WO2007119381A1 - Gene participating in aluminum tolerance and utilization of the same - Google Patents

Gene participating in aluminum tolerance and utilization of the same Download PDF

Info

Publication number
WO2007119381A1
WO2007119381A1 PCT/JP2007/055284 JP2007055284W WO2007119381A1 WO 2007119381 A1 WO2007119381 A1 WO 2007119381A1 JP 2007055284 W JP2007055284 W JP 2007055284W WO 2007119381 A1 WO2007119381 A1 WO 2007119381A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
polynucleotide
polypeptide
gene
present
Prior art date
Application number
PCT/JP2007/055284
Other languages
French (fr)
Japanese (ja)
Inventor
Jian Feng Ma
Original Assignee
National University Corporation Okayama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Okayama University filed Critical National University Corporation Okayama University
Priority to JP2008510791A priority Critical patent/JPWO2007119381A1/en
Publication of WO2007119381A1 publication Critical patent/WO2007119381A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Definitions

  • the present invention relates to a novel gene involved in aluminum resistance and use thereof.
  • Acidic soil accounts for about 40% of the world's arable land area. Acidic soil is a soil in which inhibiting plant growth is a problem. Plant growth inhibition is caused by aluminum toxicity. Aluminum ions quickly cause root elongation inhibition even at low concentrations (several M) and inhibit the absorption of nutrients from the roots. As a result, plants become vulnerable to various stresses. For this reason, the productivity of plants in acidic soil is very low.
  • Aluminum tolerance varies greatly among plant varieties. For example, Japanese rice varieties are more resistant to aluminum than Indian rice varieties.
  • regions with high rice production are often acidic soils. For example, it is often an acid sulfate soil paddy rice cultivation area and an acid land cultivation area.
  • rice varieties with weak aluminum tolerance are cultivated. For this reason, rice productivity is very low. For this reason, in order to improve plant productivity in acidic soil, it is required to produce rice with strong aluminum tolerance.
  • Patent Documents 1 to 3 The inventor of the present application is energetically researching aluminum tolerance of plants (see, for example, Patent Documents 1 to 3, Non-Patent Documents 1 to 4).
  • Patent Document 1 Japanese Patent Publication “JP 2004-105164 Publication (April 8, 2004)”
  • Patent Document 2 Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2004-344024 (published on December 9, 2004)”
  • Patent Document 3 Japanese Patent Publication “JP 2005-058022 Publication (published on March 10, 2005)”
  • Non-patent literature 1 Ma, J. F. 2005. Plant root responses to three aoundant soil mineral: s ilicon, aluminum and iron. Crit. Rev. Plant 3 ⁇ 4ci. 24, 2b / — 281.
  • Non-Patent Document 2 Ma, J. F., Nagao, S., Huang, C. F., Nishimura, M. 2005. Isolation and characterization of a rice mutant hypersensitive to Al. Plant Cell Physiol. 46, 1054—1061.
  • Non-Patent Document 3 Ma, JF, Shen, R "Zhao, Z., Wissuwa, M., Takeuchi, Y., Ebitani, T. and Yano, M .: Response of rice to Al stress and identification of quantitative trait 1 oci for Al tolerance. Plant Cell Physiol. 43: 652—659 (2002).
  • Non-Patent Document 4 Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T and Matsumo to H 2004: Engineering high-level aluminum tolerance in barley with the ALMTl ge ne.Proc. Natl. Acad. Sci. USA, 101 : 15249-15254
  • An object of the present invention is to identify a gene involved in aluminum resistance and provide a method for using the gene.
  • the present inventor has intensively studied a gene involved in strong aluminum resistance that has not been obtained so far. As a result, we succeeded in identifying the gene by map-based cloning using an F2 population obtained by mating with an aluminum-sensitive mutant (alsl mutant) and Kasalath. Thus, the present invention has been completed.
  • the polynucleotide according to the present invention is a polynucleotide involved in aluminum resistance
  • polynucleotide (a) or (b): (a) a polynucleotide comprising the base sequence represented by SEQ ID NO: 1;
  • aluminum tolerance refers to the ability of a plant to grow normally even in the presence of aluminum. In other words, “aluminum tolerance” refers to resistance to growth inhibition by aluminum. “Aluminum” may be ionized or may form a salt. “Aluminum” indicates aluminum and a compound containing aluminum. “Involved in aluminum resistance” means having (providing) aluminum resistance.
  • a polypeptide involved in aluminum resistance can be obtained as a translation product.
  • polypeptide according to the present invention is a polypeptide involved in aluminum resistance, and the following polypeptide (a) or (b):
  • amino acid sequence shown in SEQ ID NO: 2 is characterized by being a polypeptide having an amino acid sequence ability in which one or several amino acids are substituted, deleted, inserted or added.
  • Such a polypeptide involved in aluminum resistance exists, for example, in a region containing an amino acid encoded by a gene seated on the sixth chromosome in rice.
  • Rice is particularly resistant to aluminum. That is, rice has a polypeptide (polynucleotide) that contributes to aluminum resistance. However, polypeptides lacking some of the amino acids encoded in this region have little aluminum resistance.
  • polypeptides lacking some of the amino acids encoded in this region have little aluminum resistance.
  • SEQ ID NO: 2 a polypeptide in which amino acids 123 to 127 are deleted Etc. have little aluminum resistance (aluminum sensitivity).
  • the polypeptide represented by SEQ ID NO: 2 is an amino acid sequence of a polypeptide involved in rice aluminum tolerance.
  • the polypeptide according to the present invention may prevent root elongation inhibition by aluminum. As a result, root force aluminum can be eliminated and growth inhibition by aluminum can be prevented.
  • polynucleotide according to the present invention may encode any of the above polypeptides.
  • a polypeptide involved in aluminum resistance can be obtained as a translation product.
  • the polynucleotide include the polynucleotide (a) or (b) described above.
  • a marker gene for selecting a transformant that is useful in the present invention is one having the above-described polynucleotide power.
  • the polynucleotide useful in the present invention is capable of imparting aluminum resistance to cells (especially plant cells) in which it is expressed.
  • These marker genes can also be used for ⁇ IJ to select varieties with high aluminum tolerance.
  • a recombinant expression vector useful in the present invention includes any of the above-described polynucleotides.
  • the above-described recombinant expression vector can be used as a recombinant expression vector for introducing a polynucleotide useful for the present invention into a cell. It can also be used as a recombinant expression vector for introducing these genes into cells.
  • a transformant that is effective in the present invention is one in which the above-described polynucleotide or the above-described thread-and-replaceable expression vector is introduced, and a polypeptide involved in aluminum resistance is expressed.
  • the transformant is preferably a plant (transformed product).
  • This transformant is introduced together with a promoter that promotes the expression of the above-mentioned polynucleotide or a polypeptide involved in recombinant expression vector ability aluminum resistance. Yes. For this reason, the aluminum tolerance of this transformant can be increased by expressing a polypeptide involved in aluminum tolerance.
  • the transformant with enhanced aluminum tolerance has reduced growth inhibition by aluminum, and thus can increase productivity in acidic soil.
  • a transformation kit according to the present invention comprises at least one of the above-described polynucleotides or the above-described recombinant expression vector.
  • a transformant expressing the polypeptide of the present invention can be obtained simply and efficiently.
  • aluminum resistance can be imparted by producing a polypeptide involved in aluminum resistance. Since the transformant of the present invention in which the polynucleotide of the present invention or the thread-replaceable expression vector containing the polynucleotide is introduced together with a promoter that promotes the expression of the polypeptide is imparted with aluminum resistance, Growth inhibition by aluminum can be reduced.
  • FIG. 1 is a schematic diagram showing the amino acid sequences of the Alsl gene and a polypeptide encoded by the gene.
  • FIG. 2 is a schematic diagram showing Alsl gene and the insertion site of T-DNA insertion strain and Tosl7 disruption strain.
  • FIG. 3 is a diagram showing the results of analyzing the expression level of the Alsl gene in Example 2 by quantitative RT-PCR.
  • FIG. 4 is a schematic diagram mapping the Alsl gene.
  • FIG. 5 (a) Comparison of growth state between wild-type rice and alsl mutant.
  • FIG. 5 (b) Comparison of growth state between wild-type rice and alsl mutant.
  • FIG. 6 is a graph comparing the relative elongation of roots in Example 3.
  • FIG.7 (a) Alsl gene with and without aluminum in roots and shoots of wild-type rice It is the graph which compared the expression level of.
  • FIG. 7 (b) is a diagram showing the results of quantitative RT-PCR in which the expression of Alsl gene and lactin was confirmed for wild-type rice roots and shoots.
  • FIG. 8 (a) is a diagram showing the results of quantitative RT-PCR in which expression of Alsl gene and lactin was confirmed for different sites and shoots of wild-type rice roots.
  • FIG. 8 (b) A graph comparing the expression levels of the Alsl gene in different shoots and shoots of wild-type rice.
  • FIG. 8 (c) is a diagram showing the positions of the root tip and the root base in FIGS. 8 (a) and 8 (b).
  • FIG. 9 is a graph showing the results of analysis of aluminum resistance of transformants into which the alsl mutant Alsl gene was introduced.
  • FIG. 10 is a diagram showing the results of staining aluminum present in the roots of each plant in FIG. 9.
  • FIG. 11 A diagram showing the expression site of Alsl protein in a transformant introduced with an Alsl-GFP fusion gene.
  • FIG. 12 shows the results of antibody staining using an antibody against Alsl protein.
  • FIG. 13 is a graph showing the relationship between the expression level of the Alsl gene and the elapsed time after aluminum treatment.
  • FIG. 14 is a graph showing the relationship between the expression level of the Alsl gene and the aluminum treatment concentration.
  • FIG. 15 shows intracellular aluminum in Koshihikari and alsl mutants.
  • SEQ ID NO: 1 is the base sequence of the Alsl gene (cDNA).
  • SEQ ID NO: 2 is the amino acid sequence of the Alsl protein.
  • SEQ ID NOs: 3 and 4 are base sequences of complete cDNA (full cDNA) formed by binding an untranslated region (UTR) to the base sequence of SEQ ID NO: 1.
  • SEQ ID NO: 5 is the base sequence of the genomic gene of wild-type rice (Koshihikari) containing the Als gene.
  • Polypeptides that are useful in the present invention are polypeptides that are involved in aluminum resistance. It is to be
  • polynucleotide can also be referred to as “nucleic acid” or “nucleic acid molecule”, and is intended to be a polymer of nucleotides.
  • the “base sequence” can also be referred to as a “nucleic acid sequence” or a “nucleotide sequence”, and is indicated as a sequence of deoxyribonucleotides (abbreviated as A, G, C and T).
  • the “polynucleotide having the base sequence ability shown in SEQ ID NO: 1” refers to a polynucleotide comprising the sequence shown by each of the dioxynucleotides A, G, C and Z or T of SEQ ID NO: 1. .
  • the polynucleotides of the invention may exist in the form of RNA (eg, mRNA) or in the form of DNA (eg, cDNA or genomic DNA).
  • the DNA may be double stranded or single stranded.
  • Single-stranded DNA or RNA can be the coding strand (also known as the sense strand) or the non-coding strand (also known as the antisense strand)! /.
  • the polynucleotide useful in the present invention is a polynucleotide involved in aluminum resistance, and is the following polynucleotide (a) or (b).
  • the polynucleotide (a) or (b) is a polynucleotide involved in aluminum resistance (resistance).
  • the above “stringent conditions” refer to hybrids only when at least 90% identity, preferably at least 95% identity, most preferably at least 97% identity exists between sequences. This means that a sesion occurs, for example, binding at 60 ° C under 2 X SSC wash conditions.
  • the above hybridization can be performed by a conventionally known method such as the method described in “Molecular Cloning (Third Edition)” (J-bambroo & DW Russell, old Spring Harbor Laboratory Press, 2001). Generally, the higher the temperature and the lower the salt concentration, the higher the stringency.
  • the polynucleotide having the nucleotide sequence shown by SEQ ID NO: 1 is a gene involved in aluminum tolerance, which was first identified in the plant kingdom.
  • the polynucleotide of SEQ ID NO: 1 is the base sequence (cDNA sequence) of the Alsl gene derived from wild type (Japanese type) rice.
  • Rice is a typical plant with strong aluminum tolerance.
  • Japanese rice varieties have strong aluminum tolerance, so even if they are cultivated in acidic soil, their growth is not easily inhibited.
  • SEQ ID NO: 1 is a polynucleotide (wild-type Alsl gene) involved in aluminum resistance derived from wild-type rice having high aluminum resistance.
  • the polynucleotide useful in the present invention is a polynucleotide that encodes a polypeptide involved in aluminum resistance, and a polynucleotide that encodes the following polypeptide (a) or (b).
  • mutant polypeptide production method such as site-directed mutagenesis.
  • 20 or less, preferably 10 or less, more preferably 7 or less, even more preferably 5 or less, particularly preferably 3 or less amino acids are substituted, deleted, or It means to be added.
  • Such a mutant polypeptide is not limited to a polypeptide having a mutation artificially introduced by a known mutant polypeptide production method, but a similar naturally occurring mutant polypeptide is isolated and purified. It may be
  • SEQ ID NO: 2 is a polypeptide involved in aluminum resistance found by the present invention.
  • This polypeptide is encoded by, for example, the wild-type Alsl gene shown in SEQ ID NO: 1.
  • Such amino acid mutations are caused by polynucleotide mutations (deletions, substitutions or additions) that are useful in the present invention. Sensitive to aluminum, as in the examples below. Mutants (alsl mutants) are less resistant to aluminum than wild-type rice. In the alsl mutant, the amino acid at positions 123 to 127 in the amino acid sequence shown in SEQ ID NO: 2 is deleted. This significantly reduces the aluminum resistance of the alsl mutant. For this reason, the alsl mutant is sensitive to aluminum and growth is inhibited by aluminum.
  • the mutation that occurs in the amino acid represented by SEQ ID NO: 2 is preferably a mutation that retains the 123rd to 127th amino acids.
  • the present inventor is responsible for polynucleotide strength involved in the aluminum tolerance of rice, which is one of the polynucleotides of the present invention, to sit on chromosome 6 of rice. Revealed.
  • the polynucleotide useful in the present invention may be an oligonucleotide tide that is a fragment of the above-mentioned polynucleotide.
  • the polynucleotide or oligonucleotide useful for the present invention is not only a double-stranded DNA, but also a sense strand (coding strand) and an antisense strand (non-coding strand) t, each of which comprises single-stranded DNA.
  • RNA eg, mRNA
  • the DNA includes, for example, cDNA and genomic DNA that can be obtained by cloning, chemical synthesis techniques, or a combination thereof.
  • the base sequence shown in SEQ ID NO: 1, which is an example of a polynucleotide useful for the present invention, is the cDNA sequence of the polypeptide shown in SEQ ID NO: 2.
  • the polynucleotide or oligonucleotide according to the present invention may contain a sequence such as a sequence of an untranslated region (UTR) and a vector sequence (including an expression vector sequence).
  • the cDNA sequence shown in SEQ ID NO: 1 is the ORF (Open Reading Frame) of the polypeptide shown in SEQ ID NO: 2.
  • the nucleotide sequences shown in SEQ ID NOs: 3 and 4 are full-length cDNA sequences including the untranslated region in the cDNA sequence shown in SEQ ID NO: 1.
  • the base sequence shown in SEQ ID NO: 5 is a partial partition sequence of the genome sequence of wild-type Koshihikari chromosome 6.
  • the base sequences shown in SEQ ID NOs: 3 and 4 are also cDNA sequences derived from the base sequence shown in SEQ ID NO: 5.
  • a DN containing the polynucleotide or oligonucleotide useful for the present invention by a known technique.
  • a method of isolating and crawling the A fragment can be mentioned. For example, prepare a probe that specifically hybridizes with a part of the nucleotide sequence of the polynucleotide of the present invention, and screen a genomic DNA library or cDNA library!
  • a misaligned sequence and Z or length can be used.
  • This probe is preferably one that specifically hybridizes to at least part of the sequence deleted in the alsl mutant in the Alsl gene shown in SEQ ID NO: 1. As a result, a gene involved in aluminum resistance can be obtained with certainty.
  • examples of a method for obtaining a polynucleotide according to the present invention include a method using an amplification means such as PCR.
  • an amplification means such as PCR.
  • primers are prepared from the 5 'side and 3, side sequences (or their complementary sequences), respectively, and genomic DNA (or cDNA) or the like is detected using these primers.
  • a large amount of DNA fragments containing the polynucleotide according to the present invention can be obtained by performing PCR or the like in a mold and amplifying the DNA region sandwiched between both primers.
  • a primer that can amplify the Alsl gene region is designed, and using that primer, genomic DNA (or cDNA) or RT-PCR product is made into a saddle shape, By amplifying the Alsl gene region, it is also possible to obtain a polynucleotide according to the present invention.
  • the source for obtaining the polynucleotide useful for the present invention is not particularly limited, but a grass plant is preferable.
  • the wild-type rice (Koshihikari) power is not limited to this, but the power to acquire one of the polynucleotides that are useful in the present invention.
  • polynucleotide useful for the present invention can be used to elucidate the aluminum tolerance mechanism of plants, which has been clarified so far.
  • polypeptide according to the present invention is a translation product of the polynucleotide described in (1) above, and is at least involved in aluminum resistance.
  • polypeptide can also be referred to as “peptide” or “protein”.
  • fragment of a polypeptide indicates a partial fragment of the polypeptide.
  • polypeptide of the present invention may be isolated from a natural source or chemically synthesized.
  • an “isolated” polypeptide or protein refers to the polypeptide or protein from which its natural environmental forces have been removed.
  • recombinantly produced polypeptides and proteins expressed in host cells have been isolated, as are natural or recombinant polypeptides and proteins that have been substantially purified by any suitable technique. Shall.
  • Polypeptides according to the present invention can be produced by natural purification products, products of chemical synthesis procedures, and prokaryotic or eukaryotic hosts (eg, bacterial cells, yeast cells, higher plant cells, insect cells, and mammals). (Including cells) Includes products produced by recombinant technology. Depending on the host used in the recombinant production procedure, the polypeptide of the present invention may be sugar chain-modified such as glycosyl potato. The polypeptide according to the present invention includes such a modified polypeptide.
  • polypeptide according to the present invention is, for example, a polypeptide involved in at least aluminum resistance, and is the following polypeptide (a) or (b).
  • the polypeptide having the amino acid sequence ability shown in SEQ ID NO: 2 is an Alsl protein having the 291 amino acid ability encoded by the Alsl gene.
  • the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 is, for example, a translation product of a polynucleotide consisting of the base sequence shown in any of SEQ ID NOs: 1 to 3.
  • the amino acid sequence shown in SEQ ID NO: 2 the 123rd to 127th amino acids are deleted in the alsl mutant.
  • the polypeptide of (b) above preferably retains the 123-127th amino acid in the amino acid sequence shown in SEQ ID NO: 2.
  • the Alsl gene is encoded by the ATPase domain-like protein of the ABC transporter.
  • the polypeptide is not limited to the polypeptide as long as it is a polypeptide in which amino acids are peptide-bonded, but may contain a structure other than the polypeptide.
  • the structure other than the polypeptide here is not particularly limited as long as it can include sugar chains and isoprenoid groups.
  • the polynucleotide according to the present invention can be used as a marker gene for transformation. That is, the marker gene for selecting a transformant according to the present invention may be any gene as long as it is composed of the polynucleotide useful for the present invention described in (1) above.
  • the polynucleotides that contribute to the present invention confer aluminum resistance. For this reason, the cells into which the polynucleotide useful for the present invention has been introduced are not inhibited from growing even in the presence of aluminum. This is because aluminum accumulation is reduced as a result of eliminating aluminum. Therefore, the cells into which the polynucleotide has been introduced can be selected by measuring the growth state in the presence of aluminum or the amount of aluminum accumulated (amount of aluminum absorbed).
  • an expression vector incorporating the polynucleotide is constructed, and the expression vector is introduced into a target cell. To do.
  • the expression vector is introduced, the amount of aluminum accumulated in cells expressing a polypeptide conferring aluminum resistance is reduced. Therefore, by culturing in the presence of aluminum and measuring the amount of aluminum accumulated before and after the introduction of the expression vector, cells in which the polynucleotide associated with aluminum is expressed can be selected. In addition, for example, it is possible to select varieties with strong aluminum resistance.
  • the polynucleotide according to the present invention is used for both purposes of a gene that allows a transformed cell to express a polynucleotide and a marker gene. It is also possible to use it.
  • a transcription promoter specific to plant callus cells it is possible to control the expression time as a selection marker of a polynucleotide that is useful in the present invention.
  • an expression vector into which a gene encoding a protein to be expressed in the target cell is inserted may be constructed. And then transformed with the expression vector. It is also possible to introduce a polynucleotide useful for the present invention alone into a target cell without constructing an expression vector incorporating the polynucleotide according to the present invention.
  • the 3182th to 3196th bases are deleted in the a lsl mutant. For this reason, a polynucleotide containing the 3182 to 3196th bases of the base sequence shown in SEQ ID NO: 1 can be used as a marker gene for the present invention.
  • the polynucleotide shown in SEQ ID NO: 1 the polynucleotide comprising the 3182th to 3196th base groups: a polynucleotide having LOO consecutive basic strengths is highly resistant to aluminum and is used to select cells. Can be used.
  • such a polynucleotide can be used as a marker gene for selecting cells involved in aluminum resistance (strong aluminum resistance, cells).
  • the recombinant expression vector according to the present invention is not particularly limited as long as it contains the polynucleotide according to the present invention described in (1) above.
  • a recombinant expression vector into which the cDNAs shown in SEQ ID NOs: 1 to 3 are inserted can be mentioned.
  • a plasmid, phage, cosmid or the like can be used, but it is not particularly limited.
  • a manufacturing method may be performed using a known method.
  • the specific type of vector is not particularly limited, and a vector that can be expressed in a host cell may be appropriately selected. That is, if a promoter sequence is appropriately selected according to the type of host cell in order to reliably express the gene, and this and a polynucleotide useful for the present invention are incorporated into various plasmids or the like, it can be used as an expression vector. ⁇
  • the present recombinant expression vector can be used to express a polypeptide that is effective in the present invention!
  • the polynucleotide according to the present invention is used as a marker gene. And can be used as a recombinant expression vector for expressing a protein encoded by the other gene.
  • Various markers may be used in order to confirm whether or not the polynucleotide of the present invention has been introduced into a host cell, and whether or not it is reliably expressed in the host cell. !
  • a drug resistance gene that gives resistance to antibiotics such as hygromycin is used as the best force, and a plasmid or the like containing this marker and a polynucleotide useful for the present invention is introduced into a host cell as an expression vector. Thereby, the expression power of the marker gene can be confirmed.
  • the host cell is not particularly limited, and various conventionally known cells can be preferably used. Specifically, for example, the ability to raise rice, cucumber, rape, tomato, etc. is not particularly limited.
  • the method of introducing the above expression vector into a host cell is not particularly limited.
  • the agrobatterium infection method, electroporation method (elect mouth poration method), calcium phosphate method, protoplast Conventionally known methods such as a method, a lithium acetate method, and a particle gun method can be preferably used.
  • the transformation kit according to the present invention only needs to contain at least one of the polynucleotide according to the present invention described in (1) above or the recombinant expression vector according to the present invention.
  • Other specific configurations are not particularly limited, and necessary kits may be selected by appropriately selecting necessary reagents and instruments. By using the transformation kit, transformed cells can be obtained simply and efficiently.
  • transformant according to the present invention is introduced with the polynucleotide according to the present invention described in (1) above or the recombinant expression vector described in (4) above, and is resistant to aluminum.
  • the transformant is not particularly limited as long as the polypeptide involved in is expressed.
  • “transformant” means not only a cell / tissue organ but also an organism.
  • the polynucleotide has been introduced means that it is introduced into a target cell (host cell) so that it can be expressed by a known genetic engineering technique (gene manipulation technique).
  • the present invention includes the case where the polynucleotide of the present invention contained in the genome is expressed in vivo.
  • the method for producing a transformant is not particularly limited, and examples thereof include a method for transformation by introducing the above-described recombinant expression vector into a host cell.
  • the organisms to be transformed are not particularly limited, and examples thereof include plant cells exemplified as host cells in the above (4).
  • the transformant that is useful in the present invention is preferably a plant cell or a plant. Such transformed plants are endowed with aluminum tolerance. For this reason, the content (accumulation amount) of aluminum can be reduced in cells or plants.
  • the transformant introduced together with the promoter that promotes the expression of the polynucleotide or the recombinant expression vector force polypeptide aluminum resistance is imparted, thereby eliminating the root strength aluminum, resulting in absorption of aluminum. The amount of accumulated aluminum can be reduced. This can reduce the growth hindrance caused by aluminum.
  • the transformed sickle of the present invention has aluminum resistance since the polynucleotide according to the present invention is introduced. For this reason, growth inhibition by aluminum can be reduced.
  • the recombinant expression vector used for transformation of the plant is not particularly limited as long as it can express the inserted gene in the plant cell.
  • a binary vector such as pBI.
  • the noinary vector include pBIG, pBIN19, pBI101, pBI121, and pBI221.
  • a vector having a promoter capable of expressing a gene in a plant is preferable.
  • Known promoters can be preferably used as the promoter, and specific examples include cauliflower mosaic virus 35S promoter (CaMV35S) and ubiquitin promoter.
  • the plant cells include various types of plant cells such as suspension culture cells, protoplasts, leaf sections, and callus.
  • Recombinant expression vector introduction into plant cells includes agrobacterium infection method, electroporation method (elect mouth position method), calcium phosphate method, protoplast method, lithium acetate Conventionally known methods such as a particle method and a particle gun method can be used. In addition, regeneration of a plant body from transformed cells can be performed by a known method depending on the type of plant cell.
  • the present invention also includes seeds obtained from transformed plants.
  • the food of the present invention contains the transformant according to the present invention. That is, this food contains a transformant imparted with aluminum resistance.
  • the food of the present invention includes feeds given to livestock as well as those taken by humans.
  • Rice is a high-consumption plant that is considered a staple food in various parts of the world, not only in Japan. Fruits and vegetables are also high in production and consumption. For this reason, safety is especially important for these crops.
  • the food containing the transformant imparted with high aluminum tolerance is preferably an agricultural product such as rice, vegetables, and fruits. This makes it possible to grow useful rice, vegetables, and fruits that are highly safe.
  • FIG. 5 (a) and FIG. 5 (b) are diagrams showing the growth state of wild-type rice (WT) and alsl mutants in the presence or absence of aluminum. As shown in Fig. 5 (a) and Fig. 5 (b), the alsl mutant is inhibited from growing in acidic soil (Fig. 5 (a)), and especially in the presence of aluminum, root elongation is inhibited. (Fig. 5 (b)).
  • WT wild-type rice
  • alsl mutant is inhibited from growing in acidic soil
  • Fig. 5 (b) is especially in the presence of aluminum, root elongation is inhibited.
  • FIG. 4 is a schematic diagram of Alsl gene mapping.
  • the Alsl gene (Alsl in the figure) is present in the region of chromosome 6 between 113.4 and 115.6 cM. That is, the Alsl gene is present in the region between the marker MaOs0624 and the marker MaOs0617. Then, PAC clone AP003770 and PAC clone APOO 3771 containing this region were selected.
  • Fig. 2 is a schematic diagram showing the Alsl gene and the insertion sites of the T-DNA insertion strain and Tosl7 disruption strain.
  • the Alsl gene (genomic gene) has a total length of 3015 bp.
  • the Alsl gene consists of 4 exons (876bP) and 3 introns.
  • the four etasons in SEQ ID NO: 5 are the 354th to 894th bases, the 992st to 1179th bases, the 3126th to 3470th bases, and the 3567th to 4027th bases.
  • Example 1 the cloned gene (presumed Alsl gene) in Example 1 was confirmed using a Tosl7-disrupted strain of the putative Alsl gene and a T-DNA insertion strain.
  • T-DNA inserts the putative Alsl gene exon or intron is disrupted (3D-02176, 3A-02044) was used, and the Tosl7 disruption strain used was a system (NG0545) in which a foreign gene was inserted into Exon.
  • FIG. 3 is a diagram showing the results of analyzing the expression level of the Alsl gene by quantitative RT-PCR. As shown in FIG. 3, Alsl gene expression confirmed in the wild type (WT) was not confirmed in the Tos 17 and T DNA systems. Actin was confirmed in all systems.
  • FIG. 6 is a graph comparing the amount of root elongation in each system. In this graph,% relative to the control (the amount of root elongation in the absence of aluminum) is shown. As shown in Fig. 6, the relative elongation of roots was significantly reduced in the lines other than wild-type rice.
  • FIG. 7 (a) is a graph comparing the expression levels of the Alsl gene in the presence and absence of aluminum in wild-type rice roots and shoots.
  • Fig. 7 (b) shows quantitative RT-PCR in which the expression of the same Alsl gene and actin was confirmed. As shown in Figs. 7 (a) and (b), the Alsl gene was localized and expressed in the roots in the presence of aluminum.
  • FIG. 8 (a) shows the quantification of wild-type rice that confirmed the expression of the Alsl gene and actin in the root tip (up to root force lcm), root base (root tip force further lcm), and shoot.
  • FIG. 2 shows RT-PCR.
  • FIG. 8 (b) is a diagram comparing the expression levels of the Als 1 gene in the same parts as in FIG. 8 (a).
  • FIG. 8 (c) is a diagram showing the positions of the root tip and the root base in FIGS. 8 (a) and 8 (b). As shown in FIG. 8, the Alsl gene was expressed more in the root than in the shout (aboveground), and in particular, the expression at the tip of the root increased more with aluminum.
  • FIG. 9 is a graph showing the results of analyzing aluminum resistance of these transformants. For comparison, this graph also shows the results of root elongation for WT (wild-type rice), als mutants, and vector control lines.
  • WT wild-type rice
  • als mutants wild-type rice
  • vector control lines the results of the isolated Alsl gene was an aluminum resistance gene.
  • Fig. 10 shows each plant of Fig. 9 (alsl mutant (1), WT (1), transformed plant (TG)).
  • FIG. 11 is a diagram showing the results of examining the expression site of Alsl protein for transformants.
  • “+ ⁇ 1” indicates that the aluminum treatment is performed
  • “ ⁇ Al” indicates that the aluminum treatment is not performed
  • “2 mm and 20 mm” indicate the positions from the root tips, respectively.
  • FIG. 11 it was confirmed that Alsl protein was expressed in all cells at the root tip and expressed in cells other than epidermal cells at the root base (lateral root). It was also confirmed that Alsl protein was localized in the cell membrane.
  • Fig. 12 is a diagram showing the results of antibody staining using an antibody against Alsl protein. As shown in Fig. 12, similar to the results of GFP in Fig. 11, Alsl protein is expressed in almost all cells at the root tip and localized in cells other than epidermal cells at the root base. It was done.
  • FIG. 14 is a graph showing the relationship between the expression level of the Alsl gene and the elapsed time after aluminum treatment
  • FIG. 14 is a graph showing the relationship between the expression level of the Alsl gene and the aluminum treatment concentration.
  • Alsl protein expression was induced about 2 hours after the start of aluminum treatment (Fig. 13) and induced by 5 M aluminum (Fig. 14).
  • the vertical axis in FIG. 13 and FIG. 14 is the relative value of the expression level of the Alsl gene based on the expression level of actin.
  • FIG. 15 shows the results. As shown in Fig. 15, aluminum signals were observed in the alsl mutant, whereas in the wild type (Koshihikari), the signal was not observed. As a result, it was confirmed that aluminum that had entered Alsl protein was released into the cell.
  • the polynucleotide of the present invention is a gene involved in aluminum tolerance, which was first identified in plants. By expressing this gene, inhibition of plant growth by aluminum can be reduced. Therefore, the present invention can be suitably used particularly for agriculture and the food industry.

Abstract

A gene participating in aluminum tolerance (Als 1 gene) is identified and isolated as a novel gene by map base cloning with the use of individuals belonging to the F2 generation obtained by crossing an aluminum-sensitive mutant (als 1 mutant) with Kasalath. Thus, it becomes possible to identify a gene participating in aluminum tolerance, which has never been identified so far, and provide a method of using the gene.

Description

明 細 書  Specification
アルミニウム耐性に関与する遺伝子、およびその利用  Genes involved in aluminum resistance and use thereof
技術分野  Technical field
[0001] 本発明は、アルミニウム耐性に関与する新規遺伝子およびその利用に関するもの である。  [0001] The present invention relates to a novel gene involved in aluminum resistance and use thereof.
背景技術  Background art
[0002] 酸性土壌は、世界の耕地面積の約 4割を占めている。酸性土壌は、植物の生育を 阻害することが問題となる土壌である。植物の生育阻害は、アルミニウム毒性によつ て引き起こされる。アルミニウムイオンは、低濃度 (数 M)でも、すばやく根の伸張阻 害を引き起こし、根からの養水分の吸収を阻害する。その結果、植物が、様々なスト レスに弱くなる。このため、酸性土壌での植物の生産性は、非常に低い。  [0002] Acidic soil accounts for about 40% of the world's arable land area. Acidic soil is a soil in which inhibiting plant growth is a problem. Plant growth inhibition is caused by aluminum toxicity. Aluminum ions quickly cause root elongation inhibition even at low concentrations (several M) and inhibit the absorption of nutrients from the roots. As a result, plants become vulnerable to various stresses. For this reason, the productivity of plants in acidic soil is very low.
[0003] アルミニウムによる生育阻害は、植物の種類によって異なる。つまり、植物の種類に よって、アルミニウム耐性は大きく異なる。イネ科植物 (禾穀類)は、アルミニウム耐性 が強い種とされている。特に、イネのアルミニウム耐性は、イネ科植物の中で最も強い 。イネ科植物のアルミニウム耐性は、イネ,ライ麦〉コムギ〉ォォムギの順となる。  [0003] Growth inhibition by aluminum varies depending on the type of plant. In other words, the aluminum tolerance varies greatly depending on the type of plant. Gramineae (Aceae) are considered to be highly resistant to aluminum. In particular, the aluminum tolerance of rice is the strongest among grasses. The aluminum tolerance of Gramineae plants is in the order of rice, rye> wheat> barley.
[0004] アルミニウム耐性は、植物の品種間でも大きく異なる。例えば、 日本型イネ品種のァ ルミ-ゥム耐性は、インド型イネ品種よりも強 、。  [0004] Aluminum tolerance varies greatly among plant varieties. For example, Japanese rice varieties are more resistant to aluminum than Indian rice varieties.
[0005] しかし、イネの生産量が多い地域は、酸性土壌であることが多い。例えば、酸性硫 酸土水稲栽培地域および酸性陸栽培地域であることが多い。し力も、イネの生産量 が多い地域では、アルミニウム耐性の弱い品種のイネが栽培される。このため、イネ の生産性が、非常に低くなる。このため、酸性土壌での植物の生産性を向上するた めに、アルミニウム耐性の強いイネの作出力 求められる。  [0005] However, regions with high rice production are often acidic soils. For example, it is often an acid sulfate soil paddy rice cultivation area and an acid land cultivation area. In regions where rice production is high, rice varieties with weak aluminum tolerance are cultivated. For this reason, rice productivity is very low. For this reason, in order to improve plant productivity in acidic soil, it is required to produce rice with strong aluminum tolerance.
[0006] このように、アルミニウムイオンは、植物の生育を阻害する最大の因子である。  [0006] Thus, aluminum ions are the largest factor that inhibits plant growth.
[0007] 本願発明者は、植物のアルミニウム耐性について、精力的に研究を行っている(例 えば、特許文献 1〜3,非特許文献 1〜4参照)。  [0007] The inventor of the present application is energetically researching aluminum tolerance of plants (see, for example, Patent Documents 1 to 3, Non-Patent Documents 1 to 4).
特許文献 1:日本国公開特許公報「特開 2004— 105164号公報(2004年 4月 8日公 開)」 特許文献 2 :日本国公開特許公報「特開 2004— 344024号公報(2004年 12月 9日 公開)」 Patent Document 1: Japanese Patent Publication “JP 2004-105164 Publication (April 8, 2004)” Patent Document 2: Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2004-344024 (published on December 9, 2004)”
特許文献 3 :日本国公開特許公報「特開 2005— 058022号公報(2005年 3月 10日 公開)」  Patent Document 3: Japanese Patent Publication “JP 2005-058022 Publication (published on March 10, 2005)”
非特干文献 1: Ma, J. F. 2005. Plant root responses to three aoundant soil mineral: s ilicon, aluminum and iron. Crit. Rev. Plant ¾ci. 24, 2b /— 281.  Non-patent literature 1: Ma, J. F. 2005. Plant root responses to three aoundant soil mineral: s ilicon, aluminum and iron. Crit. Rev. Plant ¾ci. 24, 2b / — 281.
非特許文献 2 : Ma, J. F., Nagao, S., Huang, C. F., Nishimura, M. 2005. Isolation and characterization of a rice mutant hypersensitive to Al. Plant Cell Physiol. 46, 1054— 1061.  Non-Patent Document 2: Ma, J. F., Nagao, S., Huang, C. F., Nishimura, M. 2005. Isolation and characterization of a rice mutant hypersensitive to Al. Plant Cell Physiol. 46, 1054—1061.
非特許文献 3 : Ma, J. F., Shen, R" Zhao, Z., Wissuwa, M., Takeuchi, Y., Ebitani, T. and Yano, M.: Response of rice to Al stress and identification of quantitative trait 1 oci for Al tolerance. Plant Cell Physiol. 43 : 652—659 (2002).  Non-Patent Document 3: Ma, JF, Shen, R "Zhao, Z., Wissuwa, M., Takeuchi, Y., Ebitani, T. and Yano, M .: Response of rice to Al stress and identification of quantitative trait 1 oci for Al tolerance. Plant Cell Physiol. 43: 652—659 (2002).
非特許文献 4 : Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T and Matsumo to H 2004: Engineering high-level aluminum tolerance in barley with the ALMTl ge ne. Proc. Natl. Acad. Sci. USA, 101: 15249-15254  Non-Patent Document 4: Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T and Matsumo to H 2004: Engineering high-level aluminum tolerance in barley with the ALMTl ge ne.Proc. Natl. Acad. Sci. USA, 101 : 15249-15254
発明の開示  Disclosure of the invention
[0008] し力しながら、アルミニウム耐性に関与する遺伝子は未だ同定されておらず、植物 のアルミニウム耐性メカニズムは、解明されて ヽな 、。  [0008] However, a gene involved in aluminum tolerance has not yet been identified, and the mechanism of aluminum tolerance in plants should be elucidated.
[0009] 本発明の目的は、アルミニウム耐性に関与する遺伝子を同定し、その遺伝子の利 用方法を提供することにある。  [0009] An object of the present invention is to identify a gene involved in aluminum resistance and provide a method for using the gene.
[0010] 本発明者は、これまでに取得されていな力つたアルミニウム耐性に関与する遺伝子 について鋭意に検討した。その結果、アルミニウム感受性突然変異体 (alsl変異体) と、カサラスとの交配によって得られた F2集団個体を用いたマップベースクローニン グによって、当該遺伝子を同定し、その配列を特定することに成功して、本発明を完 成させるに至った。  [0010] The present inventor has intensively studied a gene involved in strong aluminum resistance that has not been obtained so far. As a result, we succeeded in identifying the gene by map-based cloning using an F2 population obtained by mating with an aluminum-sensitive mutant (alsl mutant) and Kasalath. Thus, the present invention has been completed.
[0011] すなわち、本発明に力かるポリヌクレオチドは、アルミニウム耐性に関与するポリヌク レオチドであって、  That is, the polynucleotide according to the present invention is a polynucleotide involved in aluminum resistance,
下記の(a)または(b)のポリヌクレオチド: (a)配列番号 1に示される塩基配列からなるポリヌクレオチド; The following polynucleotide (a) or (b): (a) a polynucleotide comprising the base sequence represented by SEQ ID NO: 1;
(b)以下の(i)もしくは (ii)のいずれかとストリンジェントな条件下でノヽイブリダィズす るポリヌクレ才チド:  (b) Polynucleids that are hybridized under stringent conditions with either (i) or (ii) below:
(i)配列番号 1に示される塩基配列力 なるポリヌクレオチド;もしくは (i) a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 1; or
(ii)配列番号 1に示される塩基配列と相補的な塩基配列力 なるポリヌクレオチ ド力 なることを特徴として!/、る。 (ii) It is characterized by having a polynucleotide power that is complementary to the base sequence shown in SEQ ID NO: 1! /
[0012] ここで、本発明において、「アルミニウム耐性」とは、アルミニウム存在下においても 正常に成長できる植物の能力のことである。言い換えると、「アルミニウム耐性」は、ァ ルミ-ゥムによる生育阻害に対する抵抗性のことである。「アルミニウム」は、イオンィ匕 されているものでも、塩を形成しているものであってもよい。また、「アルミニウム」は、 アルミニウムおよびアルミニウムを含む化合物を示すものとする。「アルミニウム耐性 に関与する」とは、アルミニウム耐性能を有する(付与する)ことを示す。  [0012] Here, in the present invention, "aluminum tolerance" refers to the ability of a plant to grow normally even in the presence of aluminum. In other words, “aluminum tolerance” refers to resistance to growth inhibition by aluminum. “Aluminum” may be ionized or may form a salt. “Aluminum” indicates aluminum and a compound containing aluminum. “Involved in aluminum resistance” means having (providing) aluminum resistance.
[0013] 上記のポリヌクレオチドによれば、アルミニウム耐性に関与するポリペプチドを翻訳 産物として得ることができる。 [0013] According to the above polynucleotide, a polypeptide involved in aluminum resistance can be obtained as a translation product.
[0014] 本発明にかかるポリペプチドは、アルミニウム耐性に関与するポリペプチドであって 下記の(a)または(b)のポリペプチド: [0014] The polypeptide according to the present invention is a polypeptide involved in aluminum resistance, and the following polypeptide (a) or (b):
(a)配列番号 2に示されるアミノ酸配列からなるポリペプチド;  (a) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2;
(b)配列番号 2に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列力もなるポリペプチドであることを特徴 としている。  (b) The amino acid sequence shown in SEQ ID NO: 2 is characterized by being a polypeptide having an amino acid sequence ability in which one or several amino acids are substituted, deleted, inserted or added.
[0015] 上記のポリペプチドによれば、アルミニウム耐性を付与することができる。  [0015] According to the above polypeptide, aluminum resistance can be imparted.
[0016] このような、アルミニウム耐性に関与するポリペプチドは、例えば、イネでは、第 6染 色体に座乗する遺伝子にコードされるアミノ酸を含む領域に存在する。イネは、アル ミニゥム耐性が特に強い。すなわち、イネは、アルミニウム耐性に寄与するポリべプチ ド (ポリヌクレオチド)を有している。しかし、この領域にコードされるアミノ酸の一部が 欠失したポリペプチドは、アルミニウム耐性をほとんど有さない。例えば、配列番号 2 に示されるアミノ酸配列において、 123〜127番目のアミノ酸が欠失したポリペプチド 等は、アルミニウム耐性能をほとんど有さない(アルミニウム感受性である)。なお、配 列番号 2に示されるポリペプチドは、イネのアルミニウム耐性に関与するポリペプチド のアミノ酸配列である。 [0016] Such a polypeptide involved in aluminum resistance exists, for example, in a region containing an amino acid encoded by a gene seated on the sixth chromosome in rice. Rice is particularly resistant to aluminum. That is, rice has a polypeptide (polynucleotide) that contributes to aluminum resistance. However, polypeptides lacking some of the amino acids encoded in this region have little aluminum resistance. For example, in the amino acid sequence shown in SEQ ID NO: 2, a polypeptide in which amino acids 123 to 127 are deleted Etc. have little aluminum resistance (aluminum sensitivity). The polypeptide represented by SEQ ID NO: 2 is an amino acid sequence of a polypeptide involved in rice aluminum tolerance.
[0017] 本発明にかかるポリペプチドは、アルミニウムによる根の伸長阻害を防ぐものであつ てもよい。これにより、根力 アルミニウムを排除して、アルミニウムによる生育阻害を 防ぐことができる。  [0017] The polypeptide according to the present invention may prevent root elongation inhibition by aluminum. As a result, root force aluminum can be eliminated and growth inhibition by aluminum can be prevented.
[0018] また、本発明に力かるポリヌクレオチドは、上記 、ずれかのポリペプチドをコードす るものであってもよい。上記のポリヌクレオチドによれば、アルミニウム耐性に関与する ポリペプチドを、翻訳産物として得ることができる。なお、このポリヌクレオチドとしては 、例えば、前述した、上記 (a)または (b)のポリヌクレオチド等が挙げられる。  [0018] In addition, the polynucleotide according to the present invention may encode any of the above polypeptides. According to the above polynucleotide, a polypeptide involved in aluminum resistance can be obtained as a translation product. Examples of the polynucleotide include the polynucleotide (a) or (b) described above.
[0019] 本発明に力かる形質転換体選抜用マーカー遺伝子は、上記の何れかのポリヌクレ ォチド力もなるものである。  [0019] A marker gene for selecting a transformant that is useful in the present invention is one having the above-described polynucleotide power.
[0020] 本発明に力かるポリヌクレオチドは、それが発現して 、る細胞 (特に植物細胞)に、 アルミニウム耐性を付与することができる。  [0020] The polynucleotide useful in the present invention is capable of imparting aluminum resistance to cells (especially plant cells) in which it is expressed.
[0021] また、これらのマーカー遺伝子は、アルミニウム耐性が強い品種を選抜するために も、禾 IJ用することができる。  [0021] These marker genes can also be used for 用 IJ to select varieties with high aluminum tolerance.
[0022] 本発明に力かる組換え発現ベクターは、上記の何れかのポリヌクレオチドを含むも のである。上記の組換え発現ベクターは、本発明に力かるポリヌクレオチドを細胞に 導入するための組換え発現ベクターとして利用できるだけでなぐ本発明にかかるポ リヌクレオチドを選抜用マーカーとして用いた場合には、他の遺伝子を細胞に導入す るための組換え発現ベクターとしても利用できる。  [0022] A recombinant expression vector useful in the present invention includes any of the above-described polynucleotides. The above-described recombinant expression vector can be used as a recombinant expression vector for introducing a polynucleotide useful for the present invention into a cell. It can also be used as a recombinant expression vector for introducing these genes into cells.
[0023] 本発明に力かる形質転換体は、上記のポリヌクレオチドまたは上記の糸且換え発現べ クタ一が導入されており、かつ、アルミニウム耐性に関与するポリペプチドを発現して いるものである。ここで、上記ポリヌクレオチドは、アルミニウム耐性に関与するポリヌク レオチドであるため、上記形質転換体は、植物(形質転 ^¾物)であることが好ましい  [0023] A transformant that is effective in the present invention is one in which the above-described polynucleotide or the above-described thread-and-replaceable expression vector is introduced, and a polypeptide involved in aluminum resistance is expressed. . Here, since the polynucleotide is a polynucleotide involved in aluminum tolerance, the transformant is preferably a plant (transformed product).
[0024] この形質転換体は、上記ポリヌクレオチドまたは組換え発現ベクター力 アルミ-ゥ ム耐性に関与するポリペプチドの発現を促進させるプロモーターとともに導入されて いる。このため、アルミニウム耐性に関与するポリペプチドを発現させることによって、 この形質転換体のアルミニウム耐性を高めることができる。 [0024] This transformant is introduced together with a promoter that promotes the expression of the above-mentioned polynucleotide or a polypeptide involved in recombinant expression vector ability aluminum resistance. Yes. For this reason, the aluminum tolerance of this transformant can be increased by expressing a polypeptide involved in aluminum tolerance.
[0025] アルミニウム耐性が高められた形質転換体は、アルミニウムによる生育阻害が低減 されるため、酸性土壌での生産性を高めることができる。  [0025] The transformant with enhanced aluminum tolerance has reduced growth inhibition by aluminum, and thus can increase productivity in acidic soil.
[0026] 本発明に力かる形質転換キットは、少なくとも上記のポリヌクレオチド、あるいは、上 記の組換え発現ベクターの 、ずれかを含むことを特徴とするものである。上記の形質 転換キットを用いれば、本発明にかかるポリペプチドを発現する形質転換体を簡便か つ効率的に得ることができる。  [0026] A transformation kit according to the present invention comprises at least one of the above-described polynucleotides or the above-described recombinant expression vector. By using the above transformation kit, a transformant expressing the polypeptide of the present invention can be obtained simply and efficiently.
[0027] 本発明に力かるポリヌクレオチドによれば、アルミニウム耐性に関与するポリべプチ ドを産生することによって、アルミニウム耐性を付与することができる。本発明のポリヌ クレオチドまたは当該ポリヌクレオチドを含む糸且換え発現ベクターがポリペプチドの発 現を促進させるプロモーターとともに導入された本発明の形質転換体には、アルミ- ゥム耐性が付与されるため、アルミニウムによる生育阻害を低減できる。  [0027] According to the polynucleotide of the present invention, aluminum resistance can be imparted by producing a polypeptide involved in aluminum resistance. Since the transformant of the present invention in which the polynucleotide of the present invention or the thread-replaceable expression vector containing the polynucleotide is introduced together with a promoter that promotes the expression of the polypeptide is imparted with aluminum resistance, Growth inhibition by aluminum can be reduced.
[0028] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。  [0028] Still other objects, features, and advantages of the present invention will be sufficiently enhanced by the following description. The benefits of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 l]Alsl遺伝子およびその遺伝子にコードされるポリペプチドのアミノ酸配列を示 す模式図である。  [0029] FIG. 1 is a schematic diagram showing the amino acid sequences of the Alsl gene and a polypeptide encoded by the gene.
[図 2]Alsl遺伝子、および、 T— DNA挿入株と Tosl7破壊株の挿入場所を示す模 式図である。  FIG. 2 is a schematic diagram showing Alsl gene and the insertion site of T-DNA insertion strain and Tosl7 disruption strain.
[図 3]実施例 2における、 Alsl遺伝子の発現量を、定量 RT—PCRによって解析した 結果を示す図である。  FIG. 3 is a diagram showing the results of analyzing the expression level of the Alsl gene in Example 2 by quantitative RT-PCR.
[図 4]Alsl遺伝子をマッピングした模式図である。  FIG. 4 is a schematic diagram mapping the Alsl gene.
[図 5(a)]野生型イネと alsl変異体との生育状態を比較する図である。  [FIG. 5 (a)] Comparison of growth state between wild-type rice and alsl mutant.
[図 5(b)]野生型イネと alsl変異体との生育状態を比較する図である。  [FIG. 5 (b)] Comparison of growth state between wild-type rice and alsl mutant.
[図 6]実施例 3にお 、て、根の相対伸長を比較したグラフである。  FIG. 6 is a graph comparing the relative elongation of roots in Example 3.
[図 7(a)]野生型イネの根とシュートについて、アルミニウムの有無による Alsl遺伝子 の発現量を比較したグラフである。 [Fig.7 (a)] Alsl gene with and without aluminum in roots and shoots of wild-type rice It is the graph which compared the expression level of.
[図 7(b)]野生型イネの根とシュートについて、 Alsl遺伝子およびァクチンの発現を確 認した定量 RT—PCRの結果を示す図である。  FIG. 7 (b) is a diagram showing the results of quantitative RT-PCR in which the expression of Alsl gene and lactin was confirmed for wild-type rice roots and shoots.
[図 8(a)]野生型イネの根の異なる部位とシュートについて、 Alsl遺伝子およびァクチ ンの発現を確認した定量 RT—PCRの結果を示す図である。  FIG. 8 (a) is a diagram showing the results of quantitative RT-PCR in which expression of Alsl gene and lactin was confirmed for different sites and shoots of wild-type rice roots.
[図 8(b)]野生型イネの根の異なる部位とシュートについて、 Alsl遺伝子の発現量を 比較したグラフである。  [FIG. 8 (b)] A graph comparing the expression levels of the Alsl gene in different shoots and shoots of wild-type rice.
[図 8(c)]図 8 (a)および図 8 (b)における根端および根基部の位置を示す図である。  FIG. 8 (c) is a diagram showing the positions of the root tip and the root base in FIGS. 8 (a) and 8 (b).
[図 9]alsl変異体 Alsl遺伝子を導入した形質転換体のアルミニウム耐性の解析結果 を示すグラフである。  FIG. 9 is a graph showing the results of analysis of aluminum resistance of transformants into which the alsl mutant Alsl gene was introduced.
[図 10]図 9の各植物の根に存在するアルミニウムを染色した結果を示す図である。  FIG. 10 is a diagram showing the results of staining aluminum present in the roots of each plant in FIG. 9.
[図 ll]Alsl— GFP融合遺伝子を導入した形質転換体について、 Alslタンパク質の 発現部位を示す図である。  [Fig. 11] A diagram showing the expression site of Alsl protein in a transformant introduced with an Alsl-GFP fusion gene.
[図 12]Alslタンパク質に対する抗体を用いた抗体染色の結果を示す図である。  FIG. 12 shows the results of antibody staining using an antibody against Alsl protein.
[図 13]Alsl遺伝子の発現量と、アルミニウム処理後の経過時間との関係を示すダラ フである。  FIG. 13 is a graph showing the relationship between the expression level of the Alsl gene and the elapsed time after aluminum treatment.
[図 14]Alsl遺伝子の発現量と、アルミニウム処理濃度との関係を示すグラフである。  FIG. 14 is a graph showing the relationship between the expression level of the Alsl gene and the aluminum treatment concentration.
[図 15]コシヒカリおよび alsl変異体について、細胞内のアルミニウムを確認した図で ある。  FIG. 15 shows intracellular aluminum in Koshihikari and alsl mutants.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 本発明の実施の形態について説明すれば、以下の通りである。なお、本発明は、こ れに限定されるものではない。なお、配列番号 1は、 Alsl遺伝子(cDNA)の塩基配 列である。配列番号 2は、 Alslタンパク質のアミノ酸配列である。配列番号 3および 4 は、配列番号 1の塩基配列に、非翻訳領域 (UTR)が結合してなる完全 cDNA (full cDNA)の塩基配列である。配列番号 5は、 Als遺伝子を含む野生型イネ(コシヒカ リ)のゲノム遺伝子の塩基配列である。 [0030] An embodiment of the present invention will be described as follows. Note that the present invention is not limited to this. SEQ ID NO: 1 is the base sequence of the Alsl gene (cDNA). SEQ ID NO: 2 is the amino acid sequence of the Alsl protein. SEQ ID NOs: 3 and 4 are base sequences of complete cDNA (full cDNA) formed by binding an untranslated region (UTR) to the base sequence of SEQ ID NO: 1. SEQ ID NO: 5 is the base sequence of the genomic gene of wild-type rice (Koshihikari) containing the Als gene.
[0031] (1)本発明に力かるポリヌクレオチド [0031] (1) Polynucleotide useful for the present invention
本発明に力かるポリヌクレオチドは、アルミニウム耐性に関与するポリペプチドをコ ードするものである。 Polynucleotides that are useful in the present invention are polypeptides that are involved in aluminum resistance. It is to be
[0032] ここで、上記「ポリヌクレオチド」は、「核酸」または「核酸分子」とも換言でき、ヌクレオ チドの重合体が意図されている。また、「塩基配列」は、「核酸配列」または「ヌクレオ チド配列」とも換言でき、デォキシリボヌクレオチド (A、 G、 Cおよび Tと省略される)の 配列として示される。また、「配列番号 1に示される塩基配列力 なるポリヌクレオチド 」とは、配列番号 1の各デォキシヌクレオチド A、 G、 Cおよび Zまたは Tによって示さ れる配列からなるポリヌクレオチドを示して 、る。  Here, the “polynucleotide” can also be referred to as “nucleic acid” or “nucleic acid molecule”, and is intended to be a polymer of nucleotides. The “base sequence” can also be referred to as a “nucleic acid sequence” or a “nucleotide sequence”, and is indicated as a sequence of deoxyribonucleotides (abbreviated as A, G, C and T). The “polynucleotide having the base sequence ability shown in SEQ ID NO: 1” refers to a polynucleotide comprising the sequence shown by each of the dioxynucleotides A, G, C and Z or T of SEQ ID NO: 1. .
[0033] 本発明に力かるポリヌクレオチドは、 RNA (例えば、 mRNA)の形態、または DNA の形態(例えば、 cDNAまたはゲノム DNA)で存在し得る。 DNAは、二本鎖であつ ても、一本鎖であってもよい。一本鎖 DNAまたは RNAは、コード鎖(センス鎖としても 知られる)であっても、非コード鎖(アンチセンス鎖としても知られる)であってもよ!/、。  [0033] The polynucleotides of the invention may exist in the form of RNA (eg, mRNA) or in the form of DNA (eg, cDNA or genomic DNA). The DNA may be double stranded or single stranded. Single-stranded DNA or RNA can be the coding strand (also known as the sense strand) or the non-coding strand (also known as the antisense strand)! /.
[0034] 本発明に力かるポリヌクレオチドは、アルミニウム耐性に関与するポリヌクレオチドで あって、下記の(a)または(b)のポリヌクレオチドである。  [0034] The polynucleotide useful in the present invention is a polynucleotide involved in aluminum resistance, and is the following polynucleotide (a) or (b).
[0035] (a)配列番号 1に示される塩基配列からなるポリヌクレオチド;  [0035] (a) a polynucleotide comprising the base sequence represented by SEQ ID NO: 1;
(b)以下の(i)もしくは (ii)のいずれかとストリンジェントな条件下でノヽイブリダィズす るポリヌクレ才チド:  (b) Polynucleids that are hybridized under stringent conditions with either (i) or (ii) below:
(i)配列番号 1に示される塩基配列力 なるポリヌクレオチド;もしくは (i) a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 1; or
(ii)配列番号 1に示される塩基配列と相補的な塩基配列力 なるポリヌクレオチ ド、。 (ii) a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1.
[0036] 上記 (a)または (b)のポリヌクレオチドは、アルミニウム耐性 (抵抗性)に関与するポリ ヌクレオチドである。  [0036] The polynucleotide (a) or (b) is a polynucleotide involved in aluminum resistance (resistance).
[0037] 上記「ストリンジェントな条件」とは、少なくとも 90%の同一性、好ましくは少なくとも 95 %の同一性、最も好ましくは少なくとも 97%の同一性が配列間に存在するときにのみ ハイブリダィゼーシヨンが起こることを意味し、例えば、 60°Cで 2 X SSC洗浄条件下で 結合することを意味する。上記ハイブリダィゼーシヨンは、「Molecular Cloning (Third Editionノ」 (J- bambroo & D. W. Russell,し old Spring Harbor Laboratory Press, 200 1)に記載されている方法等、従来公知の方法で行うことができる。通常、温度が高い ほど、塩濃度が低いほどストリンジエンシーは高くなる。 [0038] 上記のポリヌクレオチドのうち、配列番号 1に示される塩基配列力 なるポリヌクレオ チドは、植物界において初めて同定された、アルミニウム耐性に関与する遺伝子であ る。 [0037] The above "stringent conditions" refer to hybrids only when at least 90% identity, preferably at least 95% identity, most preferably at least 97% identity exists between sequences. This means that a sesion occurs, for example, binding at 60 ° C under 2 X SSC wash conditions. The above hybridization can be performed by a conventionally known method such as the method described in “Molecular Cloning (Third Edition)” (J-bambroo & DW Russell, old Spring Harbor Laboratory Press, 2001). Generally, the higher the temperature and the lower the salt concentration, the higher the stringency. [0038] Among the above polynucleotides, the polynucleotide having the nucleotide sequence shown by SEQ ID NO: 1 is a gene involved in aluminum tolerance, which was first identified in the plant kingdom.
[0039] 配列番号 1のポリヌクレオチドは、野生型(日本型)イネの由来の Alsl遺伝子の塩 基配列(cDNA配列)である。イネは、アルミニウム耐性の強い代表的な植物である。 特に、 日本型イネ品種は、強いアルミニウム耐性を有するため、酸性土壌で栽培して も、生育は阻害されにくい。このように、配列番号 1は、アルミニウム耐性の強い野生 型イネに由来するアルミニウム耐性に関与するポリヌクレオチド(野生型 Alsl遺伝子) である。  [0039] The polynucleotide of SEQ ID NO: 1 is the base sequence (cDNA sequence) of the Alsl gene derived from wild type (Japanese type) rice. Rice is a typical plant with strong aluminum tolerance. In particular, Japanese rice varieties have strong aluminum tolerance, so even if they are cultivated in acidic soil, their growth is not easily inhibited. Thus, SEQ ID NO: 1 is a polynucleotide (wild-type Alsl gene) involved in aluminum resistance derived from wild-type rice having high aluminum resistance.
[0040] 本発明に力かるポリヌクレオチドは、アルミニウム耐性に関与するポリペプチドをコ ードするポリヌクレオチドであって、以下の(a)または (b)のポリペプチドをコードする ポリヌクレオチドである。  [0040] The polynucleotide useful in the present invention is a polynucleotide that encodes a polypeptide involved in aluminum resistance, and a polynucleotide that encodes the following polypeptide (a) or (b).
[0041] (a)配列番号 2に示されるアミノ酸配列からなるポリペプチド;  [0041] (a) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2;
(b)配列番号 2に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列力もなるポリペプチド。  (b) A polypeptide having an amino acid sequence ability in which one or several amino acids are substituted, deleted, inserted, or added in the amino acid sequence shown in SEQ ID NO: 2.
[0042] 上記「1もしくは数個のアミノ酸が欠失、置換、もしくは付加された」とは、部位特異 的突然変異誘発法等の公知の変異ポリペプチド作製法により欠失、置換、もしくは付 加ができる程度の数 (例えば 20個以下、好ましくは 10個以下、より好ましくは 7個以 下、さらに好ましくは 5個以下、特に好ましくは 3個以下)のアミノ酸が置換、欠失、もし くは付加されることを意味する。このような変異ポリペプチドは、公知の変異ポリぺプ チド作製法により人為的に導入された変異を有するポリペプチドに限定されるもので はなぐ天然に存在する同様の変異ポリペプチドを単離精製したものであってもよい  [0042] The above "one or several amino acids have been deleted, substituted or added" means deletion, substitution or addition by a known mutant polypeptide production method such as site-directed mutagenesis. (For example, 20 or less, preferably 10 or less, more preferably 7 or less, even more preferably 5 or less, particularly preferably 3 or less) of amino acids are substituted, deleted, or It means to be added. Such a mutant polypeptide is not limited to a polypeptide having a mutation artificially introduced by a known mutant polypeptide production method, but a similar naturally occurring mutant polypeptide is isolated and purified. It may be
[0043] 配列番号 2は、本発明が見出したアルミニウム耐性に関与するポリペプチドである。 [0043] SEQ ID NO: 2 is a polypeptide involved in aluminum resistance found by the present invention.
このポリペプチドは、例えば、配列番号 1に示される野生型 Alsl遺伝子にコードされ る。  This polypeptide is encoded by, for example, the wild-type Alsl gene shown in SEQ ID NO: 1.
[0044] このようなアミノ酸の変異は、本発明に力かるポリヌクレオチドの変異 (欠失、置換、 もしくは付加)によって生じる。後述の実施例のように、アルミニウムに感受性を示す 突然変異体 (alsl変異体)は、野生型のイネに比べてアルミニウム耐性が弱い。 alsl 変異体は、配列番号 2に示されるアミノ酸配列において、 123番目〜 127番目のアミ ノ酸が欠失している。これにより、 alsl変異体のアルミニウム耐性は、顕著に低下する 。このため、 alsl変異体は、アルミニウムに対して感受性となり、アルミニウムにより生 育が阻害される。 [0044] Such amino acid mutations are caused by polynucleotide mutations (deletions, substitutions or additions) that are useful in the present invention. Sensitive to aluminum, as in the examples below. Mutants (alsl mutants) are less resistant to aluminum than wild-type rice. In the alsl mutant, the amino acid at positions 123 to 127 in the amino acid sequence shown in SEQ ID NO: 2 is deleted. This significantly reduces the aluminum resistance of the alsl mutant. For this reason, the alsl mutant is sensitive to aluminum and growth is inhibited by aluminum.
[0045] 従って、配列番号 2に示されるアミノ酸に生じる変異は、 123番目〜127番目のアミ ノ酸を保持するような変異であることが好まし 、。  [0045] Therefore, the mutation that occurs in the amino acid represented by SEQ ID NO: 2 is preferably a mutation that retains the 123rd to 127th amino acids.
[0046] 本発明者は、後述する実施例に示すように、本発明に力かるポリヌクレオチドの 1つ であるイネのアルミニウム耐性に関与するポリヌクレオチド力 イネの第 6染色体に座 乗することを明らかにした。  [0046] As shown in the examples described later, the present inventor is responsible for polynucleotide strength involved in the aluminum tolerance of rice, which is one of the polynucleotides of the present invention, to sit on chromosome 6 of rice. Revealed.
[0047] 本発明に力かるポリヌクレオチドは、上記ポリヌクレオチドのフラグメントであるオリゴ ヌクレ才チドであってもよ ヽ。  [0047] The polynucleotide useful in the present invention may be an oligonucleotide tide that is a fragment of the above-mentioned polynucleotide.
[0048] 本発明に力かるポリヌクレオチドまたはオリゴヌクレオチドは、 2本鎖 DNAのみなら ず、それを構成するセンス鎖 (コード鎖)およびアンチセンス鎖 (非コード鎖) t 、つた 各 1本鎖 DNAや RNA (例えば、 mRNA)を包含する。また、 DNAには例えばクロー ユングやィ匕学合成技術またはそれらの組み合わせで得られるような cDNAやゲノム DNAなどが含まれる。本発明に力かるポリヌクレオチドの一例である、配列番号 1に 示す塩基配列は、配列番号 2に示すポリペプチドの cDNA配列である。  [0048] The polynucleotide or oligonucleotide useful for the present invention is not only a double-stranded DNA, but also a sense strand (coding strand) and an antisense strand (non-coding strand) t, each of which comprises single-stranded DNA. And RNA (eg, mRNA). In addition, the DNA includes, for example, cDNA and genomic DNA that can be obtained by cloning, chemical synthesis techniques, or a combination thereof. The base sequence shown in SEQ ID NO: 1, which is an example of a polynucleotide useful for the present invention, is the cDNA sequence of the polypeptide shown in SEQ ID NO: 2.
[0049] さらに、本発明にかかるポリヌクレオチドまたはオリゴヌクレオチドは、非翻訳領域( UTR)の配列やベクター配列(発現ベクター配列を含む)などの配列を含むものであ つてもよい。例えば、配列番号 1に示す cDNA配列は、配列番号 2に示すポリべプチ ドの ORF (Open Reading Frame)である。配列番号 3および 4に示す塩基配列は、配 列番号 1に示す cDNA配列に、非翻訳領域を含んだ全長 cDNA配列である。なお、 配列番号 5に示す塩基配列は、野生型コシヒカリ第 6染色体のゲノム配列の部分配 列である。配列番号 3および 4に示す塩基配列は、配列番号 5に示す塩基配列に由 来する、 cDNA配列でもある。  [0049] Furthermore, the polynucleotide or oligonucleotide according to the present invention may contain a sequence such as a sequence of an untranslated region (UTR) and a vector sequence (including an expression vector sequence). For example, the cDNA sequence shown in SEQ ID NO: 1 is the ORF (Open Reading Frame) of the polypeptide shown in SEQ ID NO: 2. The nucleotide sequences shown in SEQ ID NOs: 3 and 4 are full-length cDNA sequences including the untranslated region in the cDNA sequence shown in SEQ ID NO: 1. The base sequence shown in SEQ ID NO: 5 is a partial partition sequence of the genome sequence of wild-type Koshihikari chromosome 6. The base sequences shown in SEQ ID NOs: 3 and 4 are also cDNA sequences derived from the base sequence shown in SEQ ID NO: 5.
[0050] 本発明に力かるポリヌクレオチドまたはオリゴヌクレオチドを取得する方法として、公 知の技術により、本発明に力かるポリヌクレオチドまたはオリゴヌクレオチドを含む DN A断片を単離し、クローユングする方法が挙げられる。例えば、本発明におけるポリヌ クレオチドの塩基配列の一部と特異的にノ、イブリダィズするプローブを調製し、ゲノム DNAライブラリーや cDNAライブラリーをスクリーニングすればよ!、。このようなプロ ーブとしては、本発明に力かるポリヌクレオチドの塩基配列またはその相補配列の少 なくとも一部に特異的にハイブリダィズするプローブであれば、 、ずれの配列および Zまたは長さのものを用いてもよい。このプローブは、配列番号 1に示す Alsl遺伝子 において、 alsl変異体では欠失している配列の少なくとも一部に、特異的にハイプリ ダイズするものであることが好ましい。これにより、確実にアルミニウム耐性に関与する 遺伝子を取得できる。 [0050] As a method for obtaining a polynucleotide or oligonucleotide useful for the present invention, a DN containing the polynucleotide or oligonucleotide useful for the present invention by a known technique. A method of isolating and crawling the A fragment can be mentioned. For example, prepare a probe that specifically hybridizes with a part of the nucleotide sequence of the polynucleotide of the present invention, and screen a genomic DNA library or cDNA library! As such a probe, if the probe specifically hybridizes to at least a part of the base sequence of the polynucleotide or the complementary sequence of the present invention, a misaligned sequence and Z or length can be used. A thing may be used. This probe is preferably one that specifically hybridizes to at least part of the sequence deleted in the alsl mutant in the Alsl gene shown in SEQ ID NO: 1. As a result, a gene involved in aluminum resistance can be obtained with certainty.
[0051] また、本発明に力かるポリヌクレオチドを取得する方法として、 PCR等の増幅手段を 用いる方法を挙げることができる。例えば、本発明におけるポリヌクレオチドの cDNA のうち、 5 '側および 3,側の配列(またはその相補配列)の中からそれぞれプライマー を調製し、これらプライマーを用いてゲノム DNA (または cDNA)等を铸型にして PC R等を行い、両プライマー間に挟まれる DNA領域を増幅することで、本発明にかかる ポリヌクレオチドを含む DNA断片を大量に取得できる。また、例えば、公知のイネの 配列情報に基づいて、 Alsl遺伝子領域を増幅できるようなプライマーを設計し、その プライマーを用いて、ゲノム DNA (または cDNA)または RT— PCR産物を铸型にし て、 Alsl遺伝子領域を増幅することによつても、本発明にカゝかるポリヌクレオチドを取 得することができる。  [0051] Further, examples of a method for obtaining a polynucleotide according to the present invention include a method using an amplification means such as PCR. For example, among the cDNA cDNAs of the present invention, primers are prepared from the 5 'side and 3, side sequences (or their complementary sequences), respectively, and genomic DNA (or cDNA) or the like is detected using these primers. A large amount of DNA fragments containing the polynucleotide according to the present invention can be obtained by performing PCR or the like in a mold and amplifying the DNA region sandwiched between both primers. In addition, for example, based on the known rice sequence information, a primer that can amplify the Alsl gene region is designed, and using that primer, genomic DNA (or cDNA) or RT-PCR product is made into a saddle shape, By amplifying the Alsl gene region, it is also possible to obtain a polynucleotide according to the present invention.
[0052] 本発明に力かるポリヌクレオチドを取得するための供給源としては、特に限定されな いが、イネ科植物であることが好ましい。後述する実施例においては、野生型のイネ( コシヒカリ)力も本発明に力かるポリヌクレオチドの 1つを取得している力 これに限定 されるものではない。  [0052] The source for obtaining the polynucleotide useful for the present invention is not particularly limited, but a grass plant is preferable. In the examples described later, the wild-type rice (Koshihikari) power is not limited to this, but the power to acquire one of the polynucleotides that are useful in the present invention.
[0053] なお、本発明に力かるポリヌクレオチドは、これまでに明らかにされてこな力つた、植 物のアルミニウム耐性メカニズムの解明に利用することができる。  [0053] It should be noted that the polynucleotide useful for the present invention can be used to elucidate the aluminum tolerance mechanism of plants, which has been clarified so far.
[0054] (2)本発明にかかるポリペプチド  [0054] (2) Polypeptide according to the present invention
本発明にかかるポリペプチドは、上記(1)に記載したポリヌクレオチドの翻訳産物で あり、少なくともアルミニウム耐性に関与するものである。 [0055] ここで、上記「ポリペプチド」は、「ペプチド」または「タンパク質」とも換言できる。また 、ポリペプチドの「フラグメント」は、当該ポリペプチドの部分断片を示している。 The polypeptide according to the present invention is a translation product of the polynucleotide described in (1) above, and is at least involved in aluminum resistance. Here, the “polypeptide” can also be referred to as “peptide” or “protein”. The “fragment” of a polypeptide indicates a partial fragment of the polypeptide.
[0056] 本発明にかかるポリペプチドは、天然供給源より単離されても、化学合成されてもよ い。ここで、「単離された」ポリペプチドまたはタンパク質は、その天然の環境力 取り 出されたポリペプチドまたはタンパク質を示す。例えば、宿主細胞中で発現された組 換え産生されたポリペプチドおよびタンパク質は、任意の適切な技術によって実質的 に精製されている天然または組換えのポリペプチドおよびタンパク質と同様に、単離 されたものとする。  [0056] The polypeptide of the present invention may be isolated from a natural source or chemically synthesized. Here, an “isolated” polypeptide or protein refers to the polypeptide or protein from which its natural environmental forces have been removed. For example, recombinantly produced polypeptides and proteins expressed in host cells have been isolated, as are natural or recombinant polypeptides and proteins that have been substantially purified by any suitable technique. Shall.
[0057] 本発明にかかるポリペプチドは、天然の精製産物、化学合成手順の産物、および 原核生物宿主または真核生物宿主 (例えば、細菌細胞、酵母細胞、高等植物細胞、 昆虫細胞、および哺乳動物細胞を含む)力 組換え技術によって産生された産物を 含む。組換え産生手順において用いられる宿主によっては、本発明にかかるポリべ プチドは、グリコシルイ匕など、糖鎖修飾される場合もある。本発明にかかるポリべプチ ドには、このような修飾されたポリペプチドも含まれる。  [0057] Polypeptides according to the present invention can be produced by natural purification products, products of chemical synthesis procedures, and prokaryotic or eukaryotic hosts (eg, bacterial cells, yeast cells, higher plant cells, insect cells, and mammals). (Including cells) Includes products produced by recombinant technology. Depending on the host used in the recombinant production procedure, the polypeptide of the present invention may be sugar chain-modified such as glycosyl potato. The polypeptide according to the present invention includes such a modified polypeptide.
[0058] 本発明にかかるポリペプチドとしては、例えば、少なくともアルミニウム耐性に関与 するポリペプチドであって、以下の(a)または(b)のポリペプチドである。  [0058] The polypeptide according to the present invention is, for example, a polypeptide involved in at least aluminum resistance, and is the following polypeptide (a) or (b).
[0059] (a)配列番号 2に示されるアミノ酸配列からなるポリペプチド;  [0059] (a) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2;
(b)配列番号 2に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列力もなるポリペプチドである。  (b) A polypeptide having an amino acid sequence ability in which one or several amino acids are substituted, deleted, inserted, or added in the amino acid sequence shown in SEQ ID NO: 2.
[0060] 配列番号 2に示されるアミノ酸配列力もなるポリペプチドは、 Alsl遺伝子にコードさ れる 291アミノ酸力もなる Alslタンパク質である。配列番号 2に示されるアミノ酸配列 からなるポリペプチドは、例えば、配列番号 1〜3のいずれかに示される塩基配列か らなるポリヌクレオチドの翻訳産物である。また、配列番号 2に示されるアミノ酸配列の うち、 123〜127番目のアミノ酸は、 alsl変異体では欠失している。このため、上記(b )のポリペプチドは、配列番号 2に示されるアミノ酸配列のうち、 123〜127番目のアミ ノ酸を保持するものであることが好まし 、。  [0060] The polypeptide having the amino acid sequence ability shown in SEQ ID NO: 2 is an Alsl protein having the 291 amino acid ability encoded by the Alsl gene. The polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 is, for example, a translation product of a polynucleotide consisting of the base sequence shown in any of SEQ ID NOs: 1 to 3. In the amino acid sequence shown in SEQ ID NO: 2, the 123rd to 127th amino acids are deleted in the alsl mutant. For this reason, the polypeptide of (b) above preferably retains the 123-127th amino acid in the amino acid sequence shown in SEQ ID NO: 2.
[0061] なお、図 1〖こ示すよう〖こ、 Alsl遺伝子は、 ABCトランスポーターの ATPaseドメイン 様タンパク質にコードされて 、る。 [0062] また、上記ポリペプチドは、アミノ酸がペプチド結合してなるポリペプチドであればよ いが、これに限定されるものではなぐポリペプチド以外の構造を含むものであっても よい。ここでいうポリペプチド以外の構造としては、糖鎖やイソプレノイド基等を挙げる ことができる力 特に限定されるものではない。 [0061] As shown in Fig. 1, the Alsl gene is encoded by the ATPase domain-like protein of the ABC transporter. [0062] The polypeptide is not limited to the polypeptide as long as it is a polypeptide in which amino acids are peptide-bonded, but may contain a structure other than the polypeptide. The structure other than the polypeptide here is not particularly limited as long as it can include sugar chains and isoprenoid groups.
[0063] (3)形質転換用マーカー遺伝子  [0063] (3) Marker gene for transformation
本発明にかかるポリヌクレオチドは、形質転換用マーカー遺伝子として利用すること ができる。すなわち、本発明にかかる形質転換体選抜用マーカー遺伝子は、上記(1 )に記載した本発明に力かるポリヌクレオチドからなるものであればよい。本発明にか 力るポリヌクレオチドは、アルミニウム耐性を付与する。このため、本発明に力かるポリ ヌクレオチドを導入された細胞は、アルミニウム存在下でも、生育が阻害されない。こ れは、アルミニウムを排除した結果、アルミニウム蓄積量が減少するためである。従つ て、アルミニウム存在下での生育状態またはアルミニウムの蓄積量 (アルミニウム吸収 量)を測定することにより、当該ポリヌクレオチドが導入された細胞を選抜することがで きる。  The polynucleotide according to the present invention can be used as a marker gene for transformation. That is, the marker gene for selecting a transformant according to the present invention may be any gene as long as it is composed of the polynucleotide useful for the present invention described in (1) above. The polynucleotides that contribute to the present invention confer aluminum resistance. For this reason, the cells into which the polynucleotide useful for the present invention has been introduced are not inhibited from growing even in the presence of aluminum. This is because aluminum accumulation is reduced as a result of eliminating aluminum. Therefore, the cells into which the polynucleotide has been introduced can be selected by measuring the growth state in the presence of aluminum or the amount of aluminum accumulated (amount of aluminum absorbed).
[0064] 具体的には、本発明に力かるポリヌクレオチドを形質転換用マーカー遺伝子として 利用するには、例えば、当該ポリヌクレオチドを組み込んだ発現ベクターを構築し、 当該発現ベクターを目的の細胞に導入する。当該発現ベクターが導入され、アルミ -ゥム耐性を付与するポリペプチドが発現している細胞のアルミニウム蓄積量は減少 する。従って、アルミニウム存在下で培養して、発現ベクターの導入前後のアルミニゥ ム蓄積量を測定することによって、アルミニウムに関与して 、るポリヌクレオチドが発 現している細胞を選抜することができる。また、例えば、アルミニウム耐性が強い品種 を選抜することちできる。  [0064] Specifically, in order to use the polynucleotide of the present invention as a marker gene for transformation, for example, an expression vector incorporating the polynucleotide is constructed, and the expression vector is introduced into a target cell. To do. When the expression vector is introduced, the amount of aluminum accumulated in cells expressing a polypeptide conferring aluminum resistance is reduced. Therefore, by culturing in the presence of aluminum and measuring the amount of aluminum accumulated before and after the introduction of the expression vector, cells in which the polynucleotide associated with aluminum is expressed can be selected. In addition, for example, it is possible to select varieties with strong aluminum resistance.
[0065] 上述の例では、本発明にかかるポリヌクレオチドを形質転換細胞に発現させる遺伝 子とマーカー遺伝子との両方の目的で用いているが、本発明に力かるポリヌクレオチ ドをマーカー遺伝子としてのみ用いることも可能である。また、例えば、植物のカルス 細胞に特異的な転写プロモーターを使用することにより、本発明に力かるポリヌクレオ チドの選択マーカーとしての発現時期の制御も可能である。この場合は、さらに目的 の細胞内で発現させたいタンパク質をコードする遺伝子を挿入した発現ベクターを構 築し、当該発現ベクターを用いて形質転換すればよい。また、本発明にかかるポリヌ クレオチドを組み込んだ発現ベクターを構築せずに、本発明に力かるポリヌクレオチ ドを単独で目的の細胞に導入することも可能である。 [0065] In the above-described example, the polynucleotide according to the present invention is used for both purposes of a gene that allows a transformed cell to express a polynucleotide and a marker gene. It is also possible to use it. In addition, for example, by using a transcription promoter specific to plant callus cells, it is possible to control the expression time as a selection marker of a polynucleotide that is useful in the present invention. In this case, an expression vector into which a gene encoding a protein to be expressed in the target cell is inserted may be constructed. And then transformed with the expression vector. It is also possible to introduce a polynucleotide useful for the present invention alone into a target cell without constructing an expression vector incorporating the polynucleotide according to the present invention.
[0066] また、配列番号 1に示されるポリヌクレオチドのうち、 3182〜3196番目の塩基は、 a lsl変異体では欠失している。このため、配列番号 1に示される塩基配列の 3182〜3 196番目の塩基を含むポリヌクレオチドは、本発明に力かるマーカー遺伝子として利 用することができる。  [0066] In the polynucleotide shown in SEQ ID NO: 1, the 3182th to 3196th bases are deleted in the a lsl mutant. For this reason, a polynucleotide containing the 3182 to 3196th bases of the base sequence shown in SEQ ID NO: 1 can be used as a marker gene for the present invention.
[0067] 例えば、配列番号 1に示されるポリヌクレオチドにおいて、 3182〜3196番目の塩 基を含む 20〜: LOO個の連続した塩基力もなるポリヌクレオチドは、アルミニウム耐性 の強 、細胞を選抜するために利用することができる。  [0067] For example, in the polynucleotide shown in SEQ ID NO: 1, the polynucleotide comprising the 3182th to 3196th base groups: a polynucleotide having LOO consecutive basic strengths is highly resistant to aluminum and is used to select cells. Can be used.
[0068] すなわち、このようなポリヌクレオチドは、アルミニウム耐性に関与する細胞(アルミ二 ゥム耐性の強 、細胞)を選抜するためのマーカー遺伝子として利用することができる  That is, such a polynucleotide can be used as a marker gene for selecting cells involved in aluminum resistance (strong aluminum resistance, cells).
[0069] (4)本発明に力かる組換え発現ベクターおよび形質転換キット [0069] (4) Recombinant expression vector and transformation kit for the present invention
本発明にかかる組換え発現ベクターは、上記(1)に記載した本発明にかかるポリヌ クレオチドを含むものであれば、特に限定されるものではない。例えば、配列番号 1 〜3に示す cDNAが挿入された組換え発現ベクターが挙げられる。組換え発現べク ターの作製には、プラスミド、ファージ、またはコスミドなどを用いることができるが特に 限定されるものではない。また、作製方法も公知の方法を用いて行えばよい。  The recombinant expression vector according to the present invention is not particularly limited as long as it contains the polynucleotide according to the present invention described in (1) above. For example, a recombinant expression vector into which the cDNAs shown in SEQ ID NOs: 1 to 3 are inserted can be mentioned. For the production of a recombinant expression vector, a plasmid, phage, cosmid or the like can be used, but it is not particularly limited. In addition, a manufacturing method may be performed using a known method.
[0070] ベクターの具体的な種類は特に限定されるものではなぐホスト細胞中で発現可能 なベクターを適宜選択すればよい。すなわち、ホスト細胞の種類に応じて、確実に遺 伝子を発現させるために適宜プロモーター配列を選択し、これと本発明に力かるポリ ヌクレオチドを各種プラスミド等に組み込んだものを発現ベクターとして用いればょ ヽ  [0070] The specific type of vector is not particularly limited, and a vector that can be expressed in a host cell may be appropriately selected. That is, if a promoter sequence is appropriately selected according to the type of host cell in order to reliably express the gene, and this and a polynucleotide useful for the present invention are incorporated into various plasmids or the like, it can be used as an expression vector.ヽ
[0071] 本組換え発現ベクターは、本発明に力かるポリペプチドを発現させるために用いる ことができることは!ヽうまでもな ヽが、本発明にかかるポリヌクレオチドをマーカー遺伝 子として利用し、他の遺伝子を組み込んで当該他の遺伝子がコードするタンパク質を 発現させるための組換え発現ベクターとしても利用できる。 [0072] 本発明に力かるポリヌクレオチドがホスト細胞に導入されたか否力、さらにはホスト細 胞中で確実に発現して 、るか否かを確認するために、各種マーカーを用いてもよ!ヽ 。例えば、ハイグロマイシンのような抗生物質に抵抗性を与える薬剤耐性遺伝子をマ 一力一として用い、このマーカーと本発明に力かるポリヌクレオチドとを含むプラスミド 等を発現ベクターとしてホスト細胞に導入する。これによつてマーカー遺伝子の発現 力 本発明の遺伝子の導入を確認することができる。 [0071] The present recombinant expression vector can be used to express a polypeptide that is effective in the present invention! As a matter of course, the polynucleotide according to the present invention is used as a marker gene. And can be used as a recombinant expression vector for expressing a protein encoded by the other gene. [0072] Various markers may be used in order to confirm whether or not the polynucleotide of the present invention has been introduced into a host cell, and whether or not it is reliably expressed in the host cell. ! ヽFor example, a drug resistance gene that gives resistance to antibiotics such as hygromycin is used as the best force, and a plasmid or the like containing this marker and a polynucleotide useful for the present invention is introduced into a host cell as an expression vector. Thereby, the expression power of the marker gene can be confirmed.
[0073] 上記ホスト細胞は、特に限定されるものではなぐ従来公知の各種細胞を好適に用 いることができる。具体的には、例えば、イネ,きゅうり,アブラナ,またはトマト等を挙 げることができる力 特に限定されるものではない。  [0073] The host cell is not particularly limited, and various conventionally known cells can be preferably used. Specifically, for example, the ability to raise rice, cucumber, rape, tomato, etc. is not particularly limited.
[0074] 上記発現ベクターをホスト細胞に導入する方法、すなわち形質転換方法も特に限 定されるものではなぐァグロバタテリゥム感染法、電気穿孔法 (エレクト口ポレーショ ン法)、リン酸カルシウム法、プロトプラスト法、酢酸リチウム法、およびパーテイクルガ ン法等の従来公知の方法を好適に用いることができる。  [0074] The method of introducing the above expression vector into a host cell, that is, the transformation method is not particularly limited. The agrobatterium infection method, electroporation method (elect mouth poration method), calcium phosphate method, protoplast Conventionally known methods such as a method, a lithium acetate method, and a particle gun method can be preferably used.
[0075] 本発明にかかる形質転換キットは、上記(1)に記載した本発明にかかるポリヌクレオ チド、または、本発明にかかる組換え発現ベクターの少なくともいずれかを含むもの であればよい。その他の具体的な構成については特に限定されるものではなぐ必 要な試薬や器具等を適宜選択してキットの構成とすればょ ヽ。当該形質転換キットを 用いることにより、簡便かつ効率的に形質転換細胞を得ることができる。  [0075] The transformation kit according to the present invention only needs to contain at least one of the polynucleotide according to the present invention described in (1) above or the recombinant expression vector according to the present invention. Other specific configurations are not particularly limited, and necessary kits may be selected by appropriately selecting necessary reagents and instruments. By using the transformation kit, transformed cells can be obtained simply and efficiently.
[0076] (5)本発明に力かる形質転換体  [0076] (5) Transformant that is effective in the present invention
本発明にかかる形質転換体は、上記(1)に記載した本発明にかかるポリヌクレオチ ド、または、上記 (4)に記載の組換え発現ベクターが導入されており、かつ、アルミ- ゥム耐性に関与するポリペプチドが発現して 、る形質転換体であれば、特に限定さ れるものではない。ここで「形質転換体」とは、細胞 ·組織 '器官のみならず、生物個 体を含む意味である。  The transformant according to the present invention is introduced with the polynucleotide according to the present invention described in (1) above or the recombinant expression vector described in (4) above, and is resistant to aluminum. The transformant is not particularly limited as long as the polypeptide involved in is expressed. Here, “transformant” means not only a cell / tissue organ but also an organism.
[0077] また、ここで、「ポリヌクレオチドが導入された」とは、公知の遺伝子工学的手法 (遺 伝子操作技術)により、対象細胞 (宿主細胞)内に発現可能に導入されることを意味 するが、本発明では、これに加えてゲノム中に含まれる本発明のポリヌクレオチドが生 体内で発現して 、る場合も含むものとする。 [0078] 形質転換体の作製方法 (生産方法)は特に限定されるものではな 、が、例えば、上 述した組換え発現ベクターをホスト細胞に導入して形質転換する方法を挙げることが できる。また、形質転換の対象となる生物も特に限定されるものではなぐ上記 (4)に おいてホスト細胞として例示した植物細胞等を挙げることができる。 [0077] Here, "the polynucleotide has been introduced" means that it is introduced into a target cell (host cell) so that it can be expressed by a known genetic engineering technique (gene manipulation technique). However, in addition to this, the present invention includes the case where the polynucleotide of the present invention contained in the genome is expressed in vivo. [0078] The method for producing a transformant (production method) is not particularly limited, and examples thereof include a method for transformation by introducing the above-described recombinant expression vector into a host cell. In addition, the organisms to be transformed are not particularly limited, and examples thereof include plant cells exemplified as host cells in the above (4).
[0079] 本発明に力かる形質転換体は、植物細胞または植物体であることが好ま 、。この ような形質転換植物には、アルミニウム耐性が付与される。このため、細胞内または 植物体内において、アルミニウムの含有量 (蓄積量)を減少することができる。そして 、上記ポリヌクレオチドまたは組み換え発現ベクター力 ポリペプチドの発現を促進さ せるプロモーターとともに導入された上記形質転換体では、アルミニウム耐性が付与 されることにより、根力 アルミニウムを排除する結果、アルミニウムの吸収が抑制され 、アルミニウムの蓄積量を減少させることができる。これにより、アルミニウムによる生 育阻害を低減できる。  [0079] The transformant that is useful in the present invention is preferably a plant cell or a plant. Such transformed plants are endowed with aluminum tolerance. For this reason, the content (accumulation amount) of aluminum can be reduced in cells or plants. In the transformant introduced together with the promoter that promotes the expression of the polynucleotide or the recombinant expression vector force polypeptide, aluminum resistance is imparted, thereby eliminating the root strength aluminum, resulting in absorption of aluminum. The amount of accumulated aluminum can be reduced. This can reduce the growth hindrance caused by aluminum.
[0080] 本発明の形質転鎌物は、本発明にかかるポリヌクレオチドを導入されているため 、アルミニウム耐性を有する。このため、アルミニウムによる生育阻害を低減することが できる。  [0080] The transformed sickle of the present invention has aluminum resistance since the polynucleotide according to the present invention is introduced. For this reason, growth inhibition by aluminum can be reduced.
[0081] なお、植物体の形質転換に用いられる組換え発現ベクターは、当該植物細胞内で 挿入遺伝子を発現させることが可能なものであれば、特に限定されるものではな 、。 特に、植物体へのベクターの導入法がァグロバタテリゥムを用いる方法である場合に は、 pBI系等のバイナリーベクターを用いることが好ましい。ノイナリーベクターとして は、具体的には、例えば、 pBIG、 pBIN19、 pBI101、 pBI121、 pBI221等を挙げる ことができる。また、植物体内で遺伝子を発現させることが可能なプロモーターを有す るベクターであることが好ましい。プロモーターとしては公知のプロモーターを好適に 用いることができ、具体的には、例えば、カリフラワーモザイクウィルス 35Sプロモータ 一 (CaMV35S)、ュビキチンプロモーターゃァクチンプロモーターを挙げることがで きる。なお、植物細胞には、種々の形態の植物細胞、例えば、懸濁培養細胞、プロト プラスト、葉の切片、カルスなどが含まれる。  [0081] The recombinant expression vector used for transformation of the plant is not particularly limited as long as it can express the inserted gene in the plant cell. In particular, when the method for introducing a vector into a plant is a method using agrobacterium, it is preferable to use a binary vector such as pBI. Specific examples of the noinary vector include pBIG, pBIN19, pBI101, pBI121, and pBI221. Moreover, a vector having a promoter capable of expressing a gene in a plant is preferable. Known promoters can be preferably used as the promoter, and specific examples include cauliflower mosaic virus 35S promoter (CaMV35S) and ubiquitin promoter. The plant cells include various types of plant cells such as suspension culture cells, protoplasts, leaf sections, and callus.
[0082] 植物細胞への組み換え発現ベクターの導入には、ァグロバタテリゥム感染法、電気 穿孔法 (エレクト口ポレーシヨン法)、リン酸カルシウム法、プロトプラスト法、酢酸リチウ ム法、およびパーティクルガン法等、従来公知の方法を用いることができる。また、形 質転換細胞から植物体の再生は、植物細胞の種類に応じて公知の方法で行うことが 可能である。 [0082] Recombinant expression vector introduction into plant cells includes agrobacterium infection method, electroporation method (elect mouth position method), calcium phosphate method, protoplast method, lithium acetate Conventionally known methods such as a particle method and a particle gun method can be used. In addition, regeneration of a plant body from transformed cells can be performed by a known method depending on the type of plant cell.
[0083] ゲノム内に本発明にかかるポリヌクレオチドが導入された形質転鎌物体力 ^、つた ん得られれば、当該植物体力 得られる種子にも当該ポリヌクレオチドが導入されて いる。本発明には、形質転換植物から得られる種子も含まれる。  [0083] Transformation sickle body power into which the polynucleotide according to the present invention has been introduced into the genome, and once it has been obtained, the polynucleotide has also been introduced into the seed obtained from the plant body power. The present invention also includes seeds obtained from transformed plants.
[0084] (6)本発明にかかる食品  [0084] (6) Food according to the present invention
本発明の食品は、本発明にかかる形質転換体を含むものである。すなわち、この食 品は、アルミニウム耐性が付与された形質転換体を含むものである。  The food of the present invention contains the transformant according to the present invention. That is, this food contains a transformant imparted with aluminum resistance.
[0085] 本発明の食品には、ヒトが摂取するものはもちろん、家畜に与える飼料なども含まれ る。  [0085] The food of the present invention includes feeds given to livestock as well as those taken by humans.
[0086] コメは、日本ば力りではなぐ世界各地で主食とされている消費量の多い植物であ る。また、果物や野菜も、生産量および消費量が多い。このため、これらの農作物は、 特に安全性が重要視される。  [0086] Rice is a high-consumption plant that is considered a staple food in various parts of the world, not only in Japan. Fruits and vegetables are also high in production and consumption. For this reason, safety is especially important for these crops.
[0087] 従って、高いアルミニウム耐性が付与された形質転換体を含む食品は、コメ、野菜 、および果物のような農産物であることが好ましい。これにより、安全性が高ぐ有用な 米 (イネ)、野菜、および果物の栽培を実現できる。  Therefore, the food containing the transformant imparted with high aluminum tolerance is preferably an agricultural product such as rice, vegetables, and fruits. This makes it possible to grow useful rice, vegetables, and fruits that are highly safe.
[0088] 本発明は上述した実施形態に限定されるものではなぐ請求項に示した範囲で種 々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段 を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。  The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
[0089] 以下の実施例では、アルミニウム感受性突然変異体 (alsl変異体)を利用したマツ プベースクロー-ングによって、アルミニウム耐性遺伝子の単離に成功した。なお、 al si変異体は、本発明者が以前に取得したものであり、アルミニウム耐性の強い日本 型イネ品種 (コシヒカリ)から単離されたものである。図 5 (a)および図 5 (b)は、野生型 イネ (WT)および alsl変異体について、アルミニウム存在下または非存在下におけ る、生育状態を示す図である。図 5 (a)および図 5 (b)に示すように、 alsl変異体は、 酸性土壌で生育が阻害されており(図 5 (a) )、特にアルミニウム存在下、根の伸張が 阻害されている(図 5 (b) )。 [0090] 〔実施例 1〕 [0089] In the following examples, an aluminum resistance gene was successfully isolated by map-based cloning using an aluminum-sensitive mutant (alsl mutant). The al si mutant was previously obtained by the present inventor and was isolated from a Japanese rice cultivar (Koshihikari) with high aluminum tolerance. FIG. 5 (a) and FIG. 5 (b) are diagrams showing the growth state of wild-type rice (WT) and alsl mutants in the presence or absence of aluminum. As shown in Fig. 5 (a) and Fig. 5 (b), the alsl mutant is inhibited from growing in acidic soil (Fig. 5 (a)), and especially in the presence of aluminum, root elongation is inhibited. (Fig. 5 (b)). [Example 1]
alsl変異体と、カサラスとの交配力 得た F2集団を用いて、まずは InDelマーカー により、 目的遺伝子である Alsl遺伝子をラフマッピングした。その結果、 Alsl遺伝子 は、第 6染色体に座乗していることが明ら力となった。  First, rough mapping of the target gene, Alsl, was performed using the InDel marker, using the F2 population obtained by mating ability between the alsl mutant and Kasalath. As a result, it became clear that the Alsl gene sits on chromosome 6.
[0091] 図 4は、 Alsl遺伝子のマッピングの模式図である。図 4に示すように、 Alsl遺伝子( 図中 Alsl)は、第 6染色体の、 113. 4〜115. 6cMの間の領域に存在する。すなわ ち、 Alsl遺伝子は、マーカー MaOs0624とマーカー MaOs0617との間の領域に存 在する。そして、この領域を含む、 PACクローン AP003770と、 PACクローン APOO 3771とを選抜した。  FIG. 4 is a schematic diagram of Alsl gene mapping. As shown in FIG. 4, the Alsl gene (Alsl in the figure) is present in the region of chromosome 6 between 113.4 and 115.6 cM. That is, the Alsl gene is present in the region between the marker MaOs0624 and the marker MaOs0617. Then, PAC clone AP003770 and PAC clone APOO 3771 containing this region were selected.
[0092] 次に、選抜したクローンを用いて、新たな InDelマーカーおよび CAPSマーカーを 設計し、ファインマッピングを行った。その結果、 Alsl遺伝子の候補領域を 88kbにま で絞り込むことができた。 Alsl遺伝子の候補領域は、マーカー MaOs0642とマーカ 一 MaOs0654との間に存在した。  [0092] Next, using the selected clones, a new InDel marker and a CAPS marker were designed and fine mapping was performed. As a result, the candidate region of the Alsl gene could be narrowed down to 88 kb. A candidate region for the Alsl gene existed between marker MaOs0642 and marker MaOs0654.
[0093] TIGRの予測から、 Alsl遺伝子の候補領域(マーカー MaOs0642とマーカー Ma Os0654との間の領域)には、 14個の遺伝子(図 4の上から 3段目)が存在した。この うち、 7個の遺伝子は、レトロトランスポゾン関連の遺伝子であったため、残り 7個の遺 伝子の翻訳領域について、野生型と alsl変異体との配列を比較した。その結果、 als 1変異体に 15塩基対が欠損した遺伝子を見出し、その遺伝子を Alsl遺伝子と推定 した。  [0093] From the prediction of TIGR, there were 14 genes (third row from the top in Fig. 4) in the candidate region of Alsl gene (region between marker MaOs0642 and marker Ma Os0654). Of these, 7 genes were retrotransposon-related genes, so the sequences of the remaining 7 gene translation regions were compared between the wild-type and the alsl mutant. As a result, a gene lacking 15 base pairs in the als 1 mutant was found, and the gene was assumed to be the Alsl gene.
[0094] 図 2は、 Alsl遺伝子、および、 T—DNA挿入株と Tosl7破壊株の挿入場所を示す 模式図である。 Alsl遺伝子(ゲノム遺伝子)は、全長 3015bpカゝらなる。 Alsl遺伝子 は、 4つのェクソン(876bP)と、 3つのイントロンとから構成される。配列番号 5におい て 4つのエタソンは、 354〜894番目の塩基, 992〜1179番目の塩基, 3126〜34 70番目の塩基,および, 3567〜4027番目の塩基である。  [0094] Fig. 2 is a schematic diagram showing the Alsl gene and the insertion sites of the T-DNA insertion strain and Tosl7 disruption strain. The Alsl gene (genomic gene) has a total length of 3015 bp. The Alsl gene consists of 4 exons (876bP) and 3 introns. The four etasons in SEQ ID NO: 5 are the 354th to 894th bases, the 992st to 1179th bases, the 3126th to 3470th bases, and the 3567th to 4027th bases.
[0095] 〔実施例 2〕  [Example 2]
次に、推定 Alsl遺伝子の Tosl7破壊株および T— DNA挿入株を用いて、実施例 1でクロー-ングした遺伝子 (推定 Alsl遺伝子)の確認を行った。 T— DNA挿入株と しては、推定 Alsl遺伝子のェクソンまたはイントロンが破壊された系(3D— 02176, 3A— 02044)を用い、 Tosl7破壊株としては、ェクソンに外来遺伝子が挿入された 系(NG0545)を用いた。 Next, the cloned gene (presumed Alsl gene) in Example 1 was confirmed using a Tosl7-disrupted strain of the putative Alsl gene and a T-DNA insertion strain. For T-DNA inserts, the putative Alsl gene exon or intron is disrupted (3D-02176, 3A-02044) was used, and the Tosl7 disruption strain used was a system (NG0545) in which a foreign gene was inserted into Exon.
[0096] その結果、 Tosl7破壊株および T—DNA挿入株のアルミニウム耐性は、著しく低 下していた。 [0096] As a result, the aluminum resistance of the Tosl7-disrupted strain and the T-DNA insertion strain was significantly reduced.
[0097] 図 3は、 Alsl遺伝子の発現量を、定量 RT— PCRによって解析した結果を示す図 である。図 3に示すように、野生型 (WT)では確認された Alsl遺伝子の発現が、 Tos 17および T DNA系では確認されなかった。なお、ァクチンは全ての系で確認され た。  FIG. 3 is a diagram showing the results of analyzing the expression level of the Alsl gene by quantitative RT-PCR. As shown in FIG. 3, Alsl gene expression confirmed in the wild type (WT) was not confirmed in the Tos 17 and T DNA systems. Actin was confirmed in all systems.
[0098] 〔実施例 3〕  [Example 3]
次に、野生型イネと、 alsl変異体と、実施例 2の Tos破壊株および T DNA挿入株 との機能解析を行った。  Next, functional analysis was performed on wild-type rice, the alsl mutant, and the Tos-disrupted strain and T DNA-inserted strain of Example 2.
[0099] 図 6は、各系における、根の伸長量を比較したグラフである。なお、このグラフでは、 コントロール(アルミニウム非存在下での根の伸長量)に対する%を示している。図 6 に示すように、野生型イネ以外の系では、根の相対伸長が、顕著に低下した。 FIG. 6 is a graph comparing the amount of root elongation in each system. In this graph,% relative to the control (the amount of root elongation in the absence of aluminum) is shown. As shown in Fig. 6, the relative elongation of roots was significantly reduced in the lines other than wild-type rice.
[0100] 図 7 (a)は、野生型イネの根とシュートについて、アルミニウム存在下および非存在 下における、 Alsl遺伝子の発現量を比較したグラフである。図 7 (b)は、同じぐ Alsl 遺伝子およびァクチンの発現を確認した定量 RT— PCRを示す図である。図 7 (a)お よび (b)に示すように、 Alsl遺伝子は、アルミニウム存在下、根に局在化して発現し た。 FIG. 7 (a) is a graph comparing the expression levels of the Alsl gene in the presence and absence of aluminum in wild-type rice roots and shoots. Fig. 7 (b) shows quantitative RT-PCR in which the expression of the same Alsl gene and actin was confirmed. As shown in Figs. 7 (a) and (b), the Alsl gene was localized and expressed in the roots in the presence of aluminum.
[0101] 図 8 (a)は、野生型イネについて、根の先端 (根端力 lcmまで),根の基部 (根端 力 さらに lcm) ,およびシュートにおける Alsl遺伝子およびァクチンの発現を確認 した定量 RT— PCRを示す図である。図 8 (b)は、図 8 (a)と同じぐ各部における Als 1遺伝子の発現量を比較した図である。図 8 (c)は、図 8 (a)および図 8 (b)における、 根端および根基部の位置を示す図である。図 8に示すように、 Alsl遺伝子は、シュ ート(地上部)に比べて、根で多く発現しており、特に、アルミニウムによって根の先端 での発現がより多く増加した。  [0101] Figure 8 (a) shows the quantification of wild-type rice that confirmed the expression of the Alsl gene and actin in the root tip (up to root force lcm), root base (root tip force further lcm), and shoot. FIG. 2 shows RT-PCR. FIG. 8 (b) is a diagram comparing the expression levels of the Als 1 gene in the same parts as in FIG. 8 (a). FIG. 8 (c) is a diagram showing the positions of the root tip and the root base in FIGS. 8 (a) and 8 (b). As shown in FIG. 8, the Alsl gene was expressed more in the root than in the shout (aboveground), and in particular, the expression at the tip of the root increased more with aluminum.
[0102] 〔実施例 4〕  [Example 4]
次に、単離したアルミニウム耐性遺伝子 (Alsl遺伝子)を alsl変異体に導入し、相 補性実験を行った。その結果、独立した形質転換植物 4ライン (B79— 1, 8- 1, 19 - 2, 35— 1)を得た。図 9は、これらの形質転,物について、アルミニウム耐性を 解析した結果を示すグラフである。このグラフでは、比較のために、 WT (野生型イネ) 、 als変異体、ベクター制御系ラインについての根の伸長率の結果も示している。図 9 のように、 Als遺伝子が導入された組換え系(形質転鎌物)では、アルミニウム耐性 が付与されている。これにより、単離した Alsl遺伝子力 アルミニウム耐性遺伝子で あることが確認された。 Next, the isolated aluminum resistance gene (Alsl gene) was introduced into the alsl mutant and phased. Complementary experiments were performed. As a result, 4 lines of independent transformed plants (B79-1, 1, 1, 19-2, 35-1) were obtained. FIG. 9 is a graph showing the results of analyzing aluminum resistance of these transformants. For comparison, this graph also shows the results of root elongation for WT (wild-type rice), als mutants, and vector control lines. As shown in Fig. 9, aluminum resistance is conferred in the recombinant system (transformed sickle) into which the Als gene has been introduced. As a result, it was confirmed that the isolated Alsl gene was an aluminum resistance gene.
[0103] また、図 10は、図 9の各植物(alsl変異体(1本), WT(1本),形質転換植物 (TG)  [0103] Fig. 10 shows each plant of Fig. 9 (alsl mutant (1), WT (1), transformed plant (TG)).
(2本),ベクターコントロール (VC) (2本))の根に存在するアルミニウムを、エリオクロ ムシァニン(Eriochrom Cyanine)により、染色した結果を示す図である。図 10のように 、 Als遺伝子が導入された形質転換植物 (TG)では、野生型 (WT)と同様に、根のァ ルミ-ゥム沈積が少なくなつていることが確認された。  (2), vector control (VC) (2)) It is a figure which shows the result of having dye | stained the aluminum which exists in the root by Eriochrom Cyanine (Eriochrom Cyanine). As shown in FIG. 10, it was confirmed that the transformed plant (TG) into which the Als gene was introduced had less root aluminum deposition, as in the wild type (WT).
[0104] 〔実施例 5〕  [Example 5]
次に、 Alsl遺伝子に、 Alslプロモータおよび GFPの誘導遺伝子を連結させたベタ ターを用いてイネを形質転換した。図 11は、形質転換体について、 Alslタンパク質 の発現部位を検討した結果を示す図である。図 11中、「+Α1」はアルミニウム処理し たことを示し、「― Al」はアルミニウム処理していないことを示し、「2mmおよび 20mm 」は、それぞれ根の先端からの位置を示している。図 11のように、 Alslタンパク質は、 根の先端では全ての細胞に発現し、根の基部 (側根)では表皮細胞を除く細胞に発 現することが確認された。さらに、 Alslタンパク質が細胞膜に局在していることも確認 された。  Next, rice was transformed using a vector in which an Alsl promoter and a GFP-inducible gene were linked to the Alsl gene. FIG. 11 is a diagram showing the results of examining the expression site of Alsl protein for transformants. In Fig. 11, “+ Α1” indicates that the aluminum treatment is performed, “−Al” indicates that the aluminum treatment is not performed, and “2 mm and 20 mm” indicate the positions from the root tips, respectively. As shown in FIG. 11, it was confirmed that Alsl protein was expressed in all cells at the root tip and expressed in cells other than epidermal cells at the root base (lateral root). It was also confirmed that Alsl protein was localized in the cell membrane.
[0105] また、図 12は、 Alslタンパク質に対する抗体を用いて、抗体染色した結果を示す 図である。図 12のように、図 11の GFPの結果と同様、 Alslタンパク質は、根の先端 では略全ての細胞に発現し、根の基部では表皮細胞を除く細胞に局在化しているこ とが確認された。  [0105] Fig. 12 is a diagram showing the results of antibody staining using an antibody against Alsl protein. As shown in Fig. 12, similar to the results of GFP in Fig. 11, Alsl protein is expressed in almost all cells at the root tip and localized in cells other than epidermal cells at the root base. It was done.
[0106] 〔実施例 6〕  [Example 6]
次に、コシヒカリおよび alsl変異体について、 Alsl遺伝子の発現量に対するアルミ -ゥム処理濃度およびアルミニウム処理経過時間の影響について検討した。図 13は 、 Alsl遺伝子の発現量と、アルミニウム処理後の経過時間との関係を示すグラフで あり、図 14は、 Alsl遺伝子の発現量と、アルミニウム処理濃度との関係を示すグラフ である。これらの図のように、 Alslタンパク質の発現は、アルミニウム処理開始後 2時 間程度で誘導され(図 13)、 5 Mのアルミニウムにより誘導され(図 14)、ことが確認 された。なお、図 13および図 14の縦軸は、ァクチンの発現量を基準にした、 Alsl遺 伝子の発現量の相対値である。 Next, for Koshihikari and alsl mutants, the effects of aluminum treatment concentration and aluminum treatment elapsed time on the expression level of the Alsl gene were examined. Figure 13 FIG. 14 is a graph showing the relationship between the expression level of the Alsl gene and the elapsed time after aluminum treatment, and FIG. 14 is a graph showing the relationship between the expression level of the Alsl gene and the aluminum treatment concentration. As shown in these figures, it was confirmed that Alsl protein expression was induced about 2 hours after the start of aluminum treatment (Fig. 13) and induced by 5 M aluminum (Fig. 14). The vertical axis in FIG. 13 and FIG. 14 is the relative value of the expression level of the Alsl gene based on the expression level of actin.
[0107] 〔実施例 7〕  [Example 7]
次に、コシヒカリおよび alsl変異体について、 Morinにより細胞内のアルミニウムを 観察した。図 15は、その結果を示す図である。図 15のように、 alsl変異体では細胞 内にアルミニウムのシグナルが観察されたのに対し、野生型(コシヒカリ)ではそのシ グナルは観察されな力つた。これにより、 Alslタンパク質力 細胞内に進入したアルミ ニゥムを、細胞外に放出していることが確認された。  Next, for Koshihikari and alsl mutant, intracellular aluminum was observed by Morin. FIG. 15 shows the results. As shown in Fig. 15, aluminum signals were observed in the alsl mutant, whereas in the wild type (Koshihikari), the signal was not observed. As a result, it was confirmed that aluminum that had entered Alsl protein was released into the cell.
[0108] 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あく までも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限 定して狭義に解釈されるべきものではなぐ本発明の精神と次に記載する請求の範 囲内にお!、て、 、ろ 、ろと変更して実施することができるものである。  [0108] The specific embodiments or examples made in the detailed description section of the present invention are to clarify the technical contents of the present invention, and are limited to such specific examples. Therefore, the present invention should not be construed in a narrow sense, and can be carried out with modifications within the spirit of the present invention and the scope of the claims described below.
産業上の利用可能性  Industrial applicability
[0109] 本発明のポリヌクレオチドは、植物において初めて同定された、アルミニウム耐性に 関与する遺伝子である。この遺伝子を発現させることにより、アルミニウムによる植物 の生育阻害を、低減できる。それゆえ、本発明は、特に農業、および食品産業に、好 適に利用することができる。 [0109] The polynucleotide of the present invention is a gene involved in aluminum tolerance, which was first identified in plants. By expressing this gene, inhibition of plant growth by aluminum can be reduced. Therefore, the present invention can be suitably used particularly for agriculture and the food industry.

Claims

請求の範囲 The scope of the claims
[1] アルミニウム耐性に関与するポリヌクレオチドであって、  [1] A polynucleotide involved in aluminum resistance,
下記の(a)または(b)のポリヌクレオチド:  The following polynucleotide (a) or (b):
(a)配列番号 1に示される塩基配列からなるポリヌクレオチド;  (a) a polynucleotide comprising the base sequence represented by SEQ ID NO: 1;
(b)以下の(i)もしくは (ii)のいずれかとストリンジェントな条件下でノヽイブリダィズす るポリヌクレ才チド:  (b) Polynucleids that are hybridized under stringent conditions with either (i) or (ii) below:
(i)配列番号 1に示される塩基配列力 なるポリヌクレオチド;もしくは (i) a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 1; or
(ii)配列番号 1に示される塩基配列と相補的な塩基配列力 なるポリヌクレオチ ド、。 (ii) a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1.
[2] アルミニウム耐性に関与するポリペプチドであって、  [2] A polypeptide involved in aluminum resistance,
下記の(a)または(b)のポリペプチド:  The following polypeptide (a) or (b):
(a)配列番号 2に示されるアミノ酸配列からなるポリペプチド;  (a) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2;
(b)配列番号 2に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列力もなるポリペプチド。  (b) A polypeptide having an amino acid sequence ability in which one or several amino acids are substituted, deleted, inserted, or added in the amino acid sequence shown in SEQ ID NO: 2.
[3] アルミニウムによる根の伸長阻害を防ぐものである請求項 2に記載のポリペプチド。  [3] The polypeptide according to claim 2, which prevents root elongation inhibition by aluminum.
[4] 請求項 2または 3に記載のポリペプチドをコードするポリヌクレオチド。 [4] A polynucleotide encoding the polypeptide according to claim 2 or 3.
[5] 請求項 1または 4に記載のポリヌクレオチドからなる形質転換体選抜用マーカー遺 伝子。 [5] A marker gene for selecting a transformant comprising the polynucleotide according to claim 1 or 4.
[6] 請求項 1または 4に記載のポリヌクレオチドを含む組換え発現ベクター。  [6] A recombinant expression vector comprising the polynucleotide according to claim 1 or 4.
[7] 請求項 1または 4に記載のポリヌクレオチド、または、請求項 6に記載の組換え発現 ベクターが導入されており、かつ、アルミニウム耐性に関与するポリペプチドを発現し てなる形質転換体。  [7] A transformant into which the polynucleotide according to claim 1 or 4 or the recombinant expression vector according to claim 6 has been introduced and which expresses a polypeptide involved in aluminum resistance.
[8] 下記の(a)または (b)のポリペプチドをコードするポリヌクレオチドが導入されており 、かつ、アルミニウム耐性に関与するポリペプチドを発現してなる形質転換体。  [8] A transformant into which a polynucleotide encoding the following polypeptide (a) or (b) has been introduced and which expresses a polypeptide involved in aluminum resistance.
(a)配列番号 2に示されるアミノ酸配列からなるポリペプチド;  (a) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2;
(b)配列番号 2に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列力もなるポリペプチド。  (b) A polypeptide having an amino acid sequence ability in which one or several amino acids are substituted, deleted, inserted, or added in the amino acid sequence shown in SEQ ID NO: 2.
[9] 請求項 7または 8に記載の形質転換体を含む食品。 請求項 1または 4に記載のポリヌクレオチド、あるいは、請求項 5に記載の組換え発 現ベクターのいずれかを含むことを特徴とする形質転換キット。 [9] A food comprising the transformant according to claim 7 or 8. A transformation kit comprising the polynucleotide according to claim 1 or 4 or the recombinant expression vector according to claim 5.
PCT/JP2007/055284 2006-03-16 2007-03-15 Gene participating in aluminum tolerance and utilization of the same WO2007119381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008510791A JPWO2007119381A1 (en) 2006-03-16 2007-03-15 Genes involved in aluminum resistance and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006072706 2006-03-16
JP2006-072706 2006-03-16

Publications (1)

Publication Number Publication Date
WO2007119381A1 true WO2007119381A1 (en) 2007-10-25

Family

ID=38609177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055284 WO2007119381A1 (en) 2006-03-16 2007-03-15 Gene participating in aluminum tolerance and utilization of the same

Country Status (2)

Country Link
JP (1) JPWO2007119381A1 (en)
WO (1) WO2007119381A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116716311A (en) * 2023-05-12 2023-09-08 中国热带农业科学院热带作物品种资源研究所 Bermudagrass aluminum response gene and primer and cloning method thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] KIKUCHI S. ET AL.: "Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice", XP003018297, Database accession no. (AK064089) *
DATABASE GENBANK [online] KIKUCHI S. ET AL.: "Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice", XP003018298, Database accession no. (AK109450) *
KIKUCHI S. ET AL.: "Collection mapping, and annotation of over 28,000 cDNA clones from japonica rice", SCIENCE, vol. 301, no. 5631, 2003, pages 376 - 379, XP002274713 *
LARSEN P.B. ET AL.: "ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis", THE PLANT JOURNAL, vol. 41, no. 3, 2005, pages 353 - 363, XP003018300 *
MA J.F. ET AL.: "Isolation and characterization of a rice mutant hypersensitive to Al", PLANT CELL PHYSIOL., vol. 46, no. 7, 2005, pages 1054 - 1061, XP003018299 *
SCIENCE, vol. 301, no. 5631, 2003, pages 376 - 379 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116716311A (en) * 2023-05-12 2023-09-08 中国热带农业科学院热带作物品种资源研究所 Bermudagrass aluminum response gene and primer and cloning method thereof

Also Published As

Publication number Publication date
JPWO2007119381A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5758376B2 (en) Rice zinc finger protein transcription factor DST and its use to regulate drought and salt tolerance
EP3559024A1 (en) Plant grain trait-related protein, gene, promoter and snps and haplotypes
AU2019276382B2 (en) Use of Yr4DS gene of Aegilops tauschii in stripe rust resistance breeding of Triticeae plants
CN107602681B (en) Rice grain width gene GW5L and application thereof
US20210071194A1 (en) Gene conferring resistance to fungal pathogen
US11725214B2 (en) Methods for increasing grain productivity
WO2019038417A1 (en) Methods for increasing grain yield
CN108864266B (en) Protein SSH1 related to rice graininess and grain type as well as encoding gene and application thereof
CN107759676B (en) Plant amylose synthesis related protein Du15, and coding gene and application thereof
CN114369147B (en) Application of BFNE gene in tomato plant type improvement and biological yield improvement
CN111826391B (en) Application of NHX2-GCD1 double gene or protein thereof
CN101883572B (en) Sorghum aluminum tolerance gene SBMATE
CN113980919B (en) DNA sequence for regulating and controlling corn ear rot resistance, mutant, molecular marker and application thereof
CN113403308B (en) Method for improving bacterial leaf blight resistance of rice
CN108795949B (en) Rice leaf color regulation related gene OsWSL6 and encoding protein and application thereof
CN108017700B (en) Rice Os GRDP1 albumen relevant to disease resistance of plant and its encoding gene and application
WO2007119381A1 (en) Gene participating in aluminum tolerance and utilization of the same
CN110241130B (en) GSN1 gene for controlling grain number and grain weight of plants, encoded protein and application thereof
JP4555970B2 (en) Genes involved in aluminum resistance and use thereof
JP2008054532A (en) Gene participating in aluminum tolerance and use thereof
US20050188435A1 (en) Method of increasing the GGT activity in plants, plants with increased GGT activity, and a method of producing such plants
US11859196B2 (en) Modulating drought tolerance in Brassicaceae using the Kanghan gene family
JP5092125B2 (en) Genes involved in silicon absorption and use thereof
US20230081195A1 (en) Methods of controlling grain size and weight
CN110078808B (en) Cotton GhKNAT7-A03 protein and coding gene and application thereof

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008510791

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738734

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)