WO2007114276A1 - Method for start-up of liquid fuel synthesis system, and liquid fuel synthesis system - Google Patents

Method for start-up of liquid fuel synthesis system, and liquid fuel synthesis system Download PDF

Info

Publication number
WO2007114276A1
WO2007114276A1 PCT/JP2007/056922 JP2007056922W WO2007114276A1 WO 2007114276 A1 WO2007114276 A1 WO 2007114276A1 JP 2007056922 W JP2007056922 W JP 2007056922W WO 2007114276 A1 WO2007114276 A1 WO 2007114276A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
gas
reactor
liquid fuel
synthesis
Prior art date
Application number
PCT/JP2007/056922
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Onishi
Osamu Wakamura
Kenichiro Fujimoto
Original Assignee
Nippon Steel Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co., Ltd. filed Critical Nippon Steel Engineering Co., Ltd.
Priority to JP2008508621A priority Critical patent/JPWO2007114276A1/en
Priority to CN2007800156639A priority patent/CN101432393B/en
Priority to AU2007232925A priority patent/AU2007232925C1/en
Publication of WO2007114276A1 publication Critical patent/WO2007114276A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/007Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 in the presence of hydrogen from a special source or of a special composition or having been purified by a special treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/24Starting-up hydrotreatment operations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a method for starting a liquid fuel synthesis system and a liquid fuel synthesis system.
  • FT synthesis reaction Fischer's Tropsch synthesis reaction
  • FT synthesis reaction Fischer's Tropsch synthesis reaction
  • GTL Gas To Liquid
  • the composition suitable for the FT synthesis reaction (H / CO) is obtained by using the natural gas containing carbon dioxide as a raw material by using the carbon dioxide reforming method. Ratio) synthesis gas can be obtained in a single reaction, so the hydrogen concentration
  • An adjustment device can be dispensed with.
  • the above-described conventional liquid fuel synthesis system using GTL technology includes a reformer that reforms natural gas to produce carbon monoxide gas and hydrogen gas, and a hydrogen gas that is produced by the reformer. Equipped with various hydrogen-utilizing reactors (for example, desulfurization reactors for desulfurizing natural gas and hydrogenation reactors for hydrogenating synthesized liquid hydrocarbons) It is.
  • the hydrogen utilization reactor cannot be activated until the carbon monoxide gas and hydrogen gas are generated after the reformer is activated. The reactor starts slowly. For this reason, it takes time for the entire system to start up and start production of liquid hydrocarbon products, which is a cause of reduced production efficiency.
  • the present invention has been made in view of the above problems, and a method for starting a liquid fuel synthesis system capable of quickly starting a hydrogen-using reaction apparatus to improve production efficiency, and liquid fuel
  • the object is to provide a synthesis system.
  • a method for starting a liquid fuel synthesizing system of the present invention includes a reformer that reforms a hydrocarbon raw material to generate synthesis gas mainly composed of carbon monoxide gas and hydrogen gas, and the synthesis gas.
  • a method for starting a liquid fuel synthesis system comprising: separating and storing a part of hydrogen gas contained in synthesis gas generated by the reformer during steady operation of the liquid fuel synthesis system; When the liquid fuel synthesizing system is started, hydrogen gas stored in the hydrogen storage device is supplied to the hydrogen-utilizing reactor.
  • the method for starting a liquid fuel synthesis system of the present invention hydrogen gas stored in advance during normal operation of the liquid fuel synthesis system is supplied to the hydrogen-utilizing reactor when the hydrogen-using reactor is started. Therefore, the predetermined reaction using hydrogen can be started immediately in the hydrogen-using reaction apparatus. As a result, the hydrogen-utilizing reactor can be quickly started before the reformer-powered hydrogen gas is supplied, so that the production efficiency of the liquid fuel synthesis system can be improved.
  • the hydrogen-utilizing reaction apparatus is supplied to a hydrogenation reactor for hydrogenating liquid hydrocarbons synthesized in the reactor, or to the reformer. It may contain at least one of desulfurization reactors for hydrodesulfurizing the hydrocarbon feedstock.
  • the hydrogen gas has pressure fluctuation It may be separated by at least one of an adsorption method, a hydrogen storage alloy adsorption method or a membrane separation method.
  • the reactor may be a bubble column type slurry bed reactor.
  • a liquid fuel synthesizing system of the present invention includes a reformer that reforms a hydrocarbon raw material to generate a synthesis gas mainly composed of carbon monoxide gas and hydrogen gas; and included in the synthesis gas.
  • a reactor that synthesizes liquid hydrocarbons from carbon oxide gas and hydrogen gas; a hydrogen-based reaction device that performs a predetermined reaction using hydrogen gas contained in the synthesis gas generated by the reformer; and the reformer
  • a hydrogen separator for separating a part of the hydrogen gas contained in the synthesis gas produced in step (b); a hydrogen storage device for storing the hydrogen gas separated by the hydrogen separator; and when the liquid fuel synthesis system is started up
  • control means for supplying the hydrogen gas stored in the hydrogen storage device to the hydrogen-utilizing reaction device.
  • the hydrogen-utilizing reactor includes a hydrogenation reactor for hydrogenating the liquid hydrocarbon synthesized in the reactor, or a hydrocarbon raw material supplied to the reformer. It may contain at least one of desulfurization reactors for hydrodesulfurization.
  • the hydrogen separation device separates hydrogen gas by at least one of a pressure fluctuation adsorption method, a hydrogen storage alloy adsorption method, and a membrane separation method. Moyore.
  • the reactor may be a bubble column type slurry bed reactor.
  • the hydrogen utilization reactor provided in the liquid fuel synthesizing system can be started quickly, and the production efficiency of the liquid fuel can be improved.
  • FIG. 1 is a schematic diagram showing an overall configuration of a liquid fuel synthesis system according to an embodiment of the present invention.
  • FIG. 2 is a timing chart showing a conventional starting method of the liquid fuel synthesis system.
  • FIG. 3 is a timing chart showing a start-up method of the liquid fuel synthesizing system that is relevant to the embodiment.
  • FIG. 4 is a block diagram showing a configuration example of a hydrogen storage device in the liquid fuel synthesizing system according to the embodiment.
  • FIG. 5 is a block diagram showing another configuration example of the hydrogen storage device in the liquid fuel synthesizing system according to the embodiment.
  • Gas-liquid separator 70 ... Second rectification column, 72 ... Naphtha's stabilizer, 80 ... Hydrogen storage device, 81, 101 ... Storage tank, 82, 83, 104 ... Hydrogen compression 84, 105 ... Controller, 86, 87, 106, 107 ... Valve, 91, 92, 9 3, 94, 95 ... Piping, 102 ... Liquefaction device, 103 ... Vaporization device
  • FIG. 1 is a schematic diagram showing an overall configuration of a liquid fuel synthesizing system 1 that is useful in the present embodiment.
  • a liquid fuel synthesizing system 1 useful for the present embodiment is a plant facility that executes a GTL process for converting a hydrocarbon feedstock such as natural gas into liquid fuel.
  • the liquid fuel synthesizing system 1 includes a syngas generating unit 3, an FT synthesizing unit 5, and a product refining unit 7.
  • the synthesis gas generation unit 3 is a However, the gas is reformed to produce a synthesis gas containing carbon monoxide gas and hydrogen gas.
  • the FT synthesis unit 5 generates liquid hydrocarbons from the generated synthesis gas by a Fischer Tropsch synthesis reaction (hereinafter referred to as “FT synthesis reaction”).
  • the product refining unit 7 produces liquid fuel products (naphtha, kerosene, light oil, wax, etc.) by hydrogenating and purifying the liquid hydrocarbons produced by the FT synthesis reaction.
  • the components of each unit will be described below.
  • the synthesis gas generation unit 3 mainly includes, for example, a desulfurization reactor 10, a reformer 12, an exhaust heat boiler 14, gas-liquid separators 16 and 18, a decarboxylation device 20, and a hydrogen separation device 26.
  • the desulfurization reactor 10 is composed of a hydrodesulfurization device or the like, and removes natural gas power sulfur component as a raw material.
  • the reformer 2 reforms the natural gas supplied from the desulfurization reactor 10 to generate a synthesis gas containing carbon monoxide gas (CO) and hydrogen gas (H 2) as main components.
  • the exhaust heat boiler 14 is produced in the reformer 12.
  • High pressure steam is generated by recovering the exhaust heat of the synthesized gas.
  • the gas-liquid separator 16 separates the water heated by the heat exchange with the synthesis gas in the exhaust heat boiler 14 into a gas (high-pressure steam) and a liquid.
  • the gas-liquid separator 18 removes the condensate from the synthesis gas cooled by the exhaust heat boiler 14 and supplies the gas to the decarbonator 20.
  • the decarboxylation device 20 includes an absorption tower 22 that removes carbon dioxide gas from the synthesis gas supplied from the gas-liquid separator 18 by using the absorption liquid, and a regeneration that diffuses the carbon dioxide gas from the absorption liquid containing the carbon dioxide gas to regenerate. With tower 24.
  • the hydrogen separation device 26 separates a part of the hydrogen gas contained in the synthesis gas from the synthesis gas from which the carbon dioxide gas has been separated by the decarbonation device 20.
  • the decarboxylation device 20 may not be required depending on circumstances.
  • the reformer 12 is a natural gas that uses carbon dioxide and steam by, for example, a steam 'carbonate gas reforming method represented by the following chemical reaction formulas (1) and (2). Is reformed to produce a high-temperature synthesis gas mainly composed of carbon monoxide gas and hydrogen gas.
  • the reforming method in the reformer 12 is not limited to the above steam / carbon dioxide reforming method.
  • the water steam reforming method, the partial oxidation reforming method using oxygen (PX ), Autothermal reforming method (ATR), carbon dioxide gas reforming method, etc. which is a combination of partial oxidation reforming method and steam reforming method.
  • the hydrogen separator 26 is provided in a branch line branched from a main pipe connecting the decarboxylation device 20 or the gas-liquid separator 18 and the bubble column reactor 30.
  • the hydrogen separator 26 can be constituted by, for example, a hydrogen PSA (Pressure Swing Ads orption) device that performs adsorption and desorption of hydrogen using a pressure difference.
  • This hydrogen PSA apparatus has an adsorbent (zeolite adsorbent, activated carbon, alumina, silica gel, etc.) in a plurality of adsorption towers (not shown) arranged in parallel.
  • high-purity hydrogen gas for example, about 99.999%) separated from synthesis gas is continuously supplied to the reactor. be able to.
  • the hydrogen gas separation method in the hydrogen separator 26 is not limited to the pressure fluctuation adsorption method such as the hydrogen PSA device described above.
  • the hydrogen storage alloy adsorption method, the membrane separation method, or these Combinations may be used.
  • the hydrogen storage alloy method is, for example, a hydrogen storage alloy having the property of adsorbing / releasing hydrogen by being cooled / heated (TiFe, LaNi, TiFe, Mn, TiMn, etc.)
  • a plurality of adsorption towers containing hydrogen storage alloys are provided, and in each adsorption tower, hydrogen adsorption by cooling the hydrogen storage alloy and hydrogen release by heating the hydrogen storage alloy are alternately repeated to synthesize Hydrogen gas in the gas can be separated and recovered.
  • the membrane separation method is a method of separating hydrogen gas having excellent membrane permeability from a mixed gas using a membrane made of a polymer material such as aromatic polyimide.
  • This membrane separation method does not involve a phase change, so the energy required for operation is small and the running cost is low.
  • the structure of the membrane separation apparatus is simple and out of comparator, the equipment cost is low and the required area of the equipment is small.
  • the separation membrane has the advantage of easy maintenance because it has a wide stable operating range.
  • the FT synthesis unit 5 mainly includes, for example, a bubble column reactor 30, a gas-liquid separator 34, a separator 36, a gas-liquid separator 38, and a first rectifying column 40.
  • the bubble column reactor 30 is composed of the synthesis gas generated by the synthesis gas generation unit 3. Gas, that is, carbon monoxide gas and hydrogen gas are subjected to FT synthesis reaction to produce liquid hydrocarbons.
  • the gas-liquid separator 34 separates the water heated through the heat transfer tubes 32 disposed in the bubble column reactor 30 into water vapor (medium pressure steam) and liquid.
  • the separator 36 is connected to the center of the bubble column reactor 30 and separates the catalyst and the liquid hydrocarbon product.
  • the gas-liquid separator 38 is connected to the upper part of the bubble column reactor 30 and cools the unreacted synthesis gas and the gaseous hydrocarbon product.
  • the first rectification column 40 distills liquid hydrocarbons supplied from the bubble column reactor 30 via the separator 36 and the gas-liquid separator 38, and separates and purifies each product fraction according to the boiling point. To do.
  • the bubble column reactor 30 is an example of a reactor that synthesizes synthesis gas into liquid hydrocarbons, and is an FT synthesis reactor that synthesizes liquid hydrocarbons from synthesis gas by FT synthesis reaction. Function.
  • the bubble column reactor 30 is constituted by, for example, a bubble column type slurry bed type reactor in which a slurry made of a catalyst and a medium oil is stored inside a column type container.
  • the bubble column reactor 30 generates liquid hydrocarbons from synthesis gas by FT synthesis reaction.
  • the synthesis gas which is a raw material gas, is supplied as bubbles from the dispersion plate at the bottom of the bubble column reactor 30, and passes through the slurry composed of the catalyst and the medium oil.
  • hydrogen gas and carbon monoxide gas undergo a synthesis reaction as shown in chemical reaction formula (3) below.
  • the bubble column reactor 30 is of a heat exchanger type in which a heat transfer tube 32 is provided, and water (BFW: Boiler Feed Watt) is used as a refrigerant. er) and the reaction heat of the FT synthesis reaction can be recovered as an intermediate pressure steam by heat exchange between the slurry and water.
  • Product purification unit 7 includes, for example, W AX fraction hydrocracking reactor 50, kerosene / light oil fraction hydrotreating reactor 52, naphtha fraction hydrotreating reactor 54, and gas-liquid separators 56, 58. , 60, a second rectifying tower 70, and a naphtha 'stabilizer 72.
  • the WAX fraction hydrocracking reactor 50 is connected to the lower part of the first rectification column 40.
  • a kerosene / light oil fraction hydrotreating reactor 52 is connected to the center of the first rectifying column 40.
  • the naphtha fraction hydrotreating reactor 54 is located above the first rectification column 40. It is connected.
  • the gas-liquid separators 56, 58 and 60 are provided corresponding to the hydrogenation reactors 50, 52 and 54, respectively.
  • the second rectifying column 70 separates and purifies the liquid hydrocarbons supplied from the gas-liquid separators 56 and 58 according to the boiling point.
  • the naphtha stabilizer 72 rectifies the liquid hydrocarbons of the naphtha fraction supplied from the gas-liquid separator 60 and the second rectifying column 70, and discharges lighter components than butane to the flare gas (exhaust gas) side, Ingredients whose number is C or more
  • the liquid fuel synthesizing system 1 is supplied with natural gas (the main component is CH 2) as a hydrocarbon feedstock from an external natural gas supply source (not shown) such as a natural gas field or a natural gas plant.
  • natural gas the main component is CH 2
  • an external natural gas supply source not shown
  • the synthesis gas generation unit 3 reforms the natural gas to produce synthesis gas (a mixed gas mainly composed of carbon monoxide gas and hydrogen gas).
  • the natural gas is supplied to the desulfurization reactor 10 together with the hydrogen gas separated by the hydrogen separator 26.
  • the desulfurization reactor 10 hydrodesulfurizes the sulfur content contained in the natural gas using, for example, a ZnO catalyst using the hydrogen gas.
  • Natural gas desulfurized in this way (including carbon dioxide,%) Is a carbon dioxide (CO 2) gas supplied from a carbon dioxide supply source (not shown) and an exhaust heat boiler. Depart at 14
  • the reformer 12 After the raw steam is mixed, it is supplied to the reformer 12.
  • the reformer 12 reforms natural gas using carbon dioxide and water vapor by the steam 'carbon dioxide gas reforming method described above, and generates high-temperature components mainly composed of carbon monoxide gas and hydrogen gas. Generate synthesis gas.
  • the reformer 12 is supplied with fuel gas and air for the burner provided in the reformer 12, and the steam / carbon dioxide gas is an endothermic reaction by the combustion heat of the fuel gas in the burner. The heat of reaction necessary for the reforming reaction has been provided.
  • the high-temperature synthesis gas (for example, 900 ° C, 2. OMPa G) generated in the reformer 12 in this way is supplied to the exhaust heat boiler 14 and is circulated in the exhaust heat boiler 14. It is cooled (for example, 400 ° C) by heat exchange with the heat and recovered. At this time, in the exhaust heat boiler 14 Water heated by the synthesis gas is supplied to the gas-liquid separator 16, and the gas component from the gas-liquid separator 16 is converted into high-pressure steam (eg, 3.4-10. OMPaG) to the reformer 12 or other external device. The liquid water is returned to the exhaust heat boiler 14.
  • high-temperature synthesis gas for example, 900 ° C, 2. OMPa G
  • the synthesis gas cooled in the exhaust heat boiler 14 is separated and removed in the gas-liquid separator 18 by the condensate, and then the absorption tower 22 of the decarboxylation device 20 or the bubble column reactor. Supplied to 30.
  • the absorption tower 22 removes carbon dioxide from the synthesis gas by absorbing the carbon dioxide contained in the synthesis gas in the stored absorption liquid.
  • the absorption liquid containing carbon dioxide gas in the absorption tower 22 is introduced into the regeneration tower 24, and the absorption liquid containing carbon dioxide gas is stripped by heating with, for example, steam. To the reformer 12 for reuse in the reforming reaction.
  • the synthesis gas produced by the synthesis gas production unit 3 is supplied to the bubble column reactor 30 of the FT synthesis unit 5.
  • the synthesis gas supplied to the bubble column reactor 30 is FT by a compressor (not shown) provided in a pipe connecting the decarboxylation device 20 and the bubble column reactor 30.
  • the pressure is increased to a pressure suitable for the synthesis reaction (eg, 3.6 MPaG).
  • a part of the synthesis gas from which the carbon dioxide gas has been separated by the decarbonation device 20 is also supplied to the hydrogen separation device 26.
  • the hydrogen separator 26 separates hydrogen gas contained in the synthesis gas by adsorption and desorption (hydrogen PSA) using a pressure difference as described above.
  • the separated hydrogen is subjected to various hydrogen utilization reactions in which a predetermined reaction is performed using hydrogen in the liquid fuel synthesis system 1 from a gas holder (not shown) or the like via a compressor (not shown).
  • desulfurization reactor 10 WAX hydrocracking reactor 50, kerosene / light oil fraction hydrotreating reactor 52, naphtha fraction hydrotreating reactor 54, etc.
  • the FT synthesis unit 5 synthesizes liquid hydrocarbons from the synthesis gas produced by the synthesis gas production unit 3 by an FT synthesis reaction.
  • the synthesis gas produced by the synthesis gas production unit 3 flows from the bottom of the bubble column reactor 30 and passes through the catalyst slurry stored in the bubble column reactor 30. To rise. At this time, in the bubble column reactor 30, the synthesis is performed by the FT synthesis reaction described above. Carbon monoxide and hydrogen gas contained in the generated gas react to generate hydrocarbons. Furthermore, at the time of this synthesis reaction, water is circulated through the heat transfer tube 32 of the bubble column reactor 30 to remove the reaction heat of the FT synthesis reaction, and the water heated by this heat exchange evaporates to form water. It becomes steam. The water vapor liquefied by the gas-liquid separator 34 is returned to the heat transfer tube 32, and the gas component is supplied to the external device as medium-pressure steam (for example, 1.0 to 2.5 MPaG).
  • medium-pressure steam for example, 1.0 to 2.5 MPaG
  • the liquid hydrocarbon synthesized in the bubble column reactor 30 is taken out from the center of the bubble column reactor 30 and introduced into the separator 36.
  • the separator 36 separates the catalyst (solid content) in the removed slurry into the liquid content containing the liquid hydrocarbon product.
  • a part of the separated catalyst is returned to the bubble column reactor 30, and the liquid is supplied to the first rectifying column 40.
  • unreacted synthesis gas and the synthesized hydrocarbon gas are introduced into the gas-liquid separator 38.
  • the gas-liquid separator 38 cools these gases, separates some condensed liquid hydrocarbons, and introduces them into the first fractionator 40.
  • the unreacted synthesis gas CO and H
  • the unreacted synthesis gas is reintroduced into the bottom of the bubble column reactor 30 and reused for the FT synthesis reaction.
  • the main component is a hydrocarbon gas with a low carbon number (C or less) that is not covered by the product.
  • Exhaust gas (flare gas) is introduced into an external combustion facility (not shown), burned, and released into the atmosphere.
  • the first rectifying column 40 receives liquid hydrocarbons (having various carbon numbers) supplied from the bubble column reactor 30 through the separator 36 and the gas-liquid separator 38 as described above. Heat and fractionate using different boiling points, naphtha fraction (boiling point less than about 315 ° C), kerosene 'light oil fraction (boiling point about 315-800 ° C), WAX fraction Separate and purify (boiling point greater than about 800 ° C).
  • the liquid hydrocarbons (mainly C or more) of WAX taken out from the bottom of the first rectifying column 40 are
  • the liquid hydrocarbons (mainly C to C) of kerosene / light oil fraction transferred to the WAX fraction hydrocracking reactor 50 and taken out from the center of the first rectification tower 40 are kerosene / light oil fraction hydrotreating
  • the liquid hydrocarbon (mainly C to C) of the naphtha fraction that is transferred to the reactor 52 and taken out from the upper part of the first rectifying column 40 is transferred to the naphtha fraction hydrotreating reactor 54.
  • the WAX fraction hydrocracking reactor 50 is fed from the hydrogen separator 26 with liquid hydrocarbons (generally C or more) having a large number of carbon atoms supplied from the lower part of the first rectifying column 40. Hydrocracking using the generated hydrogen gas to reduce the carbon number to C or less. This hydrogenation
  • the catalyst and heat are used to cleave C C bonds of hydrocarbons with a large number of carbons to produce low molecular weight hydrocarbons with a small number of carbons.
  • the product containing liquid hydrocarbons hydrocracked by this WAX hydrocracking reactor 50 is separated into gas and liquid by gas-liquid separator 56, of which liquid hydrocarbons are separated by the second rectification fraction.
  • the gas component (including hydrogen gas) is transferred to the tower 70 and transferred to the kerosene / light oil fraction hydrotreating reactor 52 and the naphtha fraction hydrotreating reactor 54.
  • Kerosene ⁇ Gas oil fraction hydrotreating reactor 52 is a liquid hydrocarbon (generally C to C) of kerosene ⁇ gas oil fraction supplied from the center of the first rectification column 40 with a medium carbon number. ), Hydrogen content
  • Hydrotreating is performed using hydrogen gas supplied from the separation device 26 through the WAX hydrocracking reactor 50.
  • This hydrorefining reaction is a reaction in which hydrogen is added to the unsaturated bond of the liquid hydrocarbon to saturate to produce a linear saturated hydrocarbon.
  • the hydrogenated and purified product containing liquid hydrocarbons is separated into a gas and a liquid by the gas-liquid separator 58, and the liquid hydrocarbons are transferred to the second rectification column 70 for gas separation. (Including hydrogen gas) is reused in the hydrogenation reaction.
  • the naphtha fraction hydrotreating reactor 54 supplies liquid hydrocarbons (generally C or less) of the naphtha fraction having a low carbon number supplied from the upper part of the first rectification column 40 to the WA separator 26 from the WA.
  • the second fractionator 70 distills the liquid hydrocarbons supplied from the WAX fraction hydrocracking reactor 50 and the kerosene-light oil fraction hydrotreating reactor 52 as described above. Hydrocarbons with a carbon number of C or less (boiling point less than about 315 ° C) and kerosene (boiling point about 315 to 450 ° C)
  • diesel oil (boiling point approx. 450-800 ° C).
  • Gas oil is taken out from the lower part of the second rectification tower 70, and kerosene is taken out from the center.
  • hydrocarbon gas having a carbon number of C or less is taken out from the top of the second rectifying column 70 and is supplied to the naphtha stabilizer 72.
  • the naphtha's stabilizer 72 distills hydrocarbons having a carbon number of C or less supplied from the naphtha fraction hydrotreating reactor 54 and the second rectifying column 70 as a product.
  • the naphtha (C to C) is separated and purified. This allows the bottom of the naphtha stabilizer 72
  • the main component of the exhaust is hydrocarbons whose main component is a carbon number not exceeding the specified number (C or less).
  • Gas (flare gas) is discharged. This exhaust gas is introduced into an external combustion facility (not shown), burned, and released into the atmosphere.
  • the start-up delay of the hydrogenation reactors 50, 52, 54 of the product purification unit 7 will be specifically described with reference to FIG.
  • the reformer 12 of the syngas generating unit 3 is started to start the synthesis gas generation reaction.
  • the reformer 12 is in a steady operation and can stably supply the synthesis gas, for example, on the fourth day from the start-up.
  • the FT synthesis unit 5 when the synthesis gas generation unit 3 is started up, for example, one day after the start-up, and the apparatus is adjusted for preparation of the FT synthesis reaction, the same date as when the synthesis gas generation unit 3 is rated. From the 4th day, the FT synthesis reaction can be performed stably.
  • the hydrogenation reaction must be performed after the hydrogen gas generated in the reformer 12 is supplied to the hydrogenation reactors 50, 52, 54 (after the fourth day). It is not possible to start up the catalyst reduction or hydrogenation reaction by starting the vessels 50, 52, 54. For this reason, the product purification unit 7 can stably carry out the hydrogenation and purification reaction, for example, on the 8th day from the start of the synthesis gas generation unit 3, with a long startup time. It was necessary. Therefore, the entire liquid fuel synthesizing system 1 is completely up and the liquid fuel product can be manufactured stably on the 8th day from the start of the syngas generation unit 3 (the rating of the syngas generation unit 3). On the fourth day after the start of operation), there was a problem that production efficiency was very slow.
  • the starting power of the synthesis gas generation unit 3 is also on the fourth day, and on the seventh day, the force that the FT synthesis unit 5 is operating normally
  • the product purification unit 7 is not operating normally Therefore, there is also a problem that a semi-finished product storage tank (not shown) for storing liquid hydrocarbons produced by the FT synthesis reaction (semi-finished product before being hydrogenated and purified) is required. there were.
  • the hydrogen gas separated and recovered from the syngas by the hydrogen separator 26 is used.
  • Hydrogen storage device 80 for storing is provided, and hydrogen stored in this hydrogen storage device 80
  • the gas can be supplied to the desulfurization reactor 10 of the synthesis gas generation unit 3 and the hydrogenation reactors 50, 52, and 54 of the product purification unit 7. That is, apart from the supply system for supplying hydrogen gas directly from the hydrogen separator 26 as described above to the hydrogen utilizing reactors such as the desulfurization reactor 10 and the hydrogenation reactors 50, 52, 54, etc.
  • a part of the hydrogen gas is stored in the hydrogen without being supplied to the hydrogen-utilizing reactors such as the desulfurization reactor 10 and the hydrogenation reactors 50, 52, 54.
  • Store in device 80 the hydrogenation reactors 50, 52, 54 are restarted, for example, when the liquid fuel synthesizing system 1 is restarted thereafter, the hydrogen gas stored in the hydrogen storage device 80 is replaced with the hydrogenation reactor 50. , 52, 54 and desulfurization reactor 10 are supplied immediately.
  • the hydrogenation of the hydrogenation reactors 50, 52, 54 and desulfurization reactor 10 is used.
  • the reactor can be activated quickly.
  • the hydrogen gas stored in the hydrogen storage device 80 is converted into the product purification unit 7.
  • the hydrogenation reactors 50, 52, and 54 can be started to start preparation for catalytic reduction or hydrogenation reaction.
  • the synthesis gas generation unit 3 is started to supply the hydrogen gas stored in the hydrogen storage device 80 to the desulfurization reactor 10, and Start the internal organs 12 and start up, and one day later, start the FT synthesis unit 5 to prepare the equipment and prepare for the FT synthesis reaction.
  • the reformer 12 can be stably operated to stably supply the synthesis gas, and the bubble column reactor 30 can Liquid hydrocarbons can be stably generated by the synthesis reaction.
  • the product purification unit 7 is supplied from the FT synthesis unit 5. Liquid charcoal Production of liquid fuel products can be started by stably performing hydrogenation hydrogenation (reduction / hydrocracking) and purification reactions.
  • the hydrogen gas stored in the hydrogen storage device 80 is converted into hydrogenation reactors 50, 52, 54 and desulfurization reactors 10.
  • the start-up time of the entire system can be shortened and the production of liquid fuel products can be started at an early stage, so that the production efficiency can be improved.
  • FIG. 4 and FIG. 5 are block diagrams respectively showing configuration examples of the hydrogen storage device 80 in the liquid fuel synthesizing system 1 that is useful in the present embodiment. 4 and 5, only the main components of the liquid fuel synthesizing system 1 of FIG. 1 are shown for convenience of explanation, and some of the components are not shown.
  • the hydrogen separator 26 and the hydrogen storage device 80 are connected via a pipe 91, and the hydrogen storage device 80 and the desulfurization reactor 10 and And hydrogenation reactors 50, 52 and 54 are connected through pipes 92 and 93, respectively.
  • the hydrogen storage device 80 in the example of FIG. 4 will be described in detail.
  • the hydrogen storage device 80 is connected to a storage tank 81 composed of a pressure vessel such as a spherical storage tank and a pipe 91 from the hydrogen separation device 26, and is connected to the storage tank 81.
  • a hydrogen compressor 82 connected to the inlet side and the outlet side of the storage tank 81, and connected to the desulfurization reactor 10 and the hydrogenation reactors 50, 52, 54 through the pipes 92, 93, respectively.
  • the controller 84 is an example of a control unit that controls the operation of the hydrogen storage device 80 (for example, the storage operation of hydrogen gas or the supply operation of the stored hydrogen gas to the hydrogen utilization reactor).
  • the controller 84 operates the hydrogen compressor 82 to store the hydrogen gas in the storage tank 81, opens the valve 86 on the inlet side of the storage tank 81, and closes the valve 87 on the outlet side. To control. As a result, a part of the hydrogen gas discharged from the hydrogen separator 26 is supplied to the hydrogen compressor 82 via the pipe 91, and the hydrogen compressor 82 compresses the supplied hydrogen gas to produce a storage tank 81. At a predetermined storage pressure (eg 3 MPaG). Thereafter, when a sufficient amount of hydrogen gas is stored, the controller 84 stops the operation of the hydrogen compressor 82, closes the valve 86 on the inlet side of the storage tank 81, and ends the storage operation.
  • a predetermined storage pressure eg 3 MPaG
  • the controller 84 of the hydrogen storage device 80 is supplied with a supply instruction signal based on an operator input or a controller (not shown) of the liquid fuel synthesizing system 1, for example.
  • the supply instruction signal from is input.
  • the controller 84 operates the hydrogen compressor 83 to supply the hydrogen gas stored in the storage tank 81 as described above, and keeps the valve 86 on the inlet side of the storage tank 81 closed.
  • the outlet valve 87 is controlled to be opened.
  • the hydrogen gas stored in the storage tank 81 is raised to a predetermined pressure (eg, 3.6 MPaG) suitable for the bubble column reactor 30 by the hydrogen compressor 83, and the pressurized hydrogen gas is connected to the pipe 92 , 93 to the desulfurization reactor 10 and the hydrogenation reactors 50, 52, 54.
  • a predetermined pressure eg, 3.6 MPaG
  • the hydrogen gas stored in the storage tank 81 is supplied to the required location when the liquid fuel synthesizing system 1 is started using the hydrogen storage device 80 having a relatively simple device configuration. Can be supplied immediately.
  • the hydrogen storage device 80 in the example of FIG. 5 is configured as a liquefied hydrogen storage device that liquefies and stores hydrogen gas in order to store a larger amount of hydrogen.
  • a hydrogen storage device 80 is connected to a storage tank 101 composed of a pressure vessel such as a spherical storage tank and a pipe 91 from the hydrogen separator 26, and the storage tank 101
  • the liquefier 102 connected to the inlet side of the tank, the vaporizer 103 connected to the outlet side of the storage tank 101, and connected to the vaporizer 103, and removed via the pipes 92, 93.
  • a hydrogen compressor 104 connected to each of the sulfur reactor 10 and the hydrogenation reactors 50, 52, and 54, and a controller 105 that controls each part of the hydrogen storage device 80 are provided.
  • the liquefying device 102 can liquefy hydrogen gas by a thermodynamic cycle such as a Joule-Thomson cycle, an isentropic expansion cycle, or a helium brighton cycle.
  • the vaporizer 103 includes a heat exchanger or the like, and can heat and vaporize the liquefied hydrogen supplied from the storage tank 101 to produce hydrogen gas.
  • the controller 105 is an example of a control unit that controls the operation of the hydrogen storage device 80 (for example, the storage operation of hydrogen gas or the supply operation of the stored hydrogen gas to the hydrogen-utilizing reactor).
  • a part of the hydrogen gas discharged from the hydrogen separator 26 is supplied to the liquefier 102 via the pipe 91, and the liquefier 102 liquefies the supplied hydrogen gas and converts this liquefied hydrogen into Store in the storage tank 101 at a predetermined storage pressure (for example, 0.5 MPaG).
  • a predetermined storage pressure for example, 0.5 MPaG.
  • a supply instruction signal is input to the controller 105 of the hydrogen storage device 80 as in the example of FIG. Then, the controller 105 operates the vaporizer 103 and the hydrogen compressor 104 in order to vaporize and supply the liquefied hydrogen stored in the storage tank 101 as described above to hydrogen gas.
  • the outlet valve 107 is controlled to be opened while the valve 106 is closed.
  • the hydrogen compressor 83 converts this hydrogen gas into a predetermined pressure (for example, the bubble column reactor 30).
  • the pressure is increased to 3.6 MPaG), and the pressurized hydrogen gas is supplied to the desulfurization reactor 10 and the hydrogenation reactors 50, 52, 54 through the pipes 92, 93.
  • a large amount of hydrogen can be stored in the storage tank 101, and liquid fuel can be stored.
  • the hydrogen gas obtained by vaporizing the liquefied hydrogen stored in the storage tank 101 can be supplied immediately and in large quantities to the necessary location.
  • the liquid fuel synthesizing system 1 according to the present embodiment and the starting method of the liquid fuel synthesizing system 1 have been described in detail.
  • the hydrogen storage device 80 by providing the hydrogen storage device 80, during the steady operation of the liquid fuel synthesis system 1, a part of the hydrogen gas in the synthesis gas generated by the reformer 12 is transferred to the hydrogen storage device 80.
  • the hydrogen can be stored to secure a predetermined amount or more, and when the hydrogen gas is needed, the hydrogen gas can be instantaneously supplied from the hydrogen storage device 80. For this reason, when the liquid fuel synthesis system 1 is restarted, the hydrogen gas stored in the hydrogen storage device 80 is immediately supplied to the hydrogen-using reactors such as the hydrogenation reactors 50, 52, 54 and desulfurization reactor 10.
  • natural gas is used as the hydrocarbon raw material supplied to the liquid fuel synthesizing system 1, but it is not limited to a powerful example, and other carbonization such as asphalt and residual oil is used. Use hydrogen raw materials.
  • the liquid hydrocarbon is synthesized by the FT synthesis reaction, but the present invention is not limited to a powerful example.
  • the desulfurization reactor 10 WAX diversion is used as the hydrogen-utilizing reactor.
  • hydrocracking reactor 50 kerosene / light oil fraction hydrotreating reactor 52, and naphtha fraction hydrotreating reactor 54 were given, but the examples are not limited to powerful examples. Any apparatus other than those described above may be used as long as the apparatus performs a predetermined reaction using hydrogen gas.
  • hydrogen-based reactors include, for example, fuel cells, naphthalene hydrogenation reactors (phthalene ⁇ decalin), aromatic hydrocarbon (benzene) hydrogenation reactions (benzene ⁇ cyclohexane, etc.) Or a device for performing a hydrogenation reaction on an unsaturated fatty acid.
  • a bubble column type slurry bed type reactor is used as a reactor for synthesizing synthesis gas into liquid hydrocarbons, but the present invention is not limited to a powerful example.
  • the FT synthesis reaction may be performed using a fixed bed reactor or the like.
  • the present invention includes a reformer for reforming a hydrocarbon raw material to generate a synthesis gas mainly composed of carbon monoxide gas and hydrogen gas, and a carbon monoxide gas and a hydrogen gas contained in the synthesis gas.
  • a method for starting a liquid fuel synthesis system comprising: a reactor that synthesizes liquid hydrocarbons; and a hydrogen-based reaction device that performs a predetermined reaction using hydrogen gas contained in the synthesis gas generated by the reformer.
  • the present invention relates to a method for starting a liquid fuel synthesis system that supplies hydrogen gas stored in the hydrogen storage device to the hydrogen-utilizing reactor. According to the start-up method of the liquid fuel synthesis system of the present invention, it is possible to quickly start the hydrogen-utilizing reactor and improve the production efficiency.

Abstract

Disclosed is a liquid fuel synthesis system which comprises: a reformer (12) for reforming a hydrocarbon raw material to produce a synthetic gas composed mainly of a carbon monoxide gas and a hydrogen gas; a bubble column reactor (30) for synthesizing a liquid hydrocarbon from the carbon monoxide gas and the hydrogen gas contained in the synthetic gas produced in the reformer (12); hydrogen-utilizing reactors (10, 50, 52, 54) for conducting a given reaction by utilizing the hydrogen gas contained in the synthetic gas produced in the reformer (12); a hydrogen-separation unit (26) for separating a part of the hydrogen gas contained in the synthetic gas produced in the reformer (12); and a hydrogen storage unit (80) for storing the hydrogen gas separated by the hydrogen-separation unit (26). Upon starting up the system, the hydrogen gas stored in the hydrogen storage unit (80) is supplied into the hydrogen-utilizing reactors (10, 50, 52, 54).

Description

明 細 書  Specification
液体燃料合成システムの起動方法、及び液体燃料合成システム 技術分野  Technical field of starting liquid fuel synthesis system and liquid fuel synthesis system
[0001] 本発明は、液体燃料合成システムの起動方法、及び液体燃料合成システムに関す る。  The present invention relates to a method for starting a liquid fuel synthesis system and a liquid fuel synthesis system.
本願は、 2006年 3月 30日に出願された日本国特許出願第 2006— 96015号につ いて優先権を主張し、その内容をここに援用する。  This application claims priority on Japanese Patent Application No. 2006-96015 filed on Mar. 30, 2006, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 近年、天然ガスから液体燃料を合成するための方法の 1つとして、天然ガスを改質 して一酸化炭素ガス(CO)と水素ガス (H )を主成分とする合成ガスを生成し、この合  [0002] In recent years, as one of the methods for synthesizing liquid fuel from natural gas, the natural gas is reformed to produce synthesis gas mainly composed of carbon monoxide gas (CO) and hydrogen gas (H). And this
2  2
成ガスを原料ガスとしてフィッシャー 'トロプシュ合成反応(以下、「FT合成反応」とい う。)により液体炭化水素を合成し、さらにこの液体炭化水素を水素化'精製すること で、ナフサ (粗ガソリン)、灯油、軽油、ワックス等の液体燃料製品を製造する GTL (G as To Liquid :液体燃料合成)技術が開発されている。  By synthesizing liquid hydrocarbons using Fischer's Tropsch synthesis reaction (hereinafter referred to as “FT synthesis reaction”) using the synthesized gas as raw material gas, and then hydrolyzing this liquid hydrocarbon to refine it, naphtha (crude gasoline) GTL (Gas To Liquid) technology for producing liquid fuel products such as kerosene, light oil and wax has been developed.
[0003] 従来の GTL技術を用いた液体燃料合成システムでは、合成ガスを製造'精製する ために酸素プラントや炭酸ガス除去設備が必要であり、さらに FT合成反応に適した H /CO比を得るために水素濃度調整装置が必要であった。また、本願発明者らの[0003] The conventional liquid fuel synthesis system using GTL technology requires an oxygen plant and carbon dioxide removal equipment to produce and purify synthesis gas, and obtain a H / CO ratio suitable for the FT synthesis reaction. Therefore, a hydrogen concentration adjusting device was necessary. In addition, the inventors of the present application
2 2
開発した GTL技術を用いた液体燃料合成システムでは、炭酸ガス改質法を利用す ることで、炭酸ガスを含む天然ガスを原料としてそのまま利用して、 FT合成反応に適 した組成 (H /CO比)の合成ガスを一回の反応で得ることができるため、水素濃度  In the liquid fuel synthesis system using the developed GTL technology, the composition suitable for the FT synthesis reaction (H / CO) is obtained by using the natural gas containing carbon dioxide as a raw material by using the carbon dioxide reforming method. Ratio) synthesis gas can be obtained in a single reaction, so the hydrogen concentration
2  2
調整装置を不要とすることができる。  An adjustment device can be dispensed with.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、上記従来の GTL技術を用いた液体燃料合成システムは、天然ガスを改 質して一酸化炭素ガスと水素ガスが生成する改質器と、この改質器が生成した水素 ガスを必要とする各種の水素利用反応装置 (例えば、天然ガスを脱硫するための脱 硫反応器や、合成された液体炭化水素を水素化するための水素化反応器など)を備 えている。し力 ながら、従来の液体燃料合成システムでは、改質器が起動して一酸 化炭素ガスと水素ガスが生成されるまでは、上記水素利用反応装置を起動させること ができず、上記水素利用反応装置の起動が遅い。このため、システム全体が立ち上 力 Sつて液体炭化水素製品を生産開始するまでに時間がかかり、生産効率が低下する 原因となっている。 [0004] By the way, the above-described conventional liquid fuel synthesis system using GTL technology includes a reformer that reforms natural gas to produce carbon monoxide gas and hydrogen gas, and a hydrogen gas that is produced by the reformer. Equipped with various hydrogen-utilizing reactors (for example, desulfurization reactors for desulfurizing natural gas and hydrogenation reactors for hydrogenating synthesized liquid hydrocarbons) It is. However, in the conventional liquid fuel synthesis system, the hydrogen utilization reactor cannot be activated until the carbon monoxide gas and hydrogen gas are generated after the reformer is activated. The reactor starts slowly. For this reason, it takes time for the entire system to start up and start production of liquid hydrocarbon products, which is a cause of reduced production efficiency.
[0005] 本発明は、上記問題に鑑みてなされたものであり、水素利用反応装置を迅速に起 動させて、生産効率を向上させることが可能な液体燃料合成システムの起動方法、 及び液体燃料合成システムを提供することを目的とする。  [0005] The present invention has been made in view of the above problems, and a method for starting a liquid fuel synthesis system capable of quickly starting a hydrogen-using reaction apparatus to improve production efficiency, and liquid fuel The object is to provide a synthesis system.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の液体燃料合成システムの起動方法は、炭化水素原料を改質して一酸化 炭素ガス及び水素ガスを主成分とする合成ガスを生成する改質器と、前記合成ガス に含まれる一酸化炭素ガス及び水素ガスから液体炭化水素を合成する反応器と、前 記改質器で生成された合成ガスに含まれる水素ガスを利用して所定反応を行う水素 利用反応装置とを備える液体燃料合成システムの起動方法であって:前記液体燃料 合成システムの定常運転時に、前記改質器で生成された合成ガスに含まれる水素ガ スの一部を分離して貯蔵しておき、前記液体燃料合成システムの起動時に、前記水 素貯蔵装置に貯蔵された水素ガスを前記水素利用反応装置に供給する。  [0006] A method for starting a liquid fuel synthesizing system of the present invention includes a reformer that reforms a hydrocarbon raw material to generate synthesis gas mainly composed of carbon monoxide gas and hydrogen gas, and the synthesis gas. A reactor for synthesizing liquid hydrocarbons from carbon monoxide gas and hydrogen gas, and a hydrogen-based reaction device for performing a predetermined reaction using the hydrogen gas contained in the synthesis gas generated by the reformer. A method for starting a liquid fuel synthesis system, comprising: separating and storing a part of hydrogen gas contained in synthesis gas generated by the reformer during steady operation of the liquid fuel synthesis system; When the liquid fuel synthesizing system is started, hydrogen gas stored in the hydrogen storage device is supplied to the hydrogen-utilizing reactor.
[0007] 本発明の液体燃料合成システムの起動方法によれば、液体燃料合成システムの定 常運転時に予め貯蔵しておいた水素ガスを、水素利用反応装置の起動時に水素利 用反応装置に供給するので、当該水素利用反応装置において水素を利用した所定 反応を即座に開始することができる。これにより、改質器力 水素ガスが供給される前 に、水素利用反応装置を迅速に起動させることができるので、液体燃料合成システム の生産効率を向上できる。  [0007] According to the method for starting a liquid fuel synthesis system of the present invention, hydrogen gas stored in advance during normal operation of the liquid fuel synthesis system is supplied to the hydrogen-utilizing reactor when the hydrogen-using reactor is started. Therefore, the predetermined reaction using hydrogen can be started immediately in the hydrogen-using reaction apparatus. As a result, the hydrogen-utilizing reactor can be quickly started before the reformer-powered hydrogen gas is supplied, so that the production efficiency of the liquid fuel synthesis system can be improved.
[0008] 本発明の液体燃料合成システムの起動方法において、前記水素利用反応装置は 、前記反応器で合成された液体炭化水素を水素化する水素化反応器、または、前記 改質器に供給される炭化水素原料を水添脱硫する脱硫反応器のうちの少なくともい ずれか 1つを含んでいてもよい。  [0008] In the method for starting a liquid fuel synthesizing system of the present invention, the hydrogen-utilizing reaction apparatus is supplied to a hydrogenation reactor for hydrogenating liquid hydrocarbons synthesized in the reactor, or to the reformer. It may contain at least one of desulfurization reactors for hydrodesulfurizing the hydrocarbon feedstock.
[0009] 本発明の液体燃料合成システムの起動方法にぉレ、て、上記水素ガスは、圧力変動 吸着法、水素吸蔵合金吸着法または膜分離法のうちの少なくともいずれかの方法に よって分離されてもよレ、。 [0009] According to the start-up method of the liquid fuel synthesizing system of the present invention, the hydrogen gas has pressure fluctuation It may be separated by at least one of an adsorption method, a hydrogen storage alloy adsorption method or a membrane separation method.
[0010] 本発明の液体燃料合成システムの起動方法において、上記反応器は、気泡塔型 スラリー床式反応器であってもよい。  [0010] In the start-up method of the liquid fuel synthesis system of the present invention, the reactor may be a bubble column type slurry bed reactor.
[0011] 本発明の液体燃料合成システムは、炭化水素原料を改質して一酸化炭素ガス及 び水素ガスを主成分とする合成ガスを生成する改質器と;前記合成ガスに含まれる 一酸化炭素ガス及び水素ガスから液体炭化水素を合成する反応器と;前記改質器 で生成された合成ガスに含まれる水素ガスを利用して所定反応を行う水素利用反応 装置と;前記改質器で生成された合成ガスに含まれる水素ガスの一部を分離する水 素分離装置と;前記水素分離装置により分離された水素ガスを貯蔵する水素貯蔵装 置と;前記液体燃料合成システムの起動時に、前記水素貯蔵装置に貯蔵された水素 ガスを前記水素利用反応装置に供給する制御手段と;を備える。  [0011] A liquid fuel synthesizing system of the present invention includes a reformer that reforms a hydrocarbon raw material to generate a synthesis gas mainly composed of carbon monoxide gas and hydrogen gas; and included in the synthesis gas. A reactor that synthesizes liquid hydrocarbons from carbon oxide gas and hydrogen gas; a hydrogen-based reaction device that performs a predetermined reaction using hydrogen gas contained in the synthesis gas generated by the reformer; and the reformer A hydrogen separator for separating a part of the hydrogen gas contained in the synthesis gas produced in step (b); a hydrogen storage device for storing the hydrogen gas separated by the hydrogen separator; and when the liquid fuel synthesis system is started up And control means for supplying the hydrogen gas stored in the hydrogen storage device to the hydrogen-utilizing reaction device.
[0012] 本発明の液体燃料合成システムにおいて、上記水素利用反応装置は、反応器で 合成された液体炭化水素を水素化する水素化反応器、または、改質器に供給される 炭化水素原料を水添脱硫する脱硫反応器のうちの少なくともいずれか 1つを含んで いてもよい。  [0012] In the liquid fuel synthesizing system of the present invention, the hydrogen-utilizing reactor includes a hydrogenation reactor for hydrogenating the liquid hydrocarbon synthesized in the reactor, or a hydrocarbon raw material supplied to the reformer. It may contain at least one of desulfurization reactors for hydrodesulfurization.
[0013] 本発明の液体燃料合成システムにおいて、上記水素分離装置は、圧力変動吸着 法、水素吸蔵合金吸着法または膜分離法のうちの少なくともいずれかの方法によつ て水素ガスを分離してもよレ、。  In the liquid fuel synthesizing system of the present invention, the hydrogen separation device separates hydrogen gas by at least one of a pressure fluctuation adsorption method, a hydrogen storage alloy adsorption method, and a membrane separation method. Moyore.
[0014] 本発明の液体燃料合成システムにおいて、上記反応器は、気泡塔型スラリー床式 反応器であってもよい。  [0014] In the liquid fuel synthesis system of the present invention, the reactor may be a bubble column type slurry bed reactor.
発明の効果  The invention's effect
[0015] 本発明によれば、液体燃料合成システムに設けられた水素利用反応装置を迅速に 起動させることができ、液体燃料の生産効率を向上させることができる。  [0015] According to the present invention, the hydrogen utilization reactor provided in the liquid fuel synthesizing system can be started quickly, and the production efficiency of the liquid fuel can be improved.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]図 1は、本発明の実施形態にかかる液体燃料合成システムの全体構成を示す 概略図である。  FIG. 1 is a schematic diagram showing an overall configuration of a liquid fuel synthesis system according to an embodiment of the present invention.
[図 2]図 2は、液体燃料合成システムの従来の起動方法を示すタイミングチャートであ る。 [FIG. 2] FIG. 2 is a timing chart showing a conventional starting method of the liquid fuel synthesis system. The
[図 3]図 3は、同実施形態に力かる液体燃料合成システムの起動方法を示すタイミン グチャートである。  FIG. 3 is a timing chart showing a start-up method of the liquid fuel synthesizing system that is relevant to the embodiment.
[図 4]図 4は、同実施形態に力、かる液体燃料合成システムにおける水素貯蔵装置の 構成例を示すブロック図である。  FIG. 4 is a block diagram showing a configuration example of a hydrogen storage device in the liquid fuel synthesizing system according to the embodiment.
[図 5]図 5は、同実施形態に力、かる液体燃料合成システムにおける水素貯蔵装置の 別の構成例を示すブロック図である。  FIG. 5 is a block diagram showing another configuration example of the hydrogen storage device in the liquid fuel synthesizing system according to the embodiment.
符号の説明  Explanation of symbols
[0017] 1…液体燃料合成システム、 3…合成ガス生成ユニット、 5— FT合成ユニット、 7· · · 製品精製ユニット、 10…脱硫反応器、 12…改質器、 14…排熱ボイラー、 16, 18· · · 気液分離器、 20…脱炭酸装置、 22…吸収塔、 24…再生塔、 26…水素分離装置、 3 0…気泡塔型反応器、 32…伝熱管、 34, 38…気液分離器、 36…分離器、 40…第 1 精留塔、 50· · · WAX分水素化分解反応器、 52…灯油 ·軽油留分水素化精製反応器 、 54…ナフサ留分水素化精製反応器、 56, 58, 60…気液分離器、 70…第 2精留塔 、 72…ナフサ'スタビライザー、 80…水素貯蔵装置、 81 , 101…貯蔵タンク、 82, 83 , 104…水素圧縮機、 84, 105…コントローラ、 86, 87, 106, 107…弁、 91 , 92, 9 3, 94, 95…配管、 102…液化装置、 103…気化装置  [0017] 1 ... Liquid fuel synthesis system, 3 ... Syngas generation unit, 5— FT synthesis unit, 7 ... Product purification unit, 10 ... Desulfurization reactor, 12 ... Reformer, 14 ... Waste heat boiler, 16 , 18 ··· Gas-liquid separator, 20… Decarbonation device, 22… Absorption tower, 24… Regeneration tower, 26… Hydrogen separation device, 30… Bubble tower reactor, 32… Heat transfer tube, 34, 38… Gas-liquid separator, 36 ... separator, 40 ... first rectification column, 50 ... WAX fraction hydrocracking reactor, 52 ... kerosene, gas oil fraction hydrotreating reactor, 54 ... naphtha fraction hydrogenation Purification reactor, 56, 58, 60 ... Gas-liquid separator, 70 ... Second rectification column, 72 ... Naphtha's stabilizer, 80 ... Hydrogen storage device, 81, 101 ... Storage tank, 82, 83, 104 ... Hydrogen compression 84, 105 ... Controller, 86, 87, 106, 107 ... Valve, 91, 92, 9 3, 94, 95 ... Piping, 102 ... Liquefaction device, 103 ... Vaporization device
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説 明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構 成要素については、同一の符号を付することにより重複説明を省略する。  [0018] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
[0019] まず、図 1を参照して、本発明の実施形態に力かる GTL (Gas To Liquid)プロセスを 実行する液体燃料合成システム 1の全体構成及び動作について説明する。図 1は、 本実施形態に力かる液体燃料合成システム 1の全体構成を示す概略図である。  First, an overall configuration and operation of a liquid fuel synthesizing system 1 that executes a GTL (Gas To Liquid) process that is relevant to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing an overall configuration of a liquid fuel synthesizing system 1 that is useful in the present embodiment.
[0020] 図 1に示すように、本実施形態に力かる液体燃料合成システム 1は、天然ガス等の 炭化水素原料を液体燃料に転換する GTLプロセスを実行するプラント設備である。 この液体燃料合成システム 1は、合成ガス生成ユニット 3と、 FT合成ユニット 5と、製品 精製ユニット 7とから構成される。合成ガス生成ユニット 3は、炭化水素原料である天 然ガスを改質して一酸化炭素ガスと水素ガスを含む合成ガスを生成する。 FT合成ュ ニット 5は、生成された合成ガスからフィッシャー 'トロプシュ合成反応(以下、「FT合 成反応」という。 )により液体炭化水素を生成する。製品精製ユニット 7は、 FT合成反 応により生成された液体炭化水素を水素化'精製して液体燃料製品(ナフサ、灯油、 軽油、ワックス等)を製造する。以下、これら各ユニットの構成要素について説明する As shown in FIG. 1, a liquid fuel synthesizing system 1 useful for the present embodiment is a plant facility that executes a GTL process for converting a hydrocarbon feedstock such as natural gas into liquid fuel. The liquid fuel synthesizing system 1 includes a syngas generating unit 3, an FT synthesizing unit 5, and a product refining unit 7. The synthesis gas generation unit 3 is a However, the gas is reformed to produce a synthesis gas containing carbon monoxide gas and hydrogen gas. The FT synthesis unit 5 generates liquid hydrocarbons from the generated synthesis gas by a Fischer Tropsch synthesis reaction (hereinafter referred to as “FT synthesis reaction”). The product refining unit 7 produces liquid fuel products (naphtha, kerosene, light oil, wax, etc.) by hydrogenating and purifying the liquid hydrocarbons produced by the FT synthesis reaction. The components of each unit will be described below.
[0021] まず、合成ガス生成ユニット 3について説明する。合成ガス生成ユニット 3は、例え ば、脱硫反応器 10と、改質器 12と、排熱ボイラー 14と、気液分離器 16および 18と、 脱炭酸装置 20と、水素分離装置 26とを主に備える。脱硫反応器 10は、水添脱硫装 置等で構成されて原料である天然ガス力 硫黄成分を除去する。改質器ェ 2は、脱硫 反応器 10から供給された天然ガスを改質して、一酸化炭素ガス(CO)と水素ガス (H )とを主成分として含む合成ガスを生成する。排熱ボイラー 14は、改質器 12にて生First, the synthesis gas generation unit 3 will be described. The synthesis gas generation unit 3 mainly includes, for example, a desulfurization reactor 10, a reformer 12, an exhaust heat boiler 14, gas-liquid separators 16 and 18, a decarboxylation device 20, and a hydrogen separation device 26. Prepare for. The desulfurization reactor 10 is composed of a hydrodesulfurization device or the like, and removes natural gas power sulfur component as a raw material. The reformer 2 reforms the natural gas supplied from the desulfurization reactor 10 to generate a synthesis gas containing carbon monoxide gas (CO) and hydrogen gas (H 2) as main components. The exhaust heat boiler 14 is produced in the reformer 12.
2 2
成した合成ガスの排熱を回収して高圧スチームを発生する。気液分離器 16は、排熱 ボイラー 14において合成ガスとの熱交換により加熱された水を気体(高圧スチーム) と液体とに分離する。気液分離器 18は、排熱ボイラー 14にて冷却された合成ガスか ら凝縮分を除去し気体分を脱炭酸装置 20に供給する。脱炭酸装置 20は、気液分離 器 18から供給された合成ガスから吸収液を用いて炭酸ガスを除去する吸収塔 22と、 当該炭酸ガスを含む吸収液から炭酸ガスを放散させて再生する再生塔 24とを有する 。水素分離装置 26は、脱炭酸装置 20により炭酸ガスが分離された合成ガスから、当 該合成ガスに含まれる水素ガスの一部を分離する。ただし、上記脱炭酸装置 20は場 合によっては設ける必要がないこともある。  High pressure steam is generated by recovering the exhaust heat of the synthesized gas. The gas-liquid separator 16 separates the water heated by the heat exchange with the synthesis gas in the exhaust heat boiler 14 into a gas (high-pressure steam) and a liquid. The gas-liquid separator 18 removes the condensate from the synthesis gas cooled by the exhaust heat boiler 14 and supplies the gas to the decarbonator 20. The decarboxylation device 20 includes an absorption tower 22 that removes carbon dioxide gas from the synthesis gas supplied from the gas-liquid separator 18 by using the absorption liquid, and a regeneration that diffuses the carbon dioxide gas from the absorption liquid containing the carbon dioxide gas to regenerate. With tower 24. The hydrogen separation device 26 separates a part of the hydrogen gas contained in the synthesis gas from the synthesis gas from which the carbon dioxide gas has been separated by the decarbonation device 20. However, the decarboxylation device 20 may not be required depending on circumstances.
[0022] このうち、改質器 12は、例えば、下記の化学反応式(1)、 (2)で表される水蒸気'炭 酸ガス改質法により、二酸化炭素と水蒸気とを用いて天然ガスを改質して、一酸化炭 素ガスと水素ガスとを主成分とする高温の合成ガスを生成する。なお、この改質器 12 における改質法は、上記水蒸気'炭酸ガス改質法の例に限定されず、例えば、水蒸 気改質法、酸素を用いた部分酸化改質法 (P〇X)、部分酸化改質法と水蒸気改質 法の組合せである自己熱改質法 (ATR)、炭酸ガス改質法などを利用することもでき る。 [0023] CH +H〇→CO + 3H · · · (1) [0022] Among these, the reformer 12 is a natural gas that uses carbon dioxide and steam by, for example, a steam 'carbonate gas reforming method represented by the following chemical reaction formulas (1) and (2). Is reformed to produce a high-temperature synthesis gas mainly composed of carbon monoxide gas and hydrogen gas. Note that the reforming method in the reformer 12 is not limited to the above steam / carbon dioxide reforming method. For example, the water steam reforming method, the partial oxidation reforming method using oxygen (PX ), Autothermal reforming method (ATR), carbon dioxide gas reforming method, etc., which is a combination of partial oxidation reforming method and steam reforming method. [0023] CH + H ○ → CO + 3H · · · · (1)
4 2 2  4 2 2
CH +CO→2CO + 2H · · · (2)  CH + CO → 2CO + 2H (2)
4 2 2  4 2 2
[0024] また、水素分離装置 26は、脱炭酸装置 20又は気液分離器 18と気泡塔型反応器 3 0とを接続する主配管から分岐した分岐ラインに設けられる。この水素分離装置 26は 、例えば、圧力差を利用して水素の吸着と脱着を行う水素 PSA (Pressure Swing Ads orption :圧力変動吸着)装置などで構成できる。この水素 PSA装置は、並列配置さ れた複数の吸着塔(図示せず。)内に吸着剤 (ゼオライト系吸着剤、活性炭、アルミナ 、シリカゲル等)を有しており、各吸着塔で水素の加圧、吸着、脱着 (減圧)、パージ の各工程を順番に繰り返すことで、合成ガスから分離した純度の高い水素ガス(例え ば 99. 999%程度)を、連続して反応器へ供給することができる。  [0024] The hydrogen separator 26 is provided in a branch line branched from a main pipe connecting the decarboxylation device 20 or the gas-liquid separator 18 and the bubble column reactor 30. The hydrogen separator 26 can be constituted by, for example, a hydrogen PSA (Pressure Swing Ads orption) device that performs adsorption and desorption of hydrogen using a pressure difference. This hydrogen PSA apparatus has an adsorbent (zeolite adsorbent, activated carbon, alumina, silica gel, etc.) in a plurality of adsorption towers (not shown) arranged in parallel. By repeating the steps of pressurization, adsorption, desorption (decompression), and purge in order, high-purity hydrogen gas (for example, about 99.999%) separated from synthesis gas is continuously supplied to the reactor. be able to.
[0025] なお、水素分離装置 26における水素ガス分離方法としては、上記水素 PSA装置 のような圧力変動吸着法の例に限定されず、例えば、水素吸蔵合金吸着法、膜分離 法、或いはこれらの組合せなどであってもよい。  [0025] The hydrogen gas separation method in the hydrogen separator 26 is not limited to the pressure fluctuation adsorption method such as the hydrogen PSA device described above. For example, the hydrogen storage alloy adsorption method, the membrane separation method, or these Combinations may be used.
[0026] 水素吸蔵合金法は、例えば、冷却/加熱されることで水素を吸着/放出する性質 を有する水素吸蔵合金 (TiFe、 LaNi、 TiFe 、 Mn 、又は TiMn など  [0026] The hydrogen storage alloy method is, for example, a hydrogen storage alloy having the property of adsorbing / releasing hydrogen by being cooled / heated (TiFe, LaNi, TiFe, Mn, TiMn, etc.)
5 0. 7~0. 9 0. 3~0. 1 1. 5 5 0. 7 ~ 0. 9 0. 3 ~ 0. 1 1. 5
)を用いて、水素ガスを分離する手法である。水素吸蔵合金が収容された複数の吸 着塔を設け、各吸着塔において、水素吸蔵合金の冷却による水素の吸着と、水素吸 蔵合金の加熱による水素の放出とを交互に繰り返すことで、合成ガス内の水素ガスを 分離 ·回収することができる。 ) To separate hydrogen gas. A plurality of adsorption towers containing hydrogen storage alloys are provided, and in each adsorption tower, hydrogen adsorption by cooling the hydrogen storage alloy and hydrogen release by heating the hydrogen storage alloy are alternately repeated to synthesize Hydrogen gas in the gas can be separated and recovered.
[0027] また、膜分離法は、芳香族ポリイミド等の高分子素材の膜を用いて、混合ガス中か ら膜透過性に優れた水素ガスを分離する手法である。この膜分離法は、相変化を伴 わないため、運転に必要なエネルギーが小さくて済み、ランニングコストが安レ、。また 、膜分離装置の構造が単純でコンパ外なため、設備コストが低く設備の所要面積も 小さくて済む。さらに、分離膜には駆動装置がなぐ安定運転範囲が広いため、保守 管理が容易であるという利点がある。  [0027] The membrane separation method is a method of separating hydrogen gas having excellent membrane permeability from a mixed gas using a membrane made of a polymer material such as aromatic polyimide. This membrane separation method does not involve a phase change, so the energy required for operation is small and the running cost is low. In addition, since the structure of the membrane separation apparatus is simple and out of comparator, the equipment cost is low and the required area of the equipment is small. Furthermore, the separation membrane has the advantage of easy maintenance because it has a wide stable operating range.
[0028] 次に、 FT合成ユニット 5について説明する。 FT合成ユニット 5は、例えば、気泡塔 型反応器 30と、気液分離器 34と、分離器 36と、気液分離器 38と、第 1精留塔 40とを 主に備える。気泡塔型反応器 30は、上記合成ガス生成ユニット 3で生成された合成 ガス、即ち、一酸化炭素ガスと水素ガスとを FT合成反応させて液体炭化水素を生成 する。気液分離器 34は、気泡塔型反応器 30内に配設された伝熱管 32内を流通して 加熱された水を、水蒸気(中圧スチーム)と液体とに分離する。分離器 36は、気泡塔 型反応器 30の中央部に接続され、触媒と液体炭化水素生成物を分離処理する。気 液分離器 38は、気泡塔型反応器 30の上部に接続され、未反応合成ガス及び気体 炭化水素生成物を冷却処理する。第 1精留塔 40は、気泡塔型反応器 30から分離器 36、気液分離器 38を介して供給された液体炭化水素を蒸留し、沸点に応じて各製 品留分に分離'精製する。 [0028] Next, the FT synthesis unit 5 will be described. The FT synthesis unit 5 mainly includes, for example, a bubble column reactor 30, a gas-liquid separator 34, a separator 36, a gas-liquid separator 38, and a first rectifying column 40. The bubble column reactor 30 is composed of the synthesis gas generated by the synthesis gas generation unit 3. Gas, that is, carbon monoxide gas and hydrogen gas are subjected to FT synthesis reaction to produce liquid hydrocarbons. The gas-liquid separator 34 separates the water heated through the heat transfer tubes 32 disposed in the bubble column reactor 30 into water vapor (medium pressure steam) and liquid. The separator 36 is connected to the center of the bubble column reactor 30 and separates the catalyst and the liquid hydrocarbon product. The gas-liquid separator 38 is connected to the upper part of the bubble column reactor 30 and cools the unreacted synthesis gas and the gaseous hydrocarbon product. The first rectification column 40 distills liquid hydrocarbons supplied from the bubble column reactor 30 via the separator 36 and the gas-liquid separator 38, and separates and purifies each product fraction according to the boiling point. To do.
[0029] このうち、気泡塔型反応器 30は、合成ガスを液体炭化水素に合成する反応器の一 例であり、 FT合成反応により合成ガスから液体炭化水素を合成する FT合成用反応 器として機能する。この気泡塔型反応器 30は、例えば、塔型の容器内部に触媒と媒 体油とからなるスラリーが貯留された気泡塔型スラリー床式反応器で構成される。この 気泡塔型反応器 30は、 FT合成反応により合成ガスから液体炭化水素を生成する。 詳細には、この気泡塔型反応器 30では、原料ガスである合成ガスは、気泡塔型反応 器 30の底部の分散板から気泡となって供給され、触媒と媒体油からなるスラリー内を 通過し、懸濁状態の中で下記化学反応式(3)に示すように水素ガスと一酸化炭素ガ スとが合成反応を起こす。  [0029] Among these, the bubble column reactor 30 is an example of a reactor that synthesizes synthesis gas into liquid hydrocarbons, and is an FT synthesis reactor that synthesizes liquid hydrocarbons from synthesis gas by FT synthesis reaction. Function. The bubble column reactor 30 is constituted by, for example, a bubble column type slurry bed type reactor in which a slurry made of a catalyst and a medium oil is stored inside a column type container. The bubble column reactor 30 generates liquid hydrocarbons from synthesis gas by FT synthesis reaction. Specifically, in this bubble column reactor 30, the synthesis gas, which is a raw material gas, is supplied as bubbles from the dispersion plate at the bottom of the bubble column reactor 30, and passes through the slurry composed of the catalyst and the medium oil. In the suspended state, hydrogen gas and carbon monoxide gas undergo a synthesis reaction as shown in chemical reaction formula (3) below.
[0030] 2nH +nC〇→ (一 CH —) +nH O · · · (3)  [0030] 2nH + nC ○ → (One CH —) + nH O · · · · (3)
2 2 n 2  2 2 n 2
[0031] この FT合成反応は発熱反応であるため、気泡塔型反応器 30は内部に伝熱管 32 が配設された熱交換器型になっており、冷媒として例えば水(BFW: Boiler Feed Wat er)を供給し、上記 FT合成反応の反応熱を、スラリーと水との熱交換により中圧スチ ームとして回収できるようになってレ、る。  [0031] Since this FT synthesis reaction is an exothermic reaction, the bubble column reactor 30 is of a heat exchanger type in which a heat transfer tube 32 is provided, and water (BFW: Boiler Feed Watt) is used as a refrigerant. er) and the reaction heat of the FT synthesis reaction can be recovered as an intermediate pressure steam by heat exchange between the slurry and water.
[0032] 最後に、製品精製ユニット 7について説明する。製品精製ユニット 7は、例えば、 W AX分水素化分解反応器 50と、灯油 ·軽油留分水素化精製反応器 52と、ナフサ留 分水素化精製反応器 54と、気液分離器 56, 58, 60と、第 2精留塔 70と、ナフサ'ス タビラィザー 72とを備える。 WAX分水素化分解反応器 50は、第 1精留塔 40の下部 に接続されている。灯油'軽油留分水素化精製反応器 52は、第 1精留塔 40の中央 部に接続されている。ナフサ留分水素化精製反応器 54は、第 1精留塔 40の上部に 接続されている。気液分離器 56, 58, 60は、これら水素化反応器 50, 52, 54のそ れぞれに対応して設けられている。第 2精留塔 70は、気液分離器 56, 58から供給さ れた液体炭化水素を沸点に応じて分離'精製する。ナフサ'スタビライザー 72は、気 液分離器 60及び第 2精留塔 70から供給されたナフサ留分の液体炭化水素を精留し て、ブタンより軽い成分はフレアガス (排ガス)側へ排出し、炭素数が C以上の成分 [0032] Finally, the product purification unit 7 will be described. Product purification unit 7 includes, for example, W AX fraction hydrocracking reactor 50, kerosene / light oil fraction hydrotreating reactor 52, naphtha fraction hydrotreating reactor 54, and gas-liquid separators 56, 58. , 60, a second rectifying tower 70, and a naphtha 'stabilizer 72. The WAX fraction hydrocracking reactor 50 is connected to the lower part of the first rectification column 40. A kerosene / light oil fraction hydrotreating reactor 52 is connected to the center of the first rectifying column 40. The naphtha fraction hydrotreating reactor 54 is located above the first rectification column 40. It is connected. The gas-liquid separators 56, 58 and 60 are provided corresponding to the hydrogenation reactors 50, 52 and 54, respectively. The second rectifying column 70 separates and purifies the liquid hydrocarbons supplied from the gas-liquid separators 56 and 58 according to the boiling point. The naphtha stabilizer 72 rectifies the liquid hydrocarbons of the naphtha fraction supplied from the gas-liquid separator 60 and the second rectifying column 70, and discharges lighter components than butane to the flare gas (exhaust gas) side, Ingredients whose number is C or more
5  Five
は製品のナフサとして分離 ·回収する。  Is separated and collected as naphtha of the product.
[0033] 次に、以上のような構成の液体燃料合成システム 1により、天然ガスから液体燃料を 合成する工程 (GTLプロセス)につレ、て説明する。 [0033] Next, the process of synthesizing liquid fuel from natural gas (GTL process) by the liquid fuel synthesizing system 1 configured as described above will be described.
[0034] 液体燃料合成システム 1には、天然ガス田又は天然ガスプラントなどの外部の天然 ガス供給源(図示せず。)から、炭化水素原料としての天然ガス(主成分が CH )が供 [0034] The liquid fuel synthesizing system 1 is supplied with natural gas (the main component is CH 2) as a hydrocarbon feedstock from an external natural gas supply source (not shown) such as a natural gas field or a natural gas plant.
4 給される。上記合成ガス生成ユニット 3は、この天然ガスを改質して合成ガス(一酸化 炭素ガスと水素ガスを主成分とする混合ガス)を製造する。  4 is paid. The synthesis gas generation unit 3 reforms the natural gas to produce synthesis gas (a mixed gas mainly composed of carbon monoxide gas and hydrogen gas).
[0035] 具体的には、まず、上記天然ガスは、水素分離装置 26によって分離された水素ガ スとともに脱硫反応器 10に供給される。脱硫反応器 10は、当該水素ガスを用いて天 然ガスに含まれる硫黄分を例えば Zn〇触媒で水添脱硫する。このようにして天然ガ スを予め脱硫しておくことにより、改質器 12及び気泡塔型反応器 30等で用いられる 触媒の活性が硫黄により低下することを防止できる。 [0035] Specifically, first, the natural gas is supplied to the desulfurization reactor 10 together with the hydrogen gas separated by the hydrogen separator 26. The desulfurization reactor 10 hydrodesulfurizes the sulfur content contained in the natural gas using, for example, a ZnO catalyst using the hydrogen gas. By desulfurizing natural gas in advance in this way, it is possible to prevent the activity of the catalyst used in the reformer 12 and the bubble column reactor 30 from being reduced by sulfur.
[0036] このようにして脱硫された天然ガス(二酸化炭素を含んでもょレ、。 )は、二酸化炭素 供給源(図示せず。)から供給される二酸化炭素 (CO )ガスと、排熱ボイラー 14で発 [0036] Natural gas desulfurized in this way (including carbon dioxide,...) Is a carbon dioxide (CO 2) gas supplied from a carbon dioxide supply source (not shown) and an exhaust heat boiler. Depart at 14
2  2
生した水蒸気とが混合された後で、改質器 12に供給される。改質器 12は、例えば、 上述した水蒸気'炭酸ガス改質法により、二酸化炭素と水蒸気とを用いて天然ガスを 改質して、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスを生成する。 このとき、改質器 12には、例えば、改質器 12が備えるバーナー用の燃料ガスと空気 が供給されており、当該バーナーにおける燃料ガスの燃焼熱により、吸熱反応である 上記水蒸気 ·炭酸ガス改質反応に必要な反応熱がま力なわれている。  After the raw steam is mixed, it is supplied to the reformer 12. For example, the reformer 12 reforms natural gas using carbon dioxide and water vapor by the steam 'carbon dioxide gas reforming method described above, and generates high-temperature components mainly composed of carbon monoxide gas and hydrogen gas. Generate synthesis gas. At this time, for example, the reformer 12 is supplied with fuel gas and air for the burner provided in the reformer 12, and the steam / carbon dioxide gas is an endothermic reaction by the combustion heat of the fuel gas in the burner. The heat of reaction necessary for the reforming reaction has been provided.
[0037] このようにして改質器 12で生成された高温の合成ガス(例えば、 900°C、 2. OMPa G)は、排熱ボイラー 14に供給され、排熱ボイラー 14内を流通する水との熱交換によ り冷却(例えば 400°C)されて、排熱回収される。このとき、排熱ボイラー 14において 合成ガスにより加熱された水は気液分離器 16に供給され、この気液分離器 16から 気体分が高圧スチーム(例えば 3. 4-10. OMPaG)として改質器 12または他の外 部装置に供給され、液体分の水が排熱ボイラー 14に戻される。 [0037] The high-temperature synthesis gas (for example, 900 ° C, 2. OMPa G) generated in the reformer 12 in this way is supplied to the exhaust heat boiler 14 and is circulated in the exhaust heat boiler 14. It is cooled (for example, 400 ° C) by heat exchange with the heat and recovered. At this time, in the exhaust heat boiler 14 Water heated by the synthesis gas is supplied to the gas-liquid separator 16, and the gas component from the gas-liquid separator 16 is converted into high-pressure steam (eg, 3.4-10. OMPaG) to the reformer 12 or other external device. The liquid water is returned to the exhaust heat boiler 14.
[0038] 一方、排熱ボイラー 14において冷却された合成ガスは、凝縮液分が気液分離器 1 8において分離 ·除去された後、脱炭酸装置 20の吸収塔 22、又は気泡塔型反応器 3 0に供給される。吸収塔 22は、貯留している吸収液内に、合成ガスに含まれる炭酸ガ スを吸収することで、当該合成ガスから炭酸ガスを除去する。この吸収塔 22内の炭酸 ガスを含む吸収液は、再生塔 24に導入され、当該炭酸ガスを含む吸収液は例えば スチームで加熱されてストリッピング処理され、放散された炭酸ガスは、再生塔 24から 改質器 12に送られて、上記改質反応に再利用される。  [0038] On the other hand, the synthesis gas cooled in the exhaust heat boiler 14 is separated and removed in the gas-liquid separator 18 by the condensate, and then the absorption tower 22 of the decarboxylation device 20 or the bubble column reactor. Supplied to 30. The absorption tower 22 removes carbon dioxide from the synthesis gas by absorbing the carbon dioxide contained in the synthesis gas in the stored absorption liquid. The absorption liquid containing carbon dioxide gas in the absorption tower 22 is introduced into the regeneration tower 24, and the absorption liquid containing carbon dioxide gas is stripped by heating with, for example, steam. To the reformer 12 for reuse in the reforming reaction.
[0039] このようにして、合成ガス生成ユニット 3で生成された合成ガスは、上記 FT合成ュニ ット 5の気泡塔型反応器 30に供給される。このとき、気泡塔型反応器 30に供給される 合成ガスの組成比は、 FT合成反応に適した組成比(例えば、 H : CO = 2: 1 (モル比  In this way, the synthesis gas produced by the synthesis gas production unit 3 is supplied to the bubble column reactor 30 of the FT synthesis unit 5. At this time, the composition ratio of the synthesis gas supplied to the bubble column reactor 30 is the composition ratio suitable for the FT synthesis reaction (for example, H: CO = 2: 1 (molar ratio)
2  2
) )に調整されている。なお、気泡塔型反応器 30に供給される合成ガスは、脱炭酸装 置 20と気泡塔型反応器 30とを接続する配管に設けられた圧縮機(図示せず。 )によ り、 FT合成反応に適切な圧力(例えば 3. 6MPaG)まで昇圧される。  )) Is adjusted. The synthesis gas supplied to the bubble column reactor 30 is FT by a compressor (not shown) provided in a pipe connecting the decarboxylation device 20 and the bubble column reactor 30. The pressure is increased to a pressure suitable for the synthesis reaction (eg, 3.6 MPaG).
[0040] また、上記脱炭酸装置 20により炭酸ガスが分離された合成ガスの一部は、水素分 離装置 26にも供給される。水素分離装置 26は、上記のように圧力差を利用した吸着 、脱着 (水素 PSA)により、合成ガスに含まれる水素ガスを分離する。当該分離された 水素は、ガスホルダー(図示せず。)等から圧縮機(図示せず。)を介して、液体燃料 合成システム 1内において水素を利用して所定反応を行う各種の水素利用反応装置 (例えば、脱硫反応器 10、 WAX分水素化分解反応器 50、灯油 ·軽油留分水素化精 製反応器 52、ナフサ留分水素化精製反応器 54など)に、連続して供給される。  Further, a part of the synthesis gas from which the carbon dioxide gas has been separated by the decarbonation device 20 is also supplied to the hydrogen separation device 26. The hydrogen separator 26 separates hydrogen gas contained in the synthesis gas by adsorption and desorption (hydrogen PSA) using a pressure difference as described above. The separated hydrogen is subjected to various hydrogen utilization reactions in which a predetermined reaction is performed using hydrogen in the liquid fuel synthesis system 1 from a gas holder (not shown) or the like via a compressor (not shown). (For example, desulfurization reactor 10, WAX hydrocracking reactor 50, kerosene / light oil fraction hydrotreating reactor 52, naphtha fraction hydrotreating reactor 54, etc.) .
[0041] 次いで、上記 FT合成ユニット 5は、上記合成ガス生成ユニット 3によって生成された 合成ガスから、 FT合成反応により、液体炭化水素を合成する。  [0041] Next, the FT synthesis unit 5 synthesizes liquid hydrocarbons from the synthesis gas produced by the synthesis gas production unit 3 by an FT synthesis reaction.
[0042] 具体的には、上記合成ガス生成ユニット 3で生成された合成ガスは、気泡塔型反応 器 30の底部から流入されて、気泡塔型反応器 30内に貯留された触媒スラリー内を 上昇する。この際、気泡塔型反応器 30内では、上述した FT合成反応により、当該合 成ガスに含まれる一酸化炭素と水素ガスとが反応して、炭化水素が生成される。さら に、この合成反応時には、気泡塔型反応器 30の伝熱管 32内に水を流通させること で、 FT合成反応の反応熱を除去し、この熱交換により加熱された水が気化して水蒸 気となる。この水蒸気は、気液分離器 34で液化した水が伝熱管 32に戻されて、気体 分が中圧スチーム(例えば 1. 0〜2. 5MPaG)として外部装置に供給される。 Specifically, the synthesis gas produced by the synthesis gas production unit 3 flows from the bottom of the bubble column reactor 30 and passes through the catalyst slurry stored in the bubble column reactor 30. To rise. At this time, in the bubble column reactor 30, the synthesis is performed by the FT synthesis reaction described above. Carbon monoxide and hydrogen gas contained in the generated gas react to generate hydrocarbons. Furthermore, at the time of this synthesis reaction, water is circulated through the heat transfer tube 32 of the bubble column reactor 30 to remove the reaction heat of the FT synthesis reaction, and the water heated by this heat exchange evaporates to form water. It becomes steam. The water vapor liquefied by the gas-liquid separator 34 is returned to the heat transfer tube 32, and the gas component is supplied to the external device as medium-pressure steam (for example, 1.0 to 2.5 MPaG).
[0043] このようにして、気泡塔型反応器 30で合成された液体炭化水素は、気泡塔型反応 器 30の中央部から取り出されて、分離器 36に導入される。分離器 36は、取り出され たスラリー中の触媒(固形分)と、液体炭化水素生成物を含んだ液体分とに分離する 。分離された触媒は、その一部を気泡塔型反応器 30に戻され、液体分は第 1精留塔 40に供給される。また、気泡塔型反応器 30の塔頂からは、未反応の合成ガスと、合 成された炭化水素のガス分とが気液分離器 38に導入される。気液分離器 38は、こ れらのガスを冷却して、一部の凝縮分の液体炭化水素を分離して第 1精留塔 40に導 入する。一方、気液分離器 38で分離されたガス分については、未反応の合成ガス( COと H )は、気泡塔型反応器 30の底部に再投入されて FT合成反応に再利用され[0043] In this way, the liquid hydrocarbon synthesized in the bubble column reactor 30 is taken out from the center of the bubble column reactor 30 and introduced into the separator 36. The separator 36 separates the catalyst (solid content) in the removed slurry into the liquid content containing the liquid hydrocarbon product. A part of the separated catalyst is returned to the bubble column reactor 30, and the liquid is supplied to the first rectifying column 40. From the top of the bubble column reactor 30, unreacted synthesis gas and the synthesized hydrocarbon gas are introduced into the gas-liquid separator 38. The gas-liquid separator 38 cools these gases, separates some condensed liquid hydrocarbons, and introduces them into the first fractionator 40. On the other hand, for the gas components separated by the gas-liquid separator 38, the unreacted synthesis gas (CO and H) is reintroduced into the bottom of the bubble column reactor 30 and reused for the FT synthesis reaction.
2 2
、また、製品対象外である炭素数が少ない (C以下)の炭化水素ガスを主成分とする  In addition, the main component is a hydrocarbon gas with a low carbon number (C or less) that is not covered by the product.
4  Four
排ガス (フレアガス)は、外部の燃焼設備(図示せず。 )に導入されて、燃焼された後 に大気放出される。  Exhaust gas (flare gas) is introduced into an external combustion facility (not shown), burned, and released into the atmosphere.
[0044] 次いで、第 1精留塔 40は、上記のようにして気泡塔型反応器 30から分離器 36、気 液分離器 38を介して供給された液体炭化水素 (炭素数は多様)を加熱して、沸点の 違レ、を利用して分留し、ナフサ留分 (沸点が約 315°C未満)と、灯油'軽油留分 (沸点 が約 315〜800°C)と、 WAX分 (沸点が約 800°Cより大)とに分離 ·精製する。この第 1精留塔 40の底部から取り出される WAX分の液体炭化水素(主として C 以上)は、  [0044] Next, the first rectifying column 40 receives liquid hydrocarbons (having various carbon numbers) supplied from the bubble column reactor 30 through the separator 36 and the gas-liquid separator 38 as described above. Heat and fractionate using different boiling points, naphtha fraction (boiling point less than about 315 ° C), kerosene 'light oil fraction (boiling point about 315-800 ° C), WAX fraction Separate and purify (boiling point greater than about 800 ° C). The liquid hydrocarbons (mainly C or more) of WAX taken out from the bottom of the first rectifying column 40 are
21  twenty one
WAX分水素化分解反応器 50に移送され、第 1精留塔 40の中央部から取り出される 灯油 ·軽油留分の液体炭化水素(主として C 〜C )は、灯油 ·軽油留分水素化精製  The liquid hydrocarbons (mainly C to C) of kerosene / light oil fraction transferred to the WAX fraction hydrocracking reactor 50 and taken out from the center of the first rectification tower 40 are kerosene / light oil fraction hydrotreating
11 20  11 20
反応器 52に移送され、第 1精留塔 40の上部から取り出されるナフサ留分の液体炭 化水素(主として C〜C )は、ナフサ留分水素化精製反応器 54に移送される。  The liquid hydrocarbon (mainly C to C) of the naphtha fraction that is transferred to the reactor 52 and taken out from the upper part of the first rectifying column 40 is transferred to the naphtha fraction hydrotreating reactor 54.
5 10  5 10
[0045] WAX分水素化分解反応器 50は、第 1精留塔 40の下部から供給された炭素数の 多い WAX分の液体炭化水素 (概ね C 以上)を、上記水素分離装置 26から供給さ れた水素ガスを利用して水素化分解して、炭素数を C 以下に低減する。この水素化 [0045] The WAX fraction hydrocracking reactor 50 is fed from the hydrogen separator 26 with liquid hydrocarbons (generally C or more) having a large number of carbon atoms supplied from the lower part of the first rectifying column 40. Hydrocracking using the generated hydrogen gas to reduce the carbon number to C or less. This hydrogenation
20  20
分解反応では、触媒と熱を利用して、炭素数の多い炭化水素の C C結合を切断し て、炭素数の少ない低分子量の炭化水素を生成する。この WAX分水素化分解反応 器 50により、水素化分解された液体炭化水素を含む生成物は、気液分離器 56で気 体と液体とに分離され、そのうち液体炭化水素は、第 2精留塔 70に移送され、気体 分 (水素ガスを含む。)は、灯油 ·軽油留分水素化精製反応器 52及びナフサ留分水 素化精製反応器 54に移送される。  In the decomposition reaction, the catalyst and heat are used to cleave C C bonds of hydrocarbons with a large number of carbons to produce low molecular weight hydrocarbons with a small number of carbons. The product containing liquid hydrocarbons hydrocracked by this WAX hydrocracking reactor 50 is separated into gas and liquid by gas-liquid separator 56, of which liquid hydrocarbons are separated by the second rectification fraction. The gas component (including hydrogen gas) is transferred to the tower 70 and transferred to the kerosene / light oil fraction hydrotreating reactor 52 and the naphtha fraction hydrotreating reactor 54.
[0046] 灯油 ·軽油留分水素化精製反応器 52は、第 1精留塔 40の中央部から供給された 炭素数が中程度である灯油 ·軽油留分の液体炭化水素 (概ね C 〜C )を、水素分 [0046] Kerosene · Gas oil fraction hydrotreating reactor 52 is a liquid hydrocarbon (generally C to C) of kerosene · gas oil fraction supplied from the center of the first rectification column 40 with a medium carbon number. ), Hydrogen content
11 20  11 20
離装置 26から WAX分水素化分解反応器 50を介して供給された水素ガスを用いて 、水素化精製する。この水素化精製反応は、上記液体炭化水素の不飽和結合に水 素を付加して飽和させ、直鎖状飽和炭化水素を生成する反応である。この結果、水 素化精製された液体炭化水素を含む生成物は、気液分離器 58で気体と液体に分 離され、そのうち液体炭化水素は、第 2精留塔 70に移送され、気体分 (水素ガスを含 む。)は、上記水素化反応に再利用される。  Hydrotreating is performed using hydrogen gas supplied from the separation device 26 through the WAX hydrocracking reactor 50. This hydrorefining reaction is a reaction in which hydrogen is added to the unsaturated bond of the liquid hydrocarbon to saturate to produce a linear saturated hydrocarbon. As a result, the hydrogenated and purified product containing liquid hydrocarbons is separated into a gas and a liquid by the gas-liquid separator 58, and the liquid hydrocarbons are transferred to the second rectification column 70 for gas separation. (Including hydrogen gas) is reused in the hydrogenation reaction.
[0047] ナフサ留分水素化精製反応器 54は、第 1精留塔 40の上部から供給された炭素数 が少ないナフサ留分の液体炭化水素 (概ね C 以下)を、水素分離装置 26から WA [0047] The naphtha fraction hydrotreating reactor 54 supplies liquid hydrocarbons (generally C or less) of the naphtha fraction having a low carbon number supplied from the upper part of the first rectification column 40 to the WA separator 26 from the WA.
10  Ten
X分水素化分解反応器 50を介して供給された水素ガスを用いて、水素化精製する。 この結果、水素化精製された液体炭化水素を含む生成物は、気液分離器 60で気体 と液体に分離され、そのうち液体炭化水素は、ナフサ'スタビライザー 72に移送され、 気体分 (水素ガスを含む。)は、上記水素化反応に再利用される。  Hydrorefining using the hydrogen gas supplied via the X-fraction hydrocracking reactor 50. As a result, the hydrorefined liquid hydrocarbon-containing product is separated into a gas and a liquid by the gas-liquid separator 60, and the liquid hydrocarbon is transferred to the naphtha 'stabilizer 72, where the gas component (hydrogen gas is removed). Is reused in the hydrogenation reaction.
[0048] 次いで、第 2精留塔 70は、上記のようにして WAX分水素化分解反応器 50及び灯 油-軽油留分水素化精製反応器 52から供給された液体炭化水素を蒸留して、炭素 数が C 以下の炭化水素(沸点が約 315°C未満)と、灯油(沸点が約 315〜450°C)と[0048] Next, the second fractionator 70 distills the liquid hydrocarbons supplied from the WAX fraction hydrocracking reactor 50 and the kerosene-light oil fraction hydrotreating reactor 52 as described above. Hydrocarbons with a carbon number of C or less (boiling point less than about 315 ° C) and kerosene (boiling point about 315 to 450 ° C)
10 Ten
、軽油(沸点が約 450〜800°C)とに分離 ·精製する。第 2精留塔 70の下部からは軽 油が取り出され、中央部からは灯油が取り出される。一方、第 2精留塔 70の塔頂から は、炭素数が C 以下の炭化水素ガスが取り出されて、ナフサ'スタビライザー 72に  Separating and refining it into diesel oil (boiling point approx. 450-800 ° C). Gas oil is taken out from the lower part of the second rectification tower 70, and kerosene is taken out from the center. On the other hand, hydrocarbon gas having a carbon number of C or less is taken out from the top of the second rectifying column 70 and is supplied to the naphtha stabilizer 72.
10  Ten
供給される。 [0049] さらに、ナフサ'スタビライザー 72では、上記ナフサ留分水素化精製反応器 54及び 第 2精留塔 70から供給された炭素数が C 以下の炭化水素を蒸留して、製品として Supplied. [0049] Further, the naphtha's stabilizer 72 distills hydrocarbons having a carbon number of C or less supplied from the naphtha fraction hydrotreating reactor 54 and the second rectifying column 70 as a product.
10  Ten
のナフサ(C〜C )を分離'精製する。これにより、ナフサ'スタビライザー 72の下部  The naphtha (C to C) is separated and purified. This allows the bottom of the naphtha stabilizer 72
5 10  5 10
からは、高純度のナフサが取り出される。一方、ナフサ'スタビライザー 72の塔頂から は、製品対象外である炭素数が所定数以下 (C以下)の炭化水素を主成分とする排  From which high-purity naphtha is extracted. On the other hand, from the top of Naphtha's Stabilizer 72, the main component of the exhaust is hydrocarbons whose main component is a carbon number not exceeding the specified number (C or less).
4  Four
ガス(フレアガス)が排出される。この排ガスは、外部の燃焼設備(図示せず。)に導入 されて、燃焼された後に大気放出される。  Gas (flare gas) is discharged. This exhaust gas is introduced into an external combustion facility (not shown), burned, and released into the atmosphere.
[0050] 以上、液体燃料合成システム 1の動作 (GTLプロセス)について説明した。かかる G TLプロセスにより、天然ガスを、高純度のナフサ(C〜C :粗ガソリン)、灯油(C 〜 [0050] The operation (GTL process) of the liquid fuel synthesis system 1 has been described above. By this GTL process, natural gas is converted into high-purity naphtha (C ~ C: crude gasoline), kerosene (C ~
5 10 11 5 10 11
C :ケロシン)及び軽油(c 〜c :ガスオイル)等のクリーンな液体燃料に、容易且C: kerosene) and light liquids (c-c: gas oil)
15 16 20 15 16 20
つ経済的に転換することができる。さらに、本実施形態では、改質器 12において上 記水蒸気 ·炭酸ガス改質法を採用しているので、原料となる天然ガスに含有されてい る二酸化炭素を有効に利用し、かつ、上記 FT合成反応に適した合成ガスの組成比( 例えば、 H : CO = 2 : l (モル比))を改質器 12の 1回の反応で効率的に生成すること  Can be converted economically. Further, in the present embodiment, the reformer 12 employs the steam / carbon dioxide reforming method, so that carbon dioxide contained in natural gas as a raw material is effectively used, and the FT Efficient generation of synthesis gas composition ratio suitable for synthesis reaction (eg, H: CO = 2: l (molar ratio)) in one reaction of the reformer 12
2  2
ができ、水素濃度調整装置などが不要であるという利点がある。  There is an advantage that a hydrogen concentration adjusting device or the like is unnecessary.
[0051] 次に、本実施形態に力かる液体燃料合成システム 1において、水素ガスを利用して 所定反応を行う水素利用反応装置に対する水素ガスの供給系統について、詳細に 説明する。 [0051] Next, in the liquid fuel synthesizing system 1 according to the present embodiment, a hydrogen gas supply system for a hydrogen-using reaction apparatus that performs a predetermined reaction using hydrogen gas will be described in detail.
[0052] 上記液体燃料合成システム 1では、定常運転時 (システム起動から所定時間経過 後の定格運転時)には、改質器 12で生成された合成ガス中の水素ガスの一部を水 素分離装置 26で分離して、当該分離した水素ガスを、水素利用反応装置 (例えば、 合成ガス生成ユニット 3の脱硫反応器 10、及び、製品精製ユニット 7の WAX分水素 化分解反応器 50、灯油 ·軽油留分水素化精製反応器 52及びナフサ留分水素化精 製反応器 54 (以下、「水素化反応器 50, 52, 54」と総称する。))に対して連続的に 供給する構成である。  [0052] In the liquid fuel synthesizing system 1 described above, during steady operation (at the rated operation after a predetermined time has elapsed since the start of the system), a part of the hydrogen gas in the syngas produced by the reformer 12 is hydrogenated. The hydrogen gas separated by the separation device 26 is separated into hydrogen-utilized reaction devices (for example, the desulfurization reactor 10 of the synthesis gas generation unit 3 and the WAX hydrocracking reactor 50 of the product purification unit 7 and kerosene. · Continuous supply to gas oil fraction hydrotreating reactor 52 and naphtha fraction hydrotreating reactor 54 (hereinafter collectively referred to as “hydrogenation reactors 50, 52, 54”) It is.
[0053] ところが、このような水素ガスの供給系統だけでは、液体燃料合成システム 1の起動 時 (各ユニット 3, 5, 7の起動時も含む。)において、改質器 12が起動した後に定常 運転となり、合成ガスが安定的に生成 '供給されるまでは、上記製品精製ユニット 7の 水素化反応器 50, 52, 54に水素ガスが供給されないので、当該水素化反応器 50, 52, 54を起動することができない。このため、従来では、液体燃料合成システム 1全 体が立ち上がり、液体燃料製品を製造するまでにかなりの時間力 Sかかってしまい、生 産効率が悪いという問題があった。 [0053] However, with such a hydrogen gas supply system alone, when the liquid fuel synthesizing system 1 is started up (including when the units 3, 5, and 7 are started up), the reformer 12 is started up after the start-up. Until the product is operated and the synthesis gas is stably generated and supplied, Since hydrogen gas is not supplied to the hydrogenation reactors 50, 52, 54, the hydrogenation reactors 50, 52, 54 cannot be started. For this reason, conventionally, the entire liquid fuel synthesizing system 1 was started up, and it took a considerable amount of time S to produce a liquid fuel product, which had the problem of poor production efficiency.
[0054] この製品精製ユニット 7の水素化反応器 50, 52, 54の起動遅延について、図 2を 参照して具体的に説明する。図 2に示すように、従来では、液体燃料合成システム 1 を起動する場合、まず、合成ガス生成ユニット 3の改質器 12を起動させ、合成ガスの 生成反応を開始させる。この改質器 12が定常運転となり合成ガスを安定供給できる ようになるのは、起動時から例えば 4日目である。また、 FT合成ユニット 5については 、合成ガス生成ユニット 3の起動時から例えば 1日後に起動させて、装置の調整 'FT 合成反応の準備を行うと、合成ガス生成ユニット 3定格運転する日と同一の 4日目か ら、 FT合成反応を安定して実行できる。  [0054] The start-up delay of the hydrogenation reactors 50, 52, 54 of the product purification unit 7 will be specifically described with reference to FIG. As shown in FIG. 2, conventionally, when the liquid fuel synthesizing system 1 is started, first, the reformer 12 of the syngas generating unit 3 is started to start the synthesis gas generation reaction. The reformer 12 is in a steady operation and can stably supply the synthesis gas, for example, on the fourth day from the start-up. Also, for the FT synthesis unit 5, when the synthesis gas generation unit 3 is started up, for example, one day after the start-up, and the apparatus is adjusted for preparation of the FT synthesis reaction, the same date as when the synthesis gas generation unit 3 is rated. From the 4th day, the FT synthesis reaction can be performed stably.
[0055] ところ力 製品精製ユニット 7については、改質器 12で生成された水素ガスが水素 化反応器 50, 52, 54に供給されてから(上記 4日目以後)でないと、水素化反応器 5 0, 52, 54を起動させて触媒還元や水素化反応の準備を開始することができない。こ のため、製品精製ユニット 7が水素化、精製反応を安定して実行できるようになるのは 、合成ガス生成ユニット 3の起動時から例えば 8日目となってしまレ、、長い起動時間が 必要であった。よって、液体燃料合成システム 1全体が完全に立ち上がり、液体燃料 製品を安定して製造できるようになるのは、合成ガス生成ユニット 3の起動時から例え ば 8日目(合成ガス生成ユニット 3の定格運転開始後 4日目)と非常に遅ぐ生産効率 が低いという問題があった。  [0055] However, for the product refining unit 7, the hydrogenation reaction must be performed after the hydrogen gas generated in the reformer 12 is supplied to the hydrogenation reactors 50, 52, 54 (after the fourth day). It is not possible to start up the catalyst reduction or hydrogenation reaction by starting the vessels 50, 52, 54. For this reason, the product purification unit 7 can stably carry out the hydrogenation and purification reaction, for example, on the 8th day from the start of the synthesis gas generation unit 3, with a long startup time. It was necessary. Therefore, the entire liquid fuel synthesizing system 1 is completely up and the liquid fuel product can be manufactured stably on the 8th day from the start of the syngas generation unit 3 (the rating of the syngas generation unit 3). On the fourth day after the start of operation), there was a problem that production efficiency was very slow.
[0056] さらに、合成ガス生成ユニット 3の起動時力も 4日目なレ、し 7日目では、 FT合成ュニ ット 5が正常稼働している力 製品精製ユニット 7が正常稼働していないので、 FT合 成反応により生成された液体炭化水素 (水素化及び精製される前の半製品)を貯蔵 しておくための半製品貯蔵用タンク(図示せず。)が必要であるという問題もあった。  [0056] Further, the starting power of the synthesis gas generation unit 3 is also on the fourth day, and on the seventh day, the force that the FT synthesis unit 5 is operating normally The product purification unit 7 is not operating normally Therefore, there is also a problem that a semi-finished product storage tank (not shown) for storing liquid hydrocarbons produced by the FT synthesis reaction (semi-finished product before being hydrogenated and purified) is required. there were.
[0057] そこで、これらの問題を解決するため、本実施形態に力かる液体燃料合成システム 1では、図 1に示すように、水素分離装置 26により合成ガスから分離 ·回収された水 素ガスを貯蔵する水素貯蔵装置 80を設け、この水素貯蔵装置 80に貯蔵された水素 ガスを、上記合成ガス生成ユニット 3の脱硫反応器 10や、製品精製ユニット 7の水素 化反応器 50, 52, 54などに供給できるようになつている。即ち、脱硫反応器 10や水 素化反応器 50, 52, 54などといった水素利用反応装置に対して、上記のような水素 分離装置 26から直接的に水素ガスを供給する供給系統とは別に、水素分離装置 26 力 の水素ガスを水素貯蔵装置 80で一旦貯蔵して間接的に供給する供給系統を設 けている。 [0057] Therefore, in order to solve these problems, in the liquid fuel synthesizing system 1 that is useful in the present embodiment, as shown in FIG. 1, the hydrogen gas separated and recovered from the syngas by the hydrogen separator 26 is used. Hydrogen storage device 80 for storing is provided, and hydrogen stored in this hydrogen storage device 80 The gas can be supplied to the desulfurization reactor 10 of the synthesis gas generation unit 3 and the hydrogenation reactors 50, 52, and 54 of the product purification unit 7. That is, apart from the supply system for supplying hydrogen gas directly from the hydrogen separator 26 as described above to the hydrogen utilizing reactors such as the desulfurization reactor 10 and the hydrogenation reactors 50, 52, 54, etc. Hydrogen separator A supply system that temporarily stores 26-force hydrogen gas in the hydrogen storage device 80 and indirectly supplies it is installed.
[0058] このような構成において、液体燃料合成システム 1の定常運転時に、水素分離装置  [0058] In such a configuration, during the steady operation of the liquid fuel synthesis system 1, the hydrogen separator
26により合成ガスから分離された水素ガスの全量を、上記脱硫反応器 10や水素化 反応器 50, 52, 54などの水素利用反応装置に供給せずに、当該水素ガスの一部を 水素貯蔵装置 80に貯蔵しておく。そして、その後の液体燃料合成システム 1の再起 動時などにおいて、水素化反応器 50, 52, 54を再起動するときに、水素貯蔵装置 8 0に貯蔵された水素ガスを、水素化反応器 50, 52, 54や脱硫反応器 10などに即座 に供給する。これによつて、改質器 12が起動して当該改質器 12から水素ガスが安定 供給されるより前に、上記水素化反応器 50, 52, 54や脱硫反応器 10などの水素利 用反応装置を迅速に起動させることができる。  A part of the hydrogen gas is stored in the hydrogen without being supplied to the hydrogen-utilizing reactors such as the desulfurization reactor 10 and the hydrogenation reactors 50, 52, 54. Store in device 80. Then, when the hydrogenation reactors 50, 52, 54 are restarted, for example, when the liquid fuel synthesizing system 1 is restarted thereafter, the hydrogen gas stored in the hydrogen storage device 80 is replaced with the hydrogenation reactor 50. , 52, 54 and desulfurization reactor 10 are supplied immediately. As a result, before the reformer 12 is started and hydrogen gas is stably supplied from the reformer 12, the hydrogenation of the hydrogenation reactors 50, 52, 54 and desulfurization reactor 10 is used. The reactor can be activated quickly.
[0059] 具体的には、図 3に示すように、本実施形態に力かる液体燃料合成システム 1を再 起動する場合、まず、水素貯蔵装置 80に貯蔵された水素ガスを、製品精製ユニット 7 の水素化反応器 50, 52, 54に供給する。これにより、改質器 12の起動前に、水素 化反応器 50, 52, 54を起動させて、触媒還元や水素化反応の準備を開始すること ができるようになる。次いで、水素化反応器 50, 52, 54の起動から 1日後に、合成ガ ス生成ユニット 3を起動させて、水素貯蔵装置 80に貯蔵された水素ガスを脱硫反応 器 10に供給するとともに、改質器 12を起動させてスタートアップを行レ、、さらに、その 1日後に、 FT合成ユニット 5を起動させて装置調整および FT合成反応の準備をおこ なう。これにより、上記水素化反応器 50, 52, 54の起動時から例えば 5日目に、改質 器 12を定常運転して合成ガスを安定的に供給できるとともに、気泡塔型反応器 30で FT合成反応により液体炭化水素を安定的に生成できるようになる。さらに、このとき( 5日目)には、製品精製ユニット 7において水素化反応器 50, 52, 54等の準備動作 が完了しているので、製品精製ユニット 7は、 FT合成ユニット 5から供給される液体炭 化水素の水素化反応 (還元反応/水素化分解反応)及び精製反応を安定的に実行 して、液体燃料製品の製造を開始することができる。 Specifically, as shown in FIG. 3, when the liquid fuel synthesizing system 1 that is useful in the present embodiment is restarted, first, the hydrogen gas stored in the hydrogen storage device 80 is converted into the product purification unit 7. To the hydrogenation reactors 50, 52, and 54. Thus, before the reformer 12 is started, the hydrogenation reactors 50, 52, and 54 can be started to start preparation for catalytic reduction or hydrogenation reaction. Next, one day after the start of the hydrogenation reactors 50, 52, 54, the synthesis gas generation unit 3 is started to supply the hydrogen gas stored in the hydrogen storage device 80 to the desulfurization reactor 10, and Start the internal organs 12 and start up, and one day later, start the FT synthesis unit 5 to prepare the equipment and prepare for the FT synthesis reaction. Thus, for example, on the fifth day from the start of the hydrogenation reactors 50, 52, 54, the reformer 12 can be stably operated to stably supply the synthesis gas, and the bubble column reactor 30 can Liquid hydrocarbons can be stably generated by the synthesis reaction. Further, at this time (day 5), since the preparation operation of the hydrogenation reactors 50, 52, 54, etc. is completed in the product purification unit 7, the product purification unit 7 is supplied from the FT synthesis unit 5. Liquid charcoal Production of liquid fuel products can be started by stably performing hydrogenation hydrogenation (reduction / hydrocracking) and purification reactions.
[0060] このように、本実施形態では、液体燃料合成システム 1の再起動時において、水素 貯蔵装置 80に貯蔵されている水素ガスを水素化反応器 50, 52, 54や脱硫反応器 1 0に供給することで、システム全体の起動時間を短縮して、早期に液体燃料製品を製 造開始できるので、生産効率を向上することができる。  Thus, in this embodiment, when the liquid fuel synthesizing system 1 is restarted, the hydrogen gas stored in the hydrogen storage device 80 is converted into hydrogenation reactors 50, 52, 54 and desulfurization reactors 10. By supplying to, the start-up time of the entire system can be shortened and the production of liquid fuel products can be started at an early stage, so that the production efficiency can be improved.
[0061] ここで、図 4及び図 5を参照して、本実施形態に力、かる液体燃料合成システム 1にお ける水素貯蔵装置 80の構成例について詳細に説明する。図 4及び図 5は、本実施 形態に力かる液体燃料合成システム 1における水素貯蔵装置 80の構成例をそれぞ れ示すブロック図である。なお、図 4及び図 5では、説明の便宜上、図 1の液体燃料 合成システム 1の構成要素のうち主要なもののみを図示し、一部の構成要素につい ては図示を省略してある。  Here, with reference to FIG. 4 and FIG. 5, a configuration example of the hydrogen storage device 80 in the liquid fuel synthesizing system 1 that is effective in the present embodiment will be described in detail. FIG. 4 and FIG. 5 are block diagrams respectively showing configuration examples of the hydrogen storage device 80 in the liquid fuel synthesizing system 1 that is useful in the present embodiment. 4 and 5, only the main components of the liquid fuel synthesizing system 1 of FIG. 1 are shown for convenience of explanation, and some of the components are not shown.
[0062] 図 4及び図 5に示すように、液体燃料合成システム 1では、水素分離装置 26と水素 貯蔵装置 80とが配管 91を介して接続され、この水素貯蔵装置 80と脱硫反応器 10及 び水素化反応器 50, 52, 54とが、それぞれ配管 92, 93を介して接続されている。  As shown in FIGS. 4 and 5, in the liquid fuel synthesis system 1, the hydrogen separator 26 and the hydrogen storage device 80 are connected via a pipe 91, and the hydrogen storage device 80 and the desulfurization reactor 10 and And hydrogenation reactors 50, 52 and 54 are connected through pipes 92 and 93, respectively.
[0063] まず、図 4の例の水素貯蔵装置 80について詳細に説明する。図 4に示すように、水 素貯蔵装置 80は、例えば球形貯槽等の耐圧容器で構成される貯蔵タンク 81と、上 記水素分離装置 26からの配管 91が接続されるとともに、貯蔵タンク 81の入側に接続 される水素圧縮機 82と、貯蔵タンク 81の出側に接続されるとともに、上記配管 92, 9 3を介して脱硫反応器 10及び水素化反応器 50, 52, 54にそれぞれ接続される水素 圧縮機 83と、水素貯蔵装置 80の各部を制御するコントローラ 84とを備える。なお、コ ントローラ 84は、水素貯蔵装置 80の動作 (例えば、水素ガスの貯蔵動作や、貯蔵さ れた水素ガスの水素利用反応装置への供給動作など)を制御する制御手段の一例 である。  First, the hydrogen storage device 80 in the example of FIG. 4 will be described in detail. As shown in FIG. 4, the hydrogen storage device 80 is connected to a storage tank 81 composed of a pressure vessel such as a spherical storage tank and a pipe 91 from the hydrogen separation device 26, and is connected to the storage tank 81. Connected to the hydrogen compressor 82 connected to the inlet side and the outlet side of the storage tank 81, and connected to the desulfurization reactor 10 and the hydrogenation reactors 50, 52, 54 through the pipes 92, 93, respectively. A hydrogen compressor 83, and a controller 84 for controlling each part of the hydrogen storage device 80. The controller 84 is an example of a control unit that controls the operation of the hydrogen storage device 80 (for example, the storage operation of hydrogen gas or the supply operation of the stored hydrogen gas to the hydrogen utilization reactor).
[0064] かかる構成の図 4の水素貯蔵装置 80の動作について説明する。上記液体燃料合 成システム 1の定常運転時には、水素分離装置 26によって、改質器 12で生成された 合成ガスの中から水素ガスの一部が分離 ·回収され、配管 94, 95を介して、脱硫反 応器 10や水素化反応器 50, 52, 54に供給される。この定常運転時には、水素貯蔵 装置 80のコントローラ 84には、例えば、オペレータ入力に基づく貯蔵指示信号、或 レ、は、液体燃料合成システム 1のコントローラ(図示せず。)からの貯蔵指示信号が入 力される。すると、コントローラ 84は、貯蔵タンク 81に水素ガスを貯蔵するために、水 素圧縮機 82を動作させ、貯蔵タンク 81の入側の弁 86を開放するとともに出側の弁 8 7を閉鎖するように制御する。これにより、水素分離装置 26から排出される水素ガス の一部は、配管 91を介して水素圧縮機 82に供給され、水素圧縮機 82は、供給され た水素ガスを圧縮して、貯蔵タンク 81に所定の貯蔵圧力(例えば 3MPaG)で貯蔵す る。その後、十分な量の水素ガスが貯蔵された時点で、コントローラ 84は、水素圧縮 機 82の動作を停止させ、貯蔵タンク 81の入側の弁 86を閉鎖して、貯蔵動作を終了 する。 [0064] The operation of the hydrogen storage device 80 of Fig. 4 having such a configuration will be described. During steady operation of the liquid fuel synthesis system 1 described above, a part of the hydrogen gas is separated and recovered from the synthesis gas generated in the reformer 12 by the hydrogen separator 26 and is connected via the pipes 94 and 95. Supplied to desulfurization reactor 10 and hydrogenation reactors 50, 52, 54. During this steady operation, hydrogen storage For example, a storage instruction signal based on an operator input or a storage instruction signal from a controller (not shown) of the liquid fuel synthesis system 1 is input to the controller 84 of the apparatus 80. Then, the controller 84 operates the hydrogen compressor 82 to store the hydrogen gas in the storage tank 81, opens the valve 86 on the inlet side of the storage tank 81, and closes the valve 87 on the outlet side. To control. As a result, a part of the hydrogen gas discharged from the hydrogen separator 26 is supplied to the hydrogen compressor 82 via the pipe 91, and the hydrogen compressor 82 compresses the supplied hydrogen gas to produce a storage tank 81. At a predetermined storage pressure (eg 3 MPaG). Thereafter, when a sufficient amount of hydrogen gas is stored, the controller 84 stops the operation of the hydrogen compressor 82, closes the valve 86 on the inlet side of the storage tank 81, and ends the storage operation.
[0065] 一方、液体燃料合成システム 1の起動時には、水素貯蔵装置 80のコントローラ 84 には、例えば、オペレータ入力に基づく供給指示信号、或いは、液体燃料合成シス テム 1のコントローラ(図示せず。)からの供給指示信号が入力される。すると、コント口 ーラ 84は、上記のように貯蔵タンク 81に貯蔵された水素ガスを供給するために、水 素圧縮機 83を動作させ、貯蔵タンク 81の入側の弁 86を閉鎖したまま、出側の弁 87 を開放するように制御する。これにより、貯蔵タンク 81に貯蔵された水素ガスを、水素 圧縮機 83により、気泡塔型反応器 30に適した所定圧力(例えば 3. 6MPaG)まで昇 圧し、当該昇圧された水素ガスを配管 92, 93を介して脱硫反応器 10及び水素化反 応器 50, 52, 54に供給する。このように、図 4の例では、比較的簡単な装置構成の 水素貯蔵装置 80を用いて、液体燃料合成システム 1の起動時に、貯蔵タンク 81に貯 蔵された水素ガスを必要箇所に対して即時に供給できる。  On the other hand, when the liquid fuel synthesizing system 1 is started, the controller 84 of the hydrogen storage device 80 is supplied with a supply instruction signal based on an operator input or a controller (not shown) of the liquid fuel synthesizing system 1, for example. The supply instruction signal from is input. Then, the controller 84 operates the hydrogen compressor 83 to supply the hydrogen gas stored in the storage tank 81 as described above, and keeps the valve 86 on the inlet side of the storage tank 81 closed. Then, the outlet valve 87 is controlled to be opened. As a result, the hydrogen gas stored in the storage tank 81 is raised to a predetermined pressure (eg, 3.6 MPaG) suitable for the bubble column reactor 30 by the hydrogen compressor 83, and the pressurized hydrogen gas is connected to the pipe 92 , 93 to the desulfurization reactor 10 and the hydrogenation reactors 50, 52, 54. As described above, in the example of FIG. 4, the hydrogen gas stored in the storage tank 81 is supplied to the required location when the liquid fuel synthesizing system 1 is started using the hydrogen storage device 80 having a relatively simple device configuration. Can be supplied immediately.
[0066] 次に、図 5の例の水素貯蔵装置 80について詳細に説明する。この図 5の水素貯蔵 装置は、さらに大容量の水素を貯蔵するために、水素ガスを液化して貯蔵する液化 水素貯蔵装置として構成されてレ、る。  Next, the hydrogen storage device 80 in the example of FIG. 5 will be described in detail. The hydrogen storage device of FIG. 5 is configured as a liquefied hydrogen storage device that liquefies and stores hydrogen gas in order to store a larger amount of hydrogen.
[0067] 図 5に示すように、水素貯蔵装置 80は、例えば球形貯槽等の耐圧容器で構成され る貯蔵タンク 101と、上記水素分離装置 26からの配管 91が接続されるとともに、貯蔵 タンク 101の入側に接続される液化装置 102と、貯蔵タンク 101の出側に接続される 気化装置 103と、気化装置 103に接続されるとともに、上記配管 92, 93を介して脱 硫反応器 10及び水素化反応器 50, 52, 54にそれぞれ接続される水素圧縮機 104 と、水素貯蔵装置 80の各部を制御するコントローラ 105とを備える。このうち、液化装 置 102は、例えば、ジュールトムソンサイクル、等エントロピー膨張サイクル、又はヘリ ゥムブライトンサイクル等の熱力学サイクルにより、水素ガスを液化することができる。 また、気化装置 103は、熱交換器等を具備しており、貯蔵タンク 101から供給された 液化水素を加熱'気化して、水素ガスとすることができる。なお、コントローラ 105は、 水素貯蔵装置 80の動作 (例えば、水素ガスの貯蔵動作や、貯蔵された水素ガスの水 素利用反応装置への供給動作など)を制御する制御手段の一例である。 As shown in FIG. 5, a hydrogen storage device 80 is connected to a storage tank 101 composed of a pressure vessel such as a spherical storage tank and a pipe 91 from the hydrogen separator 26, and the storage tank 101 The liquefier 102 connected to the inlet side of the tank, the vaporizer 103 connected to the outlet side of the storage tank 101, and connected to the vaporizer 103, and removed via the pipes 92, 93. A hydrogen compressor 104 connected to each of the sulfur reactor 10 and the hydrogenation reactors 50, 52, and 54, and a controller 105 that controls each part of the hydrogen storage device 80 are provided. Among these, the liquefying device 102 can liquefy hydrogen gas by a thermodynamic cycle such as a Joule-Thomson cycle, an isentropic expansion cycle, or a helium brighton cycle. The vaporizer 103 includes a heat exchanger or the like, and can heat and vaporize the liquefied hydrogen supplied from the storage tank 101 to produce hydrogen gas. The controller 105 is an example of a control unit that controls the operation of the hydrogen storage device 80 (for example, the storage operation of hydrogen gas or the supply operation of the stored hydrogen gas to the hydrogen-utilizing reactor).
[0068] かかる構成の図 5の水素貯蔵装置 80の動作について説明する。上記液体燃料合 成システム 1の定常運転時には、上記図 4の例と同様に、水素貯蔵装置 80のコント口 ーラ 105には貯蔵指示信号が入力される。すると、コントローラ 105は、貯蔵タンク 10 1に水素ガスを貯蔵するために、液化装置 102を動作させ、貯蔵タンク 101の入側の 弁 106を開放するとともに出側の弁 107を閉鎖するように制御する。これにより、水素 分離装置 26から排出される水素ガスの一部は、配管 91を介して液化装置 102に供 給され、液化装置 102は、供給された水素ガスを液化して、この液化水素を貯蔵タン ク 101に所定の貯蔵圧力(例えば 0· 5MPaG)で貯蔵する。その後、十分な量の液 化水素が貯蔵された時点で、コントローラ 105は、液化装置 102の動作を停止させ、 貯蔵タンク 101の入側の弁 106を閉鎖して、貯蔵動作を終了する。  [0068] The operation of the hydrogen storage device 80 of Fig. 5 having such a configuration will be described. During steady operation of the liquid fuel synthesizing system 1, a storage instruction signal is input to the controller 105 of the hydrogen storage device 80, as in the example of FIG. Then, in order to store the hydrogen gas in the storage tank 101, the controller 105 operates the liquefaction device 102, and controls to open the valve 106 on the inlet side of the storage tank 101 and close the valve 107 on the outlet side. To do. As a result, a part of the hydrogen gas discharged from the hydrogen separator 26 is supplied to the liquefier 102 via the pipe 91, and the liquefier 102 liquefies the supplied hydrogen gas and converts this liquefied hydrogen into Store in the storage tank 101 at a predetermined storage pressure (for example, 0.5 MPaG). Thereafter, when a sufficient amount of liquefied hydrogen is stored, the controller 105 stops the operation of the liquefying apparatus 102, closes the valve 106 on the inlet side of the storage tank 101, and ends the storage operation.
[0069] 一方、液体燃料合成システム 1の起動時には、水素貯蔵装置 80のコントローラ 105 には、図 4の例と同様に、供給指示信号が入力される。すると、コントローラ 105は、 上記のように貯蔵タンク 101に貯蔵された液化水素を水素ガスに気化して供給する ために、気化装置 103及び水素圧縮機 104を動作させ、貯蔵タンク 101の入側の弁 106を閉鎖したまま、出側の弁 107を開放するように制御する。これにより、貯蔵タン ク 101に貯蔵された液化水素は、気化装置 103により気化されて水素ガスとなり、さら に、水素圧縮機 83により、この水素ガスを気泡塔型反応器 30の所定圧力(例えば 3 . 6MPaG)まで昇圧し、当該昇圧された水素ガスを配管 92, 93を介して脱硫反応器 10及び水素化反応器 50, 52, 54に供給する。このように、図 5の例では、水素ガス を液化して貯蔵することで、貯蔵タンク 101に大量の水素を貯蔵でき、また、液体燃 料合成システム 1の起動時に、貯蔵タンク 101に貯蔵された液化水素を気化した水 素ガスを、必要箇所に対して即時かつ大量に供給することができる。 On the other hand, when the liquid fuel synthesizing system 1 is started, a supply instruction signal is input to the controller 105 of the hydrogen storage device 80 as in the example of FIG. Then, the controller 105 operates the vaporizer 103 and the hydrogen compressor 104 in order to vaporize and supply the liquefied hydrogen stored in the storage tank 101 as described above to hydrogen gas. The outlet valve 107 is controlled to be opened while the valve 106 is closed. As a result, the liquefied hydrogen stored in the storage tank 101 is vaporized by the vaporizer 103 to become hydrogen gas. Further, the hydrogen compressor 83 converts this hydrogen gas into a predetermined pressure (for example, the bubble column reactor 30). The pressure is increased to 3.6 MPaG), and the pressurized hydrogen gas is supplied to the desulfurization reactor 10 and the hydrogenation reactors 50, 52, 54 through the pipes 92, 93. Thus, in the example of FIG. 5, by storing hydrogen gas in a liquefied state, a large amount of hydrogen can be stored in the storage tank 101, and liquid fuel can be stored. When the fuel composition system 1 is started, the hydrogen gas obtained by vaporizing the liquefied hydrogen stored in the storage tank 101 can be supplied immediately and in large quantities to the necessary location.
[0070] 以上、本実施形態に力かる液体燃料合成システム 1と、この液体燃料合成システム 1の起動方法について詳述した。本実施形態によれば、水素貯蔵装置 80を設けるこ とで、液体燃料合成システム 1の定常運転時に、改質器 12で生成された合成ガス中 の水素ガスの一部を水素貯蔵装置 80に貯蔵して、水素を所定量以上確保しておく ことができ、水素ガスが必要となったときに水素貯蔵装置 80から水素ガスを瞬時に供 給できるようになる。このため、液体燃料合成システム 1の再起動時などに、水素貯蔵 装置 80に貯蔵された水素ガスを水素化反応器 50, 52, 54や脱硫反応器 10などの 水素利用反応装置に即座に供給できるので、これらの水素利用反応装置を起動し て定常運転に入るまでに要する時間を最低限に短縮することができる。従って、液体 燃料合成システム 1全体の起動時間を大幅に短縮できるので、ナフサ、灯油、軽油 等の液体燃料製品の生産効率を向上することができる。  As described above, the liquid fuel synthesizing system 1 according to the present embodiment and the starting method of the liquid fuel synthesizing system 1 have been described in detail. According to the present embodiment, by providing the hydrogen storage device 80, during the steady operation of the liquid fuel synthesis system 1, a part of the hydrogen gas in the synthesis gas generated by the reformer 12 is transferred to the hydrogen storage device 80. The hydrogen can be stored to secure a predetermined amount or more, and when the hydrogen gas is needed, the hydrogen gas can be instantaneously supplied from the hydrogen storage device 80. For this reason, when the liquid fuel synthesis system 1 is restarted, the hydrogen gas stored in the hydrogen storage device 80 is immediately supplied to the hydrogen-using reactors such as the hydrogenation reactors 50, 52, 54 and desulfurization reactor 10. As a result, the time required to start up these hydrogen-utilizing reactors and start steady operation can be reduced to a minimum. Therefore, since the start-up time of the entire liquid fuel synthesizing system 1 can be greatly shortened, the production efficiency of liquid fuel products such as naphtha, kerosene, and light oil can be improved.
[0071] 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本 発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範 囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明 らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される  [0071] While the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood to belong
[0072] 例えば、上記実施形態では、液体燃料合成システム 1に供給される炭化水素原料 として、天然ガスを用いたが、力かる例に限定されず、例えば、アスファルト、残油な どその他の炭化水素原料を用いてもょレ、。 [0072] For example, in the above embodiment, natural gas is used as the hydrocarbon raw material supplied to the liquid fuel synthesizing system 1, but it is not limited to a powerful example, and other carbonization such as asphalt and residual oil is used. Use hydrogen raw materials.
[0073] また、上記実施形態では、気泡塔型反応器 30における合成反応として、 FT合成 反応により液体炭化水素を合成したが、本発明は力かる例に限定されない。気泡塔 型反応器における合成反応としては、例えば、ォキソ合成 (ヒドロホルミルィ匕反応)「R •CH = CH +CO + H→R- CH CH CHO」、メタノール合成「CO + 2H→CH O  [0073] In the above embodiment, as the synthesis reaction in the bubble column reactor 30, the liquid hydrocarbon is synthesized by the FT synthesis reaction, but the present invention is not limited to a powerful example. Examples of synthesis reactions in bubble column reactors include oxo synthesis (hydroformyl ミ ル reaction) “R • CH = CH + CO + H → R-CH CH CHO”, methanol synthesis “CO + 2H → CH 2 O
2 2 2 2 2 3 2 2 2 2 2 3
H」、ジメチルエーテル(DME)合成「3CO + 3H→CH〇CH + CO」などにも適 H ”, suitable for dimethyl ether (DME) synthesis“ 3CO + 3H → CH ○ CH + CO ”
2 3 3 2  2 3 3 2
用すること力 sできる。  Power to use s.
[0074] また、上記実施形態では、水素利用反応装置として、脱硫反応器 10、 WAX分水 素化分解反応器 50、灯油 ·軽油留分水素化精製反応器 52、ナフサ留分水素化精 製反応器 54の例を挙げたが、力かる例に限定されず、液体燃料合成システムにお いて水素ガスを利用して所定反応を行う装置であれば、上記以外の任意の装置であ つてよい。具体的には、水素利用反応装置は、例えば、燃料電池、ナフタレンの水素 化反応けフタレン→デカリン)を行う装置、芳香族炭化水素 (ベンゼン)の水素化反 応 (ベンゼン→シクロへキサンなど)を行う装置、或いは、不飽和脂肪酸への水素添 加反応を行う装置などであってもよい。 [0074] Further, in the above-described embodiment, the desulfurization reactor 10, WAX diversion is used as the hydrogen-utilizing reactor. Examples of hydrocracking reactor 50, kerosene / light oil fraction hydrotreating reactor 52, and naphtha fraction hydrotreating reactor 54 were given, but the examples are not limited to powerful examples. Any apparatus other than those described above may be used as long as the apparatus performs a predetermined reaction using hydrogen gas. Specifically, hydrogen-based reactors include, for example, fuel cells, naphthalene hydrogenation reactors (phthalene → decalin), aromatic hydrocarbon (benzene) hydrogenation reactions (benzene → cyclohexane, etc.) Or a device for performing a hydrogenation reaction on an unsaturated fatty acid.
[0075] また、上記実施形態では、合成ガスを液体炭化水素に合成する反応器として、気 泡塔型スラリー床式反応器を用いたが、本発明は力かる例に限定されず、例えば、 固定床式反応器などを用いて FT合成反応を行ってもよい。 [0075] In the above embodiment, a bubble column type slurry bed type reactor is used as a reactor for synthesizing synthesis gas into liquid hydrocarbons, but the present invention is not limited to a powerful example. The FT synthesis reaction may be performed using a fixed bed reactor or the like.
産業上の利用可能性  Industrial applicability
[0076] 本発明は、炭化水素原料を改質して一酸化炭素ガス及び水素ガスを主成分とする 合成ガスを生成する改質器と、前記合成ガスに含まれる一酸化炭素ガス及び水素ガ ス力 液体炭化水素を合成する反応器と、前記改質器で生成された合成ガスに含ま れる水素ガスを利用して所定反応を行う水素利用反応装置とを備える液体燃料合成 システムの起動方法であって、前記液体燃料合成システムの定常運転時に、前記改 質器で生成された合成ガスに含まれる水素ガスの一部を分離して貯蔵しておき、前 記液体燃料合成システムの起動時に、前記水素貯蔵装置に貯蔵された水素ガスを 前記水素利用反応装置に供給する液体燃料合成システムの起動方法に関する。 本発明の液体燃料合成システムの起動方法によれば、水素利用反応装置を迅速 に起動させて、生産効率を向上させることができる。 [0076] The present invention includes a reformer for reforming a hydrocarbon raw material to generate a synthesis gas mainly composed of carbon monoxide gas and hydrogen gas, and a carbon monoxide gas and a hydrogen gas contained in the synthesis gas. A method for starting a liquid fuel synthesis system comprising: a reactor that synthesizes liquid hydrocarbons; and a hydrogen-based reaction device that performs a predetermined reaction using hydrogen gas contained in the synthesis gas generated by the reformer. Then, during steady operation of the liquid fuel synthesis system, a part of hydrogen gas contained in the synthesis gas generated by the reformer is separated and stored, and when the liquid fuel synthesis system is started up, The present invention relates to a method for starting a liquid fuel synthesis system that supplies hydrogen gas stored in the hydrogen storage device to the hydrogen-utilizing reactor. According to the start-up method of the liquid fuel synthesis system of the present invention, it is possible to quickly start the hydrogen-utilizing reactor and improve the production efficiency.

Claims

請求の範囲 The scope of the claims
[1] 炭化水素原料を改質して一酸化炭素ガス及び水素ガスを主成分とする合成ガスを 生成する改質器と、前記合成ガスに含まれる一酸化炭素ガス及び水素ガス力 液体 炭化水素を合成する反応器と、前記改質器で生成された合成ガスに含まれる水素ガ スを利用して所定反応を行う水素利用反応装置とを備える液体燃料合成システムの 起動方法であって、  [1] A reformer that reforms a hydrocarbon raw material to generate synthesis gas mainly composed of carbon monoxide gas and hydrogen gas, and carbon monoxide gas and hydrogen gas power contained in the synthesis gas. Liquid hydrocarbon A method for starting a liquid fuel synthesis system comprising: a reactor for synthesizing a hydrogen gas; and a hydrogen-based reaction device that performs a predetermined reaction using hydrogen gas contained in the synthesis gas generated by the reformer,
前記液体燃料合成システムの定常運転時に、前記改質器で生成された合成ガス に含まれる水素ガスの一部を分離して貝宁蔵しておき、  During steady operation of the liquid fuel synthesizing system, a part of hydrogen gas contained in the synthesis gas generated by the reformer is separated and stored in shellfish.
前記液体燃料合成システムの起動時に、前記水素貯蔵装置に貯蔵された水素ガ スを前記水素利用反応装置に供給する液体燃料合成システムの起動方法。  A method for starting a liquid fuel synthesizing system, wherein the hydrogen gas stored in the hydrogen storage device is supplied to the hydrogen-using reaction device when the liquid fuel synthesizing system is started.
[2] 前記水素利用反応装置は、前記反応器で合成された液体炭化水素を水素化する 水素化反応器、または、前記改質器に供給される炭化水素原料を水添脱硫する脱 硫反応器のうちの少なくともいずれ力 4つを含む請求項 1に記載の液体燃料合成シス テムの起動方法。  [2] The hydrogen-utilizing reactor is a hydrogenation reactor that hydrogenates liquid hydrocarbons synthesized in the reactor, or a desulfurization reaction that hydrodesulfurizes a hydrocarbon raw material supplied to the reformer. 2. The method for starting a liquid fuel synthesis system according to claim 1, comprising at least four of the vessels.
[3] 前記水素ガスは、圧力変動吸着法、水素吸蔵合金吸着法または膜分離法のうちの 少なくともいずれかの方法によって分離される請求項 1に記載の液体燃料合成シス テムの起動方法。  [3] The method for starting the liquid fuel synthesis system according to claim 1, wherein the hydrogen gas is separated by at least one of a pressure fluctuation adsorption method, a hydrogen storage alloy adsorption method, and a membrane separation method.
[4] 前記反応器は、気泡塔型スラリー床式反応器である請求項 1に記載の液体燃料合 成システムの起動方法。  4. The method for starting a liquid fuel synthesis system according to claim 1, wherein the reactor is a bubble column type slurry bed type reactor.
[5] 炭化水素原料を改質して一酸化炭素ガス及び水素ガスを主成分とする合成ガスを 生成する改質器と; [5] a reformer that reforms a hydrocarbon raw material to generate synthesis gas mainly composed of carbon monoxide gas and hydrogen gas;
前記合成ガスに含まれる一酸化炭素ガス及び水素ガス力 液体炭化水素を合成 する反応器と;  A reactor for synthesizing carbon monoxide gas and hydrogen gas power liquid hydrocarbon contained in the synthesis gas;
前記改質器で生成された合成ガスに含まれる水素ガスを利用して所定反応を行う 水素利用反応装置と;  A hydrogen-based reaction apparatus that performs a predetermined reaction using hydrogen gas contained in the synthesis gas generated by the reformer;
前記改質器で生成された合成ガスに含まれる水素ガスの一部を分離する水素分離 装置と;  A hydrogen separator for separating part of the hydrogen gas contained in the synthesis gas produced by the reformer;
前記水素分離装置により分離された水素ガスを貯蔵する水素貯蔵装置と; 前記液体燃料合成システムの起動時に、前記水素貯蔵装置に貯蔵された水素ガ スを前記水素利用反応装置に供給する制御手段と;を備える液体燃料合成システム A hydrogen storage device for storing hydrogen gas separated by the hydrogen separation device; Control means for supplying hydrogen gas stored in the hydrogen storage device to the hydrogen-using reaction device when the liquid fuel synthesis system is activated.
[6] 前記水素利用反応装置は、前記反応器で合成された液体炭化水素を水素化する 水素化反応器、または、前記改質器に供給される炭化水素原料を水添脱硫する脱 硫反応器のうちの少なくともいずれ力、 1つを含む請求項 5に記載の液体燃料合成シス テム。 [6] The hydrogen-utilizing reactor includes a hydrogenation reactor that hydrogenates liquid hydrocarbons synthesized in the reactor, or a desulfurization reaction that hydrodesulfurizes a hydrocarbon raw material supplied to the reformer. 6. The liquid fuel synthesis system according to claim 5, comprising at least one of the vessels.
[7] 前記水素分離装置は、圧力変動吸着法、水素吸蔵合金吸着法または膜分離法の うちの少なくともいずれかの方法によって水素ガスを分離する請求項 5に記載の液体 燃料合成システム。  7. The liquid fuel synthesis system according to claim 5, wherein the hydrogen separation device separates hydrogen gas by at least one of a pressure fluctuation adsorption method, a hydrogen storage alloy adsorption method, and a membrane separation method.
[8] 前記反応器は、気泡塔型スラリー床式反応器である請求項 5に記載の液体燃料合 成システム。  8. The liquid fuel synthesis system according to claim 5, wherein the reactor is a bubble column type slurry bed type reactor.
PCT/JP2007/056922 2006-03-30 2007-03-29 Method for start-up of liquid fuel synthesis system, and liquid fuel synthesis system WO2007114276A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008508621A JPWO2007114276A1 (en) 2006-03-30 2007-03-29 Method for starting liquid fuel synthesis system and liquid fuel synthesis system
CN2007800156639A CN101432393B (en) 2006-03-30 2007-03-29 Method for start-up of liquid fuel synthesis system, and liquid fuel synthesis system
AU2007232925A AU2007232925C1 (en) 2006-03-30 2007-03-29 Starting method of liquid fuel synthesizing system, and liquid fuel synthesizing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006096015 2006-03-30
JP2006-096015 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007114276A1 true WO2007114276A1 (en) 2007-10-11

Family

ID=38563544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056922 WO2007114276A1 (en) 2006-03-30 2007-03-29 Method for start-up of liquid fuel synthesis system, and liquid fuel synthesis system

Country Status (7)

Country Link
JP (1) JPWO2007114276A1 (en)
CN (1) CN101432393B (en)
AU (1) AU2007232925C1 (en)
MY (1) MY149999A (en)
RU (1) RU2430954C2 (en)
WO (1) WO2007114276A1 (en)
ZA (1) ZA200808244B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9404050B2 (en) 2010-03-25 2016-08-02 Japan Oil, Gas And Metals National Corporation Startup method for fractionator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296478B2 (en) * 2008-09-30 2013-09-25 Jx日鉱日石エネルギー株式会社 Rectification tower startup method
CA2739198C (en) * 2008-09-30 2014-01-14 Cosmo Oil Co., Ltd. Bubble column reactor and method of controlling bubble column reactor
CN106460208B (en) * 2014-05-26 2020-05-19 太阳火有限公司 Hydrocarbon production plant and method for producing hydrocarbons using renewable electrical energy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503731A (en) * 1998-02-13 2002-02-05 エクソンモービル リサーチ アンド エンジニアリング カンパニー Gas conversion method using hydrogen produced from synthesis gas for catalyst activation and hydrocarbon conversion
JP2002243360A (en) * 2001-02-19 2002-08-28 Air Liquide Japan Ltd Method and facility for producing liquid hydrogen
EP1267432A2 (en) * 2001-06-15 2002-12-18 Chart, Inc. Fuel cell refueling station and system
US6508931B1 (en) * 2000-10-31 2003-01-21 Chinese Petroleum Corporation Process for the production of white oil
US20040181313A1 (en) * 2003-03-15 2004-09-16 Conocophillips Company Managing hydrogen in a gas to liquid plant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020102A (en) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd Method for starting and method for stopping hydrogen producing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503731A (en) * 1998-02-13 2002-02-05 エクソンモービル リサーチ アンド エンジニアリング カンパニー Gas conversion method using hydrogen produced from synthesis gas for catalyst activation and hydrocarbon conversion
US6508931B1 (en) * 2000-10-31 2003-01-21 Chinese Petroleum Corporation Process for the production of white oil
JP2002243360A (en) * 2001-02-19 2002-08-28 Air Liquide Japan Ltd Method and facility for producing liquid hydrogen
EP1267432A2 (en) * 2001-06-15 2002-12-18 Chart, Inc. Fuel cell refueling station and system
US20040181313A1 (en) * 2003-03-15 2004-09-16 Conocophillips Company Managing hydrogen in a gas to liquid plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9404050B2 (en) 2010-03-25 2016-08-02 Japan Oil, Gas And Metals National Corporation Startup method for fractionator

Also Published As

Publication number Publication date
CN101432393B (en) 2013-03-27
ZA200808244B (en) 2010-01-27
MY149999A (en) 2013-11-15
AU2007232925C1 (en) 2011-08-11
JPWO2007114276A1 (en) 2009-08-13
CN101432393A (en) 2009-05-13
RU2008141284A (en) 2010-04-27
AU2007232925B2 (en) 2010-12-09
RU2430954C2 (en) 2011-10-10
AU2007232925A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP5301330B2 (en) Liquid hydrocarbon synthesis method and liquid hydrocarbon synthesis system
WO2007114277A1 (en) Liquid fuel synthesis system
JP5107234B2 (en) Liquid fuel synthesis system
JP5501365B2 (en) Slurry preparation method, slurry preparation apparatus, hydrocarbon synthesis reaction apparatus, and hydrocarbon synthesis reaction system
JP5138586B2 (en) Liquid fuel synthesis system
JP5501366B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis reaction method
JP5417446B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and liquid hydrocarbon recovery method
JP5364716B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis method
WO2007114276A1 (en) Method for start-up of liquid fuel synthesis system, and liquid fuel synthesis system
WO2007114250A1 (en) Liquid fuel synthesis system
JP5743643B2 (en) How to shut down the reaction vessel
JP5364714B2 (en) Liquid fuel synthesis method and liquid fuel synthesis apparatus
JP5364786B2 (en) Catalyst separation system
JP5298133B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740360

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008508621

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007232925

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008141284

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2007232925

Country of ref document: AU

Date of ref document: 20070329

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780015663.9

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 07740360

Country of ref document: EP

Kind code of ref document: A1