WO2007116698A1 - Exhaust gas purifier for diesel engine - Google Patents

Exhaust gas purifier for diesel engine Download PDF

Info

Publication number
WO2007116698A1
WO2007116698A1 PCT/JP2007/056244 JP2007056244W WO2007116698A1 WO 2007116698 A1 WO2007116698 A1 WO 2007116698A1 JP 2007056244 W JP2007056244 W JP 2007056244W WO 2007116698 A1 WO2007116698 A1 WO 2007116698A1
Authority
WO
WIPO (PCT)
Prior art keywords
dpf
exhaust gas
diesel engine
exhaust
control device
Prior art date
Application number
PCT/JP2007/056244
Other languages
French (fr)
Japanese (ja)
Inventor
Manabu Sudo
Daisuke Yamagishi
Original Assignee
Depro Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Depro Corporation filed Critical Depro Corporation
Publication of WO2007116698A1 publication Critical patent/WO2007116698A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/10By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device for reducing flow resistance, e.g. to obtain more engine power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust emission control device for a diesel engine. Specifically, the present invention relates to an exhaust emission control device for a diesel engine that reduces emission of particulate matter (PM) mainly composed of carbon.
  • PM particulate matter
  • Patent Document 1 As an exhaust emission control device for a diesel engine using DPF, for example, (Patent Document 1) includes a first continuous regeneration type DPF disposed in an exhaust passage of the engine, and the first continuous regeneration type DPF.
  • a second continuous regeneration type DPF configured to have a capacity smaller than that of the first continuous regeneration type DPF and disposed in the upstream exhaust passage, and a bypass passage disposed so as to surround the outer periphery of the second continuous regeneration type DPF.
  • An exhaust emission control device for a configured diesel engine is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-3830
  • the exhaust purification apparatus as described above has problems such as a complicated apparatus structure and high cost.
  • an object of the present invention is to provide an exhaust emission control device that has a simplified device structure, can be manufactured at low cost, and is highly reliable. . Means for solving the problem
  • An exhaust emission control device for a diesel engine includes a first DPF that collects and processes particulate matter contained in exhaust gas of a diesel engine, and a bypass passage that is provided in parallel with the first DPF.
  • the first DPF is a pressure that allows most of the exhaust gas to flow through the first DPF when the engine is under a low load and also allows the exhaust gas to flow through the bypass passage when the engine is under a high load. Characterized by having a loss
  • the first DPF distributes most of the exhaust gas to the first DPF when the engine is under a low load, and passes the exhaust gas into the bypass passage when the engine is under a high load. Since it has a pressure loss to circulate, the exhaust gas can be circulated through the first DPF or bypass passage at an appropriate rate according to the engine load.
  • the first DPF distributes 55 to 75 vol% of the total exhaust gas flow rate to the first DPF when the engine is under a low load, It is characterized by having a pressure loss that causes 65 to 85 vol% of the total exhaust gas flow rate to flow through the bypass passage at high loads.
  • the ratio of the exhaust gas flowing through the first DPF or the bypass passage is optimized in accordance with the load state of the engine.
  • the first DPF is provided inside a casing, and a bypass passage is formed between the casing and the first DPF. It is characterized by that.
  • the first DPF is arranged in the casing, the surface area of the entire apparatus is reduced, and heat conduction between the apparatus and the outside air is suppressed.
  • the first DPF and bypass passage are arranged and integrated in the casing, the entire apparatus is reduced in size.
  • the first DPF is arranged on the flow path center axis of the exhaust gas inlet of the casing.
  • a second DPF is provided downstream of the first DPF.
  • the second DPF is provided downstream of the first DPF, PM contained in the exhaust gas of the diesel engine can be reliably collected and processed. Furthermore, combustion heat is generated when a part of the exhaust gas PM is oxidized, and the temperature of the first DPF rises. Therefore, the exhaust gas that has passed through the first DPF is also in the second DPF. PM is maintained at a temperature where it can be oxidized.
  • the first DPF is provided at a position closer to the second DPF than the diesel engine.
  • the temperature of the first DPF is higher than the temperature of the exhaust gas discharged from the diesel engine and the diesel engine. Sensitive tracking is suppressed.
  • the exhaust gas cooling in the exhaust pipe from the first DPF to the second DPF is reduced, and the temperature of the exhaust gas at the second DPF inlet can be kept high.
  • the DPF unit is arranged such that the central axis of the exhaust gas outlet of the DPF unit is collinear with the central axis of the flow path of the second DPF. It is characterized by that.
  • the exhaust gas flow path from the DPF unit to the second DPF is close to a straight line, so the exhaust gas passage resistance is reduced and the deterioration of engine performance is suppressed. it can.
  • the exhaust gas is allowed to flow through the first DPF and the bypass passage at an appropriate ratio according to the flow rate of the exhaust gas without using a switching valve or the like.
  • the exhaust gas flow rate is low and the exhaust gas temperature is low
  • a large amount of exhaust gas is oxidized with the first DPF
  • the exhaust gas flow rate is high and the exhaust gas temperature is high.
  • the device structure can be greatly simplified and manufactured at a low cost. Work and maintenance work become easy. Further, since the device associated with the switching valve is omitted, the entire device is miniaturized, so that it can be mounted on many vehicle types.
  • FIG. 1 is a perspective view showing an overall configuration of an exhaust emission control device for a diesel engine according to an embodiment (1).
  • FIG. 2 is a diagram showing an overall configuration of an exhaust emission control device for a diesel engine according to an embodiment (1).
  • FIG. 3 is a longitudinal sectional view of a DPF unit according to Embodiment (1).
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a graph showing the relationship between the engine speed and the flow rate ratio R to the first DPF.
  • FIGS .: to 5 are views showing an embodiment (1) of an exhaust emission control device for a diesel engine according to the present invention.
  • the exhaust purification device for a diesel engine includes a diesel engine 10 for purifying exhaust, and a DPF unit 30 connected to the diesel engine 10 via an exhaust pipe 11A 30 And a second DPF 60 connected via the DPF unit 30 and the exhaust pipe 11B.
  • the diesel engine 10 is provided with an intake manifold 12 for introducing fresh air into each cylinder of the diesel engine 10 and an exhaust manifold 14 through which exhaust gas after combustion discharged from each cylinder is passed.
  • An exhaust pipe 11A on the upstream side is connected to the exhaust manifold 14, and the exhaust gas is exhausted to the DPF unit 30 through the exhaust pipe 11A on the upstream side.
  • the upstream exhaust pipe 11A is covered with a heat insulating material so that the exhaust gas exhausted from the diesel engine 10 is not cooled.
  • the exhaust purification system for diesel engines is provided with an external EGR pipe 21 for cooling the exhaust gas obtained from the exhaust manifold 14 etc. and returning it to the intake manifold 12 etc.
  • the gas flow rate is configured to be adjusted by the external EGR valve 21.
  • the DPF unit 30 includes a cylindrical outer cylinder 33 and an outer cylinder 33.
  • a casing 31 provided at both ends and provided with an inlet side connecting member 32 and an outlet side connecting member 34 for connecting to the exhaust pipes 11A and 1IB, respectively, and a cylinder provided inside the casing 31 via a mounting member 35
  • a first DPF 36 having a shape.
  • the first DPF 36 is disposed on the flow path central axis of the casing 31, and a bypass passage 37 is formed between the casing 31 and the first DPF 36.
  • the first DPF 36 is a small CR-DP F that collects PM contained in a small amount of exhaust discharged mainly during diesel engine at low to medium or low loads or during medium loads and continuously regenerates it. is there.
  • CO, HC and NO are oxidized to CO, H 2 O and
  • An oxidation catalyst for conversion to NO may be provided.
  • the first DP On the outer periphery of the first DPF36, the first DP
  • a housing 38 for protecting F36 is provided.
  • a force capable of using various materials such as a metal and a resin is usually used.
  • the first DPF 36 has a pressure loss.
  • the pressure loss causes most of the exhaust gas to flow to the first DPF 36 when the engine is under a low load, and the exhaust gas when the engine is under a high load. It is preferable to have a pressure loss that causes a large amount to flow through the bypass passage 37.
  • 55 to 75 vol% of the total exhaust gas flow is distributed to the first DPF 36 when the engine is under low load, and 65 to 85 vol% of the total exhaust gas flow is bypassed when the engine is under high load. It is preferable to have a pressure loss flowing through the passage 37.
  • R shown in Fig. 5 is the exhaust gas flowing into the first DPF 36 as shown in the following equation.
  • the exhaust gas total flow rate is 55 to 75 vol. / 0 is distributed to the first DPF36, and the exhaust gas total flow is 65 to 85 vol at high engine load. /.
  • the first DPF36 that has a pressure loss that circulates through the bypass passage 37 has a pressure loss of 2.5kPa to 5kPa when air is flowed at a flow rate of 4.15m3 / min. Preferably, it has a pressure loss of 3 kPa to 4 kPa.
  • the engine speed is 500 rpm to 1100 rpm
  • the engine speed is generally 2400 rpm to 2900 i "pm.
  • the bypass passage 37 is disposed so as to surround the first DPF 36, and the exhaust gas that has passed through the bypass passage 37 is exhausted to the exhaust pipe 11B on the downstream side through the exhaust gas outlet 34a. Is done.
  • the second DPF 60 is provided in the exhaust pipe 11B on the downstream side of the exhaust gas flow path, and the exhaust gas that has passed through the DPF unit 30 flows in.
  • the second DPF60 oxidizes C0, HC and N0 contained in a large amount of exhaust gas discharged at high loads and high speeds of diesel engine to convert them into CO, H0 and NO and PM.
  • the DPF unit 30 is provided at a position closer to the second DPF 60 than the diesel engine 10 is not provided immediately below the diesel engine 10 so that heat conduction from the diesel engine 10 is suppressed. .
  • the downstream exhaust pipe 11B is shorter than the upstream exhaust pipe 11A.
  • the DPF unit 30 has a central axial force at the exhaust gas outlet 34a of the DPF unit 30, a flow path central axis of the second DPF 60, and a flow path center of the exhaust pipe 11B connecting the second DPF 60 and the DPF unit 30. It is arranged so that it is on the same line as the axis. As a result, the exhaust gas flow path from the DPF unit 30 to the second DPF 60 becomes almost a straight line, so it is possible to suppress the deterioration of the engine performance with a small exhaust gas passage resistance.
  • the exhaust gas exhausted by 10 forces of the diesel engine flows into the DPF unit 30 from the exhaust gas inlet 32a through the exhaust pipe 11A.
  • the exhaust gas flowing into the DPF unit 30 has a pressure loss of the first DPF 36 in the bypass passage 37, for example, when the engine speed is 2500 rpm and the engine load is high. Therefore, most of the exhaust gas passes through the bypass passage 37, and the PM in the exhaust gas is continuously oxidized in the second DPF 60.
  • the exhaust gas temperature is high, so the exhaust gas that has passed through the bypass passage 37 It can be oxidized with a second DPF.
  • Part of the exhaust gas also flows to the first DPF 36, and similarly PM in the exhaust gas is continuously oxidized.
  • the temperature of the first DPF 36 can be maintained at a predetermined temperature by continuing to flow a small amount of exhaust gas through the first DPF 36 even when the second DPF 60 is used. For this reason, the first DPF 36 can continuously process PM even when the load is reduced depending on the operating status, and it is possible to continuously regenerate PM even when the operating status changes suddenly. .
  • the exhaust gas flow rate is low.
  • the exhaust gas temperature is low, it is possible to oxidize a large amount of exhaust gas with the first DPF 36, while the exhaust gas flow rate is high.
  • the temperature is high, a lot of exhaust gas can pass through the bypass passage and be oxidized by the second DPF60.
  • the device structure can be greatly simplified and manufactured at low cost. Furthermore, since the device associated with the switching valve is omitted, the entire device is miniaturized, so that it can be mounted on many vehicle types. In addition, since the first DPF 36 is housed in the casing 31 and has a compact shape, the exhaust gas passing through the first DPF 36 and the bypass passage 37 is not It is possible to prevent the device from being thermally detrimental.
  • the exhaust emission control device of the present invention is preferably used particularly for a medium truck having a standard load capacity of 4 t or more. Compared to small trucks, medium trucks tend to reach a temperature at which PM can be continuously regenerated, as the exhaust temperature rises more rapidly when starting. In addition, even when shifting from normal constant speed driving to idling, low speed driving, deceleration from high speed driving, etc., the exhaust gas is kept at a high temperature for a relatively long time, so PM is continuously regenerated. The ability to process S is possible.
  • the exhaust gas temperature is always lower than the temperature at which PM can be continuously regenerated, so that the exhaust gas is always in the first DPF as in the exhaust purification device of the present invention. Should also be used in case of inflow Can do.
  • the present invention can be used for the purpose of reducing emission of particulate matter (PM) containing carbon as a main component in a diesel engine.
  • PM particulate matter

Abstract

A highly reliable exhaust gas purifier which can be manufactured at low cost by simplifying the structure. An exhaust gas purifier for diesel engine has a first DPF (36) for capturing and treating a particulate matter contained in the exhaust gas from a diesel engine, and a bypath (37) juxtaposed to the first DPF (36), wherein the first DPF (36) has a pressure loss for conducting the majority of the exhaust gas to the first DPF (36) when the engine is under light load and passing the majority of exhaust gas through the bypath (37) when the engine is under heavy load.

Description

明 細 書  Specification
ディーゼルエンジンの排気浄化装置  Diesel engine exhaust purification system
技術分野  Technical field
[0001] 本発明は、ディーゼルエンジンの排気浄化装置に関する。具体的には、特にカー ボンを主成分とする粒子状物質 (PM)の排出を低減するディーゼルエンジンの排気 浄化装置に関する。  [0001] The present invention relates to an exhaust emission control device for a diesel engine. Specifically, the present invention relates to an exhaust emission control device for a diesel engine that reduces emission of particulate matter (PM) mainly composed of carbon.
背景技術  Background art
[0002] 近年、ディーゼルエンジンから排出される粒子状物質 (PM)、窒素酸化物(N〇x) 等の有害物質の低減が課題となっている。特に、粒子状物質の排出を低減すること は大きな課題となっており、ディーゼルパティキュレートフィルタ(DPF)等の排気浄 化装置が開発されている。  [0002] In recent years, reduction of harmful substances such as particulate matter (PM) and nitrogen oxides (Nx) discharged from diesel engines has been a challenge. In particular, reducing particulate emissions is a major challenge, and exhaust purification devices such as diesel particulate filters (DPFs) have been developed.
[0003] DPFを用いたディーゼルエンジンの排気浄化装置として、例えば、(特許文献 1)に は、エンジンの排気通路に配置された第 1の連続再生式 DPFと、該第 1の連続再生 式 DPFの容量より小さい容量に構成され上流側の排気通路に配設された第 2の連 続再生式 DPFと、該第 2の連続再生式 DPFの外周部を囲むように配置されるバイパ ス通路と、該バイパス通路を開閉する制御弁と、エンジンの排気温度領域が所定の 温度よりも低い低温領域である場合には該制御弁がバイパス通路を閉じるように制御 する制御手段と、を具備するよう構成されたディーゼルエンジンの排気浄化装置が開 示されている。  [0003] As an exhaust emission control device for a diesel engine using DPF, for example, (Patent Document 1) includes a first continuous regeneration type DPF disposed in an exhaust passage of the engine, and the first continuous regeneration type DPF. A second continuous regeneration type DPF configured to have a capacity smaller than that of the first continuous regeneration type DPF and disposed in the upstream exhaust passage, and a bypass passage disposed so as to surround the outer periphery of the second continuous regeneration type DPF. A control valve for opening and closing the bypass passage, and a control means for controlling the control valve to close the bypass passage when the exhaust temperature region of the engine is a low temperature region lower than a predetermined temperature. An exhaust emission control device for a configured diesel engine is disclosed.
[0004] 特許文献 1 :特開 2003— 3830号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-3830
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、上述のような排気浄化装置は、装置構造が複雑になる、コストが高い 等の問題点を有していた。 [0005] However, the exhaust purification apparatus as described above has problems such as a complicated apparatus structure and high cost.
[0006] そこで、本発明では、上記従来の状況に鑑み、装置構造が簡略化され、低コストで 製造することができ、さらには信頼性の高い排気浄化装置を提供することを目的とす る。 課題を解決するための手段 [0006] In view of the above-described conventional situation, an object of the present invention is to provide an exhaust emission control device that has a simplified device structure, can be manufactured at low cost, and is highly reliable. . Means for solving the problem
[0007] 本発明のディーゼルエンジンの排気浄化装置は、ディーゼルエンジンの排気ガス に含まれるパティキュレートマターを捕集して処理する第一の DPFと、該第一の DPF と並設されたバイパス通路と、を有し、前記第一の DPFは、エンジンの低負荷時には 排気ガスの多くを前記第一の DPFに流通させるとともに、エンジンの高負荷時には 排気ガスの多くを前記バイパス通路に流通させる圧力損失を有することを特徴とする  [0007] An exhaust emission control device for a diesel engine according to the present invention includes a first DPF that collects and processes particulate matter contained in exhaust gas of a diesel engine, and a bypass passage that is provided in parallel with the first DPF. The first DPF is a pressure that allows most of the exhaust gas to flow through the first DPF when the engine is under a low load and also allows the exhaust gas to flow through the bypass passage when the engine is under a high load. Characterized by having a loss
[0008] 上記構成によれば、第一の DPFは、エンジンの低負荷時には排気ガスの多くを前 記第一の DPFに流通させるとともに、エンジンの高負荷時には排気ガスの多くをバイ パス通路に流通させる圧力損失を有するので、排気ガスをエンジンの負荷状態に応 じた適当な割合で第一の DPFあるいはバイパス通路に流通させることができる。 [0008] According to the above configuration, the first DPF distributes most of the exhaust gas to the first DPF when the engine is under a low load, and passes the exhaust gas into the bypass passage when the engine is under a high load. Since it has a pressure loss to circulate, the exhaust gas can be circulated through the first DPF or bypass passage at an appropriate rate according to the engine load.
[0009] また、上述の本発明のディーゼルエンジンの排気浄化装置において、第一の DPF は、エンジンの低負荷時には排気ガス全流量の 55〜75vol%を前記第一の DPFに 流通させるとともに、エンジンの高負荷時には排気ガス全流量の 65〜85vol%を前 記バイパス通路に流通させる圧力損失を有することを特徴とする。  [0009] Further, in the exhaust purification system for a diesel engine of the present invention described above, the first DPF distributes 55 to 75 vol% of the total exhaust gas flow rate to the first DPF when the engine is under a low load, It is characterized by having a pressure loss that causes 65 to 85 vol% of the total exhaust gas flow rate to flow through the bypass passage at high loads.
[0010] 上記構成によれば、第一の DPFあるいはバイパス通路に流通させる排気ガスの割 合がエンジンの負荷状態に応じて最適化される。  [0010] According to the above configuration, the ratio of the exhaust gas flowing through the first DPF or the bypass passage is optimized in accordance with the load state of the engine.
[0011] また、上述の本発明のディーゼルエンジンの排気浄化装置において、前記第一の DPFはケーシングの内部に設けられ、前記ケーシングと前記第一の DPFとの間にバ ィパス通路が形成されたことを特徴とする。  [0011] Further, in the exhaust gas purification apparatus for a diesel engine of the present invention described above, the first DPF is provided inside a casing, and a bypass passage is formed between the casing and the first DPF. It is characterized by that.
[0012] 上記構成によれば、第一の DPFがケーシング内に配置されるので、装置全体の表 面積が小さくなり、装置と外気との熱伝導が抑制される。また、第一の DPF及びバイ パス通路がケーシング内に配置され一体化されるので装置全体が小型化される。  [0012] According to the above configuration, since the first DPF is arranged in the casing, the surface area of the entire apparatus is reduced, and heat conduction between the apparatus and the outside air is suppressed. In addition, since the first DPF and bypass passage are arranged and integrated in the casing, the entire apparatus is reduced in size.
[0013] また、上述の本発明のディーゼルエンジンの排気浄化装置において、第一の DPF はケーシングの排気ガス入口の流路中心軸線上に配置されたことを特徴とする。  [0013] Further, in the above-described diesel engine exhaust gas purification apparatus of the present invention, the first DPF is arranged on the flow path center axis of the exhaust gas inlet of the casing.
[0014] 上記構成によれば、ケーシング内部に流入した排気ガスをより多く第一の DPFに流 通させることができる。そして、特にエンジンの低負荷時のような排気ガスの流量が少 ない場合において第一の DPFに流入する排気ガスの割合を大きくすることができる。 [0015] また、上述の本発明のいずれか記載のディーゼルエンジンの排気浄化装置におい て、第一の DPFとディーゼルエンジンとを接続する排気管が断熱材によって被覆さ れたことを特徴とする。 [0014] According to the above configuration, a larger amount of exhaust gas flowing into the casing can be passed through the first DPF. The ratio of exhaust gas flowing into the first DPF can be increased especially when the flow rate of exhaust gas is low, such as when the engine is under low load. [0015] Further, in the exhaust purification device for a diesel engine according to any one of the above-described present inventions, an exhaust pipe connecting the first DPF and the diesel engine is covered with a heat insulating material.
[0016] 上記構成によれば、ディーゼルエンジンから第一の DPFまでの排気管に断熱材が 被覆されているので、排気ガスの冷却が低減され、第一の DPF入口における排気ガ スの温度を高く維持することができる。  [0016] According to the above configuration, since the exhaust pipe from the diesel engine to the first DPF is covered with the heat insulating material, the cooling of the exhaust gas is reduced, and the temperature of the exhaust gas at the first DPF inlet is reduced. Can be kept high.
[0017] また、上述の本発明のディーゼルエンジンの排気浄化装置において、第一の DPF より下流側に第二の DPFが設けられたことを特徴とする。  [0017] Further, in the above-described diesel engine exhaust gas purification apparatus of the present invention, a second DPF is provided downstream of the first DPF.
[0018] 上記構成によれば、第一の DPFの下流側に第二の DPFが設けられるので、ディー ゼルエンジンの排気ガス中に含まれる PMを確実に捕集し処理することができる。さら に、排気ガスの一部の PMが酸化処理される際に燃焼熱が生じ、第一の DPFの温度 が上昇するため、第一の DPFを通過した排気ガスは、第二の DPFにおいても PMを 酸化処理可能な温度に維持される。  [0018] According to the above configuration, since the second DPF is provided downstream of the first DPF, PM contained in the exhaust gas of the diesel engine can be reliably collected and processed. Furthermore, combustion heat is generated when a part of the exhaust gas PM is oxidized, and the temperature of the first DPF rises. Therefore, the exhaust gas that has passed through the first DPF is also in the second DPF. PM is maintained at a temperature where it can be oxidized.
[0019] また、上述の本発明のディーゼルエンジンの排気浄化装置において、第一の DPF がディーゼルエンジンよりも第二の DPFに近い位置に設けられていることを特徴とす る。  [0019] Further, in the above-described diesel engine exhaust gas purification apparatus of the present invention, the first DPF is provided at a position closer to the second DPF than the diesel engine.
[0020] 上記構成によれば、第一の DPFがディーゼルエンジンから離れた位置に設けられ るので、ディーゼルエンジン及びディーエルエンジンから排出される排気ガスの温度 に対して第一の DPFの温度が敏感に追従するのが抑制される。また、第一の DPFか ら第二の DPFまでの排気管における排気ガスの冷却が低減され、第二の DPF入口 における排気ガスの温度を高く維持することができる。  [0020] According to the above configuration, since the first DPF is provided at a position away from the diesel engine, the temperature of the first DPF is higher than the temperature of the exhaust gas discharged from the diesel engine and the diesel engine. Sensitive tracking is suppressed. In addition, the exhaust gas cooling in the exhaust pipe from the first DPF to the second DPF is reduced, and the temperature of the exhaust gas at the second DPF inlet can be kept high.
[0021] また、上述の本発明のディーゼルエンジンの排気浄化装置において、 DPFユニット の排気ガス出口の中心軸が第二の DPFの流路中心軸と同一線上となるように前記 D PFユニットが配置されたことを特徴とする。  [0021] Further, in the above-described diesel engine exhaust gas purification apparatus of the present invention, the DPF unit is arranged such that the central axis of the exhaust gas outlet of the DPF unit is collinear with the central axis of the flow path of the second DPF. It is characterized by that.
[0022] 上記構成によれば、 DPFユニットから第二の DPFまでの排気ガスの流路が直線に 近くなるため、排気ガスの通過抵抗が小さくなり、エンジンの性能の低下を抑制する こと力 Sできる。  [0022] According to the above configuration, the exhaust gas flow path from the DPF unit to the second DPF is close to a straight line, so the exhaust gas passage resistance is reduced and the deterioration of engine performance is suppressed. it can.
発明の効果 [0023] 本発明のディーゼルエンジンの排気浄化装置によれば、切替弁等を使用すること なぐ排気ガスの流量に応じて第一の DPFとバイパス通路とに適当な割合で排気ガ スを流すことが可能となる。具体的には排気ガスの流量が少なく排気ガスの温度が低 い場合には多くの排気ガスを第一の DPFで酸化処理し、一方排気ガスの流量が大 きく排気ガスの温度が高い場合には多くの排気ガスをバイパス通路を通過させ第二 の DPFで酸化処理するように、第一の DPFとバイパス通路とに適当な割合で切替弁 を用いることなく排気ガスを分配することが可能となる。 The invention's effect [0023] According to the exhaust emission control device for a diesel engine of the present invention, the exhaust gas is allowed to flow through the first DPF and the bypass passage at an appropriate ratio according to the flow rate of the exhaust gas without using a switching valve or the like. Is possible. Specifically, when the exhaust gas flow rate is low and the exhaust gas temperature is low, a large amount of exhaust gas is oxidized with the first DPF, while the exhaust gas flow rate is high and the exhaust gas temperature is high. Can pass the exhaust gas through the bypass passage and oxidize it with the second DPF, so that the exhaust gas can be distributed between the first DPF and the bypass passage at an appropriate ratio without using a switching valve. Become.
[0024] また、切替弁、切替弁を動作させるァクチユエータ、切替弁を制御する制御装置等 を設ける必要ないため装置構造が非常に単純化され低コストで製造することが可能 であり、さらには取付作業、整備作業等が容易になる。また、切替弁に付随する装置 が省略されるので装置全体として小型化されるため、多くの車種に対して装着するこ とが可能となる。  [0024] Further, since there is no need to provide a switching valve, an actuator for operating the switching valve, a control device for controlling the switching valve, etc., the device structure can be greatly simplified and manufactured at a low cost. Work and maintenance work become easy. Further, since the device associated with the switching valve is omitted, the entire device is miniaturized, so that it can be mounted on many vehicle types.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]実施の形態(1)に係るディーセルエンジンの排気浄化装置の全体構成を示す 斜視図である。  FIG. 1 is a perspective view showing an overall configuration of an exhaust emission control device for a diesel engine according to an embodiment (1).
[図 2]実施の形態(1)に係るディーゼルエンジンの排気浄化装置の全体構成を示す 図である。  FIG. 2 is a diagram showing an overall configuration of an exhaust emission control device for a diesel engine according to an embodiment (1).
[図 3]実施の形態(1)に係る DPFユニットの縦断面図である。  FIG. 3 is a longitudinal sectional view of a DPF unit according to Embodiment (1).
[図 4]図 3の A— A断面図である。  FIG. 4 is a cross-sectional view taken along line AA in FIG.
[図 5]エンジン回転数と第一の DPFへの流量比率 R との関係を示す図である。  FIG. 5 is a graph showing the relationship between the engine speed and the flow rate ratio R to the first DPF.
第一の DPF  First DPF
符号の説明  Explanation of symbols
[0026] 10 ディーゼルエンジン [0026] 10 diesel engine
11 排気管  11 Exhaust pipe
11A 上流側の排気管  11A Upstream exhaust pipe
11B 下流側の排気管  11B Downstream exhaust pipe
12 吸気マ二ホールド  12 Intake manifold hold
14 排気マ二ホールド  14 Exhaust manifold hold
21 外部 EGR配管 30 DPFユニット 21 External EGR piping 30 DPF unit
31 ケーシング  31 Casing
32 入口側接続部材  32 Inlet connection member
33 外筒  33 outer cylinder
34 出口側接続部材  34 Outlet connection member
35 取付部材  35 Mounting member
36 第一の DPF  36 First DPF
37 バイパス通路  37 Bypass passage
38 筐体  38 Enclosure
60 第二の DPF  60 second DPF
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、本発明を実施するための最良の形態について詳細に説明する。図:!〜 5は、 本発明に係るディーゼルエンジンの排気浄化装置の実施の形態(1)を示す図である  Hereinafter, the best mode for carrying out the present invention will be described in detail. FIGS .: to 5 are views showing an embodiment (1) of an exhaust emission control device for a diesel engine according to the present invention.
[0028] 図 1、 2に示すように、ディーゼルエンジンの排気浄化装置には、排気を浄化する対 象となるディーゼルエンジン 10と、ディーゼルエンジン 10と排気管 11Aを介して接続 された DPFユニット 30と、 DPFユニット 30と排気管 11Bを介して接続された第二の D PF60と、を備える。 [0028] As shown in Figs. 1 and 2, the exhaust purification device for a diesel engine includes a diesel engine 10 for purifying exhaust, and a DPF unit 30 connected to the diesel engine 10 via an exhaust pipe 11A 30 And a second DPF 60 connected via the DPF unit 30 and the exhaust pipe 11B.
[0029] ディーゼルエンジン 10には、ディーゼノレエンジン 10の各シリンダに新気を導入する 吸気マ二ホールド 12と、各シリンダから排出される燃焼後の排気を通す排気マニホ 一ルド 14が備えられる。排気マ二ホールド 14には、上流側の排気管 11Aが接続され ており排気ガスは、上流側の排気管 11Aを通して DPFユニット 30に排気される。な お、上流側の排気管 11Aは、ディーゼノレエンジン 10から排気された排気ガスが冷却 されないように断熱材で被覆されている。また、ディーゼルエンジンの排気浄化装置 には、排気マ二ホールド 14等から取得した排気を冷却して吸気マ二ホールド 12等に 還流するための外部 EGR配管 21が設けられており、再循環させる排気ガスの流量 は外部 EGRバルブ 21により調整できるように構成されてレ、る。  [0029] The diesel engine 10 is provided with an intake manifold 12 for introducing fresh air into each cylinder of the diesel engine 10 and an exhaust manifold 14 through which exhaust gas after combustion discharged from each cylinder is passed. An exhaust pipe 11A on the upstream side is connected to the exhaust manifold 14, and the exhaust gas is exhausted to the DPF unit 30 through the exhaust pipe 11A on the upstream side. The upstream exhaust pipe 11A is covered with a heat insulating material so that the exhaust gas exhausted from the diesel engine 10 is not cooled. In addition, the exhaust purification system for diesel engines is provided with an external EGR pipe 21 for cooling the exhaust gas obtained from the exhaust manifold 14 etc. and returning it to the intake manifold 12 etc. The gas flow rate is configured to be adjusted by the external EGR valve 21.
[0030] 図 3、 4に示すように、 DPFユニット 30は、円筒形状からなる外筒 33と、外筒 33の 両端に設けられそれぞれ排気管 11A、 1 IBに接続するための入口側接続部材 32、 出口側接続部材 34とを備えたケーシング 31と、ケーシング 31の内部に取付部材 35 を介して設けられた円筒形状の第一の DPF36と、を備える。そして、第一の DPF36 は、ケーシング 31の流路中心軸上に配置されており、ケーシング 31と第一の DPF3 6との間にバイパス通路 37が形成されている。 [0030] As shown in FIGS. 3 and 4, the DPF unit 30 includes a cylindrical outer cylinder 33 and an outer cylinder 33. A casing 31 provided at both ends and provided with an inlet side connecting member 32 and an outlet side connecting member 34 for connecting to the exhaust pipes 11A and 1IB, respectively, and a cylinder provided inside the casing 31 via a mounting member 35 And a first DPF 36 having a shape. The first DPF 36 is disposed on the flow path central axis of the casing 31, and a bypass passage 37 is formed between the casing 31 and the first DPF 36.
[0031] 第一の DPF36は、主にディーゼルエンジンの中低速低負荷時又は中負荷時に排 出される少量の排気中に含まれる PMを捕集して連続再生処理する小型の CR— DP Fである。第一の DPF36には併せて C〇、 HC及び NOを酸化させて CO、 H O及び [0031] The first DPF 36 is a small CR-DP F that collects PM contained in a small amount of exhaust discharged mainly during diesel engine at low to medium or low loads or during medium loads and continuously regenerates it. is there. In combination with the first DPF36, CO, HC and NO are oxidized to CO, H 2 O and
2 2  twenty two
NOに転化させる酸化触媒を設けてもよい。第一の DPF36の外周には、第一の DP  An oxidation catalyst for conversion to NO may be provided. On the outer periphery of the first DPF36, the first DP
2  2
F36を保護する筐体 38が設けられている。筐体 38の材質としては、金属、樹脂等の 種々のものを用いることができる力 通常は耐熱性の高レ、金属が用いられる。  A housing 38 for protecting F36 is provided. As a material of the casing 38, a force capable of using various materials such as a metal and a resin is usually used.
[0032] なお、第一の DPF36は、圧力損失を有するが、その圧力損失は、エンジンの低負 荷時には排気ガスの多くを第一の DPF36に流通させるとともに、エンジンの高負荷 時には排気ガスの多くをバイパス通路 37に流通させる圧力損失を有することが好ま しい。具体的には、図 5に示すようにエンジンの低負荷時には排気ガス全流量の 55 〜75vol%を第一の DPF36に流通させ、エンジンの高負荷時には排気ガス全流量 の 65〜85vol%をバイパス通路 37に流通させる圧力損失を有することが好ましい。 なお、図 5中に示した R は下記式のように第一の DPF36に流入する排気ガス [0032] The first DPF 36 has a pressure loss. The pressure loss causes most of the exhaust gas to flow to the first DPF 36 when the engine is under a low load, and the exhaust gas when the engine is under a high load. It is preferable to have a pressure loss that causes a large amount to flow through the bypass passage 37. Specifically, as shown in Fig. 5, 55 to 75 vol% of the total exhaust gas flow is distributed to the first DPF 36 when the engine is under low load, and 65 to 85 vol% of the total exhaust gas flow is bypassed when the engine is under high load. It is preferable to have a pressure loss flowing through the passage 37. Note that R shown in Fig. 5 is the exhaust gas flowing into the first DPF 36 as shown in the following equation.
第一の DPF  First DPF
の流量比  Flow rate ratio
率を表す。  Represents a rate.
R =F /¥ =F / (F +F )  R = F / ¥ = F / (F + F)
第一の DPF 第一の DPF TOTAL 第一の DPF 第一の DPF BYPASS  1st DPF 1st DPF TOTAL 1st DPF 1st DPF BYPASS
(式中、 F は第一の DPF36に流入する排気ガスの流量、 F はバイパス通  (Where F is the flow rate of the exhaust gas flowing into the first DPF 36 and F is the bypass passage.
第一の DPF BYPASS  First DPF BYPASS
路 37を通過する排気ガスの流量、 F は排気ガス全流量を表す)  Exhaust gas flow rate through passage 37, F represents total exhaust gas flow rate)
TOTAL  TOTAL
[0033] また、エンジンの低負荷時には排気ガス全流量の 55〜75vol。/0を第一の DPF36 に流通させ、エンジンの高負荷時には排気ガス全流量の 65〜85vol。 /。をバイパス通 路 37に流通させる圧力損失を有する第一の DPF36としては、具体的には、 4. 15m 3/minの流量でエアを流した際に 2. 5kPa〜5kPaの圧力損失を有するものであり、 好ましくは 3kPa〜4kPaの圧力損失を有するものである。また、エンジンの低負荷時 とは一般的にエンジン回転数が 500rpm〜1100rpmであることを表し、エンジンの 高負荷時とは一般的にエンジン回転数が 2400rpm〜2900i"pmであることを表す。 [0033] Also, when the engine is under low load, the exhaust gas total flow rate is 55 to 75 vol. / 0 is distributed to the first DPF36, and the exhaust gas total flow is 65 to 85 vol at high engine load. /. Specifically, the first DPF36 that has a pressure loss that circulates through the bypass passage 37 has a pressure loss of 2.5kPa to 5kPa when air is flowed at a flow rate of 4.15m3 / min. Preferably, it has a pressure loss of 3 kPa to 4 kPa. Also, when the engine is under low load In general, it means that the engine speed is 500 rpm to 1100 rpm, and when the engine is at a high load, it means that the engine speed is generally 2400 rpm to 2900 i "pm.
[0034] そして、バイパス通路 37は、第一の DPF36の周囲を囲むように配置されたもので あり、バイパス通路 37を通過した排気ガスは排気ガス出口 34aを通して下流側の排 気管 11Bへと排気される。  [0034] The bypass passage 37 is disposed so as to surround the first DPF 36, and the exhaust gas that has passed through the bypass passage 37 is exhausted to the exhaust pipe 11B on the downstream side through the exhaust gas outlet 34a. Is done.
[0035] また、排気ガス流路の下流側の排気管 11Bには第二の DPF60が設けられており、 DPFユニット 30を通過した排気ガスが流入する。第二の DPF60は、ディーゼルェン ジンの高負荷時および高速走行時に排出される多量の排気中に含まれる C〇、 HC 及び N〇を酸化させて CO、 H〇及び NOに転化させるとともに PMを連続酸化処  In addition, the second DPF 60 is provided in the exhaust pipe 11B on the downstream side of the exhaust gas flow path, and the exhaust gas that has passed through the DPF unit 30 flows in. The second DPF60 oxidizes C0, HC and N0 contained in a large amount of exhaust gas discharged at high loads and high speeds of diesel engine to convert them into CO, H0 and NO and PM. The continuous oxidation treatment
2 2 2  2 2 2
理する大型の CR— DPFである。  Large CR—DPF
[0036] なお、 DPFユニット 30は、ディーゼルエンジン 10からの熱伝導が抑制されるように 、ディーゼルエンジン 10の直下に設けるのではなぐディーゼルエンジン 10よりも第 二の DPF60に近い位置に設けている。具体的には、下流側の排気管 11Bが上流側 の排気管 11Aよりも短くなつている。また、 DPFユニット 30は、該 DPFユニット 30の 排気ガス出口 34aの中心軸力 第二の DPF60の流路中心軸、及び第二の DPF60 と DPFユニット 30とを接続する排気管 11Bの流路中心軸、と同一線上となるように配 置されている。これにより、 DPFユニット 30から第二の DPF60までの排気ガスの流路 が直線に近くなるため、排気ガスの通過抵抗が小さぐエンジンの性能の低下を抑制 すること力 S可言 となる。 [0036] It should be noted that the DPF unit 30 is provided at a position closer to the second DPF 60 than the diesel engine 10 is not provided immediately below the diesel engine 10 so that heat conduction from the diesel engine 10 is suppressed. . Specifically, the downstream exhaust pipe 11B is shorter than the upstream exhaust pipe 11A. In addition, the DPF unit 30 has a central axial force at the exhaust gas outlet 34a of the DPF unit 30, a flow path central axis of the second DPF 60, and a flow path center of the exhaust pipe 11B connecting the second DPF 60 and the DPF unit 30. It is arranged so that it is on the same line as the axis. As a result, the exhaust gas flow path from the DPF unit 30 to the second DPF 60 becomes almost a straight line, so it is possible to suppress the deterioration of the engine performance with a small exhaust gas passage resistance.
[0037] 以下、上記のディーゼルエンジンの排気浄化装置を実際に使用した場合について 説明する。  [0037] Hereinafter, a case where the above-described diesel engine exhaust gas purification apparatus is actually used will be described.
[0038] まず、ディーゼルエンジン 10力 排出された排気ガスは排気管 11Aを通って排気 ガス入口 32aから DPFユニット 30内に流入する。そして、 DPFユニット 30内に流入し た排気ガスは、図 5に示すように、例えばエンジン回転数が 2500rpmでありエンジン の負荷が高い運転状態においては、第一の DPF36の圧力損失がバイパス通路 37 よりも大きいため、排気ガスの多くはバイパス通路 37を通過し、第二の DPF60にお いて排気ガス中の PMは連続酸化処理される。エンジン回転数が高い高負荷の運転 状態では排気ガスの温度が高いためバイパス通路 37を通過した排気ガスは後段の 第二の DPFで酸化処理することができる。また、排気ガスの一部は、第一の DPF36 に流れ、同様に排気ガス中の PMは連続酸化処理される。このように、第二の DPF6 0使用時にも第一の DPF36に少量の排気を流し続けることによって、第一の DPF36 の温度を所定の温度に維持することが可能となる。このため、運転状況によって負荷 が減少した際にも第一の DPF36は PMを連続処理することが可能となり、運転状況 が急に変化した場合であっても PMを連続再生することが可能となる。 [0038] First, the exhaust gas exhausted by 10 forces of the diesel engine flows into the DPF unit 30 from the exhaust gas inlet 32a through the exhaust pipe 11A. As shown in FIG. 5, the exhaust gas flowing into the DPF unit 30 has a pressure loss of the first DPF 36 in the bypass passage 37, for example, when the engine speed is 2500 rpm and the engine load is high. Therefore, most of the exhaust gas passes through the bypass passage 37, and the PM in the exhaust gas is continuously oxidized in the second DPF 60. When the engine speed is high and the load is high, the exhaust gas temperature is high, so the exhaust gas that has passed through the bypass passage 37 It can be oxidized with a second DPF. Part of the exhaust gas also flows to the first DPF 36, and similarly PM in the exhaust gas is continuously oxidized. In this way, the temperature of the first DPF 36 can be maintained at a predetermined temperature by continuing to flow a small amount of exhaust gas through the first DPF 36 even when the second DPF 60 is used. For this reason, the first DPF 36 can continuously process PM even when the load is reduced depending on the operating status, and it is possible to continuously regenerate PM even when the operating status changes suddenly. .
[0039] 続いて、エンジン回転数が 1500rpmの運転状態となるような定速走行時等におい ては、排気ガスは第一の DPF36とバイパス通路 37とにほぼ均等に流入する。したが つて、第一の DPF36に流入した排気ガスは、排気ガス中に含まれる PMの一部が連 続酸化処理される。一方、ノ ィパス通路 37に流入した排気ガスは、排気ガス出口 34 aにおいて、第一の DPF36を通過して連続酸化処理された排気ガスと混合され第二 の DPF60に流入する。そして、第二の DPF60において連続酸化処理される。この 際、排気ガスのほぼ半分量を第一の DPF36において酸化処理しているので、第二 の DPF60における排気ガスの酸化処理量を少なくすることができる。  [0039] Subsequently, during constant speed running or the like where the engine speed is 1500 rpm, the exhaust gas flows into the first DPF 36 and the bypass passage 37 almost evenly. Therefore, a part of PM contained in the exhaust gas is continuously oxidized in the exhaust gas flowing into the first DPF36. On the other hand, the exhaust gas flowing into the no-pass passage 37 passes through the first DPF 36 at the exhaust gas outlet 34a and is mixed with the exhaust gas subjected to the continuous oxidation treatment and flows into the second DPF 60. Then, continuous oxidation treatment is performed in the second DPF60. At this time, since almost half of the exhaust gas is oxidized in the first DPF 36, the amount of exhaust gas oxidized in the second DPF 60 can be reduced.
[0040] 続いて、エンジン回転数が 500rpmの運転状態となるようなアイドリング時、長い下 り坂走行時、高速走行からの減速時等においては、排気ガスの多くは第一の DPF3 6へ流入し、残りの排気ガスがバイパス通路 37を通過する。この場合は、第一の DPF 36は第二の DPF60よりもエンジンに近い位置に設けられているので、冷却される前 の酸化処理可能な温度の排気ガスを導入することができる。特に、排気ガスの一部 の PMが酸化処理される際に燃焼熱が生じるため、第一の DPF36を通過した排気ガ スは、温度が維持されており、第二の DPF60においても酸化処理することが可能と なる。  [0040] Subsequently, most of the exhaust gas flows into the first DPF3 6 when idling such that the engine speed is 500 rpm, during long downhill driving, or when decelerating from high speed driving. The remaining exhaust gas passes through the bypass passage 37. In this case, since the first DPF 36 is provided at a position closer to the engine than the second DPF 60, it is possible to introduce the exhaust gas at a temperature capable of being oxidized before being cooled. In particular, combustion heat is generated when a part of the exhaust gas PM is oxidized, so the temperature of the exhaust gas that has passed through the first DPF 36 is maintained, and the second DPF 60 is also oxidized. It becomes possible.
[0041] また、アイドリング時、長い下り坂走行時、高速走行からの減速時等が長時間続き、 排気ガスの温度が第一の DPF36の酸化処理可能な温度よりも低い状態が続いた場 合には、第一の DPF36により捕集した PMを燃焼除去することができず目詰まりが生 じるので、第一の DPF36の圧力損失が増大する。そのため、この場合には多くの排 気ガスはバイパス通路 37へ流入することとなる。これにより、第一の DPF36が目詰ま りにより破損することを防止できる。 [0042] 上記実施の形態(1)のディーゼルエンジンの排気浄化装置によれば、切替弁等を 使用することなぐ排気ガスの流量に応じて第一の DPF36とバイパス通路 37とに適 当な割合で排気ガスを流すことが可能となる。具体的には排気ガスの流量が少なぐ 排気ガスの温度が低い場合には多くの排気ガスを第一の DPF36で酸化処理するこ とが可能となり、一方排気ガスの流量が大きぐ排気ガスの温度が高い場合には多く の排気ガスをバイパス通路を通過させ第二の DPF60で酸化処理することが可能とな る。 [0041] Also, when idling, long downhill running, deceleration from high speed running, etc. continues for a long time, and the exhaust gas temperature is lower than the temperature at which the first DPF36 can be oxidized. In this case, PM collected by the first DPF36 cannot be burned and removed, resulting in clogging, and the pressure loss of the first DPF36 increases. Therefore, in this case, a large amount of exhaust gas flows into the bypass passage 37. This prevents the first DPF 36 from being damaged due to clogging. [0042] According to the exhaust purification system for a diesel engine of the above embodiment (1), the ratio suitable for the first DPF 36 and the bypass passage 37 according to the flow rate of the exhaust gas without using a switching valve or the like. It becomes possible to flow exhaust gas. Specifically, the exhaust gas flow rate is low. When the exhaust gas temperature is low, it is possible to oxidize a large amount of exhaust gas with the first DPF 36, while the exhaust gas flow rate is high. When the temperature is high, a lot of exhaust gas can pass through the bypass passage and be oxidized by the second DPF60.
[0043] また、エンジンの始動直後、停車中のアイドリング時、渋滞時の低速走行時等のェ ンジンの低負荷時が長時間続いた場合には、第一の DPF36により捕集した PMを燃 焼除去することができず、第一の DPF36に目詰まりが生じることとなる。上記実施の 形態(1)の排気浄化装置によれば、第一の DPF36に目詰まりが生じ、その結果排 気の流れの抵抗が増大した場合にも、自動的に排気ガスの多くがバイパス通路へ流 れることになるため、 目詰まりによる第一の DPF36の破損が防止される。  [0043] Also, if the engine is under low load for a long time, such as when the engine is started, idling while the vehicle is stopped, or when driving at a low speed during traffic jams, the PM collected by the first DPF 36 is burned. It cannot be burned off and the first DPF36 will become clogged. According to the exhaust purification system of the above embodiment (1), even when the first DPF 36 is clogged and as a result the resistance of the exhaust flow increases, most of the exhaust gas is automatically passed through the bypass passage. This prevents the first DPF 36 from being damaged by clogging.
[0044] また、切替弁、切替弁を動作させるァクチユエータ、切替弁を制御する制御装置等 を設ける必要ないため装置構造が非常に単純化され低コストで製造することが可能と なる。さらには、切替弁に付随する装置が省略されるので装置全体として小型化され るため、多くの車種に対して装着することが可能となる。また、第一の DPF36がケー シング 31内に収納されたコンパクトな形状となっているため、排気ガスの温度が高い 高負荷運転時において第一の DPF36及びバイパス通路 37を通過する排気ガスが 周辺機器に熱的な弊害を与えることが防止される。  [0044] Further, since there is no need to provide a switching valve, an actuator for operating the switching valve, a control device for controlling the switching valve, etc., the device structure can be greatly simplified and manufactured at low cost. Furthermore, since the device associated with the switching valve is omitted, the entire device is miniaturized, so that it can be mounted on many vehicle types. In addition, since the first DPF 36 is housed in the casing 31 and has a compact shape, the exhaust gas passing through the first DPF 36 and the bypass passage 37 is not It is possible to prevent the device from being thermally detrimental.
[0045] また、本発明の排気浄化装置は、特に標準積載量が 4t以上の中型トラックに好適 に用いられる。小型トラックと比較して中型トラックでは発進時等において排気温度の 立ち上がりが大きいので、 PMを連続再生処理可能な温度に達しやすい。また、通常 の定速走行時等からアイドリング時、低速走行時、高速走行からの減速時等に移行 した場合にも、排気ガスが比較的長時間高い温度で保たれるので、 PMを連続再生 処理すること力 S可能となる。このように、中型トラックにおいては、排気ガスの温度が P Mを連続再生可能な温度よりも低い温度となる時間が少ないため、本発明の排気浄 化装置のように第一の DPFに常に排気ガスが流入する場合にも好適に使用すること ができる。 [0045] In addition, the exhaust emission control device of the present invention is preferably used particularly for a medium truck having a standard load capacity of 4 t or more. Compared to small trucks, medium trucks tend to reach a temperature at which PM can be continuously regenerated, as the exhaust temperature rises more rapidly when starting. In addition, even when shifting from normal constant speed driving to idling, low speed driving, deceleration from high speed driving, etc., the exhaust gas is kept at a high temperature for a relatively long time, so PM is continuously regenerated. The ability to process S is possible. In this way, in the medium-sized truck, the exhaust gas temperature is always lower than the temperature at which PM can be continuously regenerated, so that the exhaust gas is always in the first DPF as in the exhaust purification device of the present invention. Should also be used in case of inflow Can do.
産業上の利用可能性 Industrial applicability
この発明は、ディーゼルエンジンにおいて、カーボンを主成分とする粒子状物質 (P M)の排出を低減する目的に利用できる。  The present invention can be used for the purpose of reducing emission of particulate matter (PM) containing carbon as a main component in a diesel engine.

Claims

請求の範囲 The scope of the claims
[1] ディーゼルエンジンの排気ガスに含まれるパティキュレートマターを捕集して処理 する第一の DPFと、該第一の DPFと並設されたバイパス通路と、を有し、  [1] It has a first DPF that collects and processes particulate matter contained in exhaust gas of a diesel engine, and a bypass passage arranged in parallel with the first DPF,
前記第一の DPFは、エンジンの低負荷時には排気ガスの多くを前記第一の DPF に流通させるとともに、エンジンの高負荷時には排気ガスの多くを前記バイパス通路 に流通させる圧力損失を有するディーゼルエンジンの排気浄化装置。  The first DPF is a diesel engine having a pressure loss that distributes most of the exhaust gas to the first DPF when the engine is under low load and distributes most of the exhaust gas into the bypass passage when the engine is under high load. Exhaust purification device.
[2] 請求の範囲 1記載のディーゼルエンジンの排気浄化装置において、第一の DPFは 、エンジンの低負荷時には排気ガス全流量の 55〜75vol%を前記第一の DPFに流 通させるとともに、エンジンの高負荷時には排気ガス全流量の 65〜85vol%を前記 バイパス通路に流通させる圧力損失を有することを特徴とするディーゼルエンジンの 排気浄化装置。  [2] In the exhaust emission control device for a diesel engine according to claim 1, the first DPF allows 55 to 75 vol% of the total exhaust gas flow rate to flow through the first DPF when the engine is under a low load, and the engine An exhaust purification device for a diesel engine, characterized by having a pressure loss that causes 65 to 85 vol% of the total exhaust gas flow rate to flow through the bypass passage when the load is high.
[3] 請求の範囲 1又は 2記載のディーゼノレエンジンの排気浄化装置において、前記第 一の DPFはケーシングの内部に設けられ DPFユニットを構成し、前記ケーシングと 前記第一の DPFとの間の空間にバイパス通路が形成されたことを特徴とするディー ゼルエンジンの排気浄化装置。  [3] In the exhaust purification apparatus for a diesel engine according to claim 1 or 2, the first DPF is provided inside a casing to constitute a DPF unit, and is disposed between the casing and the first DPF. An exhaust emission control device for a diesel engine, characterized in that a bypass passage is formed in the space.
[4] 請求の範囲 3記載のディーゼルエンジンの排気浄化装置において、第一の DPFは ケーシングの排気ガス入口の流路中心軸線上に配置されたことを特徴とするディー ゼルエンジンの排気浄化装置。  [4] The exhaust emission control device for a diesel engine according to claim 3, wherein the first DPF is disposed on a flow path central axis of the exhaust gas inlet of the casing.
[5] 請求の範囲 3記載のディーゼルエンジンの排気浄化装置において、第一の DPFと ディーゼルエンジンとを接続する排気管が断熱材によって被覆されたことを特徴とす るディーゼルエンジンの排気浄化装置。  [5] An exhaust emission control device for a diesel engine according to claim 3, wherein an exhaust pipe connecting the first DPF and the diesel engine is covered with a heat insulating material.
[6] 請求の範囲 1、 2、 4のいずれか記載のディーゼルエンジンの排気浄化装置におい て、第一の DPFとディーゼルエンジンとを接続する排気管が断熱材によって被覆さ れたことを特徴とするディーゼルエンジンの排気浄化装置。 [6] In the exhaust gas purification device for a diesel engine according to any one of claims 1, 2, and 4, the exhaust pipe connecting the first DPF and the diesel engine is covered with a heat insulating material. Diesel engine exhaust purification system.
[7] 請求の範囲 1、 2、 4、 5のいずれか記載のディーゼルエンジンの排気浄化装置にお いて、第一の DPFより下流側に第二の DPFが設けられたことを特徴とするディーゼ ルエンジンの排気浄化装置。 [7] The diesel engine exhaust gas purification apparatus according to any one of claims 1, 2, 4, and 5, wherein the second DPF is provided downstream of the first DPF. Engine exhaust purification system.
[8] 請求の範囲 3記載のディーゼルエンジンの排気浄化装置において、第一の DPFよ り下流側に第二の DPFが設けられたことを特徴とするディーゼルエンジンの排気浄 化装置。 [8] In the exhaust emission control device for a diesel engine according to claim 3, the first DPF A diesel engine exhaust purification system, characterized in that a second DPF is installed on the downstream side.
請求の範囲 6記載のディーゼルエンジンの排気浄化装置において、第一の DPFよ り下流側に第二の DPFが設けられたことを特徴とするディーゼルエンジンの排気浄 化装置。  The diesel engine exhaust gas purification apparatus according to claim 6, wherein the second DPF is provided downstream of the first DPF.
請求の範囲 7記載のディーゼルエンジンの排気浄化装置において、第一の DPFが ディーゼルエンジンよりも第二の DPFに近い位置に設けられていることを特徴とする ディーゼルエンジンの排気浄化装置。  8. The exhaust emission control device for a diesel engine according to claim 7, wherein the first DPF is provided closer to the second DPF than the diesel engine.
請求の範囲 8または 9記載のディーゼルエンジンの排気浄化装置において、第一 の DPFがディーゼルエンジンよりも第二の DPFに近い位置に設けられていることを 特徴とするディーゼルエンジンの排気浄化装置。  The exhaust emission control device for a diesel engine according to claim 8 or 9, wherein the first DPF is provided at a position closer to the second DPF than the diesel engine.
請求の範囲 7記載のディーゼルエンジンの排気浄化装置において、 DPFユニット の排気ガス出口の中心軸が第二の DPFの流路中心軸と同一線上となるように前記 D PFユニットが配置されたことを特徴とするディーゼルエンジンの排気浄化装置。 請求の範囲 8または 9記載のディーゼルエンジンの排気浄化装置において、 DPF ユニットの排気ガス出口の中心軸が第二の DPFの流路中心軸と同一線上となるよう に前記 DPFユニットが配置されたことを特徴とするディーゼルエンジンの排気浄化装 置。  In the exhaust emission control device for a diesel engine according to claim 7, the DPF unit is arranged so that the central axis of the exhaust gas outlet of the DPF unit is collinear with the central axis of the flow path of the second DPF. Diesel engine exhaust gas purification device. In the exhaust purification system for a diesel engine according to claim 8 or 9, the DPF unit is disposed so that the central axis of the exhaust gas outlet of the DPF unit is collinear with the central axis of the flow path of the second DPF. An exhaust gas purification system for diesel engines.
請求の範囲 10記載のディーゼルエンジンの排気浄化装置において、 DPFユニット の排気ガス出口の中心軸が第二の DPFの流路中心軸と同一線上となるように前記 D PFユニットが配置されたことを特徴とするディーゼルエンジンの排気浄化装置。 請求の範囲 11記載のディーゼルエンジンの排気浄化装置において、 DPFユニット の排気ガス出口の中心軸が第二の DPFの流路中心軸と同一線上となるように前記 D PFユニットが配置されたことを特徴とするディーゼルエンジンの排気浄化装置。  In the exhaust emission control device for a diesel engine according to claim 10, the DPF unit is arranged so that the central axis of the exhaust gas outlet of the DPF unit is collinear with the central axis of the flow path of the second DPF. Diesel engine exhaust gas purification device. In the exhaust emission control device for a diesel engine according to claim 11, the DPF unit is disposed so that the central axis of the exhaust gas outlet of the DPF unit is collinear with the central axis of the flow path of the second DPF. Diesel engine exhaust gas purification device.
PCT/JP2007/056244 2006-03-27 2007-03-26 Exhaust gas purifier for diesel engine WO2007116698A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-086516 2006-03-27
JP2006086516A JP2007262933A (en) 2006-03-27 2006-03-27 Exhaust emission control device of diesel engine

Publications (1)

Publication Number Publication Date
WO2007116698A1 true WO2007116698A1 (en) 2007-10-18

Family

ID=38580997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056244 WO2007116698A1 (en) 2006-03-27 2007-03-26 Exhaust gas purifier for diesel engine

Country Status (2)

Country Link
JP (1) JP2007262933A (en)
WO (1) WO2007116698A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113440881A (en) * 2021-07-02 2021-09-28 金宏气体电子材料(淮安)有限责任公司 Safe and environment-friendly parking method for electronic grade gas purification device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163930A (en) * 1991-12-10 1993-06-29 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JPH10317944A (en) * 1997-05-22 1998-12-02 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2001241316A (en) * 2000-02-29 2001-09-07 Ibiden Co Ltd Exhaust gas emission control device, filter used therein, and exhaust gas emission control method
JP2003148226A (en) * 2001-11-08 2003-05-21 Mitsubishi Motors Corp Exhaust gas flow control apparatus
JP2003155926A (en) * 2001-11-21 2003-05-30 Cataler Corp Exhaust emission control device
JP2004225565A (en) * 2003-01-20 2004-08-12 Sundia:Kk Exhaust emission control device for diesel engine
JP2005299474A (en) * 2004-04-09 2005-10-27 Isuzu Motors Ltd Exhaust gas purification system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163930A (en) * 1991-12-10 1993-06-29 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JPH10317944A (en) * 1997-05-22 1998-12-02 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2001241316A (en) * 2000-02-29 2001-09-07 Ibiden Co Ltd Exhaust gas emission control device, filter used therein, and exhaust gas emission control method
JP2003148226A (en) * 2001-11-08 2003-05-21 Mitsubishi Motors Corp Exhaust gas flow control apparatus
JP2003155926A (en) * 2001-11-21 2003-05-30 Cataler Corp Exhaust emission control device
JP2004225565A (en) * 2003-01-20 2004-08-12 Sundia:Kk Exhaust emission control device for diesel engine
JP2005299474A (en) * 2004-04-09 2005-10-27 Isuzu Motors Ltd Exhaust gas purification system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113440881A (en) * 2021-07-02 2021-09-28 金宏气体电子材料(淮安)有限责任公司 Safe and environment-friendly parking method for electronic grade gas purification device
CN113440881B (en) * 2021-07-02 2022-06-03 金宏气体电子材料(淮安)有限责任公司 Safe and environment-friendly parking method for electronic grade gas purification device

Also Published As

Publication number Publication date
JP2007262933A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP5752797B2 (en) Vehicle internal combustion engine having exhaust gas recirculation function
JP3876705B2 (en) Diesel engine exhaust gas purification system
JP2014520228A (en) Driving method of automobile diesel engine
JP2008505272A (en) Internal combustion engine exhaust system
WO2006064835A1 (en) Exhaust gas purification device and control device for diesel engine
KR100966782B1 (en) Process and device for treating exhaust fumes from an internal combustion engine
EP1402946B1 (en) An exhaust purification catalyst for a compression ignition engine
KR101035995B1 (en) Exhaust gas filtering device
JP2009007977A (en) Exhaust emission control device for internal combustion engine
JP2015206274A (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
KR20170119843A (en) Exhaust gas recirculation apparatus
JP2009091983A (en) Exhaust emission control device
JP3923276B2 (en) Engine exhaust treatment method and apparatus
JP4982162B2 (en) Exhaust purification device
JP2006242175A (en) Device and method for continuously regenerating pm
JP2018145869A (en) Exhaust emission control system and sulfur poisoning restriction method for exhaust emission control system
JP2014114728A (en) Egr cooler
JP2008050946A (en) Exhaust gas recirculation system for internal combustion engine
WO2007116698A1 (en) Exhaust gas purifier for diesel engine
JP2002322909A5 (en)
JP2010101303A (en) Exhaust emission control device of internal combustion engine
JP4400194B2 (en) Diesel engine exhaust purification system
JP2008232055A (en) Exhaust emission control system for internal combustion engine
JP2008133760A (en) Exhaust emission control device
JP5233596B2 (en) Exhaust gas purification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - EPO FORM 1205A DATED 03.12.08.

122 Ep: pct application non-entry in european phase

Ref document number: 07739682

Country of ref document: EP

Kind code of ref document: A1