JP2002201151A - Method for producing alkylene oxide adduct - Google Patents

Method for producing alkylene oxide adduct

Info

Publication number
JP2002201151A
JP2002201151A JP2000401834A JP2000401834A JP2002201151A JP 2002201151 A JP2002201151 A JP 2002201151A JP 2000401834 A JP2000401834 A JP 2000401834A JP 2000401834 A JP2000401834 A JP 2000401834A JP 2002201151 A JP2002201151 A JP 2002201151A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
alkylene oxide
adduct
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000401834A
Other languages
Japanese (ja)
Inventor
Isao Ogino
勲 荻野
Nobuhiro Tatsumi
信博 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000401834A priority Critical patent/JP2002201151A/en
Publication of JP2002201151A publication Critical patent/JP2002201151A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an alkylene oxide(AO) adduct, which enables the control of the collapse and micronization of a solid catalyst on an AO addition reaction, the maintenance of the filtration recovery of the catalyst, the recycle of the catalyst, and the production of the AO adduct at a low cost and in a state reduced in the amount of the waste catalyst. SOLUTION: This method for producing the alkylene oxide adduct, comprises adding the alkylene oxide to an active hydrogen-containing compound in the presence of a solid catalyst, is characterized by controlling the gas phase partial pressure of the alkylene oxide in the reaction system to 0.001 to 0.19 MPa absolute pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体触媒を用いた
アルキレンオキサイド付加体の製法に関する。
[0001] The present invention relates to a method for producing an alkylene oxide adduct using a solid catalyst.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】アルコ
ールやフェノール等の活性水素含有化合物にアルキレン
オキサイド(以下AOと略す)を付加する反応に関する
技術として、付加反応に用いられる固体触媒並びにそれ
を用いた付加体の製造法が知られている。
2. Description of the Related Art As a technique for adding an alkylene oxide (hereinafter abbreviated as AO) to an active hydrogen-containing compound such as alcohol or phenol, a solid catalyst used in an addition reaction and a method using the same are disclosed. A method for producing an adduct is known.

【0003】これまで固体触媒を用いたAO付加反応に
おいて、反応後、固体触媒と生成物とを分離する濾過処
理が非常に困難であるとされ、その改善を意図した技術
開発が行われてきた。しかしながら触媒の濾過性改善を
目的として開示されてきた技術は、反応活性を向上させ
た触媒提供により触媒使用量を低下させる技術(特開平
8-268919)、生成物に水を添加し、副生物由来の粘度を
低下させる技術(特開平5-505986)、その他広く一般に
知られているような濾過助剤の使用、触媒造粒によって
分離性能を向上させる技術が開示されているのみであっ
た。
Hitherto, in the AO addition reaction using a solid catalyst, it has been considered that it is extremely difficult to carry out a filtration treatment for separating the solid catalyst and the product after the reaction, and a technical development intended to improve the filtration has been carried out. . However, the technology disclosed for the purpose of improving the filterability of the catalyst is a technology for reducing the amount of catalyst used by providing a catalyst with improved reaction activity (Japanese Patent Application Laid-Open (JP-A) No)
8-268919), technology to reduce the viscosity of by-products by adding water to the product (JP-A-5-505986), use of other widely known filter aids, and catalyst granulation Only a technique for improving performance has been disclosed.

【0004】一方、本発明者らは、固体触媒はAO付加
反応によって崩壊・微粒子化が非常に促進される事を見
出した。この様な微粒子化が発生する条件下では、たと
え特開平8-268919記載等の改善技術を用いたとしても、
発生する微粒子により濾過処理を重ねていくうちに、濾
材への微粒子の目詰まりが生じ、触媒の回収再使用が極
めて困難になる、もしくは濾過できなくなるという問題
があった。また濾過助材等を用いてこれらの微粒子を補
足しようとすると、触媒の再使用をする事ができず、固
体触媒としての長所を有効に利用できないという問題が
あった。さらに生成物に水を添加する方法でも、触媒自
体の微粒子化の問題が克服出来ないという点で、同様の
問題を抱えていた。
[0004] On the other hand, the present inventors have found that disintegration and micronization of a solid catalyst are greatly promoted by an AO addition reaction. Under the conditions where such micronization occurs, even if the improvement technology described in JP-A-8-268919 is used,
As the filtration process is repeated with the generated fine particles, the fine particles are clogged in the filter medium, and there is a problem that the recovery and reuse of the catalyst becomes extremely difficult or the filtration cannot be performed. Further, if these fine particles are to be captured using a filter aid or the like, there is a problem that the catalyst cannot be reused and the advantages of a solid catalyst cannot be effectively used. In addition, the method of adding water to the product has a similar problem in that the problem of micronization of the catalyst itself cannot be overcome.

【0005】本発明の課題は、AO付加反応時の固体触
媒の崩壊・微粒子化を抑制し、触媒の濾過回収性を維持
させることで、触媒の再使用を可能とし、廃触媒量を少
なくかつ低コストでAO付加体を製造する方法を提供す
る事である。
[0005] An object of the present invention is to reduce the amount of waste catalyst by reducing the amount of waste catalyst by suppressing the disintegration and fine particles of the solid catalyst during the AO addition reaction and maintaining the filtration and recovery of the catalyst. An object of the present invention is to provide a method for producing an AO adduct at low cost.

【0006】[0006]

【課題を解決するための手段】本発明者らは、AO付加
時の反応系内気相部のAO圧力が、固体触媒の微粒子化
に大きな影響を与える事を見出し、AOの気相部分圧を
一定の範囲内することにより、固体触媒の微粒子化は極
めて起こりにくくなり、その為触媒を再使用しても、付
加反応後の触媒濾過が非常に良好な状態を維持できると
いうことを見出した。これまでAO圧は、触媒活性等の
観点から、安全性を確保できる範囲でできる限り高い範
囲に設定されてきたが、これはその後の濾過工程を十分
に考慮したものとは言えなかったのである。
Means for Solving the Problems The present inventors have found that the AO pressure in the gas phase in the reaction system at the time of adding AO has a great effect on the fine-particle formation of the solid catalyst, It has been found that when the content is within a certain range, the fine particles of the solid catalyst are extremely unlikely to occur, so that even if the catalyst is reused, the filtration of the catalyst after the addition reaction can be maintained in a very good state. Until now, the AO pressure has been set as high as possible within the range where safety can be ensured from the viewpoint of catalytic activity and the like, but this cannot be said to sufficiently consider the subsequent filtration step. .

【0007】本発明は、固体触媒存在下、活性水素含有
化合物にAOを付加してAO付加体を製造するに際し、
反応系内でのAOの気相部分圧を0.001〜0.19MPa絶対圧
とする、AO付加体の製法である。
The present invention relates to a method for producing an AO adduct by adding AO to an active hydrogen-containing compound in the presence of a solid catalyst.
This is a method for producing an AO adduct in which the partial pressure of the gas phase of AO in the reaction system is set to 0.001 to 0.19 MPa absolute pressure.

【0008】[0008]

【発明の実施の形態】本発明において「触媒の微粒子
化」とは、触媒が粉末触媒の場合は、反応1回目以降の
各反応過程において、反応後の触媒の平均粒子径が反応
前に比べて5%以上低下する事を言い、成形触媒におい
ては成形体1個当たりの重量の5重量%以上が崩壊し、
これによって微粉の発生が生ずる現象を言う。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the term "catalyst fine-graining" means that when the catalyst is a powder catalyst, the average particle diameter of the catalyst after the reaction is smaller than that before the reaction in each reaction process after the first reaction. 5% or more of the weight per molded article in the molded catalyst is disintegrated,
This refers to the phenomenon that the generation of fine powder occurs.

【0009】本発明に用いる固体触媒としては、例えば
Zn2+、Ca2+、Ba2+から選ばれる少なくとも1種類の2価
金属と、Al3+からなる複合酸化物触媒(特開平11-31955
6)、焼成ハイドロタルサイト(特開平2-718441)、水
酸化アルミニウム・マグネシウム焼成物(特開平8-2689
19号等)、焼成ハイドロタルサイト石(特開平2-7184
1)等が例示される。
As the solid catalyst used in the present invention, for example,
A composite oxide catalyst comprising at least one kind of divalent metal selected from Zn 2+ , Ca 2+ and Ba 2+ and Al 3+ (JP-A-11-31955)
6), calcined hydrotalcite (JP-A-2-718441), aluminum hydroxide / magnesium calcined product (JP-A-8-2689)
No. 19), calcined hydrotalcite stone (Japanese Unexamined Patent Publication No. 2-7184)
1) and the like.

【0010】かかる触媒の微粒子化は、触媒の細孔内活
性点において、反応時に副生するポリアルキレングリコ
ール等の高分子量体により、触媒が機械的に崩されるこ
とにより生じる。即ち、高活性な触媒中での急激な副生
物の生成/成長反応により、微粒子化が促進される。そ
こで、触媒の中でも特に、ポリアルキレングリコール等
の高分子量体の副生量が多く、且つ反応活性の高い固体
触媒である酸化マグネシウム系触媒を用いた場合、本発
明の効果がより顕著になるので好ましい。かかる酸化マ
グネシウム系触媒として、特開平8-268919号に記載のMg
/Al触媒が例示される。
[0010] Such fine particles of the catalyst are caused by mechanically disintegrating the catalyst at the active point in the pores of the catalyst by a high molecular weight substance such as polyalkylene glycol by-produced during the reaction. That is, the generation of fine by-products in a highly active catalyst causes a rapid growth / reaction of the by-products, thereby promoting the formation of fine particles. Therefore, among the catalysts, particularly when a magnesium oxide-based catalyst which is a solid catalyst having a high by-product amount of a high molecular weight substance such as polyalkylene glycol and a high reaction activity is used, the effect of the present invention becomes more remarkable. preferable. As such a magnesium oxide-based catalyst, Mg described in JP-A-8-268919
/ Al catalyst is exemplified.

【0011】AO付加反応の反応形式としては、特に限
定されず、攪拌槽型回分式、攪拌槽型流通式、固定床流
通式等いずれの形式も用い得る。
The type of the AO addition reaction is not particularly limited, and any type such as a stirred tank type batch type, a stirred tank type flow type, and a fixed bed flow type can be used.

【0012】AO付加反応に用いる活性水素含有化合物
としては、アルコール類、フェノール類、ポリオール
類、カルボン酸類、チオール類、アミン類、アミド類が
挙げられ、いずれか1種以上が用いられるが、アルコー
ル類が好ましい。
Examples of the active hydrogen-containing compound used in the AO addition reaction include alcohols, phenols, polyols, carboxylic acids, thiols, amines, and amides. Are preferred.

【0013】アルコール類としては、飽和又は不飽和で
炭素数2〜30のものが挙げられ、第1級、2級或いは第
3級アルコールのいずれであっても良い。具体的には、
エタノール、プロパノール等の低級アルコール、ラウリ
ルアルコール、ステアリルアルコール等の高級アルコー
ル、ベンジルアルコール等の芳香族アルコール等が挙げ
られる。
Examples of the alcohols include saturated or unsaturated ones having 2 to 30 carbon atoms, and may be any of primary, secondary and tertiary alcohols. In particular,
Examples thereof include lower alcohols such as ethanol and propanol, higher alcohols such as lauryl alcohol and stearyl alcohol, and aromatic alcohols such as benzyl alcohol.

【0014】またAOは、活性水素含有化合物と反応し
て付加体を生成し得るものならばどのようなものでもよ
いが、炭素数2〜8の、隣接する炭素原子がエポキシ化
されたものが挙げられ、エチレンオキサイド、プロピレ
ンオキサイドまたはこれらの混合物が好ましい。
The AO may be any as long as it can react with an active hydrogen-containing compound to form an adduct, but those having 2 to 8 carbon atoms and epoxidized adjacent carbon atoms are preferred. Preferred are ethylene oxide, propylene oxide and mixtures thereof.

【0015】反応系内でのAOの気相部分圧は、高すぎ
ると触媒微粒子化が抑制できず、低すぎると反応活性が
低下するので、0.001〜0.19MPa絶対圧であり、好ましく
は0.01〜0.15MPa絶対圧、さらに好ましくは、0.01〜0.1
3MPa絶対圧、最も好ましくは0.01〜0.09MPa絶対圧であ
る。
The partial pressure of the gas phase of AO in the reaction system is 0.001 to 0.19 MPa absolute pressure, and preferably 0.01 to 0.19 MPa, because if it is too high, the fine particles of the catalyst cannot be suppressed, and if it is too low, the reaction activity decreases. 0.15 MPa absolute pressure, more preferably 0.01 to 0.1
It is 3 MPa absolute pressure, most preferably 0.01 to 0.09 MPa absolute pressure.

【0016】一方、反応系内の全圧を窒素ガス等の不活
性ガスを用いて高めることは、触媒の微粉化に大きな影
響を与えない。
On the other hand, increasing the total pressure in the reaction system using an inert gas such as nitrogen gas does not significantly affect the pulverization of the catalyst.

【0017】AO付加反応を回分式で行う場合、固体触
媒使用量は、使用する固体触媒の活性にもよるが、通常
活性水素含有化合物に対して0.05〜20重量%が好まし
く、0.1〜8重量%がより好ましい。反応温度は、低す
ぎると反応速度が遅く、高すぎると生成物が分解してし
まうので、80〜230℃が好ましく、より好ましくは120〜
180℃、最も好ましくは120〜160℃である。
When the AO addition reaction is carried out batchwise, the amount of the solid catalyst used is usually 0.05 to 20% by weight, preferably 0.1 to 8% by weight based on the active hydrogen-containing compound, although it depends on the activity of the solid catalyst used. % Is more preferred. When the reaction temperature is too low, the reaction rate is slow, and when the reaction temperature is too high, the product is decomposed.
180 ° C, most preferably 120-160 ° C.

【0018】触媒を粉末状で使用する場合は、例えば反
応器中に活性水素含有化合物と触媒とを仕込み、窒素置
換を行った後、所定の温度まで昇温した後、反応器内の
AOの気相部分圧が上記一定範囲内になるようにしなが
らAOを導入して反応させた後、冷却し、触媒を濾別す
ることにより行うことができる。
When the catalyst is used in the form of a powder, for example, an active hydrogen-containing compound and a catalyst are charged into a reactor, the atmosphere is replaced with nitrogen, the temperature is raised to a predetermined temperature, and the amount of AO in the reactor is reduced. After introducing and reacting AO while keeping the gaseous phase partial pressure within the above-mentioned fixed range, the reaction can be carried out by cooling and filtering off the catalyst.

【0019】触媒を成形体で使用する場合は、例えばス
テンレス製の針金等によって作られたバスケットを有す
る攪拌翼に成形触媒を入れ、これと活性水素含有化合物
を反応器に仕込み、窒素置換を行った後、所定の温度ま
で昇温した後、反応器内のAOの気相部分圧が上記一定
範囲内になるようにしながらAOを導入して反応させた
後、冷却し、触媒を濾別することにより行うことができ
る。
When the catalyst is used in a molded article, the molded catalyst is put into a stirring blade having a basket made of, for example, a stainless steel wire, and this and an active hydrogen-containing compound are charged into a reactor, and nitrogen replacement is performed. Then, after the temperature is raised to a predetermined temperature, AO is introduced and reacted while keeping the gaseous phase partial pressure of AO in the reactor within the above-mentioned fixed range, then cooled, and the catalyst is filtered off. It can be done by doing.

【0020】また、AO付加体の製造を固定床流通式で
行なう場合には、固定床流通式の反応器に触媒を充填
し、AOの気相部分圧が上記一定範囲内になるようにし
ながらAOと活性水素含有化合物を通液する。AOと活
性水素含有化合物を通液する時の通液速度は液空間速度
で0.1〜100h-1が好ましく、0.2〜70h-1がより好まし
く、1〜50h-1が特に好ましい。反応温度は、50〜300℃
が好ましく、80〜250℃がより好ましく、100〜230℃が
特に好ましい。AOとして低級AO、特にエチレンオキ
サイドを用いる場合には、その爆発の危険性をさけるた
め窒素雰囲気下にて行うのが好ましい。
When the production of the AO adduct is carried out in a fixed bed flow type, the catalyst is filled in a fixed bed flow type reactor, while the gas phase partial pressure of AO is kept within the above-mentioned fixed range. AO and the active hydrogen-containing compound are passed. The liquid passing speed when passing AO and the active hydrogen-containing compound is preferably 0.1 to 100 h -1 , more preferably 0.2 to 70 h -1 , and particularly preferably 1 to 50 h -1 in terms of liquid hourly space velocity. Reaction temperature is 50 ~ 300 ℃
Is preferably 80 to 250 ° C, and particularly preferably 100 to 230 ° C. When lower AO, particularly ethylene oxide, is used as AO, it is preferable to carry out the reaction in a nitrogen atmosphere in order to avoid the risk of explosion.

【0021】[0021]

【実施例】実施例1 <固体触媒の調製>Zn(NO3)2・6H2O 67.0g、Al(NO3)3・9H
2O 96.5g及びMg(NO3)2・6H2O 173.0gをイオン交換水1560
gに溶解した混合溶液を0.24mol/L Na2CO3水溶液及び4N
NaOH水溶液と共に、それぞれ12.5ml/min、9ml/min及び
5〜7.5ml/minの液量で5L容積の反応器に供給した。
反応槽には予め水を500g入れておき、定速攪拌器で250r
pmで攪拌した。反応液は液温度が15±2℃になるように
温度制御し、さらにpHが9.7〜10.3になるようにNaOH
水溶液の添加量で調節し、2時間沈澱反応を行った後、
各水溶液の供給を停止し、懸濁溶液を攪拌したまま1時
間熟成させた。この懸濁溶液を濾過し、得られた白色固
体をイオン交換水を用いて十分に洗浄した。洗浄後、11
0℃の温風乾燥器中で12時間乾燥させた。乾燥後の白色
固体を窒素気流中で550℃、2時間焼成した。
EXAMPLES Example 1 <Preparation of solid catalyst> Zn (NO 3 ) 2 .6H 2 O 67.0 g, Al (NO 3 ) 3 .9H
96.5 g of 2 O and 173.0 g of Mg (NO 3 ) 2・ 6H 2 O were ion-exchanged with 1560
g solution of 0.24 mol / L Na 2 CO 3 aqueous solution and 4N
Along with the aqueous NaOH solution, a liquid volume of 12.5 ml / min, 9 ml / min and 5 to 7.5 ml / min was supplied to a 5 L reactor.
Put 500 g of water in the reaction tank in advance and use a constant-speed stirrer for 250 r
Stirred at pm. The temperature of the reaction solution is controlled so that the solution temperature becomes 15 ± 2 ° C., and NaOH is further adjusted so that the pH becomes 9.7 to 10.3.
After adjusting the addition amount of the aqueous solution and performing a precipitation reaction for 2 hours,
The supply of each aqueous solution was stopped, and the suspension was aged for 1 hour with stirring. This suspension was filtered, and the obtained white solid was sufficiently washed with ion-exchanged water. After washing, 11
It was dried in a hot air dryer at 0 ° C. for 12 hours. The dried white solid was calcined in a nitrogen stream at 550 ° C. for 2 hours.

【0022】<AO付加体の製造>3.5Lオートクレーブ
にラウリルアルコール(花王社製カルコール2098)500g
と上記固体触媒をアルコールに対して0.75重量%仕込
み、系中を窒素で置換した後、400rpmで定速攪拌しなが
ら160℃まで昇温した。同温度において系内全圧が0.02M
Pa-Gとなるように窒素で加圧し、その後エチレンオキサ
イド(以下EOと略す)355gを系内圧力を0.08〜0.10MP
a絶対圧に保ちながら導入し反応を行った。所定量のE
Oを導入後、同温度で30分熟成し、その後110℃に冷却
し、生成物スラリーを反応器から抜出した。
<Production of AO adduct> 500 g of lauryl alcohol (Kalcol 2098, manufactured by Kao Corporation) in a 3.5 L autoclave
And 0.75% by weight of the above solid catalyst with respect to the alcohol, and the system was purged with nitrogen, and then heated to 160 ° C. while stirring at a constant speed of 400 rpm. At the same temperature, the total pressure in the system is 0.02M
Pressurize with nitrogen to obtain Pa-G, then 355 g of ethylene oxide (hereinafter abbreviated as EO) with internal pressure of 0.08 to 0.10MP
a The reaction was carried out while maintaining the absolute pressure. Predetermined amount of E
After introducing O, the mixture was aged at the same temperature for 30 minutes, and then cooled to 110 ° C., and the product slurry was discharged from the reactor.

【0023】<触媒濾過実験>濾過実験は、I.D.28mm×
40cmの円筒型加圧濾過機と濾布(敷島カンパス製FT7501
SS)を用い、110℃、定圧濾過条件下で行った。すなわ
ち抜出したスラリー約80gを110℃に加温し、これを110
℃に保った加圧濾過機中に仕込み、窒素で0.1MPa-G一定
圧に加圧し、一定時間毎に濾液の重量を測定した。得ら
れた濾液と濾過時間のデータを以下に示すRuth式に適用
し、これにより濾過性の指標として濾過ケーク比抵抗α
を求めた。結果を表1に示す。
<Catalyst Filtration Experiment> The filtration experiment was performed with an ID of 28 mm ×
40cm cylindrical pressure filter and filter cloth (Shikishima Campus FT7501
SS) at 110 ° C. under constant pressure filtration conditions. That is, about 80 g of the extracted slurry was heated to 110 ° C.
The mixture was charged into a pressure filter maintained at 0 ° C., pressurized to a constant pressure of 0.1 MPa-G with nitrogen, and the weight of the filtrate was measured at regular intervals. The obtained filtrate and data of the filtration time were applied to the Ruth equation shown below, whereby the filter cake specific resistance α was used as an index of filterability.
I asked. Table 1 shows the results.

【0024】[0024]

【数1】 (Equation 1)

【0025】(式中、V:濾液体積[m3]、A:濾過面積
[m2]、V0:仮想濾液量[m3]、P:濾過圧力[kgf/m2]、
θ:濾過時間[h]、m:ケーク湿乾質量比、θ0:V0を得
る時間[h]、s:固形分濃度、K:Ruth定圧濾過定数[m6/
h]、μ’:濾液粘度[kg・s/m2]、α:ケーク平均比抵抗
[m/kg]、ρ:濾液密度[kg/m3]を示す。) Ruthの定圧濾過式を変形し、
(Wherein, V: filtrate volume [m 3 ], A: filtration area
[m 2 ], V 0 : virtual filtrate volume [m 3 ], P: filtration pressure [kgf / m 2 ],
θ: filtration time [h], m: wet-dry mass ratio of cake, θ 0 : time to obtain V 0 [h], s: solid content concentration, K: Ruth constant pressure filtration constant [m 6 /
h], μ ': Filtrate viscosity [kg · s / m 2 ], α: Cake average specific resistance
[m / kg], ρ: Filtrate density [kg / m 3 ]. ) Modified Ruth's constant pressure filtration

【0026】[0026]

【数2】 (Equation 2)

【0027】(V/A)に対して、dθ/d(V/A)
をプロットし、得られる直線の傾きから、ケーク比抵抗
αを算出した。
With respect to (V / A), dθ / d (V / A)
Was plotted, and the cake specific resistance α was calculated from the slope of the obtained straight line.

【0028】<触媒粒径測定>反応後の触媒粒度分布
は、反応前/後のスラリーを用い、光散乱法(HORIBA社
製LA700)によりエタノールを溶媒として測定した。得
られたデータから体積基準の平均粒子径(dp)を求めた。
結果を表1に示す。
<Measurement of catalyst particle size> The catalyst particle size distribution after the reaction was measured by using a slurry before and after the reaction by a light scattering method (LA700 manufactured by HORIBA) using ethanol as a solvent. From the obtained data, a volume-based average particle diameter (dp) was determined.
Table 1 shows the results.

【0029】<触媒回収実験>AO付加体から濾別した
触媒ケークに新触媒とラウリルアルコールを加え、触媒
スラリー濃度を1回目の反応と同じ0.75重量%対原料と
して、再度AO付加体の製造を行った。この際添加した
新触媒の量は、全触媒量の10重量%であった。反応後1
回目と同様の触媒濾過実験及び触媒粒径測定を行った。
またこの回収実験を計12回行った。結果をまとめて表1
に示す。
<Catalyst Recovery Experiment> The new catalyst and lauryl alcohol were added to the catalyst cake filtered off from the AO adduct, and the AO adduct was produced again using the same catalyst slurry concentration of 0.75% by weight as the raw material as in the first reaction. went. The amount of the new catalyst added at this time was 10% by weight of the total catalyst amount. After reaction 1
The same catalyst filtration experiment and catalyst particle size measurement as the first time were performed.
This collection experiment was performed 12 times in total. Table 1 summarizes the results
Shown in

【0030】実施例2 EO分圧を0.15MPa絶対圧にする以外は実施例1と同様
にして計3回の反応回収評価を行った。結果を表1に示
す。
Example 2 A total of three reaction recovery evaluations were performed in the same manner as in Example 1 except that the EO partial pressure was changed to 0.15 MPa absolute pressure. Table 1 shows the results.

【0031】実施例3 触媒として500℃で2時間焼成したMg/Al触媒(KW300協
和化学社製)を用いる以外は実施例1と同様にして計3
回の回収評価を行った。結果を表1に示す。
Example 3 A total of 3 were prepared in the same manner as in Example 1 except that a Mg / Al catalyst (KW300 manufactured by Kyowa Chemical Co., Ltd.) calcined at 500 ° C. for 2 hours was used as a catalyst.
A collection evaluation was performed. Table 1 shows the results.

【0032】実施例4 窒素を用いて、反応初期の系内全圧を0.27MPa-Gとする
以外は実施例1と同様にして計3回の回収評価を行った
(EO分圧は0.08MPa絶対圧)。結果を表1に示す。
Example 4 A total of three recovery evaluations were performed in the same manner as in Example 1 except that the total pressure in the system at the beginning of the reaction was changed to 0.27 MPa-G using nitrogen (partial pressure of EO was 0.08 MPa). Absolute pressure). Table 1 shows the results.

【0033】比較例1 EO分圧を0.27MPa絶対圧にする以外は、実施例1と同
様にして計3回の回収評価を行った。結果を表1に示
す。
Comparative Example 1 A total of three recovery evaluations were performed in the same manner as in Example 1 except that the EO partial pressure was changed to 0.27 MPa absolute pressure. Table 1 shows the results.

【0034】比較例2 EO分圧を0.2MPa絶対圧とする以外は、実施例3と同様
にして計2回の回収評価を行った。結果を表1に示す。
Comparative Example 2 A total of two recovery evaluations were performed in the same manner as in Example 3 except that the EO partial pressure was set to 0.2 MPa absolute pressure. Table 1 shows the results.

【0035】[0035]

【表1】 [Table 1]

【0036】表1から明らかなように、反応後の触媒粒
径は、反応系内の全圧よりもAOの気相部分圧の影響を
受けることが判る。
As is clear from Table 1, the catalyst particle size after the reaction is more affected by the partial pressure of the gas phase of AO than by the total pressure in the reaction system.

【0037】[0037]

【発明の効果】本発明によると、固体触媒の崩壊・微粒
子化が抑制され、従来技術に比べ非常に効率よくAO付
加体を製造することができる。
According to the present invention, the disintegration and fine particle formation of the solid catalyst are suppressed, and the AO adduct can be produced very efficiently as compared with the prior art.

フロントページの続き Fターム(参考) 4H006 AA02 AC41 AC43 BA06 BA09 BA30 BA68 BC10 BC11 BC18 GN06 GP01 GP10 4H039 CA60 CA61 CF90 Continued on the front page F term (reference) 4H006 AA02 AC41 AC43 BA06 BA09 BA30 BA68 BC10 BC11 BC18 GN06 GP01 GP10 4H039 CA60 CA61 CF90

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体触媒存在下、活性水素含有化合物に
アルキレンオキサイドを付加してアルキレンオキサイド
付加体を製造するに際し、反応系内でのアルキレンオキ
サイドの気相部分圧を0.001〜0.19MPa絶対圧とする、ア
ルキレンオキサイド付加体の製法。
When an alkylene oxide is added to an active hydrogen-containing compound in the presence of a solid catalyst to produce an alkylene oxide adduct, the gas phase partial pressure of the alkylene oxide in the reaction system is set to 0.001 to 0.19 MPa absolute pressure. To produce an alkylene oxide adduct.
JP2000401834A 2000-12-28 2000-12-28 Method for producing alkylene oxide adduct Pending JP2002201151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401834A JP2002201151A (en) 2000-12-28 2000-12-28 Method for producing alkylene oxide adduct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401834A JP2002201151A (en) 2000-12-28 2000-12-28 Method for producing alkylene oxide adduct

Publications (1)

Publication Number Publication Date
JP2002201151A true JP2002201151A (en) 2002-07-16

Family

ID=18866214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401834A Pending JP2002201151A (en) 2000-12-28 2000-12-28 Method for producing alkylene oxide adduct

Country Status (1)

Country Link
JP (1) JP2002201151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113985A1 (en) * 2006-03-30 2007-10-11 Lion Corporation Alkylene oxide adduct, method for production thereof, and surfactant composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113985A1 (en) * 2006-03-30 2007-10-11 Lion Corporation Alkylene oxide adduct, method for production thereof, and surfactant composition
JP5203186B2 (en) * 2006-03-30 2013-06-05 ライオン株式会社 Alkylene oxide adduct, process for producing the same, and surfactant composition

Similar Documents

Publication Publication Date Title
US5723637A (en) Process for producing propylene oxide
JP2009215322A (en) Method and catalyst for producing alcohol
JP2732475B2 (en) Zinc-containing solid catalyst and method for producing polyalkylene carbonate using the catalyst
JPH08169861A (en) Production of fatty acid polyoxyalkylene alkyl ether
JP2002536178A (en) Double metal cyanide catalysts for producing polyether polyols
JP5531328B2 (en) Method for producing alkylene oxide adduct
JP2002361086A (en) Carboxylic acid ester synthesis catalyst and method for producing carboxylic acid ester
JP2002201151A (en) Method for producing alkylene oxide adduct
KR20120093960A (en) Conditioning of double metal cyanide catalysts
JP2766040B2 (en) Production method of saturated alcohol
EP0661255B1 (en) Process for producing diol compounds
JP2003342362A (en) Method for manufacturing polyether polyol
JP4170562B2 (en) Catalyst for alkylene oxide addition reaction
EP0673909B1 (en) Process for producing diol compound
JP3845180B2 (en) Process for producing fatty acid polyoxyalkylene alkyl ether, and composite metal oxide catalyst used in the process
JP3911582B2 (en) Catalyst for alkoxylation of complex oxide
JP2001314765A (en) Alkoxylation catalyst, its manufacturing method and method for manufacturing alkylene oxide adduct using the same
JP2005536348A (en) Preparation of rare earth phosphate catalysts from carbonates and their use in alkoxylation reactions
JPH03242242A (en) Production of catalyst for alkoxylation
JP3829361B2 (en) Propylene oxide production method
JPH03195728A (en) Method for purifying polyoxyalkylenepolyol
JPH11319556A (en) Alkylene oxide addition catalyst
JP3760543B2 (en) Method for producing alkylene glycol
JP4196456B2 (en) Method for producing aliphatic tertiary amine
JP2001327865A (en) Catalyst for alkylene oxide addition reaction