WO2007116416A2 - Plant with reactor internals coated with low surface energy materials and production of polyester resin using same - Google Patents

Plant with reactor internals coated with low surface energy materials and production of polyester resin using same Download PDF

Info

Publication number
WO2007116416A2
WO2007116416A2 PCT/IN2006/000460 IN2006000460W WO2007116416A2 WO 2007116416 A2 WO2007116416 A2 WO 2007116416A2 IN 2006000460 W IN2006000460 W IN 2006000460W WO 2007116416 A2 WO2007116416 A2 WO 2007116416A2
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen gas
preheater
surface energy
glycol
low surface
Prior art date
Application number
PCT/IN2006/000460
Other languages
French (fr)
Other versions
WO2007116416A3 (en
Inventor
Madhusudan Nadkarni Vikas
Dubey Rajan
Ashok Wadekar Sheeram
Anil Bopardikar Anand
Original Assignee
Reliance Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reliance Industries Ltd filed Critical Reliance Industries Ltd
Publication of WO2007116416A2 publication Critical patent/WO2007116416A2/en
Publication of WO2007116416A3 publication Critical patent/WO2007116416A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation

Abstract

A process plant comprising melt polymerization reactor (1 ), pre-polymer particle former (2), preheater section (3) comprising preheater distribution plates (4) and plenum (5), nitrogen gas circulation lines (6) comprising nitrogen gas circulation loops (7), heater (8) and filter (9), conditioning vessel (10) and solid-state polymerization reactor (11 ) characterized in that side wall (12) of the preheater section (3), the preheater distribution plates (4), the plenum (5), the nitrogen gas circulation lines (6), the nitrogen gas circulation loops (7), the heater (8), the filter (9) and / or the conditioning vessel (10) are coated with a coating comprising compounds and / or metals exhibiting low surface energy to avoid deposit formation. A process for the production of polyester by solid-state polymerization using the above mentioned process plant comprising reactor internals coated with low surface energy materials is also disclosed. The use of nucleating agent in the above process to reduce the dust generation is also disclosed.

Description

TITLE OF THE INVENTION
A process plant comprising reactor internals coated with low surface energy materials and a process for the production of polyester resin using the same
TECHNICAL FIELD OF THE INVENTION:
The present invention relates to a process plant comprising reactor internals coated with low surface energy materials for solid-state polymerization.
The present invention also relates to a process for the production of polyester resin by solid-state polymerization using above-mentioned process plant comprising reactor internals coated with low surface energy materials.
The present invention also relates to a process for the production of polyester resin by solid-state polymerization using above-mentioned process plant comprising reactor internals coated with low surface energy materials and adding nucleating agent as an additive at any stage during the melt polymerization, but before a particle former process.
BACKGROUND OF THE INVENTION:
Polyethylene terephthalate (PET) resins are well known for making films, fibers and packaged container applications. A process for the production of high molecular weight polyesters comprises melt polymerization followed by solid-state polymerization (SSP).
In the melt polymerization process, base prepolymer of Intrinsic Viscosity (IV) of about 0.4 to 0.65 dl/g is produced. The base prepolymer is either in the form of cylindrical chip or spherical chip and is amorphous in nature. The base chips are then subjected to solid- state polymerization after crystallizing it in a crystallizer so as to avoid sintering or lump formation in the solid-state polymerization reactor. Depending on the end application, polyester with different IV is produced by solid-state polymerization (ref : US 3,405,098, 3,544,525, 4,245,253, 4,238,593, and 5,408,035).
Another polymerization process which is different than conventional polymerization process is disclosed in US 5,510,454, 5,532,333, 5,540,868, 5,714,262, 5,830,982, and 6,451 ,966 which are incorporated herein as reference in their entirety. In this polymerization process, a crystalline hemispherical prepolymer having IV of about 0.1 to 0.4 dl/g is formed using particle former process. This prepolymer is then used as a precursor for solid-state polymerization process to increase the IV from about 0.4 dl/g to about 1 dl/g.
Such low IV prepolymer particles can also be produced with other techniques that are well known in the art and can be subjected to solid-state polymerization for producing higher molecular weight polyesters. Examples of such particle formation processes are given in US patents 4123207 7,008,203.
Solid-state polymerization process involves three steps namely preheating of low molecular weight prepolymer in a preheater section (3), attaining intermediate IV (0.4 to 0.6 dl/g) in a reactor namely conditioning vessel (9) and then achieving final desired IV (0.7 to 1.2 dl/g) in a solid-state polymerization reactor (10). Preheater section (3) is a fluidized section in which prepolymer is heated at a temperature in the range of 2100C to 250°C under very high nitrogen gas flow.
In the melt polymerization process, hemispherical prepolymer particles are formed by dropping melt droplets on a preheated moving metal belt. Belt temperature is set between
100 to 2000C. Due to the very high temperature of melt droplet which is in the range of
260 to 3000C, quenching effect occurs when it falls on low temperature metal belt. As a result, bottom surface of hemispherical prepolymer particle exhibits different crystalline morphology as compared to the top dome surface. It is observed that for every hemispherical crystalline prepolymer particle, the bottom surface remains weaker in terms of mechanical strength as compared to top dome surface.
In the solid-state polymerization process, due to the weaker bottom surface and brittle nature of low molecular weight crystalline hemispherical prepolymer, the chips break resulting into dust formation and also into formation of low molecular weight oligomers including both linear and cyclic oligomers. Due to very high nitrogen gas flow in preheater section (3), dust, broken chips or low molecular weight oligomers get carried away with nitrogen gas into nitrogen circulation lines (6). It is also observed that broken chips, dust and low molecular weight oligomers stick to the preheater gas distribution plates (4), plenum (5) and sidewalls (12). The preheater gas distribution plates (4), pjenum (5) and sidewalls (12) are made of material construction such as stainless steel 316. Over a period of time, bridging of prepolymer, dust, broken particles or oligomers, hereafter referred as deposits, occurs in the preheater nitrogen gas distribution plates (4), plenum (5) and sidewalls (12) of preheater section (3) and nitrogen gas circulation lines (6). This results in the blocking of holes of preheater nitrogen gas distribution plate (4) and thereby disturbing nitrogen gas flow / velocity and also the fluidization of prepolymer in the preheater section (3). The pressure drop across the preheater nitrogen distribution plates (4) increases due to this bridging at a faster rate due to which frequent shutdown of the plant becomes necessary to clean these deposits.
Similarly deposits formation also seen in conditioning vessel (10), which is on the downstream of preheater section (3) in the solid-state polymerization process. In the conditioning vessel (10), the IV of prepolymer gets built up but at the same time the process also generates dust, liberates oligomers such as monohydroxy ethyl terephthalate (MHET), bishydroxyethyl terephthalate (BHET) and like along with other by products, such as ethylene glycol and water, which causes deposit formation. Oligomers get liberated to a large extent in conditioning vessel (10) where IV increases up to 0.6 dl/g. Oligomers get carried away along with nitrogen gas and tends to deposit on the dome surface of conditioning vessel (10). The top dome of conditioning vessel (10) is made of material construction such as stainless steel 316. Over a period of time, as a result of deposit formation, the pressure drop across conditioning vessel (10) and nitrogen gas circulation line (6) increases and nitrogen gas flow becomes inconsistent. Therefore more and more nitrogen gas flow is required to achieve the same intrinsic viscosity and also required to remove the polymerization byproducts. Due to the higher nitrogen gas consumption, the polyester production cost increases.
Deposits also formed on the nitrogen gas circulation lines (6), filters (9) and heaters (8) thereby reducing their life too. These deposits get degraded over a period of time due to very high temperature and residence time. When these degraded deposit get dislodged during the process thereby contaminating the final product in the form of black specs. Thus the product obtained is of not commercial quality.
We have filed Indian Patent Application no. 987/MUM/2005 on 22nd August 2005, which is related to an improved process for the continuous production of high molecular weight polyester resin having IV upto 1 dl/g produced from low molecular weight crystalline hemispherical prepolymer having IV of about 0.1 dl/g to about 0.4 dl/g comprising sodium benzoate or sodium acetate or any other suitable nucleating agent for improving crystalline morphology, low dust, lower oligomers volatilization in solid state polymerization process and improved properties of articles made thereof. We have very well demonstrated the use of nucleating agent for reducing dust generation in the above application.
OBJECTS OF THE INVENTION:
An object of the invention is to provide a process plant comprising reactor internals coated with low surface energy materials for solid-state polymerization.
Another object of the invention is to provide a process plant comprising reactor internals coated with low surface energy materials for solid-state polymerization, where the process plant requires low maintenance.
Yet another object of the invention is to provide a process plant comprising reactor internals coated with low surface energy materials for solid-state polymerization, where the process plant avoids deposit formation.
Yet another object of the invention is to provide a process plant comprising reactor internals coated with low surface energy materials for solid-state polymerization, where the process plant has high productivity.
Yet another object of the invention is to provide a process plant comprising reactor internals coated with low surface energy materials for solid-state polymerization, where the process plant gives product with commercial quality consistently.
Yet another object of the invention is to provide a process plant comprising reactor internals coated with low surface energy materials for solid-state polymerization, where the process plant reduces the problem associated with the prior art.
Yet another object of the invention is to provide a process for the production of polyester by solid-state polymerization using above-mentioned plant comprising reactor internals coated with low surface energy materials, where the process is cost-effective. Yet another object of the invention is to provide a process for the production of polyester by solid-state polymerization using above-mentioned plant comprising reactor internals coated with low surface energy materials, where the process eliminates deposit formation.
Yet another object of the invention is to provide a process for the production of polyester by solid-state polymerization using above-mentioned plant comprising reactor internals coated with low surface energy materials, where the process requires low maintenance.
Yet another object of the invention is to provide a process for the production of polyester by solid-state polymerization using above-mentioned plant comprising reactor internals coated with low surface energy materials for solid-state polymerization, where the process gives product with commercial quality consistently.
Yet another object of the invention is to provide a process for the production of polyester by solid-state polymerization using above-mentioned plant comprising reactor internals coated with low surface energy materials, where the process reduces the problem associated with the prior art.
Yet another object of the invention is to provide a process for the production of polyester resin by solid-state polymerization using above-mentioned process plant comprising reactor internals coated with low surface energy materials, where the process comprising addition of nucleating agent as an additive at any stage during the melt polymerization, but before a particle former process.
Detailed Description:
According to the invention, there is provided a process plant comprising reactor internals coated with low surface energy materials, the process plant comprises melt polymerization reactor (1 ), pre-polymer particle former (2), preheater section (3) comprising preheater distribution plates (4) and plenum (5), nitrogen gas circulation lines (6) comprising nitrogen gas circulation loops (7), heater (8) and filter (9), conditioning vessel (10) and solid-state polymerization reactor (11 ) characterized in that side wall (12) of the preheater section (3), the preheater distribution plates (4), the plenum (5), the nitrogen gas circulation lines (6), the nitrogen gas circulation loops (7), the heater (8), the filter (9) and / or the conditioning vessel (10) are coated with a coating comprising compounds and / or metals exhibiting low surface energy to avoid deposit formation. The block diagram of the process plant is given in figure 1.
According to the invention, there is also provided a process for the production of polyester by solid-state polymerization using the above mentioned process plant comprising reactor internals coated with low surface energy materials; the process comprising melt polymerizing at least one dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid or 4,4'-biphenyl dicarboxylic acid or monoesters thereof or diesters thereof and at least one glycol or polyol such as monoethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, butylenes glycol or 1 ,4- cyclohexane diol at temperature in the range of 2500C - 290°C to obtain low molecular weight polyester prepolymer having IV of about 0.1 to about 0.45 dl/g; producing crystalline hemispherical prepolymer of polyesters by a particle former process at temperature in the range of 110 to 1600C and polymerizing prepolymer by solid- state polymerization to obtain high molecular weight polyester resin having IV of about 0.5 dl/g to about 1.2 dl/g characterized in that side wall (12) of the preheater (3), the preheater distribution plates (4), the plenum (5), the nitrogen gas circulation lines (6), the nitrogen gas circulation loops (7), the heater (8), the filter (9) and / or the conditioning vessel (10) are coated with a coating comprising compounds and / or metals exhibiting low surface energy to avoid deposit formation.
Preferably the coating comprising compounds and / or metals exhibiting low surface energy are selected from flouropolymers coatings such as polytertrafluoroethylene (PTFE), Ethylene-ChloroTriFluoro-Ethylene (ECTFE), fluorinated ethylene propylene (FEP) or polyhexafluropropylene (PHFP) etc, or silicone based coatings or polyphenylene sulfide based coatings or metallic coating such as nitriding or chromium oxide coatings. The coating term used herein is intended to cover any nonstick coating. Preferably, the coating thickness is of at least 10 μ. The side wall (12) of the preheater section (3), the preheater distribution plates (4), the plenum (5), the nitrogen gas circulation lines (6), the nitrogen gas circulation loops (7), the heater (8), the filter (9) and / or the conditioning vessel (10) are coated with the coating comprising compounds and / or metals exhibiting low surface energy by any conventional technique.
According to the invention, there is also provided a process for the production of polyester by solid-state polymerization using the above mentioned process plant comprising reactor internals coated with low surface energy materials, the process comprising melt polymerizing at least one dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid or 4,4'-biphenyl dicarboxylic acid or monoesters thereof or diesters thereof and at least one glycol or polyol such as monoethylene glycol, diethylene glycol, Methylene glycol, propylene glycol, dipropylene glycol, butylenes glycol or 1 ,4- cyclohexane diol at temperature in the range of 2500C - 290°C to obtain low molecular weight polyester prepolymer having IV of about 0.1 to about 0.45 dl/g; adding nucleating agent as an additive at any stage during the melt polymerization, but before a particle former process; producing crystalline hemispherical prepolymer of polyesters by a particle former process at temperature in the range of 110 to 160°C and polymerizing prepolymer by solid- state polymerization to obtain high molecular weight polyester resin having IV of about 0.5 dl/g to about 1.2 dl/g characterized in that side wall (12) of the preheater section (3), the preheater distribution plates (4), the plenum (5), the nitrogen gas circulation lines (6), the nitrogen gas circulation loops (7), the heater (8), the filter (9) and / or the conditioning vessel (10) are coated with a coating comprising compounds and / or metals exhibiting low surface energy to avoid deposit formation.
The nucleating agent used in the process is selected from organo-metallic compounds such as sodium benzoate or sodium acetate or organic compounds such as carbon black or inorganic compounds having particle size from about 0.001 micron to 10 micron particularly from 0.002 to 0.5 micron such as barium sulfate or silica or any other suitable nucleating agent. Preferably, the nucleating agent is added in the range of about 0.001 wt % to 5 wt %. The use of nucleating agent in the above mention process plant as well as process generates substantially low dust and produces uniform hemispherical shape prepolymer having uniform crystallinity, faster crystallization rate and higher onset of melting.
The present invention is further exemplified by the following non-limiting examples.
Example 1 :
Crystalline prepolymer of polyethylene terephthalate having IV 0.245 dl/g was prepared by the process according to patent US 5,510,454. This was solid-state polymerized under inert atmosphere to raise the IV upto 1 dl/g. During solid state polymerization process, the material was passed through a preheater section (3) at a temperature 236°C for at least 5 minutes residence time; original material of construction of plenum (5) in preheater was stainless steel SS 316 which was coated with flouropolymer based nonstick coating. The material was further passed through a conditioning vessel (10) and maintained at temperature 232°C under nitrogen gas / solid ratio 0.6 for at least two hours residence time. Finally material was passed through a solid-state polymerization reactor (11 ) and maintained at temperature of 2210C for at least 23 hours residence time under nitrogen gas to solid ratio 0.5. Schematic diagram of solid - state polymerization process reactor is given in Figure 1. The pressure drop across the preheater plenum was measured for 13 days run which is shown in figure 2.
Comparative Example
Crystalline prepolymer of polyethylene terephthalate having IV 0.245 dl/g was prepared according to the process described in patent US 5,510,454. This was solid-state polymerized under inert atmosphere to raise the IV up to 1 dl/g. During solid state polymerization process, the material was passed through a preheater section (3) at a temperature 2360C for at least 5 minutes residence time; material of construction of preheater plenum (5) was stainless steel "SS 316 on which no coating was done. The material was passed through a conditioning vessel (10) and maintained at 232°C under nitrogen gas / solid ratio 0.6 for at least two hours residence time. The material was further passed through a solid-state polymerization reactor (11 ) and maintained at 2210C temperature for at least 23 hours residence time under nitrogen gas to solid ratio 0.5. Schematic diagram of solid-state polymerization process is given in Figure 1. The pressure drop across the preheater plenum was measured for 13 days run which is shown in figure 2.
Figure 2 illustrates the pressure drop (15) data across preheater plenum was generated for 13 days run (16). The pressure drop across the preheater plenum without coat of compound or metal exhibiting low surface energy increases with number of days of run (13). On the contrary when the preheater plenum was coated with the coating comprising compounds and / or metal exhibiting low surface energy, the pressure drop across the plenum remains constant (14). Photographs of preheater plenum with coating (A) and without coating (B) were also taken to visually monitor the extent of deposits formation, which is shown in figure 3. The deposit was not formed on preheater plenum coated with low energy surface material even after 13 days of run. This resulted in extended life of solid-state polymerization plant run days and cutting down the maintenance cost. As there is no deposit formation and hence no degradation of deposit, thus resulted into production of product with commercial quality consistently.

Claims

CLAIMS :
1. A process plant comprising reactor internals coated with low surface energy materials,
the process plant comprises melt polymerization reactor (1 ), pre-polymer particle former (2), preheater section (3) comprising preheater distribution plates (4) and plenum (5), nitrogen gas circulation lines (6) comprising nitrogen gas circulation loops (7), heater (8) and filter (9), conditioning vessel (10) and solid-state polymerization reactor (11 ) characterized in that side wall (12) of the preheater section (3), the preheater distribution plates (4), the plenum (5), the nitrogen gas circulation lines (6), the nitrogen gas circulation loops (7), the heater (8), the filter (9) and / or the conditioning vessel (10) are coated with a coating comprising compounds and / or metals exhibiting low surface energy to avoid deposit formation.
2. A process plant as claimed in claim 1 , wherein the coating comprising compounds and / or metals exhibiting low surface energy are selected from flouropolymers coatings such as polytertrafluoroethylene (PTFE), Ethylene-ChloroTriFluoro- Ethylene (ECTFE), fluorinated ethylene propylene (FEP) or polyhexafluropropylene (PHFP) or silicone based coatings or polyphenylene sulfide based coatings or metallic coating such as nitriding or chromium oxide coating.
3. A process for the production of polyester by solid-state polymerization using the process plant comprising reactor internals coated with low surface energy materials as claimed in claimi , the process comprising melt polymerizing at least one dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid or 4,4'-biphenyl dicarboxylic acid or monoesters thereof or diesters thereof and at least one glycol or polyol such as monoethylene glycol, diethylene glycol, Methylene glycol, propylene glycol, dipropylene glycol, butylenes glycol or 1 ,4-cyclohexane diol at temperature in the range of 2500C - 2900C to obtain low molecular weight polyester prepolymer having IV of about 0.1 to about 0.45 dl/g; producing crystalline hemispherical prepolymer of polyesters by a particle former process at temperature in the range of 110 to 160°C and polymerizing prepolymer by solid- state polymerization to obtain high molecular weight polyester resin having IV of about 0.5 dl/g to about 1.2 dl/g characterized in that side wall (12) of the preheater (3), the preheater distribution plates (4), the plenum (5), the nitrogen gas circulation lines (6), the nitrogen gas circulation loops (7), the heater (8), the filter (9) and / or the conditioning vessel (10) are coated with a coating comprising compounds and / or metals exhibiting low surface energy to avoid deposit formation.
4. A process for the production of polyester by solid-state polymerization using the process plant comprising reactor internals coated with low surface energy materials as cliamed in claimi , the process comprising melt polymerizing at least one dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid or 4,4'-biphenyl dicarboxylic acid or monoesters thereof or diesters thereof and at least one glycol or polyol such as monoethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, butylenes glycol or 1 ,4-cyclohexane diol at temperature in the range of 25O0C - 290°C to obtain low molecular weight polyester prepolymer having IV of about 0.1 to about 0.45 dl/g; adding nucleating agent as an additive at any stage during the melt polymerization, but before a particle former process; producing crystalline hemispherical prepolymer of polyesters by a particle former process at temperature in the range of 110 to 1600C and polymerizing prepolymer by solid- state polymerization to obtain high molecular weight polyester resin having IV of about 0.5 dl/g to about 1.2 dl/g characterized in that side wall (12) of the preheater section (3), the preheater distribution plates (4), the plenum (5), the nitrogen gas circulation lines (6), the nitrogen gas circulation loops (7), the heater
(8), the filter (9) and / or the conditioning vessel (10) are coated with a coating comprising compounds and / or metals exhibiting low surface energy to avoid deposit formation.
5. A process as claimed in claim 4, wherein the nucleating agent is selected from organo-metallic compounds such as sodium benzoate or sodium acetate or organic compounds such as carbon black or inorganic compounds such as barium sulfate or silica or any other suitable nucleating agent.
PCT/IN2006/000460 2006-04-10 2006-11-17 Plant with reactor internals coated with low surface energy materials and production of polyester resin using same WO2007116416A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN562/MUM/2006 2006-04-10
IN562MU2006 2006-04-10

Publications (2)

Publication Number Publication Date
WO2007116416A2 true WO2007116416A2 (en) 2007-10-18
WO2007116416A3 WO2007116416A3 (en) 2009-04-16

Family

ID=38581484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2006/000460 WO2007116416A2 (en) 2006-04-10 2006-11-17 Plant with reactor internals coated with low surface energy materials and production of polyester resin using same

Country Status (1)

Country Link
WO (1) WO2007116416A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940401B2 (en) 2011-06-10 2015-01-27 Resinate Technologies, Inc. Clear coatings acrylic coatings
US9458354B2 (en) 2010-10-06 2016-10-04 Resinate Technologies, Inc. Polyurethane dispersions and methods of making and using same
US9649616B2 (en) 2013-06-21 2017-05-16 Lotte Advanced Materials Co., Ltd. Continuous solid-state polymerisation device and method
US9649617B2 (en) * 2013-07-10 2017-05-16 Lotte Advanced Mateirals Co., Ltd. Continuous solid-state polymerization device and method
CN109456466A (en) * 2018-12-14 2019-03-12 浙江古纤道绿色纤维有限公司 A kind of large capacity equipment of solid-state polycondensation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119570A (en) * 1988-12-23 1992-06-09 Buhler Ag Method for continuously crystalizing polyester material
DE10314991A1 (en) * 2003-04-02 2004-11-11 Zimmer Ag Process for increasing the molecular weight of a polymer granulate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119570A (en) * 1988-12-23 1992-06-09 Buhler Ag Method for continuously crystalizing polyester material
DE10314991A1 (en) * 2003-04-02 2004-11-11 Zimmer Ag Process for increasing the molecular weight of a polymer granulate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9458354B2 (en) 2010-10-06 2016-10-04 Resinate Technologies, Inc. Polyurethane dispersions and methods of making and using same
US8940401B2 (en) 2011-06-10 2015-01-27 Resinate Technologies, Inc. Clear coatings acrylic coatings
US9649616B2 (en) 2013-06-21 2017-05-16 Lotte Advanced Materials Co., Ltd. Continuous solid-state polymerisation device and method
US9649617B2 (en) * 2013-07-10 2017-05-16 Lotte Advanced Mateirals Co., Ltd. Continuous solid-state polymerization device and method
CN109456466A (en) * 2018-12-14 2019-03-12 浙江古纤道绿色纤维有限公司 A kind of large capacity equipment of solid-state polycondensation
CN109456466B (en) * 2018-12-14 2019-09-13 浙江古纤道绿色纤维有限公司 A kind of large capacity equipment of solid-state polycondensation

Also Published As

Publication number Publication date
WO2007116416A3 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
KR100895634B1 (en) Polyester resin, molded object thereof, and processes for producing these
JP6907605B2 (en) Polyester resin
JP5616074B2 (en) Polyester resin and resin composition, and molded body using them
JP2008291244A (en) Method for producing polyester resin including furan structure
WO2007116416A2 (en) Plant with reactor internals coated with low surface energy materials and production of polyester resin using same
TW201127871A (en) Process for making polyethylene terephthalate
WO2006064773A1 (en) Polyester resin composition, process for producing the same and molding thereof
JPWO2004065451A1 (en) Polytrimethylene terephthalate resin and method for producing the same
KR100886424B1 (en) Process for producing thermoplastic-polymer solution
JP4127119B2 (en) Production method of polyester resin
US8329857B2 (en) Polyester resin particle and method for producing the same
KR101146443B1 (en) Polyester Resin Composition, Process for Producing the Same, and Polyester Film
EP1518878B1 (en) Process for producing polyester resin
JP6648114B2 (en) Continuous process for producing polyesters from cyclic ester monomers
US9399699B1 (en) Compositions comprising polyester for 3D printing
JP3999620B2 (en) Production method of polyester resin
RU2357977C2 (en) Polyester resin, moulded product and production process
US4008206A (en) Solid state polymerization
JP2014181245A (en) Method for manufacturing high-degree-of-polymerization polybutylene terephthalate
JP2003192779A (en) Aromatic polycarbonate prepolymer and manufacturing method of aromatic polycarbonate therewith
JP5121141B2 (en) Polytrimethylene terephthalate composition and method for producing the same
WO2008075373A2 (en) An efficient process for the production of polyester
WO2009066310A2 (en) An efficient process for the production of high molecular weight polyester from low molecular weight prepolymer
JPH08302163A (en) Production of biodegradable aliphatic polyester carbonate
KR20170070866A (en) Method for preparing wholly aromatic polyester resin and wholly aromatic polyester resin prepared by the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06847319

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06847319

Country of ref document: EP

Kind code of ref document: A2