WO2007119449A1 - Optical frequency comb generator - Google Patents

Optical frequency comb generator Download PDF

Info

Publication number
WO2007119449A1
WO2007119449A1 PCT/JP2007/055669 JP2007055669W WO2007119449A1 WO 2007119449 A1 WO2007119449 A1 WO 2007119449A1 JP 2007055669 W JP2007055669 W JP 2007055669W WO 2007119449 A1 WO2007119449 A1 WO 2007119449A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
frequency
optical fiber
laser light
light source
Prior art date
Application number
PCT/JP2007/055669
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Hirano
Masashi Onishi
Toshiaki Okuno
Hajime Inaba
Yuta Daimon
Feng-Lei Hong
Kaoru Minoshima
Atsushi Onae
Hirokazu Matsumoto
Original Assignee
Sumitomo Electric Industries, Ltd.
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd., National Institute Of Advanced Industrial Science And Technology filed Critical Sumitomo Electric Industries, Ltd.
Publication of WO2007119449A1 publication Critical patent/WO2007119449A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/56Frequency comb synthesizer

Definitions

  • the present invention relates to an optical frequency comb generator that generates light of a plurality of optical frequencies arranged at equal intervals in a certain optical frequency range.
  • An optical frequency comb generator generates light of a plurality of optical frequencies (called “optical comb”) arranged at equal intervals in a certain optical frequency range. For example, Patent Document 1 ⁇ 3.
  • the optical frequency comb generator is used to measure the optical frequency (several hundreds THz) of laser light, and also measures the optical frequency difference (up to several tens of THz) between laser beams having different optical frequencies. Also used when.
  • Patent Documents 1 to 3 propose optical frequency comb generators having various configurations.
  • Each of the optical frequency comb generators described in Non-Patent Documents 1 to 7 includes a mode-locked laser light source, an optical amplifier, and a highly nonlinear optical fiber, and uses the pulsed laser light output from the mode-locked laser light source.
  • Optical amplification is performed by an optical amplifier, the amplified laser light is guided by a highly nonlinear optical fiber, and the pulsed laser light is output in a broad band by a nonlinear optical phenomenon that appears at the time of the waveguide.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-58386
  • Patent Document 2 Japanese Patent Laid-Open No. 11-4037
  • Patent Document 3 JP 2000-89264 A
  • Non-Patent Document 1 D. J. Jones, et al., Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, "Science vol. 288, 635 (20 00).
  • Patent Document 2 F. Tauser, et al., "Amplified femtosecond pulses from an Er: fiber syst em: Nonlinear pulse shortening and self-referencing detection of the carrier-envelop e phase evolution," Optics Express, vol 11, 594 ( 2003).
  • Non-Patent Document 3 TR Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Mats umoto, I. Hartl, ME Fermann, "Frequency metrology with a turnkey all-fiber syst em,” Opt. Lett. 29, 2467-2469 (2004).
  • Non-Patent Document 4 F. Adler, et al., "Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies," Opt. Express 12, 5872-5880 (2004).
  • Non-Patent Document 5 H. Hundertmark, et. Al., "Phase-locked carrier-envelope offset frequency at 1560 nm,” Opt. Express 12, 770-775 (2004).
  • Non-Patent Document 6 K. Tamura, et al., "Unidirectional ring resonator for selfstarting passi vely mode-locked lasers," Opt. Lett., 18, 220-222 (1993).
  • Patent Document 7 N. Nakazawa, et al, 'Continuum suppressed, uniformly repetitive 13b fs pulse generation from an erbium-doped fiber laser with nonlinear polarisation rota tion, "Electron. Lett. 29, 1327—1329 (1993).
  • the signal-to-noise ratio (SZN ratio) of the optical comb obtained by a conventional optical frequency comb generator was about 25 dB to 40 dB (resolution band 100 kHz). If this SZN ratio is about 25 dB, it is possible to perform phase synchronization and frequency measurement. However, the SZN ratio may decrease due to environmental fluctuations such as temperature fluctuations, and a poor SZN ratio may affect frequency stability.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an optical frequency comb generator capable of obtaining an optical comb having a good SZN ratio.
  • An optical frequency comb generator includes: (1) a laser light source that oscillates in a mode-locked laser and outputs pulsed laser light; and (2) an amplification optical fiber in which a rare earth element is added to an optical waveguide region And a pumping light source that outputs pumping light having a wavelength capable of pumping the rare earth element added to the amplification optical fiber, and the pulsed laser light output from the laser light source is input to the first end of the amplification optical fiber.
  • the excitation light source power is input to the second end of the amplification optical fiber, and the pulsed laser light input to the first end of the amplification optical fiber is input to the amplification optical fiber.
  • An optical fiber amplifier that amplifies the light at the Aiba and outputs it from the second end of the amplification optical fiber; (3) A pulse laser beam that is amplified and output by the optical fiber amplifier is input to the first end, and nonlinear optics And a first non-linear optical medium (for example, a highly non-linear optical fiber) that outputs broadband light according to a phenomenon.
  • a first non-linear optical medium for example, a highly non-linear optical fiber
  • the pulsed laser light output by the mode-locked laser oscillation of the laser light source is optically amplified by a reverse pumping type optical fiber amplifier to be high power,
  • One nonlinear optical medium is input. Due to the nonlinear optical phenomenon that occurs in the first nonlinear optical medium, the pulse laser beam input to the first nonlinear optical medium is broadened and output as a broadband pulsed light, and a broadband optical comb with a good SZN ratio is obtained.
  • An optical frequency comb generator provides: (4) a broadband light output from a first nonlinear optical medium is input, a second harmonic is generated and output with respect to a fundamental wave of the broadband light; (2) Based on the beat frequency of the second harmonic of the broadband light output from the second nonlinear optical medium and the fundamental wave, the carrier envelope 'offset frequency (hereinafter referred to as the “CEO frequency”) CEO frequency detector, and (6) Stabilize and control the wavelength of the pulse laser light output from the laser light source so that the CEO frequency detected by the CEO frequency detector is a predetermined value. It is preferable to further include a CEO frequency stabilization unit.
  • the broadband light output from the first nonlinear optical medium is input to the second nonlinear optical medium, and the second harmonic is generated with respect to the fundamental wave of the broadband light in the second nonlinear optical medium.
  • the CEO frequency is detected by the CEO frequency detector based on the beat frequency of the second harmonic and the fundamental wave of the broadband light output from the second nonlinear optical medium.
  • the wavelength of the laser light emitted from the laser light source is stabilized and controlled by the CEO frequency stabilization unit so that the CEO frequency detected by the CEO frequency detection unit becomes a predetermined value.
  • An optical frequency comb generator includes: (7) a repetition frequency detection unit that detects a repetition frequency of pulse laser light; and (8) a repetition frequency detected by the repetition frequency detection unit is a predetermined value.
  • a repetition frequency stabilization unit that stably controls the repetition frequency of the pulsed laser light output from the laser light source. This place In this case, the repetition frequency detection unit detects the repetition frequency of the pulse laser beam, and the repetition frequency stabilization unit detects the pulse output from the laser light source so that the detected repetition frequency becomes a predetermined value. The repetition frequency of the laser beam is controlled stably.
  • An optical frequency comb generator includes (9) combining broadband light output from a first nonlinear optical medium and laser light output from another laser light source, and combining the combined light. It is preferable to further include an optical multiplexing unit that outputs the laser beam thus obtained, and (10) a heterodyne detection unit that heterodyne-detects the laser beam combined and output by the optical multiplexing unit.
  • the broadband light output from the first nonlinear optical medium and the laser light output from the other laser light source are combined by the optical combining unit and heterodyne detected by the heterodyne detection unit.
  • the wavelength of the laser beam output from the other laser light source is detected.
  • the optical frequency comb generator according to the present invention is provided between the laser light source and the fiber amplifier, and adjusts the polarization of the pulsed laser light output from the laser light source and adjusts the polarization. It is preferable to further include a polarization adjustment unit that outputs the pulse laser beam to the fiber amplifier.
  • the polarization adjustment unit provided between the laser light source and the fiber amplifier adjusts the polarization of the pulsed laser light output from the laser light source force, and the polarization-adjusted Norlas laser light is transmitted to the fiber. Input to the amplifier.
  • the CEO frequency f CEO can be detected with high accuracy.
  • an optical frequency comb generator capable of obtaining an optical comb having a good SZN ratio.
  • FIG. 1 is a configuration diagram of an optical frequency comb generator 1 according to the present embodiment.
  • FIG. 2 is a diagram showing an arrangement of optical frequencies of broadband light output from the highly nonlinear optical fibers 4 OA and 40B of the optical frequency comb generator 1 according to the present embodiment.
  • FIG. 3 is a diagram showing the chromatic dispersion characteristics of a highly nonlinear optical fiber of an optical frequency comb generator.
  • Figure 4 shows the output from the highly nonlinear optical fiber of the optical frequency comb generator of the example. It is a figure which shows the spectrum of an optical comb.
  • FIG. 5 is a diagram showing a spectrum of an optical comb output from a highly nonlinear optical fiber of the optical frequency comb generator of Comparative Example 1.
  • FIG. 6 is a diagram showing a spectrum of an optical comb output from a highly nonlinear optical fiber of the optical frequency comb generator of Comparative Example 2.
  • FIG. 7 is a diagram showing CEO frequency f signals detected by the optical frequency comb generators of the example and comparative example 1.
  • FIG. 1 is a configuration diagram of an optical frequency comb generator 1 according to the present embodiment.
  • the optical frequency comb generator 1 shown in this figure includes a laser light source 10, optical fiber amplifiers 30A and 30B, first nonlinear optical media (high nonlinear optical fibers) 40A and 40B, a second nonlinear optical medium 52A, and a photodiode 56A. , 56B, 56C, CEO frequency stabilization unit 60, repetitive frequency stabilization unit 70, etc.
  • the laser light source 10 oscillates in a mode-locked laser and outputs pulsed laser light.
  • the amplification optical fiber 11, the excitation light source 12, the drum 13, the ⁇ 4 plate 14, the ⁇ 2 plate 15, and the polarizer 16 A polarization-dependent optical isolator 17 and a polarization-independent optical isolator 18.
  • the amplification optical fibers 11, ⁇ ⁇ 4 plate 14, ⁇ ⁇ 2 plate 15, polarizer 16 and optical isolator 17 are provided on the resonance optical path of the ring type optical resonator.
  • the amplification optical fiber 11 is an optical fiber in which an Er element is added to an optical waveguide region, and is wound around a drum 13 provided with a piezoelectric element.
  • the pumping light source 12 outputs pumping light having a wavelength of 1.48 m that can pump Er 3+ added to the amplification optical fiber 11, and supplies the pumping light to the amplification optical fiber 11.
  • the ⁇ 4 plate 14 and the ⁇ 2 plate 15 control the polarization of the laser light oscillated by the ring-type optical resonator.
  • the ⁇ 4 plate 14, ⁇ 2 plate 15, the polarizer 16 and the polarization-dependent optical isolator 17 selectively oscillate pulsed laser light with a ring type optical resonator.
  • On drum 13 The provided piezo element can adjust the length of the amplifying optical fiber 11 wound on the drum 13, thereby adjusting the resonator length of the ring type optical resonator.
  • the pumping light output from the pumping light source 12 is supplied to the amplification optical fiber 11 and added to the amplification optical fiber 11 so that Er 3+ is pumped. Then, light having a wavelength of 1.55 m is emitted from the amplification optical fiber 11. The light emitted from the amplification optical fiber 11 is resonated by the ring optical resonator, and the laser light source 10 oscillates in a laser.
  • mode-locked laser oscillation is performed by the action of ⁇ ⁇ 4 plate 14, ⁇ ⁇ 2 plate 15, polarizer 16 and polarization-dependent optical isolator 17, and the pulse laser beam obtained by this oscillation is obtained. Is output via the polarization-independent optical isolator 18.
  • the wavelength of the pulsed laser light output from the laser light source 10 depends on the power of the excitation light supplied from the excitation light source 12 to the amplification optical fiber 11.
  • the repetition frequency of the pulsed laser light output from the laser light source 10 depends on the resonator length of the ring optical resonator adjusted by the action of the piezoelectric element provided on the drum 13.
  • the pulse laser beam output from the laser light source 10 is branched into two, and after being branched into two, the pulse laser beam is input to the optical fiber amplifier 30 through the four plate 21A and the ⁇ two plate 22 through The other pulse laser beam after being branched is input to the optical fiber amplifier 30 through the ⁇ ⁇ 4 plate 21B and ⁇ / 2 plate 22 ⁇ .
  • the ⁇ 4 plate 21A and the ⁇ 2 plate 22 ⁇ act as a polarization adjusting unit provided between the laser light source 10 and the optical fiber amplifier 30 ⁇ , and the pulsed laser light output from the laser light source 10 The polarization laser light is adjusted and the pulsed laser light whose polarization is adjusted is output to the fiber amplifier 30 mm.
  • the ⁇ 4 plate 21B and the ⁇ 2 plate 22 ⁇ act as a polarization adjusting unit provided between the laser light source 10 and the optical fiber amplifier 30 ⁇ , and the pulse laser beam output from the laser light source 10 The polarization laser light is adjusted and the pulse laser light whose polarization is adjusted is output to the fiber amplifier 30 mm.
  • the optical fiber amplifier 30 ⁇ includes an amplification optical fiber 31 ⁇ and a pumping light source 32 ⁇ .
  • the optical fiber for amplification 31A is an optical fiber in which an Er element is added to the optical waveguide region.
  • the excitation light source 32A has a wavelength of 0.98 m, which can excite Er 3+ added to the amplification optical fiber 31A.
  • the pumping light of the band is output, and the pumping light is supplied to the amplification optical fiber 31A.
  • This optical fiber amplifier 30A is a reverse-pumping type in which light to be amplified (pulse laser light) and pumping light are guided in opposite directions in the amplification optical fiber 31A.
  • the pulse laser beam output from the laser light source 10 and passed through the ⁇ 4 plate 21A and the ⁇ 2 plate 22A is input to the first end of the amplification optical fiber 31A.
  • the pump light output from the pump light source 32 is input to the second end of the amplification optical fiber 31A.
  • the pulse laser beam input to the first end of the amplification optical fiber 31A is optically amplified in the amplification optical fiber 31A, and the second end force of the amplification optical fiber 31 ⁇ also goes to the highly nonlinear optical fiber 40 ⁇ . Is output.
  • the optical fiber amplifier 30B includes an amplification optical fiber 31B and a pumping light source 32B.
  • the amplification optical fiber 31B is an optical fiber in which an Er element is added to the optical waveguide region.
  • the pumping light source 32B outputs pumping light having a wavelength of 0.98 m that can pump Er 3+ added to the amplification optical fiber 31B, and supplies the pumping light to the amplification optical fiber 31B.
  • This optical fiber amplifier 30B is of the reverse excitation type in which the light to be amplified (pulse laser light) and the pumping light are guided in opposite directions in the amplification optical fiber 31B.
  • Each of the highly nonlinear optical fiber 40A and the highly nonlinear optical fiber 40B is an optical fiber that has high nonlinearity and easily exhibits a nonlinear optical phenomenon.
  • a highly nonlinear optical fiber is an optical fiber that has a nonlinear coefficient three times greater than that of a standard single mode fiber used for normal transmission.
  • the nonlinear coefficient (measured by the XPM method) of the highly nonlinear optical fiber is preferably more than lOZwZkm, more preferably more than 20ZwZkm, more preferably more than 5ZwZkm.
  • the zero dispersion wavelength of the highly nonlinear optical fino OA, 40B is preferably 1450 nm or less.
  • the highly nonlinear optical fiber 40A inputs the pulse laser beam amplified and output by the optical fiber amplifier 30A to the first end, and broadens the spectrum of the input pulse laser beam by nonlinear optical phenomenon. Then, the pulsed laser beam (broadband light) that has been broadened is output to the single mode optical fiber 41 A.
  • the pulse laser beam output after being amplified by the optical fiber amplifier 30B is input to the first end, and the spectrum of the input pulse laser beam is converted into a broadband signal by a nonlinear optical phenomenon.
  • the wideband pulse array The light (broadband light) is output to the single-mode optical fiber 41B.
  • the broadband light has a band of 1 octave or more.
  • the single mode optical fiber 41A is connected to the second end (outgoing end) of the highly nonlinear optical fiber 40A.
  • the single mode optical fiber 41B is connected to the second end (outgoing end) of the highly nonlinear optical fiber 4OB.
  • the single-mode optical fiber 41A compensates the chromatic dispersion generated in the highly nonlinear optical fiber 40A and the second nonlinear optical medium 52A, and has a fiber length adjusted for the chromatic dispersion compensation.
  • the cinder mode optical fiber 41B compensates the chromatic dispersion generated in the highly nonlinear optical fiber 40B, and has a fiber length adjusted for the chromatic dispersion compensation.
  • the lens 51A for inputting the broadband light emitted from the emitting end of the single mode optical fiber 41A collects the inputted broadband light and makes it incident on the second nonlinear optical medium 52A.
  • the second nonlinear optical medium 52A is, for example, PPLN (periodically poled lithium niobate crystal), and generates and outputs a second harmonic with respect to a fundamental wave including at least one comb of incident broadband light.
  • the second harmonic band overlaps with the fundamental band.
  • the half mirror 54A inputs the fundamental wave and the second harmonic wave of the broadband light output from the second nonlinear optical medium 52A, transmits a part thereof, reflects the remaining part, and splits into two.
  • the bandpass filter 55A that inputs the broadband light transmitted through the half mirror 54A transmits the input broadband light having a specific transmission band.
  • the transmission band is a band having a high optical frequency in the broadband light band output from the highly nonlinear optical fiber 40A.
  • the CEO frequency detector 56A detects the CEO frequency based on the beat frequency of the second harmonic and the fundamental wave of the broadband light that has passed through the bandpass filter 55A. Then, the CEO frequency stabilizing unit 60 adjusts the power of the pumping light supplied from the pumping light source 12 to the amplification optical fiber 11 so that the CEO frequency detected by the CEO frequency detecting unit 56A becomes a predetermined value. By doing so, the wavelength of the pulsed laser beam output from the laser light source 10 is stabilized and controlled.
  • the repetition frequency detector 56C that inputs the broadband light reflected by the half mirror 54A detects the repetition frequency of the input broadband light.
  • the repetition frequency stabilization unit 70 then adjusts the repetition frequency detected by the repetition frequency detection unit 56C to a predetermined value.
  • the repetition frequency of the pulsed laser light output from the laser light source 10 is controlled to be stabilized.
  • the lens 51B for inputting broadband light emitted from the emitting end of the single mode optical fiber 41B collimates the inputted broadband light.
  • the lens 51C collimates the laser beam output from the laser light source 2 as well.
  • the half mirror 54B combines the broadband light that has reached the lens 51B through the mirror 53B and the laser light that has also reached the lens 51C, and outputs the combined laser light.
  • the heterodyne detection unit 56B detects the wavelength of the laser beam output from the laser light source 2 by heterodyne detection of the laser beam combined and output by the half mirror 54B.
  • the pulsed laser light output from the laser light source 10 after mode-locked laser oscillation is a certain repetition frequency f on the time axis.
  • the rep optical frequency sequence is a measure of optical frequency.
  • the pulse laser beam output from the laser light source 10 is an optical comb, it is limited to a narrow band including a wavelength of 1,55 m. Therefore, the broadband is performed as follows.
  • the pulse laser beam output from the laser light source 10 is branched into two, and one of the branched pulse laser beams is input to the optical fiber amplifier 30 through the ⁇ 4 plate 21A and ⁇ 2 plate 22 and branched.
  • the other pulse laser beam is input to the optical fiber amplifier 30 through the ⁇ 4 plate 21B and the ⁇ 2 plate 22.
  • the pulse laser beam input to the optical fiber amplifier 30 ⁇ is optically amplified by the reverse-pumped optical fiber amplifier 30 ⁇ to high power, and then input to the highly nonlinear optical fiber 40 40. . Due to the nonlinear optical phenomenon that occurs in the highly nonlinear optical fiber 40A, the pulsed laser light input to the highly nonlinear optical fiber 40A becomes broadband light. Similarly, the pulse laser beam input to the optical fiber amplifier 30B After being optically amplified by the optical fiber amplifier 30B to be high power, it is input to the highly nonlinear optical fiber 40B. Due to the nonlinear optical phenomenon that occurs in the highly nonlinear optical fiber 40B, the pulsed laser light input to the highly nonlinear optical fiber 40B becomes broadband light.
  • FIG. 2 is a diagram showing an arrangement of optical frequencies of broadband light output from the highly nonlinear optical fibers 40A and 40B as the nonlinear medium of the optical frequency comb generator 1 according to the present embodiment.
  • the broadband light output from the highly nonlinear optical fibers 40A and 40B has a constant interval f in a certain optical frequency range when viewed on the optical frequency axis.
  • the optical frequency train of rep is an optical comb.
  • Figure 2 shows the modes on the frequency axis of an optical comb that extends over one octave.
  • the CEO frequency f is zero, and the frequency f (
  • n can be described by the following equation (1), and can be expressed by two rep CEO parameters of repetition frequency f and CEO frequency f.
  • optical frequency of the second harmonic of the nth mode is expressed by the following equation (2)
  • optical frequency of the 2nth mode is expressed by the following equation (3).
  • the difference between the two is f as shown in the following equation (4),
  • the CEO frequency f is detected as follows. That is, highly nonlinear
  • the broadband light that has been broadened to 1 octave or more in the optical fiber 40A is input to the second nonlinear optical medium 52A via the single mode optical fiber 41A and the lens 51A.
  • the second harmonic is generated with respect to the fundamental wave of the incident broadband light.
  • the light transmitted through the half mirror 54A and the bandpass filter 55A is received by the CEO frequency detection unit 56A.
  • the CEO frequency detector 56A detects the CEO frequency f based on the beat frequencies of the second harmonic wave and the fundamental wave of the broadband light.
  • CEO Frequency Stabilization Department
  • CEO frequency f detected by CEO frequency detector 56A becomes a predetermined value.
  • the power of the pumping light supplied from the pumping light source 12 to the amplification optical fiber 11 is adjusted, whereby the wavelength of the pulsed laser light output from the laser light source 10 is stably controlled.
  • the repetition frequency f appearing in the above equation (1) is the wideband rep reflected by the half mirror 54A.
  • Measurement can be performed easily by directly receiving the range light with the high-speed repetition frequency detector 56C. Then, the repetition frequency stabilization unit 70 replies through the piezoelectric element of the drum 13 so that the repetition frequency f detected by the repetition frequency detection unit 56C becomes a predetermined value.
  • the resonator length of the ring type optical resonator of the laser light source 10 is adjusted, whereby the repetition frequency f of the pulsed laser light output from the laser light source 10 is stably controlled.
  • the ultra-short pulse laser “optical comb” can be used as an “optical frequency measure”. Furthermore, the laser light output from the laser light source 2 is highly nonlinear light.
  • the broadband light output from the fiber 40B and the half mirror 54B are combined, and heterodyne detection is performed by the heterodyne detection unit 56B, so that the wavelength of the laser light output from the laser light source 2 can be detected with high accuracy.
  • the optical frequency comb generator 1 employs a common optical path interferometer when generating the second harmonic in the second nonlinear optical medium 52A. This is because the broadband optical comb generated by the highly nonlinear optical fiber 40A is collected by the lens 51A and is incident on the second nonlinear optical medium 52A all together. Then, the second harmonic and the short wavelength portion of the long wavelength portion of the broadband optical comb generated in the second nonlinear optical medium 52A are directly incident on the CEO frequency detection portion 56A without being separated.
  • the highly nonlinear optical fiber 40A and the second nonlinear optical medium 52A have chromatic dispersion, generally the pulse light on each of the long wavelength side and the short wavelength side is shifted in time, so that the CEO frequency detector Incident on 56A. Therefore, in this embodiment, by adjusting the length of the single-mode optical fiber 41A provided at the subsequent stage of the highly nonlinear optical fino OA, the chromatic dispersion for the optical combs in the respective wavelength bands becomes substantially the same. It is doing so.
  • the configuration is simplified, and the CEO frequency detector 56A receives the pulsed light emitted from the second nonlinear optical medium 52A as it is. This makes it easier and more robust to detect the CEO frequency f.
  • the ⁇ 4 plate 21A and the ⁇ 2 plate 22 ⁇ for polarization adjustment are provided in front of the optical fiber amplifier 30A, and the optical fiber A ⁇ ⁇ 4 plate 21B and ⁇ ⁇ 2 plate 22 ⁇ for polarization adjustment are provided in front of the amplifier 30 ⁇ .
  • the power of the nth and 2nth modes used in f-to-2f interference can be increased, and the CEO frequency f
  • the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • the one light source 10 is an optical fiber laser light source having a ring-type optical resonator structure in the above embodiment, but may be a mode-locked laser light source having another configuration.
  • a semiconductor laser that oscillates in a mode-locked laser It may be a light source or a solid laser light source.
  • the optical frequency comb generator of the embodiment has the configuration shown in FIG.
  • the optical frequency comb generator of Comparative Example 1 is obtained by replacing the optical fiber amplifiers 30A and 30B with a bidirectional pump type in the configuration shown in FIG.
  • the optical frequency comb generator of Comparative Example 2 is obtained by replacing the optical fiber amplifiers 30A and 30B with the forward pumping type in the configuration shown in FIG.
  • the optical fiber used as the highly nonlinear optical fino OA, 40B in this example and comparative examples 1 and 2 had the chromatic dispersion characteristics shown in FIG.
  • This optical fiber has a fiber length of 20 cm, a transmission loss of 0.62 dBZkm, a total loss including the connection loss when a single-mode optical fiber is connected to both ends, 0.1 to 2 dB, and a zero dispersion wavelength.
  • the wavelength dispersion + 3.91psZnmZkm, a distributed Ro-loop is + 0.032psZnm 2 Zkm
  • the cutoff wavelength of 1560 nm is 10.4 m 2
  • the nonlinear coefficient ⁇ is 21W _1 km _1 .
  • the one that depends on the wavelength is the value at the wavelength of 1550 nm.
  • FIG. 4 is a diagram illustrating a spectrum of an optical comb output from the highly nonlinear optical fiber of the optical frequency comb generator according to the embodiment.
  • FIG. 5 is a diagram showing the spectrum of the optical comb output from the highly nonlinear optical fiber of the optical frequency comb generator of Comparative Example 1.
  • FIG. 6 is a diagram showing the spectrum of the optical comb output from the highly nonlinear optical fiber of the optical frequency comb generator of Comparative Example 2.
  • the power of light input to the highly nonlinear optical fiber was 45 mW
  • the power of light output from the highly nonlinear optical fiber was 19 mW.
  • Comparative Example 1 of the bidirectional pumping method the power of light input to the highly nonlinear optical fiber was 84 mW, and the power of light output from the highly nonlinear optical fiber was 33 mW.
  • Comparative Example 2 of the forward pumping method the power of the light input to the highly nonlinear optical fiber is 40 mW, which is output from the highly nonlinear optical fiber. The power of light was 18mW.
  • FIG. 7 is a diagram showing CEO frequency f signals detected in the optical frequency comb generators of the example and the comparative example 1. As can be seen from this figure, bidirectional excitation system
  • the optical frequency comb generator 1 is such that the optical fiber amplifiers 30A and 30B are of the reverse direction pumping system as compared with the conventional apparatus employing the bidirectional pumping type optical fiber amplifier. Therefore, the SZN ratio of the obtained optical comb is excellent.
  • the present invention can be used for an optical frequency comb generator that generates light of a plurality of optical frequencies arranged at equal intervals in a certain optical frequency range.

Abstract

Provided is an optical frequency comb generator capable of obtaining an optical comb having a preferable S/N. A pulse laser beam outputted when a laser light source (10) performs mode-synchronized laser oscillation is optically amplified by an optical fiber amplifier (30A) of the inverse-direction excitation method so as to have a high power and is inputted into a high non-linear optical fiber (40A). The pulse laser beam inputted into the high non-linear optical fiber (40A) is broad-banded by a non-linear optical phenomenon in the high non-linear optical fiber (40A) and it is possible to obtain a broad-band optical comb having a preferable S/N.

Description

明 細 書  Specification
光周波数コム発生装置  Optical frequency comb generator
技術分野  Technical field
[0001] 本発明は、或る一定の光周波数範囲において等間隔に配列された複数の光周波 数の光を発生する光周波数コム発生装置に関するものである。  The present invention relates to an optical frequency comb generator that generates light of a plurality of optical frequencies arranged at equal intervals in a certain optical frequency range.
背景技術  Background art
[0002] 光周波数コム発生装置は、或る一定の光周波数範囲において等間隔に配列され た複数の光周波数の光(「光コム」と呼ばれる。)を発生するものであり、例えば特許 文献 1〜3に開示されている。光周波数コム発生装置は、レーザ光の光周波数 (数百 THz)を測定する際に用いられ、また、相異なる光周波数のレーザ光の間の光周波 数差 (数十 THzまで)を測定する際にも用いられる。  An optical frequency comb generator generates light of a plurality of optical frequencies (called “optical comb”) arranged at equal intervals in a certain optical frequency range. For example, Patent Document 1 ~ 3. The optical frequency comb generator is used to measure the optical frequency (several hundreds THz) of laser light, and also measures the optical frequency difference (up to several tens of THz) between laser beams having different optical frequencies. Also used when.
[0003] 特許文献 1〜3を含め多くの文献において、種々の構成の光周波数コム発生装置 が提案されている。非特許文献 1〜7それぞれに記載された光周波数コム発生装置 は、モード同期レーザ光源,光増幅器および高非線形性光ファイバを備えており、モ ード同期レーザ光源から出力されたパルスレーザ光を光増幅器により光増幅し、その 光増幅したパルスレーザ光を高非線形性光ファイバにより導波させて、その導波の 際に発現する非線形光学現象によりパルスレーザ光を広帯域ィ匕して出力する。  [0003] Many documents including Patent Documents 1 to 3 propose optical frequency comb generators having various configurations. Each of the optical frequency comb generators described in Non-Patent Documents 1 to 7 includes a mode-locked laser light source, an optical amplifier, and a highly nonlinear optical fiber, and uses the pulsed laser light output from the mode-locked laser light source. Optical amplification is performed by an optical amplifier, the amplified laser light is guided by a highly nonlinear optical fiber, and the pulsed laser light is output in a broad band by a nonlinear optical phenomenon that appears at the time of the waveguide.
特許文献 1:特開平 7— 58386号公報  Patent Document 1: Japanese Patent Laid-Open No. 7-58386
特許文献 2:特開平 11—4037号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-4037
特許文献 3 :特開 2000— 89264号公報  Patent Document 3: JP 2000-89264 A
非特許文献 1: D. J. Jones, et al., Carrier-envelope phase control of femtosecond m ode-locked lasers and direct optical frequency synthesis," Science vol. 288, 635 (20 00).  Non-Patent Document 1: D. J. Jones, et al., Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, "Science vol. 288, 635 (20 00).
特許文献 2 : F. Tauser, et al., "Amplified femtosecond pulses from an Er:fiber syst em: Nonlinear pulse shortening and self-referencing detection of the carrier-envelop e phase evolution," Optics Express, vol 11, 594 (2003).  Patent Document 2: F. Tauser, et al., "Amplified femtosecond pulses from an Er: fiber syst em: Nonlinear pulse shortening and self-referencing detection of the carrier-envelop e phase evolution," Optics Express, vol 11, 594 ( 2003).
非特許文献 3 : T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Mats umoto, I. Hartl, M. E. Fermann, "Frequency metrology with a turnkey all-fiber syst em," Opt. Lett. 29, 2467-2469 (2004). Non-Patent Document 3: TR Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Mats umoto, I. Hartl, ME Fermann, "Frequency metrology with a turnkey all-fiber syst em," Opt. Lett. 29, 2467-2469 (2004).
非特許文献 4 : F. Adler, et al., "Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies," Opt. Express 12, 5872-5880 (2004).  Non-Patent Document 4: F. Adler, et al., "Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies," Opt. Express 12, 5872-5880 (2004).
非特許文献 5 : H. Hundertmark, et. al., "Phase-locked carrier-envelope offset frequ ency at 1560 nm," Opt. Express 12, 770-775 (2004).  Non-Patent Document 5: H. Hundertmark, et. Al., "Phase-locked carrier-envelope offset frequency at 1560 nm," Opt. Express 12, 770-775 (2004).
非特許文献 6 : K. Tamura, et al., "Unidirectional ring resonator for selfstarting passi vely mode-locked lasers," Opt. Lett., 18, 220-222 (1993).  Non-Patent Document 6: K. Tamura, et al., "Unidirectional ring resonator for selfstarting passi vely mode-locked lasers," Opt. Lett., 18, 220-222 (1993).
特許文献 7 : N. Nakazawa, et al, 'Continuum suppressed, uniformly repetitive 13b fs pulse generation from an erbium-doped fibre laser with nonlinear polarisation rota tion," Electron. Lett. 29, 1327—1329 (1993).  Patent Document 7: N. Nakazawa, et al, 'Continuum suppressed, uniformly repetitive 13b fs pulse generation from an erbium-doped fiber laser with nonlinear polarisation rota tion, "Electron. Lett. 29, 1327—1329 (1993).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 従来の光周波数コム発生装置により得られる光コムの信号雑音比(SZN比)は 25 dB〜40dB程度(分解能帯域 100kHz)であった。この SZN比が 25dB程度あれば 、位相同期を行ったり周波数計測したりすることが可能ではある。しかし、温度変動な どの環境変動に因り SZN比が低下する可能性があり、また、 SZN比が悪いと周波 数安定度に影響を及ぼす場合もある。  [0004] The signal-to-noise ratio (SZN ratio) of the optical comb obtained by a conventional optical frequency comb generator was about 25 dB to 40 dB (resolution band 100 kHz). If this SZN ratio is about 25 dB, it is possible to perform phase synchronization and frequency measurement. However, the SZN ratio may decrease due to environmental fluctuations such as temperature fluctuations, and a poor SZN ratio may affect frequency stability.
[0005] 本発明は、上記問題点を解消する為になされたものであり、 SZN比がよい光コム を得ることができる光周波数コム発生装置を提供することを目的とする。  [0005] The present invention has been made to solve the above problems, and an object of the present invention is to provide an optical frequency comb generator capable of obtaining an optical comb having a good SZN ratio.
課題を解決するための手段  Means for solving the problem
[0006] 本発明に係る光周波数コム発生装置は、 (1)モード同期レーザ発振してパルスレー ザ光を出力するレーザ光源と、 (2)希土類元素が光導波領域に添加された増幅用光 ファイバと、増幅用光ファイバに添加された希土類元素を励起し得る波長の励起光を 出力する励起光源とを含み、レーザ光源から出力されたパルスレーザ光を増幅用光 ファイバの第 1端に入力し、励起光源力 出力された励起光を増幅用光ファイバの第 2端に入力して、増幅用光ファイバの第 1端に入力したパルスレーザ光を増幅用光フ アイバにおいて光増幅して増幅用光ファイバの第 2端から出力する光ファイバ増幅器 と、 (3)光ファイバ増幅器により光増幅されて出力されたパルスレーザ光を第 1端に入 力し、非線形光学現象により広帯域光とし出力する第一非線形光学媒体 (例えば、 高非線形性光ファイノく)と、を備えることを特徴とする。 [0006] An optical frequency comb generator according to the present invention includes: (1) a laser light source that oscillates in a mode-locked laser and outputs pulsed laser light; and (2) an amplification optical fiber in which a rare earth element is added to an optical waveguide region And a pumping light source that outputs pumping light having a wavelength capable of pumping the rare earth element added to the amplification optical fiber, and the pulsed laser light output from the laser light source is input to the first end of the amplification optical fiber. The excitation light source power is input to the second end of the amplification optical fiber, and the pulsed laser light input to the first end of the amplification optical fiber is input to the amplification optical fiber. (3) An optical fiber amplifier that amplifies the light at the Aiba and outputs it from the second end of the amplification optical fiber; (3) A pulse laser beam that is amplified and output by the optical fiber amplifier is input to the first end, and nonlinear optics And a first non-linear optical medium (for example, a highly non-linear optical fiber) that outputs broadband light according to a phenomenon.
[0007] この光周波数コム発生装置では、レーザ光源がモード同期レーザ発振して出力さ れたパルスレーザ光は、逆方向励起方式の光ファイバ増幅器により光増幅されて高 パワーとされた後、第一非線形光学媒体に入力される。第一非線形光学媒体におい て発現する非線形光学現象により、第一非線形光学媒体に入力されたパルスレーザ 光が広帯域化されて、広帯域のパルス光として出力され、 SZN比がよい広帯域光コ ムが得られる。 [0007] In this optical frequency comb generator, the pulsed laser light output by the mode-locked laser oscillation of the laser light source is optically amplified by a reverse pumping type optical fiber amplifier to be high power, One nonlinear optical medium is input. Due to the nonlinear optical phenomenon that occurs in the first nonlinear optical medium, the pulse laser beam input to the first nonlinear optical medium is broadened and output as a broadband pulsed light, and a broadband optical comb with a good SZN ratio is obtained. Be
[0008] 本発明に係る光周波数コム発生装置は、 (4)第一非線形光学媒体から出力された 広帯域光を入力し、その広帯域光の基本波に対し第 2高調波を発生し出力する第二 非線形光学媒体と、 (5)第二非線形光学媒体から出力された広帯域光の第 2高調波 と基本波とのビート周波数に基づ 、て、キャリア ·エンベロープ 'オフセット周波数(以 下「CEO周波数」という。)を検出する CEO周波数検出部と、 (6) CEO周波数検出部 により検出された CEO周波数が所定値となるように、レーザ光源から出力されるパル スレーザ光の波長を安定化制御する CEO周波数安定化部と、を更に備えるのが好 適である。この場合には、第一非線形光学媒体から出力された広帯域光は第二非線 形光学媒体に入力され、この第二非線形光学媒体において広帯域光の基本波に対 し第 2高調波が発生する。 CEO周波数検出部により、第二非線形光学媒体から出力 された広帯域光の第 2高調波と基本波とのビート周波数に基づ 、て、 CEO周波数が 検出される。そして、 CEO周波数安定ィ匕部により、 CEO周波数検出部により検出さ れた CEO周波数が所定値となるように、レーザ光源から出力されるノ ルスレーザ光 の波長が安定化制御される。  [0008] An optical frequency comb generator according to the present invention provides: (4) a broadband light output from a first nonlinear optical medium is input, a second harmonic is generated and output with respect to a fundamental wave of the broadband light; (2) Based on the beat frequency of the second harmonic of the broadband light output from the second nonlinear optical medium and the fundamental wave, the carrier envelope 'offset frequency (hereinafter referred to as the “CEO frequency”) CEO frequency detector, and (6) Stabilize and control the wavelength of the pulse laser light output from the laser light source so that the CEO frequency detected by the CEO frequency detector is a predetermined value. It is preferable to further include a CEO frequency stabilization unit. In this case, the broadband light output from the first nonlinear optical medium is input to the second nonlinear optical medium, and the second harmonic is generated with respect to the fundamental wave of the broadband light in the second nonlinear optical medium. . The CEO frequency is detected by the CEO frequency detector based on the beat frequency of the second harmonic and the fundamental wave of the broadband light output from the second nonlinear optical medium. The wavelength of the laser light emitted from the laser light source is stabilized and controlled by the CEO frequency stabilization unit so that the CEO frequency detected by the CEO frequency detection unit becomes a predetermined value.
[0009] 本発明に係る光周波数コム発生装置は、 (7)パルスレーザ光の繰返し周波数を検 出する繰返し周波数検出部と、 (8)繰返し周波数検出部により検出された繰返し周波 数が所定値となるように、レーザ光源から出力されるパルスレーザ光の繰返し周波数 を安定ィ匕制御する繰返し周波数安定ィ匕部と、を更に備えるのが好適である。この場 合には、繰返し周波数検出部によりパルスレーザ光の繰返し周波数が検出され、繰 返し周波数安定化部により、この検出された繰返し周波数が所定値となるように、レ 一ザ光源から出力されるパルスレーザ光の繰返し周波数が安定ィ匕制御される。 [0009] An optical frequency comb generator according to the present invention includes: (7) a repetition frequency detection unit that detects a repetition frequency of pulse laser light; and (8) a repetition frequency detected by the repetition frequency detection unit is a predetermined value. In order to achieve the above, it is preferable to further include a repetition frequency stabilization unit that stably controls the repetition frequency of the pulsed laser light output from the laser light source. This place In this case, the repetition frequency detection unit detects the repetition frequency of the pulse laser beam, and the repetition frequency stabilization unit detects the pulse output from the laser light source so that the detected repetition frequency becomes a predetermined value. The repetition frequency of the laser beam is controlled stably.
[0010] 本発明に係る光周波数コム発生装置は、 (9)第一非線形光学媒体から出力された 広帯域光と、他のレーザ光源から出力されたレーザ光とを合波して、その合波したレ 一ザ光を出力する光合波部と、 (10)光合波部により合波されて出力されたレーザ光 をへテロダイン検波するへテロダイン検波部と、を更に備えるのが好適である。この場 合には、第一非線形光学媒体から出力された広帯域光と、他のレーザ光源から出力 されたレーザ光とは、光合波部により合波されてへテロダイン検波部によりへテロダイ ン検波され、これにより、上記他のレーザ光源から出力されたレーザ光の波長が検出 される。  [0010] An optical frequency comb generator according to the present invention includes (9) combining broadband light output from a first nonlinear optical medium and laser light output from another laser light source, and combining the combined light. It is preferable to further include an optical multiplexing unit that outputs the laser beam thus obtained, and (10) a heterodyne detection unit that heterodyne-detects the laser beam combined and output by the optical multiplexing unit. In this case, the broadband light output from the first nonlinear optical medium and the laser light output from the other laser light source are combined by the optical combining unit and heterodyne detected by the heterodyne detection unit. Thus, the wavelength of the laser beam output from the other laser light source is detected.
[0011] また、本発明に係る光周波数コム発生装置は、レーザ光源とファイバ増幅器との間 に設けられ、レーザ光源から出力されたパルスレーザ光の偏波を調整して、その偏 波調整したパルスレーザ光をファイバ増幅器へ出力する偏波調整部を更に備えるの が好適である。この場合には、レーザ光源とファイバ増幅器との間に設けられた偏波 調整部により、レーザ光源力 出力されたパルスレーザ光の偏波が調整され、その偏 波調整されたノ ルスレーザ光がファイバ増幅器に入力される。これにより、 CEO周波 数 f CEOが高精度に検出され得る。  [0011] The optical frequency comb generator according to the present invention is provided between the laser light source and the fiber amplifier, and adjusts the polarization of the pulsed laser light output from the laser light source and adjusts the polarization. It is preferable to further include a polarization adjustment unit that outputs the pulse laser beam to the fiber amplifier. In this case, the polarization adjustment unit provided between the laser light source and the fiber amplifier adjusts the polarization of the pulsed laser light output from the laser light source force, and the polarization-adjusted Norlas laser light is transmitted to the fiber. Input to the amplifier. As a result, the CEO frequency f CEO can be detected with high accuracy.
発明の効果  The invention's effect
[0012] 本発明によれば、 SZN比がよい光コムを得ることができる光周波数コム発生装置 を提供することができる。  According to the present invention, it is possible to provide an optical frequency comb generator capable of obtaining an optical comb having a good SZN ratio.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]図 1は、本実施形態に係る光周波数コム発生装置 1の構成図である。  FIG. 1 is a configuration diagram of an optical frequency comb generator 1 according to the present embodiment.
[図 2]図 2は、本実施形態に係る光周波数コム発生装置 1の高非線形性光ファイバ 4 OA, 40Bから出力される広帯域光の光周波数の配置を示す図である。  FIG. 2 is a diagram showing an arrangement of optical frequencies of broadband light output from the highly nonlinear optical fibers 4 OA and 40B of the optical frequency comb generator 1 according to the present embodiment.
[図 3]図 3は、光周波数コム発生装置の高非線形性光ファイバの波長分散特性を示 す図である。  [FIG. 3] FIG. 3 is a diagram showing the chromatic dispersion characteristics of a highly nonlinear optical fiber of an optical frequency comb generator.
[図 4]図 4は、実施例の光周波数コム発生装置の高非線形性光ファイバから出力され る光コムのスペクトルを示す図である。 [Figure 4] Figure 4 shows the output from the highly nonlinear optical fiber of the optical frequency comb generator of the example. It is a figure which shows the spectrum of an optical comb.
[図 5]図 5は、比較例 1の光周波数コム発生装置の高非線形性光ファイバから出力さ れる光コムのスペクトルを示す図である。  FIG. 5 is a diagram showing a spectrum of an optical comb output from a highly nonlinear optical fiber of the optical frequency comb generator of Comparative Example 1.
[図 6]図 6は、比較例 2の光周波数コム発生装置の高非線形性光ファイバから出力さ れる光コムのスペクトルを示す図である。  FIG. 6 is a diagram showing a spectrum of an optical comb output from a highly nonlinear optical fiber of the optical frequency comb generator of Comparative Example 2.
[図 7]図 7は、実施例および比較例 1それぞれの光周波数コム発生装置において検 出された CEO周波数 f 信号を示す図である。  FIG. 7 is a diagram showing CEO frequency f signals detected by the optical frequency comb generators of the example and comparative example 1.
CEO  CEO
符号の説明 Explanation of symbols
1 光周波数コム発生装置 1 Optical frequency comb generator
2 レーザ光源 2 Laser light source
10 レーザ光源 10 Laser light source
11 増幅用光ファイバ 11 Amplifying optical fiber
12 励起光源 12 Excitation light source
13 ドラム 13 drums
14 λ Ζ4板  14 λ Ζ4 plates
15 λ Ζ2板  15 λ Ζ2 plates
16 ボラライザ 16 Bolizer
17, 18 光アイソレータ  17, 18 Optical isolator
21A, 21B X 4U 21A, 21B X 4U
22Α, 22Β /2 22Α, 22Β / 2
30Α, 30Β 光ファイバ増幅器 30Α, 30Β optical fiber amplifier
31A, 31B 増幅用光ファイバ 31A, 31B amplification optical fiber
32Α, 32Β 励起光源32Α, 32Β excitation light source
0Α, 40Β 第一非線形光学媒体 (高非線形性光ファイバ) 0Α, 40Β First nonlinear optical medium (high nonlinear optical fiber)
1A, 41B シングルモード光ファイバ  1A, 41B single mode optical fiber
51A, 51B, 51C レンズ 51A, 51B, 51C lenses
52Α 第二非線形光学媒体 52Α Second nonlinear optical medium
53Β ミラー 54A, 54B ハーフミラー 53Β Mirror 54A, 54B Half mirror
55A バンドパスフィルタ  55A bandpass filter
56A CEO周波数検出部  56A CEO frequency detector
56B ヘテロダイン検波部  56B heterodyne detector
56C 繰返し周波数検出部  56C repetitive frequency detector
60 CEO周波数安定ィ匕部  60 CEO Frequency Stabilization Department
70 繰返し周波数安定化部  70 Repetitive frequency stabilization section
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明す る。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を 省略する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[0016] 図 1は、本実施形態に係る光周波数コム発生装置 1の構成図である。この図に示さ れる光周波数コム発生装置 1は、レーザ光源 10、光ファイバ増幅器 30A, 30B、第 一非線形光学媒体 (高非線形性光ファイバ) 40A, 40B、第二非線形光学媒体 52A 、フォトダイオード 56A, 56B, 56C、 CEO周波数安定化部 60および繰返し周波数 安定化部 70等を備えて 、る。  FIG. 1 is a configuration diagram of an optical frequency comb generator 1 according to the present embodiment. The optical frequency comb generator 1 shown in this figure includes a laser light source 10, optical fiber amplifiers 30A and 30B, first nonlinear optical media (high nonlinear optical fibers) 40A and 40B, a second nonlinear optical medium 52A, and a photodiode 56A. , 56B, 56C, CEO frequency stabilization unit 60, repetitive frequency stabilization unit 70, etc.
[0017] レーザ光源 10は、モード同期レーザ発振してパルスレーザ光を出力するものであり 、増幅用光ファイバ 11、励起光源 12、ドラム 13、 λ Ζ4板 14、 λ Ζ2板 15、ボラライ ザ 16、偏波依存型光アイソレータ 17および偏波無依存型光アイソレータ 18を含む。 これらのうち、増幅用光ファイバ 11, λ Ζ4板 14, λ Ζ2板 15,ボラライザ 16および 光アイソレータ 17は、リング型光共振器の共振光路上に設けられている。  The laser light source 10 oscillates in a mode-locked laser and outputs pulsed laser light. The amplification optical fiber 11, the excitation light source 12, the drum 13, the λ 4 plate 14, the λ 2 plate 15, and the polarizer 16 A polarization-dependent optical isolator 17 and a polarization-independent optical isolator 18. Among these, the amplification optical fibers 11, λ Ζ4 plate 14, λ Ζ2 plate 15, polarizer 16 and optical isolator 17 are provided on the resonance optical path of the ring type optical resonator.
[0018] 増幅用光ファイバ 11は、 Er元素が光導波領域に添加された光ファイバであり、ピエ ゾ素子が設けられたドラム 13に巻かれている。励起光源 12は、増幅用光ファイバ 11 に添加された Er3+を励起し得る波長 1.48 m帯の励起光を出力して、その励起光 を増幅用光ファイバ 11に供給する。 The amplification optical fiber 11 is an optical fiber in which an Er element is added to an optical waveguide region, and is wound around a drum 13 provided with a piezoelectric element. The pumping light source 12 outputs pumping light having a wavelength of 1.48 m that can pump Er 3+ added to the amplification optical fiber 11, and supplies the pumping light to the amplification optical fiber 11.
[0019] λ Ζ4板 14および λ Ζ2板 15は、リング型光共振器で発振するレーザ光の偏波を 制御する。また、 λ Ζ4板 14, λ Ζ2板 15,ボラライザ 16および偏波依存型光ァイソ レータ 17は、リング型光共振器でパルスレーザ光を選択的に発振させる。ドラム 13に 設けられたピエゾ素子は、そのドラム 13に卷かれた増幅用光ファイバ 11の長さを調 整することができ、これにより、リング型光共振器の共振器長を調整することができる。 [0019] The λΖ4 plate 14 and the λΖ2 plate 15 control the polarization of the laser light oscillated by the ring-type optical resonator. The λλ4 plate 14, λΖ2 plate 15, the polarizer 16 and the polarization-dependent optical isolator 17 selectively oscillate pulsed laser light with a ring type optical resonator. On drum 13 The provided piezo element can adjust the length of the amplifying optical fiber 11 wound on the drum 13, thereby adjusting the resonator length of the ring type optical resonator.
[0020] このように構成されるレーザ光源 10では、励起光源 12から出力された励起光が増 幅用光ファイバ 11に供給され、増幅用光ファイバ 11に添加されて 、る Er3+が励起さ れて、増幅用光ファイバ 11から波長 1.55 m帯の光が放出される。増幅用光フアイ ノ 11から放出された光はリング型光共振器により共振されて、レーザ光源 10はレー ザ発振する。 In the laser light source 10 configured as described above, the pumping light output from the pumping light source 12 is supplied to the amplification optical fiber 11 and added to the amplification optical fiber 11 so that Er 3+ is pumped. Then, light having a wavelength of 1.55 m is emitted from the amplification optical fiber 11. The light emitted from the amplification optical fiber 11 is resonated by the ring optical resonator, and the laser light source 10 oscillates in a laser.
[0021] また、このレーザ光源 10では、 λ Ζ4板 14, λ Ζ2板 15,ボラライザ 16および偏波 依存型光アイソレータ 17の作用によりモード同期レーザ発振し、この発振により得ら れたパルスレーザ光が偏波無依存型光アイソレータ 18を経て出力される。なお、レ 一ザ光源 10から出力されるパルスレーザ光の波長は、励起光源 12から増幅用光フ アイバ 11に供給される励起光のパワーに依存する。レーザ光源 10から出力されるパ ルスレーザ光の繰返し周波数は、ドラム 13に設けられたピエゾ素子の作用により調 整されたリング型光共振器の共振器長に依存する。  In addition, in this laser light source 10, mode-locked laser oscillation is performed by the action of λ Ζ4 plate 14, λ Ζ2 plate 15, polarizer 16 and polarization-dependent optical isolator 17, and the pulse laser beam obtained by this oscillation is obtained. Is output via the polarization-independent optical isolator 18. Note that the wavelength of the pulsed laser light output from the laser light source 10 depends on the power of the excitation light supplied from the excitation light source 12 to the amplification optical fiber 11. The repetition frequency of the pulsed laser light output from the laser light source 10 depends on the resonator length of the ring optical resonator adjusted by the action of the piezoelectric element provided on the drum 13.
[0022] レーザ光源 10から出力されたパルスレーザ光は 2分岐され、 2分岐された後の一方 のパルスレーザ光はえ Ζ4板 21Aおよび λ Ζ2板 22Αを経て光ファイバ増幅器 30Α に入力され、 2分岐された後の他方のパルスレーザ光は λ Ζ4板 21Bおよび λ /2 板 22Βを経て光ファイバ増幅器 30Βに入力される。  [0022] The pulse laser beam output from the laser light source 10 is branched into two, and after being branched into two, the pulse laser beam is input to the optical fiber amplifier 30 through the four plate 21A and the λ two plate 22 through The other pulse laser beam after being branched is input to the optical fiber amplifier 30 through the λ Ζ4 plate 21B and λ / 2 plate 22Β.
[0023] λ Ζ4板 21Aおよび λ Ζ2板 22Αは、レーザ光源 10と光ファイバ増幅器 30Αとの 間に設けられた偏波調整部として作用するものであり、レーザ光源 10から出力された パルスレーザ光の偏波を調整して、その偏波調整したパルスレーザ光をファイバ増 幅器 30Αへ出力する。同様に、 λ Ζ4板 21Bおよび λ Ζ2板 22Βは、レーザ光源 10 と光ファイバ増幅器 30Βとの間に設けられた偏波調整部として作用するものであり、 レーザ光源 10から出力されたパルスレーザ光の偏波を調整して、その偏波調整した パルスレーザ光をファイバ増幅器 30Βへ出力する。  [0023] The λΖ4 plate 21A and the λΖ2 plate 22Α act as a polarization adjusting unit provided between the laser light source 10 and the optical fiber amplifier 30Α, and the pulsed laser light output from the laser light source 10 The polarization laser light is adjusted and the pulsed laser light whose polarization is adjusted is output to the fiber amplifier 30 mm. Similarly, the λΖ4 plate 21B and the λΖ2 plate 22Β act as a polarization adjusting unit provided between the laser light source 10 and the optical fiber amplifier 30Β, and the pulse laser beam output from the laser light source 10 The polarization laser light is adjusted and the pulse laser light whose polarization is adjusted is output to the fiber amplifier 30 mm.
[0024] 光ファイバ増幅器 30Αは、増幅用光ファイバ 31 Αおよび励起光源 32Αを含む。増 幅用光ファイバ 31 Aは、 Er元素が光導波領域に添加された光ファイバである。励起 光源 32Aは、増幅用光ファイバ 31Aに添加された Er3+を励起し得る波長 0.98 m 帯の励起光を出力して、その励起光を増幅用光ファイバ 31 Aに供給する。この光フ アイバ増幅器 30Aは、増幅用光ファイバ 31Aにおいて被増幅光(パルスレーザ光)お よび励起光が互いに逆の方向に導波する逆方向励起のものである。 [0024] The optical fiber amplifier 30Α includes an amplification optical fiber 31Α and a pumping light source 32Α. The optical fiber for amplification 31A is an optical fiber in which an Er element is added to the optical waveguide region. The excitation light source 32A has a wavelength of 0.98 m, which can excite Er 3+ added to the amplification optical fiber 31A. The pumping light of the band is output, and the pumping light is supplied to the amplification optical fiber 31A. This optical fiber amplifier 30A is a reverse-pumping type in which light to be amplified (pulse laser light) and pumping light are guided in opposite directions in the amplification optical fiber 31A.
[0025] すなわち、レーザ光源 10から出力されて λ Ζ4板 21Aおよび λ Ζ2板 22Aを経た パルスレーザ光は、増幅用光ファイバ 31Aの第 1端に入力される。励起光源 32Αか ら出力された励起光は増幅用光ファイバ 31Aの第 2端に入力される。そして、増幅用 光ファイバ 31Aの第 1端に入力したパルスレーザ光は、増幅用光ファイバ 31Aにお いて光増幅されて、増幅用光ファイバ 31 Αの第 2端力も高非線形性光ファイバ 40Α へ出力される。 That is, the pulse laser beam output from the laser light source 10 and passed through the λλ4 plate 21A and the λΖ2 plate 22A is input to the first end of the amplification optical fiber 31A. The pump light output from the pump light source 32 is input to the second end of the amplification optical fiber 31A. Then, the pulse laser beam input to the first end of the amplification optical fiber 31A is optically amplified in the amplification optical fiber 31A, and the second end force of the amplification optical fiber 31Α also goes to the highly nonlinear optical fiber 40Α. Is output.
[0026] 同様に、光ファイバ増幅器 30Bは、増幅用光ファイバ 31Bおよび励起光源 32Bを 含む。増幅用光ファイバ 31Bは、 Er元素が光導波領域に添加された光ファイバであ る。励起光源 32Bは、増幅用光ファイバ 31Bに添加された Er3+を励起し得る波長 0. 98 m帯の励起光を出力して、その励起光を増幅用光ファイバ 31Bに供給する。こ の光ファイバ増幅器 30Bは、増幅用光ファイバ 31Bにおいて被増幅光(パルスレー ザ光)および励起光が互いに逆の方向に導波する逆方向励起のものである。 [0026] Similarly, the optical fiber amplifier 30B includes an amplification optical fiber 31B and a pumping light source 32B. The amplification optical fiber 31B is an optical fiber in which an Er element is added to the optical waveguide region. The pumping light source 32B outputs pumping light having a wavelength of 0.98 m that can pump Er 3+ added to the amplification optical fiber 31B, and supplies the pumping light to the amplification optical fiber 31B. This optical fiber amplifier 30B is of the reverse excitation type in which the light to be amplified (pulse laser light) and the pumping light are guided in opposite directions in the amplification optical fiber 31B.
[0027] 高非線形性光ファイバ 40Aおよび高非線形性光ファイバ 40Bそれぞれは、非線形 性が高く非線形光学現象が発現し易 、光ファイバである。高非線形性光ファイバとは 、通常の伝送用に用いられる標準的なシングルモードファイバより非線形係数が 3倍 以上大き 、光ファイバを 、う。高非線形性光ファイバの非線形係数 (XPM法での測 定)は、 5ZwZkmより大きいのが望ましぐより好適には lOZwZkm以上であり、 更に好適には 20ZwZkm以上である。また、高非線形性光ファイノ OA, 40Bの ゼロ分散波長は 1450nm以下であるのが好ましい。高非線形性光ファイバ 40Aは、 光ファイバ増幅器 30Aにより光増幅されて出力されたパルスレーザ光を第 1端に入 力し、その入力したパルスレーザ光のスぺクトルを非線形光学現象により広帯域化し て、その広帯域ィ匕したパルスレーザ光 (広帯域光)をシングルモード光ファイバ 41 A へ出力する。同様に、高非線形性光ファイバ 40Bは、光ファイバ増幅器 30Bにより光 増幅されて出力されたパルスレーザ光を第 1端に入力し、その入力したパルスレーザ 光のスペクトルを非線形光学現象により広帯域ィ匕して、その広帯域ィ匕したパルスレー ザ光 (広帯域光)をシングルモード光ファイバ 41Bへ出力する。ここで、広帯域光は 1 オクターブ以上の帯域を有して 、ると好ま 、。 Each of the highly nonlinear optical fiber 40A and the highly nonlinear optical fiber 40B is an optical fiber that has high nonlinearity and easily exhibits a nonlinear optical phenomenon. A highly nonlinear optical fiber is an optical fiber that has a nonlinear coefficient three times greater than that of a standard single mode fiber used for normal transmission. The nonlinear coefficient (measured by the XPM method) of the highly nonlinear optical fiber is preferably more than lOZwZkm, more preferably more than 20ZwZkm, more preferably more than 5ZwZkm. Further, the zero dispersion wavelength of the highly nonlinear optical fino OA, 40B is preferably 1450 nm or less. The highly nonlinear optical fiber 40A inputs the pulse laser beam amplified and output by the optical fiber amplifier 30A to the first end, and broadens the spectrum of the input pulse laser beam by nonlinear optical phenomenon. Then, the pulsed laser beam (broadband light) that has been broadened is output to the single mode optical fiber 41 A. Similarly, in the highly nonlinear optical fiber 40B, the pulse laser beam output after being amplified by the optical fiber amplifier 30B is input to the first end, and the spectrum of the input pulse laser beam is converted into a broadband signal by a nonlinear optical phenomenon. The wideband pulse array The light (broadband light) is output to the single-mode optical fiber 41B. Here, it is preferable that the broadband light has a band of 1 octave or more.
[0028] シングルモード光ファイバ 41Aは、高非線形性光ファイバ 40Aの第 2端(出射端)に 接続されている。同様に、シングルモード光ファイバ 41Bは、高非線形性光ファイバ 4 OBの第 2端(出射端)に接続されている。シングルモード光ファイバ 41Aは、高非線 形性光ファイバ 40Aおよび第二非線形光学媒体 52Aで生じる波長分散を補償する ものであり、その波長分散補償の為に調整されたファイバ長を有する。同様に、シン ダルモード光ファイバ 41Bは、高非線形性光ファイバ 40Bで生じる波長分散を補償 するものであり、その波長分散補償の為に調整されたファイバ長を有する。  [0028] The single mode optical fiber 41A is connected to the second end (outgoing end) of the highly nonlinear optical fiber 40A. Similarly, the single mode optical fiber 41B is connected to the second end (outgoing end) of the highly nonlinear optical fiber 4OB. The single-mode optical fiber 41A compensates the chromatic dispersion generated in the highly nonlinear optical fiber 40A and the second nonlinear optical medium 52A, and has a fiber length adjusted for the chromatic dispersion compensation. Similarly, the cinder mode optical fiber 41B compensates the chromatic dispersion generated in the highly nonlinear optical fiber 40B, and has a fiber length adjusted for the chromatic dispersion compensation.
[0029] シングルモード光ファイバ 41Aの出射端から出射された広帯域光を入力するレンズ 51Aは、その入力した広帯域光を集光して第二非線形光学媒体 52Aに入射させる 。第二非線开光学媒体 52Aは、例えば PPLN (periodically poled lithium niobate cry stal)であり、入射した広帯域光の少なくとも一本のコムを含む基本波に対し第 2高調 波を発生し出力する。第 2高調波の帯域と基本波の帯域とは一部で重なって 、る。 ハーフミラー 54Aは、第二非線形光学媒体 52Aから出力された広帯域光の基本波 および第 2高調波を入力して、一部を透過させ残部を反射させて 2分岐する。  [0029] The lens 51A for inputting the broadband light emitted from the emitting end of the single mode optical fiber 41A collects the inputted broadband light and makes it incident on the second nonlinear optical medium 52A. The second nonlinear optical medium 52A is, for example, PPLN (periodically poled lithium niobate crystal), and generates and outputs a second harmonic with respect to a fundamental wave including at least one comb of incident broadband light. The second harmonic band overlaps with the fundamental band. The half mirror 54A inputs the fundamental wave and the second harmonic wave of the broadband light output from the second nonlinear optical medium 52A, transmits a part thereof, reflects the remaining part, and splits into two.
[0030] ハーフミラー 54Aを透過した広帯域光を入力するバンドパスフィルタ 55Aは、その 入力した広帯域光のうち特定の透過帯域のものを透過させる。ここで、透過帯域は、 高非線形性光ファイバ 40Aから出力される広帯域光の帯域のうち光周波数が高い帯 域である。 CEO周波数検出部 56Aは、バンドパスフィルタ 55Aを透過した広帯域光 の第 2高調波と基本波とのビート周波数に基づいて CEO周波数を検出する。そして 、 CEO周波数安定ィ匕部 60は、 CEO周波数検出部 56Aにより検出された CEO周波 数が所定値となるように、励起光源 12から増幅用光ファイバ 11に供給される励起光 のパワーを調整することにより、レーザ光源 10から出力されるパルスレーザ光の波長 を安定化制御する。  [0030] The bandpass filter 55A that inputs the broadband light transmitted through the half mirror 54A transmits the input broadband light having a specific transmission band. Here, the transmission band is a band having a high optical frequency in the broadband light band output from the highly nonlinear optical fiber 40A. The CEO frequency detector 56A detects the CEO frequency based on the beat frequency of the second harmonic and the fundamental wave of the broadband light that has passed through the bandpass filter 55A. Then, the CEO frequency stabilizing unit 60 adjusts the power of the pumping light supplied from the pumping light source 12 to the amplification optical fiber 11 so that the CEO frequency detected by the CEO frequency detecting unit 56A becomes a predetermined value. By doing so, the wavelength of the pulsed laser beam output from the laser light source 10 is stabilized and controlled.
[0031] ハーフミラー 54Aで反射された広帯域光を入力する繰返し周波数検出部 56Cは、 その入力した広帯域光の繰返し周波数を検出する。そして、繰返し周波数安定化部 70は、繰返し周波数検出部 56Cにより検出された繰返し周波数が所定値となるよう に、ドラム 13のピエゾ素子を介してレーザ光源 10のリング型光共振器の共振器長を 調整することにより、レーザ光源 10から出力されるパルスレーザ光の繰返し周波数を 安定化制御する。 [0031] The repetition frequency detector 56C that inputs the broadband light reflected by the half mirror 54A detects the repetition frequency of the input broadband light. The repetition frequency stabilization unit 70 then adjusts the repetition frequency detected by the repetition frequency detection unit 56C to a predetermined value. In addition, by adjusting the resonator length of the ring-type optical resonator of the laser light source 10 via the piezoelectric element of the drum 13, the repetition frequency of the pulsed laser light output from the laser light source 10 is controlled to be stabilized.
[0032] シングルモード光ファイバ 41Bの出射端から出射された広帯域光を入力するレンズ 51Bは、その入力した広帯域光をコリメートする。また、レンズ 51Cは、レーザ光源 2 力も出力されたレーザ光をコリメートする。ハーフミラー 54Bは、レンズ 51B力もミラー 53Bを経て到達した広帯域光と、レンズ 51C力も到達したレーザ光とを合波して、そ の合波したレーザ光を出力する。そして、ヘテロダイン検波部 56Bは、ハーフミラー 5 4Bにより合波されて出力されたレーザ光をへテロダイン検波して、レーザ光源 2から 出力されたレーザ光の波長を検出する。  [0032] The lens 51B for inputting broadband light emitted from the emitting end of the single mode optical fiber 41B collimates the inputted broadband light. In addition, the lens 51C collimates the laser beam output from the laser light source 2 as well. The half mirror 54B combines the broadband light that has reached the lens 51B through the mirror 53B and the laser light that has also reached the lens 51C, and outputs the combined laser light. Then, the heterodyne detection unit 56B detects the wavelength of the laser beam output from the laser light source 2 by heterodyne detection of the laser beam combined and output by the half mirror 54B.
[0033] 次に、本実施形態に係る光周波数コム発生装置 1の動作について説明する。レー ザ光源 10がモード同期レーザ発振して出力されたパルスレーザ光は、時間軸で見 れば或る一定の繰返し周波数 f  Next, the operation of the optical frequency comb generator 1 according to this embodiment will be described. The pulsed laser light output from the laser light source 10 after mode-locked laser oscillation is a certain repetition frequency f on the time axis.
repの超短パルス光列(時間軸上でのデルタ関数列) であり、光周波数軸で見れば、光共振器の縦モードに応じて一定の光周波数範囲に お!、て一定間隔 f  It is a rep ultra-short pulse optical train (delta function train on the time axis), and when viewed on the optical frequency axis, it is in a certain optical frequency range according to the longitudinal mode of the optical resonator! , Fixed interval f
repの光周波数列(光周波数軸上でのデルタ関数列、すなわち、光 コム)である (非特許文献 1参照)。光周波数軸で見たときの一定間隔 f の  It is an optical frequency sequence of rep (a delta function sequence on the optical frequency axis, that is, an optical comb) (see Non-Patent Document 1). At regular intervals f when viewed on the optical frequency axis
rep 光周波数 列は、光周波数のものさしの目となっている。  The rep optical frequency sequence is a measure of optical frequency.
[0034] レーザ光源 10から出力されたパルスレーザ光は、光コムであるとは言っても、波長 1,55 mを含む狭い帯域に限られる。そこで、以下のようにして広帯域ィ匕される。レ 一ザ光源 10から出力されたパルスレーザ光は 2分岐され、その分岐された一方のパ ルスレーザ光は λ Ζ4板 21Aおよび λ Ζ2板 22Αを経て光ファイバ増幅器 30Αに入 力され、分岐された他方のパルスレーザ光は λ Ζ4板 21Bおよび λ Ζ2板 22Βを経 て光ファイバ増幅器 30Βに入力される。  Although the pulse laser beam output from the laser light source 10 is an optical comb, it is limited to a narrow band including a wavelength of 1,55 m. Therefore, the broadband is performed as follows. The pulse laser beam output from the laser light source 10 is branched into two, and one of the branched pulse laser beams is input to the optical fiber amplifier 30 through the λ 4 plate 21A and λ 2 plate 22 and branched. The other pulse laser beam is input to the optical fiber amplifier 30 through the λ 4 plate 21B and the λ 2 plate 22.
[0035] 光ファイバ増幅器 30Αに入力されたパルスレーザ光は、逆方向励起方式の光ファ ィバ増幅器 30Αにより光増幅されて高パワーとされた後、高非線形性光ファイバ 40 Αに入力される。この高非線形性光ファイバ 40Aにお 、て発現する非線形光学現象 により、高非線形性光ファイバ 40Aに入力されたパルスレーザ光は広帯域光とされる 。同様に、光ファイバ増幅器 30Bに入力されたパルスレーザ光は、逆方向励起方式 の光ファイバ増幅器 30Bにより光増幅されて高パワーとされた後、高非線形性光ファ ィバ 40Bに入力される。この高非線形性光ファイバ 40Bにお 、て発現する非線形光 学現象により、高非線形性光ファイバ 40Bに入力されたパルスレーザ光は広帯域光 とされる。 [0035] The pulse laser beam input to the optical fiber amplifier 30Α is optically amplified by the reverse-pumped optical fiber amplifier 30Α to high power, and then input to the highly nonlinear optical fiber 40 40. . Due to the nonlinear optical phenomenon that occurs in the highly nonlinear optical fiber 40A, the pulsed laser light input to the highly nonlinear optical fiber 40A becomes broadband light. Similarly, the pulse laser beam input to the optical fiber amplifier 30B After being optically amplified by the optical fiber amplifier 30B to be high power, it is input to the highly nonlinear optical fiber 40B. Due to the nonlinear optical phenomenon that occurs in the highly nonlinear optical fiber 40B, the pulsed laser light input to the highly nonlinear optical fiber 40B becomes broadband light.
[0036] 図 2は、本実施形態に係る光周波数コム発生装置 1の非線形媒体としての高非線 形性光ファイバ 40A, 40Bから出力される広帯域光の光周波数の配置を示す図であ る。この図に示されるように、高非線形性光ファイバ 40A, 40Bから出力される広帯域 光は、光周波数軸で見ると一定の光周波数範囲において一定間隔 f  FIG. 2 is a diagram showing an arrangement of optical frequencies of broadband light output from the highly nonlinear optical fibers 40A and 40B as the nonlinear medium of the optical frequency comb generator 1 according to the present embodiment. . As shown in this figure, the broadband light output from the highly nonlinear optical fibers 40A and 40B has a constant interval f in a certain optical frequency range when viewed on the optical frequency axis.
repの光周波数列 力 なる光コムとなる。  The optical frequency train of rep is an optical comb.
[0037] 光周波数のものさしである光コムのスペクトルが 1オクターブ以上に拡がることは、 光周波数計測への応用という観点からは極めて重要な意味を持つ。すなわち、 f-to- 2f干渉と呼ばれる手法により、光コムのオフセット周波数 (f )の観測が可能となるか  [0037] The spread of the spectrum of an optical comb, which is a measure of optical frequency, over one octave is extremely important from the viewpoint of application to optical frequency measurement. In other words, is it possible to observe the offset frequency (f) of the optical comb by a technique called f-to-2f interference?
CEO  CEO
らである(非特許文献 2参照)。図 2は、 1オクターブ以上に広がる光コムの周波数軸 上のモードを示している。  (See Non-Patent Document 2). Figure 2 shows the modes on the frequency axis of an optical comb that extends over one octave.
[0038] 光周波数軸において、一定間隔 f で並んでいるコムのモードを仮想的に光周波数 rep [0038] On the optical frequency axis, the modes of combs arranged at regular intervals f are virtually represented by optical frequency rep
0となる点の近傍まで伸ばすと、オフセット周波数 (f )が存在する。これは、時間軸  When extending to the vicinity of the point where it becomes 0, there is an offset frequency (f). This is the time axis
CEO  CEO
のパルスで理解すると、隣り合うパルスにおける光のキャリア周波数とパルスのェンべ ロープとの Hネ目差である! "carrier— envelope位ネ目」となること力ら、「carrier— envelope of fset周波数 (CEO周波数)」 f と呼ばれる。 CEO周波数 f を観察することができる  This is the difference between the optical carrier frequency of adjacent pulses and the envelope of the pulse! The power of becoming “carrier—envelope-like” is called “carrier—envelope of fset frequency (CEO frequency)” f. CEO frequency f can be observed
CEO CEO  CEO CEO
と、光コム中において、 CEO周波数 f をゼロ番目として、 n番目のモードの周波数 f(  In the optical comb, the CEO frequency f is zero, and the frequency f (
CEO  CEO
n)は、下記(1)式で記述することができ、繰返し周波数 f および CEO周波数 f の 2 rep CEO つのパラメータにより表すことができる。  n) can be described by the following equation (1), and can be expressed by two rep CEO parameters of repetition frequency f and CEO frequency f.
f(n) = n X f + f  f (n) = n X f + f
rep CEO  rep CEO
[0039] 光コムが 1オクターブ以上の光周波数範囲 90に広がっているということは、光コム中 に n番目のモードと 2n番目のモードとが同時に存在することを意味する。 n番目のモ 一ドの第 2高調波の光周波数は下記(2)式で表され、 2n番目のモードの光周波数は 下記(3)式で表される。両者の差は、下記 (4)式で表されるとおり f となり、ビート観  [0039] The fact that the optical comb spreads over the optical frequency range 90 of one octave or more means that the nth mode and the 2nth mode exist simultaneously in the optical comb. The optical frequency of the second harmonic of the nth mode is expressed by the following equation (2), and the optical frequency of the 2nth mode is expressed by the following equation (3). The difference between the two is f as shown in the following equation (4),
CEO  CEO
測により測定することができる。これが、 f-to-2汗渉と呼ばれる手法である。 2f(n) = 2n X f + 2f - -- (2) It can be measured by measurement. This is a technique called f-to-2 sweating. 2f (n) = 2n X f + 2f--(2)
rep CEO  rep CEO
f(2n) = 2n X f + f - -- (3)  f (2n) = 2n X f + f--(3)
rep CEO  rep CEO
2f(n) -f(2n)  2f (n) -f (2n)
= (2n X f + 2f ) - (2n X f + f )  = (2n X f + 2f)-(2n X f + f)
rep CEO rep CEO  rep CEO rep CEO
= f …(  = f… (
CEO  CEO
[0040] 具体的には CEO周波数 f は以下のようにして検出される。すなわち、高非線形  Specifically, the CEO frequency f is detected as follows. That is, highly nonlinear
CEO  CEO
性光ファイバ 40Aにお 、て 1オクターブ以上まで広帯域ィ匕された広帯域光は、シング ルモード光ファイバ 41Aおよびレンズ 51Aを経て第二非線形光学媒体 52Aに入力さ れる。第二非線形光学媒体 52Aでは、入射した広帯域光の基本波に対し第 2高調 波が発生する。これら広帯域光の基本波および第 2高調波のうちハーフミラー 54A およびバンドパスフィルタ 55Aを透過したものは、 CEO周波数検出部 56Aにより受 光される。  The broadband light that has been broadened to 1 octave or more in the optical fiber 40A is input to the second nonlinear optical medium 52A via the single mode optical fiber 41A and the lens 51A. In the second nonlinear optical medium 52A, the second harmonic is generated with respect to the fundamental wave of the incident broadband light. Of the fundamental wave and the second harmonic of the broadband light, the light transmitted through the half mirror 54A and the bandpass filter 55A is received by the CEO frequency detection unit 56A.
[0041] そして、この CEO周波数検出部 56Aにより、広帯域光の第 2高調波と基本波とのビ ート周波数に基づいて CEO周波数 f が検出される。さらに、 CEO周波数安定化部  The CEO frequency detector 56A detects the CEO frequency f based on the beat frequencies of the second harmonic wave and the fundamental wave of the broadband light. In addition, CEO Frequency Stabilization Department
CEO  CEO
60により、 CEO周波数検出部 56Aにより検出された CEO周波数 f が所定値となる  60, CEO frequency f detected by CEO frequency detector 56A becomes a predetermined value.
CEO  CEO
ように、励起光源 12から増幅用光ファイバ 11に供給される励起光のパワーが調整さ れ、これにより、レーザ光源 10から出力されるパルスレーザ光の波長が安定ィ匕制御さ れる。  As described above, the power of the pumping light supplied from the pumping light source 12 to the amplification optical fiber 11 is adjusted, whereby the wavelength of the pulsed laser light output from the laser light source 10 is stably controlled.
[0042] また、上記(1)式に現れる繰返し周波数 f は、ハーフミラー 54Aで反射された広帯 rep  [0042] The repetition frequency f appearing in the above equation (1) is the wideband rep reflected by the half mirror 54A.
域光を高速の繰返し周波数検出部 56Cにより直接に受光することで、簡単に測定す ることができる。そして、繰返し周波数安定ィ匕部 70により、繰返し周波数検出部 56C により検出された繰返し周波数 f が所定値となるように、ドラム 13のピエゾ素子を介 rep  Measurement can be performed easily by directly receiving the range light with the high-speed repetition frequency detector 56C. Then, the repetition frequency stabilization unit 70 replies through the piezoelectric element of the drum 13 so that the repetition frequency f detected by the repetition frequency detection unit 56C becomes a predetermined value.
してレーザ光源 10のリング型光共振器の共振器長が調整され、これにより、レーザ光 源 10から出力されるパルスレーザ光の繰返し周波数 f が安定ィ匕制御される。  Thus, the resonator length of the ring type optical resonator of the laser light source 10 is adjusted, whereby the repetition frequency f of the pulsed laser light output from the laser light source 10 is stably controlled.
rep  rep
[0043] なお、以上のようにして得られる繰返し周波数 f および CEO周波数 f を、周波数 rep CEO 標準である国際原子時に同期した周波数源力 発生される基準周波数に等しくなる ように制御することにより、超短パルスレーザの「光コム」が「光周波数のものさし」とし て使えるようになる。さらに、レーザ光源 2から出力されたレーザ光は、高非線形性光 ファイバ 40Bから出力された広帯域光とハーフミラー 54Bにより合波され、ヘテロダイ ン検波部 56Bによりへテロダイン検波されて、レーザ光源 2から出力されたレーザ光 の波長が高精度に検出され得る。 [0043] By controlling the repetition frequency f and the CEO frequency f obtained as described above to be equal to the reference frequency generated by the frequency source force synchronized with the international atomic time, which is the frequency rep CEO standard, The ultra-short pulse laser “optical comb” can be used as an “optical frequency measure”. Furthermore, the laser light output from the laser light source 2 is highly nonlinear light. The broadband light output from the fiber 40B and the half mirror 54B are combined, and heterodyne detection is performed by the heterodyne detection unit 56B, so that the wavelength of the laser light output from the laser light source 2 can be detected with high accuracy.
[0044] 増幅用光ファイバに対して順方向および逆方向の双方から励起光を供給する双方 向励起方式の光ファイバ増幅器を採用した従来の装置と比較すると、以上に説明し た本実施形態に係る光周波数コム発生装置 1は、光ファイバ増幅器 30A, 30Bが逆 方向励起方式のものであることから、得られる光コムの SZN比が優れる。  [0044] Compared to a conventional apparatus that employs a bidirectional pumping type optical fiber amplifier that supplies pumping light from both the forward and reverse directions to the amplification optical fiber, the present embodiment described above In such an optical frequency comb generator 1, since the optical fiber amplifiers 30A and 30B are of the reverse excitation type, the SZN ratio of the obtained optical comb is excellent.
[0045] また、本実施形態に係る光周波数コム発生装置 1は、第二非線形光学媒体 52Aに おいて第 2高調波を発生させる際に共通光路干渉計を採用している。これは、高非 線形性光ファイバ 40Aで発生した広帯域光コムをレンズ 51Aにより集光して全て一 緒に第二非線形光学媒体 52Aに入射させる。そして、第二非線形光学媒体 52Aで 発生した広帯域光コムの長波長部分の第二高調波と短波長部分とを、分離すること なくそのまま CEO周波数検出部 56Aに入射させる。  [0045] The optical frequency comb generator 1 according to the present embodiment employs a common optical path interferometer when generating the second harmonic in the second nonlinear optical medium 52A. This is because the broadband optical comb generated by the highly nonlinear optical fiber 40A is collected by the lens 51A and is incident on the second nonlinear optical medium 52A all together. Then, the second harmonic and the short wavelength portion of the long wavelength portion of the broadband optical comb generated in the second nonlinear optical medium 52A are directly incident on the CEO frequency detection portion 56A without being separated.
[0046] ただし、高非線形光ファイバ 40Aおよび第二非線形光学媒体 52Aは波長分散を 有することから、一般的には長波長側および短波長側それぞれのパルス光が時間的 にずれて CEO周波数検出部 56Aに入射される。そこで、本実施形態では、高非線 形性光ファイノ OAの後段に設けられたシングルモード光ファイバ 41Aの長さを調 整することにより、各波長帯の光コムに対する波長分散がほぼ同じになるようにしてい る。ここでは、構成を簡略化し、第二非線形光学媒体 52A力ゝら出射されたパルス光を そのまま CEO周波数検出部 56Aで受光している。これにより、より容易かつ堅牢な C EO周波数 f 検出が可能となっている。  [0046] However, since the highly nonlinear optical fiber 40A and the second nonlinear optical medium 52A have chromatic dispersion, generally the pulse light on each of the long wavelength side and the short wavelength side is shifted in time, so that the CEO frequency detector Incident on 56A. Therefore, in this embodiment, by adjusting the length of the single-mode optical fiber 41A provided at the subsequent stage of the highly nonlinear optical fino OA, the chromatic dispersion for the optical combs in the respective wavelength bands becomes substantially the same. It is doing so. Here, the configuration is simplified, and the CEO frequency detector 56A receives the pulsed light emitted from the second nonlinear optical medium 52A as it is. This makes it easier and more robust to detect the CEO frequency f.
CEO  CEO
[0047] また、本実施形態に係る光周波数コム発生装置 1では、光ファイバ増幅器 30Aの 前段に偏波調整の為の λ Ζ4板 21Aおよび λ Ζ2板 22Αが設けられ、また、光ファ ィバ増幅器 30Βの前段に偏波調整の為の λ Ζ4板 21Bおよび λ Ζ2板 22Βが設け られている。これらの波長板の光学軸の方位を調整することで、 f-to-2f干渉で用いる n番目および 2n番目それぞれのモードの光のパワーを大きくすることができて、 CEO 周波数 f  [0047] Also, in the optical frequency comb generator 1 according to the present embodiment, the λΖ4 plate 21A and the λΖ2 plate 22Α for polarization adjustment are provided in front of the optical fiber amplifier 30A, and the optical fiber A λ Ζ4 plate 21B and λ Β2 plate 22Β for polarization adjustment are provided in front of the amplifier 30Β. By adjusting the azimuth of the optical axis of these wave plates, the power of the nth and 2nth modes used in f-to-2f interference can be increased, and the CEO frequency f
CEOを高精度に検出することができる。  CEO can be detected with high accuracy.
[0048] 本発明は、上記実施形態に限定されるものではなぐ種々の変形が可能である。レ 一ザ光源 10は、上記実施形態ではリング型光共振器構造を有する光ファイバレーザ 光源であつたが、他の構成のモード同期レーザ光源であってもよぐ例えば、モード 同期レーザ発振する半導体レーザ光源や固体レーザ光源であってもよい。 [0048] The present invention is not limited to the above-described embodiment, and various modifications are possible. Les The one light source 10 is an optical fiber laser light source having a ring-type optical resonator structure in the above embodiment, but may be a mode-locked laser light source having another configuration. For example, a semiconductor laser that oscillates in a mode-locked laser It may be a light source or a solid laser light source.
実施例  Example
[0049] 次に、本実施形態に係る光周波数コム発生装置 1の更に具体的な実施例について 比較例と対比しつつ説明する。実施例の光周波数コム発生装置は、図 1に示された 構成を有する。比較例 1の光周波数コム発生装置は、図 1に示された構成において 光ファイバ増幅器 30A, 30Bを双方向励起方式のものに置換したものである。また、 比較例 2の光周波数コム発生装置は、図 1に示された構成において光ファイバ増幅 器 30A, 30Bを順方向励起方式のものに置換したものである。  Next, a more specific example of the optical frequency comb generator 1 according to the present embodiment will be described in comparison with a comparative example. The optical frequency comb generator of the embodiment has the configuration shown in FIG. The optical frequency comb generator of Comparative Example 1 is obtained by replacing the optical fiber amplifiers 30A and 30B with a bidirectional pump type in the configuration shown in FIG. The optical frequency comb generator of Comparative Example 2 is obtained by replacing the optical fiber amplifiers 30A and 30B with the forward pumping type in the configuration shown in FIG.
[0050] この実施例および比較例 1, 2において高非線形性光ファイノ OA, 40Bとして用 いた光ファイバは、図 3に示される波長分散特性を有するものであった。この光フアイ ノ は、ファイバ長が 20cmであり、伝送損失が 0.62dBZkmであり、両端にシングル モード光ファイバを接続したときの当該接続損失を含む総損失が 0.1〜2dBであり、 ゼロ分散波長が 1447nmであり、波長分散が + 3.91psZnmZkmであり、分散スロ ープが + 0.032psZnm2Zkmであり、カットオフ波長が 1560nmであり、実効断面 積が 10.4 m2であり、非線形係数 γが 21W_1km_1であった。なお、これらのパラメ ータのうち波長に依存するものは、波長 1550nmにおける値である。 [0050] The optical fiber used as the highly nonlinear optical fino OA, 40B in this example and comparative examples 1 and 2 had the chromatic dispersion characteristics shown in FIG. This optical fiber has a fiber length of 20 cm, a transmission loss of 0.62 dBZkm, a total loss including the connection loss when a single-mode optical fiber is connected to both ends, 0.1 to 2 dB, and a zero dispersion wavelength. a 1447Nm, the wavelength dispersion + 3.91psZnmZkm, a distributed Ro-loop is + 0.032psZnm 2 Zkm, the cutoff wavelength of 1560 nm, the effective sectional area is 10.4 m 2, the nonlinear coefficient γ is 21W _1 km _1 . Of these parameters, the one that depends on the wavelength is the value at the wavelength of 1550 nm.
[0051] 図 4は、実施例の光周波数コム発生装置の高非線形性光ファイバから出力される 光コムのスペクトルを示す図である。図 5は、比較例 1の光周波数コム発生装置の高 非線形性光ファイバから出力される光コムのスペクトルを示す図である。また、図 6は 、比較例 2の光周波数コム発生装置の高非線形性光ファイバから出力される光コム のスペクトルを示す図である。逆方向励起方式の実施例では、高非線形性光フアイ バに入力される光のパワーは 45mWであり、高非線形性光ファイバから出力される光 のパワーは 19mWであった。双方向励起方式の比較例 1では、高非線形性光フアイ バに入力される光のパワーは 84mWであり、高非線形性光ファイバから出力される光 のパワーは 33mWであった。また、順方向励起方式の比較例 2では、高非線形性光 ファイバに入力される光のパワーは 40mWであり、高非線形性光ファイバから出力さ れる光のパワーは 18mWであつた。 FIG. 4 is a diagram illustrating a spectrum of an optical comb output from the highly nonlinear optical fiber of the optical frequency comb generator according to the embodiment. FIG. 5 is a diagram showing the spectrum of the optical comb output from the highly nonlinear optical fiber of the optical frequency comb generator of Comparative Example 1. FIG. 6 is a diagram showing the spectrum of the optical comb output from the highly nonlinear optical fiber of the optical frequency comb generator of Comparative Example 2. In the reverse pumping example, the power of light input to the highly nonlinear optical fiber was 45 mW, and the power of light output from the highly nonlinear optical fiber was 19 mW. In Comparative Example 1 of the bidirectional pumping method, the power of light input to the highly nonlinear optical fiber was 84 mW, and the power of light output from the highly nonlinear optical fiber was 33 mW. In Comparative Example 2 of the forward pumping method, the power of the light input to the highly nonlinear optical fiber is 40 mW, which is output from the highly nonlinear optical fiber. The power of light was 18mW.
[0052] 図 4〜図 6を比較して判るように、順方向励起方式の比較例 2 (図 6)では、高非線 形性光ファイバから出力される光のスペクトルの下限は 1050nm程度までしか拡がら なかった。これに対して、逆方向励起方式の実施例(図 4)では、高非線形性光フアイ ノ から出力される光のスペクトルの下限は lOOOnm程度まで拡がり、双方向励起方 式の比較例 1 (図 5)では、高非線形性光ファイバから出力される光のスペクトルの下 限は 960nm程度まで拡がった。また、実施例および比較例 1, 2の何れの場合も、高 非線形性光ファイバから出力される光のスペクトルの上限は 2000nm以上に拡がつ た。逆方向励起方式の実施例(図 4)および双方向励起方式の比較例 1 (図 5)では、 高非線形性光ファイバから出力される光のスペクトルは 1オクターブを越える帯域で めつに。 [0052] As can be seen by comparing Figs. 4 to 6, in Comparative Example 2 (Fig. 6) of the forward pumping method, the lower limit of the spectrum of light output from the highly nonlinear optical fiber is about 1050 nm. Only spread. In contrast, in the reverse pumping example (Fig. 4), the lower limit of the spectrum of the light output from the highly nonlinear optical fiber extends to about lOOOnm, and the bi-directional pumping method comparison example 1 (Fig. 4). In 5), the lower limit of the spectrum of light output from a highly nonlinear optical fiber has expanded to about 960 nm. In both the examples and comparative examples 1 and 2, the upper limit of the spectrum of light output from the highly nonlinear optical fiber extended to 2000 nm or more. In the reverse pumping example (Fig. 4) and the bi-directional pumping comparison example 1 (Fig. 5), the spectrum of the light output from the highly nonlinear optical fiber is in the band exceeding one octave.
[0053] 図 7は、実施例および比較例 1それぞれの光周波数コム発生装置において検出さ れた CEO周波数 f 信号を示す図である。この図から判るように、双方向励起方式  FIG. 7 is a diagram showing CEO frequency f signals detected in the optical frequency comb generators of the example and the comparative example 1. As can be seen from this figure, bidirectional excitation system
CEO  CEO
の比較例 1と比較して、逆方向励起方式の実施例では、ノイズフロアが低ぐ高い SZ Compared with Comparative Example 1 in the reverse excitation method, the noise floor is low and the SZ is high.
N比の信号が得られた。このように、双方向励起方式の光ファイバ増幅器を採用した 従来の装置と比較すると、本実施形態に係る光周波数コム発生装置 1は、光ファイバ 増幅器 30A, 30Bが逆方向励起方式のものであることから、得られる光コムの SZN 比が優れる。 An N ratio signal was obtained. As described above, the optical frequency comb generator 1 according to the present embodiment is such that the optical fiber amplifiers 30A and 30B are of the reverse direction pumping system as compared with the conventional apparatus employing the bidirectional pumping type optical fiber amplifier. Therefore, the SZN ratio of the obtained optical comb is excellent.
産業上の利用可能性  Industrial applicability
[0054] 本発明は、或る一定の光周波数範囲において等間隔に配列された複数の光周波 数の光を発生する光周波数コム発生装置に利用することができる。 The present invention can be used for an optical frequency comb generator that generates light of a plurality of optical frequencies arranged at equal intervals in a certain optical frequency range.

Claims

請求の範囲 The scope of the claims
[1] モード同期レーザ発振してパルスレーザ光を出力するレーザ光源と、  [1] a laser light source that emits pulsed laser light by mode-locked laser oscillation;
希土類元素が光導波領域に添加された増幅用光ファイバと、前記増幅用光フアイ バに添加された希土類元素を励起し得る波長の励起光を出力する励起光源とを含 み、前記レーザ光源から出力されたパルスレーザ光を前記増幅用光ファイバの第 1 端に入力し、前記励起光源から出力された励起光を前記増幅用光ファイバの第 2端 に入力して、前記増幅用光ファイバの第 1端に入力したパルスレーザ光を前記増幅 用光ファイバにおいて光増幅して前記増幅用光ファイバの第 2端から出力する光ファ ィバ増幅器と、  An optical fiber for amplification in which a rare earth element is added to the optical waveguide region; and an excitation light source that outputs excitation light having a wavelength capable of exciting the rare earth element added to the optical fiber for amplification. The output pulsed laser light is input to the first end of the amplification optical fiber, the excitation light output from the excitation light source is input to the second end of the amplification optical fiber, and the amplification optical fiber An optical fiber amplifier for optically amplifying the pulsed laser light input to the first end in the optical fiber for amplification and outputting from the second end of the optical fiber for amplification;
前記光ファイバ増幅器により光増幅されて出力されたパルスレーザ光を第 1端に入 力し、非線形光学現象により広帯域光とし出力する第一非線形光学媒体と、 を備えることを特徴とする光周波数コム発生装置。  A first nonlinear optical medium that inputs the pulsed laser light amplified and output by the optical fiber amplifier to the first end and outputs it as broadband light by a nonlinear optical phenomenon; and an optical frequency comb comprising: Generator.
[2] 前記第一非線形光学媒体から出力された広帯域光を入力し、その広帯域光の基 本波に対し第 2高調波を発生し出力する第二非線形光学媒体と、 [2] A second nonlinear optical medium that receives the broadband light output from the first nonlinear optical medium, generates a second harmonic with respect to the fundamental wave of the broadband light, and outputs the second harmonic.
前記第二非線形光学媒体から出力された広帯域光の第 2高調波と基本波とのビー ト周波数に基づ 、て、キャリア'エンベロープ 'オフセット周波数(以下「CEO周波数」 という。)を検出する CEO周波数検出部と、  CEO detecting carrier 'envelope' offset frequency (hereinafter referred to as “CEO frequency”) based on the beat frequency of the second harmonic and fundamental wave of the broadband light output from the second nonlinear optical medium. A frequency detector;
前記 CEO周波数検出部により検出された CEO周波数が所定値となるように、前記 レーザ光源から出力されるパルスレーザ光の波長を安定ィヒ制御する CEO周波数安 定化部と、  A CEO frequency stabilizing unit that stably controls the wavelength of the pulsed laser light output from the laser light source so that the CEO frequency detected by the CEO frequency detecting unit becomes a predetermined value;
を更に備えることを特徴とする請求項 1記載の光周波数コム発生装置。  The optical frequency comb generator according to claim 1, further comprising:
[3] 前記パルスレーザ光の繰返し周波数を検出する繰返し周波数検出部と、 [3] a repetition frequency detector for detecting a repetition frequency of the pulse laser beam;
前記繰返し周波数検出部により検出された繰返し周波数が所定値となるように、前 記レーザ光源から出力されるパルスレーザ光の繰返し周波数を安定ィヒ制御する繰 返し周波数安定化部と、  A repetition frequency stabilization unit that stably controls the repetition frequency of the pulse laser beam output from the laser light source so that the repetition frequency detected by the repetition frequency detection unit has a predetermined value;
を更に備えることを特徴とする請求項 1記載の光周波数コム発生装置。  The optical frequency comb generator according to claim 1, further comprising:
[4] 前記第一非線形光学媒体から出力された広帯域光と、他のレーザ光源力 出力さ れたレーザ光とを合波して、その合波したレーザ光を出力する光合波部と、 前記光合波部により合波されて出力されたレーザ光をへテロダイン検波するへテロ ダイン検波部と、 [4] An optical combining unit that combines the broadband light output from the first nonlinear optical medium and the laser light output from another laser light source, and outputs the combined laser light; A heterodyne detection unit for heterodyne detection of the laser beam combined and output by the optical multiplexing unit;
を更に備えることを特徴とする請求項 1記載の光周波数コム発生装置。  The optical frequency comb generator according to claim 1, further comprising:
前記レーザ光源と前記ファイバ増幅器との間に設けられ、前記レーザ光源力 出力 されたパルスレーザ光の偏波を調整して、その偏波調整したパルスレーザ光を前記 ファイバ増幅器へ出力する偏波調整部を更に備えることを特徴とする請求項 1記載 の光周波数コム発生装置。  Polarization adjustment that is provided between the laser light source and the fiber amplifier, adjusts the polarization of the pulsed laser light output from the laser light source power, and outputs the polarization-adjusted pulsed laser light to the fiber amplifier. The optical frequency comb generator according to claim 1, further comprising a unit.
PCT/JP2007/055669 2006-03-20 2007-03-20 Optical frequency comb generator WO2007119449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006077442A JP2007256365A (en) 2006-03-20 2006-03-20 Optical frequency comb generation device
JP2006-077442 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007119449A1 true WO2007119449A1 (en) 2007-10-25

Family

ID=38609237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055669 WO2007119449A1 (en) 2006-03-20 2007-03-20 Optical frequency comb generator

Country Status (2)

Country Link
JP (1) JP2007256365A (en)
WO (1) WO2007119449A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013935A (en) * 2013-09-17 2014-01-23 Advantest Corp Pulse laser, optical frequency stabilized laser, measuring device, and measuring method
JP2017103473A (en) * 2012-02-20 2017-06-08 レイセオン カンパニー Method and optical system for generating ultra-stable frequency reference using two-photon rubidium transition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8120778B2 (en) * 2009-03-06 2012-02-21 Imra America, Inc. Optical scanning and imaging systems based on dual pulsed laser systems
DE102008059902B3 (en) * 2008-12-02 2010-09-16 Forschungsverbund Berlin E.V. Method and apparatus for generating a self-referenced optical frequency comb
JP5324332B2 (en) * 2009-06-17 2013-10-23 日本電信電話株式会社 Optical frequency comb stabilized light source
JP2012004426A (en) * 2010-06-18 2012-01-05 Mitsutoyo Corp Unmodulated stabilization laser device
JP6254356B2 (en) * 2013-04-16 2017-12-27 株式会社ミツトヨ Optical frequency comb generator and optical frequency comb frequency stabilization method
DE102014204941A1 (en) * 2014-03-17 2015-09-17 Menlo Systems Gmbh Method for operating a laser device, resonator arrangement and use of a phase shifter
JP6448236B2 (en) 2014-07-10 2019-01-09 株式会社ミツトヨ Laser frequency measuring method and apparatus using optical frequency comb
CN104236725B (en) * 2014-09-29 2017-03-15 山西大学 A kind of device and method of accurate measurement optical maser wavelength
JP6504658B2 (en) * 2015-05-08 2019-04-24 日本電信電話株式会社 Broadband optical frequency comb source and method of generating broadband optical frequency comb
WO2018181213A1 (en) * 2017-03-29 2018-10-04 国立研究開発法人産業技術総合研究所 Optical frequency comb generation device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HARTL I. ET AL.: "Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology", OPTICS EXPRESS, vol. 13, no. 17, August 2005 (2005-08-01), pages 6490 - 6496, XP003018291 *
INABA H. ET AL.: "Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb", OPTICS EXPRESS, vol. 14, no. 12, June 2006 (2006-06-01), pages 5223 - 5231, XP003018292 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103473A (en) * 2012-02-20 2017-06-08 レイセオン カンパニー Method and optical system for generating ultra-stable frequency reference using two-photon rubidium transition
JP2014013935A (en) * 2013-09-17 2014-01-23 Advantest Corp Pulse laser, optical frequency stabilized laser, measuring device, and measuring method

Also Published As

Publication number Publication date
JP2007256365A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
WO2007119449A1 (en) Optical frequency comb generator
US9698559B2 (en) Optical scanning and imaging systems based on dual pulsed laser systems
JP5600601B2 (en) High power parallel fiber array
US20170187161A1 (en) Low carrier phase noise fiber oscillators
US9240670B2 (en) Optical pulse source with increased peak power
CN110168822B (en) Optical frequency comb generator with carrier envelope offset frequency detection
US8493650B2 (en) Method and apparatus for suppression of four-wave mixing using polarization control with a high power polarization maintaining fiber amplifier system
JP2008122985A (en) Device and method for generating high power optical pulse
US20110134433A1 (en) Light source apparatus and image pickup apparatus using the same
US20130163624A1 (en) Laser device
JP6074764B2 (en) Optical frequency comb stabilized light source and method
JP2007193230A (en) Light source device
JP5324332B2 (en) Optical frequency comb stabilized light source
JP6580554B2 (en) Generator for at least three coherent laser beams in the infrared and visible regions
JP2017107966A (en) Light source device and information acquisition device
JP2008172166A (en) Noise-like laser light source and wide-band light source
JP6254356B2 (en) Optical frequency comb generator and optical frequency comb frequency stabilization method
JP6504658B2 (en) Broadband optical frequency comb source and method of generating broadband optical frequency comb
JP4953943B2 (en) Mode-locked laser device
JP2022040898A (en) Optical comb parameter detector and optical comb parameter detection method
KR100319781B1 (en) Brillouin/ Erbuim fiber laser outputting dual spacing multi-wavelength light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739112

Country of ref document: EP

Kind code of ref document: A1