WO2007116613A1 - Motion guide device and clad material used for motion guide device - Google Patents

Motion guide device and clad material used for motion guide device Download PDF

Info

Publication number
WO2007116613A1
WO2007116613A1 PCT/JP2007/053031 JP2007053031W WO2007116613A1 WO 2007116613 A1 WO2007116613 A1 WO 2007116613A1 JP 2007053031 W JP2007053031 W JP 2007053031W WO 2007116613 A1 WO2007116613 A1 WO 2007116613A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
titanium alloy
guide device
motion guide
rolling
Prior art date
Application number
PCT/JP2007/053031
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Michiyama
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Priority to JP2008509705A priority Critical patent/JPWO2007116613A1/en
Publication of WO2007116613A1 publication Critical patent/WO2007116613A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/005Guide rails or tracks for a linear bearing, i.e. adapted for movement of a carriage or bearing body there along
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in

Definitions

  • the present invention relates to a motion guide device and a clad material used in the motion guide device.
  • the present invention relates to a motion guide device composed of a structural member card material.
  • the structural member is generally made of a high-hardness metal material such as high-carbon chromium bearing steel, stainless steel or case-hardened steel.
  • Patent Document 1 in order to realize a bearing that is non-magnetic and can be used in a corrosion-resistant environment, a vacuum environment, and a high-temperature environment, the inner ring and the outer ring constituting the bearing are made of a titanium alloy. This technology is disclosed. According to Patent Document 1 below, conventional titanium alloys have problems in terms of seizure, hardness, and wear resistance, so that they could not be used for rolling devices such as bearings.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 153140
  • Patent Document 2 Japanese Translation of Special Publication 2002-8623
  • the invention has been made based on the idea that the surface hardness of the titanium alloy is increased. Improving the hardness of the steel directly causes a decrease in the toughness of the titanium alloy, so there is a certain limit to the idea of improving the hardness.
  • manufacturing a motion guide device that is structurally more complex than a rolling bearing with a titanium alloy, which is a difficult-to-process material has a problem in terms of processing cost. It's still a cunning thing to be done.
  • the present invention has been made in view of the existence of the above-described problem, and among the constituent members of the motion guide device, at least one of the track member and the moving member is formed of a clad material. It is possible to adopt a metal material with a low hang rate such as titanium alloy, which was difficult to adopt with conventional motion guidance devices, and furthermore, motion guidance with new effects that could not be realized with conventional motion guidance devices. The purpose is to provide a device and to expand the application range of the motion guide device.
  • the motion guide apparatus is a motion guide apparatus comprising a track member and a moving member that is movably attached to the track member via a plurality of rolling elements, the track member and At least one of the moving members is made of a clad material.
  • the clad material is configured as a composite material of a first metal material and a second metal material, and the first metal material is the second metal material. It is preferable that the hardness is higher than that of the metal material, and at least the vicinity of the rolling element rolling contact surface that contacts the plurality of rolling elements is constituted by the first metal material.
  • the first metal material is an
  • the second metal material is an ⁇ -type titanium alloy. thing It can be.
  • the second metal material is arranged to be a core material of the track member or the moving member, and the first metal material is the second metal material.
  • a plurality of the metal materials may be arranged at symmetrical positions.
  • the clad material according to the present invention is configured as a composite material of a first metal material and a second metal material, and is attached to the race member and the race member so as to be movable via a plurality of rolling elements.
  • the first metal material is harder than the second metal material, and is in contact with at least the plurality of rolling elements.
  • the vicinity of the rolling element rolling surface is made of the first metal material.
  • the first metal material is a ⁇ -type titanium alloy or a +8 type titanium alloy
  • the second metal material is a type titanium alloy. You can.
  • the second metal material is arranged to be a core material of the raceway member or the moving member, and the first metal material is A plurality of the second metal materials may be arranged symmetrically with respect to the second metal material.
  • the clad material according to the present invention is configured as a composite material of a first metal material and a second metal material, and the first metal material is a second metal material. Further, the vicinity of the rolling element rolling surface that contacts at least a plurality of rolling elements is made of the first metal material having high hardness. Therefore, according to the present invention, while maintaining the function as the motion guide device by increasing the hardness in the vicinity of the rolling element rolling surface, the second metal material as the core material is subjected to correction processing because of its low hardness. Immediately as a whole, structural materials It is possible to provide an unprecedented motion guide device by using a clad material capable of exhibiting the functions as described above.
  • a titanium alloy that has been difficult to put into practical use by adopting a j8 type titanium alloy or ⁇ + j8 type titanium alloy as the first metal material and an ⁇ type titanium alloy as the second metal material. It is possible to realize a motion guide device made of metal.
  • the use of a clad material that can freely determine the range occupied by the first hard metal material is a depth that was impossible in the prior art.
  • the hardness of the titanium alloy can be improved (for example, the surface force depth of the rolling element rolling surface is in the range of 0.5 mm), and the motion guide device made of titanium alloy can be put into practical use.
  • the second metal material is disposed so as to be a core member of the raceway member or the moving member, and a plurality of the first metal materials are symmetrically arranged around the second metal material. Therefore, the strength balance of the entire structural material is stable, and it is very easy to shape the shape during processing.
  • FIG. 1 is a model diagram used by the inventor to examine the contact state of two objects, a “sphere” and a “flat plate”, based on Hertz's theory. The contact state between the object I which is a “sphere” and the object II which is a “flat plate” is shown.
  • Figure 2 shows the relationship between the major axis radius a, minor axis radius b, and maximum shear stress depth z.
  • FIG. 3A is an external perspective view illustrating one embodiment of a linear guide device constituted by a clad material according to the present embodiment.
  • FIG. 3B is a cross-sectional view for explaining an infinite circuit provided in the linear guide device shown in FIG. 3A.
  • FIG. 4A is a side view of the track rail according to the present embodiment.
  • FIG. 4B is a longitudinal sectional side view of the track rail mounting hole forming position according to the present embodiment.
  • FIG. 5 is a vertical cross-sectional side view showing a moving block formed by a clad material according to the present embodiment.
  • Fig. 1 is a model diagram used in this study, showing the contact state between object I, which is a "sphere”, and object II, which is a flat plate.
  • object I which is a "sphere”
  • object II which is a flat plate.
  • the curvature p and the curvature radius r for example, in the case of the main curvature surface 1 of the object I, the curvature p,
  • the first subscript represents the object and the second subscript represents the principal curvature surface.
  • the contact surface with which these two objects come into contact can be grasped as an ellipse (including a circle) composed of a major axis radius a and a major axis radius b.
  • the major axis radius a and the major axis radius b can be expressed as the following formulas (A) and (B), respectively.
  • the elastic constant ⁇ can be expressed as an approximate expression (C).
  • This contact area is larger than that of a material having a high Young's modulus.
  • the conventional rolling devices such as the bearings disclosed in Patent Documents 1 and 2 are designed based on the idea of increasing the surface hardness of the titanium alloy. Processing and coating techniques are applied.
  • the improvement in hardness by such surface treatment is limited to a depth of about 0.1 mm from the surface.
  • at least the rolling element rolling surface It is considered necessary to improve the hardness in the region from the surface to a depth of about 0.5 mm.
  • no surface treatment technology has been put into practical use for achieving such a depth improvement for a metal material having a low Young's modulus such as a titanium alloy.
  • the "motion guide device” in this specification includes, for example, rolling bearings used in general for machine tools and the like, non-lubricated bearings used in vacuum, linear guides and linear guide devices, ball spline devices, balls Such as screw device, roller screw device, cross roller ring, etc. In addition, it includes devices with all rolling and sliding motions.
  • rolling bearings used in general for machine tools and the like
  • non-lubricated bearings used in vacuum
  • linear guides and linear guide devices ball spline devices
  • balls Such as screw device, roller screw device, cross roller ring, etc.
  • it includes devices with all rolling and sliding motions.
  • FIG. 3A is an external perspective view illustrating one embodiment of a linear guide device constituted by the clad material according to the present embodiment.
  • FIG. 3B is a cross-sectional view for explaining the infinite circuit provided in the linear guide device shown in FIG. 3A.
  • the linear guide device 40 as the motion guide device according to this embodiment includes a track rail 41 as a track member, and a track rail. 41 is provided with a moving block 43 as a moving member slidably attached via balls 42... Installed as a number of rolling elements.
  • the track rail 41 is a long member whose cross section perpendicular to the longitudinal direction is formed in a substantially rectangular shape, and on its surface (upper surface and both side surfaces) is a rolling element that becomes a track when the ball rolls. 41a ... is formed over the entire length of the track rail 41.
  • the track rail 41 may be formed to extend linearly or may be formed to extend in a curved manner.
  • the number of rolling element rolling surfaces 41a is four in total, two on each side, but the number can be changed according to the application of the linear guide device 40.
  • the moving block 43 is provided with load rolling element rolling surfaces 43a 'at positions corresponding to the rolling element rolling surfaces 41a.
  • the rolling element rolling surface 41a 'of the track rail 41 and the load rolling element rolling surface 43a of the moving block 43 form a load rolling path 52 ..., and a plurality of balls 42 are sandwiched between them.
  • the moving block 43 includes four unloaded rolling paths 53 extending in parallel with the rolling element rolling surfaces 41 a, each unloaded rolling path 53, and each loaded rolling path 52.
  • One endless circulation path is configured by a combination of one loaded rolling path 52 and unloaded rolling path 53 and a pair of direction changing paths 55 connecting them (see FIG. 3B).
  • a plurality of balls 42 are installed in an infinite circulation path composed of a load rolling path 52, a no-load rolling path 53, and a pair of directional switching paths 55, 55 so as to allow infinite circulation.
  • the moving block 43 can reciprocate relative to the track rail 41.
  • FIG. 4A is a side view of the track rail according to the present embodiment
  • FIG. 4B is a vertical cross-sectional side view at the mounting hole forming position of the track rail according to the present embodiment.
  • the track rail 41 is formed of a clad material configured as a composite material of a first metal material 61 and a second metal material 62.
  • the first metal material 61 is made of
  • the second metal material 62 is made of diamond titanium alloy.
  • 8-type titanium alloy having high hardness is disposed in the region where the plurality of rolling element rolling surfaces 41a are formed, and the other regions. Is that the second metal material 62 having a low hardness ⁇ -type titanium alloying force is disposed.
  • the track rail 41 By forming the track rail 41 according to the present embodiment with the clad material having the above-described configuration, first, the vicinity of the rolling element rolling surface 41a that is repeatedly subjected to the rolling load can be increased in hardness. It is possible to maintain the function as a motion guide device.
  • the first metal material ( ⁇ -type titanium alloy) 61 in the vicinity of the rolling element rolling surface 41a has high hardness
  • the second metal material (model titanium alloy) 62 as the core material has Due to its low hardness, for example, the second metal is maintained while maintaining the straightness of the rolling element rolling surface 41a even after the rolling material rolling surface 41a is cut by molding the clad material into the shape of the track rail 41. Since the material (model titanium alloy) 62 can be modified and the shape of the track rail 41 as a whole can be modified to the desired dimensions, etc., the machined surface of the difficult-to-work titanium alloy Can be reduced.
  • the track rail 41 according to the present embodiment with a clad material as shown in Figs. 4 and 4, it is possible to construct the constituent material to a depth that was impossible with a conventional titanium alloy track rail. It is possible to improve the hardness. That is, by adopting the clad material according to the present embodiment, for example, the surface force depth of the rolling element rolling surface 41a is 0.5 mm (the depth is more than that), and the first metal has a high hardness.
  • the material ( ⁇ -type titanium alloy) 61 can be configured to occupy the material, so it is possible to improve the hardness at the depth position where shear stress is applied, and the titanium alloy motion guide device can be put to practical use. It is.
  • the use of the clad material according to the present embodiment enables a level of hardness improvement that is impossible with a conventional titanium alloy motion guide device. That is, when one component member is made of the same titanium alloy as disclosed in the prior arts such as Patent Documents 1 and 2, etc., there is a limit to improvement in hardness in consideration of a decrease in toughness ( 350-400HV). However, in the case of the clad material according to this embodiment, even if the first metal material (
  • a second metal material (titanium titanium alloy) 62 is used as the core material of the track rail 41.
  • the first metal material (j8 type titanium alloy) 61 the first metal material is centered on the second metal material (a type titanium alloy) 62.
  • ( ⁇ -type titanium alloy) 61 is configured to be arranged at a symmetrical position. That is, in the examples of FIGS.
  • a pair of first metal materials having the same shape on the left and right above the track rail 41 (centered on the second metal material ( ⁇ -type titanium alloy) 62 ( ⁇ 8 type titanium alloy) 61 are arranged facing each other, and a pair of first metal materials (13 type titanium alloy) 61 having the same shape are arranged oppositely on the left and right sides of the track rail 41.
  • the first metal material ( ⁇ (Titanium alloy type) 61 is placed opposite to each other, so that the strength balance of the track rail 41 as a whole is stabilized, and the shape formation during processing becomes very easy.
  • FIG. 5 is a vertical cross-sectional side view showing a moving block formed of the clad material according to the present embodiment.
  • the moving block 43 according to the present embodiment is configured by a first metal material (
  • the other parts can be made of a second metal material (a-type titanium alloy) 72 having a low hardness.
  • 8-type titanium alloy) 71 is arranged only in the vicinity of the loaded rolling element rolling surface 43a...
  • the clad material may be made after a method such as explosive pressure welding, and the forming process may be performed, or a method of manufacturing a clad material by simultaneously joining and forming dissimilar metal laminates by deep drawing. May be.
  • the ⁇ -type titanium alloy and the / 3-type titanium alloy are tightly joined by brazing and heated to about 600 ° C. to reduce the rolling reduction rate from 60 to 60 ° C.
  • a hot rolling of about 80% is performed, and then the entire shape is formed and the rolling surface 41a is cut and ground to finish the desired track rail 41.
  • the clad material according to the present embodiment includes rolling bearings in general and non-lubricated bearings used in vacuum, linear guides and linear guide devices, ball spline devices, ball screw devices, roller screw devices, and cross roller rings.
  • Exercise plan with any rolling 'sliding motion such as It is possible to apply to the internal device.
  • the vicinity of the rolling element rolling surface of the ball screw device screw shaft or nut member, or the vicinity of the rolling element rolling surface of the spline shaft spline outer cylinder of the ball spline device is the first high hardness.
  • metal material such as 8-type titanium alloy
  • the other parts can be composed of second metal material (such as model titanium alloy) 62, 72 with low hardness.
  • the first metal material ⁇ 8 type titanium alloy, etc.
  • the first metal material has a high hardness in the range of depth of 0.5mm from the surface of the rolling element rolling surface.
  • 61, 71, or a plurality of first metal materials (such as titanium alloy) 61, 71 are arranged opposite to each other so as to balance strength.
  • the number of laminated first metal materials 61 and 71 and second metal materials 62 and 72 constituting the clad material may be any number.

Abstract

A motion guide device has a raceway member (41) and a movement member movably mounted on the raceway member (41) with rolling bodies in between them. At least either the raceway member (41) or the movement member is made of a clad material. The clad material is formed as a composite material of a first metal material (for example, beta type titanium alloy)(61) and a second metal material (for example, an alpha type titanium alloy)(62). The first metal material (61) is harder than the second metal material (62), and at least a portion near a rolling body rolling surface (41a) in contact with the rolling bodies is preferably made of the first metal material (61). Also, the first metal material (61) is preferably constructed so as to occupy a range of 0.5 mm in depth from the surface of the rolling body rolling surface (41a).

Description

明 細 書  Specification
運動案内装置および運動案内装置に用いられるクラッド材  Motion guide device and clad material used in motion guide device
技術分野  Technical field
[0001] 本発明は、運動案内装置および運動案内装置に用いられるクラッド材に係り、特に TECHNICAL FIELD [0001] The present invention relates to a motion guide device and a clad material used in the motion guide device.
、構成部材カ^ラッド材により構成される運動案内装置に関するものである。 Further, the present invention relates to a motion guide device composed of a structural member card material.
背景技術  Background art
[0002] 従来から、リニアガイドや直線案内装置、ボールスプライン装置、ボールねじ装置な どのような運動案内装置においては、力かる装置を構成する部材が繰り返し転動 '摺 動動作を伴うことから、その構成部材には、一般的に、高炭素クロム軸受鋼ゃステン レス鋼、肌焼鋼のような硬度の高 、金属材料が採用されて 、る。  [0002] Conventionally, in motion guide devices such as linear guides, linear guide devices, ball spline devices, and ball screw devices, the members that make up a forceful device are repeatedly rolled and accompanied by a sliding motion. The structural member is generally made of a high-hardness metal material such as high-carbon chromium bearing steel, stainless steel or case-hardened steel.
[0003] 一方、近年の運動案内装置の適用範囲拡大の要請から、様々な条件下で用いるこ とができる運動案内装置の実用化が望まれている。例えば、下記特許文献 1には、非 磁性であり、且つ、耐食環境、真空環境、高温環境下で用いることのできる軸受を実 現するために、軸受を構成する内輪および外輪をチタン合金で構成した技術が開示 されている。下記特許文献 1によれば、従来のチタン合金は、焼き付きや硬度、耐摩 耗性の面で問題があつたので、軸受などの転動装置に用いることは不可能であった 力 置換型固溶元素である Crと侵入型固溶元素である 0、 N、 Cの添加量を最適化 することにより、従来チタン合金では得られな力つた著しく硬化した α 'マルテンサイト 組織を有するチタン合金を得ることができ、さら〖こ、この α,マルテンサイトの量比を制 御することによって、水中等の特殊環境下で長寿命な特殊環境用軸受を提供するこ とができるとされている。  [0003] On the other hand, due to the recent demand for expanding the application range of motion guidance devices, it is desired to put into practical use a motion guidance device that can be used under various conditions. For example, in Patent Document 1 below, in order to realize a bearing that is non-magnetic and can be used in a corrosion-resistant environment, a vacuum environment, and a high-temperature environment, the inner ring and the outer ring constituting the bearing are made of a titanium alloy. This technology is disclosed. According to Patent Document 1 below, conventional titanium alloys have problems in terms of seizure, hardness, and wear resistance, so that they could not be used for rolling devices such as bearings. By optimizing the addition amount of Cr, which is an element, and 0, N, and C, which are interstitial solid solution elements, a titanium alloy having a significantly hardened α 'martensite structure that cannot be obtained with conventional titanium alloys is obtained. It is said that by controlling the quantity ratio of α and martensite, it is possible to provide a bearing for special environments that has a long life in special environments such as underwater.
[0004] また、上述した技術をさらに改良するために、チタン合金の硬度アップを図る観点 から、種々の発明が創案されている (例えば、下記特許文献 2参照)。  [0004] In order to further improve the above-described technique, various inventions have been devised from the viewpoint of increasing the hardness of the titanium alloy (see, for example, Patent Document 2 below).
[0005] 特許文献 1 :特開平 11 153140号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 11 153140
特許文献 2 :特表 2002— 8623号公報  Patent Document 2: Japanese Translation of Special Publication 2002-8623
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0006] し力しながら、チタン合金の高硬度化を図る技術には限界があり、リニアガイドや直 線案内装置、ボールスプライン装置、ボールねじ装置、回転ベアリング装置などのよ うな運動案内装置にあっては、チタン合金を採用したものは未だ量産化されるには至 つておらず、商業ベースで実用化するまでには至って 、な 、。 Problems to be solved by the invention [0006] However, there is a limit to the technology for increasing the hardness of titanium alloys while exerting force, such as motion guide devices such as linear guides, linear guide devices, ball spline devices, ball screw devices, and rotary bearing devices. In that case, those using titanium alloys have not yet been mass-produced, but have been commercialized on a commercial basis.
[0007] また、上記特許文献 1, 2が開示する軸受などの転動装置においては、チタン合金 の表面硬度を高くすると 、う考えに基づ 、て発明が成されて 、るが、チタン合金の硬 度を向上することは、そのままチタン合金の靭性低下を引き起こしてしまうことになる ため、硬度の向上という考え方にはある程度の限界がある。また、転がり軸受よりも構 造的に複雑な運動案内装置を難加工材料であるチタン合金によって製造することは 、加工コストの面でも問題があり、現実にチタン合金製の運動案内装置を量産化する ことは未だ実現されて ヽな 、。  [0007] In addition, in the rolling devices such as bearings disclosed in Patent Documents 1 and 2, the invention has been made based on the idea that the surface hardness of the titanium alloy is increased. Improving the hardness of the steel directly causes a decrease in the toughness of the titanium alloy, so there is a certain limit to the idea of improving the hardness. In addition, manufacturing a motion guide device that is structurally more complex than a rolling bearing with a titanium alloy, which is a difficult-to-process material, has a problem in terms of processing cost. It's still a cunning thing to be done.
[0008] 本発明は、上述した課題の存在に鑑みて成されたものであって、運動案内装置の 構成部材のうち、軌道部材および移動部材の少なくとも一方をクラッド材によって構 成することにより、従来の運動案内装置では採用が困難であったチタン合金などのャ ング率の低い金属材料を採用可能とし、さらには、従来の運動案内装置では実現で きなかった新たな作用効果を奏する運動案内装置を提供し、運動案内装置の適用 範囲の拡大を図ることを目的とするものである。  [0008] The present invention has been made in view of the existence of the above-described problem, and among the constituent members of the motion guide device, at least one of the track member and the moving member is formed of a clad material. It is possible to adopt a metal material with a low hang rate such as titanium alloy, which was difficult to adopt with conventional motion guidance devices, and furthermore, motion guidance with new effects that could not be realized with conventional motion guidance devices. The purpose is to provide a device and to expand the application range of the motion guide device.
課題を解決するための手段  Means for solving the problem
[0009] 本発明に係る運動案内装置は、軌道部材と、前記軌道部材に複数の転動体を介し て移動自在に取り付けられる移動部材と、を備える運動案内装置であって、前記軌 道部材および前記移動部材の少なくとも一方が、クラッド材により構成されていること を特徴とする。 [0009] The motion guide apparatus according to the present invention is a motion guide apparatus comprising a track member and a moving member that is movably attached to the track member via a plurality of rolling elements, the track member and At least one of the moving members is made of a clad material.
[0010] 本発明に係る運動案内装置において、前記クラッド材は、第 1の金属材料と第 2の 金属材料との複合材料として構成されており、前記第 1の金属材料は、前記第 2の金 属材料より高硬度であり、さらに、少なくとも前記複数の転動体と接触する転動体転 走面の近傍が、前記第 1の金属材料によって構成されていることが好適である。  [0010] In the motion guide apparatus according to the present invention, the clad material is configured as a composite material of a first metal material and a second metal material, and the first metal material is the second metal material. It is preferable that the hardness is higher than that of the metal material, and at least the vicinity of the rolling element rolling contact surface that contacts the plurality of rolling elements is constituted by the first metal material.
[0011] また、本発明に係る運動案内装置において、前記第 1の金属材料が |8型チタン合 金又は α + j8型チタン合金であり、前記第 2の金属材料が α型チタン合金であること とすることができる。 [0011] Further, in the motion guide apparatus according to the present invention, the first metal material is an | 8-type titanium alloy or an α + j8-type titanium alloy, and the second metal material is an α-type titanium alloy. thing It can be.
[0012] さらに、本発明に係る運動案内装置において、前記第 2の金属材料は、前記軌道 部材又は前記移動部材の芯材となるように配置され、前記第 1の金属材料は、前記 第 2の金属材料を中心として複数が対称位置に配置されることとすることができる。  [0012] Further, in the motion guide device according to the present invention, the second metal material is arranged to be a core material of the track member or the moving member, and the first metal material is the second metal material. A plurality of the metal materials may be arranged at symmetrical positions.
[0013] 本発明に係るクラッド材は、第 1の金属材料と第 2の金属材料との複合材料として構 成され、軌道部材と、前記軌道部材に複数の転動体を介して移動自在に取り付けら れる移動部材と、を備える運動案内装置に用いられるクラッド材であって、前記第 1の 金属材料は、前記第 2の金属材料より高硬度であり、さらに、少なくとも前記複数の転 動体と接触する転動体転走面の近傍が、前記第 1の金属材料によって構成されてい ることを特徴とする。  The clad material according to the present invention is configured as a composite material of a first metal material and a second metal material, and is attached to the race member and the race member so as to be movable via a plurality of rolling elements. The first metal material is harder than the second metal material, and is in contact with at least the plurality of rolling elements. The vicinity of the rolling element rolling surface is made of the first metal material.
[0014] 本発明に係るクラッド材は、前記第 1の金属材料が β型チタン合金又はひ + |8型 チタン合金であり、前記第 2の金属材料がひ型チタン合金であることとすることができ る。  [0014] In the cladding material according to the present invention, the first metal material is a β-type titanium alloy or a +8 type titanium alloy, and the second metal material is a type titanium alloy. You can.
[0015] また、本発明に係るクラッド材にお 、て、前記第 2の金属材料は、前記軌道部材又 は前記移動部材の芯材となるように配置され、前記第 1の金属材料は、前記第 2の金 属材料を中心として複数が対称位置に配置されることとすることができる。  [0015] In the clad material according to the present invention, the second metal material is arranged to be a core material of the raceway member or the moving member, and the first metal material is A plurality of the second metal materials may be arranged symmetrically with respect to the second metal material.
[0016] なお上記発明の概要は、本発明の必要な特徴の全てを列挙したものではなぐこれ らの特徴群のサブコンビネーションもまた発明となり得る。  [0016] It should be noted that the above summary of the invention does not enumerate all the necessary features of the present invention, and a sub-combination of these feature groups can also be an invention.
発明の効果  The invention's effect
[0017] 本発明によれば、軌道部材および移動部材の少なくとも一方をクラッド材によって 構成したので、従来では実現できな力つた機能を発揮することが可能な全く新 ヽ運 動案内装置を提供することができる。  [0017] According to the present invention, since at least one of the track member and the moving member is made of the clad material, a completely new driving guide device capable of exerting a powerful function that cannot be realized conventionally is provided. be able to.
[0018] 具体的には、本発明に係るクラッド材は、第 1の金属材料と第 2の金属材料との複 合材料として構成されており、第 1の金属材料は、第 2の金属材料より高硬度であり、 さらに、少なくとも複数の転動体と接触する転動体転走面の近傍が、硬度の高い第 1 の金属材料によって構成されている。したがって、本発明によれば、転動体転走面近 傍の高硬度化によって運動案内装置としての機能を維持しつつも、芯材としての第 2 の金属材料が低硬度のため修正加工が施しやすぐしかも材料全体としては構造材 としての機能を発揮することが可能なクラッド材により、従来にない運動案内装置を提 供することが可能である。 [0018] Specifically, the clad material according to the present invention is configured as a composite material of a first metal material and a second metal material, and the first metal material is a second metal material. Further, the vicinity of the rolling element rolling surface that contacts at least a plurality of rolling elements is made of the first metal material having high hardness. Therefore, according to the present invention, while maintaining the function as the motion guide device by increasing the hardness in the vicinity of the rolling element rolling surface, the second metal material as the core material is subjected to correction processing because of its low hardness. Immediately as a whole, structural materials It is possible to provide an unprecedented motion guide device by using a clad material capable of exhibiting the functions as described above.
[0019] 特に、第 1の金属材料に j8型チタン合金又は α + j8型チタン合金を、第 2の金属 材料に α型チタン合金を採用することによって、従来実用化が困難であったチタン 合金製の運動案内装置を実現することが可能となる。すなわち、硬度の高い第 1の金 属材料 ( β型チタン合金又は α + j8型チタン合金)の占める範囲を自由に決めること ができるクラッド材の採用によって、従来技術では不可能であった深さ(例えば、転動 体転走面の表面力 深さ 0. 5mmの範囲)までチタン合金の硬度を向上させることが でき、チタン合金製の運動案内装置が実用化可能となった。  [0019] In particular, a titanium alloy that has been difficult to put into practical use by adopting a j8 type titanium alloy or α + j8 type titanium alloy as the first metal material and an α type titanium alloy as the second metal material. It is possible to realize a motion guide device made of metal. In other words, the use of a clad material that can freely determine the range occupied by the first hard metal material (β-type titanium alloy or α + j8-type titanium alloy) is a depth that was impossible in the prior art. The hardness of the titanium alloy can be improved (for example, the surface force depth of the rolling element rolling surface is in the range of 0.5 mm), and the motion guide device made of titanium alloy can be put into practical use.
[0020] また、上記特許文献 1 , 2等、従来技術が開示するような、全て同一のチタン合金で 1つの構成部材を作成する場合には、靭性の低下を考慮して硬度の向上には限界( 350〜400HV)があった。し力しながら、本発明に係るクラッド材の場合には、第 1の金 属材料 ( β型チタン合金又は α + j8型チタン合金)の方を最大限 (450〜550HV)に 硬化させたとしても、第 2の金属材料 ( a型チタン合金)の存在によって構造材全体と しての靭性が維持できるので、従来技術に比べて高負荷'長寿命の運動案内装置を 実現することができる。  [0020] Further, when one component member is made of the same titanium alloy as disclosed in the prior art such as Patent Documents 1 and 2, etc., it is necessary to improve hardness in consideration of a decrease in toughness. There was a limit (350-400HV). However, in the case of the clad material according to the present invention, it is assumed that the first metal material (β-type titanium alloy or α + j8-type titanium alloy) is hardened to the maximum (450 to 550 HV). However, since the toughness of the entire structural material can be maintained by the presence of the second metal material (a-type titanium alloy), it is possible to realize a motion guide device with a higher load and longer life than the conventional technology.
[0021] さらに、本発明では、第 2の金属材料を、軌道部材又は移動部材の芯材となるよう に配置し、第 1の金属材料を、第 2の金属材料を中心として複数が対称位置に配置さ れるように構成するようにしたので、構造材全体としての強度バランスが安定し、加工 の際の形状出しが非常に容易となる。  [0021] Further, in the present invention, the second metal material is disposed so as to be a core member of the raceway member or the moving member, and a plurality of the first metal materials are symmetrically arranged around the second metal material. Therefore, the strength balance of the entire structural material is stable, and it is very easy to shape the shape during processing.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]図 1は、発明者が行ったヘルツ (Hertz)の理論に基づく「球」と「平板」との 2つの 物体の接触状態を検討するために用いたモデル図であって、「球」である物体 Iと「平 板」である物体 IIの接触状態を示して 、る。  [0022] [FIG. 1] FIG. 1 is a model diagram used by the inventor to examine the contact state of two objects, a “sphere” and a “flat plate”, based on Hertz's theory. The contact state between the object I which is a “sphere” and the object II which is a “flat plate” is shown.
[図 2]図 2は、長軸半径 a、短軸半径 bおよび最大剪断応力深さ zの関係を示す図で  [Figure 2] Figure 2 shows the relationship between the major axis radius a, minor axis radius b, and maximum shear stress depth z.
1  1
ある。  is there.
[図 3A]図 3Aは、本実施形態に係るクラッド材により構成されるリニアガイド装置の一 形態を例示する外観斜視図である。 [図 3B]図 3Bは、図 3Aで示したリニアガイド装置が備える無限循環路を説明するため の断面図である。 FIG. 3A is an external perspective view illustrating one embodiment of a linear guide device constituted by a clad material according to the present embodiment. FIG. 3B is a cross-sectional view for explaining an infinite circuit provided in the linear guide device shown in FIG. 3A.
[図 4A]図 4Aは、本実施形態に係る軌道レールの側面図である。  FIG. 4A is a side view of the track rail according to the present embodiment.
[図 4B]図 4Bは、本実施形態に係る軌道レールの取付孔形成位置での縦断面側面 図である。  [FIG. 4B] FIG. 4B is a longitudinal sectional side view of the track rail mounting hole forming position according to the present embodiment.
[図 5]図 5は、本実施形態に係るクラッド材により形成される移動ブロックを示した縦断 面側面図である。  FIG. 5 is a vertical cross-sectional side view showing a moving block formed by a clad material according to the present embodiment.
符号の説明  Explanation of symbols
[0023] 40 リニアガイド装置、 41 軌道レール、 41a 転動体転走面、 42 ボール、 43 移 動ブロック、 43a 負荷転動体転走面、 45 取付孔、 52 負荷転走路、 53 無負荷 転走路、 55 方向転換路、 61, 71 第 1の金属材料、 62, 72 第 2の金属材料。 発明を実施するための最良の形態  [0023] 40 linear guide device, 41 track rail, 41a rolling element rolling surface, 42 balls, 43 moving block, 43a loaded rolling element rolling surface, 45 mounting hole, 52 loaded rolling path, 53 unloaded rolling path, 55 diversion path, 61, 71 first metal material, 62, 72 second metal material. BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 発明者の検討によって、チタン合金などのようなヤング率の低い金属材料を運動案 内装置に利用しょうとする場合、同一負荷での応力発生位置を比較すると、従来用 Vヽて ヽた鋼やセラミック材料のようなヤング率の高 、材料に比べて、その応力発生位 置が深くなつてしまうことが判明した。  [0024] When a metal material having a low Young's modulus, such as a titanium alloy, is to be used for an exercise plan apparatus as a result of the inventor's investigation, comparing the stress generation position under the same load, the conventional V It has been found that the stress generation position is deeper than that of materials with high Young's modulus such as steel and ceramic materials.
[0025] すなわち、発明者は、ヘルツ(Hertz)の理論を用いて「球」と「平板」との 2つの物体 の接触状態を考えた。図 1は、本検討を行う際に用いたモデル図であって、「球」であ る物体 Iと「平板」である物体 IIの接触状態を示している。図 1のように、 2つの物体が 荷重 Qで互いに押しつけられているとき、「球」である物体 Iの曲面は、互いに直交す る 2つの主曲率面を持ち、その面内には、物体 Iの最大曲率と最小曲率が含まれてい る。そして、曲線の曲率半径を rとすると、曲率 pは、 = lZrで表される。以後、曲 率 pおよび曲率半径 rについては、例えば物体 Iの主曲率面 1の場合、曲率 p ,曲  That is, the inventor considered the contact state of two objects, “sphere” and “flat plate”, using Hertz's theory. Fig. 1 is a model diagram used in this study, showing the contact state between object I, which is a "sphere", and object II, which is a flat plate. As shown in Fig. 1, when two objects are pressed against each other with a load Q, the curved surface of the object I, which is a `` sphere '', has two principal curvature surfaces that are orthogonal to each other. The maximum and minimum curvatures of I are included. And if the radius of curvature of the curve is r, the curvature p is expressed as = lZr. Hereinafter, for the curvature p and the curvature radius r, for example, in the case of the main curvature surface 1 of the object I, the curvature p,
II  II
率半径 rで表す。つまり、 1番目の添字は物体を表し、 2番目の添字は主曲率面を表 It is represented by the rate radius r. That is, the first subscript represents the object and the second subscript represents the principal curvature surface.
II II
している。  is doing.
[0026] そして、これら 2物体が接触する接触面は、長軸半径 aおよび長軸半径 bで構成さ れる楕円(円を含む)として把握することができる。そして、これら長軸半径 aおよび長 軸半径 bは、それぞれ以下の数式 (A)および (B)として表すことができる。 [数 1] [0026] The contact surface with which these two objects come into contact can be grasped as an ellipse (including a circle) composed of a major axis radius a and a major axis radius b. The major axis radius a and the major axis radius b can be expressed as the following formulas (A) and (B), respectively. [Number 1]
Figure imgf000008_0001
Figure imgf000008_0001
[0027] また、弾性定数 Θは、近似式 (C)として表すことができる。 [0027] The elastic constant Θ can be expressed as an approximate expression (C).
[数 2] ハ— 4 (m 2 - l) :_ 32 (Q\ [Equation 2] Ha 4 (m 2 -l): _ 32 (Q \
' m -- E ' 9E  'm-E' 9E
Ε, , Eu ヤング率 Ε,, E u Young's modulus
1 /m :ポアソン比  1 / m: Poisson's ratio
[0028] 近似式 (C)を数式 (A)および (B)にそれぞれ代入すると、 μ = ν = 1 , β = lZr、 [0028] Substituting approximate equation (C) into equations (A) and (B), respectively, μ = ν = 1, β = lZr,
I  I
p = 0であるから、数式(D)として表すことができる。  Since p = 0, it can be expressed as equation (D).
II  II
[数 3]
Figure imgf000008_0002
[Equation 3]
Figure imgf000008_0002
[0029] 今回考えた物体 Iおよび物体 IIは、それぞれ「球」と「平板」であるため、 a = bとなり、 接触面の形状は円となる。したがって、接触面積は、 π a2となり、上記数式 (D)にお いて、圧縮荷重 Qが一定、球体半径が rとすると、物体 Iおよび物体 IIのヤング率 E , [0029] Since the object I and the object II considered this time are “sphere” and “flat plate”, respectively, a = b and the shape of the contact surface is a circle. Therefore, the contact area is π a 2 , and in the above formula (D), if the compressive load Q is constant and the sphere radius is r, the Young's modulus E of object I and object II,
I  I
Eが低くなれば、長軸半径 aは大きくなることがわかる。つまり、ヤング率の低い材料 It can be seen that as E becomes lower, the major axis radius a becomes larger. In other words, a material with a low Young's modulus
II II
の接触面積は、ヤング率の高い材料に比べて大きくなるのである。  This contact area is larger than that of a material having a high Young's modulus.
[0030] また、以上のようにして求めた長軸半径 a、短軸半径 bと図 2に示す図から、最大剪 断応力深さ zを求めることができる。すなわち、 a = bから bZa= lとなり、図 2からすれ[0030] From the major axis radius a and minor axis radius b obtained as described above and the diagram shown in FIG. The breaking stress depth z can be obtained. That is, from a = b to bZa = l,
1 1
ば z Zb = 0. 47の値を求めることができる。したがって、 z /a = 0. 47となり、 aの値 が大きくなれば最大剪断応力深さ zの値も大きくなる。よって、ヤング率の低い材料 ほど最大剪断応力深さは、深くなることが確認できる。  For example, the value of z Zb = 0.47 can be obtained. Therefore, z / a = 0.47, and the value of the maximum shear stress depth z increases as the value of a increases. Therefore, it can be confirmed that the maximum shear stress depth becomes deeper as the material has a lower Young's modulus.
[0031] 以上から、チタン合金などのようなヤング率の低い金属材料を運動案内装置に利 用しょうとする場合、同一負荷での応力発生位置を比較すると、従来用いていた鋼や セラミックス材料のようなヤング率の高 ヽ材料に比べて、ヤング率の低!ヽ金属材料は 、その応力発生位置が深くなつてしまうので、その深さに応じた設計を行う必要がある [0031] From the above, when trying to use a metal material having a low Young's modulus such as a titanium alloy for the motion guide device, comparing the stress generation position under the same load, the conventional steel and ceramic materials are compared. Compared with materials with high Young's modulus, metal materials with low Young's modulus have deep stress locations, so it is necessary to design them according to their depth.
[0032] ちなみに、上記特許文献 1, 2が開示する軸受などの従来の転動装置においては、 チタン合金の表面硬度を高くするという考えに基づいて設計が成されており、そのた めの表面処理やコーティング技術が適用されている。し力しながら、このような表面処 理による硬度向上は、表面から 0. 1mm程度の深さに適用することが限界である。特 に、現在実用化されている運動案内装置の構成 (例えば、ボール径ゃ装置寸法など )や設計の際の安全率等を考慮した場合、上記検討をふまえると、少なくとも転動体 転走面の表面から深さ 0. 5mm程度の位置までの領域で硬度向上を図る必要がある と考えられる。し力しながら、現在、チタン合金などのようなヤング率の低い金属材料 に対して、そのような深さまで硬度向上を実現する表面処理技術は実用化されてい ない。 [0032] Incidentally, the conventional rolling devices such as the bearings disclosed in Patent Documents 1 and 2 are designed based on the idea of increasing the surface hardness of the titanium alloy. Processing and coating techniques are applied. However, the improvement in hardness by such surface treatment is limited to a depth of about 0.1 mm from the surface. In particular, considering the configuration of motion guide devices that are currently in practical use (for example, ball diameter and device dimensions) and the safety factor at the time of design, based on the above considerations, at least the rolling element rolling surface It is considered necessary to improve the hardness in the region from the surface to a depth of about 0.5 mm. However, at present, no surface treatment technology has been put into practical use for achieving such a depth improvement for a metal material having a low Young's modulus such as a titanium alloy.
[0033] 発明者は、上記検討結果をふまえた上で、母材自体の強度向上が不可欠であるこ とに鑑み、運動案内装置の構成部材にクラッド材を用いることを創案した。そこで、以 下に本発明を実施するための好適な実施形態について、図面を用いて説明する。な お、以下の実施形態は、各請求項に係る発明を限定するものではなぐまた、実施形 態の中で説明されて ヽる特徴の組み合わせの全てが発明の解決手段に必須である とは限らない。  [0033] Based on the above examination results, the inventor has invented the use of a clad material as a constituent member of the motion guide device in view of the necessity of improving the strength of the base material itself. Therefore, preferred embodiments for carrying out the present invention will be described below with reference to the drawings. The following embodiments do not limit the invention according to each claim, and all combinations of features described in the embodiments are essential for the solution of the invention. Not exclusively.
[0034] なお、本明細書における「運動案内装置」は、例えば、工作機械などに用いられる 転がり軸受全般や真空中で使用される無潤滑軸受、リニアガイドや直線案内装置、 ボールスプライン装置、ボールねじ装置、ローラねじ装置、クロスローラリング等のよう な、あらゆる転動,摺動動作を伴う装置を含むものである。以下の説明では、運動案 内装置がリニアガイド装置として構成される場合における、本発明の適用事例を説明 する。 [0034] Note that the "motion guide device" in this specification includes, for example, rolling bearings used in general for machine tools and the like, non-lubricated bearings used in vacuum, linear guides and linear guide devices, ball spline devices, balls Such as screw device, roller screw device, cross roller ring, etc. In addition, it includes devices with all rolling and sliding motions. In the following description, application examples of the present invention when the exercise plan apparatus is configured as a linear guide apparatus will be described.
[0035] (リニアガイド装置への適用例)  [0035] (Example of application to linear guide device)
本実施形態に係るクラッド材は、図 3Aおよび図 3Bに示すようなリニアガイド装置と して構成される運動案内装置に対して適用することが可能である。ここで、図 3Aは、 本実施形態に係るクラッド材により構成されるリニアガイド装置の一形態を例示する 外観斜視図である。また、図 3Bは、図 3Aで示したリニアガイド装置が備える無限循 環路を説明するための断面図である。  The clad material according to the present embodiment can be applied to a motion guide device configured as a linear guide device as shown in FIGS. 3A and 3B. Here, FIG. 3A is an external perspective view illustrating one embodiment of a linear guide device constituted by the clad material according to the present embodiment. FIG. 3B is a cross-sectional view for explaining the infinite circuit provided in the linear guide device shown in FIG. 3A.
[0036] まず、図 3Aおよび図 3Bに例示するリニアガイド装置 40の構成について説明すると 、本実施形態に係る運動案内装置としてのリニアガイド装置 40は、軌道部材としての 軌道レール 41と、軌道レール 41に多数の転動体として設置されるボール 42· ··を介 してスライド可能に取り付けられた移動部材としての移動ブロック 43とを備えている。 軌道レール 41はその長手方向と直交する断面が概略矩形状に形成された長尺の部 材であり、その表面(上面および両側面)にはボールが転がる際の軌道になる転動体 転走面 41a…が軌道レール 41の全長に渡って形成されている。  First, the configuration of the linear guide device 40 illustrated in FIGS. 3A and 3B will be described. The linear guide device 40 as the motion guide device according to this embodiment includes a track rail 41 as a track member, and a track rail. 41 is provided with a moving block 43 as a moving member slidably attached via balls 42... Installed as a number of rolling elements. The track rail 41 is a long member whose cross section perpendicular to the longitudinal direction is formed in a substantially rectangular shape, and on its surface (upper surface and both side surfaces) is a rolling element that becomes a track when the ball rolls. 41a ... is formed over the entire length of the track rail 41.
[0037] ここで、軌道レール 41は、直線的に伸びるように形成されることもあるし、曲線的に 伸びるように形成されることもある。また、転動体転走面 41a…の本数は左右で 2条ず つ合計 4条設けられているが、その条数はリニアガイド装置 40の用途等に応じて変 更することができる。  [0037] Here, the track rail 41 may be formed to extend linearly or may be formed to extend in a curved manner. In addition, the number of rolling element rolling surfaces 41a is four in total, two on each side, but the number can be changed according to the application of the linear guide device 40.
[0038] 一方、移動ブロック 43には、転動体転走面 41a…とそれぞれ対応する位置に負荷 転動体転走面 43a' ··が設けられて 、る。軌道レール 41の転動体転走面 41a' · ·と移 動ブロック 43の負荷転動体転走面 43a…とによって負荷転走路 52…が形成され、複 数のボール 42· ··が挟まれている。さらに、移動ブロック 43には、各転動体転走面 41 a…と平行に伸びる 4条の無負荷転走路 53…と、各無負荷転走路 53· ··と各負荷転 走路 52· ··とを結ぶ方向転換路 55…が設けられて 、る。 1つの負荷転走路 52および 無負荷転走路 53と、それらを結ぶ一対の方向転換路 55との組み合わせによって、 1 つの無限循環路が構成されている(図 3B参照)。 [0039] そして、複数のボール 42· · ·が、負荷転走路 52と無負荷転走路 53と一対の方向転 換路 55, 55とから構成される無限循環路に無限循環可能に設置されることにより、 移動ブロック 43が軌道レール 41に対して相対的に往復運動可能となっている。 [0038] On the other hand, the moving block 43 is provided with load rolling element rolling surfaces 43a 'at positions corresponding to the rolling element rolling surfaces 41a. The rolling element rolling surface 41a 'of the track rail 41 and the load rolling element rolling surface 43a of the moving block 43 form a load rolling path 52 ..., and a plurality of balls 42 are sandwiched between them. Yes. Further, the moving block 43 includes four unloaded rolling paths 53 extending in parallel with the rolling element rolling surfaces 41 a, each unloaded rolling path 53, and each loaded rolling path 52. There is a direction change path 55 ... One endless circulation path is configured by a combination of one loaded rolling path 52 and unloaded rolling path 53 and a pair of direction changing paths 55 connecting them (see FIG. 3B). [0039] Then, a plurality of balls 42 are installed in an infinite circulation path composed of a load rolling path 52, a no-load rolling path 53, and a pair of directional switching paths 55, 55 so as to allow infinite circulation. As a result, the moving block 43 can reciprocate relative to the track rail 41.
[0040] 以上のような構成を備える本実施形態に係るリニアガイド装置 40においては、その 特徴的な点として、軌道部材としての軌道レール 41および移動部材としての移動ブ ロック 43の少なくとも一方力 クラッド材により構成されていることが挙げられる。  [0040] In the linear guide device 40 according to the present embodiment having the above-described configuration, as a characteristic point, at least one force of the track rail 41 as the track member and the moving block 43 as the moving member is clad. It is mentioned that it is made of a material.
[0041] 例えば、軌道レール 41の具体的実施形態について、図 4Aおよび図 4Bを用いて説 明する。なお、図 4Aは、本実施形態に係る軌道レールの側面図であり、図 4Bは、本 実施形態に係る軌道レールの取付孔形成位置での縦断面側面図である。  [0041] For example, a specific embodiment of the track rail 41 will be described with reference to FIGS. 4A and 4B. FIG. 4A is a side view of the track rail according to the present embodiment, and FIG. 4B is a vertical cross-sectional side view at the mounting hole forming position of the track rail according to the present embodiment.
[0042] 本実施形態に係る軌道レール 41は、第 1の金属材料 61と第 2の金属材料 62との 複合材料として構成されるクラッド材によって形成されている。そして、本実施形態で は、第 1の金属材料 61は |8型チタン合金によって構成されており、一方、第 2の金属 材料 62はひ型チタン合金によって構成されている。そして、特に重要なことは、複数 の転動体転走面 41a…が形成される部位には、硬度の高い |8型チタン合金からなる 第 1の金属材料 61が配置されており、その他の部位には、硬度の低い α型チタン合 金力もなる第 2の金属材料 62が配置されている点が挙げられる。  The track rail 41 according to the present embodiment is formed of a clad material configured as a composite material of a first metal material 61 and a second metal material 62. In the present embodiment, the first metal material 61 is made of | 8 type titanium alloy, while the second metal material 62 is made of diamond titanium alloy. Of particular importance is the fact that the first metal material 61 made of | 8-type titanium alloy having high hardness is disposed in the region where the plurality of rolling element rolling surfaces 41a are formed, and the other regions. Is that the second metal material 62 having a low hardness α-type titanium alloying force is disposed.
[0043] 本実施形態に係る軌道レール 41を上記のような構成のクラッド材によって形成する ことにより、まず、繰り返し転がり負荷を受けることになる転動体転走面 41a近傍を高 硬度化することができ、運動案内装置としての機能を維持することが可能となる。  [0043] By forming the track rail 41 according to the present embodiment with the clad material having the above-described configuration, first, the vicinity of the rolling element rolling surface 41a that is repeatedly subjected to the rolling load can be increased in hardness. It is possible to maintain the function as a motion guide device.
[0044] また、転動体転走面 41a近傍の第 1の金属材料 ( β型チタン合金) 61が高硬度で あり、且つ、芯材としての第 2の金属材料(ひ型チタン合金) 62が低硬度であるため、 例えばクラッド材を軌道レール 41の形状に成型して転動体転走面 41aを切削加工し た後でも、転動体転走面 41aの直進性を維持しながら第 2の金属材料(ひ型チタン合 金) 62に修正をカ卩え、軌道レール 41全体としての形状を所望の寸法に修正加工す ることなどができるので、難力卩工材であるチタン合金の加工面での不具合を低減する ことができる。  [0044] In addition, the first metal material (β-type titanium alloy) 61 in the vicinity of the rolling element rolling surface 41a has high hardness, and the second metal material (model titanium alloy) 62 as the core material has Due to its low hardness, for example, the second metal is maintained while maintaining the straightness of the rolling element rolling surface 41a even after the rolling material rolling surface 41a is cut by molding the clad material into the shape of the track rail 41. Since the material (model titanium alloy) 62 can be modified and the shape of the track rail 41 as a whole can be modified to the desired dimensions, etc., the machined surface of the difficult-to-work titanium alloy Can be reduced.
[0045] さらに、軌道レール 41の場合には、固定設置のための取付孔 45を穿設する必要 があるが、この取付孔 45を穿設しなければならない領域は、低硬度の第 2の金属材 料( α型チタン合金) 62によって構成されて ヽるので、加工面での負荷が低減されて いる。 [0045] Further, in the case of the track rail 41, it is necessary to make a mounting hole 45 for fixed installation, but the region where the mounting hole 45 has to be drilled is the second area of low hardness. Metal Since the material (α-type titanium alloy) 62 is used, the load on the machined surface is reduced.
[0046] またさらに、本実施形態に係る軌道レール 41を図 4Αおよび図 4Βで示されるような クラッド材により形成したことによって、従来のチタン合金製軌道レールでは不可能で あった深さまで構成材料の硬度を向上させることが可能となっている。すなわち、本 実施形態に係るクラッド材の採用によって、例えば、転動体転走面 41aの表面力 深 さ 0. 5mm (ある 、はそれ以上の深さ)の範囲を硬度の高 、第 1の金属材料 ( β型チ タン合金) 61によって占めるように構成することができるので、剪断応力が及ぶ深さ位 置での硬度向上が可能となり、チタン合金製の運動案内装置が実用化可能となった のである。  [0046] Furthermore, by forming the track rail 41 according to the present embodiment with a clad material as shown in Figs. 4 and 4, it is possible to construct the constituent material to a depth that was impossible with a conventional titanium alloy track rail. It is possible to improve the hardness. That is, by adopting the clad material according to the present embodiment, for example, the surface force depth of the rolling element rolling surface 41a is 0.5 mm (the depth is more than that), and the first metal has a high hardness. The material (β-type titanium alloy) 61 can be configured to occupy the material, so it is possible to improve the hardness at the depth position where shear stress is applied, and the titanium alloy motion guide device can be put to practical use. It is.
[0047] さらにまた、本実施形態に係るクラッド材の採用は、従来のチタン合金製運動案内 装置では不可能なレベルの硬度向上が可能となっている。すなわち、上記特許文献 1 , 2等、従来技術が開示するような、全て同一のチタン合金で 1つの構成部材を作 成する場合には、靭性の低下を考慮して硬度の向上には限界(350〜400HV)があつ た。し力しながら、本実施形態に係るクラッド材の場合には、第 1の金属材料(|8型チ タン合金) 61の方を最大限 (450〜550HV)に硬化させたとしても、第 2の金属材料( a型チタン合金) 62の存在によって構造材全体としての靭性が維持できるのである。 したがって、本実施形態に係るクラッド材によれば、従来技術に比べて高負荷'長寿 命の運動案内装置を実現することができる。  [0047] Furthermore, the use of the clad material according to the present embodiment enables a level of hardness improvement that is impossible with a conventional titanium alloy motion guide device. That is, when one component member is made of the same titanium alloy as disclosed in the prior arts such as Patent Documents 1 and 2, etc., there is a limit to improvement in hardness in consideration of a decrease in toughness ( 350-400HV). However, in the case of the clad material according to this embodiment, even if the first metal material (| 8-type titanium alloy) 61 is hardened to the maximum (450 to 550 HV), Therefore, the toughness of the entire structural material can be maintained by the presence of the metal material (a-type titanium alloy) 62. Therefore, according to the clad material according to the present embodiment, it is possible to realize a motion guide device having a higher load and a longer life as compared with the prior art.
[0048] また、本実施形態に係るクラッド材の好適な構成として、図 4Aおよび図 4Bで示され るように、第 2の金属材料(ひ型チタン合金) 62を、軌道レール 41の芯材となるように 中央位置に配置し、一方の第 1の金属材料(j8型チタン合金) 61については、第 2の 金属材料 ( a型チタン合金) 62を中心としてその複数の第 1の金属材料 ( β型チタン 合金) 61が、対称位置に配置されるように構成するようにした。すなわち、図 4Αおよ び図 4Βの例では、第 2の金属材料(α型チタン合金) 62を中心として、軌道レール 4 1の上方の左右に同一形状をした一対の第 1の金属材料(ι8型チタン合金) 61を対 向して配置し、軌道レール 41の下方の左右にも同一形状をした一対の第 1の金属材 料( 13型チタン合金) 61を対向して配置して 、る。このようにして第 1の金属材料 ( β 型チタン合金) 61を対向配置することにより、軌道レール 41全体としての強度バラン スが安定することとなり、加工の際の形状出しが非常に容易となるのである。 [0048] Further, as a preferred configuration of the clad material according to the present embodiment, as shown in FIGS. 4A and 4B, a second metal material (titanium titanium alloy) 62 is used as the core material of the track rail 41. As for the first metal material (j8 type titanium alloy) 61, the first metal material is centered on the second metal material (a type titanium alloy) 62. (β-type titanium alloy) 61 is configured to be arranged at a symmetrical position. That is, in the examples of FIGS. 4 and 4A, a pair of first metal materials having the same shape on the left and right above the track rail 41 (centered on the second metal material (α-type titanium alloy) 62 ( ι8 type titanium alloy) 61 are arranged facing each other, and a pair of first metal materials (13 type titanium alloy) 61 having the same shape are arranged oppositely on the left and right sides of the track rail 41. The In this way, the first metal material (β (Titanium alloy type) 61 is placed opposite to each other, so that the strength balance of the track rail 41 as a whole is stabilized, and the shape formation during processing becomes very easy.
[0049] なお、上述した本実施形態に係るクラッド材により、移動ブロック 43を形成することも 可能である。図 5は、本実施形態に係るクラッド材により形成される移動ブロックを示 した縦断面側面図である。図 5において示されるように、本実施形態に係る移動プロ ック 43は、負荷転動体転走面 43a…の近傍を硬度の高い第 1の金属材料( |8型チタ ン合金) 71によって構成し、その他の部分を硬度の低!、第 2の金属材料 ( a型チタン 合金) 72によって構成することができる。なお、図 5において例示する移動ブロック 43 では、負荷転動体転走面 43a…の近傍のみに第 1の金属材料( |8型チタン合金) 71 が配置されている力 移動ブロック 43全体の強度バランスを考慮して、負荷転動体 転走面 43a…と対向する移動ブロック 43の外周面側の位置に第 1の金属材料( |8型 チタン合金) 71を配置することも好適である。  Note that the moving block 43 can also be formed by the clad material according to the present embodiment described above. FIG. 5 is a vertical cross-sectional side view showing a moving block formed of the clad material according to the present embodiment. As shown in FIG. 5, the moving block 43 according to the present embodiment is configured by a first metal material (| 8-type titanium alloy) 71 having high hardness in the vicinity of the loaded rolling element rolling surface 43a. However, the other parts can be made of a second metal material (a-type titanium alloy) 72 having a low hardness. In the moving block 43 illustrated in FIG. 5, the force balance in which the first metal material (| 8-type titanium alloy) 71 is arranged only in the vicinity of the loaded rolling element rolling surface 43a... In consideration of the above, it is also preferable to dispose the first metal material (| 8-type titanium alloy) 71 at a position on the outer peripheral surface side of the moving block 43 facing the loaded rolling element rolling surface 43a.
[0050] (クラッド材の製造方法)  [0050] (Clad Material Manufacturing Method)
本実施形態に係るクラッド材の製造方法としては、所望の製品形状に応じて様々な 方法を採用することが可能であるが、一般に用いられている熱間圧延、冷間圧延、拡 散接合、爆発圧接などの方法でクラッド材を作製したのちに成型加工を行うようにし ても良いし、異種金属積層板を深絞り加工によって接合と成形を同時に行ってクラッ ド材を製造する方法を採用しても良い。なお、上述した本実施形態に係る軌道レー ル 41の場合には、 α型チタン合金と /3型チタン合金とをろう付けにより密着接合し、 約 600°C程度に加熱して圧下率 60〜80%程度の熱間圧延を行い、その後、全体形 状の成型や転動体転走面 41aの切削'研削加工を行い、所望の軌道レール 41に仕 上げる方法を採用している。  As a manufacturing method of the clad material according to the present embodiment, various methods can be adopted depending on a desired product shape, but generally used hot rolling, cold rolling, diffusion bonding, The clad material may be made after a method such as explosive pressure welding, and the forming process may be performed, or a method of manufacturing a clad material by simultaneously joining and forming dissimilar metal laminates by deep drawing. May be. In the case of the track rail 41 according to the present embodiment described above, the α-type titanium alloy and the / 3-type titanium alloy are tightly joined by brazing and heated to about 600 ° C. to reduce the rolling reduction rate from 60 to 60 ° C. A hot rolling of about 80% is performed, and then the entire shape is formed and the rolling surface 41a is cut and ground to finish the desired track rail 41.
[0051] 以上、本発明の好適な実施形態について説明したが、本発明の技術的範囲は上 記実施形態に記載の範囲には限定されない。上記実施形態には、多様な変更又は 改良をカ卩えることが可能である。  [0051] While the preferred embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the scope described in the above embodiments. Various modifications or improvements can be covered in the above embodiment.
[0052] 例えば、本実施形態に係るクラッド材は、転がり軸受全般や真空中で使用される無 潤滑軸受、リニアガイドや直線案内装置、ボールスプライン装置、ボールねじ装置、 ローラねじ装置、クロスローラリング等のような、あらゆる転動'摺動動作を伴う運動案 内装置に適用することが可能である。そして、例えば、ボールねじ装置のねじ軸ゃナ ット部材の転動体転走面近傍、あるいはボールスプライン装置のスプライン軸ゃスプ ライン外筒の転動体転走面近傍は、硬度の高い第 1の金属材料( )8型チタン合金な ど) 61 , 71によって構成し、その他の部分は硬度の低い第 2の金属材料(ひ型チタン 合金など) 62, 72によって構成することが可能である。このような場合にも、転動体転 走面の表面から深さ 0. 5mm (ある!/、はそれ以上の深さ)の範囲を硬度の高 、第 1の 金属材料(ι8型チタン合金など) 61 , 71によって構成したり、第 1の金属材料( 型 チタン合金など) 61 , 71を複数個対向配置して強度的なバランスを取るように構成し たりすることが好適である。 [0052] For example, the clad material according to the present embodiment includes rolling bearings in general and non-lubricated bearings used in vacuum, linear guides and linear guide devices, ball spline devices, ball screw devices, roller screw devices, and cross roller rings. Exercise plan with any rolling 'sliding motion, such as It is possible to apply to the internal device. And, for example, the vicinity of the rolling element rolling surface of the ball screw device screw shaft or nut member, or the vicinity of the rolling element rolling surface of the spline shaft spline outer cylinder of the ball spline device is the first high hardness. It can be composed of metal material (such as 8-type titanium alloy) 61, 71, and the other parts can be composed of second metal material (such as model titanium alloy) 62, 72 with low hardness. Even in such a case, the first metal material (ι8 type titanium alloy, etc.) has a high hardness in the range of depth of 0.5mm from the surface of the rolling element rolling surface. ) 61, 71, or a plurality of first metal materials (such as titanium alloy) 61, 71 are arranged opposite to each other so as to balance strength.
[0053] また、上述した実施形態では、硬度の高い第 1の金属材料 61 , 71に /3型チタン合 金を採用した場合を例示して説明したが、 a + |8型チタン合金を採用することも可能 である。 [0053] In the above-described embodiment, the case where the / 3 type titanium alloy is used for the first metal materials 61 and 71 having high hardness has been described as an example. However, a + | 8 type titanium alloy is used. It is also possible to do this.
[0054] さらに、第 1の金属材料 61 , 71と第 2の金属材料 62, 72の組み合わせについては 、 β型チタン合金と 型チタン合金、 α + β型チタン合金と 型チタン合金の組み 合わせだけでなぐ例えば、  [0054] Further, for the combination of the first metal material 61, 71 and the second metal material 62, 72, only the combination of β type titanium alloy and type titanium alloy, α + β type titanium alloy and type titanium alloy. For example,
(1)オーステナイト、マルテンサイト、フェライト系ステンレス鋼の組み合わせや、 (1) Combination of austenite, martensite, ferritic stainless steel,
(2)マルテンサイト系の銅とその他 (例えば、フェライト系やオーステナイト系)の銅と の組み合わせ、ベリリウム銅やチタン銅とその他 (例えば、純銅、黄銅、青銅)の銅合 金との組み合わせなどと 、つた、純金属と合金金属との組み合わせ、 (2) Combination of martensitic copper and other (for example, ferrite or austenitic) copper, combination of beryllium copper or titanium copper and other (for example, pure copper, brass, bronze) copper alloy, etc. , Ivy, a combination of pure metal and alloy metal,
(3)アルミニウムとマグネシウム、鉄とチタンと 、つた異種金属同士の組み合わせなど 様々な組み合わせを採用することが可能である。  (3) Various combinations such as combinations of different metals such as aluminum and magnesium, iron and titanium can be employed.
[0055] またさらに、クラッド材を構成する第 1の金属材料 61 , 71と第 2の金属材料 62, 72 の積層数については、何層であっても良い。 [0055] Furthermore, the number of laminated first metal materials 61 and 71 and second metal materials 62 and 72 constituting the clad material may be any number.
[0056] 以上の様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが[0056] Embodiments to which the above changes or improvements are added can also be included in the technical scope of the present invention.
、請求の範囲の記載力も明らかである。また、以上説明したような構成の採用によつ て、従来では実現できな力つた機能を発揮することが可能な全く新しい運動案内装 置を提供することができる。 Further, the descriptive power of the claims is obvious. In addition, by adopting the configuration as described above, it is possible to provide a completely new motion guide device capable of performing powerful functions that could not be realized in the past.

Claims

請求の範囲 The scope of the claims
[1] 軌道部材と、  [1] raceway members;
前記軌道部材に複数の転動体を介して移動自在に取り付けられる移動部材と、 を備える運動案内装置であって、  A movement member that is movably attached to the track member via a plurality of rolling elements, and a motion guide device comprising:
前記軌道部材および前記移動部材の少なくとも一方が、クラッド材により構成され ていることを特徴とする運動案内装置。  At least one of the track member and the moving member is made of a clad material.
[2] 請求項 1に記載の運動案内装置において、  [2] In the exercise guidance device according to claim 1,
前記クラッド材は、第 1の金属材料と第 2の金属材料との複合材料として構成されて おり、  The cladding material is configured as a composite material of a first metal material and a second metal material,
前記第 1の金属材料は、前記第 2の金属材料より高硬度であり、さらに、 少なくとも前記複数の転動体と接触する転動体転走面の近傍が、前記第 1の金属 材料によって構成されていることを特徴とする運動案内装置。  The first metal material is harder than the second metal material, and at least the vicinity of a rolling element rolling surface that contacts the plurality of rolling elements is constituted by the first metal material. A motion guide device characterized by comprising:
[3] 請求項 2に記載の運動案内装置において、 [3] In the exercise guidance device according to claim 2,
前記第 1の金属材料が j8型チタン合金又は α + j8型チタン合金であり、 前記第 2の金属材料が a型チタン合金であることを特徴とする運動案内装置。  The motion guide apparatus according to claim 1, wherein the first metal material is a j8 type titanium alloy or an α + j8 type titanium alloy, and the second metal material is an a type titanium alloy.
[4] 請求項 2又は 3に記載の運動案内装置において、 [4] The motion guide device according to claim 2 or 3,
前記第 2の金属材料は、前記軌道部材又は前記移動部材の芯材となるように配置 され、  The second metal material is arranged to be a core material of the track member or the moving member,
前記第 1の金属材料は、前記第 2の金属材料を中心として複数が対称位置に配置 されることを特徴とする運動案内装置。  A plurality of the first metal materials are arranged at symmetrical positions around the second metal material.
[5] 第 1の金属材料と第 2の金属材料との複合材料として構成され、 [5] Consists of a composite material of a first metal material and a second metal material,
軌道部材と、前記軌道部材に複数の転動体を介して移動自在に取り付けられる移 動部材と、を備える運動案内装置に用いられるクラッド材であって、  A clad material used in a motion guide device comprising a race member and a transfer member that is movably attached to the race member via a plurality of rolling elements,
前記第 1の金属材料は、前記第 2の金属材料より高硬度であり、さらに、 少なくとも前記複数の転動体と接触する転動体転走面の近傍が、前記第 1の金属 材料によって構成されていることを特徴とするクラッド材。  The first metal material is harder than the second metal material, and at least the vicinity of a rolling element rolling surface that contacts the plurality of rolling elements is constituted by the first metal material. A clad material characterized by
[6] 請求項 5に記載のクラッド材において、 [6] In the clad material according to claim 5,
前記第 1の金属材料が 13型チタン合金又は α + j8型チタン合金であり、 前記第 2の金属材料が oc型チタン合金であることを特徴とするクラッド材。 The first metal material is a 13-type titanium alloy or an α + j8-type titanium alloy; The clad material, wherein the second metal material is an oc type titanium alloy.
請求項 5又は 6に記載のクラッド材において、  In the clad material according to claim 5 or 6,
前記第 2の金属材料は、前記軌道部材又は前記移動部材の芯材となるように配置 され、  The second metal material is arranged to be a core material of the track member or the moving member,
前記第 1の金属材料は、前記第 2の金属材料を中心として複数が対称位置に配置 されることを特徴とするクラッド材。  A plurality of the first metal materials are arranged at symmetrical positions with the second metal material as a center.
PCT/JP2007/053031 2006-03-30 2007-02-20 Motion guide device and clad material used for motion guide device WO2007116613A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008509705A JPWO2007116613A1 (en) 2006-03-30 2007-02-20 Motion guide device and clad material used in motion guide device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-093618 2006-03-30
JP2006093618 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007116613A1 true WO2007116613A1 (en) 2007-10-18

Family

ID=38580915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053031 WO2007116613A1 (en) 2006-03-30 2007-02-20 Motion guide device and clad material used for motion guide device

Country Status (2)

Country Link
JP (1) JPWO2007116613A1 (en)
WO (1) WO2007116613A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194921U (en) * 1986-06-03 1987-12-11
JP2002339982A (en) * 2001-05-18 2002-11-27 Nsk Ltd Holder for rolling bearing
JP2004144268A (en) * 2002-10-28 2004-05-20 Nsk Ltd Rolling bearing
JP2005042836A (en) * 2003-07-23 2005-02-17 Nippon Shinkan Kk Guide, and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194921U (en) * 1986-06-03 1987-12-11
JP2002339982A (en) * 2001-05-18 2002-11-27 Nsk Ltd Holder for rolling bearing
JP2004144268A (en) * 2002-10-28 2004-05-20 Nsk Ltd Rolling bearing
JP2005042836A (en) * 2003-07-23 2005-02-17 Nippon Shinkan Kk Guide, and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2007116613A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP6962398B2 (en) Ball screw device
US6409387B1 (en) Ball bushing
WO2007026702A1 (en) Movement guide device and rolling element used therefor
US6672765B2 (en) Direct drive bearing mechanism
JPS60263724A (en) Linear guide device
WO2007116613A1 (en) Motion guide device and clad material used for motion guide device
WO2006112212A1 (en) Movement guiding device and process for producing the same
JP2017120107A (en) Motion guide device
JP2001271842A (en) Rolling bearing
JPWO2006112214A1 (en) Motion guide device using stable austenitic stainless steel and method for manufacturing the same
JP2007309363A (en) Linear guide apparatus
JPS58113629A (en) Rolling bearing
JP2012025993A (en) Compound magnetic substance and its manufacturing method, and motion-guiding device using compound magnetic substance
JP5073488B2 (en) Motion guide device using austenitic metal and method for manufacturing the same
JP7270706B2 (en) Constant velocity universal joint and its cage
JP2004099933A (en) Raceway for constant velocity joint, and rotary oscillating movement supporting parts
JP2006105262A (en) Rolling device
JP2004169723A (en) Rolling bearing
JP5257135B2 (en) Slide device
Manoj et al. Rolling contact fatigue studies on case carburized and cryogenic treated EN353 gear material
JPH07139549A (en) Rolling bearing and sliding bearing having heat resistance and corrosion resistance
CN202699993U (en) Golf club made of dual phase steel
Meyer et al. Sustainable approach of heat treatment-free surface hardening by deep rolling
JP2001271834A (en) Nonmagnetic linear motion device of high corrosion resistance
JP2019056426A (en) Constant velocity universal joint and cage thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008509705

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737290

Country of ref document: EP

Kind code of ref document: A1