the piezoelectric characteristics such as the electromechanical coupling coefficient and the acoustic quality factor (Q value) of the obtained piezoelectric thin film resonator tend to be poor. Further, the upper insulating layer 23 is made of a chemically stable material, and there is an effect that the environmental resistance of the obtained piezoelectric thin film resonator is improved. In order to enhance the spurious reduction effect and the environmental resistance improvement effect as described above, it is important to improve the crystal orientation of the upper insulating layer 23 formed in contact with the upper surface of the upper electrode. In the present invention, by controlling the rocking 'curve half-value width of the metal thin film such as molybdenum constituting the upper electrode 17 to be 3 ° or less, a highly oriented upper insulating layer is formed and good spurious Reduction effect and excellent environmental resistance can be realized.
[0067] 振動空間 20の形成は、次のようにして行うことができる。すなわち、基板 11の上面 に基板絶縁層 12を形成した後に、該基板絶縁層 12の振動空間形成領域上にバタ ーン状の犠牲層を形成する。その上に、下部絶縁層 13および圧電積層構造体 14 ( および上部絶縁層 23)を形成する。ビアホール 19は、深堀りエッチング (Deep RIE (Reactive Ion Etching) )により、図中の上側から(上部絶縁層 23および)圧電 積層構造体 14を構成する層および絶縁体層 13を貫通し犠牲層に達する穴を開け たものであり、このビアホール 19からエッチング液を注入して、振動空間形成領域の 犠牲層および基板絶縁層 12を除去して、空洞カゝらなる振動空間 20を形成する。振 動空間 20の上にて積層された薄膜がメンブラン 21を構成している。この圧電薄膜共 振子において、振動空間 20上の A1N薄膜 16と、これを挟む下部電極 15および上部 電極 17とが、圧電積層構造体 14を構成し、前記のように、圧電積層構造体 14の少 なくとも一方には、窒化アルミニウム (A1N)、酸窒化アルミニウム (AIO N )、酸化ァ ルミニゥム(Al O )、窒化ケィ素(SiN )、酸窒化ケィ素(Si ON )、酸化ジルコニウム  [0067] The vibration space 20 can be formed as follows. That is, after forming the substrate insulating layer 12 on the upper surface of the substrate 11, a pattern-like sacrificial layer is formed on the vibration space forming region of the substrate insulating layer 12. A lower insulating layer 13 and a piezoelectric laminated structure 14 (and an upper insulating layer 23) are formed thereon. Via hole 19 is formed by deep etching (Deep RIE (Reactive Ion Etching)) from the upper side of the figure (upper insulating layer 23 and) through the layers constituting piezoelectric laminated structure 14 and insulating layer 13 to form a sacrificial layer. An etching solution is injected from the via hole 19 to remove the sacrificial layer and the substrate insulating layer 12 in the vibration space forming region, thereby forming a vibration space 20 that is a cavity. A thin film laminated on the vibration space 20 constitutes the membrane 21. In this piezoelectric thin film resonator, the A1N thin film 16 on the vibration space 20, the lower electrode 15 and the upper electrode 17 sandwiching the A1N thin film constitute a piezoelectric laminated structure 14, and as described above, the piezoelectric laminated structure 14 At least one of them is aluminum nitride (A1N), aluminum oxynitride (AIO N), aluminum oxide (Al 2 O 3), silicon nitride (SiN), silicon oxynitride (Si ON), zirconium oxide
2 3 2 2  2 3 2 2
(ZrO )および酸ィ匕タンタル (Ta O )から選ばれる少なくとも一種の材質を主成分と The main component is at least one material selected from (ZrO) and tantalum oxide (TaO).
2 2 5 2 2 5
する絶縁層 13, 23が存在している。 [0068] 下部電極 15および上部電極 17に使用されるモリブデン(Mo)、ルテニウム (Ru)、 アルミニウム (A1)、イリジウム(Ir)、コバルト(Co)、ニッケル (Ni)、白金(Pt)および銅 (Cu)から成る群から選ばれる少なくとも 1種類の金属を主成分とする金属薄膜を形 成する方法としては、スパッタリング法および真空蒸着法などが例示される。 Insulating layers 13 and 23 exist. [0068] Molybdenum (Mo), ruthenium (Ru), aluminum (A1), iridium (Ir), cobalt (Co), nickel (Ni), platinum (Pt) and copper used for the lower electrode 15 and the upper electrode 17 Examples of the method for forming a metal thin film containing as a main component at least one metal selected from the group consisting of (Cu) include a sputtering method and a vacuum evaporation method.
[0069] これらの金属を主成分とした薄膜は、通常は DCマグネトロンスパッタ法ゃ RFマグネ トロンスパッタ法により容易に形成できる。しかし、真空蒸着法を用いる場合は、モリブ デン(Mo)、ルテニウム (Ru)およびイリジウム(Ir)につ!/、ては、融点が高!、ため(ル テ-ゥムの融点 2310°C、モリブデンの融点 2620°C、タングステンの融点 3410°C)、 抵抗加熱蒸着法では薄膜作製が困難であるので、電子ビーム蒸着法を用いることが 必要である。結晶相としては、ルテニウムは六方晶系、モリブデン、アルミニウム、イリ ジゥム、コノ レト、ニッケル、白金および銅は立方晶系であることが知られている。従 来技術によりこれらの金属結晶相の薄膜を形成した場合には、 X線回折ピークのロッ キング ·カーブ半値幅 (FWHM)が 3. 0° 以下というような高配向性の金属結晶膜を 堆積させることは困難であった。  [0069] A thin film containing these metals as a main component can usually be easily formed by a DC magnetron sputtering method or an RF magnetron sputtering method. However, when using vacuum deposition, the melting point of molybdenum (Mo), ruthenium (Ru) and iridium (Ir) is high! / Because of its high melting point (melting point of ruthenium 2310 ° C). The melting point of molybdenum is 2620 ° C, the melting point of tungsten is 3410 ° C), and it is difficult to produce a thin film by resistance heating evaporation, so it is necessary to use electron beam evaporation. As for the crystal phase, ruthenium is known to be hexagonal, and molybdenum, aluminum, iridium, conoleto, nickel, platinum and copper are known to be cubic. When thin films of these metal crystal phases are formed by conventional technology, highly oriented metal crystal films with a rocking curve half-width (FWHM) of the X-ray diffraction peak of 3.0 ° or less are deposited. It was difficult to do.
[0070] 本発明にお 、ては、下部電極の材質、厚さ及び結晶配向性に着目し、該金属薄膜 上に形成した窒化アルミニウム薄膜の結晶配向性との相関を詳細に検討した。その 結果、下地層となる絶縁膜の厚さと微細構造 (結晶配向性、表面粗さ)を制御すると 共に、超高真空のスパッタリング装置 (到達真空度: 10_6Pa以下、好ましくは 4xl0_7 Pa以下)を使用し、成膜圧力、成膜温度、 DC出力または RF出力などの成膜条件を 最適化することにより、高配向性の金属結晶膜を堆積させることが可能となった。この 他に、成膜前の熱処理やソフトエッチングなどの前処理を施すことによりその結晶配 向性を向上させることも可能である。 In the present invention, paying attention to the material, thickness and crystal orientation of the lower electrode, the correlation with the crystal orientation of the aluminum nitride thin film formed on the metal thin film was examined in detail. As a result, the thickness and the microstructure of the insulating film serving as a base layer (crystal orientation, surface roughness) both by controlling the ultra-high vacuum sputtering apparatus (ultimate vacuum: 10 _6 Pa or less, preferably 4xl0_ 7 Pa ) And optimized film formation conditions such as film formation pressure, film formation temperature, DC output or RF output, making it possible to deposit highly oriented metal crystal films. In addition, it is possible to improve the crystal orientation by performing pretreatment such as heat treatment before film formation or soft etching.
[0071] さらに、本発明者らは、下部電極 15として使用される金属薄膜の成膜条件を制御し て、結晶配向性を向上させた後、前記の金属薄膜または金属薄膜積層体上に窒化 アルミニウム薄膜を形成することにより、 (0002)回折ピークのロッキング 'カーブ半値 幅 (FWHM)が 0. 8〜1. 6°である高配向性および高結晶性の c軸配向窒化アルミ ニゥム薄膜が得られることを見出した。高配向性および高結晶性の c軸配向窒化アル ミニゥム薄膜を使用することにより、低損失で、帯域幅および周波数温度特性に優れ た高性能な FBAR、 SMRまたは SBARを実現できる。 [0071] Furthermore, the present inventors controlled the deposition conditions of the metal thin film used as the lower electrode 15 to improve the crystal orientation, and then nitrided the metal thin film or the metal thin film laminate. By forming an aluminum thin film, a highly oriented and highly crystalline c-axis oriented aluminum nitride thin film with a rocking 'curve half-width (FWHM) of (0002) diffraction peak of 0.8 to 1.6 ° is obtained. I found out that By using highly oriented and highly crystalline c-axis oriented aluminum nitride thin film, low loss and excellent bandwidth and frequency temperature characteristics High performance FBAR, SMR or SBAR can be realized.
[0072] 下部電極 15は、必要に応じて堆積される密着金属層、および前記の各種金属から 成る群から選ばれる少なくとも 1種類の金属を主成分とする金属薄膜をこの順に形成 した後、フォトリソグラフィ技術を用いて、これらの金属薄膜を所定の形状にパター- ングすることで形成される。 A1N薄膜 16は、下部電極 15を形成した下部絶縁層 13の 上面に反応性スパッタリング法により形成できる。上部電極 17は、前記の各種金属か ら成る群から選ばれる少なくとも 1種類の金属を主成分とする金属薄膜を形成した後 、下部電極 15と同様にフォトリソグラフィ技術を用いて、これらの金属薄膜を所定の形 状 (例えば、円形に近い形状)にパターユングすることで形成される。上部電極のバタ 一ユング後に、フォトリソグラフィ技術を用いて、 A1N薄膜 16の振動空間 20上の部分 を除く領域の一部分をエッチング除去することにより、 A1N薄膜 16を所定の形状にパ ターニングする。 [0072] The lower electrode 15 is formed by forming a metal thin film mainly composed of at least one metal selected from the group consisting of an adhesion metal layer deposited as necessary and the above-mentioned various metals in this order. It is formed by patterning these metal thin films into a predetermined shape using a lithography technique. The A1N thin film 16 can be formed on the upper surface of the lower insulating layer 13 on which the lower electrode 15 is formed by reactive sputtering. The upper electrode 17 is formed by forming a metal thin film mainly composed of at least one metal selected from the group consisting of the various metals described above, and then using the photolithography technique in the same manner as the lower electrode 15. Is formed into a predetermined shape (for example, a shape close to a circle). After the upper electrode is bumped, the A1N thin film 16 is patterned into a predetermined shape by etching away a portion of the A1N thin film 16 except for the portion on the vibration space 20 by using a photolithography technique.
[0073] 下部電極 15の端部の傾斜角が急峻になると、図 2Cに示したように下部電極端部 のエッジ部で A1Nの異常成長が起こり、隣り合う柱状の A1N粒子間に深いクレータ状 の欠陥を生ずる。このクレータは A1N膜の破壊の原因となり、圧電薄膜共振子として の信頼性を損なうこととなる。このため、図 3に示したように、下部電極端部における 金属薄膜と窒化アルミニウム薄膜とが接する面の基板に対する傾斜を緩やかにして 、クレータ状分離成長を防止する必要がある。し力しながら、下部電極端部の傾斜角 が緩やかなものになると、傾斜部の水平距離が長くなり過ぎて、圧電薄膜共振子の 音響品質係数 (Q値)が低下して、インピーダンス特性における共振ピーク付近に数 多くのノイズが発生するようになると 、う問題がある。  [0073] When the inclination angle of the end portion of the lower electrode 15 becomes steep, abnormal A1N growth occurs at the edge portion of the lower electrode end portion as shown in FIG. 2C, and a deep crater shape is formed between adjacent columnar A1N grains. Cause defects. This crater causes the destruction of the A1N film and impairs the reliability of the piezoelectric thin film resonator. For this reason, as shown in FIG. 3, it is necessary to prevent crater-like separation growth by making the inclination of the surface of the lower electrode end portion where the metal thin film and the aluminum nitride thin film contact with the substrate gentle. However, if the tilt angle of the lower electrode end becomes gradual, the horizontal distance of the tilted portion becomes too long, and the acoustic quality factor (Q value) of the piezoelectric thin film resonator decreases, resulting in impedance characteristics. When a lot of noise is generated near the resonance peak, there is a problem.
[0074] 本発明者らは、図 4Bおよび図 4Cに示されるように、下部電極 15または上部電極 1 7の外周部の周囲に該電極とは異なる材質のサイドスぺーサ一 26を設け、該サイドス ぺーサ一 26をスロープ状の形状に形成すると共に、電極とサイドスぺーサ一 26との 界面の段差が 25nm未満となるようにカ卩ェ方法を制御することによって作製された上 下部電極の間に窒化アルミニウム薄膜を形成することにより、クレータ状の分離成長 の無い高配向性および高結晶性の c軸配向窒化アルミニウム薄膜が得られ、下部電 極また上部電極の端部の傾斜に起因する圧電特性への悪影響を解消できることを 見出した。 [0074] As shown in FIG. 4B and FIG. 4C, the present inventors provide a side spacer 26 made of a material different from the electrode around the outer periphery of the lower electrode 15 or the upper electrode 17. The side spacer 26 is formed in a slope shape, and the upper and lower electrodes of the upper and lower electrodes are manufactured by controlling the shielding method so that the step difference at the interface between the electrode and the side spacer 26 is less than 25 nm. By forming an aluminum nitride thin film between them, a highly oriented and highly crystalline c-axis oriented aluminum nitride thin film with no crater-like separation growth is obtained, which is caused by the inclination of the edge of the lower electrode or the upper electrode. The ability to eliminate adverse effects on piezoelectric properties I found it.
[0075] 前記サイドスぺーサ一 26は、絶縁体または導電体で形成される。絶縁体カゝらなるサ イドスぺーサー 26は、たとえば、二酸化ケイ素 ば) )、窒化ケィ素(SiN )、酸窒化  [0075] The side spacer 26 is formed of an insulator or a conductor. Side spacers 26 made of an insulator, such as silicon dioxide)), silicon nitride (SiN), oxynitride
2  2
ケィ素(Si ON )、窒化アルミニウム (A1N)、酸窒化アルミニウム (AIO N )、酸化ァ  Silicon (Si ON), aluminum nitride (A1N), aluminum oxynitride (AIO N), oxide
2 2 y ルミニゥム(Al O )、酸化ジルコニウム(ZrO )および酸化タンタル (Ta O )からなる  2 2 y Made of ruminium (Al 2 O 3), zirconium oxide (ZrO 2) and tantalum oxide (Ta 2 O 3)
2 3 2 2 5 群から選ばれる少なくとも一種の材質を主成分とする絶縁体で形成することができる  2 3 2 2 5 Can be formed of an insulator mainly composed of at least one material selected from the group
[0076] 導電体力もなるサイドスぺーサ一 26は、タングステン (W)、タングステンシリサイド( WSi )およびイリジウム (Ir)力 なる群力 選ばれる少なくと一種の材質を主成分とす る導電体で形成することができる。 [0076] The side spacer 26 also having a conductor force is formed of a conductor mainly composed of at least one material selected from the group force of tungsten (W), tungsten silicide (WSi), and iridium (Ir) forces. can do.
[0077] 絶縁体または導電体より成るサイドスぺーサ一 26はスロープ状に形成されており、 スロープ上面の下面に対する傾斜角は 3〜45° であるのが好ましい。傾斜角が 3° よりも小さくなると、スロープ長が長くなり過ぎ、圧電薄膜共振子を構成する各層の平 面方向の寸法精度を確保することが難しくなり、得られる圧電薄膜共振子の電気機 械結合係数および音響的品質係数 (Q値)などの圧電特性が悪化する傾向にある。 傾斜角が 45° を超えると、電極とサイドスぺーサ一 26との境界部またはサイドスぺー サー 26外周端縁から窒化アルミニウム薄膜のクレータ状の分離成長が起こる傾向に ある。  [0077] The side spacer 26 made of an insulator or a conductor is formed in a slope shape, and the inclination angle with respect to the lower surface of the upper surface of the slope is preferably 3 to 45 °. When the inclination angle is smaller than 3 °, the slope length becomes too long, and it becomes difficult to ensure the dimensional accuracy in the plane direction of each layer constituting the piezoelectric thin film resonator. Piezoelectric properties such as coupling coefficient and acoustic quality factor (Q value) tend to deteriorate. When the inclination angle exceeds 45 °, crater-like separation growth of the aluminum nitride thin film tends to occur from the boundary between the electrode and the side spacer 26 or the outer edge of the side spacer 26.
[0078] また、サイドスぺーサ一 26と接する電極端部の形状については、電極側壁面の電 極下面に対する傾斜角が 70〜90° (即ち大略垂直)であることが好ま 、。傾斜角 を 70〜90° とすることにより、得られる圧電薄膜共振子の音響的品質係数 (Q値)が 向上し、挿入損失、ロール'オフの急峻性および遮断特性などの特性に優れた高性 能な圧電薄膜共振子を製造することができる。  [0078] Regarding the shape of the electrode end portion in contact with the side spacer 126, it is preferable that the inclination angle of the electrode side wall surface with respect to the lower surface of the electrode is 70 to 90 ° (that is, substantially vertical). By setting the tilt angle to 70 to 90 °, the acoustic quality factor (Q value) of the obtained piezoelectric thin film resonator is improved, and it has excellent characteristics such as insertion loss, roll-off steepness and cutoff characteristics. A high performance piezoelectric thin film resonator can be manufactured.
[0079] 即ち、本発明の圧電薄膜共振子は、上記のような共振子であり、振動空間または音 響反射層を有する半導体ある ヽは絶縁体カゝらなる基板と、該基板の振動空間または 音響反射層に面する位置に、順に配置された下部電極、窒化アルミニウム圧電薄膜 および上部電極とを少なくとも有する圧電薄膜共振子において、前記下部電極およ び上部電極のうちの少なくとも一方の電極は、その外周部に材質の異なる別の層を 有し、電極 (電極本体)とその周囲に配置されたサイドスぺーサ一との界面の段差がThat is, the piezoelectric thin film resonator of the present invention is a resonator as described above, and is a vibration space or a semiconductor having an acoustic reflection layer. A substrate made of an insulator and a vibration space of the substrate. Or a piezoelectric thin film resonator having at least a lower electrode, an aluminum nitride piezoelectric thin film, and an upper electrode arranged in order at a position facing the acoustic reflection layer, wherein at least one of the lower electrode and the upper electrode is , Another layer of different material on the outer periphery And there is a step at the interface between the electrode (electrode body) and the side spacer arranged around it.
25nm未満であることを特徴とする。 It is characterized by being less than 25 nm.
[0080] このような圧電積層構造体は、圧電特性に優れ、信頼性も高くて、これを使用した 圧電薄膜共振子は、低損失の優れた周波数特性を有する。  Such a piezoelectric laminated structure has excellent piezoelectric characteristics and high reliability, and a piezoelectric thin film resonator using the piezoelectric laminated structure has excellent frequency characteristics with low loss.
[0081] また、本発明の圧電薄膜共振子の圧電積層構造体 14は、下部電極 15と上部電極 17とが厚み方向で (即ち、圧電積層構造体 14の厚み方向に見て)互いに重なる領 域として定義される振動領域が、メンブラン 21の端縁 (即ち、振動空間 20の外周縁) よりも内側にあるのが好ましい。このような位置関係を保持することにより、圧電薄膜 共振子の Q値を大きくすることが可能である。前記振動領域が前記メンブラン端縁よ りも外側に広がると、圧電薄膜共振子の Q値が低下する傾向にある。  Further, in the piezoelectric laminated structure 14 of the piezoelectric thin film resonator of the present invention, the lower electrode 15 and the upper electrode 17 overlap each other in the thickness direction (that is, when viewed in the thickness direction of the piezoelectric laminated structure 14). It is preferable that the vibration region defined as the region is inside the edge of the membrane 21 (that is, the outer peripheral edge of the vibration space 20). By maintaining such a positional relationship, the Q value of the piezoelectric thin film resonator can be increased. When the vibration region extends outside the membrane edge, the Q value of the piezoelectric thin film resonator tends to decrease.
[0082] さらに、前記振動領域の端部 (端縁)と前記メンブラン端縁 (振動空間の外周縁に対 応)との間隔を wとし、前記振動領域の圧電積層構造体 14の厚みと絶縁層(下部絶 縁層および上部絶縁層 )の厚みとの合計を tとしたときに、 wZtの値を 0く wZt≤ 2 の範囲内とすることにより、電気機械結合係数が大きぐ高い Q値を有する圧電薄膜 共振子を実現することができる。また、このような位置関係の圧電薄膜共振子におい ては、通過帯域におけるスプリアスの発生が抑制されている。 wZt> 2の範囲におい ては、不要な横音響モードによるスプリアスが発生する傾向にある。  [0082] Furthermore, the distance between the end (edge) of the vibration region and the membrane edge (corresponding to the outer periphery of the vibration space) is w, and the thickness of the piezoelectric laminated structure 14 in the vibration region is insulated from the thickness. When the total thickness of the layers (lower insulating layer and upper insulating layer) is t, by setting the value of wZt to 0 and within the range of wZt≤ 2, the high Q value with a large electromechanical coupling coefficient A piezoelectric thin film resonator having the above can be realized. Moreover, in the piezoelectric thin film resonator having such a positional relationship, spurious generation in the pass band is suppressed. In the range of wZt> 2, spurious due to unnecessary transverse acoustic mode tends to occur.
[0083] 下部電極 15および上部電極 17の抵抗は、共振特性の損失に影響する。このため 、本発明においては、入力信号の損失の要因となる下部電極および上部電極の比 抵抗が十分に小さな値となるように金属薄膜の形成条件を制御するのが好ま 、。 例えば、電極の比抵抗が 5〜20 Ω 'cmとなるように制御する。比抵抗がこの範囲 の値となるようにすることで、入力される高周波信号の損失を低減し、良好な共振特 性を実現することができる。  The resistances of the lower electrode 15 and the upper electrode 17 affect the loss of resonance characteristics. Therefore, in the present invention, it is preferable to control the formation conditions of the metal thin film so that the specific resistance of the lower electrode and the upper electrode, which cause the loss of the input signal, becomes a sufficiently small value. For example, the specific resistance of the electrode is controlled to be 5 to 20 Ω'cm. By setting the specific resistance to a value within this range, it is possible to reduce the loss of the input high-frequency signal and realize good resonance characteristics.
[0084] 図 4Aおよび図 4Bに示す構成の圧電薄膜共振子では、圧電薄膜 16の上下の電極 15, 17に電圧を印加することでバルタ弾性波を励振させている。この為、下部電極 1 5を、端子電極とすべく露出させることが必要である。この構成をもつ共振子を用いて フィルタを構成するには、 2個以上の共振子を組み合わせ接続する必要がある。この 場合、金属薄膜の電気抵抗が大きい場合には、接続配線に起因する損失が生ずる 。このため、本発明においては、入力信号の損失の要因となる下部電極 15および上 部電極 17の比抵抗が十分に小さな値となるように、金属薄膜の形成条件を制御する 。例えば、電極の比抵抗が 5〜20 Ω 'cmとなるように制御することで、入力される 高周波信号の損失を低減し、良好なフィルタ性能を実現することができる。 In the piezoelectric thin film resonator having the configuration shown in FIGS. 4A and 4B, a Balta elastic wave is excited by applying a voltage to the upper and lower electrodes 15, 17 of the piezoelectric thin film 16. For this reason, it is necessary to expose the lower electrode 15 to be a terminal electrode. To construct a filter using resonators with this configuration, it is necessary to connect two or more resonators in combination. In this case, if the electric resistance of the metal thin film is large, loss due to the connection wiring occurs. . For this reason, in the present invention, the conditions for forming the metal thin film are controlled so that the specific resistance of the lower electrode 15 and the upper electrode 17 that cause the loss of the input signal becomes a sufficiently small value. For example, by controlling the electrode specific resistance to be 5 to 20 Ω'cm, it is possible to reduce the loss of the input high-frequency signal and realize good filter performance.
[0085] 図 7Aは本発明による圧電薄膜共振子の別の実施形態を示す模式的平面図であり 、図 7Bおよび図 7Cはそれぞれその X— X断面図および Y— Y断面図である。図 7D は図 7Cにおける点線で囲った部分の拡大図である。これらの図においては、上記図 4A、図 4Bおよび図 4Cにおけると同様の機能を有する部材には同一の符号が付さ れている。 FIG. 7A is a schematic plan view showing another embodiment of the piezoelectric thin film resonator according to the present invention, and FIGS. 7B and 7C are an XX sectional view and a YY sectional view, respectively. FIG. 7D is an enlarged view of a portion surrounded by a dotted line in FIG. 7C. In these drawings, members having the same functions as those in FIGS. 4A, 4B and 4C are given the same reference numerals.
[0086] 本実施形態では、圧電薄膜共振子 10は、基板 11、該基板 11の上面上に形成され た下部絶縁層 13および該下部絶縁層 13の上面上に形成された圧電積層構造体 14 更には該圧電積層構造体 14の上面上に形成された上部絶縁層 23を有する。圧電 積層構造体 14は、絶縁体層 13の上面上に形成された下部電極 15、該下部電極 15 の一部を覆うようにして下部絶縁層 13の上面上に形成された圧電薄膜 16および該 圧電薄膜 16の上面上に形成された上部電極 17を含んでなる。下部電極 15は矩形 に近 、形状をなしており、主体部 15aおよび該主体部 15aと外部回路との接続のた めの端子部 15bとを有する。  In the present embodiment, the piezoelectric thin film resonator 10 includes a substrate 11, a lower insulating layer 13 formed on the upper surface of the substrate 11, and a piezoelectric laminated structure 14 formed on the upper surface of the lower insulating layer 13. Furthermore, an upper insulating layer 23 is formed on the upper surface of the piezoelectric laminated structure 14. The piezoelectric laminated structure 14 includes a lower electrode 15 formed on the upper surface of the insulating layer 13, a piezoelectric thin film 16 formed on the upper surface of the lower insulating layer 13 so as to cover a part of the lower electrode 15, and the piezoelectric thin film 16 An upper electrode 17 formed on the upper surface of the piezoelectric thin film 16 is included. The lower electrode 15 has a shape close to a rectangle and has a main body 15a and a terminal 15b for connecting the main body 15a to an external circuit.
[0087] 上部電極 17は、振動空間 20に対応する領域内に形成された主体部 17aと、該主 体部 17aと外部回路との接続のための端子部 17bとを有する。端子部 15b, 17bは 振動空間 20に対応する領域外に位置する。  The upper electrode 17 has a main body portion 17a formed in a region corresponding to the vibration space 20, and a terminal portion 17b for connecting the main body portion 17a and an external circuit. The terminal portions 15b and 17b are located outside the region corresponding to the vibration space 20.
[0088] 下部電極 15および上部電極 17の少なくとも一方はモリブデンを主成分とする層を 含む厚さ 150ηπ!〜 450nmの金属薄膜で形成されている。例えば、下部電極 15は、 モリブデンを主成分とする金属薄膜で構成され、その厚さは 150〜450nmである。 上部電極 17は、モリブデンを主成分とする厚さ d3の金属薄膜とアルミニウムを主成 分とする厚さ d4の金属薄膜との積層体であり、それぞれの金属薄膜の厚さ d3, d4は 、 d4/d3 > l力つ 150nm< (d3 + d4) <450nmと!/、う関係を満足して! /、る。音響ィ ンピーダンスが高くて、高配向性のモリブデン薄膜を主成分とする厚さ d3の金属薄 膜は、アルミニウムを主成分とする厚さ d4の金属薄膜と圧電薄膜との間に介在させる ことが好ましい。また、窒化アルミニウム (A1N)、酸窒化アルミニウム (AIO N )、酸化 アルミニウム (Al O )、窒化ケィ素(SiN )、酸窒化ケィ素(Si ON )、酸ィ匕ジルコユウ [0088] At least one of lower electrode 15 and upper electrode 17 includes a layer containing molybdenum as a main component. It is formed with a metal thin film of ~ 450nm. For example, the lower electrode 15 is made of a metal thin film mainly composed of molybdenum and has a thickness of 150 to 450 nm. The upper electrode 17 is a laminate of a metal thin film with a thickness of d3 mainly composed of molybdenum and a metal thin film with a thickness of d4 mainly composed of aluminum, and the thicknesses d3 and d4 of the respective metal thin films are d4 / d3> l Powerful 150nm <(d3 + d4) <450nm and! /, satisfying the relationship! The d3 metal thin film, which has high acoustic impedance and is mainly composed of highly oriented molybdenum thin film, is interposed between the d4 metal thin film, whose main component is aluminum, and the piezoelectric thin film. It is preferable. Aluminum nitride (A1N), aluminum oxynitride (AIO N), aluminum oxide (Al 2 O 3), silicon nitride (SiN), silicon oxynitride (Si ON), and acid zirconium oxide
2 3 2 2  2 3 2 2
ム (ZrO )および酸ィ匕タンタル (Ta O )からなる群力 選ばれる少なくと一種の材質 (ZrO) and acid tantalum (Ta 2 O) group force at least one material selected
2 2 5 2 2 5
を主成分とする下部絶縁層 13が下部電極の下面に接して形成され、同様に、必要 に応じて、窒化アルミニウム (A1N)、酸窒化アルミニウム (AIO N )、酸化アルミ-ゥ ム(Al O )、窒化ケィ素(SiN )、酸窒化ケィ素(Si ON )、酸化ジルコニウム(ZrO ) Is formed in contact with the lower surface of the lower electrode. Similarly, if necessary, aluminum nitride (A1N), aluminum oxynitride (AIO N), aluminum oxide (Al 2 O 3) ), Silicon nitride (SiN), silicon oxynitride (Si ON), zirconium oxide (ZrO)
2 3 2 2 2 および酸ィ匕タンタル (Ta O )からなる群力 選ばれる少なくと一種の材質を主成分と 2 3 2 2 2 and group power consisting of tantalum oxide (Ta 2 O 3)
2 5  twenty five
する上部絶縁層 23が上部電極の上面に接して形成されている。  An upper insulating layer 23 is formed in contact with the upper surface of the upper electrode.
[0089] 以上のようにして圧電積層構造体 14を形成した基板 11の下面の SiO層を、フォト [0089] The SiO layer on the lower surface of the substrate 11 on which the piezoelectric multilayer structure 14 is formed as described above is formed by photo
2  2
リソグラフィ一により所定の形状にパターン化し、必要に応じて、さらに、マイクロマシ ンカ卩ェ用フォトレジストを塗布して、フォトリソグラフィ一により基板下面 SiOマスクと同  Patterned into a predetermined shape by lithography 1 and, if necessary, coated with a photoresist for micromachining, and the same as the SiO mask on the bottom surface of the substrate by photolithography.
2 一形状のレジストマスクを形成する。マスクを形成した基板 11を Deep RIE (深彫り 型反応性イオンエッチング)仕様のドライエッチング装置に装入し、装置内部に SF  2 Form a resist mask with a single shape. The substrate 11 on which the mask was formed was loaded into a dry etching system with Deep RIE (deep engraved reactive ion etching) specifications, and SF inside
6 ガスと C Fガスとを交互に導入してエッチングと側壁保護とを繰り返すことにより、側 6 Gas and CF gas are introduced alternately, and etching and sidewall protection are repeated.
4 8 4 8
面と底面とのエッチング速度比を制御して、側壁を垂直に立てた深 、角柱状または 円柱状の振動空間 20を形成する。その結果、図 7Bおよび図 7Cに示すように、メン ブラン 21と基板裏面の開口部とがほぼ等しい平面形状および寸法となる振動空間を 得ることができる。  By controlling the etching rate ratio between the surface and the bottom surface, the vibration space 20 having a depth, a prismatic shape, or a columnar shape with the side walls standing vertically is formed. As a result, as shown in FIGS. 7B and 7C, it is possible to obtain a vibration space in which the membrane 21 and the opening on the back surface of the substrate have substantially the same planar shape and dimensions.
[0090] 本発明においては、下部電極または上部電極の外周部の周囲に該電極とは異な る材質のサイドスぺーサ一を設け、該サイドスぺーサ一をスロープ状の形状に形成す ると共に、該電極と該サイドスぺーサ一との界面における段差が 25nm未満となるよう に加工方法を制御することによって作製された上下部電極の間に窒化アルミニウム 圧電薄膜を形成することにより、クレータ状の分離成長の無い高配向性および高結 晶性の c軸配向窒化アルミニウム薄膜が得られ、下部電極また上部電極の端部の傾 斜に起因する圧電特性への悪影響を解消できる。  [0090] In the present invention, a side spacer made of a material different from the electrode is provided around the outer periphery of the lower electrode or the upper electrode, and the side spacer is formed in a slope shape, Crater-like separation is achieved by forming an aluminum nitride piezoelectric thin film between the upper and lower electrodes produced by controlling the processing method so that the step at the interface between the electrode and the side spacer is less than 25 nm. A highly oriented and highly crystalline c-axis oriented aluminum nitride thin film with no growth can be obtained, and the adverse effects on the piezoelectric properties due to the tilt of the edge of the lower electrode or upper electrode can be eliminated.
[0091] 図 7Dに示したように、前記電極本体端部における上面の下面に対する傾斜角を Θ  [0091] As shown in FIG. 7D, the inclination angle of the upper surface of the electrode body with respect to the lower surface is Θ
2と定義し、スロープ状に形成されたサイドスぺーサ一におけるスロープ上面の下面 に対する傾斜角を 0 1と定義する。前記のサイドスぺーサ一のスロープ上面の下面に 対する傾斜角 θ 1は 3〜45° である。傾斜角 θ 1が 3° よりも小さくなると、スロープ長 が長くなり過ぎ、圧電薄膜共振子を構成する各層の平面方向の寸法精度を確保する ことが難しくなり、得られる圧電薄膜共振子の電気機械結合係数および音響的品質 係数 (Q値)などの圧電特性が悪化する。傾斜角 θ 1が 45° を超えると、電極本体と サイドスぺーサ一との境界部またはサイドスぺーサ一端部から窒化アルミニウム圧電 薄膜のクレータ状の分離成長が起こりやすくなる傾向にある。 2 is defined, and the angle of inclination with respect to the lower surface of the upper surface of the slope in the side spacer formed in a slope shape is defined as 0 1. On the lower surface of the upper surface of the slope of the side spacer The tilt angle θ 1 is 3 to 45 °. When the inclination angle θ 1 is smaller than 3 °, the slope length becomes too long, and it becomes difficult to ensure the dimensional accuracy in the plane direction of each layer constituting the piezoelectric thin film resonator. Piezoelectric properties such as coupling coefficient and acoustic quality factor (Q value) deteriorate. When the inclination angle θ 1 exceeds 45 °, crater-like separated growth of the aluminum nitride piezoelectric thin film tends to occur easily from the boundary between the electrode body and the side spacer or from one end of the side spacer.
[0092] また、サイドスぺーサ一と接する電極本体端部の形状につ!ヽては、電極本体上面 の下面に対する傾斜角 Θ 2が 70〜90° (即ち垂直)であることが好ましい。傾斜角 Θ 2を 70〜90° とすることにより、得られる圧電薄膜共振子の音響的品質係数 (Q値) が向上し、挿入損失、ロール'オフの急峻性および遮断特性などの特性に優れた高 性能な圧電薄膜共振子を製造することができる。  In addition, regarding the shape of the end portion of the electrode body in contact with the side spacer, it is preferable that the inclination angle Θ 2 with respect to the lower surface of the upper surface of the electrode body is 70 to 90 ° (ie, vertical). By setting the angle of inclination Θ 2 to 70-90 °, the acoustic quality factor (Q value) of the obtained piezoelectric thin film resonator is improved, and characteristics such as insertion loss, roll-off steepness, and cutoff characteristics are excellent. High performance piezoelectric thin film resonators can be manufactured.
[0093] 本発明の圧電薄膜共振子の構成を利用して、本発明の圧電薄膜共振子を有する 積層型圧電薄膜共振子を作製することができる。即ち、本発明の積層型圧電薄膜共 振子は、図 8Αおよび 8Βに示したように、振動空間 20を有する半導体あるいは絶縁 体からなる基板 11と、該基板上にて、少なくとも振動空間 20に面する領域を含む領 域に、順に配置された下部絶縁層 13および圧電積層構造体を有する。該圧電積層 構造体は、下部電極 15、第 1の窒化アルミニウム圧電薄膜 16— 1、内部電極 17'、 第 2の窒化アルミニウム圧電薄膜 16— 2、および上部電極 18を有する。下部電極 15 、内部電極 17'および上部電極 18のうちの少なくとも 1つの電極は、その外周部の周 囲に材質の異なる別の層であるサイドスぺーサ一 26を有し、電極本体部とサイドスぺ ーサー 26との界面における段差が 25nm未満である。  Using the configuration of the piezoelectric thin film resonator of the present invention, a multilayer piezoelectric thin film resonator having the piezoelectric thin film resonator of the present invention can be manufactured. That is, the multilayer piezoelectric thin film resonator of the present invention has a substrate 11 made of a semiconductor or an insulator having a vibration space 20 and a surface facing at least the vibration space 20 on the substrate, as shown in FIGS. The lower insulating layer 13 and the piezoelectric laminated structure are sequentially arranged in a region including the region to be processed. The piezoelectric laminated structure has a lower electrode 15, a first aluminum nitride piezoelectric thin film 16-1, an internal electrode 17 ′, a second aluminum nitride piezoelectric thin film 16-2, and an upper electrode 18. At least one of the lower electrode 15, the internal electrode 17 ′, and the upper electrode 18 has a side spacer 26, which is another layer made of a different material, around the outer peripheral portion thereof. The step at the interface with spacer 26 is less than 25 nm.
[0094] 本実施形態は、図 7〜図 7Dに記載の実施形態の圧電積層構造体を 2つ積層した ものに相当する圧電積層構造体を有する SBARである。即ち、下部絶縁層 13上に 下部電極 15、第 1の圧電薄膜 16— 1、内部電極 17'、第 2の圧電薄膜 16— 2および 上部電極 18がこの順に形成されている。内部電極 17'は、第 1の圧電薄膜 16— 1に 対する上部電極としての機能と第 2の圧電薄膜 16— 2に対する下部電極としての機 能を有する。即ち、本発明の積層型圧電薄膜共振子 (SBAR)は、本発明の下部電 極、圧電体層、および上部電極の構成を含む構造を有しているとともに、本発明の圧 電薄膜共振子の一実施形態である。 This embodiment is a SBAR having a piezoelectric laminated structure corresponding to a laminate of two piezoelectric laminated structures according to the embodiments shown in FIGS. 7 to 7D. That is, the lower electrode 15, the first piezoelectric thin film 16-1, the internal electrode 17 ', the second piezoelectric thin film 16-2, and the upper electrode 18 are formed on the lower insulating layer 13 in this order. The internal electrode 17 'has a function as an upper electrode for the first piezoelectric thin film 16-1 and a function as a lower electrode for the second piezoelectric thin film 16-2. That is, the multilayer piezoelectric thin film resonator (SBAR) of the present invention has a structure including the configurations of the lower electrode, the piezoelectric layer, and the upper electrode of the present invention, and the pressure of the present invention. It is one Embodiment of an electrothin film resonator.
[0095] 本実施形態では、下部電極 15と内部電極 17'との間に入力電圧を印加し、該内部 電極 17'と上部電極 18との間の電圧を出力電圧として取り出すことができるので、こ れ自体を多極型フィルタとして使用することができる。このような構成の多極型フィル タを通過帯域フィルタの構成要素として使用することにより、阻止帯域の減衰特性が 良好となり、フィルタとしての周波数応答性が向上する。  In the present embodiment, an input voltage can be applied between the lower electrode 15 and the internal electrode 17 ′, and the voltage between the internal electrode 17 ′ and the upper electrode 18 can be taken out as an output voltage. This itself can be used as a multipole filter. By using a multipole filter having such a configuration as a component of a passband filter, the attenuation characteristics of the stopband are improved and the frequency response as a filter is improved.
[0096] 以上のような圧電薄膜共振子において、マイクロ波プローバーを使用して測定した インピーダンス特性における共振周波数 fおよび反共振周波数 f と電気機械結合係  [0096] In the piezoelectric thin film resonator as described above, the resonance frequency f and antiresonance frequency f in the impedance characteristics measured using a microwave prober are related to the electromechanical coupling.
r a  r a
数 k 2との間には、以下の関係がある。
Figure imgf000030_0001
Between the number k 2, the following relationship.
Figure imgf000030_0001
Φ = ( π /2) (f /f )  Φ = (π / 2) (f / f)
簡単のため、電気機械結合係数 k 2は、次式力 算出した。 For simplicity, the electromechanical coupling coefficient k 2 was calculated using the following force.
k 4. 8  k 4.8
t2 = (f a f r ) Z (f a +f r ) t 2 = (fafr) Z (fa + fr)
[0097] 図 4A〜4C、図 7A〜7Dならびに図 8Aおよび 8Bに示した構成の圧電薄膜共振子 または積層型圧電薄膜共振子において、 1. 5〜2. 5GHzの範囲における共振周波 数と反共振周波数の測定値から求めた電気機械結合係数 k 2は 6. 0%以上である。 電気機械結合係数 k 2が 6. 0%未満になると、これらの圧電薄膜共振子を組み合わ せて作製される圧電薄膜フィルタの帯域幅が小さくなり、高周波域で使用する圧電薄 膜デバイスとして実用に供することが難しくなる傾向にある。 [0097] In the piezoelectric thin film resonator or laminated piezoelectric thin film resonator having the configuration shown in FIGS. 4A to 4C, FIGS. 7A to 7D, and FIGS. 8A and 8B, the resonance frequency and the anti-resonance in the range of 1.5 to 2.5 GHz. The electromechanical coupling coefficient k 2 obtained from the measured resonance frequency is 6.0% or more. When the electromechanical coupling coefficient k 2 is less than 6.0%, the bandwidth of the piezoelectric thin film filter manufactured by combining these piezoelectric thin film resonators is reduced, and it is practically used as a piezoelectric thin film device used in a high frequency range. It tends to be difficult to provide.
[0098] 本発明によれば、本発明の圧電薄膜共振子およびその一形態である、積層型圧電 薄膜共振子を使用して、 VCO (電圧制御発振器)、フィルタおよび送受切替器など の圧電薄膜共振子を有する優れた圧電薄膜デバイスを提供することができる。  According to the present invention, a piezoelectric thin film such as a VCO (voltage controlled oscillator), a filter, and a duplexer is used by using the piezoelectric thin film resonator of the present invention and a laminated piezoelectric thin film resonator as one form thereof. An excellent piezoelectric thin film device having a resonator can be provided.
[0099] 図 9に、本発明の圧電薄膜デバイスの一実施形態としての薄膜圧電フィルタの模式 的平面図を示す。本実施形態では、共通の基板を用いて、 5つの圧電薄膜共振子 2 10, 220, 230, 240, 250力形成されている。これらの圧電薄膜共振子は、いずれ も上記図 7Aおよび 7Bの実施形態のものである。圧電薄膜共振子 210、 220および 240の下部電極端子部 15b同士が接続されており、圧電薄膜共振子 220、 230およ び 250の上部電極端子部 17b同士が接続されている。圧電薄膜共振子 210の上部 電極端子部および圧電薄膜共振子 230の下部電極端子部が入出力端子とされ、圧 電薄膜共振子 240の上部電極端子部および圧電薄膜共振子 250の下部電極端子 部が接地される。なお、図 9では、圧電薄膜共振子 220についてのみ圧電積層構造 体 14が図示されている力 他の圧電薄膜共振子についても同様である。また、図 9で にはサイドスぺーサ一が図示されていないが、図 7Aおよび 7Bに関し説明したような 上部電極用および下部電極用のサイドスぺーサ一が設けられている。 FIG. 9 shows a schematic plan view of a thin film piezoelectric filter as an embodiment of the piezoelectric thin film device of the present invention. In the present embodiment, five piezoelectric thin film resonators 2 10, 220, 230, 240, and 250 are formed using a common substrate. These piezoelectric thin film resonators are all of the embodiment shown in FIGS. 7A and 7B. The lower electrode terminal portions 15b of the piezoelectric thin film resonators 210, 220, and 240 are connected to each other, and the upper electrode terminal portions 17b of the piezoelectric thin film resonators 220, 230, and 250 are connected to each other. Upper part of piezoelectric thin film resonator 210 The electrode terminal portion and the lower electrode terminal portion of the piezoelectric thin film resonator 230 are input / output terminals, and the upper electrode terminal portion of the piezoelectric thin film resonator 240 and the lower electrode terminal portion of the piezoelectric thin film resonator 250 are grounded. In FIG. 9, the same applies to the force of the piezoelectric laminated structure 14 shown only for the piezoelectric thin film resonator 220 and other piezoelectric thin film resonators. Further, although the side spacers are not shown in FIG. 9, the side spacers for the upper electrode and the lower electrode as described with reference to FIGS. 7A and 7B are provided.
[0100] 本発明の圧電薄膜デバイスは、圧電薄膜共振子およびその一形態である積層型 圧電薄膜共振子を有していれば特に上記のデバイスに限定されない。 [0100] The piezoelectric thin film device of the present invention is not particularly limited to the above device as long as it has a piezoelectric thin film resonator and a laminated piezoelectric thin film resonator which is one form thereof.
実施例  Example
[0101] 以下に実施例および比較例を示し、本発明をさらに詳細に説明する。以下の実施 例および比較例にぉ 、ては、エアーギャップタイプの圧電薄膜共振子を作製して ヽ るが、音響ミラータイプの圧電薄膜共振子も、同様の技術で作製することができる。  [0101] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. For the following examples and comparative examples, an air gap type piezoelectric thin film resonator is manufactured. However, an acoustic mirror type piezoelectric thin film resonator can also be manufactured by the same technique.
[0102] (実施例 1)  [0102] (Example 1)
本実施例では、以下のようにして、図 4A、 4Bおよび 4Cに示されている構造の圧電 薄膜共振子を作製した。  In this example, a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows.
[0103] 即ち、熱酸化法により、厚さ 625 μ mの Siウェハの両面に、厚さ 1500nmの SiO層 That is, a 1500 nm thick SiO layer is formed on both sides of a 625 μm thick Si wafer by thermal oxidation.
2 を形成した後、 Siウェハ上面上の SiO層上に犠牲層となる厚さ 50nmの Ti薄膜を堆  2), a 50 nm thick Ti thin film is deposited as a sacrificial layer on the SiO layer on the upper surface of the Si wafer.
2  2
積して、フォトリソグラフィにより、所望のエアーブリッジ形状 (すなわち所望の振動空 間に対応する形状)にパターン形成した。次に、反応性スパッタリング法により、犠牲 層および SiO層の露出面上に、表 1に記載した厚さの下部絶縁層(下部絶縁体層)  Then, a pattern was formed into a desired air bridge shape (that is, a shape corresponding to a desired vibration space) by photolithography. Next, the lower insulating layer (lower insulating layer) with the thickness shown in Table 1 is formed on the exposed surfaces of the sacrificial layer and the SiO layer by reactive sputtering.
2  2
となる Al O薄膜を形成した。この下部絶縁層上に、 DCマグネトロンスパッタ法にて、 An Al 2 O thin film was formed. On this lower insulating layer, by DC magnetron sputtering method,
2 3 twenty three
表 1に記載した厚さの Mo薄膜を堆積して下部電極(下部電極層:下部電極本体)を 形成し、さらに、フォトリソグラフィによりパターン化した。続いて、 TEOS (Tera-ethoxy silane)を原料とする低圧 CVD法により、下部電極および下部絶縁層の露出面上に 酸化シリコン (SiO )膜を厚さ 300〜900nmに堆積させた。 ICPプラズマを用いた異  A Mo thin film having the thickness shown in Table 1 was deposited to form a lower electrode (lower electrode layer: lower electrode body), and further patterned by photolithography. Subsequently, a silicon oxide (SiO 2) film was deposited to a thickness of 300 to 900 nm on the exposed surfaces of the lower electrode and the lower insulating layer by a low pressure CVD method using TEOS (Tera-ethoxy silane) as a raw material. Different using ICP plasma
2  2
方性ドライエッチングで、下部電極の表面が露出し、下部電極側壁に接した SiO  The surface of the lower electrode is exposed by anisotropic dry etching, and the SiO
2膜 の表面が下部電極表面と平滑に繋がるまでエッチバックすることにより、パターユング された下部電極の側壁の周囲のみに SiO膜を残して、所望の構造のサイドスぺーサ 一を形成した。 2 Etch back until the surface of the film is smoothly connected to the surface of the lower electrode, leaving the SiO film only around the side wall of the patterned lower electrode, and the side spacer of the desired structure. Formed one.
[0104] X線回折装置により下部電極の結晶配向性を評価した結果、表 1に示すごとく Mo ( 110)面のロッキング 'カーブ FWHMは 2. 3degであった。下部 Mo電極およびサイド スぺーサ一ならびに Al O薄膜の露出面上に、純度 99. 999%の A1ターゲットを用  As a result of evaluating the crystal orientation of the lower electrode using an X-ray diffractometer, as shown in Table 1, the rocking curve FWHM of the Mo (110) plane was 2.3 deg. A1 target with a purity of 99.999% is used on the exposed surface of the lower Mo electrode and side spacer and Al 2 O thin film.
2 3  twenty three
い、反応性 RFマグネトロンスパッタ法により、表 3に記載の条件で、圧電薄膜 (圧電 体薄膜)としての厚さ 1. O /z mの A1N薄膜を形成した。 X線回折法により A1N薄膜の 結晶性を評価した結果、(0002)面を初めとする c面に対応したピークのみ観測され 、表 3に示すごとぐそのロッキング 'カーブ半値幅(FWHM)は 1. 6°であった。次に 、 DCマグネトロンスパッタ法により、圧電体薄膜上に表 2に記載した厚さの Mo薄膜を 堆積して上部電極 (上部電極層:上部電極本体)を形成し、フォトリソグラフィにより、 図 4Aに示すごとく平面寸法 150 X 170 mの矩形に近い形状 (対辺は若干非平行 )にパターンィ匕した。次に、ドライエッチングにより、圧電体薄膜を所定の形状にバタ ーン化した。下部電極およびそのサイドスぺーサ一、圧電体薄膜、上部電極、ならび に下部絶縁層の露出面上に、上部絶縁層(上部絶縁体層)となる表 2に記載した厚さ の Al O薄膜を堆積して、パターン形成した。次に、下部電極およびそのサイドスぺ On the other hand, an A1N thin film having a thickness of 1. O / z m as a piezoelectric thin film (piezoelectric thin film) was formed by reactive RF magnetron sputtering under the conditions shown in Table 3. As a result of evaluating the crystallinity of the A1N thin film by the X-ray diffraction method, only peaks corresponding to the c-plane including the (0002) plane were observed. As shown in Table 3, the rocking 'curve half-width (FWHM) was 1 It was 6 °. Next, the Mo thin film having the thickness shown in Table 2 is deposited on the piezoelectric thin film by DC magnetron sputtering to form the upper electrode (upper electrode layer: upper electrode main body), and photolithography is performed to obtain FIG. 4A. As shown in the figure, it was patterned in a shape close to a rectangle with a plane size of 150 X 170 m (the opposite side was slightly non-parallel). Next, the piezoelectric thin film was patterned into a predetermined shape by dry etching. On the exposed surface of the lower electrode and its side spacers, piezoelectric thin film, upper electrode, and lower insulating layer, an Al 2 O thin film with the thickness shown in Table 2 serving as the upper insulating layer (upper insulating layer) is formed. Deposited and patterned. Next, the lower electrode and its side
2 3 twenty three
ーサ一、圧電体薄膜、上部電極、上部絶縁層、ならびに下部絶縁層の露出面上に、 フォトレジストを塗布し、図 4Bに示した振動空間を形成するためのビアホールに対応 した位置にビアホールパターンを形成し、 C1と Arとの混合ガスを用いたドライエッチ  A photoresist is applied to the exposed surface of the sensor, piezoelectric thin film, upper electrode, upper insulating layer, and lower insulating layer, and a via hole is formed at a position corresponding to the via hole for forming the vibration space shown in FIG. 4B. Form a pattern and dry etch using mixed gas of C1 and Ar
2  2
ングによりビアホールを開けた。フォトレジストを剥離することなぐ Siウェハの下面側 の SiO層もフォトレジストで被覆した。エッチング液として希釈フッ酸水溶液を用い、 Opened a via hole. The SiO layer on the lower side of the Si wafer without stripping the photoresist was also covered with photoresist. Diluted hydrofluoric acid aqueous solution is used as an etchant,
2 2
ビアホールを通じたエッチング液の循環により、 Ti犠牲層とその下方に位置する厚さ 1500nmの SiO層とをエッチング除去した。酸素プラズマ中でのアツシングによりレ  By etching solution circulation through the via hole, the Ti sacrificial layer and the 1500 nm thick SiO layer located below it were removed by etching. Recording by oxygen ashing in oxygen plasma
2  2
ジストを除去して、図 4Bに示した振動空間 20を作製した。以上の製造工程により、図 4A、 4B及び 4Cに記載の構造の圧電薄膜共振子を製造した。表 1〜表 3に振動領 域の各層の材質と厚みを、表 1に下部電極のロッキング ·カーブ半値幅(FWHM)を 、表 3に圧電体薄膜の形成条件とロッキング 'カーブ半値幅 (FWHM)等の結晶性状 を 載した。  The vibration space 20 shown in FIG. 4B was created by removing the dies. Through the above manufacturing process, a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B and 4C was manufactured. Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking curve half width (FWHM). ) And other crystalline properties.
[0105] 表 1および表 2に、サイドスぺーサ一の端面の傾斜角 θ 1および電極本体の端面の 傾斜角 θ 2を記載した。これらは、それぞれ、図 7Dに図示された各層の端部表面 (端 面または上面)と下面との為す角度である。 [0105] Table 1 and Table 2 show the inclination angle θ 1 of the end face of the side spacer 1 and the end face of the electrode body. The inclination angle θ 2 is shown. These are the angles between the end surface (end surface or top surface) and the bottom surface of each layer shown in FIG. 7D.
[0106] また、カスケード 'マイクロテック製 GSGマイクロプロ一バーとネットワークアナライザ 一を使用して、上記圧電薄膜共振子の電極端子 15b, 17b間のインピーダンス特性 を測定してスキヤッタリング'パラメータを求めると共に、共振周波数 fおよび反共振周 波数 f の測定値から、電気機械結合係数 k 2を、インピーダンス特性における共振ピ a t [0106] In addition, the impedance characteristic between the electrode terminals 15b and 17b of the piezoelectric thin-film resonator is measured using a cascade 'Microtech GSG micro prober and a network analyzer' to obtain the parameter "Scattering". From the measured values of the resonance frequency f and antiresonance frequency f, the electromechanical coupling coefficient k 2 is
ークおよび反共振ピークのピーク波形 (ピークトップから 3dB離れた位置におけるピ ーク幅)力も共振ピークおよび反共振ピークの音響品質係数 Qを求めた。得られた圧 電薄膜共振子の厚み振動の基本周波数、電気機械結合係数 k 2、音響品質係数 Q、 挿入損失最小値 (順方向伝送係数、 S の共振点における値)およびスプリアス特性 The peak quality of the peak and antiresonance peak (peak width at a position 3 dB away from the peak top) and the acoustic quality factor Q of the resonance peak and antiresonance peak were also obtained. Thickness vibration fundamental frequency, electromechanical coupling coefficient k 2 , acoustic quality factor Q, insertion loss minimum value (forward transmission coefficient, value at the resonance point of S) and spurious characteristics of the obtained piezoelectric thin film resonator
21  twenty one
は、表 3に示す通りであった。  Were as shown in Table 3.
[0107] (実施例 2)  [Example 2]
本実施例では、以下のようにして、図 4A、 4Bおよび 4Cに示されている構造の圧電 薄膜共振子を作製した。即ち、下部絶縁層および上部絶縁層の材質と厚さ、下部電 極の形成条件および厚さ、サイドスぺーサ一の材質と傾斜角、 A1N圧電薄膜の形成 条件および厚さ、ならびに上部電極の材質と厚さを変えた以外は、実施例 1と同様な 方法を用い、図 4A、 4Bおよび 4Cに記載の圧電薄膜共振子を製造した。表 1〜表 3 に振動領域の各層の材質と厚みを、表 1に下部電極のロッキング 'カーブ半値幅 (F WHM)を、表 3に圧電体薄膜の形成条件とロッキング 'カーブ半値幅 (FWHM)等 の結晶性状を記載した。  In this example, a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows. That is, the material and thickness of the lower insulating layer and the upper insulating layer, the formation condition and thickness of the lower electrode, the material and inclination angle of the side spacer, the formation condition and thickness of the A1N piezoelectric thin film, and the material of the upper electrode The piezoelectric thin film resonator shown in FIGS. 4A, 4B, and 4C was manufactured using the same method as in Example 1 except that the thickness was changed. Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking 'curve half width (F WHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking' curve half width (FWHM). ) Etc. were described.
[0108] また、カスケード 'マイクロテック製 GSGマイクロプロ一バーとネットワークアナライザ 一を使用して、上記圧電薄膜共振子の電極端子 15b, 17b間のインピーダンス特性 を測定してスキヤッタリング'パラメータを求めると共に、共振周波数 fおよび反共振周 波数 f の測定値から、電気機械結合係数 k 2を、インピーダンス特性における共振ピ a t [0108] In addition, using a cascade 'Microtech GSG micro prober and a network analyzer', the impedance characteristics between the electrode terminals 15b and 17b of the piezoelectric thin film resonator are measured to obtain the 'suttering' parameter. From the measured values of the resonance frequency f and antiresonance frequency f, the electromechanical coupling coefficient k 2 is
ークおよび反共振ピークのピーク波形 (ピークトップから 3dB離れた位置におけるピ ーク幅)力も共振ピークおよび反共振ピークの音響品質係数 Qを求めた。得られた圧 電薄膜共振子の厚み振動の基本周波数、電気機械結合係数 k 2、音響品質係数 Q、 挿入損失最小値 (順方向伝送係数、 S の共振点における値)およびスプリアス特性 は、表 3に示す通りであった。 The peak quality of the peak and antiresonance peak (peak width at a position 3 dB away from the peak top) and the acoustic quality factor Q of the resonance peak and antiresonance peak were also obtained. Thickness vibration fundamental frequency, electromechanical coupling coefficient k 2 , acoustic quality factor Q, insertion loss minimum value (forward transmission coefficient, value at the resonance point of S) and spurious characteristics of the obtained piezoelectric thin film resonator Were as shown in Table 3.
[0109] (実施例 3) [Example 3]
本実施例では、以下のようにして、図 4A、 4Bおよび 4Cに示されている構造の圧電 薄膜共振子を作製した。即ち、熱酸化法により、厚さ 625 mの Siウェハの両面に、 厚さ lOOOnmの SiO層を形成した後、 Siウェハ上面上の SiO層上に犠牲層となる  In this example, a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows. That is, after forming a lOOOnm thick SiO layer on both sides of a 625 m thick Si wafer by thermal oxidation, it becomes a sacrificial layer on the SiO layer on the upper surface of the Si wafer.
2 2  twenty two
厚さ 80nmの Ti薄膜を堆積して、フォトリソグラフィにより、所望のエアーブリッジ形状 にパターン形成した。次に、反応性スパッタリング法により、犠牲層および SiO層の  A Ti thin film with a thickness of 80 nm was deposited and patterned into a desired air bridge shape by photolithography. Next, the sacrificial layer and the SiO layer are formed by reactive sputtering.
2 露出面上に、表 1に記載した材質と厚さの下部絶縁層を形成した。この下部絶縁層 上に、 DCマグネトロンスパッタ法にて、表 1に記載した厚さの Mo薄膜を堆積して下 部電極を形成し、さらに、フォトリソグラフィによりパターンィ匕した。ノターン形成に際し ては、意図的にデフォーカスさせた紫外光でレジストを露光し、現像して、レジストの 形状をなだらかな蒲鋅型形状にした。レジスト端面になだらかな傾斜を持たすことで 、ドライエッチング時に、電極パターン端面 (側壁)の傾斜角 Θ 2を制御することに注 力した。  2 On the exposed surface, a lower insulating layer with the materials and thicknesses listed in Table 1 was formed. On this lower insulating layer, a Mo thin film having a thickness shown in Table 1 was deposited by DC magnetron sputtering to form a lower electrode, and further patterned by photolithography. In forming the pattern, the resist was exposed to ultraviolet light that was intentionally defocused and developed to make the resist shape into a gentle saddle shape. We focused on controlling the tilt angle Θ 2 of the electrode pattern end face (sidewall) during dry etching by providing a gentle slope on the resist end face.
[0110] X線回折装置により下部電極の結晶配向性を評価した結果、表 1に示すごとく Mo ( 110)面のロッキング 'カーブ FWHMは 1. 5degであった。この下部 Mo電極および 下部絶縁層の露出面上に、純度 99. 999%の A1ターゲットを用い、反応性 RFマグ ネトロンスパッタ法により、表 3に記載の条件で、圧電体薄膜としての A1N薄膜を形成 した。 X線回折法により A1N圧電体薄膜の結晶性を評価した結果、(0002)面を初め とする c面に対応したピークのみ観測され、表 3に示すごとくそのロッキング 'カーブ半 値幅(FWHM)は 1. 0°であった。次に、 DCマグネトロンスパッタ法により、圧電体薄 膜上に表 2に記載した厚さの Mo薄膜を堆積して上部電極を形成し、フォトリソグラフ ィにより、図 4Aに示すごとく平面寸法 150 X 170 mの矩形に近 、形状 (対辺は若 干非平行)にパターンィ匕した。  [0110] As a result of evaluating the crystal orientation of the lower electrode using an X-ray diffractometer, the rocking curve FWHM of the Mo (110) plane was 1.5 deg as shown in Table 1. An A1N thin film as a piezoelectric thin film was formed on the exposed surfaces of the lower Mo electrode and lower insulating layer by reactive RF magnetron sputtering using an A1 target with a purity of 99.999% under the conditions shown in Table 3. Formed. As a result of evaluating the crystallinity of the A1N piezoelectric thin film by the X-ray diffraction method, only peaks corresponding to the c-plane, including the (0002) plane, were observed. As shown in Table 3, the rocking 'curve full width at half maximum (FWHM) was 1. It was 0 °. Next, an upper electrode is formed by depositing a Mo thin film having the thickness shown in Table 2 on the piezoelectric thin film by DC magnetron sputtering, and a planar dimension 150 X 170 as shown in FIG. 4A by photolithography. It is close to the rectangle of m and patterned in a shape (the opposite side is slightly non-parallel).
[0111] 続いて、下部電極、圧電体薄膜、上部電極および下部絶縁層の露出面上に、低圧 CVD法により酸窒化ケィ素(Si ON )膜を 300〜900nm堆積させた。 ICPプラズマ  [0111] Subsequently, a 300-900 nm thick silicon oxynitride (Si ON) film was deposited on the exposed surfaces of the lower electrode, the piezoelectric thin film, the upper electrode, and the lower insulating layer by a low pressure CVD method. ICP plasma
2 2  twenty two
を用いた異方性ドライエッチングで、上部電極の表面が露出し、上部電極側壁に接 した Si ON膜の表面が上部電極表面と平滑に繋がるまでエッチバックすることにより 、 ノターニングされた上部電極の側壁の周囲のみに Si ON膜を残して、所望の構 Etch back until the surface of the upper electrode is exposed and the surface of the Si ON film in contact with the side wall of the upper electrode is smoothly connected to the surface of the upper electrode by anisotropic dry etching using Leave the Si ON film only around the sidewall of the upper electrode that has been turned, leaving the desired structure.
2 2  twenty two
造のサイドスぺーサ一を形成した。  A side spacer was formed.
[0112] 次に、ドライエッチングとそれに続くウエットエッチングにより、圧電体薄膜を所定の 形状にパターンィ匕した。下部電極、圧電体薄膜、上部電極およびそのサイドスべ一 サー、ならびに下部絶縁層の露出面上に、上部絶縁層となる表 2に記載した材質と 厚さの薄膜を堆積して、パターン形成した。次に、下部電極、圧電体薄膜、上部電極 およびそのサイドスぺーサ一、上部絶縁層、ならびに下部絶縁層の露出面上に、フ オトレジストを塗布し、図 4Bに示した振動空間を形成するためのビアホールに対応し た位置にビアホールパターンを形成し、 C1と Arとの混合ガスを用いたドライエツチン [0112] Next, the piezoelectric thin film was patterned into a predetermined shape by dry etching and subsequent wet etching. On the exposed surface of the lower electrode, piezoelectric thin film, upper electrode and its side spacers, and lower insulating layer, a thin film of the material and thickness described in Table 2 serving as the upper insulating layer was deposited and patterned. . Next, a photoresist is applied on the exposed surface of the lower electrode, piezoelectric thin film, upper electrode and its side spacer, upper insulating layer, and lower insulating layer to form the vibration space shown in FIG. 4B. Dry Ettin using a mixed gas of C1 and Ar with a via hole pattern formed at a position corresponding to the via hole of
2  2
グによりビアホールを開けた。フォトレジストを剥離することなぐ Siウェハの下面側の SiO層もフォトレジストで被覆した。エッチング液として希釈フッ酸水溶液を用い、ビ Opened a via hole. The SiO layer on the lower surface side of the Si wafer without peeling off the photoresist was also coated with the photoresist. Diluted hydrofluoric acid aqueous solution is used as the etchant, and
2 2
ァホールを通じたエッチング液の循環により、 Ti犠牲層とその下方に位置する厚さ 1 OOOnmの SiO層とをエッチング除去した。酸素プラズマ中でのアツシングによりレジ  The Ti sacrificial layer and the SiO layer with a thickness of 1 OOOnm below it were removed by etching by circulating the etching solution through the hole. Cash register by ashing in oxygen plasma
2  2
ストを除去して、図 4Bに示した振動空間 20を作製した。以上の製造工程により、図 4 A、 4B及び 4Cに記載の構造の圧電薄膜共振子を製造した。表 1〜表 3に振動領域 の各層の材質と厚みを、表 1に下部電極のロッキング ·カーブ半値幅(FWHM)を、 表 3に圧電体薄膜の形成条件とロッキング 'カーブ半値幅 (FWHM)等の結晶性状 を 載した。  The vibration space 20 shown in FIG. 4B was created by removing the strike. The piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B and 4C was manufactured by the above manufacturing process. Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking 'curve half width (FWHM). The crystal properties such as
[0113] また、実施例 1と同様のインピーダンス特性測定により、圧電薄膜共振子の高周波 特性および共振特性を評価した。得られた圧電薄膜共振子の厚み振動の基本周波 数、電気機械結合係数 k 2、音響品質係数 Q、挿入損失最小値 (順方向伝送係数、 S の共振点における値)およびスプリアス特性は、表 3に示す通りであった。[0113] Further, the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1. The resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic (forward transmission coefficient, the value at the resonance point of S), the table It was as shown in 3.
21 twenty one
[0114] (実施例 4)  [0114] (Example 4)
本実施例では、以下のようにして、図 7Aおよび 7Bに示されている構造の圧電薄膜 共振子を作製した。  In this example, a piezoelectric thin film resonator having the structure shown in FIGS. 7A and 7B was produced as follows.
即ち、熱酸化法により、厚さ 300 mの(100) Si基板の両面に、厚さ lOOOnmの SiO 層を形成した後、 Si基板下面上の SiO層上に所望の振動空間 20の形状に対応し That is, by forming a SiO layer having a thickness of lOOOnm on both sides of a (100) Si substrate having a thickness of 300 m by thermal oxidation, it corresponds to the shape of the desired vibration space 20 on the SiO layer on the lower surface of the Si substrate. Shi
2 2 twenty two
たマスクパターンを形成し、該パターンに対応した領域の SiO層をエッチング除去し た。同時に、 Si基板上面上の SiO層を総てエッチング除去した。次に、反応性スパッ A mask pattern is formed, and the SiO layer in the region corresponding to the pattern is removed by etching. It was. At the same time, the entire SiO layer on the upper surface of the Si substrate was removed by etching. Next, reactive spatter
2  2
タリング法により、 Si基板上面上の SiO層上に、表 1に記載した材質と厚さの下部絶  The bottom layer of the materials and thicknesses listed in Table 1 are formed on the SiO layer on the top surface of the Si substrate by the tulling method.
2  2
縁層を形成した。この下部絶縁層上に、 DCマグネトロンスパッタ法にて、表 1に記載 した材質と厚さの Cr密着層と Mo薄膜を順番に堆積して下部電極を形成し、さらに、 フォトリソグラフィによりパターンィ匕した。パターン形成に際しては、意図的にデフォー カスさせた紫外光でレジストを露光し、現像して、レジストの形状をなだらかな蒲鋅型 形状にした。レジスト端面になだらかな傾斜を持たすことで、ドライエッチング時に、電 極パターン端面 (側壁)の傾斜角 Θ 2を制御することに注力した。  An edge layer was formed. On this lower insulating layer, the lower electrode was formed by sequentially depositing a Cr adhesion layer and a Mo thin film of the materials and thicknesses shown in Table 1 by DC magnetron sputtering, and then patterning by photolithography. . When forming the pattern, the resist was exposed to intentionally defocused ultraviolet light and developed to give the resist a gentle bowl shape. Focusing on controlling the tilt angle Θ 2 of the electrode pattern end face (sidewall) during dry etching by providing a gentle slope on the resist end face.
[0115] X線回折装置により下部電極の結晶配向性を評価した結果、表 1に示すごとく Mo ( 110)面のロッキング 'カーブ FWHMは 1. 8degであった。下部 Mo電極および下部 絶縁層の露出面上に、純度 99. 999%の A1ターゲットを用い、反応性 RFマグネトロ ンスパッタ法により、表 3に記載の条件で、圧電体薄膜としての A1N薄膜を形成した。 X線回折法により A1N圧電体薄膜の結晶性を評価した結果、(0002)面を初めとす る c面に対応したピークのみ観測され、表 3に示すごとぐそのロッキング 'カーブ半値 幅(FWHM)は 1. 3°であった。  [0115] As a result of evaluating the crystal orientation of the lower electrode using an X-ray diffractometer, as shown in Table 1, the rocking curve FWHM of the Mo (110) plane was 1.8 deg. An A1N thin film as a piezoelectric thin film was formed on the exposed surfaces of the lower Mo electrode and the lower insulating layer by reactive RF magnetron sputtering using an A1 target with a purity of 99.999% under the conditions shown in Table 3. . As a result of evaluating the crystallinity of the A1N piezoelectric thin film by the X-ray diffraction method, only peaks corresponding to the c-plane, including the (0002) plane, were observed. As shown in Table 3, the rocking 'curve half-width (FWHM) ) Was 1.3 °.
[0116] 次に、 DCマグネトロンスパッタ法により、圧電体薄膜上に表 2に記載した厚さの Mo 薄膜と A1薄膜を順番に堆積させて上部電極を形成し、フォトリソグラフィにより、図 7A に示すごとく平面寸法 140 X 160 mの矩形に近い形状 (対辺は若干非平行)にパ ターンィ匕した。続いて、下部電極、圧電体薄膜、上部電極、ならびに下部絶縁層の 露出面上に、プラズマ CVD法により酸化ケィ素(SiO )膜を 300  Next, an upper electrode is formed by sequentially depositing the Mo thin film and the A1 thin film having the thicknesses shown in Table 2 on the piezoelectric thin film by DC magnetron sputtering, and the upper electrode is formed by photolithography, as shown in FIG. 7A. Thus, it was patterned in a shape close to a rectangle with a plane size of 140 x 160 m (the opposite side was slightly non-parallel). Subsequently, a silicon oxide (SiO 2) film is formed on the exposed surfaces of the lower electrode, piezoelectric thin film, upper electrode, and lower insulating layer by plasma CVD.
2 〜900nm堆積させ た。 ICPプラズマを用いた異方性ドライエッチングで上部電極の表面が露出し、上部 電極側壁に接した SiO膜の表面が下部電極表面と平滑に繋がるまでエッチバックす  Deposited from 2 to 900 nm. Etch back until the surface of the upper electrode is exposed by anisotropic dry etching using ICP plasma, and the surface of the SiO film in contact with the side wall of the upper electrode is smoothly connected to the surface of the lower electrode.
2  2
ることにより、パターユングされた下部電極の外周部側壁の周囲のみに SiO膜を残し  As a result, the SiO film is left only around the outer peripheral side wall of the patterned lower electrode.
2 て、サイドスぺーサ一を形成した。次に、ドライエッチングにより、圧電体薄膜を所定 の形状にパターン化した。  2 to form a side spacer. Next, the piezoelectric thin film was patterned into a predetermined shape by dry etching.
[0117] さらに、下部電極、圧電体薄膜、上部電極およびそのサイドスぺーサ一、ならびに 下部絶縁層の露出面上に、反応性スパッタリング法により、上部絶縁層となる表 2に 記載した材質と厚さの薄膜を堆積して、リフトオフ法によってパターン形成した。 [0118] 下部電極、圧電体薄膜、上部電極およびそのサイドスぺーサ一、上部絶縁層、なら びに下部絶縁層の露出面を、プロテクトワックスで被覆し、 Si基板下面上のパター- ングされた SiO層をマスクとして、 SFガスと C Fガスとを交互に用いて深堀エツチン [0117] Furthermore, the materials and thicknesses listed in Table 2 that will form the upper insulating layer on the exposed surface of the lower electrode, the piezoelectric thin film, the upper electrode and its side spacers, and the lower insulating layer by reactive sputtering. A thin film was deposited and patterned by a lift-off method. [0118] The lower electrode, the piezoelectric thin film, the upper electrode and its side spacer, the upper insulating layer, and the exposed surface of the lower insulating layer are covered with protective wax, and patterned SiO 2 on the lower surface of the Si substrate. Etching Fukahori using SF gas and CF gas alternately using the layer as a mask
2 6 4 8  2 6 4 8
グを行う Deep RIE (Reactive Ion Etching)法により、メンブランに対応した領域 の Si基板をエッチング除去して、振動空間を形成し、図 7A、 7Bおよび 7Cに記載の 構造の圧電薄膜共振子を製造した。表 1〜表 3に振動領域の各層の材質と厚みを、 表 1に下部 MoZCr積層電極のロッキング.カーブ半値幅(FWHM)を、表 3に A1N 圧電体薄膜の形成条件およびロッキング 'カーブ半値幅 (FWHM)等の結晶性状を 記載した。  Using the deep RIE (Reactive Ion Etching) method, the silicon substrate in the region corresponding to the membrane is etched away to form a vibration space, and a piezoelectric thin film resonator with the structure shown in Figs. 7A, 7B, and 7C is manufactured. did. Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the rocking curve half-width (FWHM) of the lower MoZCr laminated electrode, and Table 3 shows the A1N piezoelectric thin film formation conditions and rocking 'curve half-width. Crystal properties such as (FWHM) are described.
[0119] また、実施例 1と同様のインピーダンス特性測定により、圧電薄膜共振子の高周波 特性および共振特性を評価した。得られた圧電薄膜共振子の厚み振動の基本周波 数、電気機械結合係数 k 2、音響品質係数 Q、挿入損失最小値 (順方向伝送係数、 S [0119] Further, the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1. The resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value (forward transmission coefficient, S
21の共振点における値)およびスプリアス特性は、表 3に示す通りであった。 The values at 21 resonance points) and spurious characteristics are shown in Table 3.
[0120] (実施例 5および 6)  [0120] (Examples 5 and 6)
本実施例では、以下のようにして、図 7A、 7Bおよび 7Cに示されている構造の圧電 薄膜共振子を作製した。即ち、下部絶縁体層および上部絶縁体層の材質と厚さ、下 部電極および上部電極の材質と形成条件と厚さ、 A1N圧電薄膜の形成条件を変え、 下部電極および上部電極の双方につき外周端部の周囲にサイドスぺーサ一を設け た以外は、実施例 4と同様な方法を用い、図 7A、 7Bおよび 7Cに記載の圧電薄膜共 振子を製造した。表 1〜表 3に振動領域の各層の材質と厚みを、表 1に下部電極の口 ッキング'カーブ半値幅(FWHM)を、表 3に圧電体薄膜の形成条件とロッキング '力 ーブ半値幅 (FWHM)等の結晶性状を記載した。  In this example, a piezoelectric thin film resonator having the structure shown in FIGS. 7A, 7B and 7C was produced as follows. That is, the material and thickness of the lower insulator layer and the upper insulator layer, the material and formation conditions and thickness of the lower electrode and the upper electrode, and the formation conditions of the A1N piezoelectric thin film are changed. A piezoelectric thin film resonator shown in FIGS. 7A, 7B, and 7C was manufactured in the same manner as in Example 4 except that a side spacer was provided around the end. Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode plugging 'curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking' force half width. Crystal properties such as (FWHM) are described.
[0121] また、実施例 1と同様のインピーダンス特性測定により、圧電薄膜共振子の高周波 特性および共振特性を評価した。得られた圧電薄膜共振子の厚み振動の基本周波 数、電気機械結合係数 k 2、音響品質係数 Q、挿入損失最小値 (順方向伝送係数、 S の共振点における値)およびスプリアス特性は、表 3に示す通りであった。[0121] Further, the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1. The resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic (forward transmission coefficient, the value at the resonance point of S), the table It was as shown in 3.
21 twenty one
[0122] [表 1] ^〔〕0123 [0122] [Table 1] ^ [] 0123
Figure imgf000038_0001
Figure imgf000038_0001
〔〕0124 [] 0124
Figure imgf000039_0001
Figure imgf000039_0001
*振動領域がメンブラン端よりも内側にある場合を正に、振動領域端が支持領域に重なる場合を負にとった値 * Value when the vibration area is inside the membrane edge, positive, and when the vibration area edge overlaps the support area, negative value
Figure imgf000040_0001
(実施例 7)
Figure imgf000040_0001
(Example 7)
本実施例では、以下のようにして、図 4A 4Bおよび 4Cに示されている構造の圧電 薄膜共振子を作製した。即ち、下部絶縁体層として低圧 CVD法による SiN層を使 用し、上下部絶縁体層の材質と厚さ、下部電極および上部電極の形成条件と材質と 厚さ、 A1N圧電薄膜の形成条件を変え、下部電極および上部電極の双方につき外 周端部の周囲にサイドスぺーサ を設けた以外は、実施例 3と同様な方法を用い、 図 4A、 4Bおよび 4Cに記載の圧電薄膜共振子を製造した。表 1〜表 3に振動領域の 各層の材質と厚みを、表 1に下部電極のロッキング ·カーブ半値幅(FWHM)を、表 3 に圧電体薄膜の形成条件とロッキング 'カーブ半値幅 (FWHM)等の結晶性状を記 載した。 In this example, a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was produced as follows. In other words, a low-pressure CVD SiN layer is used as the lower insulator layer, and the material and thickness of the upper and lower insulator layers, the formation conditions and materials and thickness of the lower and upper electrodes, and the formation conditions of the A1N piezoelectric thin film In the same manner as in Example 3 except that side spacers are provided around the outer peripheral edge for both the lower electrode and the upper electrode. The piezoelectric thin film resonator shown in FIGS. 4A, 4B and 4C was manufactured. Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking 'curve half width (FWHM). The crystal properties such as were described.
[0126] また、実施例 1と同様のインピーダンス特性測定により、圧電薄膜共振子の高周波 特性および共振特性を評価した。得られた圧電薄膜共振子の厚み振動の基本周波 数、電気機械結合係数 k 2、音響品質係数 Q、挿入損失最小値 (順方向伝送係数、 S の共振点における値)およびスプリアス特性は、表 3に示す通りであった。[0126] In addition, the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1. The resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic (forward transmission coefficient, the value at the resonance point of S), the table It was as shown in 3.
21 twenty one
[0127] (実施例 8および 9)  [Examples 8 and 9]
本実施例では、以下のようにして、図 4A、 4Bおよび 4Cに示されている構造の圧電 薄膜共振子を作製した。即ち、下部絶縁体層および上部絶縁体層の材質と厚さ、下 部電極および上部電極の形成条件と材質と厚さ、サイドスぺーサ一の材質と傾斜角 、 A1N圧電薄膜の形成条件を変え、下部電極および上部電極の双方につき外周端 部の周囲にサイドスぺーサ一を設けた以外は、実施例 3と同様な方法を用い、図 4A 、 4Bおよび 4Cに記載の構造の圧電薄膜共振子を製造した。表 1〜表 3に振動領域 の各層の材質と厚みを、表 1に下部電極のロッキング ·カーブ半値幅(FWHM)を、 表 3に圧電体薄膜の形成条件とロッキング 'カーブ半値幅 (FWHM)等の結晶性状 を 載した。  In this example, a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows. That is, the material and thickness of the lower insulator layer and the upper insulator layer, the formation conditions and material and thickness of the lower electrode and the upper electrode, the material and inclination angle of the side spacer, and the formation conditions of the A1N piezoelectric thin film are changed. A piezoelectric thin film resonator having the structure described in FIGS. 4A, 4B, and 4C was used in the same manner as in Example 3 except that side spacers were provided around the outer peripheral edge of both the lower electrode and the upper electrode. Manufactured. Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking 'curve half width (FWHM). The crystal properties such as
[0128] また、実施例 1と同様のインピーダンス特性測定により、圧電薄膜共振子の高周波 特性および共振特性を評価した。得られた圧電薄膜共振子の厚み振動の基本周波 数、電気機械結合係数 k 2、音響品質係数 Q、挿入損失最小値 (順方向伝送係数、 S の共振点における値)およびスプリアス特性は、表 3に示す通りであった。[0128] Further, the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1. The resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic (forward transmission coefficient, the value at the resonance point of S), the table It was as shown in 3.
21 twenty one
[0129] (実施例 10および 11)  [Examples 10 and 11]
本実施例では、以下のようにして、図 4A、 4Bおよび 4Cに示されている構造の圧電 薄膜共振子を作製した。即ち、実施例 3と同様な方法で、但し下部電極および上部 電極の双方につき外周端部の周囲にサイドスぺーサ一を設け、下部絶縁体層、下部 電極、サイドスぺーサ一および A1N薄膜を形成しパターンィ匕した後、上部電極、サイ ドスぺーサ一および上部絶縁体層を形成することにより、図 4A、 4Bおよび 4Cに記載 の構造の圧電薄膜共振子を製造した。表 1〜表 3に振動領域の各層の材質と厚みを 、表 1に下部電極のロッキング ·カーブ半値幅(FWHM)を、表 3に圧電体薄膜の形 成条件とロッキング 'カーブ半値幅 (FWHM)等の結晶性状を記載した。 In this example, a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows. That is, in the same manner as in Example 3, except that both the lower electrode and the upper electrode are provided with side spacers around the outer peripheral edge to form the lower insulator layer, the lower electrode, the side spacer, and the A1N thin film. After patterning, the top electrode, side spacer, and top insulator layer are formed, as shown in Figures 4A, 4B, and 4C. A piezoelectric thin film resonator having the following structure was manufactured. Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking 'curve half width (FWHM). ) And other crystal properties.
[0130] また、実施例 1と同様のインピーダンス特性測定により、圧電薄膜共振子の高周波 特性および共振特性を評価した。得られた圧電薄膜共振子の厚み振動の基本周波 数、電気機械結合係数 k 2、音響品質係数 Q、挿入損失最小値 (順方向伝送係数、 S の共振点における値)およびスプリアス特性は、表 3に示す通りであった。[0130] Further, the high frequency characteristics and the resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1. The resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic (forward transmission coefficient, the value at the resonance point of S), the table It was as shown in 3.
21 twenty one
[0131] (実施例 12〜14)  [0131] (Examples 12 to 14)
本実施例では、以下のようにして、図 4A、 4Bおよび 4Cに示されている構造の圧電 薄膜共振子を作製した。即ち、下部絶縁体層および上部絶縁体層の材質と厚さ、下 部電極の材質、形成条件および厚さ、サイドスぺーサ一の材質と傾斜角、 A1N圧電 薄膜の形成条件、ならびに上部電極の材質と厚さを変え、下部電極および上部電極 の双方につき外周端部の周囲にサイドスぺーサ一を設けた以外は、実施例 3と同様 な方法を用い、図 4A、 4Bおよび 4Cに記載の圧電薄膜共振子を製造した。表 1〜表 3に振動領域の各層の材質と厚みを、表 1に下部電極のロッキング 'カーブ半値幅 (F WHM)を、表 3に圧電体薄膜の形成条件とロッキング 'カーブ半値幅 (FWHM)等 の結晶性状を記載した。  In this example, a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows. That is, the material and thickness of the lower insulator layer and the upper insulator layer, the material of the lower electrode, the formation conditions and thickness, the material and inclination angle of the side spacer, the formation conditions of the A1N piezoelectric thin film, and the upper electrode layer Using the same method as in Example 3 except that the material and thickness were changed and side spacers were provided around the outer periphery of both the lower electrode and the upper electrode, as shown in FIGS. 4A, 4B, and 4C. A piezoelectric thin film resonator was manufactured. Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking 'curve half width (F WHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking' curve half width (FWHM). ) Etc. were described.
[0132] また、実施例 1と同様のインピーダンス特性測定により、圧電薄膜共振子の高周波 特性および共振特性を評価した。得られた圧電薄膜共振子の厚み振動の基本周波 数、電気機械結合係数 k 2、音響品質係数 Q、挿入損失最小値 (順方向伝送係数、 S の共振点における値)およびスプリアス特性は、表 3に示す通りであった。[0132] Further, the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1. The resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic (forward transmission coefficient, the value at the resonance point of S), the table It was as shown in 3.
21 twenty one
[0133] (比較例 1)  [0133] (Comparative Example 1)
本比較例では、以下のようにして、図 4A、 4Bおよび 4Cに示されている構造との比 較のための圧電薄膜共振子を作製した。即ち、下部絶縁体層として低圧 CVD法に よる SiN層を、下部電極密着層として Crを、下部電極主層として Moを使用するなど 、下部絶縁体層および上部絶縁体層の材質と厚さ、下部電極および上部電極の材 質と厚さを変え、サイドスぺーサ一を設けな力つた以外は、実施例 3記載の方法で図 4A、 4Bおよび 4Cに記載の構造に似た構造の圧電薄膜共振子を製造した。表 1〜 表 3に振動領域の各層の材質と厚みを、表 1に下部電極のロッキング 'カーブ半値幅 (FWHM)を、表 3に圧電体薄膜の形成条件とロッキング ·カーブ半値幅(FWHM) 等の結晶性状を記載した。 In this comparative example, a piezoelectric thin film resonator for comparison with the structure shown in FIGS. 4A, 4B, and 4C was produced as follows. That is, the lower insulator layer and the upper insulator layer are made of a low-pressure CVD SiN layer, the lower electrode adhesion layer is Cr, and the lower electrode main layer is Mo. A piezoelectric thin film having a structure similar to that shown in FIGS. 4A, 4B and 4C by the method described in Example 3 except that the material and thickness of the lower electrode and the upper electrode were changed and a side spacer was not provided. A resonator was manufactured. table 1~ Table 3 shows the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking 'curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking curve half width (FWHM). The properties are described.
[0134] また、実施例 1と同様のインピーダンス特性測定により、圧電薄膜共振子の高周波 特性および共振特性を評価した。得られた圧電薄膜共振子の厚み振動の基本周波 数、電気機械結合係数 k 2、音響品質係数 Q、挿入損失最小値 (順方向伝送係数、 S の共振点における値)およびスプリアス特性は、表 3に示す通りであった。[0134] Further, the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1. The resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic (forward transmission coefficient, the value at the resonance point of S), the table It was as shown in 3.
21 twenty one
[0135] (比較例 2)  [0135] (Comparative Example 2)
本比較例では、以下のようにして、図 4A、 4Bおよび 4Cに示されている構造との比 較のための圧電薄膜共振子を作製した。即ち、下部絶縁体層および上部絶縁体層 の材質と厚さ、下部電極および上部電極の材質と厚さを変えた以外は、比較例 1と同 様な方法で、図 4A、 4Bおよび 4Cに記載の構造に似た構造の圧電薄膜共振子を製 造した。表 1〜表 3に振動領域の各層の材質と厚みを、表 1に下部電極のロッキング' カーブ半値幅 (FWHM)を、表 3に圧電体薄膜の形成条件とロッキング 'カーブ半値 幅 (FWHM)等の結晶性状を記載した。  In this comparative example, a piezoelectric thin film resonator for comparison with the structure shown in FIGS. 4A, 4B, and 4C was produced as follows. In other words, except that the material and thickness of the lower insulator layer and the upper insulator layer and the material and thickness of the lower electrode and the upper electrode were changed, the same method as in Comparative Example 1 was applied to FIGS. 4A, 4B, and 4C. A piezoelectric thin film resonator having a structure similar to that described was manufactured. Table 1 to Table 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking 'curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking' curve half width (FWHM). Etc. were described.
[0136] また、実施例 1と同様のインピーダンス特性測定により、圧電薄膜共振子の高周波 特性および共振特性を評価した。得られた圧電薄膜共振子の厚み振動の基本周波 数、電気機械結合係数 k 2、音響品質係数 Q、挿入損失最小値 (順方向伝送係数、 S [0136] Further, the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1. The resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value (forward transmission coefficient, S
21の共振点における値)およびスプリアス特性は、表 3に示す通りであった。 The values at 21 resonance points) and spurious characteristics are shown in Table 3.
[0137] (比較例 3〜6)  [0137] (Comparative Examples 3 to 6)
本比較例では、以下のようにして、図 4A、 4Bおよび 4Cに示されている構造との比 較のための圧電薄膜共振子を作製した。即ち、下部絶縁体層および上部絶縁体層 の材質と厚さ、下部電極および上部電極の材質と厚さを変えた以外は、比較例 1と同 様な方法で、図 4A、 4Bおよび 4Cに記載の構造に似た構造の圧電薄膜共振子を製 造した。表 1〜表 3に振動領域の各層の材質と厚みを、表 1に下部電極のロッキング' カーブ半値幅 (FWHM)を、表 3に圧電体薄膜の形成条件とロッキング 'カーブ半値 幅 (FWHM)等の結晶性状を記載した。  In this comparative example, a piezoelectric thin film resonator for comparison with the structure shown in FIGS. 4A, 4B, and 4C was produced as follows. In other words, except that the material and thickness of the lower insulator layer and the upper insulator layer and the material and thickness of the lower electrode and the upper electrode were changed, the same method as in Comparative Example 1 was applied to FIGS. 4A, 4B, and 4C. A piezoelectric thin film resonator having a structure similar to that described was manufactured. Table 1 to Table 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking 'curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking' curve half width (FWHM). Etc. were described.
[0138] また、実施例 1と同様のインピーダンス特性測定により、圧電薄膜共振子の高周波 特性および共振特性を評価した。得られた圧電薄膜共振子の厚み振動の基本周波 数、電気機械結合係数 2、音響品質係数 Q、挿入損失最小値 (順方向伝送係数、 S の共振点における値)およびスプリアス特性は、表 3に示す通りであった。[0138] Further, by measuring the impedance characteristics in the same manner as in Example 1, Characteristics and resonance characteristics were evaluated. Table 3 shows the fundamental frequency of thickness vibration, electromechanical coupling coefficient 2 , acoustic quality factor Q, minimum insertion loss (forward transmission coefficient, value at the resonance point of S) and spurious characteristics of the obtained piezoelectric thin film resonator. It was as shown in.
21 twenty one
[0139] (比較例 7)  [0139] (Comparative Example 7)
本比較例では、以下のようにして、図 4A、 4Bおよび 4Cに示されている構造の圧電 薄膜共振子を作製した。即ち、下部絶縁体層および上部絶縁体層の材質と厚さ、下 部電極および上部電極の材質と厚さを変えたことに加え、下部電極本体部とその外 周端部の周囲に形成するサイドスぺーサ一との界面の段差が 30nmという大きな値と なるようにした以外は、実施例 1記載の方法で、図 4A、 4Bおよび 4Cに記載の構造 の圧電薄膜共振子を製造した。表 1〜表 3に振動領域の各層の材質と厚みを、表 1 に下部電極のロッキング 'カーブ半値幅(FWHM)を、表 3に圧電体薄膜の形成条件 とロッキング 'カーブ半値幅 (FWHM)等の結晶性状を記載した。  In this comparative example, a piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was fabricated as follows. In other words, in addition to changing the material and thickness of the lower and upper insulator layers and the material and thickness of the lower and upper electrodes, it is formed around the lower electrode body and its outer peripheral edge. A piezoelectric thin film resonator having the structure shown in FIGS. 4A, 4B, and 4C was manufactured by the method described in Example 1 except that the step at the interface with the side spacer had a large value of 30 nm. Tables 1 to 3 show the material and thickness of each layer in the vibration region, Table 1 shows the bottom electrode rocking 'curve half width (FWHM), and Table 3 shows the piezoelectric thin film formation conditions and rocking' curve half width (FWHM). Etc. were described.
[0140] また、実施例 1と同様のインピーダンス特性測定により、圧電薄膜共振子の高周波 特性および共振特性を評価した。得られた圧電薄膜共振子の厚み振動の基本周波 数、電気機械結合係数 k 2、音響品質係数 Q、挿入損失最小値 (順方向伝送係数、 S の共振点における値)およびスプリアス特性は、表 3に示す通りであった。 [0140] Further, the high frequency characteristics and resonance characteristics of the piezoelectric thin film resonator were evaluated by the same impedance characteristic measurement as in Example 1. The resulting fundamental frequency of thickness vibration of the piezoelectric thin film resonator, the electromechanical coupling coefficient k 2, the acoustic quality factor Q, the insertion loss minimum value and spurious characteristic (forward transmission coefficient, the value at the resonance point of S), the table It was as shown in 3.

Claims

請求の範囲 The scope of the claims
[1] 振動空間または音響反射層を有する基板と、前記振動空間または音響反射層に面 するように配置された圧電積層構造体とを含んでなり、該圧電積層構造体は振動空 間または音響反射層に近、側力 順に配置された下部電極、圧電薄膜および上部 電極を少なくとも有する圧電薄膜共振子であって、  [1] A substrate having a vibration space or an acoustic reflection layer, and a piezoelectric multilayer structure disposed so as to face the vibration space or the acoustic reflection layer, the piezoelectric multilayer structure being a vibration space or an acoustic reflection layer. A piezoelectric thin film resonator having at least a lower electrode, a piezoelectric thin film, and an upper electrode arranged in order of lateral force close to the reflective layer,
前記下部電極および上部電極のうちの少なくとも一方の電極の外周部の周囲に該 電極とは材質の異なるサイドスぺーサ一が配置されており、該サイドスぺーサ一と前 記電極との界面における段差は 25nm未満であることを特徴とする圧電薄膜共振子  A side spacer having a different material from that of the electrode is disposed around an outer peripheral portion of at least one of the lower electrode and the upper electrode, and a step at an interface between the side spacer and the electrode. Piezoelectric thin film resonator characterized by being less than 25 nm
[2] 前記圧電薄膜は窒化アルミニウム (A1N)力 なることを特徴とする、請求項 1に記載 の圧電薄膜共振子。 2. The piezoelectric thin film resonator according to claim 1, wherein the piezoelectric thin film has an aluminum nitride (A1N) force.
[3] 前記窒化アルミニウム力 なる圧電薄膜の(0002)回折ピークのロッキング 'カーブ半 値幅 (FWHM)が 0. 8〜1. 6°であることを特徴とする、請求項 2に記載の圧電薄膜 共振子。  [3] The piezoelectric thin film according to claim 2, wherein the (0002) diffraction peak rocking 'curve half-width (FWHM) of the piezoelectric thin film having the aluminum nitride force is 0.8 to 1.6 °. Resonator.
[4] 前記サイドスぺーサ一と前記電極との界面における段差は 3nm未満であることを特 徴とする、請求項 1に記載の圧電薄膜共振子。  4. The piezoelectric thin film resonator according to claim 1, wherein a step at the interface between the side spacer and the electrode is less than 3 nm.
[5] 前記サイドスぺーサ一は上面が下面に対してスロープ状に形成されていることを特徴 とする、請求項 1に記載の圧電薄膜共振子。 5. The piezoelectric thin film resonator according to claim 1, wherein the side spacer 1 has an upper surface formed in a slope shape with respect to a lower surface.
[6] 前記サイドスぺーサ一は前記下面に対する上面の傾斜角が 3〜45度であることを特 徴とする、請求項 1に記載の圧電薄膜共振子。 6. The piezoelectric thin film resonator according to claim 1, wherein the side spacer has an upper surface tilt angle of 3 to 45 degrees with respect to the lower surface.
[7] 前記サイドスぺーサ一の音響インピーダンスは前記電極の音響インピーダンスよりも 大き!/、ことを特徴とする、請求項 1に記載の圧電薄膜共振子。 7. The piezoelectric thin film resonator according to claim 1, wherein an acoustic impedance of the side spacer is greater than / less than an acoustic impedance of the electrode.
[8] 前記サイドスぺーサ一は絶縁体力 なることを特徴とする、請求項 1に記載の圧電薄 膜共振子。 [8] The piezoelectric thin film resonator according to [1], wherein the side spacer has an insulating force.
[9] 前記サイドスぺーサ一は、二酸化ケイ素(SiO )、窒化ケィ素(SiN )、酸窒化ケィ素  [9] The side spacer includes silicon dioxide (SiO 2), silicon nitride (SiN), and oxynitride silicon.
2  2
(Si ON )、窒化アルミニウム (A1N)、酸窒化アルミニウム(AIO N )、酸化アルミ二 (Si ON), aluminum nitride (A1N), aluminum oxynitride (AIO N), aluminum oxide
2 2 y 2 2 y
ゥム(Al O )、酸化ジルコニウム(ZrO )および酸化タンタル (Ta O )からなる群から From the group consisting of hum (Al 2 O 3), zirconium oxide (ZrO 2) and tantalum oxide (Ta 2 O 3)
2 3 2 2 5 選ばれる少なくとも一種の材質を主成分とする絶縁体力 なることを特徴とする、請求 項 8に記載の圧電薄膜共振子。 2 3 2 2 5 Insulator strength consisting mainly of at least one material selected Item 9. The piezoelectric thin film resonator according to Item 8.
[10] 前記サイドスぺーサ一は導電体力もなることを特徴とする、請求項 1に記載の圧電薄 膜共振子。 10. The piezoelectric thin film resonator according to claim 1, wherein the side spacer also has a conductor force.
[11] 前記サイドスぺーサ一は、タングステン (W)、タングステンシリサイド (WSi )およびィ リジゥム (Ir)からなる群から選ばれる少なくとも一種の材質を主成分とする導電体から なることを特徴とする、請求項 10に記載の圧電薄膜共振子。  [11] The side spacer is made of a conductor whose main component is at least one material selected from the group consisting of tungsten (W), tungsten silicide (WSi), and iridium (Ir). The piezoelectric thin film resonator according to claim 10.
[12] 前記上部電極および下部電極の少なくとも一方はモリブデン力 なることを特徴とす る、請求項 1に記載の圧電薄膜共振子。  12. The piezoelectric thin film resonator according to claim 1, wherein at least one of the upper electrode and the lower electrode has a molybdenum force.
[13] 前記上部電極および下部電極の少なくとも一方は、モリブデン、ルテニウム、ァノレミ- ゥム、イリジウム、コバルト、ニッケル、白金および銅力 なる群力 選ばれる 2種類の 金属の積層体で構成されていることを特徴とする、請求項 1に記載の圧電薄膜共振 子。  [13] At least one of the upper electrode and the lower electrode is composed of a laminate of two kinds of metals selected from the group force of molybdenum, ruthenium, anorium, iridium, cobalt, nickel, platinum, and copper. 2. The piezoelectric thin film resonator according to claim 1, wherein
[14] 前記下部電極は厚さ dlの下側金属層と厚さ d2の上側金属層との積層体であり、 dl [14] The lower electrode is a laminate of a lower metal layer having a thickness dl and an upper metal layer having a thickness d2, and dl
/d2> lであり且つ 150nmく(dl + d2)く 450nmであることを特徴とする、請求項/ d2> l and 150 nm (dl + d2) 450 nm
1に記載の圧電薄膜共振子。 1. The piezoelectric thin film resonator according to 1.
[15] 前記下部電極の厚さ dlの下側金属層はアルミニウムを主成分とする金属薄膜であり[15] The lower metal layer dl of the lower electrode is a metal thin film mainly composed of aluminum.
、前記下部電極の厚さ d2の上側金属層はモリブデンを主成分とする金属薄膜である ことを特徴とする、請求項 14に記載の圧電薄膜共振子。 15. The piezoelectric thin film resonator according to claim 14, wherein the upper metal layer having a thickness d2 of the lower electrode is a metal thin film mainly composed of molybdenum.
[16] 前記上部電極は厚さ d3の下側金属層と厚さ d4の上側金属層との積層体であり、 d4[16] The upper electrode is a laminate of a lower metal layer having a thickness of d3 and an upper metal layer having a thickness of d4, and d4
/d3 > lであり且つ 150nmく (d3 + d4)く 450nmであることを特徴とする、請求項/ d3> l and 150 nm (d3 + d4) 450 nm
1に記載の圧電薄膜共振子。 1. The piezoelectric thin film resonator according to 1.
[17] 前記上部電極の厚さ d3の下側金属層はモリブデンを主成分とする金属薄膜であり、 前記上部電極の厚さ d4の上側金属層はアルミニウムを主成分とする金属薄膜である ことを特徴とする、請求項 16に記載の圧電薄膜共振子。 [17] The lower metal layer of the upper electrode thickness d3 is a metal thin film mainly composed of molybdenum, and the upper metal layer of the upper electrode thickness d4 is a metal thin film mainly composed of aluminum. The piezoelectric thin film resonator according to claim 16, characterized in that:
[18] 前記圧電積層構造体の厚み方向に見て、前記下部電極と上部電極とが互いに重な る領域として定義される振動領域は前記振動空間または音響反射層の外周縁より内 側に位置することを特徴とする、請求項 1に記載の圧電薄膜共振子。 [18] A vibration region defined as a region where the lower electrode and the upper electrode overlap with each other when viewed in the thickness direction of the piezoelectric multilayer structure is located on the inner side of the vibration space or the outer peripheral edge of the acoustic reflection layer. 2. The piezoelectric thin film resonator according to claim 1, wherein:
[19] 前記圧電積層構造体の厚み方向に見た前記振動領域の端部と前記振動空間また は音響反射層の外周縁との間の距離 w、および前記振動領域での圧電積層構造体 の厚みと絶縁層の厚みとの合計 tが、関係式 0< wZt≤ 2を満たすことを特徴とする[19] The end of the vibration region and the vibration space or Is characterized in that the distance w between the outer peripheral edge of the acoustic reflection layer and the total thickness t of the piezoelectric laminated structure and the insulating layer in the vibration region satisfy the relational expression 0 <wZt≤2. Do
、請求項 18に記載の圧電薄膜共振子。 The piezoelectric thin film resonator according to claim 18.
[20] 前記圧電積層構造体の上面または下面に絶縁層が付されていることを特徴とする、 請求項 1に記載の圧電薄膜共振子。 20. The piezoelectric thin film resonator according to claim 1, wherein an insulating layer is attached to an upper surface or a lower surface of the piezoelectric multilayer structure.
[21] 前記絶縁層は前記下部電極の下面に接して形成されていることを特徴とする、請求 項 20に記載の圧電薄膜共振子。 21. The piezoelectric thin film resonator according to claim 20, wherein the insulating layer is formed in contact with a lower surface of the lower electrode.
[22] 前記絶縁層は前記上部電極の上面に接して形成されていることを特徴とする、請求 項 20に記載の圧電薄膜共振子。 22. The piezoelectric thin film resonator according to claim 20, wherein the insulating layer is formed in contact with the upper surface of the upper electrode.
[23] 前記絶縁層は、窒化アルミニウム (A1N)、酸窒化アルミニウム (AIO N )、酸ィ匕アルミ ニゥム (Al O )、窒化ケィ素(SiN )、酸窒化ケィ素(Si ON )、酸化ジルコニウム(Zr [23] The insulating layer is made of aluminum nitride (A1N), aluminum oxynitride (AIO N), aluminum oxide (Al 2 O), silicon nitride (SiN), silicon oxynitride (Si ON), zirconium oxide (Zr
2 3 2 2  2 3 2 2
O )および酸ィ匕タンタル (Ta O )からなる群力 選ばれる少なくとも一種の材質を主 O) and group strength consisting of tantalum oxide (Ta 2 O 3)
2 2 5 2 2 5
成分とするものであることを特徴とする、請求項 20に記載の圧電薄膜共振子。  21. The piezoelectric thin film resonator according to claim 20, wherein the piezoelectric thin film resonator is a component.
[24] 請求項 1〜23のヽずれか一項に記載の圧電薄膜共振子を複数個組み合せて構成 される圧電薄膜デバイス。 [24] A piezoelectric thin film device configured by combining a plurality of piezoelectric thin film resonators according to any one of claims 1 to 23.
[25] 請求項 1に記載の圧電薄膜共振子を製造する方法であって、 [25] A method of manufacturing the piezoelectric thin film resonator according to claim 1,
基板上に下部絶縁層を形成する第 1の工程と、  A first step of forming a lower insulating layer on the substrate;
前記下部絶縁層上に前記下部電極を形成する第 2の工程と、  A second step of forming the lower electrode on the lower insulating layer;
前記下部電極および下部絶縁層の露出面に前記下部電極とは材質の異なる絶縁 体または導電体を堆積させた後、エッチバックにより前記下部電極の上面を露出させ After depositing an insulator or conductor of a different material from the lower electrode on the exposed surfaces of the lower electrode and the lower insulating layer, the upper surface of the lower electrode is exposed by etch back.
、前記下部電極の外周部の周囲に下部電極用の前記サイドスぺーサ一を形成する 第 3の工程と、 A third step of forming the side spacer for the lower electrode around the outer periphery of the lower electrode;
前記下部電極、下部電極用サイドスぺーサ一および下部絶縁層の露出面に圧電 材料層を形成する第 4の工程と、  A fourth step of forming a piezoelectric material layer on the exposed surfaces of the lower electrode, the lower electrode side spacer and the lower insulating layer;
前記圧電材料層上に前記上部電極を形成する第 5の工程と、  A fifth step of forming the upper electrode on the piezoelectric material layer;
前記圧電材料層をパターユングして前記圧電薄膜を形成する第 6の工程と、 前記圧電薄膜および上部電極上に上部絶縁層を形成する第 7の工程とを有するこ とを特徴とする、圧電薄膜共振子の製造方法。 A piezoelectric process comprising: a sixth step of forming the piezoelectric thin film by patterning the piezoelectric material layer; and a seventh step of forming an upper insulating layer on the piezoelectric thin film and the upper electrode. Manufacturing method of thin film resonator.
[26] 前記第 5の工程と第 6の工程との間に、前記上部電極および圧電材料層の露出面に 前記上部電極とは材質の異なる絶縁体または導電体を堆積させた後、エッチバック により前記上部電極の上面を露出させ、前記上部電極の外周部の周囲に上部電極 用の前記サイドスぺーサ一を形成する工程を介在させることを特徴とする、請求項 25 に記載の圧電薄膜共振子の製造方法。 [26] Between the fifth step and the sixth step, an insulator or a conductor having a different material from that of the upper electrode is deposited on the exposed surfaces of the upper electrode and the piezoelectric material layer, and then etched back. 26. The piezoelectric thin film resonance according to claim 25, wherein a step of exposing the upper surface of the upper electrode by a step and forming the side spacer for the upper electrode around the outer periphery of the upper electrode is interposed. Child manufacturing method.
[27] 請求項 1に記載の圧電薄膜共振子を製造する方法であって、  [27] A method of manufacturing the piezoelectric thin film resonator according to claim 1,
基板上に下部絶縁層を形成する第 1の工程と、  A first step of forming a lower insulating layer on the substrate;
前記下部絶縁層上に前記下部電極をその端部がスロープ状となるように形成する 第 2の工程と、  A second step of forming the lower electrode on the lower insulating layer so that the end thereof has a slope shape;
前記下部電極および下部絶縁層の露出面に圧電材料層を形成する第 3の工程と、 前記圧電材料層上に前記上部電極を形成する第 4の工程と、  A third step of forming a piezoelectric material layer on the exposed surfaces of the lower electrode and the lower insulating layer; a fourth step of forming the upper electrode on the piezoelectric material layer;
前記圧電材料層をパターユングして前記圧電薄膜を形成する第 5の工程と、 前記上部電極および圧電薄膜の露出面に前記上部電極とは材質の異なる絶縁体 または導電体を堆積させた後、エッチバックにより前記上部電極の上面を露出させ、 前記上部電極の外周部の周囲に上部電極用の前記サイドスぺーサ一を形成する第 6の工程と、  A fifth step of patterning the piezoelectric material layer to form the piezoelectric thin film; and depositing an insulator or conductor having a different material from the upper electrode on the exposed surfaces of the upper electrode and the piezoelectric thin film; A sixth step of exposing the upper surface of the upper electrode by etch back, and forming the side spacer for the upper electrode around the outer periphery of the upper electrode;
前記圧電薄膜および上部電極上に上部絶縁層を形成する第 7の工程とを有するこ とを特徴とする、圧電薄膜共振子の製造方法。  And a seventh step of forming an upper insulating layer on the piezoelectric thin film and the upper electrode. A method for manufacturing a piezoelectric thin film resonator, comprising:
PCT/JP2007/057379 2006-03-31 2007-04-02 Film bulk acoustic resonator, piezoelectric thin film device and method for manufacturing the piezoelectric thin film device WO2007119643A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008510910A JP4688070B2 (en) 2006-03-31 2007-04-02 Piezoelectric thin film resonator, piezoelectric thin film device, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-097025 2006-03-31
JP2006097025 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007119643A1 true WO2007119643A1 (en) 2007-10-25

Family

ID=38609407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057379 WO2007119643A1 (en) 2006-03-31 2007-04-02 Film bulk acoustic resonator, piezoelectric thin film device and method for manufacturing the piezoelectric thin film device

Country Status (2)

Country Link
JP (1) JP4688070B2 (en)
WO (1) WO2007119643A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212620A (en) * 2008-02-29 2009-09-17 Kyocera Corp Process for fabricating thin-film resonator
JP2010141570A (en) * 2008-12-11 2010-06-24 Ube Ind Ltd Piezoelectric thin film acoustic resonator, and manufacturing method of the same
JP2010154233A (en) * 2008-12-25 2010-07-08 Kyocera Corp Piezoelectric resonator
JP2011236121A (en) * 2010-04-30 2011-11-24 Commissariat A L'energie Atomique & Aux Energies Alternatives METHOD FOR OBTAINING AlN LAYER HAVING SUBSTANTIALLY VERTICAL SIDE
WO2013081327A1 (en) * 2011-12-01 2013-06-06 Samsung Electronics Co., Ltd. Bulk acoustic wave resonator
JP2013179404A (en) * 2012-02-28 2013-09-09 Seiko Epson Corp Ultrasonic array sensor and manufacturing method of the same
WO2014020077A1 (en) * 2012-08-03 2014-02-06 Epcos Ag Topographical structure and method for producing it
CN107093665A (en) * 2017-05-15 2017-08-25 中国电子科技集团公司第二十六研究所 A kind of piezoelectric thin film transducer WSiAlN films and preparation method thereof
US10439580B2 (en) * 2017-03-24 2019-10-08 Zhuhai Crystal Resonance Technologies Co., Ltd. Method for fabricating RF resonators and filters
JP2019535148A (en) * 2017-09-22 2019-12-05 安徽安努奇科技有限公司Anhuianuki Technologies Co., Ltd. Method for manufacturing piezoelectric resonator and piezoelectric resonator
CN111554800A (en) * 2020-04-23 2020-08-18 瑞声声学科技(深圳)有限公司 Planarization method
WO2021109090A1 (en) * 2019-12-05 2021-06-10 瑞声声学科技(深圳)有限公司 Manufacturing method for resonator and resonator
WO2022059758A1 (en) * 2020-09-16 2022-03-24 株式会社村田製作所 Elastic wave device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10367471B2 (en) * 2015-05-21 2019-07-30 Samsung Electro-Mechanics Co., Ltd. Resonator package and method of manufacturing the same
WO2020191750A1 (en) * 2019-03-28 2020-10-01 深圳市汇顶科技股份有限公司 Crystal oscillator and manufacturing method and apparatus thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037023A1 (en) * 1998-01-16 1999-07-22 Mitsubishi Denki Kabushiki Kaisha Thin film pietoelectric element
WO2005060091A1 (en) * 2003-12-19 2005-06-30 Ube Industries, Ltd. Method for manufacturing piezoelectric thin-film device and piezoelectric thin-film device
JP2005303781A (en) * 2004-04-14 2005-10-27 Japan Radio Co Ltd Method of manufacturing thin film resonant element
JP2005333619A (en) * 2004-04-20 2005-12-02 Toshiba Corp Thin film piezoelectric resonator and its manufacturing method
JP2006013839A (en) * 2004-06-25 2006-01-12 Ube Ind Ltd Thin film piezo-electric resonator and thin film piezo-electric filter
JP2006217188A (en) * 2005-02-02 2006-08-17 Toshiba Corp Thin film piezoelectric resonator and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424237B1 (en) * 2000-12-21 2002-07-23 Agilent Technologies, Inc. Bulk acoustic resonator perimeter reflection system
JP3903848B2 (en) * 2001-07-02 2007-04-11 株式会社村田製作所 Piezoelectric resonator, method for manufacturing piezoelectric resonator, piezoelectric filter, method for manufacturing piezoelectric filter, duplexer, and electronic communication device
DE10200741A1 (en) * 2002-01-11 2003-07-24 Infineon Technologies Ag Process for the production of a topology-optimized electrode for a resonator using thin-film technology
JP4186685B2 (en) * 2003-04-10 2008-11-26 宇部興産株式会社 Aluminum nitride thin film and piezoelectric thin film resonator using the same
US6924717B2 (en) * 2003-06-30 2005-08-02 Intel Corporation Tapered electrode in an acoustic resonator
JP2006186412A (en) * 2004-12-24 2006-07-13 Toshiba Corp Thin film piezoelectric resonator and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037023A1 (en) * 1998-01-16 1999-07-22 Mitsubishi Denki Kabushiki Kaisha Thin film pietoelectric element
WO2005060091A1 (en) * 2003-12-19 2005-06-30 Ube Industries, Ltd. Method for manufacturing piezoelectric thin-film device and piezoelectric thin-film device
JP2005303781A (en) * 2004-04-14 2005-10-27 Japan Radio Co Ltd Method of manufacturing thin film resonant element
JP2005333619A (en) * 2004-04-20 2005-12-02 Toshiba Corp Thin film piezoelectric resonator and its manufacturing method
JP2006013839A (en) * 2004-06-25 2006-01-12 Ube Ind Ltd Thin film piezo-electric resonator and thin film piezo-electric filter
JP2006217188A (en) * 2005-02-02 2006-08-17 Toshiba Corp Thin film piezoelectric resonator and its manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212620A (en) * 2008-02-29 2009-09-17 Kyocera Corp Process for fabricating thin-film resonator
JP2010141570A (en) * 2008-12-11 2010-06-24 Ube Ind Ltd Piezoelectric thin film acoustic resonator, and manufacturing method of the same
JP2010154233A (en) * 2008-12-25 2010-07-08 Kyocera Corp Piezoelectric resonator
JP2011236121A (en) * 2010-04-30 2011-11-24 Commissariat A L'energie Atomique & Aux Energies Alternatives METHOD FOR OBTAINING AlN LAYER HAVING SUBSTANTIALLY VERTICAL SIDE
US9634643B2 (en) 2011-12-01 2017-04-25 Samsung Electronics Co., Ltd. Bulk acoustic wave resonator
WO2013081327A1 (en) * 2011-12-01 2013-06-06 Samsung Electronics Co., Ltd. Bulk acoustic wave resonator
US11894833B2 (en) 2011-12-01 2024-02-06 Samsung Electronics Co., Ltd. Bulk acoustic wave resonator
US10666224B2 (en) 2011-12-01 2020-05-26 Samsung Electronics Co., Ltd. Bulk acoustic wave resonator
JP2013179404A (en) * 2012-02-28 2013-09-09 Seiko Epson Corp Ultrasonic array sensor and manufacturing method of the same
US10491189B2 (en) 2012-08-03 2019-11-26 Qualcomm Incorporated Topographical structure and method of producing it
WO2014020077A1 (en) * 2012-08-03 2014-02-06 Epcos Ag Topographical structure and method for producing it
JP2015525040A (en) * 2012-08-03 2015-08-27 エプコス アクチエンゲゼルシャフトEpcos Ag Topography structure and manufacturing method thereof
DE102012107155B4 (en) * 2012-08-03 2017-07-13 Snaptrack, Inc. Topographical structure and method for its production
US10439580B2 (en) * 2017-03-24 2019-10-08 Zhuhai Crystal Resonance Technologies Co., Ltd. Method for fabricating RF resonators and filters
CN107093665B (en) * 2017-05-15 2019-07-09 中国电子科技集团公司第二十六研究所 A kind of piezoelectric thin film transducer WSiAlN film and preparation method thereof
CN107093665A (en) * 2017-05-15 2017-08-25 中国电子科技集团公司第二十六研究所 A kind of piezoelectric thin film transducer WSiAlN films and preparation method thereof
JP2019535148A (en) * 2017-09-22 2019-12-05 安徽安努奇科技有限公司Anhuianuki Technologies Co., Ltd. Method for manufacturing piezoelectric resonator and piezoelectric resonator
WO2021109090A1 (en) * 2019-12-05 2021-06-10 瑞声声学科技(深圳)有限公司 Manufacturing method for resonator and resonator
CN111554800A (en) * 2020-04-23 2020-08-18 瑞声声学科技(深圳)有限公司 Planarization method
WO2021212546A1 (en) * 2020-04-23 2021-10-28 瑞声声学科技(深圳)有限公司 Planarization method
CN111554800B (en) * 2020-04-23 2022-07-26 瑞声声学科技(深圳)有限公司 Planarization method
WO2022059758A1 (en) * 2020-09-16 2022-03-24 株式会社村田製作所 Elastic wave device

Also Published As

Publication number Publication date
JPWO2007119643A1 (en) 2009-08-27
JP4688070B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4688070B2 (en) Piezoelectric thin film resonator, piezoelectric thin film device, and manufacturing method thereof
JP4756461B2 (en) Aluminum nitride thin film and piezoelectric thin film resonator using the same
US7737806B2 (en) Piezoelectric thin-film resonator and filter
JP3940932B2 (en) Thin film piezoelectric resonator, thin film piezoelectric device and manufacturing method thereof
EP1914888B1 (en) Fabrication method of a ladder filter
US8330556B2 (en) Passivation layers in acoustic resonators
US7128941B2 (en) Method for fabricating film bulk acoustic resonator (FBAR) device
US9450167B2 (en) Temperature compensated acoustic resonator device having an interlayer
US9444429B2 (en) Piezoelectric thin-film resonator, method for fabricating same, filter and duplexer having an interposed film
US7579761B2 (en) Piezoelectric thin-film resonator and filter
US8522411B1 (en) Method to control BAW resonator top electrode edge during patterning
JP2007181185A (en) Acoustic resonator and its fabricating method
JP4373936B2 (en) Thin film piezoelectric resonator and manufacturing method thereof
JP2007129776A (en) Thin film piezoelectric oscillator, thin film piezoelectric device, and manufacturing method thereof
US10211810B2 (en) Acoustic wave filter and method for manufacturing the same
JP2008211392A (en) Resonator and manufacturing method thereof
TW202023081A (en) Acoustic resonator and method of manufacturing thereof
CN112688659A (en) Bulk acoustic wave resonator
US7737612B1 (en) BAW resonator bi-layer top electrode with zero etch undercut
US7600303B1 (en) BAW resonator bi-layer top electrode with zero etch undercut
TWI833158B (en) Acoustic resonator
US12028045B2 (en) Bulk acoustic resonator filter
US20220209744A1 (en) Bulk acoustic resonator filter
WO2022228486A1 (en) Bulk acoustic resonator and manufacturing method therefor, filter, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008510910

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740815

Country of ref document: EP

Kind code of ref document: A1