WO2007114318A1 - Process for producing vanadate glass - Google Patents

Process for producing vanadate glass Download PDF

Info

Publication number
WO2007114318A1
WO2007114318A1 PCT/JP2007/057035 JP2007057035W WO2007114318A1 WO 2007114318 A1 WO2007114318 A1 WO 2007114318A1 JP 2007057035 W JP2007057035 W JP 2007057035W WO 2007114318 A1 WO2007114318 A1 WO 2007114318A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
oxide
electrical conductivity
temperature
vanadate
Prior art date
Application number
PCT/JP2007/057035
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuaki Nishida
Original Assignee
Kitakyushu Foundation For The Advancement Of Industry, Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation For The Advancement Of Industry, Science And Technology filed Critical Kitakyushu Foundation For The Advancement Of Industry, Science And Technology
Priority to JP2008508645A priority Critical patent/JP5164072B2/en
Publication of WO2007114318A1 publication Critical patent/WO2007114318A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing vanadate glass that is suitably used as an electrode material or the like.
  • vanadate glass containing vanadium as a main component or a subcomponent has been developed as a glass semiconductor used as a thermistor or the like.
  • Vanadate glass is composed of vanadium oxide, diphosphorus pentoxide, alkali metal oxides such as potassium oxide and sodium oxide, alkaline earth oxides such as barium oxide, cerium oxide, tin oxide, lead oxide. It is known that the glass is made by calcining copper oxide.
  • Vanadate glass unlike ordinary ion-conducting acid-based glass, exhibits electronic conductivity, and thus has a relatively high electrical conductivity.
  • vanadate glass acid vanadium, diphosphorus pentoxide, than was produced glass in a conventional manner of quenching a melt of such alkaline earth Sani ⁇ did only be obtained as an electric conductivity of 10 _5 S 'cm one 1 about at room temperature. Therefore, vanadate glass has not been applied to specific applications such as thermistor heaters.
  • the present inventor aims to improve the electrical conductivity of the vanadate glass at room temperature by heating and melting the mixture containing acid vanadium and then rapidly cooling to obtain a glass composition.
  • Patent Document 1 Developed a patent application for a method for producing a vanadate glass that is kept for a predetermined time at an annealing temperature not lower than the glass transition temperature and not higher than the crystallization temperature (Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-34548
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-34548
  • the present invention has to satisfy the above requirements, it is possible to produce vanadate glass having a 10 _ 1 S 'cm _1 more high electrical conductivity at room temperature, about 30 minutes at a predetermined temperature region Even if it is held for a short time, the electrical conductivity can be drastically increased, and even if the holding time in the specified temperature range fluctuates, there is little fluctuation in the electrical conductivity, resulting in production stability and quality stability.
  • a manufacturing method of vanadate glass that can remarkably improve the electrical conductivity at room temperature and accurately control and control the magnitude of electrical conductivity in the region of 10 _4 S'cm—1 or higher, and increase the product yield. The purpose is to provide.
  • the method for producing vanadate glass of the present invention has the following configuration.
  • the method for producing a vanadate glass according to claim 1 of the present invention is a method for producing a vanadate glass containing vanadium as a main component or a subcomponent, wherein the composition containing vanadium is vitrified and acidified.
  • vanadate glass one or more of vanadium, alkali metals such as potassium and sodium, alkaline earth metals such as barium and magnesium, cerium, tin, lead, copper and iron are used.
  • alkali metals such as potassium and sodium
  • alkaline earth metals such as barium and magnesium
  • cerium, tin, lead, copper and iron A known glass having a kind of constituent atoms is used.
  • Vanadate glass which is a glass semiconductor, exhibits electrical conductivity when electrons hop between transition metal ions such as vanadium and iron.
  • the oxide glass is held in a temperature range higher than the crystallization temperature and lower than the melting point, whereas in the annealing process of Japanese Patent Laid-Open No. 2003-34548 (Patent Document 1), an acid treatment is performed. Since the glass of the glass is kept at the glass transition temperature or more and the crystallization temperature or less, the heat energy given to the acid glass in the reheating process of the present invention is the case of the annealing treatment of (Patent Document 1). Greater than the heat energy given to the acid glass. Therefore, the electrons in the oxide glass are distributed in a high energy level, and the thermal energy (activation energy) required to hop the electrons is smaller than in (Patent Document 1).
  • the electrical conductivity decreases when the vanadate glass crystallizes. Therefore, if it is kept for a long time at a temperature higher than the crystallization temperature of the oxide glass in the reheating process, insulating crystals will precipitate and the electrical conductivity will gradually increase. It will drop to. Therefore, in the reheating step, it is necessary to cool to below the crystallization temperature before the vanadate glass crystals are precipitated and the electrical conductivity is lowered.
  • the crystallization temperature and melting point can be determined by actually measuring an oxide glass by differential thermal analysis (DTA), differential scanning calorimetry (DSC), or the like. It can also be obtained by performing a thermodynamic calculation using the estimated component phase diagram.
  • DTA differential thermal analysis
  • DSC differential scanning calorimetry
  • the crystallization temperature is determined by differential thermal analysis (DTA)
  • the temperature at the center point of the exothermic peak of crystallization or the temperature at the high-side station temperature is used as the crystallization temperature.
  • the melting point is determined by differential thermal analysis (DTA)
  • the temperature at the center point of the endothermic peak above the crystallization temperature is taken as the melting point.
  • a composition such as a mixture of crystalline solids is changed to a liquid or a gas, and then is crystallized without being crystallized.
  • the glass can be made.
  • an oxide glass can be obtained by heating and melting a composition such as a mixture of crystalline solids and then rapidly cooling the composition.
  • an oxide glass can be obtained by once vaporizing a composition such as a mixture of crystalline solids by vapor deposition, sputtering, glow discharge, or the like.
  • an oxide glass can also be obtained by passing through a gel such as a sol-gel method.
  • the reheating step of the acid glass as a means for maintaining the temperature range above the crystallization temperature and below the melting point, for example, an electric furnace or the like is set to the reheating temperature in advance.
  • an electric furnace or the like is set to the reheating temperature in advance.
  • the oxide glass is put into the furnace, and when the target time has elapsed, the oxide glass is taken out from the electric furnace, etc., and a fluid such as air, water, ice water, Cooled copper plates or stainless steel plates, or those cooled by members such as copper or stainless steel rollers are used.
  • the temperature in the furnace is gradually decreased or the temperature of the heating source in the furnace is gradually moved away from the acid glass.
  • the one that is allowed to cool in the furnace is used.
  • the inside of the furnace for reheating can be an atmosphere of inert gas such as air, nitrogen or argon.
  • the holding time in the reheating step can be appropriately set to an optimal time so that the electric conductivity of the oxide glass that has undergone the reheating step is increased.
  • the holding time varies depending on the composition of oxide glass, heat capacity, and reheating temperature, but is set to 1 to 180 minutes, for example. .
  • the holding time is shorter than 1 minute, the thermal energy given to the oxide glass is small, so the rate of increase in electrical conductivity is small and the rate of increase is uneven. Since the electrical conductivity may decrease due to precipitation or melting, and the productivity decreases, the deviation is also preferable.
  • the heating temperature in the reheating step is equal to or lower than the crystallization temperature of the acid glass, the thermal energy given to the acid glass is small, so the increase rate of the electrical conductivity is small and the increase rate is also low.
  • the heating temperature is equal to or higher than the melting point of the acid glass, the melting of the acid glass or the precipitation of crystals is promoted, and the electrical conductivity is lowered.
  • the electrical conductivity of an oxide glass (vanadate glass) at room temperature of 25 ° C is, for example, after a silver paste is applied to a sample made of a glass piece having a thickness of 1 mm or less, and then dried.
  • the electrode can be formed by using the DC two-terminal method or the DC four-terminal method.
  • Electrical conductivity at 25 ° C of the thus re-heating step before the oxide glass obtained (vanadate glass) is, 10 _8 ⁇ 10 _4 S 'cm _1 preferably 10 _6 to 10 _4 S It is preferably in the range of ' cm_1 .
  • As the electrical conductivity becomes lower than 10 _6 S 'cm— 1 even after the reheating process, it tends to be difficult to improve the electrical conductivity to the practical level. From 10 0 _8 S' cm _ 1 Lowering this is not preferable because this tendency becomes remarkable.
  • Increasing the electrical conductivity of the oxide glass before the reheating process to more than 10 _4 S 'cm- 1 is limited by the composition of the glass oxide and the temperature history of the vitrification process. At the same time, production stability is lacking.
  • Electrical conductivity of the oxide glass which has passed through the reheating step are 'is cm- 1 preferably 10 one 3 ⁇ lS' 10 one 4 ⁇ lS at room temperature for 25 ° C in the range of cm- 1 It can be improved.
  • the electrical conductivity becomes smaller than 10 _3 S 'cm _ 1
  • vanadate glass is applied to the thermistor and heating element, power consumption increases and there is a tendency to lack energy savings.
  • the antistatic effect tends to decrease, and when applied to a plasma discharge electrode, it tends to be difficult to discharge.
  • the electrical conductivity is less than 10 _4 S 'cm _1 This is not preferable because the tendency of
  • vanadate glass is composed of additives such as Agl, Nal, Ag, Ag 0, In 2 O, SnO, and SnO.
  • Additives may be added. It is also the power that can increase electrical conductivity by the effect of additives. Moreover, in addition to Agl, Nal, Ag, etc., a reduction inhibitor such as CeO can be added.
  • the invention according to claim 2 of the present invention is the method for producing the vanadate glass according to claim 1, wherein the composition contains vanadium, barium and iron. Yes.
  • a glass skeleton in which atoms of vanadium, barium, and iron are three-dimensionally related can be formed, and high electrical conductivity by electron hopping can be expressed.
  • barium oxide BaO
  • acid vanadium V O
  • acid iron iron F
  • the ratio of e O) is special if an oxide glass that exhibits a glass transition phenomenon is obtained.
  • the molar ratio (B: V) of barium oxide (B) to vanadium oxide (V) in the oxide glass is preferably 5:90 to 35:50. Better!/,.
  • the electrical conductivity of the oxide glass before the reheating process is reduced, and it is difficult to crystallize during the reheating process.
  • the conductivity can be kept within a predetermined range, and the production stability is excellent.
  • the molar ratio (F: V) of iron oxide (F) to vanadium oxide (V) in the oxide glass is preferably 5:90 to 15:50.
  • optical properties such as light transmittance are maintained to some extent, it can be used as an optical element by forming a thin film or fiber.
  • V O vanadium oxide
  • BaO barium oxide
  • Fe oxide iron oxide
  • vanadium oxide in the three-component system of (VO) is from 40 to 98 mole 0/0 preferably 60
  • 85 mol% is preferred. As it becomes less than 60 mol%, it tends to be difficult to maintain a glass skeleton with vanadium as the main skeleton, and it becomes difficult to obtain high electrical conductivity. In particular, since the content of subcomponents is reduced, adjustment functions such as electrical conductivity and mechanical properties due to the subcomponents tend to be reduced. In particular, if the amount is less than 40 mol% or more than 98%, these tendencies are remarkable, which is not preferable.
  • the barium oxide (BaO) in the above three-component system in the oxide glass is 1 to 40 mol%, preferably 10 to 30 mol%.
  • the amount is less than 10 mol%, homogenous vitrification tends to be difficult, and when the amount is more than 30 mol%, the mechanical strength decreases and the glass tends to become difficult to form.
  • the force is less than 1 mol% and the amount is more than 40 mol%, these tendencies tend to be remarkable, and therefore the deviation is also preferable.
  • Acid iron iron (Fe 2 O 3) in the above three-component system in the acid glass is preferably 1 to 20 mol%
  • the content becomes less than 5 mol%, the contribution of iron valence electrons to electron hopping tends to be reduced, and the electrical conductivity tends to be difficult to improve.
  • it exceeds 20 mol% the optical properties such as light transmission properties are greatly deteriorated.
  • the molar ratio of vanadium oxide (VO), barium oxide (BaO), and iron oxide (FeO) is
  • the invention according to claim 3 of the present invention is the method for producing the vanadate glass according to claim 1 or 2, wherein the composition contains acid vanadium, barium oxide and iron oxide.
  • the acid-containing glass has a configuration obtained by heating and melting the mixture and then rapidly cooling the mixture.
  • vanadium oxide vanadium monoxide (VO), divanadium trioxide (V)
  • VO vanadium monoxide
  • V vanadium trioxide
  • V vanadium dioxide
  • V divanadium pentoxide
  • divanadium pentoxide (V o) is preferably used.
  • barium oxide examples include barium oxide (BaO), solid solution barium oxide containing excess oxygen, barium peroxide, and the like, but barium oxide (BaO) is generally used.
  • barium carbonate, barium oxalate, or the like it decomposes by heating and melts, and BaO remains in the oxide glass, acting as network modifying ions.
  • iron oxides examples include iron monoxide (FeO), ferric trioxide (Fe 2 O), and triiron tetraoxide (Fe 2 O).
  • the amount of the second component such as oxyrhenium added is preferably 15 parts by mass or less with respect to 100 parts by mass of the mixture. If the added amount of the second component exceeds 15 parts by mass, the glass skeleton having vanadium as the main skeleton cannot be formed. The invention's effect
  • the electrical conductivity of the vanadate glass at room temperature is designed and controlled accurately in the region of 10 _4 S'cm— 1 or more. It is possible to provide a method for producing a vanadate glass capable of increasing the product yield.
  • a method for producing a vanadate glass capable of forming a glass skeleton in which atoms of vanadium, barium, and iron are three-dimensionally related and exhibiting high electrical conductivity by electron hopping can be provided.
  • FIG. 1 Differential thermal analysis results of acidified glass of Experimental Examples 1 to 3
  • FIG. 2 A plot of the electrical conductivity before and after reheating of the acid glass of Experimental Examples 1 to 3 cooled below the glass transition temperature
  • FIG. 3 Diagram showing the relationship between reheating temperature, reheating time and electrical conductivity of the oxide glass of Experimental Example 2
  • Barium oxide (BaO) is 10 mole 0/0
  • vanadium pentoxide (VO) force 0 mole 0/0
  • Barium oxide (BaO) is 20 mole 0/0
  • Barium oxide (BaO) is 30 mole 0/0
  • vanadium pentoxide (VO) force 0 mole 0/0
  • triacid
  • Differential thermal analysis (DTA) of the oxide glasses of Experimental Examples 1 to 3 was performed.
  • the differential thermal analysis (DTA) conditions are as follows: ex alumina is used as the reference material, and the temperature rise rate is 10 ° CZ in a nitrogen atmosphere.
  • FIG. 1 shows the results of differential thermal analysis of the oxide glasses of Experimental Examples 1 to 3.
  • Figure 2 is a plot of the electrical conductivity before and after reheating of the acid glass of Experimental Examples 1 to 3 cooled to below the glass transition temperature.
  • the horizontal axis represents the reheating temperature (° C)
  • the vertical axis represents the electrical conductivity ⁇ (S, cm– 1 ) at 25 ° C.
  • the electrical conductivity when reheated at 400 ° C for 1 hour was the same as before reheating, but by reheating at 400 ° C for 2 hours, it was at room temperature (25 ° C).
  • the electrical conductivity could be about 10 _3 S'cm _1 .
  • the holding time when the reheating temperature is 400 ° C is considered to be short in 1 hour.
  • the electrical conductivity at room temperature is obtained through a reheating process in which the oxide glass (vanadate glass) is maintained in a temperature range exceeding the crystallization temperature and below the melting point. It has become clear that can be dramatically improved. In addition, it was found that the electrical conductivity improves as the reheating temperature increases in a temperature range where crystal precipitation and melting do not occur remarkably. It has also been found that the holding time may be shortened as the reheating temperature increases. From these phenomena, it is considered that the mechanism by which the electrical conductivity is improved by reheating above the melting point and exceeding the crystallization temperature is due to the activity energy of electrons.
  • vanadium oxide V 2 O 3
  • barium oxide BaO
  • the molar ratio of iron oxide is 40 to 98 mol%, 1 to 40 mol%, and 1 to 20 mol%, respectively.
  • V O vanadium oxide
  • BaO barium oxide
  • Fe O iron oxide
  • Vanadium oxide (V o), dipentaoxide which can be obtained only by using an oxide glass produced by melting and cooling.
  • An acidic glass produced by melting and cooling a mixture of phosphorus (P 2 O 3) and barium oxide (BaO),
  • V O vanadium oxide
  • K O potassium oxide
  • Fe O iron oxide
  • the production method of the present invention can be widely applied to vanadate glass containing vanadium as a main component or a subcomponent and has high versatility.
  • the oxide glass of Experiment 2 cooled to below the glass transition temperature was reheated in the atmosphere at 350 ° C, which is the glass transition temperature (328 ° C) or higher and the crystallization temperature (392 ° C) or lower. Then, the electrical conductivity at 25 ° C was measured by taking out from the furnace at regular intervals.
  • This reheating condition is the annealing condition described in Japanese Patent Laid-Open No. 2003-34548 (Patent Document 1) (a condition in which the temperature is maintained in the temperature range between the glass transition temperature and the crystallization temperature).
  • FIG. 3 is a graph showing the relationship between the reheating temperature and reheating time of the oxide glass of Experimental Example 2 and electrical conductivity.
  • the horizontal axis represents the holding time at the reheating temperature
  • the vertical axis represents the electrical conductivity ⁇ (S′cnT 1 ) at 25 ° C.
  • Example 1 the acid-containing glass of Experimental Example 2 cooled to below the glass transition temperature was reheated in the atmosphere at a temperature exceeding the crystallization temperature (392 ° C) and below the melting point (540 ° C). It was confirmed that the electrical conductivity could be improved by more than three orders of magnitude by reheating for only 30 minutes, and that the electrical conductivity hardly fluctuated even if reheating was continued. In addition, it was confirmed that Example 1 having a higher reheating temperature than Example 2 can increase the electrical conductivity.
  • Comparative Example 1 which was reheated at a temperature not lower than the glass transition temperature (328 ° C) and not higher than the crystallization temperature (392 ° C), the electrical conductivity increased as the holding time at the reheating temperature increased. It was confirmed that the electrical conductivity could not be kept constant unless maintained for 180 minutes or longer. Further, it was confirmed that the electrical conductivity of Comparative Example 1 was lower by one digit or more than that of Examples 1 and 2.
  • the electrical conductivity can be drastically increased even if it is held for a short time of about 30 minutes in a predetermined temperature range where the electrical conductivity does not vary depending on the time of holding at the reheating temperature. It was also found that even if the holding time varies, the electric conductivity does not vary and the production stability is remarkably excellent.
  • reheating process It was revealed that the electrical conductivity of the vanadate glass at room temperature can be designed and controlled with high accuracy in the region of 10 _4 S 'cm _1 or more by changing the heating time in the glass.
  • the present invention relates to a method for producing a vanadate glass suitably used as an electrode material or the like, and can produce a vanadate glass having a high electrical conductivity of 10 _1 S ⁇ cm- 1 or more and a predetermined temperature range. Even if it is held for a short time of about 30 minutes, the electrical conductivity can be dramatically increased, and even if the holding time in a predetermined temperature range varies, there is little fluctuation in the electrical conductivity and production stability and Surface-conduction electron-emitting devices (SCEs) used in SEDs (Surface-conduction Electron-emitter Displays), which use a thermistor only with a heating element and antistatic material, can significantly increase the product yield.
  • SCEs Surface-conduction electron-emitter
  • SEDs Surface-conduction Electron-emitter Displays

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

A process for producing a vanadate glass, in which a striking increase of electric conductivity can be attained only by holding within a given temperature region for a short time, thereby enabling production of a vanadate glass with a high electric conductivity of 10-1 S-cm-1 or greater at room temperature, and in which even when the holding time in a given temperature region is varied, a variation of electric conductivity is slight to thereby ensure marked excellence in production stability and quality stability, and in which the magnitude of electric conductivity at room temperature can be designed and controlled with high precision within the region of 10-4 S-cm-1 or greater to thereby attain an increase of product yield. There is provided a process for producing a vanadate glass containing vanadium as a main component or an accessory component, comprising the vitrification step of vitrifying a composition containing vanadium to thereby obtain an oxide glass and the reheating step of holding the oxide glass at a temperature within the region exceeding the crystallization temperature of the oxide glass but not exceeding the melting point thereof for a given period of time.

Description

明 細 書  Specification
バナジン酸塩ガラスの製造方法  Manufacturing method of vanadate glass
技術分野  Technical field
[0001] 本発明は、電極材料等として好適に用いられるバナジン酸塩ガラスの製造方法に 関するものである。  The present invention relates to a method for producing vanadate glass that is suitably used as an electrode material or the like.
背景技術  Background art
[0002] 従来より、サーミスタ等として用いられるガラス半導体として、バナジウムを主成分や 副成分とするバナジン酸塩ガラスが開発されている。バナジン酸塩ガラスは、酸化バ ナジゥムに、五酸化二リン,酸化カリウムや酸化ナトリウム等のアルカリ金属酸化物, 酸化バリウム等のアルカリ土類酸ィ匕物,酸ィ匕セリウム,酸化スズ,酸化鉛,酸化銅等 をカロえてガラス化したものが知られて 、る。バナジン酸塩ガラスは通常のイオン伝導 性の酸ィ匕物系ガラスとは異なり電子伝導性を示すため、比較的高い電気伝導度を有 しているが、酸ィ匕バナジウム,五酸化二リン,アルカリ土類酸ィ匕物等の溶融物を急冷 する通常の方法でガラスを製造したのでは、室温における電気伝導度が 10_5S ' cm 一1程度のものしか得られなかった。そのため、バナジン酸塩ガラスはサーミスタゃヒー ター等の特定の用途にし力適用されていな力つた。 [0002] Conventionally, vanadate glass containing vanadium as a main component or a subcomponent has been developed as a glass semiconductor used as a thermistor or the like. Vanadate glass is composed of vanadium oxide, diphosphorus pentoxide, alkali metal oxides such as potassium oxide and sodium oxide, alkaline earth oxides such as barium oxide, cerium oxide, tin oxide, lead oxide. It is known that the glass is made by calcining copper oxide. Vanadate glass, unlike ordinary ion-conducting acid-based glass, exhibits electronic conductivity, and thus has a relatively high electrical conductivity. However, vanadate glass, acid vanadium, diphosphorus pentoxide, than was produced glass in a conventional manner of quenching a melt of such alkaline earth Sani匕物did only be obtained as an electric conductivity of 10 _5 S 'cm one 1 about at room temperature. Therefore, vanadate glass has not been applied to specific applications such as thermistor heaters.
そこで、本発明者は、バナジン酸塩ガラスの室温における電気伝導度を向上させる ことを目的として「酸ィ匕バナジウムを含む混合物を加熱溶融したのち急冷してガラス 組成物を得た後、ガラス組成物のガラス転移温度以上、結晶化温度以下のァニーリ ング処理の温度に所定時間保持させるバナジン酸塩ガラスの製造方法」を開発し特 許出願した (特許文献 1)。  Therefore, the present inventor aims to improve the electrical conductivity of the vanadate glass at room temperature by heating and melting the mixture containing acid vanadium and then rapidly cooling to obtain a glass composition. Developed a patent application for a method for producing a vanadate glass that is kept for a predetermined time at an annealing temperature not lower than the glass transition temperature and not higher than the crystallization temperature (Patent Document 1).
特許文献 1:特開 2003— 34548号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-34548
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、特開 2003— 34548号公報 (特許文献 1)に記載の発明は、以下のよ うな点に改善の余地が残されていた。 However, the invention described in Japanese Patent Application Laid-Open No. 2003-34548 (Patent Document 1) still has room for improvement in the following points.
(1) (特許文献 1)に開示の技術で製造されたバナジン酸塩ガラスの室温における電 気伝導度は 10_4〜10_1S 'cm_1程度であったため、電極材料等に用途を拡大する ために 10_1S ' cm—1以上の高電気伝導度を有するバナジン酸塩ガラスが要求されて いた。 (1) Electricity at room temperature of the vanadate glass produced by the technique disclosed in (Patent Document 1) Since the air conductivity was about 10 _4 to 10 _1 S 'cm _1 , vanadate glass having a high electrical conductivity of 10 _1 S' cm— 1 or more is required to expand the application to electrode materials. It was.
(2)アニーリング処理の温度に保持する時間によって、バナジン酸塩ガラスの電気伝 導度がばらつくことがあったため、アニーリング処理の温度に保持する時間が変動し ても電気伝導度の変動の少ない生産安定性に優れるバナジン酸塩ガラスが要求さ れていた。  (2) Since the electrical conductivity of the vanadate glass may vary depending on the holding time at the annealing temperature, production with little fluctuation in the electrical conductivity even if the holding time at the annealing temperature varies. There has been a demand for vanadate glass with excellent stability.
(3)高電気伝導度を有するバナジン酸塩ガラスの生産安定性を高め製品得率を高 めるため、バナジン酸塩ガラスの電気伝導度を 10_4S 'cm_1以上の領域で精度よく 設計し制御する技術が要求されて!ヽた。 (3) In order to increase the production stability of the vanadate glass with high electrical conductivity and increase the product yield, the electrical conductivity of the vanadate glass is accurately designed in the region of 10 _4 S 'cm _1 or more. The technology to control is required!
[0004] 本発明は上記の要求を満足させるもので、室温において 10_ 1S 'cm_1以上の高電 気伝導度を有するバナジン酸塩ガラスを製造できるとともに、所定の温度領域に 30 分程度の短時間保持しただけでも電気伝導度を飛躍的に高めることができ、また所 定の温度領域での保持時間が変動しても電気伝導度の変動が少なく生産安定性や 品質の安定性に著しく優れ、さらに室温における電気伝導度の大きさを 10_4S ' cm— 1以上の領域で精度良く設計し制御することができ製品得率を高めることができるバ ナジン酸塩ガラスの製造方法を提供することを目的とする。 [0004] The present invention has to satisfy the above requirements, it is possible to produce vanadate glass having a 10 _ 1 S 'cm _1 more high electrical conductivity at room temperature, about 30 minutes at a predetermined temperature region Even if it is held for a short time, the electrical conductivity can be drastically increased, and even if the holding time in the specified temperature range fluctuates, there is little fluctuation in the electrical conductivity, resulting in production stability and quality stability. A manufacturing method of vanadate glass that can remarkably improve the electrical conductivity at room temperature and accurately control and control the magnitude of electrical conductivity in the region of 10 _4 S'cm—1 or higher, and increase the product yield. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0005] 上記従来の課題を解決するために本発明のバナジン酸塩ガラスの製造方法は、以 下の構成を有している。 [0005] In order to solve the above-described conventional problems, the method for producing vanadate glass of the present invention has the following configuration.
本発明の請求項 1に記載のバナジン酸塩ガラスの製造方法は、バナジウムを主成 分又は副成分とするバナジン酸塩ガラスの製造方法であって、バナジウムを含有す る組成物をガラス化し酸ィ匕物ガラスを製造するガラス化工程と、前記酸化物ガラスを 前記酸化物ガラスの結晶化温度を超えて融点以下の温度領域に所定時間保持する 再加熱工程と、を備えた構成を有している。  The method for producing a vanadate glass according to claim 1 of the present invention is a method for producing a vanadate glass containing vanadium as a main component or a subcomponent, wherein the composition containing vanadium is vitrified and acidified. A vitrification step for producing a glass product, and a reheating step for holding the oxide glass in a temperature range exceeding the crystallization temperature of the oxide glass and below a melting point for a predetermined time. ing.
この構成により、以下のような作用が得られる。  With this configuration, the following effects can be obtained.
(1)酸ィヒ物ガラスを酸ィヒ物ガラスの結晶化温度を超えて融点以下の温度領域に所 定時間保持する再加熱工程を備えて ヽるので、酸ィ匕物ガラス中の電子をエネルギー 的に高!、準位に分布させて、室温にお!ヽて 10_1S · cm—1以上の高電気伝導度を有 するバナジン酸塩ガラスを製造できるとともに、所定の温度領域に 30分程度の短時 間保持しただけでも電気伝導度を飛躍的に高めることができ、さらに所定の温度領 域での保持時間が変動しても電気伝導度の変動が少なく生産安定性に著しく優れる (1) Since there is a reheating process that holds the acid glass in the temperature range above the crystallization temperature of the acid glass and below the melting point for a predetermined time, the electrons in the acid glass are The energy High! It is possible to produce vanadate glass with a high electrical conductivity of 10 _1 S · cm— 1 or more at room temperature, distributed in levels, and in a predetermined temperature range for about 30 minutes. Even if it is held for a long time, the electrical conductivity can be drastically increased, and even if the holding time in the specified temperature range fluctuates, the fluctuation of the electric conductivity is small and the production stability is remarkably excellent.
(2)再加熱工程における加熱時間や保持時間等を変えることにより、室温におけるバ ナジン酸塩ガラスの電気伝導度の大きさを 10_4S ' cm—1以上の領域で精度良く設計 し制御することができ製品得率を高めることができる。 (2) By changing the heating time and holding time in the reheating process, the electrical conductivity of the vanadate glass at room temperature is designed and controlled accurately in the region of 10 _4 S'cm— 1 or more. Product yield can be increased.
ここで、バナジン酸塩ガラスとしては、バナジウムの他、カリウムやナトリウム等のアル カリ金属、バリウム,マグネシウム等のアルカリ土類金属、セリウム,スズ,鉛,銅,鉄等 のうちの 1種若しくは複数種の構成原子を有する公知のガラスが用いられる。ガラス 半導体であるバナジン酸塩ガラスでは、バナジウムや鉄等の遷移金属イオン間を電 子がホッピングすることによって導電性を発現する。  Here, as vanadate glass, one or more of vanadium, alkali metals such as potassium and sodium, alkaline earth metals such as barium and magnesium, cerium, tin, lead, copper and iron are used. A known glass having a kind of constituent atoms is used. Vanadate glass, which is a glass semiconductor, exhibits electrical conductivity when electrons hop between transition metal ions such as vanadium and iron.
本発明の再加熱工程では、酸ィ匕物ガラスを結晶化温度より高温で融点以下の温度 領域に保持するのに対し、特開 2003— 34548号公報 (特許文献 1)のアニーリング 処理では、酸ィヒ物ガラスをガラス転移温度以上、結晶化温度以下に保持するので、 本発明の再加熱工程において酸ィ匕物ガラスに与えられる熱エネルギーは、(特許文 献 1)のアニーリング処理の場合に酸ィ匕物ガラスに与えられる熱エネルギーより大きい 。そのため、酸ィ匕物ガラス中の電子はエネルギー的に高い準位に分布することになり 、電子をホッピングさせるために必要な熱エネルギー (活性化エネルギー)を (特許文 献 1)の場合より小さくできるので、電気伝導度を高くできるのではないかと推察して いる。また、再加熱工程において酸ィ匕物ガラスの結晶化温度より高温で所定時間保 持することによって、(特許文献 1)と同様にガラス骨格の歪みを取り除き、電子がホッ ビングする活性化エネルギー(バンドギャップ)を小さくすることもできるので、この結 果、電気伝導度を高くすることができると推察している。  In the reheating process of the present invention, the oxide glass is held in a temperature range higher than the crystallization temperature and lower than the melting point, whereas in the annealing process of Japanese Patent Laid-Open No. 2003-34548 (Patent Document 1), an acid treatment is performed. Since the glass of the glass is kept at the glass transition temperature or more and the crystallization temperature or less, the heat energy given to the acid glass in the reheating process of the present invention is the case of the annealing treatment of (Patent Document 1). Greater than the heat energy given to the acid glass. Therefore, the electrons in the oxide glass are distributed in a high energy level, and the thermal energy (activation energy) required to hop the electrons is smaller than in (Patent Document 1). We can guess that we can increase the electrical conductivity. Also, in the reheating process, by holding for a predetermined time at a temperature higher than the crystallization temperature of the oxide glass, the activation energy (electron hobbing) is removed by removing the distortion of the glass skeleton as in (Patent Document 1). Since the band gap can be reduced, it is assumed that the electrical conductivity can be increased as a result.
なお、バナジン酸塩ガラスの結晶が絶縁性の場合には、バナジン酸塩ガラスが結 晶化すると電気伝導度は低下する。そのため、再加熱工程において酸ィ匕物ガラスの 結晶化温度より高温で長時間保持すると、絶縁性結晶が析出し電気伝導度が次第 に低下してしまう。そこで、再加熱工程では、バナジン酸塩ガラスの結晶が析出して 電気伝導度が低下する前に結晶化温度未満に冷却する必要がある。 When the vanadate glass crystal is insulative, the electrical conductivity decreases when the vanadate glass crystallizes. Therefore, if it is kept for a long time at a temperature higher than the crystallization temperature of the oxide glass in the reheating process, insulating crystals will precipitate and the electrical conductivity will gradually increase. It will drop to. Therefore, in the reheating step, it is necessary to cool to below the crystallization temperature before the vanadate glass crystals are precipitated and the electrical conductivity is lowered.
[0007] 結晶化温度や融点は、酸化物ガラスを示差熱分析 (DTA)や示差走査熱量測定( DSC)等により実測することによって求めることができる。また、推定される構成成分 の状態図を用いた熱力学的計算等を行うことで求めることもできる。  [0007] The crystallization temperature and melting point can be determined by actually measuring an oxide glass by differential thermal analysis (DTA), differential scanning calorimetry (DSC), or the like. It can also be obtained by performing a thermodynamic calculation using the estimated component phase diagram.
示差熱分析 (DTA)によって結晶化温度を求める場合、結晶化の発熱ピークの中 心点又は裾の高温側測点温度における温度を結晶化温度とする。また、示差熱分 析 (DTA)によって融点を求める場合、結晶化温度より高温における吸熱ピークの中 心点における温度を融点とする。  When the crystallization temperature is determined by differential thermal analysis (DTA), the temperature at the center point of the exothermic peak of crystallization or the temperature at the high-side station temperature is used as the crystallization temperature. When the melting point is determined by differential thermal analysis (DTA), the temperature at the center point of the endothermic peak above the crystallization temperature is taken as the melting point.
[0008] ガラス化工程において組成物をガラス化する手段としては、結晶質固体の混合物 等の組成物を液体や気体に変えたのち、結晶化させな ヽでガラス転移温度以下の 固体である酸ィ匕物ガラスにできるものであれば特に制限されない。例えば、結晶質固 体の混合物等の組成物を加熱溶融したのち急冷することで酸ィ匕物ガラスを得ること ができる。また、結晶質固体の混合物等の組成物を、蒸着法,スパッタ法,グロ一放 電法等で一旦、蒸気状態にすることでも酸ィ匕物ガラスを得ることができる。また、ゾル ゲル法等のようにゲルを経ることによつても酸ィ匕物ガラスを得ることができる。  [0008] As a means for vitrifying the composition in the vitrification step, a composition such as a mixture of crystalline solids is changed to a liquid or a gas, and then is crystallized without being crystallized. There is no particular limitation as long as the glass can be made. For example, an oxide glass can be obtained by heating and melting a composition such as a mixture of crystalline solids and then rapidly cooling the composition. Alternatively, an oxide glass can be obtained by once vaporizing a composition such as a mixture of crystalline solids by vapor deposition, sputtering, glow discharge, or the like. Further, an oxide glass can also be obtained by passing through a gel such as a sol-gel method.
[0009] 酸ィヒ物ガラスの再加熱工程にお!、て結晶化温度を超えて融点以下の温度領域に 保持する手段としては、例えば、電気炉等を予め再加熱温度に設定しておき炉内の 温度が一定になったところで、酸ィ匕物ガラスを炉内に入れ、目標とする時間が経過し たら直ちに電気炉等から酸化物ガラスを取り出し、空気や水,氷水等の流体、冷却し た銅板やステンレス板,銅製やステンレス製等のローラ等の部材で冷却するものが用 いられる。あるいは、上記酸ィ匕物ガラスを電気炉等の炉内で一定時間再加熱後、炉 内の温度を徐々に下げたり炉内の加熱源カゝら少しずつ遠ざけたりして酸ィ匕物ガラス を炉内で放冷するものが用いられる。再加熱するための炉内は空気、窒素,アルゴン 等の不活性ガス雰囲気等にすることができる。  [0009] In the reheating step of the acid glass, as a means for maintaining the temperature range above the crystallization temperature and below the melting point, for example, an electric furnace or the like is set to the reheating temperature in advance. When the temperature inside the furnace becomes constant, the oxide glass is put into the furnace, and when the target time has elapsed, the oxide glass is taken out from the electric furnace, etc., and a fluid such as air, water, ice water, Cooled copper plates or stainless steel plates, or those cooled by members such as copper or stainless steel rollers are used. Alternatively, after reheating the above-mentioned acid glass in a furnace such as an electric furnace for a certain period of time, the temperature in the furnace is gradually decreased or the temperature of the heating source in the furnace is gradually moved away from the acid glass. The one that is allowed to cool in the furnace is used. The inside of the furnace for reheating can be an atmosphere of inert gas such as air, nitrogen or argon.
[0010] 再加熱工程における保持時間は、再加熱工程を経た酸化物ガラスの電気伝導度 が高くなるように適宜最適な時間に設定することができる。保持時間は、酸化物ガラ スの組成や熱容量、再加熱温度によっても異なるが、例えば 1〜180分に設定される 。保持時間が 1分より短くなると、酸ィ匕物ガラスに与えられる熱エネルギーが小さいた め、電気伝導度の増加率が小さぐまた増加率にばらつきがみられ、 180分より長く なると、結晶が析出したり溶融したりすることにより電気伝導度が低下することがあると ともに生産性が低下するため、 、ずれも好ましくな 、。 [0010] The holding time in the reheating step can be appropriately set to an optimal time so that the electric conductivity of the oxide glass that has undergone the reheating step is increased. The holding time varies depending on the composition of oxide glass, heat capacity, and reheating temperature, but is set to 1 to 180 minutes, for example. . When the holding time is shorter than 1 minute, the thermal energy given to the oxide glass is small, so the rate of increase in electrical conductivity is small and the rate of increase is uneven. Since the electrical conductivity may decrease due to precipitation or melting, and the productivity decreases, the deviation is also preferable.
[0011] 再加熱工程における加熱温度が酸ィヒ物ガラスの結晶化温度以下になると、酸ィ匕物 ガラスに与えられる熱エネルギーが小さいため、電気伝導度の増加率が小さぐまた 増加率にばらつきが生じることがあり、加熱温度が酸ィヒ物ガラスの融点以上になると 、酸ィヒ物ガラスの溶融や結晶の析出が促進されるので電気伝導度が低下するため、 いずれも好ましくない。 [0011] When the heating temperature in the reheating step is equal to or lower than the crystallization temperature of the acid glass, the thermal energy given to the acid glass is small, so the increase rate of the electrical conductivity is small and the increase rate is also low. When the heating temperature is equal to or higher than the melting point of the acid glass, the melting of the acid glass or the precipitation of crystals is promoted, and the electrical conductivity is lowered.
[0012] 酸化物ガラス (バナジン酸塩ガラス)の 25°Cの室温における電気伝導度は、例えば 、厚さが lmm以下のガラス片から成る試料に銀ペーストを塗り乾燥させた後、銀入り 半田を用いて電極を形成し、直流二端子法又は直流四端子法によって求めることが できる。  [0012] The electrical conductivity of an oxide glass (vanadate glass) at room temperature of 25 ° C is, for example, after a silver paste is applied to a sample made of a glass piece having a thickness of 1 mm or less, and then dried. The electrode can be formed by using the DC two-terminal method or the DC four-terminal method.
[0013] このようにして求めた再加熱工程前の酸化物ガラス(バナジン酸塩ガラス)の 25°C における電気伝導度は、 10_8〜10_4S 'cm_1好ましくは 10_6〜10_4S 'cm_1の範 囲にあるのが好ましい。電気伝導度が 10_6S 'cm—1より低くなるにつれ、再加熱工程 を経ても実用レベルまで電気伝導度を向上させることが困難になる傾向がみられ、 1 0_8S 'cm_ 1より低くなると、この傾向が著しくなるため好ましくない。再加熱工程前の 酸ィ匕物ガラスの電気伝導度を 10_4S 'cm—1より高くするのは、ガラス酸ィ匕物の組成や ガラス化工程の温度履歴等が制約され生産性に欠けるとともに生産安定性に欠ける ため好ましくない。 [0013] Electrical conductivity at 25 ° C of the thus re-heating step before the oxide glass obtained (vanadate glass) is, 10 _8 ~10 _4 S 'cm _1 preferably 10 _6 to 10 _4 S It is preferably in the range of ' cm_1 . As the electrical conductivity becomes lower than 10 _6 S 'cm— 1 , even after the reheating process, it tends to be difficult to improve the electrical conductivity to the practical level. From 10 0 _8 S' cm _ 1 Lowering this is not preferable because this tendency becomes remarkable. Increasing the electrical conductivity of the oxide glass before the reheating process to more than 10 _4 S 'cm- 1 is limited by the composition of the glass oxide and the temperature history of the vitrification process. At the same time, production stability is lacking.
再加熱工程を経た酸化物ガラス (バナジン酸塩ガラス)の電気伝導度は、 25°Cの室 温において 10一4〜 lS 'cm—1好ましくは 10一3〜 lS 'cm—1の範囲に向上させることが できる。電気伝導度が 10_3S 'cm_ 1より小さくなるにつれ、バナジン酸塩ガラスをサ 一ミスタゃ発熱体に適用した場合には消費電力が増加し省エネルギー性に欠ける傾 向がみられ、静電気による静電破壊の防止部材に適用した場合には帯電防止効果 が低下する傾向がみられ、さらに、プラズマの放電電極に適用した場合には放電し 難くなる傾向がみられる。特に、電気伝導度が 10_4S 'cm_1より小さくなると、これら の傾向が著しくなるため好ましくない。 Electrical conductivity of the oxide glass which has passed through the reheating step (vanadate glass) are 'is cm- 1 preferably 10 one 3 ~ lS' 10 one 4 ~ lS at room temperature for 25 ° C in the range of cm- 1 It can be improved. As the electrical conductivity becomes smaller than 10 _3 S 'cm _ 1 , when vanadate glass is applied to the thermistor and heating element, power consumption increases and there is a tendency to lack energy savings. When applied to an electrostatic breakdown prevention member, the antistatic effect tends to decrease, and when applied to a plasma discharge electrode, it tends to be difficult to discharge. Especially when the electrical conductivity is less than 10 _4 S 'cm _1 This is not preferable because the tendency of
[0014] なお、バナジン酸塩ガラスは、 Agl、 Nal、 Ag、 Ag 0、 In O、 SnO、 SnO等の添  [0014] It should be noted that vanadate glass is composed of additives such as Agl, Nal, Ag, Ag 0, In 2 O, SnO, and SnO.
2 2 3 2 加剤が添加されたものでもよ ヽ。添加剤の効果によって電気伝導度を高めることがで きる力もである。また、 Agl、 Nal、 Ag等に加えて CeO等の還元防止剤を添加しても  2 2 3 2 Additives may be added. It is also the power that can increase electrical conductivity by the effect of additives. Moreover, in addition to Agl, Nal, Ag, etc., a reduction inhibitor such as CeO can be added.
2  2
よい。これにより、 Agl、 Nal、 Ag等の添加剤が還元されるのを防止して高い電気伝 導度を維持できる。  Good. This prevents the additives such as Agl, Nal, and Ag from being reduced and maintains high electrical conductivity.
[0015] 本発明の請求項 2に記載の発明は、請求項 1に記載のバナジン酸塩ガラスの製造 方法であって、前記組成物が、バナジウム、バリウム及び鉄を含有した構成を有して いる。  [0015] The invention according to claim 2 of the present invention is the method for producing the vanadate glass according to claim 1, wherein the composition contains vanadium, barium and iron. Yes.
これにより、請求項 1で得られる作用に加え、以下のような作用が得られる。 As a result, in addition to the action obtained in claim 1, the following action is obtained.
(1)バナジウム、バリウム、鉄の原子が 3次元的に関連しあったガラス骨格を形成させ ることができ、電子ホッピングによる高 ヽ電気伝導度を発現させることができる。 (1) A glass skeleton in which atoms of vanadium, barium, and iron are three-dimensionally related can be formed, and high electrical conductivity by electron hopping can be expressed.
(2)ガラス骨格中に 4価と 5価のバナジウムと 3価の鉄を配置できるので、電子ホッピ ングの確率が高められ電気伝導度を高めることができる。  (2) Since tetravalent and pentavalent vanadium and trivalent iron can be arranged in the glass skeleton, the probability of electron hopping is increased and the electrical conductivity can be increased.
[0016] ここで、酸ィ匕物ガラス中の酸化バリウム(BaO)、酸ィ匕バナジウム (V O )、酸ィ匕鉄 (F  [0016] Here, barium oxide (BaO), acid vanadium (V O), acid iron iron (F
2 5  twenty five
e O )の比率は、ガラス転移現象を示すような酸ィ匕物ガラスが得られるのであれば特 The ratio of e O) is special if an oxide glass that exhibits a glass transition phenomenon is obtained.
2 3 twenty three
に限定されるものではないが、特に、酸化物ガラス中の酸化バリウム (B)の酸化バナ ジゥム(V)に対するモル比(B: V)は、 5: 90〜35: 50にするのが好まし!/、。  In particular, the molar ratio (B: V) of barium oxide (B) to vanadium oxide (V) in the oxide glass is preferably 5:90 to 35:50. Better!/,.
これにより、以下のような作用が得られる。  Thereby, the following actions are obtained.
(1)ガラス化工程においてバナジウムを主骨格とした 3次元構造のガラス骨格を形成 できるので、再加熱工程において電気伝導度を飛躍的に高めることができる。  (1) Since a three-dimensional glass skeleton with vanadium as the main skeleton can be formed in the vitrification step, the electrical conductivity can be dramatically increased in the reheating step.
(2)再加熱工程前における酸ィ匕物ガラスの電気伝導度のばらつきが少なくなるととも に再加熱工程にぉ 、て結晶化し難 、ので、再加熱工程後の酸ィ匕物ガラスの電気伝 導度を所定範囲に収めることができ生産安定性に優れる。  (2) The electrical conductivity of the oxide glass before the reheating process is reduced, and it is difficult to crystallize during the reheating process. The conductivity can be kept within a predetermined range, and the production stability is excellent.
ここで、モル比(B :V)が 5 : 90より小さくなると、 3次元構造のガラス骨格を形成させ るのが困難になるとともに均質な酸ィ匕物ガラスが得られ難くなり、モル比(B :V)が 35 : 50より大きくなるとガラス化が困難になり、再加熱工程において結晶化し易くなり良 好な導電'性が発現されなくなるため好ましくない。 [0017] また、酸化物ガラス中の酸化鉄 (F)の酸化バナジウム (V)に対するモル比 (F: V) は、 5 : 90〜15 : 50にするのが好ましい。 Here, when the molar ratio (B: V) is smaller than 5:90, it becomes difficult to form a glass skeleton having a three-dimensional structure, and it becomes difficult to obtain a homogeneous oxide glass. When B: V) is larger than 35:50, vitrification becomes difficult, and crystallization tends to occur in the reheating step, and good conductivity is not exhibited. [0017] The molar ratio (F: V) of iron oxide (F) to vanadium oxide (V) in the oxide glass is preferably 5:90 to 15:50.
これにより、以下のような作用が得られる。  Thereby, the following actions are obtained.
(1)ガラス化工程においてバナジウムを主骨格とした 3次元構造のガラス骨格を形成 できるので、再加熱工程において電気伝導度を飛躍的に高めることができる。  (1) Since a three-dimensional glass skeleton with vanadium as the main skeleton can be formed in the vitrification step, the electrical conductivity can be dramatically increased in the reheating step.
(2)光透過性等の光学特性がある程度維持されるので、薄膜やファイバー化すること によって光学素子としても用いることができる。  (2) Since optical properties such as light transmittance are maintained to some extent, it can be used as an optical element by forming a thin film or fiber.
ここで、モル比 (F :V)が 5 : 90より小さくなるとガラス化し難くなり、モル比 (F :V)が 1 5 : 50より大きくなると、光透過性等の光学特性が低下するとともに均質な酸ィ匕物ガラ スが得られ難くなるので、いずれも好ましくない。  Here, when the molar ratio (F: V) is smaller than 5:90, it becomes difficult to vitrify, and when the molar ratio (F: V) is larger than 15:50, the optical properties such as light transmittance are deteriorated and homogeneous. It is difficult to obtain an acidic soda glass.
[0018] また、酸化物ガラス中の酸化バナジウム (V O ) ,酸化バリウム(BaO) ,酸ィ匕鉄 (Fe [0018] In addition, vanadium oxide (V O), barium oxide (BaO), iron oxide (Fe
2 5  twenty five
O )の 3成分系における酸化バナジウム(V O )は、 40〜98モル0 /0好ましくは 60〜O) vanadium oxide in the three-component system of (VO) is from 40 to 98 mole 0/0 preferably 60
2 3 2 5 2 3 2 5
85モル%が好適である。 60モル%より少なくなるにつれ、バナジウムを主骨格とする ガラス骨格を維持させるのが困難になるうえ高い電気伝導度を得ることが困難になる 傾向がみられ、 85モル%より多くなるにつれ、相対的に副成分の含有量が減るため 、副成分による電気伝導度や機械的特性等の調整機能が低下する傾向がみられる 。特に、 40モル%より少なくなるか 98%より多くなると、これらの傾向が著しいためい ずれも好ましくない。  85 mol% is preferred. As it becomes less than 60 mol%, it tends to be difficult to maintain a glass skeleton with vanadium as the main skeleton, and it becomes difficult to obtain high electrical conductivity. In particular, since the content of subcomponents is reduced, adjustment functions such as electrical conductivity and mechanical properties due to the subcomponents tend to be reduced. In particular, if the amount is less than 40 mol% or more than 98%, these tendencies are remarkable, which is not preferable.
酸ィ匕物ガラス中の上記 3成分系における酸化バリウム(BaO)は、 1〜40モル%好 ましくは 10〜30モル%が好適である。 10モル%より少なくなるにつれ均質なガラス 化が困難になる傾向がみられ、 30モル%より多くなるにつれ機械的強度が低下しガ ラス化し難くなる傾向がみられる。特に、 1モル%より少なくなる力 40モル%より多くな ると、これらの傾向が著 U、ため 、ずれも好ましくな 、。  The barium oxide (BaO) in the above three-component system in the oxide glass is 1 to 40 mol%, preferably 10 to 30 mol%. When the amount is less than 10 mol%, homogenous vitrification tends to be difficult, and when the amount is more than 30 mol%, the mechanical strength decreases and the glass tends to become difficult to form. In particular, when the force is less than 1 mol% and the amount is more than 40 mol%, these tendencies tend to be remarkable, and therefore the deviation is also preferable.
酸ィ匕物ガラス中の上記 3成分系における酸ィ匕鉄 (Fe O )は、 1〜20モル%好ましく  Acid iron iron (Fe 2 O 3) in the above three-component system in the acid glass is preferably 1 to 20 mol%
2 3  twenty three
は 5〜20モル%が好適である。 5モル%より少なくなるにつれ、鉄の価電子による電 子ホッピングへの寄与が低下し電気伝導度が向上し難くなる傾向がみられ、 1モル% より少なくなるとこの傾向が著しくなるため好ましくない。また、 20モル%より多くなると 光透過性等の光学特性等が大幅に低下するため好ましくない。 特に、酸化バナジウム (V O )、酸化バリウム (BaO)、酸化鉄 (Fe O )のモル比が Is preferably 5 to 20 mol%. As the content becomes less than 5 mol%, the contribution of iron valence electrons to electron hopping tends to be reduced, and the electrical conductivity tends to be difficult to improve. On the other hand, if it exceeds 20 mol%, the optical properties such as light transmission properties are greatly deteriorated. In particular, the molar ratio of vanadium oxide (VO), barium oxide (BaO), and iron oxide (FeO) is
2 5 2 3  2 5 2 3
、それぞれ 60〜85モノレ0 /0、 10〜30モノレ0 /0、 5〜20モノレ0 /0の範囲にあると、酸ィ匕物 ガラスを再加熱することによって、室温における電気伝導度を数桁以上上昇させて 1 0_ 1S ' cm—1以上にすることができ、サーミスタゃ発熱体、各種電極材料、帯電防止 材等として優れた特性を発現させることができる。 , Respectively 60 to 85 Monore 0/0, 10-30 Monore 0/0, to be in the range of 5 to 20 Monore 0/0, by reheating the Sani匕物glass, the number of electrical conductivity at room temperature It can be increased by 10 digits or more to 10 −1 S ′ cm− 1 or more, and the thermistor can exhibit excellent characteristics as a heating element, various electrode materials, antistatic materials and the like.
[0019] 本発明の請求項 3に記載の発明は、請求項 1又は 2に記載のバナジン酸塩ガラス の製造方法であって、前記組成物が、酸ィ匕バナジウム、酸化バリウム及び酸化鉄を 含有する混合物であり、前記酸ィ匕物ガラスが、前記混合物を加熱溶融したのち急冷 されて得られたものである構成を有して 、る。 [0019] The invention according to claim 3 of the present invention is the method for producing the vanadate glass according to claim 1 or 2, wherein the composition contains acid vanadium, barium oxide and iron oxide. The acid-containing glass has a configuration obtained by heating and melting the mixture and then rapidly cooling the mixture.
この構成により、請求項 1又は 2で得られる作用に加え、以下のような作用が得られ る。  With this configuration, in addition to the effects obtained in claim 1 or 2, the following actions can be obtained.
(1)酸化バナジウム、酸化バリウム及び酸化鉄を含有する混合物を加熱溶融したの ち急冷して酸ィ匕物ガラスを得るので、低コストで量産可能で生産性に優れる。  (1) Since a mixture containing vanadium oxide, barium oxide and iron oxide is heated and melted and then rapidly cooled to obtain an oxide glass, it can be mass-produced at low cost and has excellent productivity.
[0020] ここで、酸化バナジウムとしては、一酸化バナジウム(VO)、三酸化二バナジウム (V [0020] Here, as vanadium oxide, vanadium monoxide (VO), divanadium trioxide (V
O )、二酸化バナジウム (VO )、五酸化二バナジウム (V  O), vanadium dioxide (VO), divanadium pentoxide (V
3 2 2 o )等を用いることができ 3 2 2 o) etc. can be used
2 5 twenty five
、特に、五酸化二バナジウム (V o )が好適に用いられる。酸化バリウムの添カ卩によつ  In particular, divanadium pentoxide (V o) is preferably used. Barium oxide
2 5  twenty five
て 3次元構造のガラス骨格が形成され易 、からである。  This is because a three-dimensional glass skeleton is easily formed.
酸化バリウムとしては、酸化バリウム (BaO)、過剰酸素を含む固溶体の酸化バリゥ ム、過酸化バリウム等が用いられるが、酸化バリウム (BaO)が一般的である。また、炭 酸バリウムや蓚酸バリウム等を用いると、加熱溶融によって分解し酸化物ガラス中に B aOが残存し網目修飾イオンの役割を果たす。  Examples of barium oxide include barium oxide (BaO), solid solution barium oxide containing excess oxygen, barium peroxide, and the like, but barium oxide (BaO) is generally used. In addition, when barium carbonate, barium oxalate, or the like is used, it decomposes by heating and melts, and BaO remains in the oxide glass, acting as network modifying ions.
酸化鉄としては、一酸化鉄 (FeO)、三酸化二鉄 (Fe O )、四酸化三鉄 (Fe O )等  Examples of iron oxides include iron monoxide (FeO), ferric trioxide (Fe 2 O), and triiron tetraoxide (Fe 2 O).
2 3 3 4 が用いられる。  2 3 3 4 is used.
[0021] なお、酸ィ匕バナジウム、酸化バリウム、酸化鉄の他、第 2成分として酸化レニウム (R eO ) ,銀 (Ag)等を添加することもできる。これにより、電気伝導度をさらに向上させる [0021] In addition to oxide vanadium, barium oxide, and iron oxide, rhenium oxide (R eO), silver (Ag), and the like can be added as the second component. This further improves electrical conductivity
3 Three
ことができる。酸ィ匕レニウム等の第 2成分の添加量は、混合物 100質量部に対し 15 質量部以下であることが好ましい。第 2成分の添加量が 15質量部を超えると、バナジ ゥムを主骨格とするガラス骨格が形成できなくなる力もである。 発明の効果 be able to. The amount of the second component such as oxyrhenium added is preferably 15 parts by mass or less with respect to 100 parts by mass of the mixture. If the added amount of the second component exceeds 15 parts by mass, the glass skeleton having vanadium as the main skeleton cannot be formed. The invention's effect
[0022] 以上のように、本発明のバナジン酸塩ガラスの製造方法によれば、以下のような有 利な効果が得られる。  As described above, according to the method for producing vanadate glass of the present invention, the following advantageous effects can be obtained.
請求項 1に記載の発明によれば、  According to the invention of claim 1,
(1)ガラス転移温度以下の酸ィ匕物ガラスを、酸ィ匕物ガラスの結晶化温度より高温で酸 化物ガラスの融点以下の温度領域に所定時間保持する再加熱工程を備えているの で、 10_1S ' cm—1以上の高電気伝導度を有するバナジン酸塩ガラスを製造できるとと もに、所定の温度領域に 30分程度の短時間保持しただけでも電気伝導度を飛躍的 に高めることができ、さらに所定の温度領域での保持時間が変動しても電気伝導度 の変動が少なく生産安定性に著しく優れたバナジン酸塩ガラスの製造方法を提供で きる。 (1) Since it has a reheating step of holding the oxide glass having a glass transition temperature or lower for a predetermined time in a temperature range higher than the crystallization temperature of the oxide glass and lower than the melting point of the oxide glass. In addition to producing vanadate glass with a high electrical conductivity of 10 _1 S'cm— 1 or more, the electrical conductivity can be drastically improved even if it is kept in the specified temperature range for a short time of about 30 minutes. In addition, it is possible to provide a method for producing a vanadate glass that has little fluctuation in electric conductivity even when the holding time in a predetermined temperature range fluctuates and is extremely excellent in production stability.
(2)再加熱工程における加熱時間や保持時間等を変えることにより、室温におけるバ ナジン酸塩ガラスの電気伝導度の大きさを 10_4S ' cm—1以上の領域で精度良く設計 し制御することができ製品得率を高めることができるバナジン酸塩ガラスの製造方法 を提供できる。 (2) By changing the heating time and holding time in the reheating process, the electrical conductivity of the vanadate glass at room temperature is designed and controlled accurately in the region of 10 _4 S'cm— 1 or more. It is possible to provide a method for producing a vanadate glass capable of increasing the product yield.
[0023] 請求項 2に記載の発明によれば、請求項 1の効果に加え、  [0023] According to the invention of claim 2, in addition to the effect of claim 1,
(1)バナジウム、バリウム、鉄の原子が 3次元的に関連しあったガラス骨格を形成させ ることができ、電子ホッピングによる高 ヽ電気伝導度を発現できるバナジン酸塩ガラス の製造方法を提供できる。  (1) A method for producing a vanadate glass capable of forming a glass skeleton in which atoms of vanadium, barium, and iron are three-dimensionally related and exhibiting high electrical conductivity by electron hopping can be provided. .
(2)ガラス骨格中に 4価と 5価のバナジウムと 3価の鉄を配置できるので、電子ホッピ ングの確率が高められ高い電気伝導度を発現できるバナジン酸塩ガラスの製造方法 を提供できる。  (2) Since tetravalent and pentavalent vanadium and trivalent iron can be arranged in the glass skeleton, it is possible to provide a method for producing a vanadate glass capable of increasing the probability of electron hopping and exhibiting high electrical conductivity.
[0024] 請求項 3に記載の発明によれば、請求項 1又は 2の効果に加え、  [0024] According to the invention of claim 3, in addition to the effect of claim 1 or 2,
• 酸化バナジウム、酸化バリウム及び酸化鉄を含有する混合物を加熱溶融したのち 急冷して酸ィ匕物ガラスを得るので、低コストで量産可能で生産性に優れたバナジン 酸塩ガラスの製造方法を提供できる。  • Since a mixture containing vanadium oxide, barium oxide and iron oxide is heated and melted and then rapidly cooled to obtain an acid-containing glass, it provides a method for producing vanadate glass that can be mass-produced at low cost and has excellent productivity. it can.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]実験例 1〜3の酸ィ匕物ガラスの示差熱分析結果 [図 2]ガラス転移温度以下に冷却した実験例 1〜3の酸ィヒ物ガラスの再加熱前後の電 気伝導度をプロットした図 [0025] [Fig. 1] Differential thermal analysis results of acidified glass of Experimental Examples 1 to 3 [Fig. 2] A plot of the electrical conductivity before and after reheating of the acid glass of Experimental Examples 1 to 3 cooled below the glass transition temperature
[図 3]実験例 2の酸化物ガラスの再加熱温度、再加熱時間と電気伝導度との関係を 示す図 ·  [Fig. 3] Diagram showing the relationship between reheating temperature, reheating time and electrical conductivity of the oxide glass of Experimental Example 2
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に 限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to these examples.
(実験例 1)  (Experiment 1)
酸化バリウム(BaO)が 10モル0 /0、五酸化二バナジウム(V O )力 0モル0 /0、三酸 Barium oxide (BaO) is 10 mole 0/0, vanadium pentoxide (VO) force 0 mole 0/0, triacid
2 5  twenty five
化二鉄 (Fe O )が 10モル%で全量が 10gになるように試薬特級の各試薬を秤量し、  Weigh each reagent grade reagent so that the total amount is 10 g and the total amount is 10 g.
2 3  twenty three
メノウ乳鉢で混合したのち白金るつぼに入れ、白金るつぼに入れた混合物を 1000 °Cに昇温した電気炉内で大気中 90分間加熱して溶融させた。溶融物を厚さ 10mm のステンレス板の上に流し出してガラス転移温度以下まで急冷し、実験例 1の酸化物 ガラスを得た。  After mixing in an agate mortar, the mixture was placed in a platinum crucible, and the mixture in the platinum crucible was melted by heating in the air for 90 minutes in an electric furnace heated to 1000 ° C. The melt was poured onto a stainless steel plate having a thickness of 10 mm and quenched to below the glass transition temperature, whereby the oxide glass of Experimental Example 1 was obtained.
(実験例 2)  (Experiment 2)
酸化バリウム(BaO)が 20モル0 /0、五酸化二バナジウム(V O )力 70モル0 /0、三酸 Barium oxide (BaO) is 20 mole 0/0, vanadium pentoxide (VO) force 70 mole 0/0, triacid
2 5  twenty five
化二鉄 (Fe O )が 10モル%で全量が 10gになるように試薬特級の各試薬を秤量し  Weigh each reagent grade reagent so that the total amount of diiron ferrous (Fe 2 O 3) is 10 mol% and 10 g.
2 3  twenty three
た以外は実験例 1と同様にして、実験例 2の酸ィ匕物ガラスを得た。  Except that, the acid oxide glass of Experimental Example 2 was obtained in the same manner as Experimental Example 1.
(実験例 3)  (Experiment 3)
酸化バリウム(BaO)が 30モル0 /0、五酸化二バナジウム(V O )力 0モル0 /0、三酸 Barium oxide (BaO) is 30 mole 0/0, vanadium pentoxide (VO) force 0 mole 0/0, triacid
2 5  twenty five
化二鉄 (Fe O )が 10モル%で全量が 10gになるように試薬特級の各試薬を秤量し  Weigh each reagent grade reagent so that the total amount of diiron ferrous (Fe 2 O 3) is 10 mol% and 10 g.
2 3  twenty three
た以外は実験例 1と同様にして、実験例 3の酸ィ匕物ガラスを得た。  Except that, the acid oxide glass of Experimental Example 3 was obtained in the same manner as Experimental Example 1.
[0027] (実験例 1〜3の酸化物ガラスの示差熱分析結果) [0027] (Results of differential thermal analysis of oxide glasses of Experimental Examples 1 to 3)
実験例 1〜3の酸化物ガラスの示差熱分析 (DTA)を行った。示差熱分析 (DTA) の条件は、基準物質に exアルミナを使用し窒素雰囲気中で 10°CZ分の昇温速度で めつに。  Differential thermal analysis (DTA) of the oxide glasses of Experimental Examples 1 to 3 was performed. The differential thermal analysis (DTA) conditions are as follows: ex alumina is used as the reference material, and the temperature rise rate is 10 ° CZ in a nitrogen atmosphere.
図 1は実験例 1〜3の酸化物ガラスの示差熱分析結果である。  FIG. 1 shows the results of differential thermal analysis of the oxide glasses of Experimental Examples 1 to 3.
図 1から、酸化バリウムのモル比が増え五酸化二バナジウムのモル比が少なくなる につれガラス転移温度 (Tg)及び結晶化温度 (Tc)が上昇しており、結晶化温度 Tc は、実験例 1では 362°C、実験例 2では 392°C、実験例 3では 433°Cであった。結晶 化温度 (Tc)を超えた温度域でみられる鋭!、吸熱ピークは融点を示しており、融点は 、実験例 1では 600°C以上、実験例 2では 540°C、実験例 3では 563°Cであった。 From Figure 1, the molar ratio of barium oxide increases and the molar ratio of divanadium pentoxide decreases. As the glass transition temperature (Tg) and crystallization temperature (Tc) increased, the crystallization temperature Tc was 362 ° C in Experimental Example 1, 392 ° C in Experimental Example 2, and 433 ° C in Experimental Example 3. there were. The sharp endothermic peak seen in the temperature range above the crystallization temperature (Tc) shows the melting point, which is 600 ° C or higher in Experimental Example 1, 540 ° C in Experimental Example 2, and 540 ° C in Experimental Example 3. It was 563 ° C.
(再加熱温度と電気伝導度との関係)  (Relationship between reheating temperature and electrical conductivity)
ガラス転移温度以下に冷却した実験例 1〜3の酸ィ匕物ガラスを大気中、 350°C, 40 0°C, 500°C, 550°Cの各温度で 1時間再加熱し、再加熱前後の酸化物ガラスの 25 °Cにおける電気伝導度を直流 4端子法で測定した。  Experimental examples cooled to glass transition temperature or lower Re-heated 1 to 3 acidic glass in air at 350 ° C, 400 ° C, 500 ° C, and 550 ° C for 1 hour. The electrical conductivity of the front and rear oxide glasses at 25 ° C was measured by the DC four-terminal method.
図 2はガラス転移温度以下に冷却した実験例 1〜3の酸ィヒ物ガラスの再加熱前後 の電気伝導度をプロットした図である。図 2において、横軸は再加熱温度 (°C)を示し 、縦軸は 25°Cにおける電気伝導度 σ (S, cm—1)を示している。 Figure 2 is a plot of the electrical conductivity before and after reheating of the acid glass of Experimental Examples 1 to 3 cooled to below the glass transition temperature. In Fig. 2, the horizontal axis represents the reheating temperature (° C), and the vertical axis represents the electrical conductivity σ (S, cm– 1 ) at 25 ° C.
図 2から、実験例 1の酸ィ匕物ガラスを、結晶化温度(362°C)を超え融点(600°C以 上)以下の温度である 500〜550°Cで 1時間再加熱した場合、 25°Cにおける電気伝 導度を再加熱前と比較して約 4桁高めることができた。  From Fig. 2, when the oxide glass of Experimental Example 1 is reheated for 1 hour at 500 to 550 ° C, which is the temperature above the crystallization temperature (362 ° C) and below the melting point (600 ° C or higher). The electrical conductivity at 25 ° C was increased by about 4 orders of magnitude compared to before reheating.
なお、図 2中、 400°Cで 1時間再加熱した場合の電気伝導度は再加熱前と変わらな かったが、 400°Cで 2時間再加熱することで、室温(25°C)における電気伝導度を 10 _3S'cm_1程度にすることができた。実験例 1の酸化物ガラスでは、再加熱温度が 40 0°Cの場合の保持時間は 1時間では短かったものと思われる。 In Fig. 2, the electrical conductivity when reheated at 400 ° C for 1 hour was the same as before reheating, but by reheating at 400 ° C for 2 hours, it was at room temperature (25 ° C). The electrical conductivity could be about 10 _3 S'cm _1 . In the oxide glass of Experimental Example 1, the holding time when the reheating temperature is 400 ° C is considered to be short in 1 hour.
また、図 2から、実験例 2の酸ィ匕物ガラスを、結晶化温度(392°C)を超え融点(540 °C)以下の温度である 400〜500°Cで 1時間再加熱した場合、 25°Cにおける電気伝 導度を 10_3S' cm—1以上の高い電気伝導度にすることができた。特に、 500°Cで再 加熱した場合は 10_1S ' cm—1以上の高い電気伝導度を実現することができた。なお 、融点(540°C)より高い 550°Cで 1時間再加熱した場合は、一部が結晶化してしまつ た。 Also, from Fig. 2, when the acidic glass of Experimental Example 2 is reheated for 1 hour at 400 to 500 ° C, which is the temperature above the crystallization temperature (392 ° C) and below the melting point (540 ° C). The electrical conductivity at 25 ° C was higher than 10 _3 S 'cm— 1 . In particular, when reheated at 500 ° C, a high electrical conductivity of 10 _1 S 'cm- 1 or higher was achieved. When reheated at 550 ° C, which is higher than the melting point (540 ° C) for 1 hour, part of it crystallized.
また、図 2から、実験例 3の酸ィ匕物ガラスを、結晶化温度 (433°C)を超え融点(563 °C)以下の温度である 500°Cで再加熱した場合、 25°Cにおける電気伝導度を 10_2S •cm—1以上の高い電気伝導度にすることができた。 Also, from Fig. 2, when the oxide glass of Experimental Example 3 is reheated at 500 ° C, which is higher than the crystallization temperature (433 ° C) and lower than the melting point (563 ° C), 25 ° C The electrical conductivity of the material was 10 _2 S • cm— 1 or higher.
なお、融点(563°C)に近い 550°Cで 1時間再加熱した場合は一部が結晶化してし まったため、 550°Cで再加熱した酸化物ガラスの電気伝導度はプロットして!/、な!/、。 五酸ィ匕ニバナジウムに対する酸化バリウムのモル比が増加したためであると推察され る。保持時間を短縮して 550°Cで 0. 5時間再加熱することにより、結晶化することもな く 25°Cにおける電気伝導度を 10_2S · cm—1程度にすることができた。 When reheated at 550 ° C, which is close to the melting point (563 ° C) for 1 hour, part of it crystallizes. Therefore, the electrical conductivity of the oxide glass reheated at 550 ° C is plotted! /, Not! /. This is probably because the molar ratio of barium oxide to nivanadium pentoxide was increased. By shortening the holding time and reheating at 550 ° C for 0.5 hours, the electrical conductivity at 25 ° C was reduced to about 10 _2 S · cm– 1 without crystallization.
以上のことから、酸ィ匕物ガラス (バナジン酸塩ガラス)を、結晶化温度を超え融点以 下の温度領域に保持する再加熱工程を経ることで、室温 (25°C)における電気伝導 度を飛躍的に高めることができることが明らかになった。また、結晶の析出や溶融が 顕著に起こらない温度範囲であれば、再加熱温度が高いほど電気伝導度が向上す ることがわ力つた。また、再加熱温度が高くなると保持時間は短くてよいこともわかつ た。これらの現象から、結晶化温度を超えて融点以下の再加熱によって電気伝導度 が向上するメカニズムは、電子の活性ィ匕エネルギーに起因していると考えられる。  Based on the above, the electrical conductivity at room temperature (25 ° C) is obtained through a reheating process in which the oxide glass (vanadate glass) is maintained in a temperature range exceeding the crystallization temperature and below the melting point. It has become clear that can be dramatically improved. In addition, it was found that the electrical conductivity improves as the reheating temperature increases in a temperature range where crystal precipitation and melting do not occur remarkably. It has also been found that the holding time may be shortened as the reheating temperature increases. From these phenomena, it is considered that the mechanism by which the electrical conductivity is improved by reheating above the melting point and exceeding the crystallization temperature is due to the activity energy of electrons.
[0029] なお、これらの実験例以外にも、酸化バナジウム (V O )、酸化バリウム(BaO)、酸 In addition to these experimental examples, vanadium oxide (V 2 O 3), barium oxide (BaO), acid
2 5  twenty five
化鉄(Fe O )のモル比がそれぞれ 40〜98モル%、 1〜40モル%、 1〜20モル%の  The molar ratio of iron oxide (Fe 2 O 3) is 40 to 98 mol%, 1 to 40 mol%, and 1 to 20 mol%, respectively.
2 3  twenty three
範囲になるように種々の酸ィ匕物ガラスを調製し、各々の結晶化温度と融点を求め、再 加熱工程前後の室温における電気伝導度を測定したところ、これらの実験例と同様 に再加熱工程を経ることによって電気伝導度が上昇することが確認された。  Various oxide glasses were prepared so as to be in the range, the crystallization temperature and melting point of each were determined, and the electrical conductivity at room temperature before and after the reheating process was measured. Reheating as in these experimental examples was performed. It was confirmed that the electrical conductivity increased through the process.
また、酸化バナジウム (V O ) ,酸化バリウム (BaO) ,酸化鉄 (Fe O )の混合物を  A mixture of vanadium oxide (V O), barium oxide (BaO) and iron oxide (Fe O)
2 5 2 3  2 5 2 3
溶融冷却して製造した酸ィ匕物ガラスだけでなぐ酸化バナジウム (V o ) ,五酸化二  Vanadium oxide (V o), dipentaoxide, which can be obtained only by using an oxide glass produced by melting and cooling.
2 5  twenty five
リン (P O ) ,酸化バリウム (BaO)の混合物を溶融冷却して製造した酸ィ匕物ガラス、 An acidic glass produced by melting and cooling a mixture of phosphorus (P 2 O 3) and barium oxide (BaO),
2 5 twenty five
酸化バナジウム (V O ) ,酸化カリウム (K O) ,酸化鉄 (Fe O )の混合物を溶融冷却  Melting and cooling a mixture of vanadium oxide (V O), potassium oxide (K O), and iron oxide (Fe O)
2 5 2 2 3  2 5 2 2 3
して製造した酸ィ匕物ガラスでも、再加熱工程を経ることによって電気伝導度が上昇す ることが確認された。  It was also confirmed that the electrical conductivity of the oxide glass produced in this way increased through the reheating process.
以上のことから、本発明の製造方法は、バナジウムを主成分又は副成分とするバナ ジン酸塩ガラスに広く適用でき汎用性が高いものであるといえる。  From the above, it can be said that the production method of the present invention can be widely applied to vanadate glass containing vanadium as a main component or a subcomponent and has high versatility.
[0030] (再加熱時間と電気伝導度の関係) [0030] (Reheating time vs. electrical conductivity)
(実施例 1)  (Example 1)
ガラス転移温度以下に冷却した実験例 2の酸ィ匕物ガラスを大気中、結晶化温度(3 92°C)を超え融点(540°C)以下の温度である 500°Cで再加熱し、炉内から一定時間 毎に取り出して 25°Cにおける電気伝導度を測定した。 Re-heated the oxide glass of Experimental Example 2 cooled to below the glass transition temperature in the atmosphere at 500 ° C, which is a temperature exceeding the crystallization temperature (392 ° C) and below the melting point (540 ° C), A certain time from the furnace Each time it was taken out, the electrical conductivity at 25 ° C was measured.
(実施例 2)  (Example 2)
ガラス転移温度以下に冷却した実験例 2の酸ィ匕物ガラスを大気中、結晶化温度(3 92°C)を超え融点(540°C)以下の温度である 400°Cで再加熱し、炉内から一定時間 毎に取り出して 25°Cにおける電気伝導度を測定した。  Re-heated the oxide glass of Example 2 cooled to below the glass transition temperature in the atmosphere at 400 ° C, which is a temperature exceeding the crystallization temperature (392 ° C) and below the melting point (540 ° C), The electrical conductivity at 25 ° C was measured after taking out from the furnace at regular intervals.
(比較例 1)  (Comparative Example 1)
ガラス転移温度以下に冷却した実験例 2の酸ィ匕物ガラスを大気中、ガラス転移温度 (328°C)以上、結晶化温度(392°C)以下の温度である 350°Cで再加熱し、炉内から 一定時間毎に取り出して 25°Cにおける電気伝導度を測定した。この再加熱条件は、 特開 2003— 34548号公報 (特許文献 1)に記載されたアニーリング条件 (ガラス転 移温度以上、結晶化温度以下の温度領域に保持する条件)である。  The oxide glass of Experiment 2 cooled to below the glass transition temperature was reheated in the atmosphere at 350 ° C, which is the glass transition temperature (328 ° C) or higher and the crystallization temperature (392 ° C) or lower. Then, the electrical conductivity at 25 ° C was measured by taking out from the furnace at regular intervals. This reheating condition is the annealing condition described in Japanese Patent Laid-Open No. 2003-34548 (Patent Document 1) (a condition in which the temperature is maintained in the temperature range between the glass transition temperature and the crystallization temperature).
図 3は実験例 2の酸化物ガラスの再加熱温度、再加熱時間と電気伝導度との関係 を示す図である。図 3において、横軸は再加熱温度における保持時間、縦軸は 25°C における電気伝導度 σ (S 'cnT1)を示している。 FIG. 3 is a graph showing the relationship between the reheating temperature and reheating time of the oxide glass of Experimental Example 2 and electrical conductivity. In Fig. 3, the horizontal axis represents the holding time at the reheating temperature, and the vertical axis represents the electrical conductivity σ (S′cnT 1 ) at 25 ° C.
ガラス転移温度以下に冷却した実験例 2の酸ィ匕物ガラスを大気中、結晶化温度(3 92°C)を超え融点(540°C)以下の温度で再加熱した実施例 1及び 2では、わずか 30 分間の再加熱で電気伝導度を 3桁以上も向上させることができ、再加熱を続けても電 気伝導度がほとんど変動しないことが確認された。また、実施例 2より再加熱温度の 高い実施例 1の方が、電気伝導度を高くできることが確認された。  In Examples 1 and 2, the acid-containing glass of Experimental Example 2 cooled to below the glass transition temperature was reheated in the atmosphere at a temperature exceeding the crystallization temperature (392 ° C) and below the melting point (540 ° C). It was confirmed that the electrical conductivity could be improved by more than three orders of magnitude by reheating for only 30 minutes, and that the electrical conductivity hardly fluctuated even if reheating was continued. In addition, it was confirmed that Example 1 having a higher reheating temperature than Example 2 can increase the electrical conductivity.
一方、ガラス転移温度(328°C)以上、結晶化温度(392°C)以下の温度で再加熱し た比較例 1では、再加熱温度における保持時間が増加するにつれて電気伝導度が 増加し、 180分以上保持しなければ電気伝導度を一定値にできな 、ことが確認され た。また、比較例 1の電気伝導度は、実施例 1及び 2の電気伝導度より一桁以上低い ことが確認された。  On the other hand, in Comparative Example 1, which was reheated at a temperature not lower than the glass transition temperature (328 ° C) and not higher than the crystallization temperature (392 ° C), the electrical conductivity increased as the holding time at the reheating temperature increased. It was confirmed that the electrical conductivity could not be kept constant unless maintained for 180 minutes or longer. Further, it was confirmed that the electrical conductivity of Comparative Example 1 was lower by one digit or more than that of Examples 1 and 2.
以上のことから、本実施例によれば、再加熱温度に保持する時間によって電気伝 導度がばらつくことがなぐ所定の温度領域に 30分程度の短時間保持しただけでも 電気伝導度を飛躍的に高めることができ、さらに保持時間が変動しても電気伝導度 の変動が少なく生産安定性に著しく優れることが明らかになった。また、再加熱工程 における加熱時間等を変えることにより、室温におけるバナジン酸塩ガラスの電気伝 導度の大きさを 10_4S 'cm_1以上の領域で精度良く設計し制御できることが明らか になった。 From the above, according to this example, the electrical conductivity can be drastically increased even if it is held for a short time of about 30 minutes in a predetermined temperature range where the electrical conductivity does not vary depending on the time of holding at the reheating temperature. It was also found that even if the holding time varies, the electric conductivity does not vary and the production stability is remarkably excellent. In addition, reheating process It was revealed that the electrical conductivity of the vanadate glass at room temperature can be designed and controlled with high accuracy in the region of 10 _4 S 'cm _1 or more by changing the heating time in the glass.
産業上の利用可能性 Industrial applicability
本発明は、電極材料等として好適に用いられるバナジン酸塩ガラスの製造方法に 関し、 10_1S · cm—1以上の高電気伝導度を有するバナジン酸塩ガラスを製造できる とともに、所定の温度領域に 30分程度の短時間保持しただけでも電気伝導度を飛 躍的に高めることができ、さらに所定の温度領域での保持時間が変動しても電気伝 導度の変動が少なく生産安定性や品質の安定性に著しく優れ製品得率を高めること ができ、サーミスタゃ発熱体、帯電防止材料だけでなぐ SED (Surface- conduction E lectron-emitter Display)に用いられる表面伝導型電子放出素子(SCE : Surface-Co nduction Electron-emitter)の微細な電子放出用電極、放電電極などの各種電極材 料等の製品化のために最適なバナジン酸塩ガラスの製造方法を提供できる。 The present invention relates to a method for producing a vanadate glass suitably used as an electrode material or the like, and can produce a vanadate glass having a high electrical conductivity of 10 _1 S · cm- 1 or more and a predetermined temperature range. Even if it is held for a short time of about 30 minutes, the electrical conductivity can be dramatically increased, and even if the holding time in a predetermined temperature range varies, there is little fluctuation in the electrical conductivity and production stability and Surface-conduction electron-emitting devices (SCEs) used in SEDs (Surface-conduction Electron-emitter Displays), which use a thermistor only with a heating element and antistatic material, can significantly increase the product yield. Surface-conduction electron-emitter) can provide an optimal method for producing vanadate glass for commercialization of various electrode materials such as fine electron emission electrodes and discharge electrodes.

Claims

請求の範囲 The scope of the claims
[1] バナジウムを主成分又は副成分とするバナジン酸塩ガラスの製造方法であって、 バナジウムを含有する組成物をガラス化し酸ィ匕物ガラスを製造するガラス化工程と 、前記酸化物ガラスを前記酸化物ガラスの結晶化温度を超えて融点以下の温度領 域に所定時間保持する再加熱工程と、を備えて ヽることを特徴とするバナジン酸塩ガ ラスの製造方法。  [1] A method for producing a vanadate glass containing vanadium as a main component or an auxiliary component, comprising a vitrification step of vitrifying a composition containing vanadium to produce an oxide glass, and the oxide glass comprising: And a reheating step of keeping the oxide glass in a temperature range exceeding the crystallization temperature and not higher than the melting point for a predetermined time, and producing a vanadate glass.
[2] 前記組成物が、バナジウム、バリウム及び鉄を含有して!/ヽることを特徴とする請求項 1に記載のバナジン酸塩ガラスの製造方法。  [2] The composition contains vanadium, barium and iron! 2. The method for producing a vanadate glass according to claim 1, wherein:
[3] 前記組成物が、酸化バナジウム、酸化バリウム及び酸化鉄を含有する混合物であり 、前記酸ィ匕物ガラス力 前記混合物を加熱溶融したのち急冷されて得られたもので あることを特徴とする請求項 1又は 2に記載のバナジン酸塩ガラスの製造方法。  [3] The composition is a mixture containing vanadium oxide, barium oxide and iron oxide, and is obtained by heating and melting the mixture and then rapidly cooling the mixture. The manufacturing method of the vanadate glass of Claim 1 or 2.
PCT/JP2007/057035 2006-03-31 2007-03-30 Process for producing vanadate glass WO2007114318A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008508645A JP5164072B2 (en) 2006-03-31 2007-03-30 Manufacturing method of vanadate glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-099286 2006-03-31
JP2006099286 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007114318A1 true WO2007114318A1 (en) 2007-10-11

Family

ID=38563585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057035 WO2007114318A1 (en) 2006-03-31 2007-03-30 Process for producing vanadate glass

Country Status (2)

Country Link
JP (1) JP5164072B2 (en)
WO (1) WO2007114318A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014482A (en) * 2011-07-05 2013-01-24 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Vanadate salt-tungstate salt glass excellent in water resistance and chemical durability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109337A (en) * 1998-10-02 2000-04-18 Senyo Glass Kogyo Kk Electrically conductive glass composition
JP2003034548A (en) * 2001-07-18 2003-02-07 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Vanadate glass and its manufacturing method
JP2006248867A (en) * 2005-03-14 2006-09-21 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Precisely processed electroconductive glass member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109337A (en) * 1998-10-02 2000-04-18 Senyo Glass Kogyo Kk Electrically conductive glass composition
JP2003034548A (en) * 2001-07-18 2003-02-07 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Vanadate glass and its manufacturing method
JP2006248867A (en) * 2005-03-14 2006-09-21 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Precisely processed electroconductive glass member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUKUDA K. ET AL.: "A significant improvement of the electrical conductivity of semiconducting vanadate glasses caused by heat treatment", SOLID STATE CHEMISTRY V SOLID STATE PHENOMENA, vol. 90-91, 2003, pages 215 - 219, XP003018338 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014482A (en) * 2011-07-05 2013-01-24 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Vanadate salt-tungstate salt glass excellent in water resistance and chemical durability

Also Published As

Publication number Publication date
JP5164072B2 (en) 2013-03-13
JPWO2007114318A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
CN102471134B (en) Alkali-free glass and method for producing same
JP5940101B2 (en) Lithium ion conductive glass ceramic and use of said glass ceramic
CN101928105B (en) Glass substrate for display and display
KR101523832B1 (en) Glass substrate for flat panel display
EP1699742B1 (en) High strain point glasses
JP5616002B2 (en) Lithium ion conductive solid electrolyte and method for producing the same
Lu et al. Effect of La2O3 addition on crystallization and properties of Li2O–Al2O3–SiO2 glass-ceramics
JP5024835B2 (en) Temperature control container with Peltier element
CN108314314A (en) Flat panel display glass substrate and its manufacturing method
Guo et al. Crystallization and microstructure of Li2O–Al2O3–SiO2 glass containing complex nucleating agent
JP2002519299A (en) Tantalum containing glass and glass ceramic
TW201307239A (en) Glass substrate for flat panel display and manufacturing method thereof
US10501367B2 (en) Ceramics and glass ceramics exhibiting low or negative thermal expansion
CN100368326C (en) Method for producing borosilicate glass, borate glass and crystallising materials containing boron
Chakrabarti et al. BaBi2Ta2O9 based glass-ceramics: influence of ZrO2 on crystallization kinetics, microstructure and dielectric properties
Chen et al. Achieving ultrafast discharge speed and excellent energy storage efficiency in environmentally friendly niobate-based glass ceramics
WO2007114318A1 (en) Process for producing vanadate glass
JPH09255354A (en) Glass composition for substrate
Ebrahium et al. Effect of K2WO4 on structure and properties of low melting glasses in K2O–Fe2O3–P2O5 system as sealing materials
WO2023185955A1 (en) Electronic glass having high liquidus viscosity, and preparation method
CN102417297A (en) Alkali-free glass and flat display panel
WO2010098227A1 (en) Optical modulation material and method for producing same
JPS6153131A (en) Crystallized glass and its production
JP2005330181A (en) Method for producing substrate glass for display device
US11414341B2 (en) Doped bismuth silicate crystals via devitrification of glass forming liquids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740473

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008508645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740473

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)