WO2007118411A1 - Procédé et dispositif pour le traitement de bande de base de l'émetteur espace-temps/fréquence spatiale/diversité spatiale - Google Patents

Procédé et dispositif pour le traitement de bande de base de l'émetteur espace-temps/fréquence spatiale/diversité spatiale Download PDF

Info

Publication number
WO2007118411A1
WO2007118411A1 PCT/CN2007/001141 CN2007001141W WO2007118411A1 WO 2007118411 A1 WO2007118411 A1 WO 2007118411A1 CN 2007001141 W CN2007001141 W CN 2007001141W WO 2007118411 A1 WO2007118411 A1 WO 2007118411A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
mapping
output
space
symbols
Prior art date
Application number
PCT/CN2007/001141
Other languages
English (en)
French (fr)
Inventor
Dong Li
Guosong Li
Xialong Zhu
Hongwei Yang
Liyu Cai
Original Assignee
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent filed Critical Alcatel Lucent
Priority to KR1020087024999A priority Critical patent/KR101286996B1/ko
Priority to US12/296,841 priority patent/US8248909B2/en
Priority to EP07720714.0A priority patent/EP2015532B8/en
Publication of WO2007118411A1 publication Critical patent/WO2007118411A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0668Orthogonal systems, e.g. using Alamouti codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels

Definitions

  • the present invention relates to a single carrier frequency division multiplexing system for next generation broadband wireless communication or an OFDM (Orthogonal Frequency Division Multiplexing) system called DFT (Discrete Fourier Transform) extension, and more particularly to the system Transmitter structure and method and apparatus for space-time/space-frequency/space diversity transmitter baseband processing.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT Discrete Fourier Transform
  • the transmitter baseband structure of the existing single carrier frequency division multiplexing (SC-FDMA) system is: After the information bit stream is encoded, interleaved and constellation modulated, input to the M point DFT module. The input data of the M point DFT module 10 is then mapped by the subcarrier mapping device 20 to the M subcarriers allocated in the N subcarriers.
  • the subcarrier mapping mode is divided into a centralized mapping and a distributed mapping. Representing the number of subcarriers allocated by the information transmission.
  • the N-IDFT module 30 After the unmapped (NM) subcarriers are set to zero, the N-IDFT module 30 performs an IDFT (inverse discrete Fourier transform) of the N point to the time domain, and then passes The CP insertion device 40 inserts a Cyclic Prefix, which copies the last L CP data of the N-point data set of the output of the N-point IDFT transform to the front, where L CP represents the CP (Cyclic Prefix) length, and then is upsampled. D/A (digital/analog) conversion, carrier modulation, etc. are transmitted through a single antenna.
  • IDFT inverse discrete Fourier transform
  • the system has been recognized in the industry as the most competitive next-generation broadband wireless communication system. It has the following advantages:
  • PAPR peak-to-average ratio
  • Orthogonal multi-user access can be provided to avoid multiple access interference (MAI) in the uplink CDMA system;
  • MAI multiple access interference
  • the insertion of the time domain cyclic prefix CP provides flexible and efficient frequency domain equalization capabilities, and the like. Provides higher peak data rate and spectral efficiency, higher data transmission rate at the cell boundary, and sufficient cells in next-generation mobile communication systems compared to existing mobile communication systems (eg, UMTS systems) Coverage is an important feature.
  • next-generation mobile communication systems eg, UMTS systems
  • Coverage is an important feature.
  • multi-antenna transmission technology will be an important feature of the next generation mobile communication system.
  • PAPR peak-to-average ratio
  • the present invention achieves effective spatial diversity by providing a transmitter structure of the system and a method and apparatus for space-time/space-frequency/space diversity transmitter baseband processing, while reducing PAPR and Make frequency domain equalization feasible.
  • One of the inventions a device for baseband processing of space time diversity transmitter
  • the device comprises an M-point DFT module, a space-time coding device and a mapping device, characterized in that: the space-time coding device is connected between an output of the M-point DFT module and an input of the mapping device, wherein: M represents the number of subcarriers allocated to the user.
  • the space time coding apparatus is configured to encode at least two and preferably two corresponding symbol groups of the output of the M-point DFT module, and output at least two and preferably two respectively One-to-one data set corresponding to each transmit antenna, wherein: each symbol group contains M symbols;
  • the mapping device includes at least two and preferably two subcarrier mapping devices, respectively mapping each data set onto the corresponding antenna, so that the data after the mapping is:
  • the order between the mapped data symbols on each antenna remains unchanged compared to the M symbols output by the M-point DFT module; and/or Maintaining the same subcarrier spacing between the mapped symbols; and/or
  • the M data on each SC-FDMA symbol after mapping is M output data of the DFT module, or the inverse of the M output data, or the complex conjugate of the M output data, or the negative of the M output data Complex conjugate.
  • the encoding can be encoded by Alamouti.
  • the output symbol of the M-point DFT module is connected to the space-time coding means by a splitter module.
  • mapping manner of the subcarrier mapping apparatus is a centralized mapping or a distributed mapping.
  • Second invention a method for baseband processing of space-time diversity transmitter
  • the method includes:
  • the 2M point data set represented by the system's M-point DFT module is ⁇ S 1 ⁇ 2 ,..., 3 ⁇ 4 ⁇ ⁇ +1 , ''', S 2 ⁇ , divided into two adjacent symbol groups W , , ''', ⁇ and ⁇ +1 ,''', ⁇ ;
  • Space-time coding step Alamouti coding data on corresponding symbols of the two adjacent symbol groups, and outputting two data sets;
  • mapping step respectively mapping the two data sets onto two antennas, so that the data after mapping is:
  • the order between the mapped data symbols on each antenna remains unchanged compared to the M symbols output by the M-point DFT module;
  • the same subcarrier spacing is maintained between the mapped symbols;
  • the M data on each SC-FDMA symbol after mapping is M output data of the DFT module, or the inverse of the M output data, or the complex conjugate of the M output data, or the negative of the M output data Complex conjugate.
  • the two data sets output by the space-time encoding step are of the form:
  • the third aspect of the invention a space time diversity transmitter
  • the transmitter includes means for baseband processing of the space time diversity transmitter as described above connected between the constellation modulator at the front end of the transmitter and the defective IDFT module at the back end.
  • a device for baseband processing of a space frequency diversity transmitter W 200 comprises an M-point DFT module, a space frequency encoding device and a mapping device, characterized in that: the space frequency encoding device is connected between an output end of the M-point DFT module and an input end of the mapping device And for encoding the consecutive M symbols output by the M-point DFT module, outputting at least two and preferably two data sets respectively corresponding to the respective transmit antennas, where: M represents a child allocated to the user Number of carriers.
  • the mapping apparatus includes at least two and preferably two subcarrier mapping apparatuses, respectively mapping each data set output by the space frequency encoding apparatus onto the corresponding antenna, so that the data after the mapping is:
  • the order between the mapped data symbols on at least one antenna remains unchanged compared to the M symbols output by the DFT module; and/or the same subcarrier spacing is maintained between the mapped symbols; and/or
  • the M data on each SC-FDMA symbol is the M output data of the DFT module, or the inverse of the M output data, or the complex conjugate of the M output data, or the negative complex of the M output data. yoke.
  • mapping manner of the subcarrier mapping apparatus is a centralized mapping or a distributed mapping.
  • Fifth invention method for space frequency diversity transmitting baseband processing
  • the method includes:
  • the space-frequency coding step the M-point data set of the system's M-point DFT module is output, the M-point data set of ⁇ , the Alamouti coding, and the two data sets output, ⁇ - ⁇ ,-,- ⁇ , "*" Representing a conjugate operation value;
  • mapping step respectively mapping the two data sets onto two antennas, so that the data after mapping is:
  • the order between the mapped data symbols on at least one of the antennas remains unchanged compared to the one of the symbols output by the DFT module;
  • the same subcarrier spacing is maintained between the mapped symbols;
  • the data on each SC-FDMA symbol after mapping is one output data of the DFT module, or the opposite of one output data, or the complex conjugate of one output data, or the negative of one output data. Complex conjugate.
  • the transmitter includes means for baseband processing of a space frequency diversity transmitter as described above connected between a constellation modulator at the front end of the transmitter and a defective IDFT module at the back end.
  • a device for baseband processing of a spatial diversity transmitter Seventh of the present invention, a device for baseband processing of a spatial diversity transmitter
  • the apparatus comprises a defect DFT module, an encoding device and a mapping device, and a selection device connected to the encoding device for selecting a space time diversity transmission or a space frequency diversity transmission mode, the coding device according to the selection Selecting a transmission mode selected by the device as a corresponding space-time or space-frequency coding, wherein the coding device is connected between an output end of the M-point DFT module and an input end of the mapping device, where: M represents The number of subcarriers assigned to the user.
  • the encoding apparatus when used as space time coding, it encodes corresponding symbols of at least two and preferably two adjacent symbol groups output by the M-point DFT module, and outputs at least two and preferably a data set corresponding to each of the transmit antennas, wherein: each symbol group includes M symbols; and the mapping device includes at least two and preferably two subcarrier mapping devices, respectively mapping each data set to corresponding The antenna is up, so that the data after mapping is: Compared with the M symbols output by the M-point DFT module, the order between the mapped data symbols on each antenna remains unchanged; and/or the mapped symbols remain unchanged The same subcarrier spacing; and/or such that the M data on each SC-FDMA symbol after mapping is the M output data of the DFT module, or the inverse of the M output data, or the total of the M output data Yoke, or negative complex conjugate of M output data.
  • the encoding apparatus when used as space-frequency coding, it encodes consecutive M symbols output by the M-point DFT module, and outputs at least two and preferably two corresponding one-to-one corresponding to each transmitting antenna.
  • the data set; the mapping means comprises at least two and preferably two subcarrier mapping means, respectively mapping each data set onto the corresponding antenna, so that the data after the mapping satisfies the following requirements, namely: M outputted with the M point DFT module
  • M outputted with the M point DFT module The order between the mapped data symbols on at least one antenna remains unchanged; and/or the same subcarrier spacing is maintained between the mapped symbols; and/or each mapped SC-
  • the M data on the FDMA symbol is the M output data of the DFT module, or the inverse of the M output data, or the complex conjugate of the M output data, or the negative complex conjugate of the M output data.
  • the coding device is placed after the M-point DFT module, and the advantage is that the receiving end can effectively perform space-time decoding and detection in the frequency domain, thereby avoiding complicated multipath signals in the time domain. Equilibrium and processing.
  • the present invention proposes an effective space/space frequency coding and mapping method, which can effectively reduce the PAPR (peak to average power ratio) of the transmitted signal, thereby making the power amplifier in the transmitter more efficient. Therefore, in the uplink communication link (ie, from the terminal mobile station to the base station), the battery life of the terminal can be extended, or under the same battery usage time, the lower PAPR can enable the terminal to transmit at a larger transmission power. Thereby effectively increasing the coverage area of the cell.
  • FIG. 1 is a schematic structural diagram of a conventional apparatus for baseband processing of a transmitter of an SC-FDMA system
  • FIG. 2(a) to (b) are schematic diagrams showing the structure of a baseband processing apparatus for a space-time diversity transmitter of an SC-FDMA system according to the present invention; (It embodies two space-time coding and mapping methods);
  • FIG. 3 is a schematic view showing the structure of a baseband processing apparatus for a SC-FDMA system space-frequency diversity transmitter in the present invention
  • FIG. 4 is a schematic diagram of comparison of PAPR of two transmit antennas of the space-time diversity SC-FDMA system of the present invention with several other schemes, wherein: FIG. 4(a) and FIG. 4(b) respectively show centralized subcarrier mapping and Simulation results in the case of distributed subcarrier mapping.
  • FIG. 5 is a schematic diagram of comparison of PAPR of two transmit antennas of the SC-FDMA system of the present invention for space-frequency diversity and other schemes, wherein FIG. 5(a) and FIG. 5(b) respectively show centralized subcarrier mapping and distribution. Simulation results in the case of subcarrier mapping;
  • FIG. 6 is a block diagram showing the structure of a SC-FDMA system spatial diversity transmitter baseband processing apparatus in the present invention. detailed description
  • M represents the number of subcarriers allocated to the end user
  • N represents the total number of subcarriers.
  • the 1024-point IDFT transform is used to assign to a certain number of subcarriers.
  • Figure 2 shows the Sub-carrier Mapping module with localized Sub-carrier Mapping as an example.
  • the space time diversity transmitter of the present invention includes a constellation modulation module 101, an M-point DFT module 102, a splitter module 103, a space time coding module 104, and two subcarrier mapping devices 105.
  • the input data of the constellation modulation module 101 is a bit stream outputted by the output channel of the channel coder of the user terminal after interleaving by the interleaver, and the constellation modulation module 101 represents constellation modulation, such as BPSK (two phase phase shift keying), QPSK (four phase) Phase shift keying), 8PSK (eight phase shift keying), 16QAM (hexadecimal phase shift keying), 64QAM (sixteen phase shift keying), etc.
  • the modulation symbol output by the constellation modulation module 101 is M
  • the point DFT (Discrete Fourier Transform) module 102 transforms and outputs it to a splitter module 103, dividing each successive M symbols into two paths.
  • a space-time coding apparatus configured to encode corresponding symbols of two adjacent symbol groups output by the M-point DFT module, and output two data sets respectively corresponding to the respective transmit antennas, wherein: each symbol group includes M symbols.
  • the two channels of data output by the splitter module 103 that is, two and each of the M symbols
  • the group of symbols can be represented as: and ⁇ +1 ,...,3 ⁇ 4 ⁇ , and the two channels of data pass through the space-time coding module 104, and the two channels of data output are ⁇ , , - +1 ⁇ .
  • the two data sets are respectively mapped to the two antennas through the two subcarrier mapping devices 105, and the mapping manner is to set the first M data in the set and The M data are respectively mapped to two SC-FDMA symbols adjacent to each other, and the mapping of the M data of each SC-FDMA symbol should be based on the subcarrier resources allocated by the user terminal.
  • the data after mapping meets:
  • the M data on each SC-FDMA symbol after mapping is M output data of the DFT module, or the inverse of the M output data, or the complex conjugate of the M output data, or the negative of the M output data Complex conjugate.
  • mapping can be divided into centralized mapping and distributed mapping.
  • centralized mapping refers to mapping M data to consecutive M subcarriers.
  • distributed mapping refers to placing M data at regular intervals. Map to M subcarriers.
  • space-time coding is not Alamouti coding (ie a space-time coding method) for adjacent symbols (eg 8! and S 2 ) in the symbol group output by the M-point DFT module, but the module
  • the corresponding symbols of the output adjacent symbol groups are Alamouti encoded, for example, the first symbol 3! of the first symbol group and the first symbol S M+1 of the second symbol group are encoded.
  • the coding matrix is as follows:
  • the number of rows corresponds to the transmit antenna, and the number of columns corresponds to the SC-FDMA symbol, for example, the first SC-FDMA symbol of the first transmit antenna is transmitted, and -S M+1 * the second of the first transmit antenna SC-FDMA symbol transmission, and so on.
  • "" means taking the conjugate operation.
  • the space-time coding module can also be encoded as In this case, the structure of the space-time diversity transmitter baseband processing apparatus of the SC-FDMA system is as shown in Fig. 2(b).
  • PAPR peak to average power ratio
  • Space-frequency diversity transmitter for SC-FDMA system and apparatus and method for baseband processing of space-frequency diversity transmitter
  • the space frequency diversity transmitter of the present invention includes a constellation modulation module 201, an M-point DFT module 202, a space time coding module 204, and two subcarrier mapping devices 205.
  • FIG. 3 is a schematic diagram of a sub-carrier mapping module 205 with localized Sub-carrier mapping as an example.
  • the output of the sub-carrier mapping device 205 is only mapped to the allocated sub-carriers of one SC-FDMA symbol, and the space-frequency coding module 204 is only used in FIG.
  • Shown as the recommended space-frequency coding method that is, the two data sets generated after encoding and mapping the input are represented as and , instead of ⁇ , - and ..., (this mode is represented as SFC 2 in Figure 5) and other empty Frequency coding and mapping, unlike the space-time diversity system, the hollow-time coding module can have two different space-time coding modes.
  • the mapping device includes two subcarrier mapping devices, and respectively maps each data set output by the space frequency encoding device to a corresponding antenna, so that the data after the mapping satisfies:
  • the order between the mapped data symbols on at least one antenna remains unchanged;
  • the M data on each SC-FDMA symbol after mapping is made M data of the DFT module, or a negative complex conjugate of the M output data.
  • the space frequency coding method shown in FIG. 3 minimizes the PAPR value of the transmitted signal, thereby Can improve the efficiency of the terminal amplifier.
  • the method for space-frequency diversity transmission baseband processing of a single carrier frequency division multiplexing system includes the following steps: performing an Alamouti coding and encoding, and outputting two data sets, for the M-point data set represented by the M-point DFT module output of the system, ⁇ - S .., - +1 ⁇ , " * " means to take the conjugate operation value;
  • the two data sets are respectively mapped onto two antennas, that is, only M data in the data set is mapped onto only one SC-FDMA symbol.
  • the sub-carrier mapping part is exemplified by a localized sub-carrier mapping.
  • the space-time sum proposed by the solution is Space-frequency diversity transmitter design can be applied to distributed sub-carrier mapping ( D )
  • the spatial diversity transmitter includes an M-point DFT module 302, a space/space frequency coding device 304, a selection device 306, and two subcarrier mapping devices 305.
  • the selection device 306 is configured to select space time diversity transmission or space frequency diversity. Transmit, and the encoding device 304 performs corresponding space-time or space-frequency coding according to the selected transmission mode.
  • An encoding device 304 is coupled to the output of the M-point DFT module 302, where: M represents the number of subcarriers allocated to the user.
  • the encoding device 304 When the encoding device 304 is used as space time encoding, it performs Alamouti encoding on the corresponding symbols of two adjacent symbol groups output by the M-point DFT module 302, and outputs two data sets respectively corresponding to the two transmitting antennas, wherein:
  • the symbol group contains M symbols.
  • the two subcarrier mapping means 305 respectively map the two data sets onto the two antennas so that the data after the mapping is:
  • the encoding device 304 When the encoding device 304 is used as the space frequency encoding, it performs Alamouti encoding on the consecutive M symbols output from the M-point DFT module 302, and outputs two data sets respectively corresponding to the two transmitting antennas.
  • Two subcarrier mapping At 305 two data sets are respectively mapped onto the two antennas, so that the data after the mapping meets the following requirements, namely:
  • the order between the mapped data symbols on at least one antenna remains unchanged;
  • the M data on each SC-FDMA symbol after mapping is M output data of the DFT module, or the inverse of the M output data, or the complex conjugate of the M output data, or the negative of the M output data Complex conjugate.
  • the peak-to-average power ratio is computer simulated and analyzed, as shown in Fig. 4 and Fig. 5.
  • Figure 4 shows the PAPR of two transmit antennas of a space-time diversity SC-FDMA system compared with several other schemes, where (a) and (b) show centralized subcarrier mapping and distributed subcarriers, respectively. Simulation results in the case of mapping.
  • STC in the curve label (space-time coding, that is, space-time scheme) 1 refers to the scheme of Figure 2 (a)
  • STC 2 refers to the scheme of Figure 2 (b).
  • the distributed interval is assumed to be 8. It can be seen from the figure that under the simulated conditions, the proposed space-time diversity system design is exactly the same as the PAPR under a single transmit antenna, and the PAPR value of the OFDM system under the same condition is reduced by 1.5 db. about. In addition, as can be seen from the figure, the PAPR values of the space-time diversity system design are basically the same under centralized and distributed conditions.
  • Figure 5 shows a comparison of the PAPR of two transmit antennas of the SC-FDMA system of the space-frequency diversity with several other schemes, wherein (a) and (b) represent centralized subcarrier mapping and distribution, respectively. Simulation results in the case of subcarrier mapping.
  • SFC space-frequency coding, that is, space-frequency scheme
  • SFC 2 refers to another space-frequency coding and mapping scheme.
  • the space frequency detection assumes that the channel coefficients corresponding to the two subcarriers of the space frequency coding are approximately the same, that is, the channel quasi-static condition, in the simulation, the paired distributed mapping is adopted, and the phase is used.
  • the interval between two pairs of neighbors is also 8 subcarriers.
  • the PAPR of the designed design of the present invention deteriorates by about 0.7 db compared with the single shot, but is still about 0.8 db better than the OFDM system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)

Description

用于空时 /空频 /空间分集发射机基带处理的方法及装置 技术领域
本发明涉及下一代宽带无线通信的单载波频分复用系统或被称为 DFT (离散傅 里叶变换)扩展的 OFDM ( Orthogonal Frequency Division Multiplexing,正交频分复 用)系统, 尤其涉及该系统中的发射机结构及用于空时 /空频 /空间分集发射机基带 处理的方法及装置。 背景技术
现有的单载波频分复用 (SC-FDMA) 系统的发射机基带结构, 如图 1所示, 其工作流程是: 信息比特流经编码, 交织以及星座调制后, 输入到 M点 DFT模块 10 输入端, 然后 M点 DFT模块 10的输出数据通过子载波映射装置 20映射到 N个子载波 中所分配的 M个子载波上去,这里,子载波映射方式分为集中式映射和分布式映射, M表示信息传输所分配的子载波个数, 在没有映射的(N-M)个子载波置零后, 通 过 N-IDFT模块 30进行 N点的 IDFT (反离散傅里叶变换)变到时域, 然后通过 CP插 入装置 40插入循环前缀(Cyclic Prefix), 即将 N点 IDFT变换的输出的 N点数据集合 的后 LCP个数据复制到前面, 其中 LCP表示 CP (循环前缀)长度, 然后经过上采样, D/A (数 /模)变换, 载波调制等处理后通过单天线发送。
该系统已在业界被公认为是最具竞争力的下一代宽带无线通信系统的上行接 入方案。 其具有下列优点 :
(1)较低的峰均比 (PAPR) , 从而可提高发射机效率降低功耗;
(2)可提供正交多用户接入,从而避免上行 CDMA系统中的多址干扰(MAI);
(3)灵活的时频资源调度能力,从而可提供灵活的业务速率和获取充分的频率 分集和多用户分集;
(4)通过时域循环前缀 CP的插入提供了灵活高效的频域均衡能力, 等等。 与现有移动通信系统(如: UMTS系统)相比, 在下一代移动通信系统中, 提 供更高的峰值数据速率及频谱效率、保证蜂窝小区边界处的较高的数据传输速率和 足够的小区覆盖是重要的特征。 为了达到上述目标, 除了利用时间和空间资源获得时间和频率分集之外, 充 分利用空间资源,获取额外的空间分集将是重要的选择。因此, 多天线传输技术将 是下一代移动通信系统的重要特征。
在多天线 SC-FDMA系统中, 需要解决的技术难点主要有两个:
1) 如何保持较低的发射信号的峰均比(即 PAPR) , 这一点在上行通信链路 中 (即从移动台到基站的通信链路)尤其重要, 因为低的 PAPR意味着移动台的功 放具有高的效率,从而可以延长终端的电池工作时间,或者终端可以从距离基站更 远的地方发送信号从而提高小区覆盖。
2) 如何进行空时 (或空频)编码, 使得接收端可以有效的进行频域均衡, 同时又不增加发送信号的峰均比是另一个技术难点。 在下一代的移动通信系统中, 为了提供较高的峰值传输速率,宽带通信将是不可避免的选择,而很宽的信号带宽 将使得时域均衡变得非常复杂,甚至不可实现,因此,频域均衡就成了必然的趋势。
因此, 如何在 SC-FDMA系统中进行有效的空间分集, 使上述两个技术难点得 到很好的解决, 是本申请人致力研究的内容之一。 发明内容
针对 SC-FDMA系统, 本发明通过提供该系统的发射机结构及用于空时 /空频 / 空间分集发射机基带处理的方法及装置的技术方案,达到有效的空间分集,同时降 低 PAPR和并使频域均衡切实可行。
本发明之一, 一种用于空时分集发射机基带处理的装置
该装置包括 M点 DFT模块、 空时编码装置和映射装置, 其特征在于: 所 述空时编码装置连接在所述 M点 DFT模块的输出端和所述映射装置的输入端 之间, 其中: M表示分配给用户的子载波数。
在上述的装置中,空时编码装置,用于对所述 M点 DFT模块输出的至少两个并 优选为两个相邻符号组的对应符号进行编码,输出至少两个并优选为两个分别一一 对应于各发射天线的数据集合, 其中: 每个符号组包含 M个符号;
映射装置, 包括至少两个并优选为两个子载波映射装置, 分别将各数据集合 映射到对应天线上去, 使得映射之后的数据为:
与所述 M点 DFT模块输出的 M个符号相比,每个天线上映射后的数据符号之间 的顺序保持不变; 和 /或 映射后的符号之间保持相同的子载波间距; 和 /或
使得映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出数据, 或者 M个输出数据的相反数, 或者 M个输出数据的复共轭, 或者 M个输出数据的负 的复共轭。
在上述的装置中, 编码可以采用 Alamouti编码。
在上述的装置中, M点 DFT模块的输出符号是由分路器模块来连接所述空时编 码装置。
在上述的装置中, 子载波映射装置的映射方式为集中式映射或分布式映射。 本发明之二, 一种用于空时分集发射机基带处理的方法
该方法包括:
分路步骤: 对系统的M点DFT模块输出的表示为{S1^2,…,¾^ΛΊ+1,''',S 的 2M点数据集合, 分成两个相邻符号组 W, ,''', }和 Μ+1,''', Μ} ;
空时编码步骤: 对所述两个相邻符号组的对应符号上的数据进行 Alamouti 编码, 输出的两个数据集合;
映射步骤: 分别将所述两个数据集合映射到两个天线上去, 使得映射之后的 数据为:
与 M点 DFT模块输出的 M个符号相比,每个天线上映射后的数据符号之间的顺 序保持不变; 和 /或
映射后的符号之间保持相同的子载波间距; 和 /或
使得映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出数据, 或者 M个输出数据的相反数, 或者 M个输出数据的复共轭, 或者 M个输出数据的负 的复共轭。 - 在上述的方法中, 空时编码步骤输出的两个数据集合的形式为:
{Sl,S2,---,SM-SM+l,----S2M} 禾!] {^Μ+1>^Μ+2''"'^2Μ^Ι ^"'SM} , 或 SM,SM+1,^+2 ..,S2M}和 Μ ,···, }, 其中: 表示取共 轭运算值。
本发明之三, 一种空时分集发射机
该发射机包括在该发射机的前端的星座调制器和后端的 Ν点 IDFT模块之 间连接的如上述的用于空时分集发射机基带处理的装置。
本发明之四, 一种用于空频分集发射机基带处理的装置 W 200 该装置包括 M点 DFT模块、 空频编码装置和映射装置, 其特征在于: 所述的 空频编码装置连接在所述 M点 DFT模块的输出端和所述映射装置的输入端之间,用 于对所述 M点 DFT模块输出的连续的 M个符号进行编码,输出至少两个并优选为两 个分别一一对应于各发射天线的数据集合, 其中: M表示分配给用户的子载波数。
在上述的装置中,映射装置包括至少两个并优选为两个子载波映射装置,分别 将所述空频编码装置输出的各数据集合映射到对应天线上去,使得映射之后的数据 为: 与 M点 DFT模块输出的 M个符号相比, 至少有一个天线上映射后的数据符号 之间的顺序保持不变; 和 /或映射后的符号之间保持相同的子载波间距; 和 /或使得 映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出数据,或者 M个输 出数据的相反数, 或者 M个输出数据的复共轭, 或者 M个输出数据的负的复共轭。
在上述的装置中, 子载波映射装置的映射方式为集中式映射或分布式映射。 本发明之五, 一种用于空频分集发射基带处理的方法
该方法包括:
空频编码步骤:对系统的 M点 DFT模块输出的表示为 , }的 M点 数据集合, 进行 Alamouti 编码, 输出的两个数据集合 , {-Ξ^,-,-Ξ^} , " *"表示取共轭运算值;
映射步骤: 分别将所述两个数据集合映射到两个天线上去, 使得映射之后的 数据为:
与 Μ点 DFT模块输出的 Μ个符号相比, 至少有一个天线上映射后的数据符号 之间的顺序保持不变; 和 /或
映射后的符号之间保持相同的子载波间距; 和 /或
使得映射后的每个 SC-FDMA符号上的 Μ个数据是 DFT模块的 Μ个输出数据, 或者 Μ个输出数据的相反数, 或者 Μ个输出数据的复共轭, 或者 Μ个输出数据的负 的复共轭。
本发明之六, 一种空频分集发射机
该发射机包括在该发射机的前端的星座调制器和后端的 Ν点 IDFT模块之 间连接的如上述的用于空频分集发射机基带处理的装置。
本发明之七, 一种用于空间分集发射机基带处理的装置
该装置包括 Μ点 DFT模块、编码装置和映射装置, 以及一连接在该编码装置上 的用于选择空时分集发射或空频分集发射方式的选择装置,所述的编码装置按该选 择装置所选择的发射方式作对应的空时或空频编码,其特征在于:所述编码装置连 接在所述 M点 DFT模块的输出端和所述映射装置输入端之间, 其中: M表示分配给 用户的子载波数。
在上述的装置中,编码装置用作空时编码时,其对所述 M点 DFT模块输出的至 少两个并优选为两个相邻的符号组的对应符号进行编码,输出至少两个并优选为两 个分别一一对应于各发射天线的数据集合, 其中: 每个符号组包含 M个符号; 映射 装置,包括至少两个并优选为两个子载波映射装置,分别将各数据集合映射到对应 天线上去, 使得映射之后的数据为: 与 M点 DFT模块输出的 M个符号相比, 每个天 线上映射后的数据符号之间的顺序保持不变; 和 /或映射后的符号之间保持相同的 子载波间距; 和 /或使得映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M 个输出数据, 或者 M个输出数据的相反数, 或者 M个输出数据的复共轭, 或者 M个 输出数据的负的复共轭。
在上述的装置中, 编码装置用作空频编码时, 其对所述 M点 DFT模块输 出的连续的 M个符号进行编码,输出至少两个并优选为两个分别一一对应于各 发射天线的数据集合;映射装置,包括至少两个并优选为两个子载波映射装置, 分别将各数据集合映射到对应天线上,使得映射之后的数据满足下列要求,即: 与 M点 DFT模块输出的 M个符号相比, 至少有一个天线上映射后的数据符号之间 的顺序保持不变; 和 /或映射后的符号之间保持相同的子载波间距; 和 /或使得映射 后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出数据,或者 M个输出数 据的相反数, 或者 M个输出数据的复共轭, 或者 M个输出数据的负的复共轭。
由于采用了上述的技术解决方案, 编码装置放置于 M点 DFT模块之后, 其优越性在于接收端可以有效在频域进行空时译码和检测, 避免了在时域对多 径信号进行复杂的均衡和处理。 同时,本发明提出了有效的空时 /空频编码和映 射方式, 可以有效的降低发射信号的 PAPR (peak to average power ratio, 峰均 功率比) , 从而使得发射机中功率放大器的效率较高, 因此, 在上行通信链路 (即从终端移动台到基站) 中, 可以延长终端的电池使用时间, 或者在相同电 池使用时间下, PAPR较低可以使得终端可以以更大的发射功率发射, 从而有 效增大小区的覆盖面积。 附图说明 图 1是现有的用于 SC-FDMA系统发射机基带处理的装置结构示意图; 图 2 ( a)〜(b)是本发明中, SC-FDMA系统空时分集发射机基带处理装 置的结构示意图 (其中体现的是两种空时编码与映射方式) ;
图 3是本发明中, SC-FDMA系统空频分集发射机基带处理装置的结构示 意图;
图 4是本发明空时分集的 SC-FDMA系统的两个发射天线的 PAPR与其它 几种方案的比较示意图, 其中: 图 4(a)和图 4(b)分别表示集中式子载波映射和 分布式子载波映射情况下的仿真结果。
图 5是本发明空频分集的 SC-FDMA系统的两个发射天线的 PAPR与其它 几种方案的比较示意图, 其中图 5(a)和图 5(b)分别表示集中式子载波映射和分 布式子载波映射情况下的仿真结果;
图 6是本发明中, SC-FDMA系统空间分集发射机基带处理装置的结构示 意图。 具体实施方式
一、 SC-FDMA系统中空时分集发射机和用于该空时分集发射机基带处 理的装置及方法
参见图 2, 对于 SC-FDMA系统, M表示分配给终端用户的子载波数, N 表示总的子载波数, 例如, 对于分配的 10MHz的频谱带宽, 假设釆用 1024点 IDFT变换, 分配给某用户的子载波个数为 64, 那么, N= 1024, M = 64。
图 2所示的是子载波映射 (Sub-carrier Mapping) 模块以集中式的子载波 映射 (Localized Sub-carrier Mapping) 为例子进行说明的。
再参见图 2, 本发明空时分集发射机包括星座调制模块 101、 经 M点 DFT 模块 102、 分路器模块 103、 空时编码模块 104和两个子载波映射装置 105。
星座调制模块 101的输入数据是用户终端的信道编码器的输出比特经交织 器交织后输出的比特流, 星座调制模块 101表示星座调制, 例如 BPSK (二相 相移键控), QPSK (四相相移键控), 8PSK (八相相移键控), 16QAM (十 六相相移键控) , 64QAM (六十四相相移键控) 等, 星座调制模块 101输出 的调制符号经 M点 DFT (离散傅里叶变换) 模块 102变换, 输出给一个分路 器模块 103, 将每连续的 M个符号分到两路上去。 空时编码装置,用于对所述 M点 DFT模块输出的两个相邻符号组的对应符号进 行编码, 输出两个分别一一对应于各发射天线的数据集合,其中: 每个符号组包含 M个符号。
假设 M-DFT模块 102输出的 2M点的数据集合表示为 ^, ,…,^ ^,…,^^, 则分路器模块 103输出的两路数据, 即二个且每个由 M个符号组成的符号组, 可以 分别表示为: 和 { +1,...,¾^, 这两路数据经空时编码模块 104, 则输 出的两路数据分别为 ν·, ,- +1 ·.,-0,和 {^^^C .AMA .' }, 然后将这两个数据集合分别通过两子载波映射装置 105映射到两个天线上去, 映射 方式为将集合中前 M个数据和后 M个数据分别映射到前后相邻的两个 SC-FDMA符 号上, 具体的每个 SC-FDMA符号的 M个数据的映射应根据用户终端所分配的子载 波资源。
映射之后的数据满足:
与所述 M点 DFT模块输出的 M个符号相比,每个天线上映射后的数据符号之间 的顺序保持不变;
映射后的符号之间保持相同的子载波间距; 和
使得映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出数据, 或者 M个输出数据的相反数, 或者 M个输出数据的复共轭, 或者 M个输出数据的负 的复共轭。
一般而言, 这种映射可分为集中式映射和分布式映射, 所谓集中式映射是 指将 M个数据映射到连续的 M个子载波上去, 所谓分布式映射是指将 M个数 据以一定间隔映射到 M个子载波上去。
这里值得强调的是: 空时编码不是对 M点 DFT模块输出的符号组内相邻 的符号 (例如 8!和 S2) 进行 Alamouti编码 (即一种空时编码方法) , 而是对 该模块输出的相邻符号组的对应的符号进行 Alamouti编码,例如对第一个符号 组的第一个符号 3!和第二个符号组的第」个符号 SM+1进行编码, 编码矩阵如 下:
Figure imgf000009_0001
以上行数对应发射天线, 列数对应 SC-FDMA符号, 例如 Si在第一个发射 天线的第一个 SC-FDMA 符号发射, -SM+1 *在第一个发射天线的第二个 SC-FDMA符号发射, 等等。 这里 " ,表示取共轭运算。
需要注意的是对两路输入 和 {^^,···,^^ , 空时编码模块也可 编码输出为
Figure imgf000010_0001
,这种情况下 SC-FDMA系统的空时分集发射机基带处理装置的结构如 2 (b) 所示。
上述的空时编码和映射的好处和功能是: 可以有效的降低发射信号的
PAPR (peak to average power ratio,峰均功率比), 从而使得发射机中功率放大 器的效率较高, 因此, 在上行通信链路 (即从终端移动台到基站) 中, 可以延 长终端的电池使用时间, 或者在相同电池使用时间下, PAPR较低可以使得终 端可以以更大的发射功率发射, 从而有效增大小区的覆盖面积。
二、 SC-FDMA 系统的空频分集发射机和用于空频分集发射机基带处理的 装置及方法
本发明空频分集发射机包括星座调制模块 201、经 M点 DFT模块 202、空 时编码模块 204和两个子载波映射装置 205。
图 3是子载波映射 (Sub-carrier Mapping) 模块 205以集中式的子载波映 射 (Localized Sub-carrier Mapping) 为例子的示意图。
参见图 3, 与空时分集发射机不同的是: 子载波映射装置 205的输出只映 射到一个 SC-FDMA符号的所分配的子载波上, 另外, 空频编码模块 204只以 图 3中所示为推荐的空频编码方式,即对输入 进行编码和映射后产 生的两个数据集合表示为 和 , 而不是 ^,- 和 …, (该方式在图 5中表示为 SFC 2 )等其它 空频编码和映射方式, 而不象空时分集系统中空时编码模块可以有两种不同的 空时编码方式。
映射装置, 包括两个子载波映射装置, 分别将所述空频编码装置输出的各数 据集合映射到对应天线上去, 使得映射之后的数据满足:
与 M点 DFT模块输出的 M个符号相比, 至少有一个天线上映射后的数据符号 之间的顺序保持不变;
映射后的符号之间保持相同的子载波间距; 和
使得映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出数据, 或者 M个输出数据的负的复共轭。
图 3中所示的空频编码方式, 最大限度的降低发送信号的 PAPR值, 从而 可以提高终端功放效率。
单载波频分复用系统的空频分集发射基带处理的方法, 包括下列步骤: 对系统的 M点 DFT模块输出的表示为 的 M点数据集合, 进 行 Alamouti编码编码, 输出的两个数据集合 , {- S ..,- +1} , " *"表示取共轭运算值;
分别将所述两个数据集合映射到两个天线上去, 该映射即将数据集合中的 M 个数据只映射到一个 SC-FDMA符号上。
需要指出的是在图 2和图 3中, 子载波映射(Sub-carrier Mapping)部分均以集 中式的子载波映射(Localized Sub-carrier Mapping) 为例子, 事实上, 本方案提出 的空时和空频分集发射机设计均可应用于分布式子载波映射 (Distributed Sub-carrier Mapping) D
三、 SC-FDMA系统中用于空间分集发射机基带处理的装置
参见图 6, 该空间分集发射机包括 M点 DFT模块 302、 空时 /空频编码装 置 304、 选择装置 306和两个子载波映射装置 305, 选择装置 306用于选择空 时分集发射或空频分集发射, 且 编码装置 304按所选择的发射方式作对应的 空时或空频编码。 编码装置 304连接在所述 M点 DFT模块 302的输出端上, 其中: M表示分配给用户的子载波数。
编码装置 304用作空时编码时,其对 M点 DFT模块 302输出的两个相邻的符号组 的对应符号进行 Alamouti编码,输出两个分别对应于两发射天线的数据集合,其中: 每个符号组包含 M个符号。 两个子载波映射装置 305分别将两个数据集合映射到两 个天线上去, 使得映射之后的数据为:
与 M点 DFT模块输出的 M个符号相比, 每个天线上映射后的数据符号之间的顺 序保持不变;
映射后的符号之间保持相同的子载波间距; 和
使得映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出数据, 或者 M个输出数据的相反数, 或者 M个输出数据的复共轭, 或者 M个输出数据的负 的复共轭。
编码装置 304用作空频编码时,其对 M点 DFT模块 302输出的连续的 M个符号进 行 Alamouti编码, 输出两个分别对应于两发射天线的数据集合。两个子载波映射装 置 305, 分别将两个数据集合映射到两个天线上, 使得映射之后的数据满足下列要 求, 即:
与 M点 DFT模块输出的 M个符号相比, 至少有一个天线上映射后的数据符号 之间的顺序保持不变;
映射后的符号之间保持相同的子载波间距; 和
使得映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出数据, 或者 M个输出数据的相反数, 或者 M个输出数据的复共轭, 或者 M个输出数据的负 的复共轭。
另外, 针对本发明揭示的 SC-FDMA系统的空时和空频分集发射的技术方案, 对其峰均功率比 (PAPR)进行了计算机仿真和分析, 如图 4和图 5所示。 仿真中参 数选取为: N= 1024, M=64。
图 4所示为空时分集的 SC-FDMA系统的两个发射天线的 PAPR与其它几 种方案的比较,其中图 (a)和图 (b)分别表示集中式子载波映射和分布式子载波映 射情况下的仿真结果。 其中: 图中曲线标注中的 STC (空时编码, 即指空时方 案 ) 1是指图 2 ( a) 方案, STC 2 是指图 2 (b) 方案。
在分布式子载波映射中, 分布式间隔假设为 8。 由图可以看出, 在所设仿 真条件下, 本发明揭示给出的空时分集系统设计方案与单发射天线下的 PAPR 完全相同, 比相同条件下的 OFDM系统的 PAPR值减小了 1.5db左右。 另外, 由图可以看出, 所述空时分集系统设计方案在集中式和分布式条件下 PAPR值 基本相同。
图 5所示为所述空频分集的 SC-FDMA系统的两个发射天线的 PAPR与其 它几种方案的比较,其中图 (a)和图 (b)分别表示集中式子载波映射和分布式子载 波映射情况下的仿真结果。 其中: 图中曲线标注中的 SFC (空频编码, 即指空 频方案 ) 1是指图 3所示方案, SFC 2 是指另外一种空频编码与映射方案。
在分布式子载波映射中, 由于空频检测要假设空频编码的两个子载波所对 应的信道系数近似相同, 即所谓信道准静态条件, 因此在仿真中, 采用成对分 布式映射, 而相邻的两对之间的间隔也为 8个子载波。 由图可以看出, 在集中 式映射条件下, 本发明揭示给出的空频分集系统设计方案的发射天线 1与单发 射天线下的 PAPR完全相同, 而发射天线 2比单发下的变差了 0.4db左右, 而 另外一种空频编码方案的两个发射天线比单发下的都恶化了 ldb左右, 因此只 推荐采用本文所述的一种空频编码方案。 另外, 由图可以看出, 在分布式映射 中,本发明揭示给出的设计的 PAPR比单发下恶化了 0.7db左右,但仍比 OFDM 系统要好 0.8db左右。
以上实施例仅供说明本发明之用, 而非对本发明的限制, 有关技术领域的 技术人员, 在不脱离本发明的精神和范围的情况下, 还可以作出各种变换或变 型, 因此所有等同的技术方案也应该属于本发明范畴之内, 应由各权利要求限 定。

Claims

权利要求
1. 一种用于空时分集发射机基带处理的装置, 包括 M点 DFT模块、 空时编码 装置和映射装置, 其特征在于: 所述空时编码装置连接在所述 M点 DFT模块的输出 端和所述映射装置的输入端之间, 其中: M表示分配给用户的子载波数。
2. 根据权利要求 1所述的装置, 其特征在于:
空时编码装置,用于对所述 M点 DFT模块输出的至少两个并优选为两个相邻符 号组的对应符号进行编码,输出至少两个并优选为两个分别一一对应于各发射天线 的数据集合, 其中: 每个符号组包含 M个符号;
映射装置, 包括至少两个并优选为两个子载波映射装置, 分别将各数据集合 映射到对应天线上去, 使得映射之后的数据为:
与所述 M点 DFT模块输出的 M个符号相比,每个天线上映射后的数据符号之间 的顺序保持不变; 和 /或
映射后的符号之间保持相同的子载波间距; 和 /或
使得映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出数据, 或者 M个输出数据的相反数, 或者 M个输出数据的复共轭, 或者 M个输出数 据的负的复共轭。
3.根据权利要求 2所述的装置,其特征在于:所述编码可以釆用 Alamouti 编码。 '
4.. 根据权利要求 1所述的装置, 其特征在于: 所述 M点 DFT模块的输出 符号是由分路器模块来连接所述空时编码装置。
5. 根据权利要求 2所述的装置, 其特征在于: 所述子载波映射装置的映 射方式为集中式映射。
6. 根据权利要求 2所述的装置, 其特征在于: 所述子载波映射装置的映射 方式为分布式映射。
7. 一种用于空时分集发射基带处理的方法, 其特征在于包括:
分路步骤:对系统的 M点 DFT模块输出的表示为 { , ,''', <^+1,…, M}的 2M 点数据集合, 分成两个相邻符号组 ,…, }和
空时编码步骤: 对所述两个相邻符号组的对应符号上的数据进行 Alamouti 编码, 输出的两个数据集合; 映射步骤: 分别将所述两个数据集合映射到两个天线上去, 使得映射之后 的数据为:
与 M点 DFT模块输出的 M个符号相比,每个天线上映射后的数据符号之 间的顺序保持不变; 和 /或
映射后的符号之间保持相同的子载波间距; 和 /或
使得映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出 数据, 或者 M个输出数据的相反数, 或者 M个输出数据的复共轭, 或者 M个 输出数据的负的复共轭。
8. 根据权利要求 7所述的方法, 其特征在于: 空时编码步骤输出的两个 数据集合的形式为:
Figure imgf000015_0001
" *"表示取共轭运算值。
9. 根据权利要求 7所述的方法, 其特征在于: 空时编码步骤输出的两个 数据集合的形式为:
Figure imgf000015_0002
{- +1,···,-<0 ··,4},
" *"表示取共轭运算值。
10. 一种空时分集发射机, 其特征在于: 它包括在该发射机的前端的星座 调制器和后端的 Ν点 IDFT模块之间连接的如权利要求 2所述的装置。
1 1 . 一种用于空频分集发射机基带处理的装置, 包括 Μ点 DFT模块、 空 频编码装置和映射装置, 其特征在于: 所述的空频编码装置连接在所述 Μ点 DFT模块的输出端和所述映射装置的输入端之间, 用于对所述 Μ点 DFT模块 输出的连续的 Μ个符号进行编码,输出至少两个并优选为两个分别一一对应于 各发射天线的数据集合, 其中: Μ表示分配给用户的子载波数。
12. 根据权利要求 1 1所述的装置, 其特征在于:
映射装置, 包括至少两个并优选为两个子载波映射装置, 分别将所述空频编码 装置输出的各数据集合映射到对应天线上去, 使得映射之后的数据为:
与 Μ点 DFT模块输出的 Μ个符号相比, 至少有一个天线上映射后的数 据符号之间的顺序保持不变; 和 /或
映射后的符号之间保持相同的子载波间距; 和 /或
使得映射后的每个 SC-FDMA符号上的 Μ个数据是 DFT模块的 Μ个输出 数据, 或者 Μ个输出数据的相反数, 或者 Μ个输出数据的复共轭, 或者 Μ个 输出数据的负的复共轭。
13. 根据权利要求 12所述的装置, 其特征在于: 所述子载波映射装置的 映射方式为集中式映射。
14. 根据权利要求 12所述的装置, 其特征在于: 所述子载波映射装置的映 射方式为分布式映射。
15. —种用于空频分集发射基带处理的方法, 其特征在于包括: 空频编码步骤:对系统的 M点 DFT模块输出的表示为 的 M点数据 集合, 进行 Alamouti 编码, 输出的两个数据集合 , {-5^ ,··· -^ ^} , 表示取共轭运算值;
映射步骤: 分别将所述两个数据集合映射到两个天线上去, 使得映射之后的 数据为:
与 M点 DFT模块输出的 M个符号相比, 至少有一个天线上映射后的数据符号 之间的顺序保持不变; 和 /或
映射后的符号之间保持相同的子载波间距; 和 /或
使得映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出数据, 或者 M个输出数据的相反数, 或者 M个输出数据的复共轭, 或者 M个输出数据的负 的复共轭。
16.一种空频分集发射机,其特征在于: 它包括在该发射机的前端的星座调制 器和后端的 N点 IDFT模块之间连接的如权利要求 12所述的装置。
17.—种用于空间分集发射机基带处理的装置,包括 M点 DFT模块、编码装置 和映射装置,以及一连接在该编码装置上的用于选择空时分集发射或空频分集发射 方式的选择装置,所述的编码装置按该选择装置所选择的发射方式作对应的空时或 空频编码 * 其特征在于: 所述编码装置连接在所述 M点 DFT模块的输出端和所述映 射装置输入端之间, 其中: M表示分配给用户的子载波数。
18. 根据权利要求 17所述的装置, 其特征在于:
所述的编码装置用作空时编码时,其对所述 M点 DFT模块输出的至少两个并优 选为两个相邻的符号组的对应符号进行编码,输出至少两个并优选为两个分别一一 对应于各发射天线的数据集合, 其中: 每个符号组包含 M个符号;
映射装置, 包括至少两个并优选为两个子载波映射装置, 分别将各数据集合 映射到对应天线上去, 使得映射之后的数据为: 与 M点 DFT模块输出的 M个符号相比,每个天线上映射后的数据符号之间的顺 序保持不变; 和 /或
映射后的符号之间保持相同的子载波间距; 和 /或
使得映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出数据, 或者 M个输出数据的相反数, 或者 M个输出数据的复共轭, 或者 M个输出数据的负 的复共轭。
19. 根据权利要求 17所述的装置, 其特征在于:
所述的编码装置用作空频编码时, 其对所述 M点 DFT模块输出的连续的 M个符号进行编码,输出至少两个并优选为两个分别一一对应于各发射天线的 数据集合;
映射装置, 包括至少两个并优选为两个子载波映射装置, 分别将各数据集合 映射到对应天线上, 使得映射之后的数据满足下列要求, 即:
与 M点 DFT模块输出的 M个符号相比, 至少有一个天线上映射后的数据符号 之间的顺序保持不变; 和 /或
映射后的符号之间保持相同的子载波间距; 和 /或
使得映射后的每个 SC-FDMA符号上的 M个数据是 DFT模块的 M个输出数据, 或者 M个输出数据的相反数, 或者 M个输出数据的复共轭, 或者 M个输出数据的负 的复共轭。
PCT/CN2007/001141 2006-04-13 2007-04-09 Procédé et dispositif pour le traitement de bande de base de l'émetteur espace-temps/fréquence spatiale/diversité spatiale WO2007118411A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020087024999A KR101286996B1 (ko) 2006-04-13 2007-04-09 공간 시간/공간 주파수/공간 다이버시티 전송기의 기저대역처리를 위한 방법 및 디바이스
US12/296,841 US8248909B2 (en) 2006-04-13 2007-04-09 Method and device for the baseband process of the space-time/space-frequency/spatial diversity transmitter
EP07720714.0A EP2015532B8 (en) 2006-04-13 2007-04-09 A method and device for the baseband process of the space time/ space frequency/ space diversity transmitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006100256812A CN101056132B (zh) 2006-04-13 2006-04-13 用于空时/空频/空间分集发射机基带处理的方法及装置
CN200610025681.2 2006-04-13

Publications (1)

Publication Number Publication Date
WO2007118411A1 true WO2007118411A1 (fr) 2007-10-25

Family

ID=38609061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001141 WO2007118411A1 (fr) 2006-04-13 2007-04-09 Procédé et dispositif pour le traitement de bande de base de l'émetteur espace-temps/fréquence spatiale/diversité spatiale

Country Status (5)

Country Link
US (1) US8248909B2 (zh)
EP (1) EP2015532B8 (zh)
KR (1) KR101286996B1 (zh)
CN (1) CN101056132B (zh)
WO (1) WO2007118411A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100085955A1 (en) * 2008-09-23 2010-04-08 Qualcomm Incorporated Transmit diversity for sc-fdma
US20110090977A1 (en) * 2009-10-19 2011-04-21 Samsung Electronics Co. Ltd. Methods for mapping and de-mapping data, transmitting device and receiving device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8831042B2 (en) * 2007-03-29 2014-09-09 Lg Electronics Inc. Method of transmitting sounding reference signal in wireless communication system
US7991063B2 (en) * 2007-06-06 2011-08-02 Samsung Electronics Co., Ltd Transmission symbols mapping for antenna diversity
KR101380558B1 (ko) 2007-06-19 2014-04-02 엘지전자 주식회사 사운딩 기준신호의 전송방법
KR101430267B1 (ko) 2007-08-14 2014-08-18 엘지전자 주식회사 무선통신시스템에서의 데이터 전송방법
KR101397039B1 (ko) * 2007-08-14 2014-05-20 엘지전자 주식회사 전송 다이버시티를 사용하는 다중안테나 시스템에서 채널예측 오류의 영향을 감소시키기 위한 cdm 방식 신호전송 방법
EP2180629B1 (en) 2007-08-14 2017-11-29 LG Electronics Inc. Method for acquiring resource region information for PHICH and method of receiving PDCCH
KR101507785B1 (ko) 2007-08-16 2015-04-03 엘지전자 주식회사 다중 입출력 시스템에서, 채널품질정보를 송신하는 방법
KR101405974B1 (ko) * 2007-08-16 2014-06-27 엘지전자 주식회사 다중입력 다중출력 시스템에서 코드워드를 전송하는 방법
WO2009086670A1 (zh) * 2007-12-29 2009-07-16 Alcatel Shanghai Bell Co., Ltd. 用于映射导频的方法及设备
WO2009089653A1 (fr) * 2008-01-17 2009-07-23 Alcatel Shanghai Bell Company, Ltd. Procédé et appareil pour réduire le rapport de puissance crête à moyenne (papr) du symbole de sortie d'un émetteur sc-fdma
CN101217302B (zh) * 2008-01-18 2011-05-11 清华大学 多用户无线网络中基于空时分集编解码的协同通信方法
WO2010003271A1 (zh) * 2008-07-07 2010-01-14 上海贝尔阿尔卡特股份有限公司 发送设备、接收设备以及发送和接收方法
US8811371B2 (en) * 2008-09-23 2014-08-19 Qualcomm Incorporated Transmit diversity scheme for uplink data transmissions
CN101729212B (zh) * 2008-10-16 2014-02-05 中兴通讯股份有限公司南京分公司 一种空频分组码的子载波映射方法
CN101515846B (zh) * 2009-03-17 2014-06-18 中兴通讯股份有限公司南京分公司 一种多天线终端及该终端的数据处理方法
KR101591136B1 (ko) * 2009-09-02 2016-02-02 애플 인크. 알라무티 기반 코드들을 이용하는 mimo 환경에서의 심볼들의 송신
CN102098128B (zh) * 2009-12-10 2013-03-13 普天信息技术研究院有限公司 Sc-fdma系统中链路传输装置及方法和空频块码编码器及方法
CN102098141A (zh) * 2009-12-10 2011-06-15 普天信息技术研究院有限公司 Sc-fdma系统中链路传输装置及方法和空时块码编码器及方法
CN102594488B (zh) * 2011-01-14 2017-12-19 中兴通讯股份有限公司 空间流向空时流映射的方法、装置及数据传输方法、装置
CN102394723A (zh) * 2011-10-31 2012-03-28 哈尔滨工程大学 结合非对称Turbo编码的白光LED调制方法
US9130711B2 (en) * 2011-11-10 2015-09-08 Microsoft Technology Licensing, Llc Mapping signals from a virtual frequency band to physical frequency bands
EP2884685A1 (en) * 2013-12-13 2015-06-17 Siemens Aktiengesellschaft Frequency domain transmit diversity
MY182312A (en) * 2015-06-22 2021-01-19 Ericsson Telefon Ab L M Blanking pattern indication for resource utilization in cellular radio communication
CN106992793A (zh) * 2017-03-06 2017-07-28 无锡德思普科技有限公司 基于频域实现的直接序列扩频通信的发射机装置及方法
KR102546276B1 (ko) * 2017-12-15 2023-06-23 삼성전자주식회사 무선 통신 시스템에서 제어 정보 및 데이터 정보 송수신 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235338A (en) * 1990-10-31 1993-08-10 Hsiao Stephen S Moving target detection through range cell migration radar
JP2004171253A (ja) * 2002-11-20 2004-06-17 Communication Research Laboratory 離散フーリエ変換における標本化点の決定方法
CN1604509A (zh) * 2004-10-29 2005-04-06 清华大学 多媒体信息传输中时频矩阵二维信道动态分配方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754721B1 (ko) * 2002-04-26 2007-09-03 삼성전자주식회사 직교주파수분할다중화 통신시스템에서 다중화 데이터 송수신 장치 및 방법
KR100920722B1 (ko) * 2002-10-19 2009-10-07 삼성전자주식회사 수신성능을 향상시키는 다중 반송파 송신 시스템 및 그의신호처리방법
US8233555B2 (en) * 2004-05-17 2012-07-31 Qualcomm Incorporated Time varying delay diversity of OFDM
PT1952549E (pt) * 2006-01-18 2013-09-30 Huawei Tech Co Ltd Método e sistema para sincronização em sistema de comunicação
CN101502069B (zh) * 2006-02-09 2012-10-17 阿尔戴尔半导体有限公司 频分多址系统中的低峰均功率比传输

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235338A (en) * 1990-10-31 1993-08-10 Hsiao Stephen S Moving target detection through range cell migration radar
JP2004171253A (ja) * 2002-11-20 2004-06-17 Communication Research Laboratory 離散フーリエ変換における標本化点の決定方法
CN1604509A (zh) * 2004-10-29 2005-04-06 清华大学 多媒体信息传输中时频矩阵二维信道动态分配方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100085955A1 (en) * 2008-09-23 2010-04-08 Qualcomm Incorporated Transmit diversity for sc-fdma
US9608780B2 (en) * 2008-09-23 2017-03-28 Qualcomm Incorporated Transmit diversity for SC-FDMA
US20110090977A1 (en) * 2009-10-19 2011-04-21 Samsung Electronics Co. Ltd. Methods for mapping and de-mapping data, transmitting device and receiving device
CN102045287A (zh) * 2009-10-19 2011-05-04 北京三星通信技术研究有限公司 映射和解映射数据的方法、以及发送设备和接收设备
US9319259B2 (en) * 2009-10-19 2016-04-19 Samsung Electronics Co., Ltd. Methods for mapping and de-mapping data, transmitting device and receiving device

Also Published As

Publication number Publication date
EP2015532A1 (en) 2009-01-14
CN101056132A (zh) 2007-10-17
EP2015532A4 (en) 2013-09-04
US20090303866A1 (en) 2009-12-10
EP2015532B8 (en) 2018-05-23
KR101286996B1 (ko) 2013-07-23
CN101056132B (zh) 2011-04-20
US8248909B2 (en) 2012-08-21
KR20080109845A (ko) 2008-12-17
EP2015532B1 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
WO2007118411A1 (fr) Procédé et dispositif pour le traitement de bande de base de l&#39;émetteur espace-temps/fréquence spatiale/diversité spatiale
US11496187B2 (en) Method and apparatus for transmitting and receiving data in a MIMO system
TWI314825B (en) Increased discrete point processing in an ofdm communication system
KR101783928B1 (ko) Wlan 프레임 헤더 내 신호 필드의 변조
US8559552B2 (en) Dual carrier modulation precoding
JP2008533801A (ja) 広帯域無線通信システムにおける時空間符号化データの副搬送波写像装置及び方法
CN110830089B (zh) 一种空间频率索引调制传输方法
CN101771648B (zh) 一种多天线信号处理系统及方法
CN101471746B (zh) 宽带无线传输的方法、装置及一种传输系统
WO2006118433A1 (en) Adaptive data multiplexing method in ofdma system and transmission/reception apparatus thereof
JP5123295B2 (ja) 空間・時間・周波数符号化の方法および装置
You et al. Low-complexity PAR reduction schemes using SLM and PTS approaches for OFDM-CDMA signals
Memisoglu et al. Fading-aligned OFDM with index modulation for mMTC services
KR101535171B1 (ko) Ofdm 시스템들에서 심볼들의 프리코딩 및 프리-디코딩을 가속하기 위한 방법
CN102067476B (zh) 发送设备、接收设备以及发送和接收方法
WO2010020081A1 (zh) 用于自适应编码调制的方法和装置
CN1913512A (zh) 一种无线通信系统中的训练符号传输方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007720714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5493/CHENP/2008

Country of ref document: IN

Ref document number: 1020087024999

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12296841

Country of ref document: US