WO2007113985A1 - Alkylene oxide adduct, method for production thereof, and surfactant composition - Google Patents

Alkylene oxide adduct, method for production thereof, and surfactant composition Download PDF

Info

Publication number
WO2007113985A1
WO2007113985A1 PCT/JP2007/054636 JP2007054636W WO2007113985A1 WO 2007113985 A1 WO2007113985 A1 WO 2007113985A1 JP 2007054636 W JP2007054636 W JP 2007054636W WO 2007113985 A1 WO2007113985 A1 WO 2007113985A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
alkylene oxide
composite metal
metal oxide
oxide adduct
Prior art date
Application number
PCT/JP2007/054636
Other languages
French (fr)
Japanese (ja)
Inventor
Shingo Uemura
Ryusuke Mitomi
Original Assignee
Lion Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corporation filed Critical Lion Corporation
Priority to JP2008508473A priority Critical patent/JP5203186B2/en
Priority to KR1020087023902A priority patent/KR101367543B1/en
Publication of WO2007113985A1 publication Critical patent/WO2007113985A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2696Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the process or apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/29Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of oxygen-containing functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/22Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
    • C07C69/24Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with monohydroxylic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/58Esters of straight chain acids with eighteen carbon atoms in the acid moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/269Mixed catalyst systems, i.e. containing more than one reactive component or catalysts formed in-situ
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/667Neutral esters, e.g. sorbitan esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • the present invention relates to a method for producing an alkylene oxide adduct using a solid catalyst, an alkylene oxide adduct containing a solid catalyst having a fine particle diameter, and a surface activity containing the alkylene oxide adduct.
  • the agent composition is a solid catalyst, an alkylene oxide adduct containing a solid catalyst having a fine particle diameter, and a surface activity containing the alkylene oxide adduct.
  • Patent Document 1 As a method for improving solid-liquid separation by suppressing the refinement of catalyst particles, an example of improving the method of introducing a catalyst into a reactor (see Patent Document 1) and a reaction system during the reaction There is an example (refer to Patent Document 2) in which the pressure in the inner vapor phase alkylene oxide is kept low.
  • Patent Document 1 JP 2000-51680 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-201151
  • Patent Document 3 Japanese Patent No. 3312883
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-15094
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2005-187415
  • An object of the present invention is to solve the conventional problems and achieve the following objects. That is, the present invention does not require a step of filtering the solid catalyst (solid-liquid separation step) despite the use of a composite metal oxide catalyst that is a solid catalyst, and is excellent in improved production efficiency.
  • the degree of refinement of the catalyst obtained by the conventional technique is up to about 10 m as the catalyst particle diameter. In this case, the sedimentation of the catalyst particles occurred within a few hours, which was far from the required state.
  • the present inventors have found that the above problems can be solved by using a polyhydric alcohol.
  • the reaction of at least the active hydrogen-containing organic compound and the fatty acid alkyl ester with alkylene oxide can reduce the size of the catalyst particles during the reaction. Proceeding remarkably, the catalyst particles are extremely fine to a size that does not need to be treated substantially as particles It can be refined, and it is found that no settling of catalyst particles is confirmed in the product after the reaction, that is, no solid-liquid separation step is required to remove the solid catalyst.
  • the present invention has been completed.
  • the present invention is based on the above knowledge obtained by the present inventor, and means for solving the above problems are as follows. That is,
  • the composite metal oxide catalyst and the polyhydric alcohol are brought into contact with each other under heating and reduced pressure conditions, and then at least one of an active hydrogen-containing organic compound and a fatty acid alkyl ester is reacted with an alkylene oxide.
  • ⁇ 2> A method for producing an alkylene oxide adduct according to any one of ⁇ 2>.
  • ⁇ 4> At least one of the active hydrogen-containing organic compound and the fatty acid alkyl ester, the composite metal oxide catalyst, and the polyhydric alcohol are brought into contact with each other, and then the alkylene oxide is brought into contact with each other to react.
  • ⁇ 3> is the process for producing an alkylene oxide adduct according to any one of the above.
  • V settling rate of composite metal oxide catalyst after reaction (mZh)
  • Sedimentation velocity V of the composite metal Sani ⁇ catalyst after the reaction sought is such that 4. 6 X 10 _5 (mZh) hereinafter in terms of sedimentation speed per hour, mixed metal after reaction
  • ⁇ 6> The method for producing an alkylene oxide adduct according to any one of ⁇ 1> to ⁇ 5>, wherein the polyhydric alcohol is glycerin.
  • ⁇ 7> The method for producing an alkylene oxide adduct according to any one of ⁇ 1> to ⁇ 6>, wherein the composite metal oxide catalyst is a magnesium-based composite metal oxide catalyst.
  • ⁇ 8> The method for producing an alkylene oxide adduct according to any one of ⁇ 1> to ⁇ 7>, wherein the composite metal oxide catalyst has a specific surface area of 50 to 400 m 2 Zg.
  • An alkylene oxide adduct characterized by containing a composite metal oxide catalyst having an average particle size of 2 ⁇ m or less.
  • alkylene oxide adduct according to ⁇ 9> which is obtained by the method for producing an alkylene oxide-attached product according to any one of ⁇ 1> to ⁇ 8>.
  • the conventional problems can be solved and the object can be achieved, and the solid catalyst is filtered despite the use of the composite metal oxide catalyst that is a solid catalyst.
  • a surfactant composition containing the alkylene oxide adduct and excellent in utility can be provided.
  • the process for producing an alkylene oxide adduct of the present invention comprises a composite metal acid which is a solid catalyst. And a step of reacting at least one of active hydrogen-containing organic compound and fatty acid alkyl ester with alkylene oxide in the presence of a polyhydric alcohol, and, if necessary, other processes. Process.
  • the composite metal oxide catalyst is sometimes referred to as “solid catalyst” or simply “catalyst”.
  • the active hydrogen-containing organic compound and the fatty acid alkyl ester (the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester) and the alkylene oxide may be collectively referred to as “reaction raw material”. is there. Further, the alkylene oxide adduct obtained by the reaction of the reaction raw materials may be referred to as “product”.
  • the refinement of the catalyst progresses remarkably, and the sedimentation force S of the catalyst particles in the product after the reaction does not occur. Therefore, according to the method for producing an alkylene oxide adduct of the present invention, production efficiency is improved as a result of not having to perform a solid-liquid separation step for removing catalyst particles in the product. .
  • catalyst refinement refers to the collapse of catalyst particles that can normally occur during the alkylene oxide addition reaction (for example, the accumulation of heat of reaction inside the catalyst particles and the generation of polymer by-products). To a stage where it cannot occur in a known phenomenon (e.g., due to sudden pressure difference, mechanical shearing by a stirring blade, etc.) Means no need to handle as
  • the above-mentioned catalyst miniaturization is caused by the reaction of the polyhydric alcohol causing a temporary inactive state on the surface of the catalyst and then a rapid reaction, thereby promoting and progressing the miniaturization. It is conceivable that. Therefore, as the catalyst capable of remarkably obtaining the catalyst refinement effect, a catalyst having a high catalytic activity and a high catalytic activity up to the inside of the catalyst particles having a large specific surface area is preferable.
  • the composite metal oxide catalyst means two or more metal species. It is the above-mentioned acid catalyst.
  • the composite metal oxide catalyst is not particularly limited and can be appropriately selected according to the purpose.
  • the magnesium-based composite metal oxide catalyst is preferred, the hydroxide metal catalyst is used. Aluminium / magnesium fired product and its surface modification product power At least one non-layered composite selected is particularly preferred.
  • the magnesium-based composite metal oxide catalyst is a composite metal oxide catalyst containing magnesium.
  • the calcined product of aluminum hydroxide and magnesium can be appropriately selected according to the purpose without any limitation, and examples thereof include those described in JP-A-8-268919. Specifically, it is a coprecipitate of hydroxyaluminum and hydroxyammonium represented by the following formula (I), and it can be made into an aluminum magnesium based composite metal oxide catalyst by firing. it can.
  • n can be appropriately selected according to the purpose without any restriction, but about 2.5 is preferred, and m can be appropriately selected according to the purpose without any restriction.
  • the firing temperature is not particularly limited and can be appropriately selected according to the purpose. From the viewpoint of 1S catalytic activity expression and suppression of the amount of by-product produced, 400 to 950 ° C is preferred 400 to 800 ° C is more preferred.
  • the surface modified product of the aluminum hydroxide-aluminum magnesium fired product is not particularly limited and can be appropriately selected according to the purpose.
  • Japanese Patent Application Laid-Open No. 8-169860 Examples include those described in JP-A-8-169861.
  • the calcined hydroxyaluminum / magnesium product can be surface-modified with a metal hydroxide or metal alkoxide to obtain a modified calcined hydroxide / alumina / magnesium catalyst.
  • the metal hydroxides among them, alkali metal or alkaline earth metal hydroxides are preferred, and sodium hydroxide and potassium hydroxide are more preferred.
  • alkali alkoxides or alkaline earth metal alkoxides are preferred, and sodium alkoxides and potassium alkoxides are more preferred.
  • a fatty acid alkyl ester is used as the active hydrogen-containing organic compound and z or fatty acid alkyl ester, the addition metal distribution of the resulting alkylene oxide adduct can be sharpened, so that the composite metal As the oxide catalyst, it is preferable to use a surface modified product of the above-mentioned hydrated aluminum hydroxide 'magnesium'
  • the composite metal oxide catalyst may be used alone or in combination of two or more.
  • the composite metal oxide catalyst is preferably a porous particle in that the catalyst is remarkably refined, and the specific surface area is preferably 50 to 400 m 2 / g. Yes.
  • the amount of the composite metal oxide catalyst used is not particularly limited as long as the reaction proceeds appropriately and the amount of by-products such as polyethylene glycol is within the range where there is no problem. Although it can be suitably selected according to the activity of the catalyst, etc., 0.01 to 1 mass relative to the total mass of the reaction raw materials (the active hydrogen-containing organic compound and Z or fatty acid alkyl ester and the alkylene oxide) % Is preferred 0.05 to 0.2% by mass, more preferred. If the amount of the composite metal oxide catalyst used is less than the preferred range, the reaction does not proceed appropriately, leading to an increase in the reaction process time, which may be uneconomical. In addition, the amount of catalyst is too large, which is uneconomical, adversely affects the amount of by-products, and makes it difficult to make the catalyst finer.
  • the polyhydric alcohol is not particularly limited as long as it has two or more hydroxyl groups in the molecule and the effect of refining the catalyst is obtained.
  • the active hydrogen-containing organic compound and Z or The compound can be appropriately selected from compounds that can be emulsified or dispersed in the fatty acid alkyl ester depending on the purpose, and preferred examples include glycerin, ethylene glycol, and diethylene glycol.
  • polyhydric alcohols derived from alkylene oxide are excluded. Among these, glycerin is particularly preferable.
  • the polyhydric alcohols may be used alone or in combination of two or more.
  • the amount of the polyhydric alcohol used is appropriately selected depending on the purpose without any particular limitation. However, 0.02-0. 5% by mass is preferable based on the total mass of the reaction raw materials (the active hydrogen-containing organic compound and Z or fatty acid alkyl ester and the alkylene oxide). 0.25% by mass is more preferred. Further, 1.0 times or more is preferable with respect to the mass of the composite metal oxide catalyst, and 1.25 times or more is more preferable. If the amount of the polyhydric alcohol used is less than the preferred range, the catalyst may not be refined to a desired degree. In addition, the reaction process time may be extended, which may be uneconomical.
  • the active hydrogen-containing organic compound can be appropriately selected according to the purpose without any particular limitation, and examples thereof include alcohols, amines, amides, phenols, and thiols. Among these, alcohols represented by the following general formula ( ⁇ ) are preferable.
  • R 1 can be appropriately selected according to the performance required for the product to be obtained without particular limitation, and examples thereof include an alkyl group and an alkenyl group. .
  • the alkyl group and alkenyl group may be linear or branched.
  • the number of carbon atoms of the alkyl group and the alkenyl group is not particularly limited.
  • a force that can be appropriately selected according to the purpose 1 to 40 forces S is preferable, 3 to 30 is preferable, and 6 to 22 is particularly preferable. ]
  • the fatty acid alkyl ester is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include those represented by the following general formula (III).
  • R 2 and R 3 can be appropriately selected according to the performance required for the product to be obtained without particular limitation.
  • the carbon number of the alkyl group and the alkenyl group is not particularly limited, and the force R 2 that can be appropriately selected according to the purpose is preferably 1 to 40 force S, more preferably 3 to 30. 6-22 is particularly preferred.
  • R 3 1 to 20 is preferable, 1 to 10 is more preferable, and 1 to 4 is particularly preferable.
  • the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester may be used alone or in combination of two or more.
  • the use amount of the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester is not particularly limited, and the use amount of the product to be obtained, the use of the composite metal oxide catalyst, the polyhydric alcohol, or the alkylene oxide. It can be appropriately selected depending on the amount and the like.
  • the alkylene oxide is not particularly limited as long as it reacts with the active hydrogen-containing organic compound and Z or a fatty acid alkyl ester to obtain an alkylene oxide adduct, and can be appropriately selected according to the purpose.
  • an alkylene oxide having 3 to 8 carbon atoms is preferable, and an alkylene oxide having 3 to 5 carbon atoms is particularly preferable.
  • the alkylene oxides may be used alone or in combination of two or more.
  • the amount of the alkylene oxide to be used is not particularly limited, depending on the type of the active hydrogen-containing organic compound and Z or fatty acid alkyl ester used, the performance required for the product to be obtained, and the like.
  • 1 to 50 mol is preferable, more preferably 3 to 30 monoreca, and particularly preferably 5 to 20 monoreca with respect to 1 mol of the active hydrogen-containing organic compound and Z or fatty acid alkyl ester. Better!/,.
  • alkylene oxide addition reaction method As a method of reacting the alkylene oxide with the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester in the presence of the composite metal oxide catalyst and the polyhydric alcohol (alkylene oxide addition reaction method), there is no particular limitation as long as an effect can be obtained. Force that can be appropriately selected according to the purpose After contacting the composite metal oxide catalyst and the polyhydric alcohol, the active hydrogen-containing organic compound and A method of reacting at least one of the fatty acid alkyl esters with the alkylene oxide is preferable.
  • the composite metal oxide catalyst and the multivalent catalyst The contact with alcohol means that the catalyst and the polyhydric alcohol are brought into contact by adding and mixing the polyhydric alcohol before the reaction between the composite metal oxide catalyst and the alkylene oxide.
  • any method such as addition alone, addition by mixing with the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester, addition by mixing with a catalyst, etc. may be used.
  • the preferable alkylene oxide addition reaction method includes, for example, the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester, the complex metal oxide catalyst, and the polyhydric alcohol, respectively, in advance.
  • the reactor After introducing into the reactor in an amount that falls within the range, charging, stirring, and mixing, the reactor is purged with nitrogen, followed by dehydration under heating and reduced pressure conditions. Next, the temperature and pressure in the reactor can be adjusted, and the alkylene oxide can be introduced (supplied) at a predetermined rate in such an amount as to be within the preferred range.
  • an aging reaction may be further carried out if necessary.
  • the reactor used for the reaction can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a general stirred tank type batch reactor such as an autoclave. It is done.
  • the method for introducing each of the above-described components into the reactor can be appropriately selected according to the purpose without any particular limitation, but particularly for the composite metal oxide catalyst, the reactor
  • the method of sucking and introducing the catalyst in a powder state while reducing the pressure is preferable in terms of further promoting the refinement of the catalyst particles from the generated pressure difference.
  • the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester, the composite metal oxide catalyst, and the polyhydric alcohol are introduced into the reactor and charged, and the reaction is performed while stirring and mixing.
  • the temperature at which the inside of the vessel is purged with nitrogen is not particularly limited, and a force that can be appropriately selected according to the purpose is preferably 0 to 90 ° C, more preferably 20 to 70 ° C. If the temperature is less than the preferred range, the catalyst is poorly fluidized and the physical contact between the polyhydric alcohol and the catalyst is poor. If it exceeds the above preferred range, In addition, the moisture contained in the charged raw material may interact with the surface of the solid catalyst, and the desired catalyst performance may not be obtained.
  • the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester, the composite metal oxide catalyst, and the polyhydric alcohol are charged into the reactor, and the reactor is filled with nitrogen while stirring and mixing.
  • the pressure at the time of replacement can be appropriately selected according to the purpose without any particular limitation.
  • the temperature at which dehydration is performed under heating and reduced pressure conditions can be appropriately selected according to the purpose for which there is no particular limitation.
  • a force of 70 to 150 ° C is preferred, and a temperature of 90 to 130 ° C is more preferred. preferable. If the temperature is less than the above preferred range, a sufficient dehydration effect cannot be obtained, and the remaining water may cause by-product formation or deteriorate the reactivity of the catalyst. When the preferable range is exceeded, the charged raw materials may be distilled out of the reaction system.
  • the pressure at which dehydration is performed under heating and reduced pressure conditions can be appropriately selected according to the purpose for which there is no particular limitation, but is preferably 13 kPa or less, more preferably 4 kPa or less.
  • the upper limit pressure exceeds the preferable range, a sufficient dehydration effect cannot be obtained, and the remaining water may cause by-product formation or may deteriorate the reactivity of the catalyst.
  • the reaction temperature when the alkylene oxide is introduced (supplied) into the reactor and the alkylene oxide addition reaction is performed is not particularly limited, depending on the activity of the catalyst used, etc. Although it can be selected as appropriate, 120 to 230 ° C is preferred, and 150 to 200 ° C is more preferable. If the reaction temperature is less than the preferred range, the reaction activity may be reduced, leading to an extended reaction process time. If the reaction temperature exceeds the preferred range, decomposition of the reaction raw materials and products may occur. is there.
  • the reaction pressure when the alkylene oxide is introduced (supplied) into the reactor and the alkylene oxide addition reaction is performed depends on the reaction temperature, the activity of the catalyst to be used, and the like.
  • the pressure can be appropriately selected within a publicly known range according to the pressure resistance design of the reactor to be used.
  • the upper limit pressure is preferably 0.1 to 2 OMPa, more preferably 0.2 to 1 OMPa.
  • the alkylene oxide is introduced (supplied) into the reactor and the alkylene oxide addition reaction is performed, the alkylene oxide is introduced into the reactor.
  • the speed (supply speed) is not particularly limited, and can be appropriately selected depending on the purpose.
  • the F value represented by the following formula (IV) satisfies the above range from 0.01 to 0.07. It is preferable to control the supply rate Va of the alkylene oxide.
  • Va is the supply rate of the alkylene oxide to be used for the reaction [unit: mol Z min]
  • Mp is the number of moles of the alkylene oxide adduct obtained by the reaction [unit: mol].
  • the reaction process time may be extended, and if the value exceeds the preferred range, the alkylene oxide supply rate exceeds the catalytic activity, and the reactor pressure is preferably the upper limit. In addition to exceeding the value, the amount of by-product high molecular weight polyethylene glycol produced may increase.
  • the glycerin and the like used for the refinement of the catalyst also acts as a modifier on the catalyst surface, and has the effect of suppressing the production of high molecular weight polyethylene glycol as a by-product. As a result, the liquid viscosity of the resulting alkylene oxide adduct can be lowered, and a good effect can be given also in the handling surface. [0040] (Carotenized with alkylene oxide)
  • the composite metal oxide catalyst is substantially Therefore, the catalyst particles do not substantially settle, and are stable over time and can be handled as a liquid.
  • the sedimentation speed of the composite metal oxide catalyst in the alkylene oxide adduct is not particularly limited, and can be appropriately selected according to the purpose.
  • the following Stokes equation is used. :
  • V settling rate of composite metal oxide catalyst after reaction (mZh)
  • the sedimentation rate V of the composite metal oxide catalyst after the reaction determined in (1) is preferably 4.6 X 10 " 5 (m / h) or less in terms of the sedimentation rate per hour. .
  • the sedimentation velocity V is 4.
  • 6 X 10 _5 (mZh) hereinafter the relationship between the physical properties of the product and the physical properties of the fine catalyst particles under storage temperature envisaged, the precipitation of 10cm Since it takes about 3 months (90 days) or more, when the carbonate with alkylene oxide is handled as a liquid, there is substantially no problem of sedimentation of the composite metal oxide catalyst.
  • the storage temperature is not lower than the melting point of the alkylene oxide adduct to be stored and not higher than 80 ° C., preferably not lower than room temperature and not higher than 60 ° C.
  • the average particle diameter D p (m) of the composite metal oxide catalyst in the alkylene oxide adduct is not particularly limited and may be appropriately selected depending on the intended purpose, but 2 ⁇ The following is preferred: L m or less is more preferred 0.6 m or less is particularly preferred. When the average particle diameter exceeds 2 m, sedimentation of the composite metal oxide catalyst may become a problem in the alkylene oxide adduct.
  • the average particle diameter Dp (m) of the composite metal oxide catalyst after the reaction can be measured by, for example, the method described in Examples described later.
  • the present invention also relates to an alkylene oxide adduct characterized by containing a composite metal oxide catalyst having an average particle diameter of 2 ⁇ m or less.
  • the alkylene oxide adduct of the present invention can be preferably obtained by the production method of the alkylene oxide adduct of the present invention.
  • the alkylene oxide adduct of the present invention Since the composite metal oxide catalyst in the alkylene oxide adduct of the present invention is extremely refined to a size that is substantially not required to be handled as particles, the alkylene oxide adduct is used. Is stable over time, and does not cause catalyst particle settling during storage, transport, etc., and can be handled as a liquid.
  • the alkylene oxide adduct of the present invention contains the composite metal oxide catalyst, when used as various surfactant compositions, as described later, antibacterial properties, lubricity, It has advantages in terms of residual fragrance and the like.
  • a magnesium-based composite metal oxide catalyst such as an aluminum hydroxide / magnesium fired product is used as the composite metal oxide catalyst.
  • the amount of by-products such as polyethylene glycol in the alkylene oxide adduct becomes very small and the liquid viscosity becomes low, so that the handling is excellent.
  • the alkylene oxide adduct can be used as various surfactant compositions in fields such as household use, industrial use, and agricultural use.
  • the surfactant composition is suitable as a cleaning agent, an emulsifier, a dispersant, an oil phase component modifier, a penetrant, a used paper deinking agent, an agricultural spreading agent, and the like.
  • the surfactant composition contains the alkylene oxide adduct, and further contains other components as necessary. [0047] Products with alkylene oxide>
  • the content of the alkylene oxide adduct in the surfactant composition is not particularly limited, and a force that can be appropriately selected according to the purpose is 0.1 to 80% by mass, preferably 1 to 60% by mass. 2 to 40% by mass is particularly preferable.
  • the other components can be appropriately selected according to the purpose without any particular limitation, and examples thereof include surfactants such as an anionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • surfactants such as an anionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • the anionic surfactant can be appropriately selected according to the purpose without any particular limitation, and examples thereof include carboxylic acid type surfactants, sulfate type surfactants, sulfonic acid type surfactants, and phosphate esters. Type surfactants and the like.
  • the cationic surfactant can be appropriately selected according to the purpose without any particular limitation.
  • higher amine salt higher alkyl (or alkenyl) quaternary ammonium salt, higher alkyl (or alkke).
  • -Le Pyridium quaternary ammonia salt.
  • amphoteric surfactant can be appropriately selected according to the purpose without any particular limitation.
  • alkylbetaine surfactant alkylamide betaine surfactant, imidazoline surfactant, alkylamino
  • examples thereof include sulfonic acid type surfactants, alkylaminocarboxylic acid type surfactants, alkylamide carboxylate type surfactants, amidoamino acid type surfactants, and phosphoric acid type surfactants.
  • oily components polymers, silicones, detergent builders, enzymes, anti-staining agents, bleaching agents, fluorescent agents, fragrances, dyes, solvents, hair conditioning agents
  • various additives such as ultraviolet absorbers, bactericides, preservatives, anti-dandruff agents, pastes, idrotropes, emulsions, thickeners, zeolites, phosphates, sulfates and sulfites.
  • the content of the other components in the surfactant composition is not particularly limited.
  • the alkylene oxide adduct in the surfactant composition as described above,
  • the composite metal oxide catalyst is stably contained in a state of being miniaturized to such an extent that the problem of sedimentation of the catalyst does not occur.
  • the composite metal oxide catalyst is stably contained in the alkylene oxide adduct, for example, when the surfactant composition is used as a cleaning agent, it is derived from the metal oxide. Since antibacterial properties can be obtained, the use of preservatives incorporated in the cleaning agent can be reduced, and lubrication can be obtained by entering submicron-order fine particles into the gaps in the fibers of clothing that is to be cleaned. In addition, it is possible to prevent wrinkles due to fiber warp and the like and to impart flexibility.
  • the fragrance can be retained in the crystal structure of the composite metal oxide catalyst, it is possible to impart a long-lasting effect to the cleaning agent, and chlorine ions in tap water can be added to the crystal structure when washing clothes. Since it can be trapped, the ability to prevent clothing from fading is another advantage.
  • the surfactant composition is particularly suitable as a cleaning agent.
  • a Kiyoword 300 manufactured by Kagaku Kogyo Co., Ltd. was calcined at 800 ° C. for 3 hours to obtain a magnesium-aluminum composite metal oxide catalyst powder. At this time, the average particle diameter of the catalyst particles (before the reaction) was 75 ⁇ m. The specific surface area was 270 m 2 / g.
  • the upper limit of the reaction pressure was 0.3 MPa, and 1,361 g (30.9 mol) of ethylene oxide (Mitsubishi Chemical Co., Ltd.) was added as described above.
  • the mixture was cooled and extracted to obtain fatty acid polyoxyethylene lauryl ether as a product (alkylene oxide adduct).
  • Example 1 As a catalyst, 0.9 g of the composite metal oxide catalyst described in Example 1, 0.12 g of 40% by weight potassium hydroxide aqueous solution (KOH pure content 0.8 mmol), and 0.9 g of glycerin as a polyhydric alcohol. Fatty acid polyoxyethylene lauryl ether was obtained as a product in the same manner as in Example 1 except that it was used. However, since the reaction pressure reached the upper limit (0.3 MPa) during the reaction, the introduction rate of ethylene oxide was appropriately adjusted.
  • Example 2 As a catalyst, 3.6 g of the composite metal oxide catalyst described in Example 1, 0.48 g of 40% by mass potassium hydroxide aqueous solution (pure KOH content: 3.2 millimonoles), and 4.5 g of glycerin as a polyhydric alcohol. Fatty acid polyoxyethylene lauryl ether was obtained as a product in the same manner as in Example 1 except that it was used.
  • a catalyst As a catalyst, 0.9 g of the mixed metal oxide catalyst described in Example 1, 0.12 g of 40% by mass aqueous potassium hydroxide solution (0.8 mmol of KOH), and ethylene glycol (polyhydric alcohol) ( Fatty acid polyoxyethylene lauryl ether was obtained as a product in the same manner as in Example 1 except that 4.5 g of Kanto Chemical Co., Ltd. was used. However, since the reaction pressure reached the upper limit (0.3 MPa) during the reaction, the introduction rate of ethylene oxide was appropriately adjusted.
  • a catalyst As a catalyst, 0.9 g of the mixed metal oxide catalyst described in Example 1, 0.12 g of 40% by weight aqueous potassium hydroxide solution (0.8 mmol of KOH), diethylene glycol (Kanto) as the polyhydric alcohol Fatty acid polyoxyethylene lauryl ether was obtained as a product in the same manner as in Example 1 except that 4.5 g of Chemical Co., Ltd. was used. However, since the reaction pressure reached the upper limit (0.3 MPa) during the reaction, the introduction rate of ethylene oxide was appropriately adjusted.
  • Methyl oleate in 4L autoclave (Lion Chemical's Pastel M181) The 570 g (l. 9 mol), 40 mass 0/0 Mizusani ⁇ aqueous potassium. . 23 g (KOH pure content: 1.6 mmol), 1.8 g of the composite metal oxide catalyst described in Example 1 and 2.25 g of dallyserine as a polyhydric alcohol were charged, and nitrogen was added to the autoclave while stirring and mixing. Then, the temperature was raised and dehydration was performed at 100 ° C under reduced pressure (1.33 kPa or less) for 30 minutes. Then 180.
  • Fatty acid polyoxyethylene lauryl ether was obtained as a product in the same manner as in Example 1 except that glycerin, which is a polyhydric alcohol, was not used.
  • Fatty acid polyoxyethylene lauryl ether was obtained as a product in the same manner as in Example 2 except that glycerin, which is a polyhydric alcohol, was not used. However, as in Example 2, since the reaction pressure reached the upper limit (0.3 MPa) during the reaction, the introduction rate of ethylene oxide was appropriately adjusted.
  • Fatty acid polyoxyethylene polyoxypropylene glycol ether was obtained as a product in the same manner as in Example 6 except that glycerin, which is a polyhydric alcohol, was not used.
  • a polyoxyethylene lauryl myristyl ether was obtained as a product in the same manner as in Example 7 except that glycerin, which is a polyhydric alcohol, was not used.
  • Table 1 shows reaction conditions (reaction raw materials, catalyst concentration, polyhydric alcohol concentration), catalyst properties (true specific gravity, pre-reaction catalyst average particle size, post-reaction catalyst average particle size) in each Example and Comparative Example. ) And evaluation results of catalyst refinement (sedimentation rate, sedimentation suppression degree).
  • Table 2 shows the reactivity (alkylene oxide (AO) supply time, amount of by-products) and product properties (viscosity, specific gravity) in each Example and Comparative Example.
  • AO alkylene oxide
  • the pre-reaction catalyst average particle size and the post-reaction catalyst average particle size were measured using a laser light scattering particle size distribution analyzer under the following conditions. The median diameter based on the number was calculated.
  • Dispersion medium Acetonitrile
  • symbol in the said stochastic formula shows the following meaning, respectively.
  • V settling rate of composite metal oxide catalyst after reaction (mZh)
  • PP specific gravity of the composite metal oxide catalyst after reaction (kgZm 3 )
  • P specific gravity of the resulting alkylene oxide adduct (kg / m 3 )
  • sedimentation velocity 4. is 6 X 10- 5 (m / h ) or less (no problem substantially the degree of sedimentation). X: (there is a problem to the degree of sedimentation) that sedimentation rate is more than 4. 6 X 10 _5 (mZh) .
  • the viscosity of the product was measured under the following conditions.
  • the true specific gravity of the catalyst was measured under the following conditions by a pressure comparison method using a gas phase substitution method (pitometer method).
  • Measuring device True density measuring device (micro pycnometer)
  • Carrier gas He gas
  • Standard oil analysis method 2 The specific gravity of the product was measured using a specific gravity bottle with a thermometer according to 1996 “Specific gravity”.
  • the solid catalyst when the product is handled as a liquid, the solid catalyst can be substantially treated without performing the step of filtering the solid catalyst (solid-liquid separation step). It was confirmed that the sedimentation rate of the catalyst particles can be delayed to the extent that no problem occurs, that is, the catalyst particles can be extremely refined (to 2 m or less). Also, by comparing Example 2 with Examples 4-5, when using a polyhydric alcohol other than glycerin, use more polyhydric alcohol to obtain the desired sedimentation rate. It was confirmed that it was necessary to do.
  • a magnesium-based catalyst such as a magnesium aluminum composite metal oxide catalyst as a catalyst is used.
  • a composite metal oxide catalyst it is also possible to suppress the production of high molecular weight polyethylene glycol, which is a by-product, and thus an alkylene oxide adduct having a low liquid viscosity and excellent handling is obtained. It was confirmed that it was possible.
  • the alkylene oxide adduct obtained by the method for producing an alkylene oxide adduct can be used as various surfactant compositions in fields such as household use, industrial use, and agricultural use.
  • the surfactant composition is suitable as, for example, a detergent, an emulsifier, a dispersant, an oil phase component modifier, a penetrating agent, a waste paper recycling deinking agent, an agricultural spreading agent, and the like. Particularly suitable as a cleaning agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Disclosed is an excellent method for production of an alkylene oxide adduct which, despite using a composite metal oxide catalyst which is a solid catalyst, does not need any step for filtrating the solid catalyst (a solid-liquid separation step), and which has improved production efficiency. Also disclosed is an alkylene oxide adduct containing a composite metal oxide catalyst having a very fine particle size. Further disclosed is a surfactant composition which contains the alkylene oxide adduct and is excellent in applicability. The method for production of an alkylene oxide adduct comprises reacting at least one of an organic compound having an active hydrogen and a fatty acid alkyl ester with an alkylene oxide in the presence of a composite metal oxide catalyst and a polyhydric alcohol.

Description

明 細 書  Specification
アルキレンオキサイド付加物及びその製造方法、並びに界面活性剤組成 物  Alkylene oxide adduct, method for producing the same, and surfactant composition
技術分野  Technical field
[0001] 本発明は、固体触媒を用いたアルキレンオキサイド付加物の製造方法、微細な粒 子径を有する固体触媒を含有したアルキレンオキサイド付加物、及び、前記アルキレ ンオキサイド付加物を含有した界面活性剤組成物に関する。  [0001] The present invention relates to a method for producing an alkylene oxide adduct using a solid catalyst, an alkylene oxide adduct containing a solid catalyst having a fine particle diameter, and a surface activity containing the alkylene oxide adduct. The agent composition.
背景技術  Background art
[0002] 固体触媒を用いてアルキレンオキサイド付加物を製造する場合、従来広く行われて いる触媒懸濁式の反応形態においては、反応後の生成物から触媒を除去するため の、固—液分離工程が必須である。この固—液分離工程を工業上実用的に行うこと は、非常に難易度の高いものであるため、その負荷軽減や改善などについて、これ まで様々な提案がなされてきた。  [0002] When an alkylene oxide adduct is produced using a solid catalyst, in the conventional catalyst suspension type reaction form, solid-liquid separation is used to remove the catalyst from the product after the reaction. A process is essential. Since this solid-liquid separation process is practically difficult to carry out industrially, various proposals have been made to reduce or improve the load.
[0003] 例えば、触媒粒子の微細化を抑制することで固 液分離性を改善する方法として、 反応器への触媒の導入方法を改善する例 (特許文献 1参照)や、反応時の反応系内 気相部アルキレンオキサイド圧力を低く抑える例 (特許文献 2参照)などがある。 [0003] For example, as a method for improving solid-liquid separation by suppressing the refinement of catalyst particles, an example of improving the method of introducing a catalyst into a reactor (see Patent Document 1) and a reaction system during the reaction There is an example (refer to Patent Document 2) in which the pressure in the inner vapor phase alkylene oxide is kept low.
また、固-液分離性を悪化させる副生物の生成量の低減や活性剤の流動性向上 等によって、固—液分離性を改善した例 (特許文献 3〜5参照)などもある。  In addition, there are examples in which the solid-liquid separability is improved by reducing the amount of by-product that deteriorates the solid-liquid separability and improving the fluidity of the activator (see Patent Documents 3 to 5).
[0004] 前記従来技術は!、ずれも、被濾過物である触媒粒子及び副生物を、濾過がし易 ヽ 状態に制御することで課題解決を図ったものであるが、依然として、固—液分離工程 自体は必須であった。 [0004] The above prior art is intended to solve the problem by controlling the catalyst particles and by-products, which are to be filtered, to be in a state where they can be easily filtered. The separation process itself was essential.
したがって、更なるアルキレンオキサイド付加物の生産効率の向上が求められてお り、具体的には、固 液分離工程を必要としない、アルキレンオキサイド付加物の製 造方法の開発が課題となっていた。  Therefore, further improvement in production efficiency of alkylene oxide adducts has been demanded. Specifically, development of a method for producing alkylene oxide adducts that does not require a solid-liquid separation process has been an issue. .
[0005] 特許文献 1 :特開 2000— 51680号公報 Patent Document 1: JP 2000-51680 A
特許文献 2:特開 2002— 201151号公報  Patent Document 2: Japanese Patent Laid-Open No. 2002-201151
特許文献 3 :特許第 3312883号公報 特許文献 4:特開 2000 - 15094号公報 Patent Document 3: Japanese Patent No. 3312883 Patent Document 4: Japanese Patent Laid-Open No. 2000-15094
特許文献 5 :特開 2005— 187415号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2005-187415
発明の開示  Disclosure of the invention
[0006] 本発明は、前記従来における諸問題を解決し、以下の目的を達成することを課題と する。即ち、本発明は、固体触媒である複合金属酸ィ匕物触媒を用いるにもかかわら ず、前記固体触媒を濾過する工程(固 液分離工程)を必要としない、生産効率の 改善された、優れたアルキレンオキサイド付加物の製造方法、及び、微細な粒子径を 有する複合金属酸化物触媒を含有したアルキレンオキサイド付加物、並びに、前記 アルキレンオキサイド付加物を含有した、利用性に優れた界面活性剤組成物を提供 することを目的とする。  [0006] An object of the present invention is to solve the conventional problems and achieve the following objects. That is, the present invention does not require a step of filtering the solid catalyst (solid-liquid separation step) despite the use of a composite metal oxide catalyst that is a solid catalyst, and is excellent in improved production efficiency. A method for producing an alkylene oxide adduct, an alkylene oxide adduct containing a composite metal oxide catalyst having a fine particle diameter, and a surfactant composition containing the alkylene oxide adduct and having excellent usability The purpose is to provide goods.
[0007] 本発明者らは、前記課題であった、固体触媒を用いつつも固 液分離工程を必要 としないアルキレンオキサイド付加物の製造方法を考案するにあたり、触媒粒子を実 質的に粒子として扱う必要のない大きさまで、極度に微細化させることができれば、 触媒粒子の沈降や凝集が発生しないため、課題解決につながると発想した。  [0007] In devising a method for producing an alkylene oxide adduct that uses the solid catalyst but does not require a solid-liquid separation step, the present inventors have practically used catalyst particles as particles. The idea was that if the size could be reduced to a size that does not need to be handled, the catalyst particles would not settle or agglomerate.
[0008] 従来の技術で得られる触媒の微細化度合いは、前記特許文献 2などの例によれば 、触媒粒子径として 10 m程度までであり、このような粒子径では、反応生成物中に おいて数時間で触媒粒子の沈降が発生してしまうことから、求められる状態とは程遠 いものであった。  [0008] According to the example of Patent Document 2 and the like, the degree of refinement of the catalyst obtained by the conventional technique is up to about 10 m as the catalyst particle diameter. In such a particle diameter, In this case, the sedimentation of the catalyst particles occurred within a few hours, which was far from the required state.
一方、機械力などによる手段を用い、反応前に触媒粒子を物理的に破砕すること で目標とする微細化状態を得る方法につ!ヽては、特殊な設備を導入することの経済 的な不利益力 実施する意義が失われてしまうこと、極度に微細化した触媒粒子を 適切に取り扱うのが困難であること、反応前の微細化は外的環境に対する活性点の 曝露が促進され触媒性能が失われる懸念があること、など力 適切ではな 、。  On the other hand, using a means such as mechanical force, it is economical to introduce special equipment for the method of obtaining the desired refined state by physically crushing the catalyst particles before the reaction. Disadvantages The significance of implementation is lost, it is difficult to properly handle extremely refined catalyst particles, and refinement before reaction promotes the exposure of active sites to the external environment, thereby improving catalyst performance. There are concerns that it will be lost, etc. Power is appropriate, etc.
[0009] そこで本発明者らは、鋭意検討した結果、多価アルコールの使用によって、前記課 題を解決できることを見出した。つまり、複合金属酸化物触媒及び多価アルコールの 存在下で、活性水素含有有機化合物及び脂肪酸アルキルエステルの少なくとも!ヽず れカとアルキレンオキサイドとを反応させることにより、反応時に触媒粒子の微細化が 著しく進行して、触媒粒子を実質的に粒子として扱う必要のない大きさまで極度に微 細化させることができ、反応後の生成物中での触媒粒子の沈降が全く確認されなくな ること、即ち、固体触媒を除去するための固 液分離工程を必要としなくなることを見 出し、本発明を完成させるに至った。 [0009] Therefore, as a result of intensive studies, the present inventors have found that the above problems can be solved by using a polyhydric alcohol. In other words, in the presence of the composite metal oxide catalyst and the polyhydric alcohol, the reaction of at least the active hydrogen-containing organic compound and the fatty acid alkyl ester with alkylene oxide can reduce the size of the catalyst particles during the reaction. Proceeding remarkably, the catalyst particles are extremely fine to a size that does not need to be treated substantially as particles It can be refined, and it is found that no settling of catalyst particles is confirmed in the product after the reaction, that is, no solid-liquid separation step is required to remove the solid catalyst. The present invention has been completed.
本発明は、本発明者による前記知見に基づくものであり、前記課題を解決するため の手段としては、以下の通りである。即ち、  The present invention is based on the above knowledge obtained by the present inventor, and means for solving the above problems are as follows. That is,
< 1 > 複合金属酸化物触媒及び多価アルコールの存在下で、活性水素含有有 機化合物及び脂肪酸アルキルエステルの少なくとも ヽずれかと、アルキレンォキサイ ドとを反応させるアルキレンオキサイド付加物の製造方法である。  <1> A method for producing an alkylene oxide adduct in which at least one of an active hydrogen-containing organic compound and a fatty acid alkyl ester is reacted with an alkylene oxide in the presence of a composite metal oxide catalyst and a polyhydric alcohol. .
< 2 > 複合金属酸化物触媒と多価アルコールとを接触させた後に、活性水素含 有有機化合物及び脂肪酸アルキルエステルの少なくとも ヽずれかと、アルキレンォキ サイドとを反応させる前記 < 1 >に記載のアルキレンオキサイド付加物の製造方法で ある。  <2> After contacting the composite metal oxide catalyst with the polyhydric alcohol, at least one of the active hydrogen-containing organic compound and the fatty acid alkyl ester is reacted with the alkylene oxide according to the above <1>. This is a method for manufacturing an adduct.
< 3 > 複合金属酸化物触媒と多価アルコールとを加熱減圧条件下で接触させた 後に、活性水素含有有機化合物及び脂肪酸アルキルエステルの少なくともいずれか と、アルキレンオキサイドとを反応させる前記 < 1 >から < 2 >のいずれかに記載のァ ルキレンオキサイド付加物の製造方法である。  <3> From the above <1>, the composite metal oxide catalyst and the polyhydric alcohol are brought into contact with each other under heating and reduced pressure conditions, and then at least one of an active hydrogen-containing organic compound and a fatty acid alkyl ester is reacted with an alkylene oxide. <2> A method for producing an alkylene oxide adduct according to any one of <2>.
< 4 > 活性水素含有有機化合物及び脂肪酸アルキルエステルの少なくとも 、ず れか、複合金属酸化物触媒、並びに、多価アルコールを接触させた後に、アルキレ ンオキサイドを接触させて反応させる前記く 1 >から < 3 >の 、ずれかに記載のアル キレンオキサイド付加物の製造方法である。  <4> At least one of the active hydrogen-containing organic compound and the fatty acid alkyl ester, the composite metal oxide catalyst, and the polyhydric alcohol are brought into contact with each other, and then the alkylene oxide is brought into contact with each other to react. <3> is the process for producing an alkylene oxide adduct according to any one of the above.
< 5 > 以下の、スト一タスの式:  <5> The following storus formula:
V= l/18 - ( p p - p ) g/ μ - Dp2 (スト一タスの式) V = l / 18-(pp-p) g / μ-Dp 2 (Stortus equation)
[前記スト一タスの式中、  [In the stoichiometric formula,
V= 反応後の複合金属酸化物触媒の沈降速度 (mZh)、  V = settling rate of composite metal oxide catalyst after reaction (mZh),
P P = 反応後の複合金属酸化物触媒の比重 (kgZm3)、 PP = specific gravity of the composite metal oxide catalyst after reaction (kgZm 3 ),
P = 得られたアルキレンオキサイド付加物の比重 (kg/m3)、 P = specific gravity of the resulting alkylene oxide adduct (kg / m 3 ),
g= 重力加速度 (mZs2)、 g = gravitational acceleration (mZs 2 ),
μ = 得られたアルキレンオキサイド付加物の粘度 (kgZm · s)、 Dp= 反応後の複合金属酸化物触媒の平均粒子径 (m) μ = viscosity of the resulting alkylene oxide adduct (kgZm Dp = Average particle diameter of the composite metal oxide catalyst after reaction (m)
を示す]  Show]
で求められる反応後の複合金属酸ィ匕物触媒の沈降速度 Vが、 1時間あたりの沈降速 度に換算して 4. 6 X 10_5 (mZh)以下となるように、反応後の複合金属酸化物触媒 の平均粒子径 Dpが制御される前記 < 1 >から <4>のいずれかに記載のアルキレン オキサイド付加物の製造方法である。 Sedimentation velocity V of the composite metal Sani匕物catalyst after the reaction sought is such that 4. 6 X 10 _5 (mZh) hereinafter in terms of sedimentation speed per hour, mixed metal after reaction The method for producing an alkylene oxide adduct according to any one of <1> to <4>, wherein an average particle diameter Dp of the oxide catalyst is controlled.
< 6 > 多価アルコールがグリセリンである前記く 1 >から < 5 >の!、ずれかに記載 のアルキレンオキサイド付加物の製造方法である。  <6> The method for producing an alkylene oxide adduct according to any one of <1> to <5>, wherein the polyhydric alcohol is glycerin.
< 7> 複合金属酸ィ匕物触媒がマグネシウム系複合金属酸ィ匕物触媒である前記 < 1 >から < 6 >のいずれかに記載のアルキレンオキサイド付加物の製造方法である。  <7> The method for producing an alkylene oxide adduct according to any one of <1> to <6>, wherein the composite metal oxide catalyst is a magnesium-based composite metal oxide catalyst.
< 8 > 複合金属酸ィ匕物触媒の比表面積が 50〜400m2Zgである前記く 1 >から < 7 >の 、ずれかに記載のアルキレンオキサイド付加物の製造方法である。 <8> The method for producing an alkylene oxide adduct according to any one of <1> to <7>, wherein the composite metal oxide catalyst has a specific surface area of 50 to 400 m 2 Zg.
< 9 > 平均粒子径が 2 μ m以下である複合金属酸化物触媒を含有することを特 徴とするアルキレンオキサイド付加物である。  <9> An alkylene oxide adduct characterized by containing a composite metal oxide catalyst having an average particle size of 2 μm or less.
< 10> 前記 < 1 >から < 8 >のいずかに記載のアルキレンオキサイド付カ卩物の製 造方法により得られる前記く 9 >に記載のアルキレンオキサイド付加物である。 く 11 > 前記く 9 >からく 10 >の!、ずれかに記載のアルキレンオキサイド付カロ物 を含有することを特徴とする界面活性剤組成物である。  <10> The alkylene oxide adduct according to <9>, which is obtained by the method for producing an alkylene oxide-attached product according to any one of <1> to <8>. [10] A surfactant composition characterized by containing the alkylene oxide-containing caroten described in any one of [9] to [9] to [10].
く 12 > 洗浄剤である前記く 11 >に記載の界面活性剤組成物である。  <12> The surfactant composition according to <11>, which is a cleaning agent.
[0011] 本発明によれば、前記従来における諸問題を解決し、前記目的を達成することが でき、固体触媒である複合金属酸ィ匕物触媒を用いるにもかかわらず、前記固体触媒 を濾過する工程(固 液分離工程)を必要としな 、、生産効率の改善されたアルキレ ンオキサイド付加物の製造方法、及び、微細な粒子径を有する複合金属酸化物触媒 を含有したアルキレンオキサイド付加物、並びに、前記アルキレンオキサイド付加物 を含有した、利用性に優れた界面活性剤組成物を提供することができる。 According to the present invention, the conventional problems can be solved and the object can be achieved, and the solid catalyst is filtered despite the use of the composite metal oxide catalyst that is a solid catalyst. An alkylene oxide adduct containing a composite metal oxide catalyst having a fine particle size, and a production method of an alkylene oxide adduct with improved production efficiency, which does not require a step for solid-liquid separation (solid-liquid separation step), In addition, a surfactant composition containing the alkylene oxide adduct and excellent in utility can be provided.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] (アルキレンオキサイド付加物の製造方法) [0012] (Method for producing alkylene oxide adduct)
本発明のアルキレンオキサイド付加物の製造方法は、固体触媒である複合金属酸 化物触媒、及び、多価アルコールの存在下で、活性水素含有有機化合物及び脂肪 酸アルキルエステルの少なくとも!/、ずれかと、アルキレンオキサイドとを反応させるェ 程を含み、更に必要に応じて、その他の工程を含む。 The process for producing an alkylene oxide adduct of the present invention comprises a composite metal acid which is a solid catalyst. And a step of reacting at least one of active hydrogen-containing organic compound and fatty acid alkyl ester with alkylene oxide in the presence of a polyhydric alcohol, and, if necessary, other processes. Process.
[0013] く用語 > [0013] Terms>
なお、本明細書中において、前記複合金属酸化物触媒を、「固体触媒」、又は、単 に「触媒」と称することがある。また、前記活性水素含有有機化合物及び脂肪酸アル キルエステルの少なくともいずれか (活性水素含有有機化合物及び Z又は脂肪酸ァ ルキルエステル)と、前記アルキレンオキサイドとを総称して、「反応原料」と称すること がある。また、前記反応原料の反応により得られるアルキレンオキサイド付加物を、「 生成物」と称することがある。  In the present specification, the composite metal oxide catalyst is sometimes referred to as “solid catalyst” or simply “catalyst”. In addition, at least one of the active hydrogen-containing organic compound and the fatty acid alkyl ester (the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester) and the alkylene oxide may be collectively referred to as “reaction raw material”. is there. Further, the alkylene oxide adduct obtained by the reaction of the reaction raw materials may be referred to as “product”.
[0014] 複合金属酸化物触媒及び多価アルコールの存在下で、活性水素含有有機化合物 及び Z又は脂肪酸アルキルエステルとアルキレンオキサイドとの反応を行うことにより [0014] By reacting an active hydrogen-containing organic compound and Z or a fatty acid alkyl ester with an alkylene oxide in the presence of a composite metal oxide catalyst and a polyhydric alcohol.
、反応時に触媒の微細化が著しく進行し、反応後の生成物中での触媒粒子の沈降 力 S起こらなくなる。したがって、本発明のアルキレンオキサイド付加物の製造方法によ れば、生成物中の触媒粒子を除去するための固 液分離工程を行う必要が無ぐ結 果として、生産効率が向上することとなる。 During the reaction, the refinement of the catalyst progresses remarkably, and the sedimentation force S of the catalyst particles in the product after the reaction does not occur. Therefore, according to the method for producing an alkylene oxide adduct of the present invention, production efficiency is improved as a result of not having to perform a solid-liquid separation step for removing catalyst particles in the product. .
なお、前記した「触媒の微細化」とは、アルキレンオキサイド付加反応時に、通常起 こり得る触媒粒子の崩壊 (例えば、触媒粒子内部での反応熱の蓄積や高分子副生 物の生成を原因とするもの、急激な圧力差の発生によるもの、撹拌翼等による機械的 な剪断によるものなどの、既知の現象)では起こり得ない段階まで、極度に微細化を 進行させ、実質的に触媒を粒子として取り扱う必要がない状態にすることを意味する  The above-mentioned “catalyst refinement” refers to the collapse of catalyst particles that can normally occur during the alkylene oxide addition reaction (for example, the accumulation of heat of reaction inside the catalyst particles and the generation of polymer by-products). To a stage where it cannot occur in a known phenomenon (e.g., due to sudden pressure difference, mechanical shearing by a stirring blade, etc.) Means no need to handle as
[0015] <複合金属酸化物触媒 > [0015] <Composite metal oxide catalyst>
前記した触媒の微細化は、前記多価アルコールの働きにより、触媒表面に一時的 に不活性な状態が生じた後、急激に反応が進行することによって、微細化が促進、 進行しておこるものと考えられる。そのため、前記触媒微細化効果が顕著に得られる 触媒としては、触媒活性が高ぐまた、比表面積が大きぐ触媒粒子内部まで高い触 媒活性を有するものが好ましい。ここで、複合金属酸化物触媒とは、金属種が 2種以 上の酸ィ匕物触媒のことである。 The above-mentioned catalyst miniaturization is caused by the reaction of the polyhydric alcohol causing a temporary inactive state on the surface of the catalyst and then a rapid reaction, thereby promoting and progressing the miniaturization. it is conceivable that. Therefore, as the catalyst capable of remarkably obtaining the catalyst refinement effect, a catalyst having a high catalytic activity and a high catalytic activity up to the inside of the catalyst particles having a large specific surface area is preferable. Here, the composite metal oxide catalyst means two or more metal species. It is the above-mentioned acid catalyst.
[0016] したがって、前記複合金属酸化物触媒としては、特に制限はなぐ 目的に応じて適 宜選択することができるが、マグネシウム系複合金属酸ィ匕物触媒が好ましぐ中でも、 水酸ィ匕アルミニウム ·マグネシウム焼成物、及びその表面改質物力 選択される少な くとも 1種の非層状ィ匕合物が特に好ましい。ここで、マグネシウム系複合金属酸ィ匕物 触媒とは、マグネシウムを含有する複合金属酸化物触媒のことである。  [0016] Therefore, the composite metal oxide catalyst is not particularly limited and can be appropriately selected according to the purpose. However, even though the magnesium-based composite metal oxide catalyst is preferred, the hydroxide metal catalyst is used. Aluminium / magnesium fired product and its surface modification product power At least one non-layered composite selected is particularly preferred. Here, the magnesium-based composite metal oxide catalyst is a composite metal oxide catalyst containing magnesium.
[0017] 前記水酸ィ匕アルミニウム 'マグネシウム焼成物としては、特に制限はなぐ 目的に応 じて適宜選択することができ、例えば、特開平 8— 268919号公報に記載のものなど が挙げられる。具体的には、下記式 (I)で表される水酸ィ匕アルミニウムと水酸ィ匕マグ ネシゥムとの共沈物であり、焼成によりアルミニウム マグネシウム系複合金属酸ィ匕 物触媒とすることができる。  [0017] The calcined product of aluminum hydroxide and magnesium can be appropriately selected according to the purpose without any limitation, and examples thereof include those described in JP-A-8-268919. Specifically, it is a coprecipitate of hydroxyaluminum and hydroxyammonium represented by the following formula (I), and it can be made into an aluminum magnesium based composite metal oxide catalyst by firing. it can.
nMgO -Al O ·πιΗ O (I)  nMgO -Al O · πιΗ O (I)
2 3 2  2 3 2
[前記式 (I)中、 nは特に制限はなぐ 目的に応じて適宜選択することができるが、 2. 5程度が好ましぐ mは特に制限はなぐ 目的に応じて適宜選択することができる。 ] ここで、前記焼成温度は、特に制限はなぐ 目的に応じて適宜選択することができる 1S 触媒活性発現と副生物の生成量抑制の点から、 400〜950°Cが好ましぐ 400 〜800°Cがより好ましい。  [In the formula (I), n can be appropriately selected according to the purpose without any restriction, but about 2.5 is preferred, and m can be appropriately selected according to the purpose without any restriction. . Here, the firing temperature is not particularly limited and can be appropriately selected according to the purpose. From the viewpoint of 1S catalytic activity expression and suppression of the amount of by-product produced, 400 to 950 ° C is preferred 400 to 800 ° C is more preferred.
なお、前記特開平 8— 268919号公報における前記水酸ィ匕アルミニウム ·マグネシ ゥム焼成物についての記載は、本明細書の記載内容に含まれるものとする。  Note that the description of the sintered aluminum hydroxide / magnesium in JP-A-8-268919 is included in the description of the present specification.
[0018] また、前記水酸ィ匕アルミニウム 'マグネシウム焼成物の表面改質物としては、特に制 限はなく、 目的に応じて適宜選択することができ、例えば、特開平 8— 169860号公 報、特開平 8— 169861号公報に記載のものなどが挙げられる。具体的には、前記 水酸ィ匕アルミニウム ·マグネシウム焼成物を、金属水酸ィ匕物又は金属アルコキシドで 表面改質して、改質焼成水酸ィ匕アルミナ ·マグネシウム触媒とすることができる。前記 金属水酸化物としては、アルカリ金属又はアルカリ土類金属の水酸化物が好ましぐ 中でも、水酸化ナトリウム、水酸ィ匕カリウムがより好ましい。前記金属アルコキシドとし ては、アルカリ金属又はアルカリ土類金属のアルコキシドが好ましぐ中でも、ナトリウ ムアルコキシド、カリウムアルコキシドがより好まし 、。 なお、前記活性水素含有有機化合物及び z又は脂肪酸アルキルエステルとして脂 肪酸アルキルエステルを用いる場合には、得られるアルキレンオキサイド付加物の付 加モル分布をシャープにすることができる点で、前記複合金属酸化物触媒として前 記水酸ィ匕アルミニウム 'マグネシウム焼成物の表面改質物を使用することが好ましい [0018] The surface modified product of the aluminum hydroxide-aluminum magnesium fired product is not particularly limited and can be appropriately selected according to the purpose. For example, Japanese Patent Application Laid-Open No. 8-169860, Examples include those described in JP-A-8-169861. Specifically, the calcined hydroxyaluminum / magnesium product can be surface-modified with a metal hydroxide or metal alkoxide to obtain a modified calcined hydroxide / alumina / magnesium catalyst. Among the metal hydroxides, among them, alkali metal or alkaline earth metal hydroxides are preferred, and sodium hydroxide and potassium hydroxide are more preferred. Among the metal alkoxides, alkali alkoxides or alkaline earth metal alkoxides are preferred, and sodium alkoxides and potassium alkoxides are more preferred. In the case where a fatty acid alkyl ester is used as the active hydrogen-containing organic compound and z or fatty acid alkyl ester, the addition metal distribution of the resulting alkylene oxide adduct can be sharpened, so that the composite metal As the oxide catalyst, it is preferable to use a surface modified product of the above-mentioned hydrated aluminum hydroxide 'magnesium'
[0019] 前記複合金属酸化物触媒は、 1種単独で使用してもよいし、 2種以上を併用しても よい。 [0019] The composite metal oxide catalyst may be used alone or in combination of two or more.
また、前記複合金属酸化物触媒としては、触媒の微細化が顕著に起こる点で、多 孔質粒子であることが好ましぐまた、比表面積が 50〜400m2/gであることが好まし い。 In addition, the composite metal oxide catalyst is preferably a porous particle in that the catalyst is remarkably refined, and the specific surface area is preferably 50 to 400 m 2 / g. Yes.
[0020] 前記複合金属酸化物触媒の使用量としては、反応が適切に進行し、ポリエチレン グリコール等の副生物の生成量が問題の無い範囲内となる量であれば、特に制限は なぐ使用する触媒の活性等に応じて適宜選択することができるが、前記反応原料( 前記活性水素含有有機化合物及び Z又は脂肪酸アルキルエステルと、前記アルキ レンオキサイド)の総質量に対し、 0. 01〜1質量%が好ましぐ 0. 05〜0. 2質量% 力 り好ましい。前記複合金属酸化物触媒の使用量が、前記好ましい範囲未満であ ると、反応が適切に進行せず、反応工程時間の延長に繋がるため不経済となること があり、前記好ましい範囲を超えると、触媒量が多すぎ、不経済である他、副生物量 に悪影響を及ぼしたり、触媒の微細化が起こりづらくなることがある。  [0020] The amount of the composite metal oxide catalyst used is not particularly limited as long as the reaction proceeds appropriately and the amount of by-products such as polyethylene glycol is within the range where there is no problem. Although it can be suitably selected according to the activity of the catalyst, etc., 0.01 to 1 mass relative to the total mass of the reaction raw materials (the active hydrogen-containing organic compound and Z or fatty acid alkyl ester and the alkylene oxide) % Is preferred 0.05 to 0.2% by mass, more preferred. If the amount of the composite metal oxide catalyst used is less than the preferred range, the reaction does not proceed appropriately, leading to an increase in the reaction process time, which may be uneconomical. In addition, the amount of catalyst is too large, which is uneconomical, adversely affects the amount of by-products, and makes it difficult to make the catalyst finer.
[0021] <多価アルコール >  [0021] <Polyhydric alcohol>
前記多価アルコールとしては、水酸基を分子内に 2基以上有し、かつ、前記触媒を 微細化する効果が得られるものであれば特に制限はなぐ例えば、前記活性水素含 有有機化合物及び Z又は脂肪酸アルキルエステルに乳化又は分散均一化できる化 合物の中から目的に応じて適宜選択することができ、グリセリン、エチレングリコール 、ジエチレングリコールなどが好ましく挙げられる。ただし、アルキレンオキサイド起源 の多価アルコールを除く。これらの中でも、グリセリンが特に好ましい。  The polyhydric alcohol is not particularly limited as long as it has two or more hydroxyl groups in the molecule and the effect of refining the catalyst is obtained. For example, the active hydrogen-containing organic compound and Z or The compound can be appropriately selected from compounds that can be emulsified or dispersed in the fatty acid alkyl ester depending on the purpose, and preferred examples include glycerin, ethylene glycol, and diethylene glycol. However, polyhydric alcohols derived from alkylene oxide are excluded. Among these, glycerin is particularly preferable.
前記多価アルコールは、 1種単独で使用してもよいし、 2種以上を併用してもよい。  The polyhydric alcohols may be used alone or in combination of two or more.
[0022] 前記多価アルコールの使用量は、特に制限はなぐ 目的に応じて適宜選択すること 力できるが、前記反応原料 (前記活性水素含有有機化合物及び Z又は脂肪酸アル キルエステルと、前記アルキレンオキサイド)の総質量に対し、 0. 02-0. 5質量%が 好ましぐ 0. 05-0. 25質量%がより好ましい。また、前記複合金属酸化物触媒の質 量に対し、 1. 0倍以上が好ましぐ 1. 25倍以上がより好ましい。前記多価アルコール の使用量が、前記好ましい範囲未満であると、所望の程度の触媒の微細化が起こら ないことがあり、前記好ましい範囲を超えると、反応初期の触媒活性発現に長時間を 有し、反応工程時間の延長につながることから、不経済となることがある。 [0022] The amount of the polyhydric alcohol used is appropriately selected depending on the purpose without any particular limitation. However, 0.02-0. 5% by mass is preferable based on the total mass of the reaction raw materials (the active hydrogen-containing organic compound and Z or fatty acid alkyl ester and the alkylene oxide). 0.25% by mass is more preferred. Further, 1.0 times or more is preferable with respect to the mass of the composite metal oxide catalyst, and 1.25 times or more is more preferable. If the amount of the polyhydric alcohol used is less than the preferred range, the catalyst may not be refined to a desired degree. In addition, the reaction process time may be extended, which may be uneconomical.
[0023] <活性水素含有有機化合物及び Z又は脂肪酸アルキルエステル > <Active hydrogen-containing organic compound and Z or fatty acid alkyl ester>
活性水素含有有機化合物  Active hydrogen-containing organic compounds
前記活性水素含有有機化合物としては、特に制限はなぐ 目的に応じて適宜選択 することができ、例えば、アルコール類、アミン類、アミド類、フエノール類、チオール 類などが挙げられる。これらの中でも、下記一般式 (Π)で表されるアルコール類が、 好ましい。  The active hydrogen-containing organic compound can be appropriately selected according to the purpose without any particular limitation, and examples thereof include alcohols, amines, amides, phenols, and thiols. Among these, alcohols represented by the following general formula (Π) are preferable.
R'OH (II)  R'OH (II)
[前記一般式 (Π)中、 R1は、特に制限はなぐ得ようとする生成物に要求される性能 等に応じて適宜選択することができ、例えば、アルキル基、アルケニル基などが挙げ られる。前記アルキル基、アルケニル基は、直鎖であってもよいし、分岐鎖を有してい てもよい。前記アルキル基、ァルケ-ル基の炭素数も、特に制限はなぐ 目的に応じ て適宜選択することができる力 1〜40力 S好ましく、 3〜30が好ましぐ 6〜22が特に 好ましい。 ] [In the general formula (Π), R 1 can be appropriately selected according to the performance required for the product to be obtained without particular limitation, and examples thereof include an alkyl group and an alkenyl group. . The alkyl group and alkenyl group may be linear or branched. The number of carbon atoms of the alkyl group and the alkenyl group is not particularly limited. A force that can be appropriately selected according to the purpose 1 to 40 forces S is preferable, 3 to 30 is preferable, and 6 to 22 is particularly preferable. ]
[0024] 脂肪酸アルキルエステル [0024] Fatty acid alkyl ester
前記脂肪酸アルキルエステルとしては、特に制限はなぐ 目的に応じて適宜選択す ることができ、例えば、下記一般式 (III)で表されるものなどが挙げられる。  The fatty acid alkyl ester is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include those represented by the following general formula (III).
R2COOR3 (III) R 2 COOR 3 (III)
[前記一般式 (m)中、 R2及び R3は、特に制限はなぐ得ようとする生成物に要求され る性能等に応じて適宜選択することができ、例えば、アルキル基、ァルケ-ル基など が挙げられる。前記アルキル基、ァルケ-ル基の炭素数も、特に制限はなぐ 目的に 応じて適宜選択することができる力 R2については、 1〜40力 S好ましく、 3〜30がより 好ましぐ 6〜22が特に好ましい。 R3については、 1〜20が好ましぐ 1〜10がより好 ましぐ 1〜4が特に好ましい。 ] [In the general formula (m), R 2 and R 3 can be appropriately selected according to the performance required for the product to be obtained without particular limitation. For example, an alkyl group, an alkenyl group, and the like. Group and the like. The carbon number of the alkyl group and the alkenyl group is not particularly limited, and the force R 2 that can be appropriately selected according to the purpose is preferably 1 to 40 force S, more preferably 3 to 30. 6-22 is particularly preferred. As for R 3 , 1 to 20 is preferable, 1 to 10 is more preferable, and 1 to 4 is particularly preferable. ]
前記活性水素含有有機化合物及び Z又は前記脂肪酸アルキルエステルは、 1種 単独で使用してもよいし、 2種以上を併用してもよい。  The active hydrogen-containing organic compound and Z or the fatty acid alkyl ester may be used alone or in combination of two or more.
[0025] 前記活性水素含有有機化合物及び Z又は前記脂肪酸アルキルエステルの使用量 は、特に制限はなぐ得ようとする生成物量や、前記複合金属酸化物触媒、前記多 価アルコール、前記アルキレンオキサイドの使用量等に応じて、適宜選択することが できる。 [0025] The use amount of the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester is not particularly limited, and the use amount of the product to be obtained, the use of the composite metal oxide catalyst, the polyhydric alcohol, or the alkylene oxide. It can be appropriately selected depending on the amount and the like.
[0026] <ァノレキレン才キサイド >  [0026] <Anorekiren talented side>
前記アルキレンオキサイドとしては、前記活性水素含有有機化合物及び Z又は脂 肪酸アルキルエステルと反応してアルキレンオキサイド付加物が得られるものであれ ば、特に制限はなぐ 目的に応じて適宜選択することができるが、炭素数 3〜8のアル キレンオキサイドが好ましく、炭素数 3〜5のアルキレンオキサイドが特に好まし 、。 前記アルキレンオキサイドは、 1種単独で使用してもよいし、 2種以上を併用してもよ い。  The alkylene oxide is not particularly limited as long as it reacts with the active hydrogen-containing organic compound and Z or a fatty acid alkyl ester to obtain an alkylene oxide adduct, and can be appropriately selected according to the purpose. However, an alkylene oxide having 3 to 8 carbon atoms is preferable, and an alkylene oxide having 3 to 5 carbon atoms is particularly preferable. The alkylene oxides may be used alone or in combination of two or more.
[0027] 前記アルキレンオキサイドの使用量は、特に制限はなぐ使用する前記活性水素含 有有機化合物及び Z又は脂肪酸アルキルエステルの種類、得ようとする生成物に要 求される性能等に応じて適宜選択することができるが、前記活性水素含有有機化合 物及び Z又は脂肪酸アルキルエステルの使用量 1モルに対して、 1〜 50モルが好ま しく、 3〜30モノレカより好ましく、 5〜20モノレカ特に好まし!/、。  [0027] The amount of the alkylene oxide to be used is not particularly limited, depending on the type of the active hydrogen-containing organic compound and Z or fatty acid alkyl ester used, the performance required for the product to be obtained, and the like. 1 to 50 mol is preferable, more preferably 3 to 30 monoreca, and particularly preferably 5 to 20 monoreca with respect to 1 mol of the active hydrogen-containing organic compound and Z or fatty acid alkyl ester. Better!/,.
[0028] <反応 >  [0028] <Reaction>
前記複合金属酸化物触媒及び多価アルコールの存在下、前記活性水素含有有機 化合物及び Z又は前記脂肪酸アルキルエステルと、前記アルキレンオキサイドとを 反応させる方法 (アルキレンオキサイド付加反応方法)としては、本発明の効果が得ら れるものであれば特に制限はなぐ 目的に応じて適宜選択することができる力 前記 複合金属酸化物触媒と前記多価アルコールとを接触させた後に、前記活性水素含 有有機化合物及び脂肪酸アルキルエステルの少なくとも 、ずれかと、前記アルキレ ンオキサイドとを反応させる方法が好ましい。ここで、複合金属酸化物触媒と多価ァ ルコールとの接触とは、多価アルコールを複合金属酸ィ匕物触媒とアルキレンォキサイ ドとの反応前に添加し、混合することにより、触媒と多価アルコールとを接触させること であり、添加方法は特に制限はなぐ単独で添加、前記活性水素含有有機化合物及 び Z又は前記脂肪酸アルキルエステルと混合して添加、触媒と混合して添加等、い ずれの方法を用いてもよい。 As a method of reacting the alkylene oxide with the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester in the presence of the composite metal oxide catalyst and the polyhydric alcohol (alkylene oxide addition reaction method), There is no particular limitation as long as an effect can be obtained. Force that can be appropriately selected according to the purpose After contacting the composite metal oxide catalyst and the polyhydric alcohol, the active hydrogen-containing organic compound and A method of reacting at least one of the fatty acid alkyl esters with the alkylene oxide is preferable. Here, the composite metal oxide catalyst and the multivalent catalyst The contact with alcohol means that the catalyst and the polyhydric alcohol are brought into contact by adding and mixing the polyhydric alcohol before the reaction between the composite metal oxide catalyst and the alkylene oxide. There is no particular limitation on the method, and any method such as addition alone, addition by mixing with the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester, addition by mixing with a catalyst, etc. may be used.
前記好ましいアルキレンオキサイド付加反応方法は、具体的には、例えば、予め前 記活性水素含有有機化合物及び Z又は前記脂肪酸アルキルエステル、前記複合 金属酸化物触媒、並びに、前記多価アルコールを、それぞれ前記好ましい範囲内と なるような量で、反応器内に導入して仕込み、攪拌、混合しながら前記反応器内を窒 素で置換した後、加熱減圧条件下で脱水を行う。次いで、前記反応器内の温度及び 圧力を調整し、前記アルキレンオキサイドを、前記好ましい範囲内となるような量で、 所定の速度で導入 (供給)することにより、行うことができる。  Specifically, the preferable alkylene oxide addition reaction method includes, for example, the active hydrogen-containing organic compound and Z or the fatty acid alkyl ester, the complex metal oxide catalyst, and the polyhydric alcohol, respectively, in advance. After introducing into the reactor in an amount that falls within the range, charging, stirring, and mixing, the reactor is purged with nitrogen, followed by dehydration under heating and reduced pressure conditions. Next, the temperature and pressure in the reactor can be adjusted, and the alkylene oxide can be introduced (supplied) at a predetermined rate in such an amount as to be within the preferred range.
また、前記アルキレンオキサイドの導入後、更に、必要に応じて、熟成反応を行って ちょい。  Further, after the introduction of the alkylene oxide, an aging reaction may be further carried out if necessary.
[0029] 前記反応に使用する反応器としては、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、オートクレープ等の、一般的な撹拌槽型回分式の反応器など が挙げられる。  [0029] The reactor used for the reaction can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a general stirred tank type batch reactor such as an autoclave. It is done.
[0030] 前記した各成分の前記反応器への導入方法としては、特に制限はなぐ目的に応 じて適宜選択することができるが、特に前記複合金属酸ィ匕物触媒については、前記 反応器を減圧にした状態で、前記触媒を粉体の状態のまま吸引して導入する方法が 、発生する圧力差から触媒粒子の微細化が更に促進される点で、好ましい。  [0030] The method for introducing each of the above-described components into the reactor can be appropriately selected according to the purpose without any particular limitation, but particularly for the composite metal oxide catalyst, the reactor The method of sucking and introducing the catalyst in a powder state while reducing the pressure is preferable in terms of further promoting the refinement of the catalyst particles from the generated pressure difference.
[0031] 前記活性水素含有有機化合物及び Z又は前記脂肪酸アルキルエステル、前記複 合金属酸化物触媒、並びに、前記多価アルコールを前記反応器内に導入して仕込 み、攪拌、混合しながら前記反応器内を窒素置換する際の温度は、特に制限はなく 、目的に応じて適宜選択することができる力 0〜90°Cが好ましぐ 20〜70°Cがより 好ましい。前記温度が、前記好ましい範囲未満であると、仕込んだ原料の流動化状 態が悪ぐ触媒と多価アルコールとの物理的接触が不十分となるために、所望の程 度の触媒の微細化が起こりづらくなることがあり、前記好ましい範囲を超えると、高温 下、仕込んだ原料中に含まれる水分が固体触媒表面と相互作用を起こし、所望の触 媒性能が得られなくなることがある。 [0031] The active hydrogen-containing organic compound and Z or the fatty acid alkyl ester, the composite metal oxide catalyst, and the polyhydric alcohol are introduced into the reactor and charged, and the reaction is performed while stirring and mixing. The temperature at which the inside of the vessel is purged with nitrogen is not particularly limited, and a force that can be appropriately selected according to the purpose is preferably 0 to 90 ° C, more preferably 20 to 70 ° C. If the temperature is less than the preferred range, the catalyst is poorly fluidized and the physical contact between the polyhydric alcohol and the catalyst is poor. If it exceeds the above preferred range, In addition, the moisture contained in the charged raw material may interact with the surface of the solid catalyst, and the desired catalyst performance may not be obtained.
[0032] 前記活性水素含有有機化合物及び Z又は前記脂肪酸アルキルエステル、前記複 合金属酸化物触媒、並びに、前記多価アルコールを前記反応器内に仕込み、攪拌 、混合しながら前記反応器内を窒素置換する際の圧力は、特に制限はなぐ目的に 応じて適宜選択することができる。  [0032] The active hydrogen-containing organic compound and Z or the fatty acid alkyl ester, the composite metal oxide catalyst, and the polyhydric alcohol are charged into the reactor, and the reactor is filled with nitrogen while stirring and mixing. The pressure at the time of replacement can be appropriately selected according to the purpose without any particular limitation.
[0033] また、加熱減圧条件下で脱水を行う際の温度は、特に制限はなぐ目的に応じて適 宜選択することができる力 70〜150°Cが好ましぐ 90〜130°Cがより好ましい。前 記温度が、前記好ましい範囲未満であると、十分な脱水効果が得られず、残った水 分が副生物生成の原因となったり、触媒の反応性を悪化させたりすることがあり、前 記好ましい範囲を超えると、仕込んだ原料が反応系外に留出してしまうことがある。  [0033] In addition, the temperature at which dehydration is performed under heating and reduced pressure conditions can be appropriately selected according to the purpose for which there is no particular limitation. A force of 70 to 150 ° C is preferred, and a temperature of 90 to 130 ° C is more preferred. preferable. If the temperature is less than the above preferred range, a sufficient dehydration effect cannot be obtained, and the remaining water may cause by-product formation or deteriorate the reactivity of the catalyst. When the preferable range is exceeded, the charged raw materials may be distilled out of the reaction system.
[0034] 加熱減圧条件下で脱水を行う際の圧力は、特に制限はなぐ目的に応じて適宜選 択することができるが、 13kPa以下が好ましぐ 4kPa以下がより好ましい。前記上限 圧が、前記好ましい範囲を超えると、十分な脱水効果が得られず、残った水分が副 生物生成の原因となったり、触媒の反応性を悪化させたりすることがある。  [0034] The pressure at which dehydration is performed under heating and reduced pressure conditions can be appropriately selected according to the purpose for which there is no particular limitation, but is preferably 13 kPa or less, more preferably 4 kPa or less. When the upper limit pressure exceeds the preferable range, a sufficient dehydration effect cannot be obtained, and the remaining water may cause by-product formation or may deteriorate the reactivity of the catalyst.
[0035] また、前記アルキレンオキサイドを前記反応器内に導入 (供給)して、前記アルキレ ンオキサイド付加反応を行う際の反応温度は、特に制限はなぐ使用する触媒の活 性等に応じて、適宜選択することができるが、 120〜230°Cが好ましぐ 150〜200°C 力 り好ましい。前記反応温度が、前記好ましい範囲未満であると、反応活性が低く なり、反応工程時間の延長に繋がることがあり、前記好ましい範囲を超えると、反応原 料や生成物の分解が発生する恐れがある。  [0035] Further, the reaction temperature when the alkylene oxide is introduced (supplied) into the reactor and the alkylene oxide addition reaction is performed is not particularly limited, depending on the activity of the catalyst used, etc. Although it can be selected as appropriate, 120 to 230 ° C is preferred, and 150 to 200 ° C is more preferable. If the reaction temperature is less than the preferred range, the reaction activity may be reduced, leading to an extended reaction process time. If the reaction temperature exceeds the preferred range, decomposition of the reaction raw materials and products may occur. is there.
[0036] また、前記アルキレンオキサイドを前記反応器内に導入 (供給)して、前記アルキレ ンオキサイド付加反応を行う際の反応圧力は、特に制限はなぐ反応温度、使用する 触媒の活性等に応じて、また、上限圧という意味では、使用する反応器の耐圧設計 等に応じて、通常実施されている公知の範囲内で、適宜選択することができる。例え ば、上限圧として、 0. 1〜2. OMPaが好ましぐ 0. 2〜1. OMPaがより好ましい。  [0036] Further, the reaction pressure when the alkylene oxide is introduced (supplied) into the reactor and the alkylene oxide addition reaction is performed depends on the reaction temperature, the activity of the catalyst to be used, and the like. Moreover, in the meaning of the upper limit pressure, the pressure can be appropriately selected within a publicly known range according to the pressure resistance design of the reactor to be used. For example, the upper limit pressure is preferably 0.1 to 2 OMPa, more preferably 0.2 to 1 OMPa.
[0037] また、前記アルキレンオキサイドを前記反応器内に導入 (供給)して、前記アルキレ ンオキサイド付加反応を行う際の、前記反応器への前記アルキレンオキサイドの導入 速度 (供給速度)は、特に制限はなぐ 目的に応じて適宜選択することができるが、下 記式 (IV)で示される Fの値が 0. 01〜0. 07を満足するように、前記アルキレンォキ サイドの供給速度 Vaを制御することが好まし 、。 [0037] In addition, when the alkylene oxide is introduced (supplied) into the reactor and the alkylene oxide addition reaction is performed, the alkylene oxide is introduced into the reactor. The speed (supply speed) is not particularly limited, and can be appropriately selected depending on the purpose. However, the F value represented by the following formula (IV) satisfies the above range from 0.01 to 0.07. It is preferable to control the supply rate Va of the alkylene oxide.
F=Va/Mp (IV)  F = Va / Mp (IV)
[前記式 (IV)中、 Vaは反応に供するアルキレンオキサイドの供給速度 [単位:モル Z 分]であり、 Mpは反応によって得られたアルキレンオキサイド付加物のモル数 [単位: モル]である。 ]  [In the formula (IV), Va is the supply rate of the alkylene oxide to be used for the reaction [unit: mol Z min], and Mp is the number of moles of the alkylene oxide adduct obtained by the reaction [unit: mol]. ]
前記 Fの値が、前記好ましい範囲未満であると、反応工程時間の延長に繋がること があり、前記好ましい範囲を超えると、アルキレンオキサイドの供給速度が触媒活性 を上回り、反応器内圧力が好ましい上限値を超えてしまうことがある他、副生物である 高分子量のポリエチレングリコールの生成量が増加してしまうことがある。  If the value of F is less than the preferred range, the reaction process time may be extended, and if the value exceeds the preferred range, the alkylene oxide supply rate exceeds the catalytic activity, and the reactor pressure is preferably the upper limit. In addition to exceeding the value, the amount of by-product high molecular weight polyethylene glycol produced may increase.
[0038] 以上のようなアルキレンオキサイド付加物の製造方法によれば、固体触媒である複 合金属酸ィ匕物触媒を用いながらも、該触媒を実質的に粒子として扱う必要のない大 きさにまで極度に微細化することが可能なため、経時的に安定なアルキレンォキサイ ド付加物を、濾過工程(固—液分離工程)無しに得ることができる。そのため、結果と して、効率良くアルキレンオキサイド付加物を製造することが可能となる。  [0038] According to the method for producing an alkylene oxide adduct as described above, it is not necessary to treat the catalyst substantially as particles while using a composite metal oxide catalyst that is a solid catalyst. Therefore, it is possible to obtain an alkylene oxide adduct that is stable over time without a filtration step (solid-liquid separation step). As a result, an alkylene oxide adduct can be produced efficiently.
[0039] また、前記複合金属酸化物触媒として、水酸化アルミニウム ·マグネシウム焼成物等 のマグネシウム系複合金属酸ィ匕物触媒を用いた場合には、触媒の微細化の副次効 果として、単位触媒質量あたりの触媒活性が向上するという効果もある。これは、触媒 が微細化することによって、従来の反応方法では活性に寄与しなかった触媒表面ま でが活性点として露出し、結果として触媒有効係数が増加した形で、触媒活性の向 上に繋がったものと推察される。  [0039] Further, when a magnesium-based composite metal oxide catalyst such as an aluminum hydroxide / magnesium fired product is used as the composite metal oxide catalyst, as a secondary effect of catalyst miniaturization, unit There is also an effect that the catalytic activity per catalyst mass is improved. This is because, as the catalyst becomes finer, the surface of the catalyst, which did not contribute to the activity in the conventional reaction method, is exposed as an active point, and as a result, the catalyst effectiveness factor is increased, thereby improving the catalyst activity. Inferred to be connected.
また、前記複合金属酸化物触媒として、水酸ィ匕アルミニウム 'マグネシウム焼成物等 のマグネシウム系複合金属酸ィ匕物触媒を用いた場合には、触媒の微細化のために 使用したグリセリン等の前記多価アルコールが、触媒表面の改質剤としても働き、副 生物である高分子量のポリエチレングリコールの生成を抑制できるという効果もある。 その結果、得られるアルキレンオキサイド付加物の液粘性を低下させることができ、ハ ンドリング面でも良好な効果を与えることができる。 [0040] (アルキレンオキサイド付カロ物) Further, when a magnesium-based composite metal oxide catalyst such as a hydroxide-aluminum 'magnesium fired product is used as the composite metal oxide catalyst, the glycerin and the like used for the refinement of the catalyst The polyhydric alcohol also acts as a modifier on the catalyst surface, and has the effect of suppressing the production of high molecular weight polyethylene glycol as a by-product. As a result, the liquid viscosity of the resulting alkylene oxide adduct can be lowered, and a good effect can be given also in the handling surface. [0040] (Carotenized with alkylene oxide)
前記アルキレンオキサイド付加物の製造方法により得られたアルキレンオキサイド 付加物中には、前記複合金属酸ィ匕物触媒が含有されているにもかかわらず、前記複 合金属酸ィ匕物触媒は実質的に粒子として扱う必要のない大きさにまで極度に微細化 されているため、実質的に触媒粒子の沈降は起こらず、経時的に安定で、液体として 取り扱うことが可能である。  Despite the inclusion of the composite metal oxide catalyst in the alkylene oxide adduct obtained by the method for producing the alkylene oxide adduct, the composite metal oxide catalyst is substantially Therefore, the catalyst particles do not substantially settle, and are stable over time and can be handled as a liquid.
[0041] ここで、前記アルキレンオキサイド付加物中の前記複合金属酸ィ匕物触媒の沈降速 度は、特に制限はなぐ 目的に応じて適宜選択することができるが、以下の、ストーク スの式:  [0041] Here, the sedimentation speed of the composite metal oxide catalyst in the alkylene oxide adduct is not particularly limited, and can be appropriately selected according to the purpose. The following Stokes equation is used. :
V= l/18 - ( p p - p ) g/ μ - Dp2 (スト一タスの式) V = l / 18-(pp-p) g / μ-Dp 2 (Stortus equation)
[前記スト一タスの式中、  [In the stoichiometric formula,
V= 反応後の複合金属酸化物触媒の沈降速度 (mZh)、  V = settling rate of composite metal oxide catalyst after reaction (mZh),
P P = 反応後の複合金属酸化物触媒の比重 (kgZm3)、 PP = specific gravity of the composite metal oxide catalyst after reaction (kgZm 3 ),
P = 得られたアルキレンオキサイド付加物の比重 (kg/m3)、 P = specific gravity of the resulting alkylene oxide adduct (kg / m 3 ),
g= 重力加速度 (mZs2)、 g = gravitational acceleration (mZs 2 ),
μ = 得られたアルキレンオキサイド付加物の粘度 (kgZm · s)、  μ = viscosity of the resulting alkylene oxide adduct (kgZm
Dp = 反応後の複合金属酸化物触媒の平均粒子径 (m)  Dp = average particle diameter of the composite metal oxide catalyst after reaction (m)
を示す]  Show]
で求められる反応後の複合金属酸ィ匕物触媒の沈降速度 Vが、 1時間あたりの沈降速 度に換算して 4. 6 X 10"5 (m/h)以下であることが好まし 、。 The sedimentation rate V of the composite metal oxide catalyst after the reaction determined in (1) is preferably 4.6 X 10 " 5 (m / h) or less in terms of the sedimentation rate per hour. .
前記沈降速度 Vが、 4. 6 X 10_5 (mZh)以下であると、生成物の物性と微細化さ れた触媒粒子の物性との関係において、想定される保管温度下、 10cmの沈降に約 3ヶ月間(90日間)以上を要する速度となることから、前記アルキレンオキサイド付カロ 物を液体として取り扱う際にも、実質的に前記複合金属酸ィ匕物触媒の沈降の問題が 生じないと評価することができる。ここで、前記保管温度とは、保管するアルキレンォ キサイド付加物の融点以上 80°C以下、好ましくは、室温以上 60°C以下である。 The sedimentation velocity V is 4. When it is 6 X 10 _5 (mZh) hereinafter, the relationship between the physical properties of the product and the physical properties of the fine catalyst particles under storage temperature envisaged, the precipitation of 10cm Since it takes about 3 months (90 days) or more, when the carbonate with alkylene oxide is handled as a liquid, there is substantially no problem of sedimentation of the composite metal oxide catalyst. Can be evaluated. Here, the storage temperature is not lower than the melting point of the alkylene oxide adduct to be stored and not higher than 80 ° C., preferably not lower than room temperature and not higher than 60 ° C.
[0042] また、前記アルキレンオキサイド付加物中の複合金属酸ィ匕物触媒の平均粒子径 D p (m)としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 2 μ ηι 以下が好ましぐ: L m以下がより好ましぐ 0. 6 m以下が特に好ましい。前記平均 粒子径が 2 mを超えると、前記アルキレンオキサイド付加物において、前記複合金 属酸ィ匕物触媒の沈降が問題となることがある。 [0042] The average particle diameter D p (m) of the composite metal oxide catalyst in the alkylene oxide adduct is not particularly limited and may be appropriately selected depending on the intended purpose, but 2 μηι The following is preferred: L m or less is more preferred 0.6 m or less is particularly preferred. When the average particle diameter exceeds 2 m, sedimentation of the composite metal oxide catalyst may become a problem in the alkylene oxide adduct.
なお、前記反応後の複合金属酸化物触媒の平均粒子径 Dp (m)は、例えば、後述 する実施例に記載の方法などにより、測定することができる。  The average particle diameter Dp (m) of the composite metal oxide catalyst after the reaction can be measured by, for example, the method described in Examples described later.
[0043] したがって、本発明は、平均粒子径が 2 μ m以下の複合金属酸化物触媒を含有す ることを特徴とするアルキレンオキサイド付加物にも関する。前述したように、本発明 のアルキレンオキサイド付加物は、本発明のアルキレンオキサイド付加物の製造方法 により、好ましく得ることができる。 Therefore, the present invention also relates to an alkylene oxide adduct characterized by containing a composite metal oxide catalyst having an average particle diameter of 2 μm or less. As described above, the alkylene oxide adduct of the present invention can be preferably obtained by the production method of the alkylene oxide adduct of the present invention.
前記本発明のアルキレンオキサイド付加物中の前記複合金属酸ィ匕物触媒は、実質 的に粒子として扱う必要のな 、大きさにまで極度に微細化されて 、るため、前記アル キレンオキサイド付加物は経時的に安定で、保管、移送などにおいて触媒粒子の沈 降を生ずることがなく、液体として取り扱うことが可能である。  Since the composite metal oxide catalyst in the alkylene oxide adduct of the present invention is extremely refined to a size that is substantially not required to be handled as particles, the alkylene oxide adduct is used. Is stable over time, and does not cause catalyst particle settling during storage, transport, etc., and can be handled as a liquid.
また、前記本発明のアルキレンオキサイド付加物は、前記複合金属酸化物触媒を 含有していることから、各種界面活性剤組成物として使用する際に、後述するような、 抗菌性、滑沢性、残香性等の点で、利点を有している。  In addition, since the alkylene oxide adduct of the present invention contains the composite metal oxide catalyst, when used as various surfactant compositions, as described later, antibacterial properties, lubricity, It has advantages in terms of residual fragrance and the like.
[0044] また、前記したように、アルキレンオキサイド付加物の製造方法にぉ 、て、前記複合 金属酸化物触媒として、水酸化アルミニウム ·マグネシウム焼成物等のマグネシウム 系複合金属酸化物触媒を用 、た場合には、前記アルキレンオキサイド付加物中の、 ポリエチレングリコール等の副生物量は非常に少なくなり、液粘性が低くなるために、 ハンドリング面でも優れたものとなる。 In addition, as described above, according to the method for producing an alkylene oxide adduct, a magnesium-based composite metal oxide catalyst such as an aluminum hydroxide / magnesium fired product is used as the composite metal oxide catalyst. In this case, the amount of by-products such as polyethylene glycol in the alkylene oxide adduct becomes very small and the liquid viscosity becomes low, so that the handling is excellent.
[0045] (界面活性剤組成物) [0045] (Surfactant composition)
前記アルキレンオキサイド付加物は、家庭用、工業用、農業用などの分野で、各種 界面活性剤組成物として使用することができる。中でも、前記界面活性剤組成物は、 洗浄剤、乳化剤、分散剤、油相成分調整剤、浸透剤、古紙再生脱墨剤、農業用展 着剤などとして好適である。  The alkylene oxide adduct can be used as various surfactant compositions in fields such as household use, industrial use, and agricultural use. Among these, the surfactant composition is suitable as a cleaning agent, an emulsifier, a dispersant, an oil phase component modifier, a penetrant, a used paper deinking agent, an agricultural spreading agent, and the like.
[0046] 前記界面活性剤組成物は、前記アルキレンオキサイド付加物を含有してなり、更に 必要に応じて、その他の成分を含有してなる。 [0047] くアルキレンオキサイド付カ卩物 > [0046] The surfactant composition contains the alkylene oxide adduct, and further contains other components as necessary. [0047] Products with alkylene oxide>
前記界面活性剤組成物中の前記アルキレンオキサイド付加物の含有量は、特に制 限はなく、目的に応じて適宜選択することができる力 0. 1〜80質量%が好ましぐ 1 〜60質量%がより好ましぐ 2〜40質量%が特に好ましい。  The content of the alkylene oxide adduct in the surfactant composition is not particularly limited, and a force that can be appropriately selected according to the purpose is 0.1 to 80% by mass, preferably 1 to 60% by mass. 2 to 40% by mass is particularly preferable.
[0048] <その他の成分 > [0048] <Other ingredients>
前記その他の成分としては、特に制限はなぐ目的に応じて適宜選択することがで き、例えば、ァニオン界面活性剤、カチオン界面活性剤、両性界面活性剤等の界面 活性剤などが挙げられる。  The other components can be appropriately selected according to the purpose without any particular limitation, and examples thereof include surfactants such as an anionic surfactant, a cationic surfactant, and an amphoteric surfactant.
前記ァニオン界面活性剤としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、カルボン酸型界面活性剤、硫酸エステル型界面活性剤、スルホン 酸型界面活性剤、リン酸エステル型界面活性剤などが挙げられる。  The anionic surfactant can be appropriately selected according to the purpose without any particular limitation, and examples thereof include carboxylic acid type surfactants, sulfate type surfactants, sulfonic acid type surfactants, and phosphate esters. Type surfactants and the like.
前記カチオン界面活性剤としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、高級アミン塩、高級アルキル (又はアルケニル)第 4級アンモ-ゥム 塩、高級アルキル(又はァルケ-ル)ピリジ-ゥム第 4級アンモ-ゥム塩などが挙げら れる。  The cationic surfactant can be appropriately selected according to the purpose without any particular limitation. For example, higher amine salt, higher alkyl (or alkenyl) quaternary ammonium salt, higher alkyl (or alkke). -Le) Pyridium quaternary ammonia salt.
前記両性界面活性剤としては、特に制限はなぐ目的に応じて適宜選択することが でき、例えば、アルキルべタイン型界面活性剤、アルキルアミドべタイン型界面活性 剤、イミダゾリン型界面活性剤、アルキルアミノスルホン酸型界面活性剤、アルキルァ ミノカルボン酸型界面活性剤、アルキルアミドカルボン酸塩型界面活性剤、アミドアミ ノ酸型界面活性剤、リン酸型界面活性剤などが挙げられる。  The amphoteric surfactant can be appropriately selected according to the purpose without any particular limitation. For example, alkylbetaine surfactant, alkylamide betaine surfactant, imidazoline surfactant, alkylamino Examples thereof include sulfonic acid type surfactants, alkylaminocarboxylic acid type surfactants, alkylamide carboxylate type surfactants, amidoamino acid type surfactants, and phosphoric acid type surfactants.
[0049] また、前記その他の成分としては、更に、油性成分、高分子、シリコーン、洗剤ビル ダー、酵素、再汚染防止剤、漂白剤、蛍光剤、香料、色素、溶剤、ヘアーコンディショ ユング剤、紫外線吸収剤、殺菌剤、防腐剤、ふけ止め剤、ノ、イドロトロープ剤、乳濁 剤、増粘剤、ゼォライト、リン酸塩、硫酸塩、亜硫酸塩等の各種添加剤なども挙げら れる。 [0049] Further, as the other components, oily components, polymers, silicones, detergent builders, enzymes, anti-staining agents, bleaching agents, fluorescent agents, fragrances, dyes, solvents, hair conditioning agents, Also included are various additives such as ultraviolet absorbers, bactericides, preservatives, anti-dandruff agents, pastes, idrotropes, emulsions, thickeners, zeolites, phosphates, sulfates and sulfites.
[0050] 前記界面活性剤組成物中の前記その他の成分の含有量としては、特に制限はなく [0050] The content of the other components in the surfactant composition is not particularly limited.
、目的に応じて適宜選択することができる。 Can be appropriately selected according to the purpose.
[0051] 前記界面活性剤組成物中の前記アルキレンオキサイド付加物は、前記したように、 前記複合金属酸化物触媒を、該触媒の沈降の問題が生じな 、程度まで微細化され た状態で、安定に含有している。 [0051] The alkylene oxide adduct in the surfactant composition, as described above, The composite metal oxide catalyst is stably contained in a state of being miniaturized to such an extent that the problem of sedimentation of the catalyst does not occur.
ここで、前記複合金属酸化物触媒が前記アルキレンオキサイド付加物に安定に含 有されていることの利点として、例えば、前記界面活性剤組成物を洗浄剤として使用 する場合、前記金属酸化物由来の抗菌性が得られることから、前記洗浄剤中に配合 する防腐剤の使用を低減できること、被洗浄物である衣類の繊維の隙間にサブミクロ ンオーダーの微粒子が入り込むことで滑沢性が得られるため、繊維のよれ等によるし わを防止できること、柔軟性の付与が可能となること、などが挙げられる。  Here, as an advantage that the composite metal oxide catalyst is stably contained in the alkylene oxide adduct, for example, when the surfactant composition is used as a cleaning agent, it is derived from the metal oxide. Since antibacterial properties can be obtained, the use of preservatives incorporated in the cleaning agent can be reduced, and lubrication can be obtained by entering submicron-order fine particles into the gaps in the fibers of clothing that is to be cleaned. In addition, it is possible to prevent wrinkles due to fiber warp and the like and to impart flexibility.
更に、前記複合金属酸化物触媒の結晶構造中に香料を保持できるので、前記洗 浄剤に残香性 (ロングラスティング)効果を付与できること、衣類の洗浄時に水道水中 の塩素イオンを結晶構造中にトラップできるので、衣類の色あせを防止できることなど も、利点として挙げられる。  In addition, since the fragrance can be retained in the crystal structure of the composite metal oxide catalyst, it is possible to impart a long-lasting effect to the cleaning agent, and chlorine ions in tap water can be added to the crystal structure when washing clothes. Since it can be trapped, the ability to prevent clothing from fading is another advantage.
これらのことから、前記界面活性剤組成物は、洗浄剤として、特に好適である。 実施例  For these reasons, the surfactant composition is particularly suitable as a cleaning agent. Example
[0052] 以下、実施例及び比較例を挙げ、本発明を具体的に説明するが、本発明はこれら の実施例に何ら限定されるものではな 、。  [0052] The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.
[0053] (実施例 1) [0053] (Example 1)
2. 5MgO-Al O ·πιΗ Οなる化学組成の水酸化アルミニウム 'マグネシウム(協和  2. 5MgO-Al O · πιΗ Aluminum hydroxide with different chemical composition 'Magnesium (Kyowa
2 3 2  2 3 2
化学工業社製、キヨ一ワード 300)を 800°Cで 3時間焼成して、マグネシウム アルミ ニゥム複合金属酸化物触媒粉末を得た。この時点での (反応前の)触媒粒子の平均 粒子径は 75 μ mであった。また、比表面積は 270m2/gであった。 A Kiyoword 300) manufactured by Kagaku Kogyo Co., Ltd. was calcined at 800 ° C. for 3 hours to obtain a magnesium-aluminum composite metal oxide catalyst powder. At this time, the average particle diameter of the catalyst particles (before the reaction) was 75 μm. The specific surface area was 270 m 2 / g.
次に、 4L容オートクレープ中にラウリン酸メチル (ライオンケミカル社製 ノ ステル M 12)を 440g (2. 06モル)、 40質量%水酸ィ匕カリウム水溶液(関東ィ匕学 (株)製をィォ ン交換水にて調整)を 0. 23g (KOH純分 1. 6ミリモル)、前記複合金属酸化物触媒 を 1. 8g、多価アルコールとしてグリセリン(関東ィ匕学 (株)製) 2. 25gを仕込み、攪拌 混合しながらオートクレープ内を窒素で置換した後、昇温して 100°Cにて、減圧下(1 . 33kPa以下)で 30分間、脱水を行った。次いで、 180°Cにて、反応圧力上限値を 0 . 3MPaとし、エチレンオキサイド(三菱ィ匕学 (株)製) 1, 361g (30. 9モル)を、前記し た導入速度式 (前記式 (IV) )における Fの値が、 F = 0. 045となるような速度で導入 ( 供給)した。更に熟成反応を行った後、冷却して抜き出し、生成物 (アルキレンォキサ イド付加物)として脂肪酸ポリオキシエチレンラウリルエーテルを得た。 Next, 440g (2.06 mol) of methyl laurate (Nostel M12 manufactured by Lion Chemical Co., Ltd.) and 40% by weight aqueous solution of potassium hydroxide and potassium (manufactured by Kanto Chemical Co., Ltd.) were placed in a 4L autoclave. 0.23 g (pure KOH content: 1.6 mmol), 1.8 g of the composite metal oxide catalyst, glycerin as a polyhydric alcohol (manufactured by Kanto Chemical Co., Ltd.) 2 The autoclave was purged with nitrogen while stirring and mixing with 25 g, and then heated and dehydrated at 100 ° C. under reduced pressure (1.33 kPa or less) for 30 minutes. Next, at 180 ° C, the upper limit of the reaction pressure was 0.3 MPa, and 1,361 g (30.9 mol) of ethylene oxide (Mitsubishi Chemical Co., Ltd.) was added as described above. The introduction rate was introduced (supplied) at a rate such that the value of F in the introduction rate equation (formula (IV)) was F = 0.045. After further aging reaction, the mixture was cooled and extracted to obtain fatty acid polyoxyethylene lauryl ether as a product (alkylene oxide adduct).
[0054] (実施例 2) [0054] (Example 2)
触媒として実施例 1に記載の複合金属酸化物触媒を 0. 9g、 40質量%水酸化カリ ゥム水溶液を 0. 12g (KOH純分 0. 8ミリモル)、多価アルコールとしてグリセリンを 0. 9g使用した以外は、実施例 1と同様にして、生成物として脂肪酸ポリオキシエチレン ラウリルエーテルを得た。ただし、反応中、反応圧力が上限値 (0. 3MPa)に達した ため、適宜エチレンオキサイドの導入速度を調整した。  As a catalyst, 0.9 g of the composite metal oxide catalyst described in Example 1, 0.12 g of 40% by weight potassium hydroxide aqueous solution (KOH pure content 0.8 mmol), and 0.9 g of glycerin as a polyhydric alcohol. Fatty acid polyoxyethylene lauryl ether was obtained as a product in the same manner as in Example 1 except that it was used. However, since the reaction pressure reached the upper limit (0.3 MPa) during the reaction, the introduction rate of ethylene oxide was appropriately adjusted.
[0055] (実施例 3) [Example 3]
触媒として実施例 1に記載の複合金属酸化物触媒を 3. 6g、 40質量%水酸化カリ ゥム水溶液を 0. 48g (KOH純分 3. 2ミリモノレ)、多価ァノレコーノレとしてグリセリンを 4. 5g使用した以外は、実施例 1と同様にして、生成物として脂肪酸ポリオキシエチレン ラウリルエーテルを得た。  As a catalyst, 3.6 g of the composite metal oxide catalyst described in Example 1, 0.48 g of 40% by mass potassium hydroxide aqueous solution (pure KOH content: 3.2 millimonoles), and 4.5 g of glycerin as a polyhydric alcohol. Fatty acid polyoxyethylene lauryl ether was obtained as a product in the same manner as in Example 1 except that it was used.
[0056] (実施例 4)  [0056] (Example 4)
触媒として実施例 1に記載の複合金属酸化物触媒を 0. 9g、 40質量%水酸化カリ ゥム水溶液を 0. 12g (KOH純分 0. 8ミリモル)、多価アルコールとしてエチレングリコ ール (関東化学 (株)製)を 4. 5g使用した以外は、実施例 1と同様にして、生成物とし て脂肪酸ポリオキシエチレンラウリルエーテルを得た。ただし、反応中、反応圧力が 上限値 (0. 3MPa)に達したため、適宜エチレンオキサイドの導入速度を調整した。  As a catalyst, 0.9 g of the mixed metal oxide catalyst described in Example 1, 0.12 g of 40% by mass aqueous potassium hydroxide solution (0.8 mmol of KOH), and ethylene glycol (polyhydric alcohol) ( Fatty acid polyoxyethylene lauryl ether was obtained as a product in the same manner as in Example 1 except that 4.5 g of Kanto Chemical Co., Ltd. was used. However, since the reaction pressure reached the upper limit (0.3 MPa) during the reaction, the introduction rate of ethylene oxide was appropriately adjusted.
[0057] (実施例 5) [0057] (Example 5)
触媒として実施例 1に記載の複合金属酸化物触媒を 0. 9g、 40質量%水酸化カリ ゥム水溶液を 0. 12g (KOH純分 0. 8ミリモル)、多価アルコールとしてジエチレングリ コール (関東化学 (株)製)を 4. 5g使用した以外は、実施例 1と同様にして、生成物と して脂肪酸ポリオキシエチレンラウリルエーテルを得た。ただし、反応中、反応圧力が 上限値 (0. 3MPa)に達したため、適宜エチレンオキサイドの導入速度を調整した。  As a catalyst, 0.9 g of the mixed metal oxide catalyst described in Example 1, 0.12 g of 40% by weight aqueous potassium hydroxide solution (0.8 mmol of KOH), diethylene glycol (Kanto) as the polyhydric alcohol Fatty acid polyoxyethylene lauryl ether was obtained as a product in the same manner as in Example 1 except that 4.5 g of Chemical Co., Ltd. was used. However, since the reaction pressure reached the upper limit (0.3 MPa) during the reaction, the introduction rate of ethylene oxide was appropriately adjusted.
[0058] (実施例 6) [Example 6]
4L容オートクレープ中にォレイン酸メチル(ライオンケミカル社製 パステル M 181) を 570g (l. 9モル)、 40質量0 /0水酸ィ匕カリウム水溶液を。. 23g (KOH純分 1. 6ミリ モル)、実施例 1に記載の複合金属酸化物触媒を 1. 8g、多価アルコールとしてダリ セリンを 2. 25g仕込み、攪拌混合しながらオートクレープ内を窒素で置換した後、昇 温して 100°Cにて、減圧下(1. 33kPa以下)で 30分間、脱水を行った。次いで、 180 。Cにて、反応圧力上限値を 0. 3MPaとし、エチレン才キサイド 1, 009g (22. 9モノレ) とプロピレンオキサイド (関東ィ匕学 (株)製) 222g (3. 8モル)の混合物を、前記した導 入速度式 (前記式 (IV) )における Fの値が、 F = 0. 047となるような速度で導入 (供 給)した。更に熟成反応を行った後、冷却して抜き出し、生成物として脂肪酸ポリオキ シエチレンポリオキシプロピレンォレイルエーテルを得た。 Methyl oleate in 4L autoclave (Lion Chemical's Pastel M181) The 570 g (l. 9 mol), 40 mass 0/0 Mizusani匕aqueous potassium. . 23 g (KOH pure content: 1.6 mmol), 1.8 g of the composite metal oxide catalyst described in Example 1 and 2.25 g of dallyserine as a polyhydric alcohol were charged, and nitrogen was added to the autoclave while stirring and mixing. Then, the temperature was raised and dehydration was performed at 100 ° C under reduced pressure (1.33 kPa or less) for 30 minutes. Then 180. At C, the upper limit of the reaction pressure was 0.3 MPa, a mixture of 1,009 g (22.9 monole) ethylene oxide and 222 g (3.8 mol) of propylene oxide (manufactured by Kanto Chemical Co., Ltd.) It was introduced (supplied) at such a speed that the value of F in the introduction speed equation (formula (IV)) was F = 0.047. After further aging reaction, the mixture was cooled and extracted to obtain fatty acid polyoxyethylene polyoxypropylene glycol ether as a product.
[0059] (実施例 7)  [Example 7]
4L容オートクレープ中にラウリル'ミリスチルアルコール(FPG製 CO1270)を 500 g (2. 5モル)、実施例 1に記載の複合金属酸化物触媒 0. 54g、多価アルコールとし てグリセリン 1. 34gを仕込み、攪拌混合しながらオートクレープ内を窒素で置換した 後、昇温して 100°Cにて、減圧下(1. 33kPa以下)で 30分間、脱水を行った。次い で、 180°Cにて、反応圧力上限値を 0. 3MPaとし、エチレンオキサイド 573g (13モ ル)を、前記した導入速度式 (前記式 (IV) )における Fの値が、 F = 0. 038となるよう な速度で導入 (供給)した。更に熟成反応を行った後、冷却して抜き出し、生成物とし てポリオキシエチレンラウリルミリスチルエーテルを得た。  In a 4 L autoclave, 500 g (2.5 mol) of lauryl'myristyl alcohol (FPG CO1270), 0.54 g of the mixed metal oxide catalyst described in Example 1, and 1.34 g of glycerin as a polyhydric alcohol After the inside of the autoclave was replaced with nitrogen while charging and stirring and mixing, dehydration was carried out at 100 ° C under reduced pressure (1.33 kPa or less) for 30 minutes. Next, at 180 ° C, the upper limit of the reaction pressure was 0.3 MPa, 573 g (13 mol) of ethylene oxide was used, and the value of F in the introduction rate equation (formula (IV)) was F = Introduced (supplied) at a speed of 0.0.38. After further aging reaction, the mixture was cooled and extracted to obtain polyoxyethylene lauryl myristyl ether as a product.
[0060] (比較例 1) [0060] (Comparative Example 1)
多価アルコールであるグリセリンを使用しな 、以外は実施例 1と同様にして、生成物 として脂肪酸ポリオキシエチレンラウリルエーテルを得た。  Fatty acid polyoxyethylene lauryl ether was obtained as a product in the same manner as in Example 1 except that glycerin, which is a polyhydric alcohol, was not used.
[0061] (比較例 2) [0061] (Comparative Example 2)
多価アルコールであるグリセリンを使用しない以外は実施例 2と同様にして、生成物 として脂肪酸ポリオキシエチレンラウリルエーテルを得た。ただし、実施例 2と同様に、 反応中、反応圧力が上限値 (0. 3MPa)に達したため、適宜エチレンオキサイドの導 入速度を調整した。  Fatty acid polyoxyethylene lauryl ether was obtained as a product in the same manner as in Example 2 except that glycerin, which is a polyhydric alcohol, was not used. However, as in Example 2, since the reaction pressure reached the upper limit (0.3 MPa) during the reaction, the introduction rate of ethylene oxide was appropriately adjusted.
[0062] (比較例 3) [0062] (Comparative Example 3)
多価アルコールであるグリセリンを使用しないこと、エチレンオキサイドを、前記した 導入速度式 (前記式 (IV) )における Fの値が F = 0. 063となるような速度で導入した こと、反応圧力上限を 0. 4MPaとしたこと以外は実施例 1と同様にして、生成物として 脂肪酸ポリオキシエチレンラウリルエーテルを得た。 Do not use glycerin, which is a polyhydric alcohol, ethylene oxide In the same manner as in Example 1 except that the introduction rate equation (the above formula (IV)) was introduced at a rate such that the value of F was F = 0.063, and the upper limit of the reaction pressure was 0.4 MPa, Fatty acid polyoxyethylene lauryl ether was obtained as a product.
[0063] (比較例 4) [0063] (Comparative Example 4)
多価アルコールであるグリセリンを使用しない以外は実施例 6と同様にして、生成物 として脂肪酸ポリオキシエチレンポリオキシプロピレンォレイルエーテルを得た。  Fatty acid polyoxyethylene polyoxypropylene glycol ether was obtained as a product in the same manner as in Example 6 except that glycerin, which is a polyhydric alcohol, was not used.
[0064] (比較例 5) [0064] (Comparative Example 5)
多価アルコールであるグリセリンを使用しないこと以外は実施例 7と同様にして、生 成物としてポリオキシエチレンラウリルミリスチルエーテルを得た。  A polyoxyethylene lauryl myristyl ether was obtained as a product in the same manner as in Example 7 except that glycerin, which is a polyhydric alcohol, was not used.
[0065] 下記表 1に、各実施例及び比較例における、反応条件 (反応原料、触媒濃度、多 価アルコール濃度)、触媒物性 (真比重、反応前触媒平均粒子径、反応後触媒平均 粒子径)、及び、触媒微細化の評価結果 (沈降速度、沈降抑制度合い)を示す。また 、下記表 2に、各実施例及び比較例における、反応性 (アルキレンオキサイド (AO) 供給時間、副生物量)、及び、生成物物性 (粘度、比重)を示す。 [0065] Table 1 below shows reaction conditions (reaction raw materials, catalyst concentration, polyhydric alcohol concentration), catalyst properties (true specific gravity, pre-reaction catalyst average particle size, post-reaction catalyst average particle size) in each Example and Comparative Example. ) And evaluation results of catalyst refinement (sedimentation rate, sedimentation suppression degree). Table 2 below shows the reactivity (alkylene oxide (AO) supply time, amount of by-products) and product properties (viscosity, specific gravity) in each Example and Comparative Example.
なお、各項目の評価方法は、以下に記す通りである。  In addition, the evaluation method of each item is as describing below.
[0066] [触媒平均粒子径の測定方法] [0066] [Measuring method of average particle diameter of catalyst]
反応前触媒平均粒子径、及び、反応後触媒平均粒子径 (アルキレンオキサイド付 加物中に含まれる触媒の平均粒子径)は、以下の条件で、レーザー光散乱式粒度 分布測定装置を用いて測定し、個数基準のメジアン径として算出した。  The pre-reaction catalyst average particle size and the post-reaction catalyst average particle size (average particle size of the catalyst contained in the alkylene oxide adduct) were measured using a laser light scattering particle size distribution analyzer under the following conditions. The median diameter based on the number was calculated.
測定装置: LA— 920 (HORIBA社製)  Measuring device: LA-920 (HORIBA)
分散媒 :ァセトニトリル  Dispersion medium: Acetonitrile
[0067] [沈降速度の算出方法] [0067] [Calculation method of sedimentation velocity]
以下に示されるスト一タスの式を適用して、生成物中の触媒粒子の沈降速度 Vを算 出し、 1時間あたりの沈降速度 (mZh)に換算した。  By applying the stoichiometric formula shown below, the sedimentation velocity V of the catalyst particles in the product was calculated and converted into the sedimentation velocity per hour (mZh).
V= l/18 - ( p p - p ) g/ μ - Dp2 (スト一タスの式) V = l / 18-(pp-p) g / μ-Dp 2 (Stortus equation)
なお、前記スト一タスの式中の各符号は、それぞれ以下の意を示す。  In addition, each code | symbol in the said stochastic formula shows the following meaning, respectively.
V= 反応後の複合金属酸化物触媒の沈降速度 (mZh)、  V = settling rate of composite metal oxide catalyst after reaction (mZh),
P P = 反応後の複合金属酸化物触媒の比重 (kgZm3)、 P = 得られたアルキレンオキサイド付加物の比重 (kg/m3)、 PP = specific gravity of the composite metal oxide catalyst after reaction (kgZm 3 ), P = specific gravity of the resulting alkylene oxide adduct (kg / m 3 ),
g= 重力加速度 (mZs2)、 g = gravitational acceleration (mZs 2 ),
μ = 得られたアルキレンオキサイド付加物の粘度 (kgZm · s)、  μ = viscosity of the resulting alkylene oxide adduct (kgZm
Dp = 反応後の複合金属酸化物触媒の平均粒子径 (m)  Dp = average particle diameter of the composite metal oxide catalyst after reaction (m)
[0068] [沈降抑制度合いの評価方法] [0068] [Evaluation method of sedimentation suppression degree]
生成物の物性と微細化された触媒粒子の物性の関係において、想定される保管温 度下、 10cmの沈降に約 3ヶ月間(90日間)要する速度である 4. 6 X 10_5 (mZh)を 基準とし、前記スト一タスの式を用いて求められた生成物中における触媒粒子の 1時 間あたりの沈降速度 (mZh)が、これ以下の速度であれば、生成物を液体として取り 扱う際、実質的に問題が生じない程度の触媒粒子の沈降速度であると評価した。な お、表 1中の〇 Xは、それぞれ以下の意を表す。 In the physical properties of the relationship between product properties and fine catalyst particles under storage temperature contemplated, about 3 months to precipitation of 10 cm (90 days) is the speed required 4. 6 X 10 _5 (mZh) If the sedimentation rate per hour (mZh) of the catalyst particles in the product obtained using the stoichiometric equation is less than this, the product is treated as a liquid. At this time, it was evaluated that the sedimentation rate of the catalyst particles was such that substantially no problem occurred. In Table 1, ○ X represents the following meanings.
〇:沈降速度が 4. 6 X 10—5 (m/h)以下である(沈降の程度が実質的に問題無し)。 X:沈降速度が 4. 6 X 10_5 (mZh)を超える (沈降の程度に問題有り)。 ○: sedimentation velocity 4. is 6 X 10- 5 (m / h ) or less (no problem substantially the degree of sedimentation). X: (there is a problem to the degree of sedimentation) that sedimentation rate is more than 4. 6 X 10 _5 (mZh) .
[0069] [副生物量 (高分子量ポリエチレングリコール (PEG)量)の測定方法] [0069] [Measurement method of by-product amount (high molecular weight polyethylene glycol (PEG) amount)]
以下の条件でゲルパーミエシヨンクロマトグラフィ測定を行 、、副生物である高分子 量ポリエチレングリコール (PEG)の、生成物中における含有量を求めた。  Gel permeation chromatography measurement was performed under the following conditions, and the content of high-molecular-weight polyethylene glycol (PEG) as a by-product in the product was determined.
検出器 : RID— 6A (島津製作所製)  Detector: RID— 6A (manufactured by Shimadzu Corporation)
カラム : AsahipackGF— 310HQ (直径 7. 5mm X長さ 0. 3m ;昭和電工 (株)製) 移動相 :ァセトニトリル Z水 =45Z55 (体積比)  Column: AsahipackGF—310HQ (diameter 7.5 mm X length 0.3 m; manufactured by Showa Denko KK) Mobile phase: Acetonitrile Z water = 45 Z55 (volume ratio)
流速 : 0. 6mL/ mm  Flow rate: 0.6 mL / mm
温度 : 30°C  Temperature: 30 ° C
[0070] [粘度測定方法] [0070] [Method of measuring viscosity]
以下の条件で、生成物の粘度を測定した。  The viscosity of the product was measured under the following conditions.
測定機器: RE 80型粘度計 (東機産業社製)  Measuring instrument: RE 80 type viscometer
ローター: 3° 1^12及び1° 34' X R24  Rotor: 3 ° 1 ^ 12 and 1 ° 34 'X R24
時間 :2分  Time: 2 minutes
温度 :実施例 1〜 5及び比較例 1〜 3については 60°C  Temperature: 60 ° C for Examples 1-5 and Comparative Examples 1-3
実施例 6、 7及び比較例 4、 5については 40°C [0071] [触媒の真比重測定方法] 40 ° C for Examples 6 and 7 and Comparative Examples 4 and 5 [0071] [Method for measuring true specific gravity of catalyst]
気相置換法 (ピタノメーター法)による圧力比較法により、以下の条件で触媒の真比 重を測定した。  The true specific gravity of the catalyst was measured under the following conditions by a pressure comparison method using a gas phase substitution method (pitometer method).
測定装置 :真密度測定装置 (マイクロピクノメーター)  Measuring device: True density measuring device (micro pycnometer)
キャリアーガス: Heガス  Carrier gas: He gas
試料量 : lg  Sample amount: lg
温度 :室温  Temperature: Room temperature
[0072] [生成物の比重測定方法]  [0072] [Method of measuring specific gravity of product]
基準油脂分析法 2. 2. 2— 1996「比重」に従い、温度計付比重瓶を用いて、生成 物の比重を測定した。  Standard oil analysis method 2. 2. 2— The specific gravity of the product was measured using a specific gravity bottle with a thermometer according to 1996 “Specific gravity”.
[0073] [比表面積の測定方法] [0073] [Specific surface area measurement method]
BET表面積測定装置 (柴田科学 (株)製『RINT2100』)を用いて測定した。  It measured using the BET surface area measuring apparatus ("RINT2100" by Shibata Kagaku Co., Ltd.).
[0074] [表 1] [0074] [Table 1]
反応条件 触媒物性 触媒微細化の評価結果 多価アルコール 反応前 反応後  Reaction conditions Catalytic properties Evaluation results of catalyst refinement Polyhydric alcohol Before reaction After reaction
触媒濃度 真比重 沈降速度  Catalyst concentration True specific gravity Sedimentation rate
触媒粒子径 触媒粒子径  Catalyst particle size Catalyst particle size
沈降抑制 反応原料  Sedimentation suppression Reaction raw material
度合い Degree
[質量% /反 [質量% /反応粗[Mass% / anti [mass% / reaction crude
/cm3] [m/h] 応粗製物] 製物]  / cm3] [m / h] Coarse product] Product]
メチルエステル ク リン  Methyl ester clean
実施例 1 0.1 0 3.1 75 0.31 1 .3E-05  Example 1 0.1 0 3.1 75 0.31 1 .3E-05
EO 0.125 o メチルエステル ゲリセリン  EO 0.125 o Methyl ester gericin
実施例 2 0.05 3.1 75 0.28 7.1 E-06  Example 2 0.05 3.1 75 0.28 7.1 E-06
EO 0.05 o メチルエステル ゲリセリン  EO 0.05 o Methyl ester gericin
実施例 3 0.20 3.1 75 0.56 4.4E-05 〇  Example 3 0.20 3.1 75 0.56 4.4E-05
EO 0.25  EO 0.25
メチルエステル エチレンゲリコール  Methyl ester ethylene gericol
実施例 4 0.05 3.1 75 0.60 3.5E-05  Example 4 0.05 3.1 75 0.60 3.5E-05
EO 0.25 o メチルエステル ヅエチレンゲリコ一ル  EO 0.25 o Methyl ester ヅ Ethylene gel
実施例 5 0 05 3.1 75 060 3.9 E - 05 〇  Example 5 0 05 3.1 75 060 3.9 E-05 ○
EO 0.25  EO 0.25
メチルエステル ゲリセリン  Methyl ester gericin
実施例 6 0.1 0 3.1 75 025 1 .3E-05 Example 6 0.1 0 3.1 75 025 1 .3E-05
EO PO 0.125 o アルコール ゲリセリン EO PO 0.125 o Alcohol Gericin
実施例 7 0.05 3.1 75 0.40 4.4E-05  Example 7 0.05 3.1 75 0.40 4.4E-05
EO 0.125 o メチルエステル  EO 0.125 o Methyl ester
比較例 1 0.1 0 使用せず 3.1 75 1 7.90 2.5E-02  Comparative Example 1 0.1 0 Not used 3.1 75 1 7.90 2.5E-02
EO  EO
メチルエステル  Methyl ester
比較例 2 0.05 使用せず 3.1 75 7 50 3 5E-03  Comparative Example 2 0.05 Not used 3.1 75 7 50 3 5E-03
EO  EO
メチルエステル  Methyl ester
比較例 3 0.1 0 使用せず 3.1 75 1 2.50 7.9E-03  Comparative Example 3 0.1 0 Not used 3.1 75 1 2.50 7.9E-03
EO  EO
メチルエステル  Methyl ester
比較例 4 0.1 0 使用せず 3.1 75 1 5.20 3.4E-02 Comparative Example 4 0.1 0 Not used 3.1 75 1 5.20 3.4E-02
EO/PO EO / PO
アルコ一ル  Alcohol
比較例 5 0.05 使用せず 3.1 75 1 0.90 2.8 E - 02  Comparative Example 5 0.05 Not used 3.1 75 1 0.90 2.8 E-02
EO [0075] [表 2] EO [0075] [Table 2]
Figure imgf000023_0001
Figure imgf000023_0001
比較例 4、 5については 40°C  40 ° C for Comparative Examples 4 and 5
[0076] 表 1からは、本発明のアルキレンオキサイド付加物の製造方法によれば、固体触媒 を濾過する工程(固 液分離工程)を行わずとも、生成物を液体として取り扱う際に、 実質的に問題が生じない程度にまで触媒粒子の沈降速度を遅らせることができるこ と、即ち、触媒粒子を極度に(2 m以下にまで)微細化できることが確認された。 また、実施例 2と実施例 4〜5とを比較することにより、グリセリン以外の多価アルコ ールを使用する場合には、所望の沈降速度を得るために、より多くの多価アルコール を使用することが必要であることが確認された。  [0076] From Table 1, according to the method for producing an alkylene oxide adduct of the present invention, when the product is handled as a liquid, the solid catalyst can be substantially treated without performing the step of filtering the solid catalyst (solid-liquid separation step). It was confirmed that the sedimentation rate of the catalyst particles can be delayed to the extent that no problem occurs, that is, the catalyst particles can be extremely refined (to 2 m or less). Also, by comparing Example 2 with Examples 4-5, when using a polyhydric alcohol other than glycerin, use more polyhydric alcohol to obtain the desired sedimentation rate. It was confirmed that it was necessary to do.
また、表 2からは、本発明のアルキレンオキサイド付加物の製造方法によれば、特 に、触媒としてマグネシウム アルミニウム複合金属酸ィ匕物触媒等のマグネシウム系 複合金属酸ィ匕物触媒を用いた場合において、副生物である高分子ポリエチレンダリ コールの生成をも抑制することができ、そのため、液粘性の低い、ハンドリング面でも 優れたアルキレンオキサイド付加物を得ることができることが確認された。 Further, from Table 2, according to the method for producing an alkylene oxide adduct of the present invention, in particular, a magnesium-based catalyst such as a magnesium aluminum composite metal oxide catalyst as a catalyst is used. In the case of using a composite metal oxide catalyst, it is also possible to suppress the production of high molecular weight polyethylene glycol, which is a by-product, and thus an alkylene oxide adduct having a low liquid viscosity and excellent handling is obtained. It was confirmed that it was possible.
産業上の利用可能性 Industrial applicability
前記アルキレンオキサイド付加物の製造方法により得られるアルキレンオキサイド付 加物は、家庭用、工業用、農業用などの分野で、各種界面活性剤組成物として使用 することができる。前記界面活性剤組成物は、例えば、洗浄剤、乳化剤、分散剤、油 相成分調整剤、浸透剤、古紙再生脱墨剤、農業用展着剤などとして好適であり、こ れらの中でも、洗浄剤として、特に好適である。  The alkylene oxide adduct obtained by the method for producing an alkylene oxide adduct can be used as various surfactant compositions in fields such as household use, industrial use, and agricultural use. The surfactant composition is suitable as, for example, a detergent, an emulsifier, a dispersant, an oil phase component modifier, a penetrating agent, a waste paper recycling deinking agent, an agricultural spreading agent, and the like. Particularly suitable as a cleaning agent.

Claims

請求の範囲 The scope of the claims
[1] 複合金属酸化物触媒及び多価アルコールの存在下で、活性水素含有有機化合物 及び脂肪酸アルキルエステルの少なくとも ヽずれかと、アルキレンオキサイドとを反応 させるアルキレンオキサイド付加物の製造方法。  [1] A method for producing an alkylene oxide adduct in which at least one of an active hydrogen-containing organic compound and a fatty acid alkyl ester is reacted with an alkylene oxide in the presence of a composite metal oxide catalyst and a polyhydric alcohol.
[2] 複合金属酸化物触媒と多価アルコールとを接触させた後に、活性水素含有有機化 合物及び脂肪酸アルキルエステルの少なくとも 、ずれかと、アルキレンオキサイドとを 反応させる請求項 1に記載のアルキレンオキサイド付加物の製造方法。  [2] The alkylene oxide according to claim 1, wherein at least one of the active hydrogen-containing organic compound and the fatty acid alkyl ester is reacted with the alkylene oxide after contacting the composite metal oxide catalyst with the polyhydric alcohol. Method for producing adducts.
[3] 以下の、スト一タスの式:  [3] The stochastic formula:
V= l/18 - ( p p - p ) g/ μ - Dp2 (スト一タスの式) V = l / 18-(pp-p) g / μ-Dp 2 (Stortus equation)
[前記スト一タスの式中、  [In the stoichiometric formula,
V= 反応後の複合金属酸化物触媒の沈降速度 (mZh)、  V = settling rate of composite metal oxide catalyst after reaction (mZh),
P P = 反応後の複合金属酸化物触媒の比重 (kgZm3)、 PP = specific gravity of the composite metal oxide catalyst after reaction (kgZm 3 ),
P = 得られたアルキレンオキサイド付加物の比重 (kg/m3)、 P = specific gravity of the resulting alkylene oxide adduct (kg / m 3 ),
g= 重力加速度 (mZs2)、 g = gravitational acceleration (mZs 2 ),
μ = 得られたアルキレンオキサイド付加物の粘度 (kgZm · s)、  μ = viscosity of the resulting alkylene oxide adduct (kgZm
Dp = 反応後の複合金属酸化物触媒の平均粒子径 (m)  Dp = average particle diameter of the composite metal oxide catalyst after reaction (m)
を示す]  Show]
で求められる反応後の複合金属酸ィ匕物触媒の沈降速度 Vが、 1時間あたりの沈降速 度に換算して 4. 6 X 10_5 (mZh)以下となるように、反応後の複合金属酸化物触媒 の平均粒子径 Dpが制御される請求項 1から 2のいずれかに記載のアルキレンォキサ イド付加物の製造方法。 Sedimentation velocity V of the composite metal Sani匕物catalyst after the reaction sought is such that 4. 6 X 10 _5 (mZh) hereinafter in terms of sedimentation speed per hour, mixed metal after reaction 3. The method for producing an alkylene oxide adduct according to claim 1, wherein the average particle diameter Dp of the oxide catalyst is controlled.
[4] 多価アルコールがグリセリンである請求項 1から 3のいずれかに記載のアルキレンォ キサイド付加物の製造方法。 [4] The process for producing an alkylene oxide adduct according to any one of claims 1 to 3, wherein the polyhydric alcohol is glycerin.
[5] 複合金属酸ィ匕物触媒がマグネシウム系複合金属酸ィ匕物触媒である請求項 1から 4 のいずれかに記載のアルキレンオキサイド付加物の製造方法。 5. The method for producing an alkylene oxide adduct according to any one of claims 1 to 4, wherein the complex metal oxide catalyst is a magnesium-based complex metal oxide catalyst.
[6] 複合金属酸ィ匕物触媒の比表面積が 50〜400m2Zgである請求項 1から 5の 、ずれ かに記載のアルキレンオキサイド付加物の製造方法。 6. The method for producing an alkylene oxide adduct according to any one of claims 1 to 5, wherein the specific surface area of the composite metal oxide catalyst is 50 to 400 m 2 Zg.
[7] 平均粒子径が 2 μ m以下である複合金属酸化物触媒を含有することを特徴とする アルキレンオキサイド付加物。 [7] It contains a composite metal oxide catalyst having an average particle size of 2 μm or less Alkylene oxide adduct.
[8] 請求項 1から 6のいずかに記載のアルキレンオキサイド付加物の製造方法により得 られる請求項 7に記載のアルキレンオキサイド付加物。  [8] The alkylene oxide adduct according to claim 7, obtained by the method for producing an alkylene oxide adduct according to any one of claims 1 to 6.
[9] 請求項 7から 8の 、ずれかに記載のアルキレンオキサイド付加物を含有することを 特徴とする界面活性剤組成物。 [9] A surfactant composition comprising the alkylene oxide adduct according to any one of claims 7 to 8.
PCT/JP2007/054636 2006-03-30 2007-03-09 Alkylene oxide adduct, method for production thereof, and surfactant composition WO2007113985A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008508473A JP5203186B2 (en) 2006-03-30 2007-03-09 Alkylene oxide adduct, process for producing the same, and surfactant composition
KR1020087023902A KR101367543B1 (en) 2006-03-30 2007-03-09 Alkylene oxide adduct, method for production thereof, and surfactant composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-095892 2006-03-30
JP2006095892 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007113985A1 true WO2007113985A1 (en) 2007-10-11

Family

ID=38563257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054636 WO2007113985A1 (en) 2006-03-30 2007-03-09 Alkylene oxide adduct, method for production thereof, and surfactant composition

Country Status (3)

Country Link
JP (1) JP5203186B2 (en)
KR (1) KR101367543B1 (en)
WO (1) WO2007113985A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082211A2 (en) * 2008-06-11 2010-07-22 Tata Chemicals Ltd. A process for production of biodiesel
JP2011132331A (en) * 2009-12-24 2011-07-07 Kao Corp Liquid detergent composition
JP2011168730A (en) * 2010-02-22 2011-09-01 Kao Corp Liquid detergent composition
WO2019131442A1 (en) 2017-12-27 2019-07-04 ライオン株式会社 Method for producing fatty acid polyoxyethylene methyl ether
CN112831090A (en) * 2021-03-15 2021-05-25 广东鑫达新材料科技有限公司 Preparation method of epoxidized calcium zinc oleate for PVC heat stabilizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08268919A (en) * 1995-03-28 1996-10-15 Lion Corp Production of alkylene oxide adduct to active hydrogen-containing compound
JP2000061304A (en) * 1998-06-10 2000-02-29 Lion Corp Alkoxylation catalyst, preparation thereof and production of alkylene oxide adduct using same
JP2002201151A (en) * 2000-12-28 2002-07-16 Kao Corp Method for producing alkylene oxide adduct
JP2003138008A (en) * 2001-11-07 2003-05-14 Lion Corp Method for producing alkylene oxide adduct
JP2005126432A (en) * 2003-10-01 2005-05-19 Kao Corp Method for producing nonionic surfactant composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302544A (en) * 2001-04-04 2002-10-18 Lion Corp Polyalkylene glycol and method for producing the same
US20060157539A1 (en) * 2005-01-19 2006-07-20 Dubois Jon D Hot reduced coil tubing
JP5013758B2 (en) * 2005-06-14 2012-08-29 ライオン株式会社 Cleaning composition for automatic dishwasher
JP4818691B2 (en) * 2005-11-09 2011-11-16 日揮触媒化成株式会社 Honeycomb compact and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08268919A (en) * 1995-03-28 1996-10-15 Lion Corp Production of alkylene oxide adduct to active hydrogen-containing compound
JP2000061304A (en) * 1998-06-10 2000-02-29 Lion Corp Alkoxylation catalyst, preparation thereof and production of alkylene oxide adduct using same
JP2002201151A (en) * 2000-12-28 2002-07-16 Kao Corp Method for producing alkylene oxide adduct
JP2003138008A (en) * 2001-11-07 2003-05-14 Lion Corp Method for producing alkylene oxide adduct
JP2005126432A (en) * 2003-10-01 2005-05-19 Kao Corp Method for producing nonionic surfactant composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082211A2 (en) * 2008-06-11 2010-07-22 Tata Chemicals Ltd. A process for production of biodiesel
WO2010082211A3 (en) * 2008-06-11 2010-09-16 Tata Chemicals Ltd. A process for production of biodiesel
JP2011132331A (en) * 2009-12-24 2011-07-07 Kao Corp Liquid detergent composition
JP2011168730A (en) * 2010-02-22 2011-09-01 Kao Corp Liquid detergent composition
WO2019131442A1 (en) 2017-12-27 2019-07-04 ライオン株式会社 Method for producing fatty acid polyoxyethylene methyl ether
JP2019116440A (en) * 2017-12-27 2019-07-18 ライオン株式会社 Process for producing fatty acid polyoxyethylene methyl ether
KR20200047714A (en) 2017-12-27 2020-05-07 라이온 가부시키가이샤 Method for producing fatty acid polyoxyethylene methyl ether
EP3733639A4 (en) * 2017-12-27 2021-11-17 Lion Corporation Method for producing fatty acid polyoxyethylene methyl ether
CN112831090A (en) * 2021-03-15 2021-05-25 广东鑫达新材料科技有限公司 Preparation method of epoxidized calcium zinc oleate for PVC heat stabilizer

Also Published As

Publication number Publication date
KR101367543B1 (en) 2014-02-26
KR20080106565A (en) 2008-12-08
JP5203186B2 (en) 2013-06-05
JPWO2007113985A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
WO2007113985A1 (en) Alkylene oxide adduct, method for production thereof, and surfactant composition
JP7128272B2 (en) alkoxylated secondary alcohol
EP3287483B1 (en) Method for producing perfluoropolyether acyl fluoride
CN103012768B (en) The preparation method of the alkyl-blocked unsaturated polyether of a kind of high double bond protection ratio
JP5531328B2 (en) Method for producing alkylene oxide adduct
US6166237A (en) Removal of dissolved silicates from alcohol-silicon direct synthesis solvents
CA2700602C (en) Process for making ethers from alkoxide anions or precursors of alkoxide anions
US6514898B2 (en) Process of preparing a fluid rare earth alkoxylation catalyst
CA2634143C (en) Process for making alkylene glycol ether compositions useful for metal recovery
JP2012525438A (en) Alkoxylation of fluorinated alcohols
EP1405669A2 (en) Production process for glycidyl ether adduct and catalyst used for the process
JP2006341142A (en) Dispersant for inorganic powder
JP6701209B2 (en) Ethoxylation catalyst and method for producing the same
EP2152653A1 (en) Novel alkoxylate-containing compositions
CN102300905A (en) Process for the preparation of polyglyceryl ether derivatives
JP2010241772A (en) Method for producing unsaturated polyalkylene glycol ether
KR20190031481A (en) Process for producing polyalkoxylated polymer
JP2005187415A (en) Fatty acid polyoxyalkylenealkyl ether and method for producing the same
GB2627446A (en) Method for the generation of hydrogen
JP2024537097A (en) Method for producing alkoxylated etheramines and uses thereof
JP4346992B2 (en) Glycerin ether derivative, nonionic surfactant and method for producing the glycerin ether derivative
CN116855229A (en) Application of alkyl naphthol polyoxyethylene ether in reducing coal dust
JP2013184905A (en) Method for producing alkyl ether compound
JP2003105078A (en) Method for eliminating metal compound from crude polyether
JPS60502143A (en) Method of manufacturing an alkoxylation catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738121

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008508473

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087023902

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738121

Country of ref document: EP

Kind code of ref document: A1