WO2007116679A1 - Optical measurement instrument and optical measurement method - Google Patents

Optical measurement instrument and optical measurement method Download PDF

Info

Publication number
WO2007116679A1
WO2007116679A1 PCT/JP2007/056190 JP2007056190W WO2007116679A1 WO 2007116679 A1 WO2007116679 A1 WO 2007116679A1 JP 2007056190 W JP2007056190 W JP 2007056190W WO 2007116679 A1 WO2007116679 A1 WO 2007116679A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
inspection object
reflected
objective lens
lens system
Prior art date
Application number
PCT/JP2007/056190
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeo Kamiya
Original Assignee
Nidec-Read Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec-Read Corporation filed Critical Nidec-Read Corporation
Publication of WO2007116679A1 publication Critical patent/WO2007116679A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Definitions

  • the present invention relates to an optical measurement apparatus and an optical measurement method capable of measuring an inspection object three-dimensionally. More specifically, the shape and height of a fine inspection object such as a bump electrode of a semiconductor package are accurately measured.
  • the present invention relates to an optical measurement apparatus and an optical measurement method that can be measured.
  • FIG. 7 shows a typical white light interference type three-dimensional microscope 100 as an example. It consists of a first light source 10, such as a halogen lamp, a convex lens 11, a half prism 120, and an objective lens.
  • a first light source 10 such as a halogen lamp
  • a convex lens 11 such as a convex lens
  • a half prism 120 such as a half prism
  • an objective lens such as a halogen lamp, a convex lens 11, a half prism 120, and an objective lens.
  • the inspection object 18 is placed on the inspection table 17.
  • the light from the first light source 10 is deflected in the direction of the test object 18 by the half prism 120 via the convex lens 11. After passing through the objective lens 131, the light is split by the beam splitter 132 into light B 1 that passes through the objective lens 131 and light B 2 that is reflected toward the reference mirror 133.
  • the light B 1 When the light B 1 is reflected from the inspection object 18, the light B 1 travels in the reverse direction, passes through the half prism 120, is focused by the image lens 15, and reaches the CCD camera 140.
  • the light B2 split by the beam splitter 132 is reflected by the reference mirror 133 and follows a reverse path, and is focused by the image lens 15 and reaches the CCD camera 140 in the same manner as the light B1.
  • the objective lens system 130 including the objective lens 131, the beam splitter 132, and the reference mirror 133 can move upward or downward along the optical axis of the light B1.
  • the length of the optical axis of the light B1 also changes.
  • the distance between the objective lens 131 and the reference mirror 133 is constant. Therefore, there is a difference between the optical axis length of the light B1 and the optical axis length of the light B2, and this difference is It will change as the series 130 moves.
  • the relative phase difference between the two lights changes. If the relative phase difference is 0, the intensities of those lights are intensified, and if the phase difference is 180 degrees, the intensities cancel each other. In addition, the intensity changes like a sine curve between these phase differences.
  • the objective lens system 130 moves up and down, the light B1 and the light B2 generate interference fringes representing a change in intensity at a height corresponding to the unevenness of the surface of the inspection object.
  • the interference fringes are observed at CCD force Mela 140.
  • the white light interferometric 3D microscope uses white light and uses the path difference between the reference path (the optical path reflected by the reference mirror) and the inspection path to the inspection object.
  • the height of the object to be inspected is calculated according to the interference state of white light.
  • a confocal three-dimensional microscope has been conventionally used to measure a minute inspection object.
  • the confocal three-dimensional microscope has a configuration that changes the distance from the object to be inspected by moving the objective lens from top to bottom and a pinhole.
  • the position force of the image of the object to be inspected is gradually focused, and then the focus is defocused again.
  • light is focused on the pinhole, it captures the image of the focused part and synthesizes the image.
  • the synthesized image can reproduce the color of the inspection object.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-201325
  • Patent Document 1 describes a three-dimensional shape having an imaging camera that images an object to be observed through an objective lens and a two-dimensional interferometer that measures the unevenness of the object to be observed.
  • An observation device is disclosed. The device uses two types of light sources as a two-dimensional interferometer, and switches between illumination lamps for observing the object to be observed and the two types of light sources of the two-dimensional interferometer. A shatter etc. is used to perform
  • the white light interference type three-dimensional microscope has a high resolution with respect to the “height”, but has a problem that the obtained image cannot reproduce color tone and brightness.
  • the confocal 3D microscope can obtain images with natural color and brightness. The resolution for the power "height" is low. It is difficult to obtain accuracy, and there are problems.
  • Patent Document 1 switches irradiation between two types of light sources having different wavelengths, an illumination lamp for observing an object to be observed, and two types of light sources of the two-dimensional interferometer. It requires a shatter to perform, and the structure is complicated.
  • the optical measurement apparatus focuses the input first light having the first wavelength on the inspection object, outputs the first reflected light reflected from the inspection object, and inputs the input second light having the second wavelength.
  • the two lights are divided into a second reference light and a second measurement light, the second measurement light is focused on the inspection object, and a second reflected light reflected from the inspection object is output, and the second light is output.
  • An objective lens system that outputs a third reflected light that reflects the reference light and interferes with the second reflected light is provided.
  • the objective lens system outputs the third reflected light by using the first reflected light and the interference between the second reflected light and the third reflected light.
  • a three-dimensional image of the inspection object is generated.
  • the first light may be visible light
  • the second light may be ultraviolet light
  • the objective lens system can include a reflecting means for reflecting the reference light of the measurement light having the second wavelength.
  • the optical measurement apparatus may further include a moving means for moving the objective lens system or the inspection object to change the distance between the inspection object and the objective lens system.
  • the reflecting means can reflect only the second reference light by absorbing or transmitting the first light.
  • An objective lens system comprising: a splitting unit that splits the two light beams into a measurement beam and a reference beam; and a reflecting unit that reflects the reference beam; and a focusing unit that focuses the measurement beam and the first beam onto the object to be inspected.
  • An objective lens system that outputs the measurement light reflected from the object to be inspected, the first light and the reference light reflected by the reflecting means, and the object lens system that is output from the objective lens system and is reflected from the object to be inspected.
  • the first light may be visible light
  • the second light may be ultraviolet light
  • the reflecting means reflects only the reference light by absorbing or transmitting the first light.
  • a moving means for moving the objective lens system or the inspection object to change the distance between the inspection object and the objective lens system may be provided.
  • the reflected light of the first light from the inspection object and the reflected light of the measurement light from the inspection object and the reflection means are reflected. It may be equipped with a separation means to separate the reference light.
  • the optical measurement method for measuring the three-dimensional shape of the inspection object includes a step of acquiring a color image of the inspection object with the first light, and a predetermined light of the inspection object with the second light.
  • the process of obtaining interference fringe data of height, the process of generating interference fringes in the second light by changing the height of the object to be inspected relatively stepwise, and the interference from the color image of the object to be inspected A step of extracting image data corresponding to the fringe data; and a step of generating an image representing the three-dimensional shape of the inspection object by combining the image data extracted for each interference fringe data.
  • a captured image can be obtained as a color image (an image having color tone and brightness).
  • the inspection object can be observed three-dimensionally with a simple structure.
  • FIG. 1 is a schematic side view of an optical measuring device according to an embodiment of the present invention.
  • FIG. 2 is a partial schematic side view for explaining the principle of generation of interference fringes due to the difference in the optical path length in the optical measurement apparatus according to FIG. 1.
  • FIG. 3 shows a flow chart when observing an inspection object using the optical measuring apparatus according to FIG.
  • FIG. 4 (a) to FIG. 4 (e) are diagrams for explaining an example of acquiring an image when observing an inspection object using the optical measurement apparatus according to FIG.
  • FIG. 5 is a combination of FIGS. 4 (a) to 4 (e).
  • FIG. 6 is a three-dimensional representation of the image of FIG.
  • FIG. 7 is a schematic side view of a conventional white light interference type three-dimensional microscope. Explanation of symbols
  • FIG. 1 shows an optical measuring apparatus 1 according to an embodiment of the present invention.
  • the device 1 includes a first light source 10, a second light source 20, a convex lens 11, a first half mirror 22, a second half mirror 24, a third half mirror 26, and an objective lens system 25.
  • the first imaging means 28, the second imaging means 29, the control means 23, and the mounting table 17 are provided.
  • the first light source 10 is a light source that emits light for extracting color information from the inspection object 18.
  • the light from the first light source 10 needs to be a color that can be seen by humans, and uses visible light.
  • the light from the first light source 10 for example, white light having a wavelength of about 500 nm to about 700 ⁇ m can be used.
  • the first light source 10 may be a halogen lamp or the like that outputs such light.
  • the second light source 20 is a light source that can output light having a wavelength different from that of the first light source 10.
  • the second light source 20 outputs a wavelength different from that of the light from the first light source 10, and as will be described in detail later, the light from the second light source 20 causes interference, and the height information of the inspection object 18 is obtained. Make it possible to get.
  • ultraviolet light having a wavelength of about 350 ° can be used.
  • the light of the second light source 20 as described above is not particularly limited as long as it has a wavelength different from that of the light of the first light source 10, but since the inspection object 18 is fine, ultraviolet light having a wavelength shorter than that of infrared light. Is used.
  • the convex lens 11 is used to make the light diverged from the first light source 10 into parallel light.
  • the first half mirror 22 transmits the first light output from the first light source 10 and reflects the second light from the second light source 20 toward the second half mirror 24.
  • the first light from the first light source 10 and the second light from the second light source 20 can be synthesized.
  • the second half mirror 24 guides the synthesized first light and second light to an objective lens system 25 described later.
  • the second half mirror 24 transmits reflected light from an objective lens system 25 described later.
  • the objective lens system 25 irradiates the inspection object 18 with the first light and the second light to generate reflected light, and also generates interference light for "height" measurement from the second light. .
  • the objective lens system 25 separates the synthesized first light and second light into first light for obtaining “color” information and second light for obtaining “height” information.
  • the objective lens system 25 further separates and interferes with the separated second light.
  • the objective lens system 25 separates the first light and the second light from the combined light of the incident first light and second light, and the first light is guided to the inspection object 18.
  • the second light is further separated so that one light is guided to the inspection object 18 and the other light is used as an interference light. Further, these three lights are used by the inspection object or the reference mirror. Output as reflected light.
  • the objective lens system 25 irradiates the inspection object 18 with the separated first light and guides the imaging light reflected from the inspection object 18 to a third half mirror 26 described later.
  • the objective lens system 25 irradiates the inspection object 18 with the separated second light, and the measurement light reflected from the inspection object 18 and the reference light for causing interference with the measurement light.
  • the interference light from the measurement light and reference light is guided to the third half mirror 26.
  • the objective lens system 25 includes an objective lens 251, a fourth half mirror 252, and a reference mirror 253.
  • the objective lens 251 transmits the first light and the second light incident on the objective lens system 25 to be inspected 1
  • the fourth half mirror 252 guides the first light to the inspection object 18 and reflects the light C1 that passes the second light toward the inspection object 18 in a direction of force and is reflected by the reference mirror 253. Separated into directional light C2.
  • the light C1 is reflected by the inspection object 18 and becomes measurement light, and the light C2 is a reference mirror described later.
  • the reference mirror 253 is a mirror that reflects the second light.
  • the fourth half mirror 252 separates the second light into two. However, since the first light is separated into two at the same time, the reference mirror 253 separates the first light. A mirror that transmits and reflects only the second light is used.
  • a filter that absorbs one light and transmits only the second light can also be disposed.
  • a mirror that reflects the first light and the second light can be used as the reference mirror.
  • a reflecting means for reflecting only the second reference light by absorbing or transmitting the first light is configured.
  • the third half mirror 26 reflects the first light imaging light of the inspection object that has passed through the second half mirror 24, the second light measurement light reflected from the inspection object 18, and the reference mirror 253. This is a mirror for separating the reference light.
  • the third half mirror 26 allows the first imaging light of the inspection object that has passed through the second half mirror 24 to pass through and reaches the first imaging means 28, and the third half mirror 2
  • the measurement light of the second light reflected from the inspection object 18 and the reference light reflected from the reference mirror 253 are reflected and guided to the second imaging device 29.
  • the optical measuring device 1 further includes a lens 15 that bundles the first light beam that has passed through the third half mirror 26, and a first imaging device 28 that forms an image based on the first light power. And a second imaging device 29 that forms an image from ultraviolet light.
  • a dichroic mirror that selectively reflects or transmits different wavelengths such as the first light and the second light can be used.
  • the objective lens 251, the fourth half mirror 252 and the reference mirror 253 constitute an objective lens system 25.
  • the objective lens system 25 can move up and down along the optical axes of the first light D1 and the ultraviolet measurement light C1.
  • the objective lens system 25 can be moved by, for example, a piezo element (not shown).
  • the scanning range of the measurement target portion of the inspection object 18 by the movement is, for example, a range obtained by adding several tens of meters to the height of the measurement target portion. For example, if the height of the part to be measured to the top of the bottom force is 60 m, the scanning range is about 70 / z m.
  • the scanning range can be changed by changing the setting of the driving range of a driving device (not shown) that moves the objective lens system 25 according to the height of the measurement target portion. .
  • the reading resolution of the height data by the scanning is about 0.1 nm, and the repetition accuracy is about 10 nm. Since the scanning is performed while changing only a distance smaller than the depth of field of the objective lens 251, the number of movements depends on the height of the measurement target portion of the inspection object 18. It is determined. For each movement, the first imaging device 28 and the second imaging device 29 obtain images of the first light and the second light.
  • the first and second imaging devices 28 and 29 are connected to the control device 23 and store the data every time an image is obtained. Further, the control device 23 generates a three-dimensional image of the measurement target portion of the inspection object 18 based on these data.
  • FIG. 2 is a diagram showing the relationship between the distance between the objective lens 251 and the reference mirror 253 and the distance between the objective lens 251 and the inspection object 18.
  • the distance from the objective lens 251 to the reference mirror 253 and the distance from the objective lens 251 to the object to be inspected 18 are the same from the objective lens 251 to the reflecting surface of the beam splitter 252. Therefore, the reflection surface force of the beam splitter 252 is also expressed as L1 as the distance to the inspection object 18, and the reflection surface force of the beam splitter 252 is expressed as L2 as the distance to the reference mirror 253.
  • the distance between the objective lens 251 and the reference mirror 253 is fixed. That is, the reflecting surface force of the beam splitter 252 is also constant at the distance L2 to the reference mirror 253.
  • the objective lens system 25 including them moves up and down along the optical axes of the first light D1 and the ultraviolet measurement light C1
  • the distance between the objective lens 251 and the inspection object 18 that is, The distance L 1 from the passage position of the beam splitter 252 to the inspection object 18 varies according to the movement of the objective lens system 25.
  • the optical path length determined by L1 is different from the optical path length determined by L2.
  • phase difference occurs in the phase of light passing through two different optical path lengths L1 and L2. If the phase difference is ⁇ , the intensity of the light is increased, and if the phase difference is 180 degrees, the intensity is canceled. Also, between these phase differences, the combined intensity changes to draw a sine curve.
  • the objective lens system 25 moves upward or downward, a difference occurs in the optical path lengths (L1 and L2) of the two light portions C 1 and C2 of the second light, and their relative phases differ. It will be. Therefore, the reference light C2 of the second light reflected from the reference mirror 253 and the measurement light C1 reflected from the inspection object 18 have a height corresponding to the unevenness of the surface of the inspection object 18 and have an intensity. Interference fringes representing changes occur.
  • the CCD camera 29 can observe the interference fringes. it can.
  • the control device 23 obtains high-level data from the interference fringes observed by the CCD camera 29. For example, when one wavelength is 350 nm, a resolution about 1/1000 of that can be obtained.
  • FIG. 3 is a flowchart of the operation for obtaining the image of the inspection object in the optical measurement apparatus of FIG.
  • step S31 the inspection object 18 is placed on the inspection table 17.
  • step S32 it is determined which region of the inspection object 18 is to be measured, and a predetermined position is focused.
  • step S33 the first light source 10 and the second light source 20 are activated to output the first light and the second light, respectively.
  • the first light When the first light is output from the first light source 10, the first light is converted into parallel light by the convex lens 11, passes through the first half mirror 22, and reaches the second half mirror 24. In the second half mirror 24, the first light is deflected toward the inspection object 18. The first light is further focused toward the inspection object 18 by the object lens 251. When the first light passing through the objective lens 251 passes through the fourth half mirror 252, a part of the first light D 2 is deflected toward the reference mirror 253. The first light D2 that has reached the reference mirror 253 is absorbed there and is not reflected.
  • the first light D1 that has passed through the fourth half mirror 252 irradiates the object 18 to be inspected, and is then reflected back to the original path. That is, the first light D 1 reflected from the inspection object 18 passes through the fourth half mirror 252, the objective lens 251 and the second half mirror 24.
  • the first light that has passed through the second half mirror 24 further passes through the third half mirror 26 and is focused toward the first imaging device 28 by the objective lens 15.
  • the second light output from the second light source 20 at the same time as the first light is output from the first light source 10 is reflected by the first half mirror 22 toward the second half mirror 24, and further. Further, the light is deflected toward the inspection object 18 by the second half mirror 24. The deflected second light is focused toward the inspection object 18 by the objective lens 251. Then the second light The fourth half mirror 252 separates the reference light C2 reflected toward the reference mirror 253 and the measurement light C1 passing therethrough.
  • the reference light C2 that has reached the reference mirror 253 returns to its original path after being reflected there.
  • the reference light C 2 that has reached the fourth half mirror 252 is reflected by the fourth half mirror 252 toward the objective lens 251.
  • the second measurement light C 1 that has passed through 252 passes through the objective lens 251 and then through the second half mirror 24.
  • the second measurement light C 1 and the reference light C 2 that have passed through the second half mirror 24 are deflected toward the second imaging device 29 by the third half mirror 26.
  • step S 34 the first imaging device 28 captures a color image of the measurement area of the inspection object 18 by the first light reflected from the inspection object 18. Further, the second imaging device 29 detects the interference fringes generated according to the difference in the path between the measurement light C1 and the reference light C2. Data of the first and second imaging devices 28 and 29 are stored in a storage device (not shown) of the control device 23.
  • step S35 it is determined whether or not the control device 23 has measured all the measurement target areas of the inspected object (whether the image has been acquired), and the measurement area is not yet observed.
  • step S36 the objective lens system 25 is moved upward or downward by a predetermined distance, and in the same manner as described above, the predetermined portion of the object to be inspected by the first light and the second light. Take an image. The imaging is repeated a predetermined number of times, and each data is stored in the storage device of the control device 23 for each imaging.
  • FIG. 4 (a) to Fig. 4 (e) show examples of images when one measurement target part of the inspected object 18 is observed in order along the height direction by the optical measuring device 1 shown in Fig. 1. Show.
  • the interference fringes are generated when the second light is measured.
  • an enlarged color image of the test object 18 can be obtained from the first light.
  • the color image includes a clear image within the range of the depth of field and an image that is out of focus and out of focus.
  • the height of the inspection object in which the interference fringes are generated by the second light is also a position where the first light is focused on the height position of the inspection object. Therefore, it is necessary to extract only the portion corresponding to the interference fringes in the color image obtained by the first light. This is the image shown in FIGS. 4 (a) to 4 (e).
  • FIG. 4 (a) to FIG. 4 (e) show five measurement regions taken by the first imaging device 28 and the second imaging device 29 by moving the objective lens system 2 by a predetermined distance. .
  • the moving distance is shallower than the depth of field of the objective lens 251. For each distance, the object 18 is photographed along the height direction while moving the objective lens system 25.
  • FIG. 4 (a) is an image of the portion 40a at the highest position of the object to be inspected!
  • FIG. 4 (e) is an image of the portion 40e at the lowest position of the inspection object where the interference fringes are generated.
  • 4 (b), 4 (c) and 4 (d) show that the objective lens system 2 is moved by a predetermined distance between the portion 40a shown in FIG. 4 (a) and the portion 40e shown in FIG. 4 (e). This is an image of the portions 40b, 40c, and 40d where the interference fringes obtained when moving and photographed.
  • FIGS. 4 (a) to 4 (e) When the images shown in FIGS. 4 (a) to 4 (e) are combined in the height direction, an image as shown in FIG. 5 is obtained.
  • the measurement since the measurement is performed in the height direction for each distance shorter than the depth of field, there is a color image between two interference fringe occurrence positions with different heights. Shows only the position where the color image is extracted, such as the interference fringe, as a line, and the image in the height direction is omitted.
  • FIG. 6 three-dimensionally represents the measurement target portion 40 of the inspection object 18.
  • the second imaging device 29 obtains the height data of the measurement portion of the inspection object from the interference fringe data of the second light obtained in the above.
  • image data of a portion corresponding to the interference fringe is extracted from the color image data of the measurement portion of the inspection object by the first light corresponding to the height data. Extract The obtained image data is combined in the height direction to generate a three-dimensional image of the inspection object.
  • the example in which the objective lens system 25 is moved up and down has been described.
  • the objective lens system 25 is not powered, and the inspection table 17 on which the inspection object 18 is placed is illuminated. You may move it up and down along the axis.
  • the objective lens 251 is disposed on the incident side to the fourth half mirror 252, but may be disposed on the side facing the object 18 to be measured on the exit side of the fourth half mirror 252.
  • a half prism may be used instead of the half mirror.

Abstract

An optical measurement instrument for observing an inspection object three-dimensionally by a color image through a simple structure. The optical measurement instrument comprises an objective lens system for outputting first reflection light reflected from the inspection object by focusing first light of first wavelength inputted onto the inspection object, splitting second light of second wavelength inputted into second reference light and second measurement light, outputting second reflection light reflected from the inspection object by focusing second measurement light onto the inspection object, and outputting third reflection light interfering with the second reflection light by reflecting the second reference light. A three-dimensional image of the inspection object is formed using the first reflection light, and interference of the second reflection light and the third reflection light.

Description

明 細 書  Specification
光学測定装置及び光学測定方法  Optical measuring apparatus and optical measuring method
技術分野  Technical field
[0001] 本発明は被検査物を三次元的に測定できる光学測定装置及び光学測定方法に関 し、より詳しくは、半導体パッケージのバンプ電極等の微細な被検査物の形状や高さ を正確に測定することのできる光学測定装置及び光学測定方法に関する。  TECHNICAL FIELD [0001] The present invention relates to an optical measurement apparatus and an optical measurement method capable of measuring an inspection object three-dimensionally. More specifically, the shape and height of a fine inspection object such as a bump electrode of a semiconductor package are accurately measured. The present invention relates to an optical measurement apparatus and an optical measurement method that can be measured.
背景技術  Background art
[0002] 従来、微細な被検査物を測定するために、白色光干渉方式三次元顕微鏡や共焦 点方式三次元顕微鏡が用いられて!/、る。  [0002] Conventionally, a white light interference type three-dimensional microscope or a confocal point type three-dimensional microscope has been used to measure a minute inspection object!
[0003] 図 7は、一例として、典型的な白色光干渉方式 3次元顕微鏡 100を示す。それは、 ハロゲンランプ等の第一光源 10と、凸レンズ 11と、ハーフプリズム 120と、対物レンズFIG. 7 shows a typical white light interference type three-dimensional microscope 100 as an example. It consists of a first light source 10, such as a halogen lamp, a convex lens 11, a half prism 120, and an objective lens.
131と、ビームスプリッタ 132と、基準ミラー 133とを備える。被検査物 18が検査台 17 の上に載置される。 131, a beam splitter 132, and a reference mirror 133. The inspection object 18 is placed on the inspection table 17.
[0004] 第一光源 10からの光は、凸レンズ 11を経由してハーフプリズム 120によって被検 查物 18の方向に偏向される。その光は、対物レンズ 131を通過した後に、ビームスプ リツタ 132によって、それを透過する光 B1と基準ミラー 133に向けて反射される光 B2 とに分割される。  The light from the first light source 10 is deflected in the direction of the test object 18 by the half prism 120 via the convex lens 11. After passing through the objective lens 131, the light is split by the beam splitter 132 into light B 1 that passes through the objective lens 131 and light B 2 that is reflected toward the reference mirror 133.
[0005] 光 B1は、被検査物 18から反射されると、経路を逆にたどり、ハーフプリズム 120を 通過して、イメージレンズ 15によって集束されて CCDカメラ 140に到達する。  When the light B 1 is reflected from the inspection object 18, the light B 1 travels in the reverse direction, passes through the half prism 120, is focused by the image lens 15, and reaches the CCD camera 140.
[0006] 一方、ビームスプリッタ 132によって分割された光 B2は、基準ミラー 133によって反 射されて逆経路をたどり、光 B1と同様に、イメージレンズ 15によって集束されて CCD カメラ 140に到達する。  On the other hand, the light B2 split by the beam splitter 132 is reflected by the reference mirror 133 and follows a reverse path, and is focused by the image lens 15 and reaches the CCD camera 140 in the same manner as the light B1.
[0007] また、対物レンズ 131、ビームスプリッタ 132及び基準ミラー 133を含む対物レンズ 系 130は、光 B1の光軸に沿って上方又は下方に移動することができる。その移動に 伴い、対物レンズ 131と被検査物 18との間の距離が変わるため、光 B1の光軸の長さ も変わる。それに対し、対物レンズ 131と基準ミラー 133との間の距離は一定である。 そのため、光 B1の光軸の長さと光 B2の光軸の長さとの差が生じ、その差は、対物レ ンズ系 130の移動に応じて変化することになる。 [0007] The objective lens system 130 including the objective lens 131, the beam splitter 132, and the reference mirror 133 can move upward or downward along the optical axis of the light B1. Along with the movement, since the distance between the objective lens 131 and the inspection object 18 changes, the length of the optical axis of the light B1 also changes. On the other hand, the distance between the objective lens 131 and the reference mirror 133 is constant. Therefore, there is a difference between the optical axis length of the light B1 and the optical axis length of the light B2, and this difference is It will change as the series 130 moves.
[0008] その光軸の長さの相違により、 2つの光の相対的な位相差が変わることになる。相 対位相差が 0であれば、それらの光の強度は強め合い、位相差が 180度であれば、 強度は打ち消し合う。また、それらの位相差間では、正弦曲線を描くように、強度は 変化する。 [0008] Due to the difference in the length of the optical axis, the relative phase difference between the two lights changes. If the relative phase difference is 0, the intensities of those lights are intensified, and if the phase difference is 180 degrees, the intensities cancel each other. In addition, the intensity changes like a sine curve between these phase differences.
[0009] そのため、対物レンズ系 130の上下への移動に伴い、光 B1及び光 B2は、被検査 物の表面の凹凸に対応した高さで強度の変化を表す干渉縞を発生させる。 CCD力 メラ 140ではその干渉縞が観測されることになる。  [0009] Therefore, as the objective lens system 130 moves up and down, the light B1 and the light B2 generate interference fringes representing a change in intensity at a height corresponding to the unevenness of the surface of the inspection object. The interference fringes are observed at CCD force Mela 140.
[0010] このように、白色光干渉方式 3次元顕微鏡は、白色光を用いて、基準経路 (基準ミラ 一によつて反射される光路)と被検査物までの検査経路との経路差を利用し、白色光 の干渉状態に応じて被検査物の高さを算出している。 [0010] In this way, the white light interferometric 3D microscope uses white light and uses the path difference between the reference path (the optical path reflected by the reference mirror) and the inspection path to the inspection object. The height of the object to be inspected is calculated according to the interference state of white light.
[0011] また、微細な被検査物を測定するために、従来から共焦点方式三次元顕微鏡も用 いられている。共焦点方式三次元顕微鏡は、対物レンズを上から下に移動させて被 検査物との距離を変化させる構成とピンホールとを備える。対物レンズと被検査物と の距離を変化させると、それに伴い、被検査物の画像のピントがはずれた位置力 徐 々に合焦し、それからまたピントが外れるようになる。ピンホールに光が合焦したとき に、その合焦した部分の画像を取り込み、画像を合成する。 [0011] In addition, a confocal three-dimensional microscope has been conventionally used to measure a minute inspection object. The confocal three-dimensional microscope has a configuration that changes the distance from the object to be inspected by moving the objective lens from top to bottom and a pinhole. When the distance between the objective lens and the object to be inspected is changed, the position force of the image of the object to be inspected is gradually focused, and then the focus is defocused again. When light is focused on the pinhole, it captures the image of the focused part and synthesizes the image.
[0012] そのように、共焦点方式三次元顕微鏡では、合焦した部分の画像を取り込むため、 合成された画像は、被検査物の色彩を再現することができる。  As described above, since the confocal three-dimensional microscope captures the image of the focused portion, the synthesized image can reproduce the color of the inspection object.
特許文献 1 :特開 2001— 201325 特許文献 1は、被観察物体を対物レンズを通し て撮像する撮像カメラと、その被観察物体の凹凸を計測する二次元の干渉計とを有 する三次元形状観察装置を開示する。その装置は、二次元の干渉計として、 2種類 の光源を使用し、また、被観察物体を観察するための照明ランプと、その二次元の干 渉計の 2種類の光源との照射の切り換えを行うためのシャツタ等を用いている。  Patent Document 1: Japanese Patent Laid-Open No. 2001-201325 Patent Document 1 describes a three-dimensional shape having an imaging camera that images an object to be observed through an objective lens and a two-dimensional interferometer that measures the unevenness of the object to be observed. An observation device is disclosed. The device uses two types of light sources as a two-dimensional interferometer, and switches between illumination lamps for observing the object to be observed and the two types of light sources of the two-dimensional interferometer. A shatter etc. is used to perform
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 白色光干渉方式三次元顕微鏡は、「高さ」に対する高い分解能を有しているが、得 られる画像は色調や明度が再現できな 、と 、う問題点を有して 、る。 [0014] 共焦点方式三次元顕微鏡は、自然な色調や明度を有する画像を得ることができる 力 「高さ」に対する分解能が低ぐ特に、低倍率では被写界深度が広がり正確な「高 さ」精度を得ることが難し 、と 、う問題点を有して 、る。 The white light interference type three-dimensional microscope has a high resolution with respect to the “height”, but has a problem that the obtained image cannot reproduce color tone and brightness. [0014] The confocal 3D microscope can obtain images with natural color and brightness. The resolution for the power "height" is low. It is difficult to obtain accuracy, and there are problems.
[0015] また、特許文献 1の装置は、波長の異なる 2種類の光源と、被観察物体を観察する ための照明ランプと、その二次元の干渉計の 2種類の光源との照射の切り換えを行う ためのシャツタ等とを必要としており、構造が複雑である。  [0015] In addition, the apparatus of Patent Document 1 switches irradiation between two types of light sources having different wavelengths, an illumination lamp for observing an object to be observed, and two types of light sources of the two-dimensional interferometer. It requires a shatter to perform, and the structure is complicated.
課題を解決するための手段  Means for solving the problem
本発明に係る光学測定装置は、入力される第 1波長の第一光を被検査物へ集束し て被検査物から反射される第 1反射光を出力し、入力される第 2波長の第二光を第 2 参照光と第 2測定光とに分割し、第 2測定光を前記被検査物へ集束して該検査物か ら反射される第 2反射光を出力するとともに、前記第 2参照光を反射して前記第 2反 射光と干渉させる第 3反射光を出力する対物レンズ系を備え、第 1反射光と、第 2反 射光と第 3反射光との干渉とを用いて被検査物の三次元画像を生成する。  The optical measurement apparatus according to the present invention focuses the input first light having the first wavelength on the inspection object, outputs the first reflected light reflected from the inspection object, and inputs the input second light having the second wavelength. The two lights are divided into a second reference light and a second measurement light, the second measurement light is focused on the inspection object, and a second reflected light reflected from the inspection object is output, and the second light is output. An objective lens system that outputs a third reflected light that reflects the reference light and interferes with the second reflected light is provided. The objective lens system outputs the third reflected light by using the first reflected light and the interference between the second reflected light and the third reflected light. A three-dimensional image of the inspection object is generated.
[0016] 第一光は可視光でもよぐ第二光は紫外光でもよい。  [0016] The first light may be visible light, and the second light may be ultraviolet light.
[0017] 対物レンズ系は、第 2波長の測定光の参照光を反射するための反射手段を備える ことができる。  [0017] The objective lens system can include a reflecting means for reflecting the reference light of the measurement light having the second wavelength.
[0018] 本発明に係る光学測定装置は、さらに、対物レンズ系又は被検査物を移動させて 被検査物と対物レンズ系との間の距離を変化させる移動手段を備えることができる。  [0018] The optical measurement apparatus according to the present invention may further include a moving means for moving the objective lens system or the inspection object to change the distance between the inspection object and the objective lens system.
[0019] 反射手段は、第一光を吸収し又は透過させることによって第 2参照光のみを反射す ることがでさる。  [0019] The reflecting means can reflect only the second reference light by absorbing or transmitting the first light.
[0020] また、本発明に係る被検査物の三次元形状を測定することのできる光学測定装置 は、第一光を出力する第 1光源と、第二光を出力する第 2光源と、第二光を測定光と 参照光とに分割する分割手段とを備え、さらに、参照光を反射する反射手段と、測定 光及び第一光を被検査物に集束する集束手段とを備える対物レンズ系であって、被 検査物から反射された測定光及び第一光と反射手段によって反射した参照光とを出 力する対物レンズ系と、この対物レンズ系から出力された、被検査物から反射された 第一光を受光する第 1撮像手段と、対物レンズ系から出力された、被検査物から反射 された測定光と反射手段力 反射された参照光とを受光する第 2撮像手段と、第 1及 び第 2受光手段で受光した光から被検査物の三次元形状の画像を生成する画像生 成手段とを備える。 [0020] Further, an optical measurement apparatus capable of measuring a three-dimensional shape of an object to be inspected according to the present invention includes a first light source that outputs first light, a second light source that outputs second light, An objective lens system comprising: a splitting unit that splits the two light beams into a measurement beam and a reference beam; and a reflecting unit that reflects the reference beam; and a focusing unit that focuses the measurement beam and the first beam onto the object to be inspected. An objective lens system that outputs the measurement light reflected from the object to be inspected, the first light and the reference light reflected by the reflecting means, and the object lens system that is output from the objective lens system and is reflected from the object to be inspected. A first imaging means for receiving the first light; a second imaging means for receiving the measurement light reflected from the object to be inspected and the reference light reflected by the reflecting means force output from the objective lens system; 1 and And an image generating means for generating a three-dimensional image of the object to be inspected from the light received by the second light receiving means.
[0021] 第一光は可視光でもよぐ第二光は紫外光でもよい。 [0021] The first light may be visible light, and the second light may be ultraviolet light.
[0022] 反射手段は、第一光を吸収し又は透過させることによって参照光のみを反射するこ とがでさる。  [0022] The reflecting means reflects only the reference light by absorbing or transmitting the first light.
[0023] さらに、対物レンズ系又は被検査物を移動させて被検査物と対物レンズ系との間の 距離を変化させる移動手段を備えてもょ ヽ。  [0023] Further, a moving means for moving the objective lens system or the inspection object to change the distance between the inspection object and the objective lens system may be provided.
[0024] さらに、対物レンズ系と第 1又は第 2撮像手段との間に、被検査物からの第一光の 反射光と、被検査物からの測定光の反射光及び反射手段から反射された参照光とを 分離する分離手段を備えてもょ ヽ。  [0024] Further, between the objective lens system and the first or second imaging means, the reflected light of the first light from the inspection object and the reflected light of the measurement light from the inspection object and the reflection means are reflected. It may be equipped with a separation means to separate the reference light.
[0025] 被検査物からの測定光の反射光と、反射手段から反射された参照光とが第 2撮像 手段によって検出される際に干渉強度パターンを生成することが望ましい。  [0025] It is desirable to generate an interference intensity pattern when the reflected light of the measurement light from the object to be inspected and the reference light reflected from the reflecting means are detected by the second imaging means.
[0026] さらに、本発明に係る被検査物の三次元形状を測定する光学測定方法は、第一光 によって被検査物のカラー画像を取得する工程と、第二光によって被検査物の所定 の高さの干渉縞データを入手する工程と、被検査物の高さを相対的に段階的に変化 させて第二光に干渉縞を発生させる工程と、被検査物のカラー画像カゝら干渉縞のデ ータに対応する画像データを抽出する工程と、各干渉縞のデータごとに抽出した画 像データを組み合せて被検査物の三次元形状を表す画像を生成する工程とを含む 発明の効果  [0026] Further, the optical measurement method for measuring the three-dimensional shape of the inspection object according to the present invention includes a step of acquiring a color image of the inspection object with the first light, and a predetermined light of the inspection object with the second light. The process of obtaining interference fringe data of height, the process of generating interference fringes in the second light by changing the height of the object to be inspected relatively stepwise, and the interference from the color image of the object to be inspected A step of extracting image data corresponding to the fringe data; and a step of generating an image representing the three-dimensional shape of the inspection object by combining the image data extracted for each interference fringe data. Effect
[0027] 本発明によれば、紫外光を用いることによって、従来の白色光を使用した白色光干 渉方式顕微鏡よりも、精度 (分解能)を向上させることができるとともに、可視光を併せ て用いることにより撮像される画像をカラー画像 (色調及び明度を有する画像)として 得ることができる。  According to the present invention, by using ultraviolet light, accuracy (resolution) can be improved as compared with a conventional white light interference microscope using white light, and visible light is also used. Thus, a captured image can be obtained as a color image (an image having color tone and brightness).
[0028] また、共焦点方式顕微鏡よりも、被検査物に対して広い視野を有した状態の画像で も高さ方向の高 、精度 (分解能)を得ることができる。  [0028] Further, even in the case of an image having a wide field of view with respect to the inspection object, higher height accuracy and resolution (resolution) can be obtained than with a confocal microscope.
[0029] さらに、簡単な構造で、被検査物を三次元的に観測することができる。 Furthermore, the inspection object can be observed three-dimensionally with a simple structure.
図面の簡単な説明 [0030] [図 1]図 1は、本発明の一実施例に係る光学測定装置の概略側面構成図である。 Brief Description of Drawings FIG. 1 is a schematic side view of an optical measuring device according to an embodiment of the present invention.
[図 2]図 2は、図 1に係る光学測定装置における光の経路長の相違による干渉縞の発 生原理を説明するための一部の概略側面構成図である。  FIG. 2 is a partial schematic side view for explaining the principle of generation of interference fringes due to the difference in the optical path length in the optical measurement apparatus according to FIG. 1.
[図 3]図 3は、図 1に係る光学測定装置を用いて被検査物の観測を行う際のフローチ ヤートを示す。  [FIG. 3] FIG. 3 shows a flow chart when observing an inspection object using the optical measuring apparatus according to FIG.
[図 4]図 4 (a)から図 4 (e)は、図 1に係る光学測定装置を用いて被検査物の観測を行 う際の画像の取得例を説明するための図である。  FIG. 4 (a) to FIG. 4 (e) are diagrams for explaining an example of acquiring an image when observing an inspection object using the optical measurement apparatus according to FIG.
[図 5]図 5は、図 4 (a)から図 4 (e)の図を組み合せた図である。  [FIG. 5] FIG. 5 is a combination of FIGS. 4 (a) to 4 (e).
[図 6]図 6は、図 5の画像を三次元的に表した図である。  [FIG. 6] FIG. 6 is a three-dimensional representation of the image of FIG.
[図 7]図 7は、従来の白色光干渉方式の三次元顕微鏡の概略側面構成図である。 符号の説明  FIG. 7 is a schematic side view of a conventional white light interference type three-dimensional microscope. Explanation of symbols
[0031] 10 :第一光源 [0031] 10: First light source
11、 15 :凸レンズ  11, 15: Convex lens
17 :検査台  17: Inspection table
18 :被検査物  18: Inspected object
20 :第二光源  20: Second light source
22、 24、 26 :ノヽーフミラー  22, 24, 26: Noof mirror
23 :制御装置  23: Control device
25 :対物レンズ系  25: Objective lens system
28、 29 : CCDカメラ (第一及び第二撮像装置)  28, 29: CCD camera (first and second imaging device)
251 :対物レンズ  251: Objective lens
253 :基準ミラー  253: Reference mirror
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 以下、本発明に係る光学測定装置の望ましい実施形態について、添付の図面を参 照しながら説明する。なお、図中、同じ要素に対しては同じ符号を付して、重複した 説明を省略している。 Hereinafter, preferred embodiments of an optical measurement device according to the present invention will be described with reference to the accompanying drawings. In the figure, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[光学測定装置の構成]  [Configuration of optical measuring device]
図 1は、本発明の一実施例に係る光学測定装置 1を示す。 [0033] その装置 1は、第一光源 10と、第二光源 20と、凸レンズ 11と、第一ハーフミラー 22 と、第二ハーフミラー 24と、第三ハーフミラー 26と、対物レンズ系 25と、第一撮像手 段 28と、第二撮像手段 29と、制御手段 23と、載置台 17とを備える。 FIG. 1 shows an optical measuring apparatus 1 according to an embodiment of the present invention. The device 1 includes a first light source 10, a second light source 20, a convex lens 11, a first half mirror 22, a second half mirror 24, a third half mirror 26, and an objective lens system 25. The first imaging means 28, the second imaging means 29, the control means 23, and the mounting table 17 are provided.
[0034] 第一光源 10は、被検査物 18から色情報を取り出すための光を発光する光源であ る。  The first light source 10 is a light source that emits light for extracting color information from the inspection object 18.
[0035] このため、第一光源 10からの光は、人間が視覚可能な色である必要があり可視光 を利用する。また、この第一光源 10の光として、例えば、波長が約 500nmから 700η m程度の白色光を用いることができる。  [0035] Therefore, the light from the first light source 10 needs to be a color that can be seen by humans, and uses visible light. As the light from the first light source 10, for example, white light having a wavelength of about 500 nm to about 700 ηm can be used.
[0036] 第一光源 10は、このような光を出力するようなハロゲンランプ等を用いることができ る。  [0036] The first light source 10 may be a halogen lamp or the like that outputs such light.
[0037] 第二光源 20は、第一光源 10とは相違する波長の光を出力することのできる光源で ある。第二光源 20が、第一光源 10の光と相違する波長を出力することにより、詳細 は後述するが、第二光源 20からの光により干渉を生じさせ、被検査物 18の高さ情報 を得ることを可能にする。  The second light source 20 is a light source that can output light having a wavelength different from that of the first light source 10. The second light source 20 outputs a wavelength different from that of the light from the first light source 10, and as will be described in detail later, the light from the second light source 20 causes interference, and the height information of the inspection object 18 is obtained. Make it possible to get.
[0038] この第二光源 20が出力する光としては、波長が約 350應の紫外光を用いることが できる。上記の如ぐ第二光源 20の光としては、第一光源 10の光と相違する波長を 有する光であれば特に限定されないが、被検査物 18が微細であるため、赤外線より 波長の短い紫外線を用いる。尚、この第二光源 20には、安定した紫外線の出力を行 うためにも、レーザ照射装置を用いることが好ま 、。  As the light output from the second light source 20, ultraviolet light having a wavelength of about 350 ° can be used. The light of the second light source 20 as described above is not particularly limited as long as it has a wavelength different from that of the light of the first light source 10, but since the inspection object 18 is fine, ultraviolet light having a wavelength shorter than that of infrared light. Is used. In addition, it is preferable to use a laser irradiation device for the second light source 20 in order to output a stable ultraviolet ray.
[0039] 凸レンズ 11は、第一光源 10から発散された光を平行光にするために用いられる。  The convex lens 11 is used to make the light diverged from the first light source 10 into parallel light.
[0040] 第一ハーフミラー 22は、第一光源 10から出力された第一光を通過させる一方、第 二光源 20からの第二光を、第二ハーフミラー 24に向けて反射する。この第一ハーフ ミラー 22を用いることにより、第一光源 10からの第一光と第二光源 20からの第二光と を合成することができる。  The first half mirror 22 transmits the first light output from the first light source 10 and reflects the second light from the second light source 20 toward the second half mirror 24. By using the first half mirror 22, the first light from the first light source 10 and the second light from the second light source 20 can be synthesized.
[0041] 第二ハーフミラー 24は、合成された第一光と第二光を後述する対物レンズ系 25へ 案内する。  The second half mirror 24 guides the synthesized first light and second light to an objective lens system 25 described later.
[0042] 尚、この第二ハーフミラー 24は、後述する対物レンズ系 25からの反射光を透過さ せる。 [0043] 対物レンズ系 25は、第一光と第二光を被検査物 18に照射して、反射光を生じさせ るとともに、第二光から「高さ」測定用の干渉光を生じさせる。この対物レンズ系 25に より、合成された第一光と第二光を、「色」情報を得るための第一光と、「高さ」情報を 得るための第二光とに分離させる。そして、この対物レンズ系 25は、分離させた第二 光を更に分離して干渉させる。 Note that the second half mirror 24 transmits reflected light from an objective lens system 25 described later. [0043] The objective lens system 25 irradiates the inspection object 18 with the first light and the second light to generate reflected light, and also generates interference light for "height" measurement from the second light. . The objective lens system 25 separates the synthesized first light and second light into first light for obtaining “color” information and second light for obtaining “height” information. The objective lens system 25 further separates and interferes with the separated second light.
[0044] つまり、この対物レンズ系 25は、入射される第一光と第二光の合成光から、第一光 と第二光を分離し、第一光は被検査物 18へと案内し、また同時に、第二光は更に分 離して、一方の光を被検査物 18へ案内するとともに他方の光を干渉に用いる光とし、 更に、これら 3つの光を、被検査物又は基準ミラーによる反射光として出力する。  That is, the objective lens system 25 separates the first light and the second light from the combined light of the incident first light and second light, and the first light is guided to the inspection object 18. At the same time, the second light is further separated so that one light is guided to the inspection object 18 and the other light is used as an interference light. Further, these three lights are used by the inspection object or the reference mirror. Output as reflected light.
[0045] この対物レンズ系 25は、分離された第一光を被検査物 18に照射するとともに被検 查物 18より反射された撮像光を後述する第三ハーフミラー 26へ案内する。また、この 対物レンズ系 25は、分離された第二光を被検査物 18へ照射して、被検査物 18から の反射される測定光と、この測定光に干渉を生じさせるための参照光を生じさせ、測 定光と参照光による干渉光を第三ハーフミラー 26へ案内する。  The objective lens system 25 irradiates the inspection object 18 with the separated first light and guides the imaging light reflected from the inspection object 18 to a third half mirror 26 described later. The objective lens system 25 irradiates the inspection object 18 with the separated second light, and the measurement light reflected from the inspection object 18 and the reference light for causing interference with the measurement light. The interference light from the measurement light and reference light is guided to the third half mirror 26.
[0046] この対物レンズ系 25は、対物レンズ 251、第四ハーフミラー 252、基準ミラー 253を 有してなる。  The objective lens system 25 includes an objective lens 251, a fourth half mirror 252, and a reference mirror 253.
[0047] 対物レンズ 251は、対物レンズ系 25に入射される第一光及び第二光を被検査物 1 The objective lens 251 transmits the first light and the second light incident on the objective lens system 25 to be inspected 1
8に対し集束するために用いられる。 Used to focus on 8.
[0048] 第四ハーフミラー 252は、第一光を被検査物 18へ案内するとともに、第二光を被検 查物 18に向力 ように通過する光 C1と、反射されて基準ミラー 253に向力 光 C2と に分離する。 [0048] The fourth half mirror 252 guides the first light to the inspection object 18 and reflects the light C1 that passes the second light toward the inspection object 18 in a direction of force and is reflected by the reference mirror 253. Separated into directional light C2.
[0049] 尚、この光 C1が被検査物 18に反射して測定光となり、光 C2が後述する基準ミラー [0049] The light C1 is reflected by the inspection object 18 and becomes measurement light, and the light C2 is a reference mirror described later.
253から反射して参照光となる。 It is reflected from 253 and becomes reference light.
[0050] 基準ミラー 253は、第二光を反射させるミラーである。 [0050] The reference mirror 253 is a mirror that reflects the second light.
[0051] 尚、第四ハーフミラー 252は、上記の如き、第二光を 2つに分離するが、同時に第 一光を 2つに分離することになるため、基準ミラー 253は第一光を透過し第二光のみ を反射させるミラーを用いる。  [0051] As described above, the fourth half mirror 252 separates the second light into two. However, since the first light is separated into two at the same time, the reference mirror 253 separates the first light. A mirror that transmits and reflects only the second light is used.
[0052] また、他の方法としては、基準ミラー 253と第四ハーフミラー 252の間の光路上に第 一光を吸収し第二光のみを透過させるフィルタを配置することもでき、この場合であ れば、基準ミラーは第一光及び第二光を反射するミラーを用いることができる。 [0052] In addition, as another method, there is a second optical path on the optical path between the reference mirror 253 and the fourth half mirror 252. A filter that absorbs one light and transmits only the second light can also be disposed. In this case, a mirror that reflects the first light and the second light can be used as the reference mirror.
[0053] そのような基準ミラー及びフィルタによって、第一光を吸収し又は透過させることに よって第 2参照光のみを反射する反射手段を構成する。  [0053] By such a reference mirror and filter, a reflecting means for reflecting only the second reference light by absorbing or transmitting the first light is configured.
[0054] 第三ハーフミラー 26は、第二ハーフミラー 24を通過した被検査物の第一光の撮像 光と、被検査物 18から反射された第二光の測定光及び基準ミラー 253から反射され た参照光とを分離するためのミラーである。 The third half mirror 26 reflects the first light imaging light of the inspection object that has passed through the second half mirror 24, the second light measurement light reflected from the inspection object 18, and the reference mirror 253. This is a mirror for separating the reference light.
[0055] そのため、第三ハーフミラー 26は、第二ハーフミラー 24を通過した被検査物の第 一光の撮像光は通過させて第一撮像手段 28に到達させ、また、第三ハーフミラー 2Therefore, the third half mirror 26 allows the first imaging light of the inspection object that has passed through the second half mirror 24 to pass through and reaches the first imaging means 28, and the third half mirror 2
6は、被検査物 18から反射された第二光の測定光及び基準ミラー 253から反射され た参照光は反射して第二撮像装置 29に案内する。 In 6, the measurement light of the second light reflected from the inspection object 18 and the reference light reflected from the reference mirror 253 are reflected and guided to the second imaging device 29.
[0056] また、さらに、光学測定装置 1は、第三ハーフミラー 26を通過した第一光^^束す るレンズ 15と、その第一光力ゝら画像を形成する第一撮像装置 28と、紫外光から画像 を形成する第二撮像装置 29とを備える。第三ハーフミラー 26として、第一光と第二 光とのように異なる波長を選択して反射又は透過させるダイクロイツクミラーを用いるこ とがでさる。 [0056] Further, the optical measuring device 1 further includes a lens 15 that bundles the first light beam that has passed through the third half mirror 26, and a first imaging device 28 that forms an image based on the first light power. And a second imaging device 29 that forms an image from ultraviolet light. As the third half mirror 26, a dichroic mirror that selectively reflects or transmits different wavelengths such as the first light and the second light can be used.
[0057] 対物レンズ 251、第四ハーフミラー 252及び基準ミラー 253は、対物レンズ系 25を 構成する。この対物レンズ系 25は、第一光 D1及び紫外光の測定光 C1の光軸に沿 つて上下に移動することができる。この対物レンズ系 25の移動は例えばピエゾ素子( 図示せず)によって行うことができる。その移動による被検査物 18の測定対象部分の 走査範囲は、例えば、その測定対象部分の高さに数 10 mを加えた範囲である。例 えば、測定対象部分の底部力 頂部までの高さが 60 mとすると、走査範囲は約 70 /z mとなる。このように、この走査範囲の変更は、測定対象部分の高さに応じて、対物 レンズ系 25を移動させる駆動装置(図示せず)の駆動範囲の設定を変更することに より行うことができる。  The objective lens 251, the fourth half mirror 252 and the reference mirror 253 constitute an objective lens system 25. The objective lens system 25 can move up and down along the optical axes of the first light D1 and the ultraviolet measurement light C1. The objective lens system 25 can be moved by, for example, a piezo element (not shown). The scanning range of the measurement target portion of the inspection object 18 by the movement is, for example, a range obtained by adding several tens of meters to the height of the measurement target portion. For example, if the height of the part to be measured to the top of the bottom force is 60 m, the scanning range is about 70 / z m. Thus, the scanning range can be changed by changing the setting of the driving range of a driving device (not shown) that moves the objective lens system 25 according to the height of the measurement target portion. .
[0058] その走査による高さデータの読み取り分解能は約 0. lnmであり、繰り返し精度とし ては約 10nmである。その走査は、対物レンズ 251の被写界深度よりも小さい距離だ け変えながら行うため、被検査物 18の測定対象部分の高さに応じて移動の回数が 決定される。その移動ごとに、第一撮像装置 28及び第二撮像装置 29において第一 光及び第二光による画像を得る。 [0058] The reading resolution of the height data by the scanning is about 0.1 nm, and the repetition accuracy is about 10 nm. Since the scanning is performed while changing only a distance smaller than the depth of field of the objective lens 251, the number of movements depends on the height of the measurement target portion of the inspection object 18. It is determined. For each movement, the first imaging device 28 and the second imaging device 29 obtain images of the first light and the second light.
[0059] 第一及び第二撮像装置 28及び 29は、制御装置 23に接続されていて、画像を得る ごとにそのデータを保存する。また、制御装置 23は、それらのデータに基づいて被 検査物 18の測定対象部分の三次元画像を生成する。  [0059] The first and second imaging devices 28 and 29 are connected to the control device 23 and store the data every time an image is obtained. Further, the control device 23 generates a three-dimensional image of the measurement target portion of the inspection object 18 based on these data.
[紫外光による干渉縞の発生]  [Generation of interference fringes by ultraviolet light]
図 2は、対物レンズ 251と基準ミラー 253との間の距離と、対物レンズ 251と被検査 物 18との間の距離との関係を示す図である。図 2では、対物レンズ 251から基準ミラ 一 253までと、対物レンズ 251から被検査物 18までとでは、対物レンズ 251からビー ムスプリッタ 252の反射面までの距離が共通するため、理解の容易のために、ビーム スプリッタ 252の反射面力も被検査物 18までの距離を L1とし、ビームスプリッタ 252 の反射面力も基準ミラー 253までの距離を L2として表している。  FIG. 2 is a diagram showing the relationship between the distance between the objective lens 251 and the reference mirror 253 and the distance between the objective lens 251 and the inspection object 18. In Fig. 2, the distance from the objective lens 251 to the reference mirror 253 and the distance from the objective lens 251 to the object to be inspected 18 are the same from the objective lens 251 to the reflecting surface of the beam splitter 252. Therefore, the reflection surface force of the beam splitter 252 is also expressed as L1 as the distance to the inspection object 18, and the reflection surface force of the beam splitter 252 is expressed as L2 as the distance to the reference mirror 253.
[0060] 対物レンズ 251と基準ミラー 253との距離は固定されている。つまり、ビームスプリツ タ 252の反射面力も基準ミラー 253までの距離 L2は一定である。それに対し、それら を含む対物レンズ系 25は、第一光 D1及び紫外光の測定光 C1の光軸に沿って上下 に移動するため、対物レンズ 251と被検査物 18との間の距離、つまり、ビームスプリツ タ 252の通過位置から被検査物 18までの距離 L 1は、対物レンズ系 25の移動に応じ て変動する。その結果、 L1で定まる光路長と、 L2で定まる光路長とが相違することに なる。  [0060] The distance between the objective lens 251 and the reference mirror 253 is fixed. That is, the reflecting surface force of the beam splitter 252 is also constant at the distance L2 to the reference mirror 253. On the other hand, since the objective lens system 25 including them moves up and down along the optical axes of the first light D1 and the ultraviolet measurement light C1, the distance between the objective lens 251 and the inspection object 18, that is, The distance L 1 from the passage position of the beam splitter 252 to the inspection object 18 varies according to the movement of the objective lens system 25. As a result, the optical path length determined by L1 is different from the optical path length determined by L2.
[0061] そのため、 2つの異なる光路長 L1及び L2を通過する光の位相に差が生じることに なる。その位相差力^であれば、それらの光の強度は強められ、位相差が 180度であ れば、強度は打ち消される。また、それらの位相差間では、正弦曲線を描くように、合 成強度は変化する。  [0061] Therefore, a difference occurs in the phase of light passing through two different optical path lengths L1 and L2. If the phase difference is ^, the intensity of the light is increased, and if the phase difference is 180 degrees, the intensity is canceled. Also, between these phase differences, the combined intensity changes to draw a sine curve.
[0062] つまり、対物レンズ系 25が上方又は下方に移動すると、第二光の 2つの光の部分 C 1及び C2の光路長 (L1及び L2)に差が生じてそれらの相対位相が相違することにな る。そのため、基準ミラー 253から反射された第二光の参照光 C2と、被検査物 18か ら反射された測定光 C1とによって、被検査物 18の表面の凹凸に対応した高さで強 度の変化を表す干渉縞が発生する。 CCDカメラ 29ではその干渉縞を観測することが できる。 That is, when the objective lens system 25 moves upward or downward, a difference occurs in the optical path lengths (L1 and L2) of the two light portions C 1 and C2 of the second light, and their relative phases differ. It will be. Therefore, the reference light C2 of the second light reflected from the reference mirror 253 and the measurement light C1 reflected from the inspection object 18 have a height corresponding to the unevenness of the surface of the inspection object 18 and have an intensity. Interference fringes representing changes occur. The CCD camera 29 can observe the interference fringes. it can.
[0063] 制御装置 23は、その CCDカメラ 29で観測した干渉縞から高度のデータを得る。例 えば、 1波長が 350nmである場合には、その 1000分の 1程度の分解能を得ることが できる。  The control device 23 obtains high-level data from the interference fringes observed by the CCD camera 29. For example, when one wavelength is 350 nm, a resolution about 1/1000 of that can be obtained.
[光学測定装置の動作]  [Operation of optical measuring device]
図 3は、図 1の光学測定装置における被検査物の画像の入手のための動作のフロ 一チャートである。  FIG. 3 is a flowchart of the operation for obtaining the image of the inspection object in the optical measurement apparatus of FIG.
[0064] まず、ステップ S31では、被検査物 18を検査台 17の上に載置する。  [0064] First, in step S31, the inspection object 18 is placed on the inspection table 17.
[0065] ステップ S32では、被検査物 18のどの領域を測定するかを決定し、所定の位置に 焦点をあわせる。 [0065] In step S32, it is determined which region of the inspection object 18 is to be measured, and a predetermined position is focused.
[0066] ステップ S33では、第一光源 10及び第二光源 20を起動して、それぞれ、第一光及 び第二光を出力させる。  [0066] In step S33, the first light source 10 and the second light source 20 are activated to output the first light and the second light, respectively.
[0067] 第一光源 10から第一光が出力されると、その第一光は、凸レンズ 11によって平行 光にされ、第一ハーフミラー 22を通過して第二ハーフミラー 24に到達する。第二ハ 一フミラー 24では、第一光は被検査物 18に向けて偏向される。第一光は、さらに対 物レンズ 251によって被検査物 18に向けて集束される。対物レンズ 251を通過した 第一光は、第四ハーフミラー 252を通過する際に、一部の第一光 D2が基準ミラー 25 3に向けて偏向される。基準ミラー 253に到達した第一光 D2は、そこで吸収されて反 射されない。  When the first light is output from the first light source 10, the first light is converted into parallel light by the convex lens 11, passes through the first half mirror 22, and reaches the second half mirror 24. In the second half mirror 24, the first light is deflected toward the inspection object 18. The first light is further focused toward the inspection object 18 by the object lens 251. When the first light passing through the objective lens 251 passes through the fourth half mirror 252, a part of the first light D 2 is deflected toward the reference mirror 253. The first light D2 that has reached the reference mirror 253 is absorbed there and is not reflected.
[0068] 第四ハーフミラー 252を通過した第一光 D1は、被検査物 18を照射し、それから反 射されて、元の経路を逆に戻る。つまり、被検査物 18から反射された第一光 D1は、 第四ハーフミラー 252、対物レンズ 251及び第二ハーフミラー 24を通過する。  [0068] The first light D1 that has passed through the fourth half mirror 252 irradiates the object 18 to be inspected, and is then reflected back to the original path. That is, the first light D 1 reflected from the inspection object 18 passes through the fourth half mirror 252, the objective lens 251 and the second half mirror 24.
[0069] 第二ハーフミラー 24を通過した第一光は、さらに、第三ハーフミラー 26を通過し、 対物レンズ 15によって第一撮像装置 28に向けて集束される。  The first light that has passed through the second half mirror 24 further passes through the third half mirror 26 and is focused toward the first imaging device 28 by the objective lens 15.
[0070] 一方、第一光源 10から第一光が出力されると同時に第二光源 20から出力された 第二光は、第一ハーフミラー 22によって第二ハーフミラー 24に向けて反射され、さら に、第二ハーフミラー 24によって被検査物 18に向けて偏向される。偏向された第二 光は、対物レンズ 251によって被検査物 18に向けて集束される。その後、第二光は、 第四ハーフミラー 252によって、基準ミラー 253に向けて反射される参照光 C2と、そ れを通過する測定光 C1とに分離される。 On the other hand, the second light output from the second light source 20 at the same time as the first light is output from the first light source 10 is reflected by the first half mirror 22 toward the second half mirror 24, and further. Further, the light is deflected toward the inspection object 18 by the second half mirror 24. The deflected second light is focused toward the inspection object 18 by the objective lens 251. Then the second light The fourth half mirror 252 separates the reference light C2 reflected toward the reference mirror 253 and the measurement light C1 passing therethrough.
[0071] 基準ミラー 253に到達した参照光 C2は、そこで反射されてもとの経路を逆に戻る。 [0071] The reference light C2 that has reached the reference mirror 253 returns to its original path after being reflected there.
つまり、第四ハーフミラー 252に到達した参照光 C2は、第四ハーフミラー 252によつ て対物レンズ 251に向けて反射される。  That is, the reference light C 2 that has reached the fourth half mirror 252 is reflected by the fourth half mirror 252 toward the objective lens 251.
[0072] 第四ハーフミラー 252を通過した第二光の測定光 C1は、被検査物 18を照射し、そ れから反射されて元の経路を逆に戻る。つまり、測定光 C1は、被検査物 18から反射 されて第四ハーフミラー 252を通過する。 The measurement light C1 of the second light that has passed through the fourth half mirror 252 irradiates the inspection object 18, is reflected therefrom, and returns to the original path. That is, the measurement light C 1 is reflected from the inspection object 18 and passes through the fourth half mirror 252.
[0073] 第四ハーフミラー 252によって偏向された第二光の参照光 C2と、第四ハーフミラー[0073] Second light reference light C2 deflected by fourth half mirror 252 and fourth half mirror
252を通過した第二光の測定光 C1とは、対物レンズ 251を通過し、さらに、第二ハー フミラー 24を通過する。 The second measurement light C 1 that has passed through 252 passes through the objective lens 251 and then through the second half mirror 24.
[0074] 第二ハーフミラー 24を通過した第二光の測定光 C1及び参照光 C2は、第三ハーフ ミラー 26によって、第二撮像装置 29に向けて偏向される。  The second measurement light C 1 and the reference light C 2 that have passed through the second half mirror 24 are deflected toward the second imaging device 29 by the third half mirror 26.
[0075] ステップ S34では、被検査物 18から反射された第一光による被検査物 18の測定領 域のカラー画像を第一撮像装置 28によって撮影する。また、第二撮像装置 29では、 測定光 C1と参照光 C2との経路の相違に応じて発生した干渉縞を検出する。第一及 び第二撮像装置 28及び 29のデータは、制御装置 23の記憶装置(図示せず)に保 存される。  In step S 34, the first imaging device 28 captures a color image of the measurement area of the inspection object 18 by the first light reflected from the inspection object 18. Further, the second imaging device 29 detects the interference fringes generated according to the difference in the path between the measurement light C1 and the reference light C2. Data of the first and second imaging devices 28 and 29 are stored in a storage device (not shown) of the control device 23.
[0076] 続いて、ステップ S35において、制御装置 23が、被検査物のすべての測定対象領 域を測定したか (画像を入手したか)を判断し、まだ観測して 、な 、測定領域がある 場合には、ステップ S36において、対物レンズ系 25を上方又は下方に向けて所定距 離だけ移動させて、上記と同様に、第一光及び第二光によって被検査物の所定の部 分の撮像を行う。その撮像を所定回数繰り返し、その撮像ごとに、夫々のデータを制 御装置 23の記憶装置に保存する。  [0076] Subsequently, in step S35, it is determined whether or not the control device 23 has measured all the measurement target areas of the inspected object (whether the image has been acquired), and the measurement area is not yet observed. In some cases, in step S36, the objective lens system 25 is moved upward or downward by a predetermined distance, and in the same manner as described above, the predetermined portion of the object to be inspected by the first light and the second light. Take an image. The imaging is repeated a predetermined number of times, and each data is stored in the storage device of the control device 23 for each imaging.
[0077] すべての測定対象部分を観測し終えたときには、測定動作は終了し、次に、制御 装置 23に記憶されたデータを用いて、被検査物の測定対象部分の三次元画像の生 成を行う。  [0077] When all the measurement target portions have been observed, the measurement operation ends, and then, using the data stored in the control device 23, a three-dimensional image of the measurement target portion of the inspection object is generated. I do.
[被検査物の三次元画像の生成] 図 4 (a)から図 4 (e)には、被検査物 18の 1つの測定対象部分を図 1に示す光学測 定装置 1によって高さ方向に沿って順に観測した場合の画像の例を示す。 [Generation of 3D image of inspection object] Fig. 4 (a) to Fig. 4 (e) show examples of images when one measurement target part of the inspected object 18 is observed in order along the height direction by the optical measuring device 1 shown in Fig. 1. Show.
[0078] 干渉縞は、上記の通り、第二光の測定の際に発生する。一方、第一光からは、被検 查物 18の拡大されたカラー画像を得ることができる。ただし、そのカラー画像には、 被写界深度の範囲内の鮮明な画像と、その範囲以外のピントがずれてぼけた画像と が含まれている。 As described above, the interference fringes are generated when the second light is measured. On the other hand, an enlarged color image of the test object 18 can be obtained from the first light. However, the color image includes a clear image within the range of the depth of field and an image that is out of focus and out of focus.
[0079] 第二光による干渉縞が発生した被検査物の高さにおいては、第一光がその被検査 物の高さの位置に合焦する位置でもある。そのため、第一光により得たカラー画像に おいて、干渉縞に対応する部分のみを抽出する必要がある。それが、図 4 (a)から図 4 (e)に示す画像である。  [0079] The height of the inspection object in which the interference fringes are generated by the second light is also a position where the first light is focused on the height position of the inspection object. Therefore, it is necessary to extract only the portion corresponding to the interference fringes in the color image obtained by the first light. This is the image shown in FIGS. 4 (a) to 4 (e).
[0080] 図 4 (a)から図 4 (e)は、対物レンズ系 2を所定距離ごとに移動して、第一撮像装置 2 8及び第二撮像装置 29によって撮影した 5つの測定領域を示す。その移動距離は、 対物レンズ 251の被写界深度よりも浅い距離である。その距離ごとに、対物レンズ系 25を移動しながら被検査物 18を高さ方向に沿って撮影したものである。  FIG. 4 (a) to FIG. 4 (e) show five measurement regions taken by the first imaging device 28 and the second imaging device 29 by moving the objective lens system 2 by a predetermined distance. . The moving distance is shallower than the depth of field of the objective lens 251. For each distance, the object 18 is photographed along the height direction while moving the objective lens system 25.
[0081] 図 4 (a)は、干渉縞が発生して!/、る被検査物の最も高 、位置にある部分 40aの画像 である。図 4 (e)は、干渉縞が発生している被検査物の最も低い位置にある部分 40e の画像である。その他の図 4 (b)、(c)及び (d)は、図 4 (a)に示す部分 40aと、図 4 (e )に示す部分 40eとの間において、対物レンズ系 2を所定距離ずつ移動して撮影した 際に得た干渉縞が発生している部分 40b, 40c, 40dの画像である。  FIG. 4 (a) is an image of the portion 40a at the highest position of the object to be inspected! FIG. 4 (e) is an image of the portion 40e at the lowest position of the inspection object where the interference fringes are generated. 4 (b), 4 (c) and 4 (d) show that the objective lens system 2 is moved by a predetermined distance between the portion 40a shown in FIG. 4 (a) and the portion 40e shown in FIG. 4 (e). This is an image of the portions 40b, 40c, and 40d where the interference fringes obtained when moving and photographed.
[0082] 図 4 (a)から図 4 (e)に示す画像を高さ方向に組み合せると、図 5に示すような画像と なる。なお、被写界深度よりも短い距離ごとに高さ方向に測定を行っているので、高さ の異なる 2つの干渉縞の発生位置との間にもカラー画像は存在するが、図 5におい ては、干渉縞カゝらカラー画像を抽出した位置を線で表すのみで、高さ方向の画像は 省略している。図 6は被検査物 18の測定対象部分 40を三次元的に表している。  [0082] When the images shown in FIGS. 4 (a) to 4 (e) are combined in the height direction, an image as shown in FIG. 5 is obtained. In addition, since the measurement is performed in the height direction for each distance shorter than the depth of field, there is a color image between two interference fringe occurrence positions with different heights. Shows only the position where the color image is extracted, such as the interference fringe, as a line, and the image in the height direction is omitted. FIG. 6 three-dimensionally represents the measurement target portion 40 of the inspection object 18.
[0083] これらの処理は、制御装置 23において行われる。つまり、まず、第二撮像装置 29 にお 、て得た第二光の干渉縞のデータから、被検査物の測定部分の高さデータを 得る。次に、その高さデータに対応する第一光による被検査物の測定部分のカラー 画像データから、その干渉縞に対応する部分の画像データを抽出する。その抽出し た画像データを高さ方向に組み合せて、被検査物の三次元画像を生成する。 These processes are performed in the control device 23. That is, first, the second imaging device 29 obtains the height data of the measurement portion of the inspection object from the interference fringe data of the second light obtained in the above. Next, image data of a portion corresponding to the interference fringe is extracted from the color image data of the measurement portion of the inspection object by the first light corresponding to the height data. Extract The obtained image data is combined in the height direction to generate a three-dimensional image of the inspection object.
[代替例等]  [Alternative examples]
以上、本発明に係る光学測定装置について説明したが、本発明はこれらの実施形 態に拘束されるものではない。当業者が容易になしえる追加、削除、改変等は、本発 明に含まれることを承知されたい。本発明の技術的範囲は、添付の特許請求の範囲 の記載によって定められる。  Although the optical measuring apparatus according to the present invention has been described above, the present invention is not limited to these embodiments. It should be noted that additions, deletions, modifications, etc. that can be easily made by those skilled in the art are included in the present invention. The technical scope of the present invention is defined by the description of the appended claims.
[0084] 例えば、本実施例では対物レンズ系 25を上下に移動させる例を説明したが、対物 レンズ系 25は動力さずに、被検査物 18が載置されて 、る検査台 17を光軸に沿って 上下に移動させてもよい。  For example, in the present embodiment, the example in which the objective lens system 25 is moved up and down has been described. However, the objective lens system 25 is not powered, and the inspection table 17 on which the inspection object 18 is placed is illuminated. You may move it up and down along the axis.
[0085] 本実施例では、対物レンズ 251を第四ハーフミラー 252への入射側に配置したが、 第四ハーフミラー 252の出射側の被測定物 18に対向する側に配置してもよい。  In this embodiment, the objective lens 251 is disposed on the incident side to the fourth half mirror 252, but may be disposed on the side facing the object 18 to be measured on the exit side of the fourth half mirror 252.
[0086] また、ハーフミラーに代えて、ハーフプリズムを用いてもよい。  Further, a half prism may be used instead of the half mirror.

Claims

請求の範囲 The scope of the claims
[1] 入力される第 1波長の第一光を被検査物へ集束して該被検査物から反射される第 1反射光を出力し、入力される第 2波長の第二光を第 2参照光と第 2測定光とに分割 し、該第 2測定光を前記被検査物へ集束して該検査物から反射される第 2反射光を 出力するとともに、前記第 2参照光を反射して前記第 2反射光と干渉させる第 3反射 光を出力する対物レンズ系を備え、  [1] The first light having the first wavelength input is focused on the inspection object, the first reflected light reflected from the inspection object is output, and the second light having the second wavelength input is the second. The light is divided into reference light and second measurement light, and the second measurement light is focused on the inspection object to output second reflected light reflected from the inspection object, and the second reference light is reflected. An objective lens system that outputs third reflected light that interferes with the second reflected light,
前記第 1反射光と、前記第 2反射光と前記第 3反射光との干渉とを用いて前記被検 查物の三次元画像を生成する、光学測定装置。  An optical measurement device that generates a three-dimensional image of the test object using the first reflected light and the interference between the second reflected light and the third reflected light.
[2] 前記第一光は可視光であり、前記第二光は紫外光である、請求項 1の光学測定装 置。  2. The optical measurement device according to claim 1, wherein the first light is visible light and the second light is ultraviolet light.
[3] 前記対物レンズ系は、前記第 2波長の測定光の前記参照光を反射するための反射 手段を備える、請求項 1の光学測定装置。  [3] The optical measurement apparatus according to [1], wherein the objective lens system includes a reflection unit configured to reflect the reference light of the measurement light having the second wavelength.
[4] さらに、前記対物レンズ系又は前記被検査物を移動させて前記被検査物と該対物 レンズ系との間の距離を変化させる移動手段を備える、請求項 1の光学測定装置。 4. The optical measurement apparatus according to claim 1, further comprising a moving unit that moves the objective lens system or the inspection object to change a distance between the inspection object and the objective lens system.
[5] 前記反射手段は、前記第一光を吸収し又は透過させることによって前記第 2参照 光のみを反射する、請求項 3の光学測定装置。 5. The optical measuring device according to claim 3, wherein the reflecting means reflects only the second reference light by absorbing or transmitting the first light.
[6] 被検査物の三次元形状を測定することのできる光学測定装置であって、 [6] An optical measuring device capable of measuring a three-dimensional shape of an inspection object,
第一光を出力する第 1光源と、  A first light source that outputs first light;
第二光を出力する第 2光源と、  A second light source that outputs a second light;
前記第二光を測定光と参照光とに分割する分割手段と、  Splitting means for splitting the second light into measurement light and reference light;
前記参照光を反射する反射手段と、前記測定光及び前記第一光を前記被検査物 に集束する集束手段とを備える対物レンズ系であって、前記被検査物から反射され た測定光及び前記第一光と前記反射手段によって反射した参照光とを出力する対 物レンズ系と、  An objective lens system comprising a reflecting means for reflecting the reference light, and a focusing means for focusing the measurement light and the first light on the inspection object, the measurement light reflected from the inspection object and the An object lens system for outputting the first light and the reference light reflected by the reflecting means;
該対物レンズ系から出力された、前記被検査物から反射された前記第一光を受光 する第 1撮像手段と、  First imaging means for receiving the first light reflected from the object to be inspected and output from the objective lens system;
前記対物レンズ系から出力された、前記被検査物から反射された測定光と前記反 射手段から反射された参照光とを受光する第 2撮像手段と、 前記第 1及び第 2受光手段で受光した前記光から前記被検査物の三次元形状の 画像を生成する画像生成手段とを備える光学測定装置。 Second imaging means for receiving the measurement light reflected from the object to be inspected and the reference light reflected from the reflection means output from the objective lens system; An optical measuring apparatus comprising: an image generating unit configured to generate a three-dimensional image of the inspection object from the light received by the first and second light receiving units.
[7] 前記第一光は可視光であり、前記第二光は紫外光である、請求項 6の光学測定装 置。 7. The optical measurement device according to claim 6, wherein the first light is visible light and the second light is ultraviolet light.
[8] 前記反射手段は、前記第一光を吸収し又は透過させることによって前記参照光の みを反射する、請求項 6の光学測定装置。  8. The optical measuring device according to claim 6, wherein the reflecting means reflects only the reference light by absorbing or transmitting the first light.
[9] さらに、前記対物レンズ系又は前記被検査物を移動させて前記被検査物と該対物 レンズ系との間の距離を変化させる移動手段を備える、請求項 6の光学測定装置。 9. The optical measurement apparatus according to claim 6, further comprising moving means for moving the objective lens system or the inspection object to change a distance between the inspection object and the objective lens system.
[10] さらに、前記対物レンズ系と前記第 1又は第 2撮像手段との間に、前記被検査物か らの前記第一光の反射光と、前記被検査物からの前記測定光の反射光及び前記反 射手段力 反射された参照光とを分離する分離手段を備える、請求項 6の光学測定 装置。 [10] Further, between the objective lens system and the first or second imaging means, the reflected light of the first light from the inspection object and the reflection of the measurement light from the inspection object 7. The optical measurement apparatus according to claim 6, further comprising a separating unit that separates the light and the reflection means force from the reflected reference light.
[11] 前記被検査物からの前記測定光の反射光と、前記反射手段から反射された参照 光とが前記第 2撮像手段によって検出される際に干渉強度パターンを生成する、請 求項 6の光学測定装置。  [11] The interference intensity pattern is generated when the reflected light of the measurement light from the inspection object and the reference light reflected from the reflecting means are detected by the second imaging means. Optical measuring device.
[12] 被検査物の三次元形状を測定する光学測定方法であって、 [12] An optical measurement method for measuring a three-dimensional shape of an inspection object,
第一光によって前記被検査物のカラー画像を取得する工程と、  Obtaining a color image of the inspection object with first light;
第二光によって前記被検査物の所定の高さの干渉縞データを入手する工程と、 前記被検査物の高さを相対的に段階的に変化させて前記第二光に干渉縞を発生 させる工程と、  Obtaining interference fringe data of a predetermined height of the object to be inspected by the second light, and generating interference fringes in the second light by changing the height of the object to be inspected relatively stepwise; Process,
前記被検査物のカラー画像から前記干渉縞のデータに対応する画像データを抽 出する工程と、  Extracting image data corresponding to the interference fringe data from the color image of the inspection object;
各干渉縞のデータごとに抽出した画像データを組み合せて被検査物の三次元形 状を表す画像を生成する工程とを含む光学測定方法。  An optical measurement method including a step of combining the image data extracted for each interference fringe data to generate an image representing a three-dimensional shape of the inspection object.
PCT/JP2007/056190 2006-04-06 2007-03-26 Optical measurement instrument and optical measurement method WO2007116679A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-105727 2006-04-06
JP2006105727A JP2007278849A (en) 2006-04-06 2006-04-06 Optical measuring device and optical measuring method

Publications (1)

Publication Number Publication Date
WO2007116679A1 true WO2007116679A1 (en) 2007-10-18

Family

ID=38580978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056190 WO2007116679A1 (en) 2006-04-06 2007-03-26 Optical measurement instrument and optical measurement method

Country Status (3)

Country Link
JP (1) JP2007278849A (en)
TW (1) TW200745602A (en)
WO (1) WO2007116679A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307997A (en) * 2012-03-09 2013-09-18 上海微电子装备有限公司 Angle resolution scattering measurement device and measurement method thereof
CN103453845A (en) * 2012-06-05 2013-12-18 上海微电子装备有限公司 Scattering metering device and scattering metering method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2309223A4 (en) * 2008-07-09 2016-09-07 Nikon Corp Measuring apparatus
CN103322940B (en) * 2013-07-09 2015-09-09 河北工程大学 A kind of method obtaining microscopic image in three-dimensional shape
KR102132559B1 (en) * 2019-06-10 2020-07-09 한국표준과학연구원 Real-time 3D Profile Measurement of Freeform Surfaces by Lateral Shearing Interferometer using Birefrignent Materials
CN113639661B (en) * 2021-08-11 2022-10-14 中国科学院长春光学精密机械与物理研究所 Morphology detection system and morphology detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239589A (en) * 1997-02-28 1998-09-11 Olympus Optical Co Ltd Interference microscope
JP2000105101A (en) * 1998-09-29 2000-04-11 Fuji Photo Optical Co Ltd Oblique-incidence interferometer device
JP2001201325A (en) * 2000-01-18 2001-07-27 Nikon Corp Three-dimensional shape observing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239589A (en) * 1997-02-28 1998-09-11 Olympus Optical Co Ltd Interference microscope
JP2000105101A (en) * 1998-09-29 2000-04-11 Fuji Photo Optical Co Ltd Oblique-incidence interferometer device
JP2001201325A (en) * 2000-01-18 2001-07-27 Nikon Corp Three-dimensional shape observing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307997A (en) * 2012-03-09 2013-09-18 上海微电子装备有限公司 Angle resolution scattering measurement device and measurement method thereof
CN103307997B (en) * 2012-03-09 2016-12-14 上海微电子装备有限公司 A kind of angular resolution scatterometry device and measuring method thereof
CN103453845A (en) * 2012-06-05 2013-12-18 上海微电子装备有限公司 Scattering metering device and scattering metering method

Also Published As

Publication number Publication date
TW200745602A (en) 2007-12-16
JP2007278849A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
US9891418B2 (en) Apparatus for imaging a sample surface
US8773757B2 (en) Slit-scan multi-wavelength confocal lens module and slit-scan microscopic system and method using the same
CN108254909B (en) Optical microscope and method for recording images using an optical microscope
US7488070B2 (en) Optical measuring system and optical measuring method
TWI402498B (en) An image forming method and image forming apparatus
US9696686B2 (en) Method and device for focussing a microscope automatically
JP5394317B2 (en) Rotationally symmetric aspherical shape measuring device
JP2007536539A (en) Apparatus and method for detection based on a combination of geometric interference and imaging, especially in microsystem technology
JP2014508969A (en) System and method for illumination phase control in fluorescence microscopy
JP2008268387A (en) Confocal microscope
KR101356706B1 (en) Structured illumination microscope based on intensity modulation and scanning system
US10649189B2 (en) Device for imaging a sample surface
WO2007116679A1 (en) Optical measurement instrument and optical measurement method
CN116507956A (en) Flying beam pattern scanning hologram microscope device using scanning mirror and transfer table
Ruprecht et al. Confocal micro-optical distance sensor: principle and design
CN109870441B (en) Frequency shift-based three-dimensional super-resolution optical section fluorescence microscopic imaging method and device
JPWO2018190339A1 (en) Aberration correction method and optical device
US11287626B2 (en) Chromatic confocal system and a method for inspecting an object
JP2009293925A (en) Error correction apparatus of optical inspection apparatus
KR101239409B1 (en) 2d shape and 3d shape measuring apparatus and method based on phase shifting interferometry
JP2014035266A (en) Confocal microscope
JP2005017127A (en) Interferometer and shape measuring system
JP2003015048A (en) Lattice illumination microscope
KR102036067B1 (en) Optical measurement device for 3d morphology and refractive index
JP4713391B2 (en) Infrared microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739628

Country of ref document: EP

Kind code of ref document: A1