WO2007113274A1 - Compensation device for thermal lens in a high-frequency femtosecond regenerating cavity - Google Patents

Compensation device for thermal lens in a high-frequency femtosecond regenerating cavity Download PDF

Info

Publication number
WO2007113274A1
WO2007113274A1 PCT/EP2007/053150 EP2007053150W WO2007113274A1 WO 2007113274 A1 WO2007113274 A1 WO 2007113274A1 EP 2007053150 W EP2007053150 W EP 2007053150W WO 2007113274 A1 WO2007113274 A1 WO 2007113274A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
crystal
mirror
laser
thermal
Prior art date
Application number
PCT/EP2007/053150
Other languages
French (fr)
Inventor
Emmanuel Baubeau
Guillaume Matras
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2007113274A1 publication Critical patent/WO2007113274A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/235Regenerative amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof

Definitions

  • the present invention relates to a device for compensating the thermal lens in a femtosecond regenerative cavity at high speed.
  • the cavity of FIG. 1 essentially comprises a plane mirror 1, two concave mirrors 2 and 3, a gain medium 4, an electro-optical system 5 (a Pockels cell, for example) and a polarizer 6.
  • the mirrors 1 to 3 are arranged so that the axis 7 joining the centers of the mirrors 1 and 2 make an acute angle with the axis 8 joining the centers of the mirrors 2 and 3.
  • the mirrors 1 and 3 are called "cavity bottom mirrors" .
  • the system 5 and the device 6 are arranged on the axis 7, while the crystal 4 is disposed on the axis 8, near the neck ("waist" in English) of the beam propagating between the two concave mirrors 2 and 3.
  • the crystal 4 is pumped longitudinally through the mirror 3, so that the overlap between the pump and the mode of the cavity is the best possible.
  • the crystal is usually cut at the angle of Brewster.
  • the cavity of FIG. 2 essentially comprises, in addition to the first plane mirror 1 and two concave mirrors 2 and 3, a second plane mirror 9, a gain medium 4, an electro-optical system 5 and a polarizer 6.
  • the mirrors 1 to 3 are arranged so that the axis 7 joining the centers of the mirrors 1 and 2 makes an acute angle with the axis 8 joining the centers of the mirrors 2 and 3.
  • the mirror 9 is arranged so that the axis 10 joining its center to the center of the mirror 2 makes an acute angle with the axis 8.
  • the mirror 9 is the cavity bottom mirror.
  • the axes 7, 8 and 10 form a "Z".
  • the elements 4, 5 and 6 are arranged in the same way as in FIG. 1.
  • the crystal 4 is also pumped longitudinally through the mirror 3.
  • the beam In one of the arms of the cavity, the beam is collimated (axis 7) and of fairly large diameter.
  • the electro-optical device or devices (6) necessary for injecting and ejecting the pulse to be amplified into the cavity are inserted therein.
  • the beam in the arm of the Pockels cell (5) must be slightly divergent and wide enough to guarantee its good functionality.
  • the energy extracted from the cavity is directly connected to the volume of the gain zone in the crystal (4). It is important that the mode on the crystal is as big as possible. o There must be the best possible overlap between the pump laser and the cavity mode inside the crystal. This condition imposes strong constraints on the choice of the pump laser and in particular its M 2 factor.
  • the focal length of the thermal lens is given by the following formula [Thermal Lensing in Nd: Rod YAG, Koechner, Applied Optics, Nov 1970, Vol 9, N 0 I l]: in this formula, r is the pump radius, P, the thermal power dissipated in
  • the thermal lens is all the stronger (that is to say, its focal length is even shorter) than the pumping power is strong or the pumping radius is low.
  • is the repetition rate of the pump laser
  • Pp is the power of a pump pulse
  • is the efficiency between the pump energy and the energy available for amplification.
  • FIGS. 5 to 7 are also identical with each other, with the sole difference of the position of the crystal with respect to the "waist" and refer to the diagram of FIG. 1. They are designed to short thermal focal lengths. In Figure 5, the waist is only 87 ⁇ m. If one performs the same operation as in the cavity of FIG. 4, one increases the size of the waist, but the propagation of the beam is degraded very quickly: one focuses either on the cavity bottom mirror (figure 6), or in the arm that contains the Pockels cell ( Figure 7). Conventional regenerative cavities therefore offer very little flexibility.
  • the width of the stability zone ⁇ is inversely proportional to H > 0 ⁇ :
  • the standard cavities all work in Zone 1 and are constructed in such a way that the cavity can be stable even without thermal focus.
  • the relation (4) then implies a maximum mode size for a given thermal focal length.
  • zone 2 the cavity is stable only in the presence of the thermal lens. This would theoretically allow for a larger mode, but so far no achievements have been made and no description of such a possibility has been published.
  • the sensitivity to misalignment of the cavity is defined in the above-reference Eilee as the inverse of the maximum angle applicable to the orientation of a mirror without shift mode outside the pumping area . It is measured in rad ⁇ '.
  • FIG. 9 shows a typical curve of the sensitivity of a cavity bottom mirror as a function of the inverse of the thermal focal length.
  • zone 1 the sensitivity to misalignment remains low, while that in zone 2 the sensitivity tends rapidly towards infinity. In practice, it is therefore difficult to work in zone 2.
  • the present invention relates to a laser cavity in which one can increase the energy extracted consistently a regenerative amplifier in a simple and inexpensive way.
  • the laser cavity according to the invention is a cavity of the femtosecond regenerative type with a high pumping rate, comprising a laser crystal and two cavity bottom mirrors, and is characterized in that its gain medium (12) is disposed at contact or near one of its cavity bottom mirrors (1 1), which is a convex mirror whose radius of curvature is a function of the desired stability range compatible with the thermal focal length of the crystal.
  • it is architecture "V" or "Z”.
  • the laser cavity of the invention makes it possible to obtain a large amplification volume irrespective of the value of the thermal focal length involved, while maintaining a TEM 0 0 beam. As a corollary, this technique makes it possible to release the constraint on the parameter M 2 of the pump laser.
  • This invention is applicable to cavities provided with crystals of various types, in particular, but not limited to Ti: sapphire or ytterbium.
  • FIGS. 1 and 2 are simplified schematics of laser cavities of the prior art, with “V” and “Z” architecture, respectively
  • FIGS. 3 to 7, also described above are laser beam propagation diagrams in cavities of FIG. the prior art
  • FIG. 8 also described above, is a typical curve illustrating the stability of a regenerative cavity and represents the evolution of the fundamental mode radius on its crystal as a function of the inverse of the thermal focal length.
  • FIG. 9, also described above is a typical curve illustrating the sensitivity to misalignment of a cavity bottom mirror, FIG.
  • FIGS. 1 and 12 are laser beam propagation diagrams in a cavity according to the invention
  • FIG. 13 is a typical curve illustrating the evolution of the stability range for different radii of curvature of the convex mirror of a cavity according to the invention. the invention and giving the mode radius
  • FIGS. 15 and 16 are simplified diagrams of examples of laser cavities according to the invention with a "Z" and "V" architecture , respectively.
  • the principle of the invention is to position the crystal in the cavity bottom, just in front of a plane or convex mirror. The choice of the radius of curvature of this mirror makes it possible to tune the cavity according to the thermal focal length.
  • FIG. 10 diagrammatically shows a cavity in "V" according to the invention.
  • the cavity of FIG. 10 is similar to that of FIG. being that the concave mirror 3 is replaced by a convex mirror 1 1 and that the crystal 4 is replaced by a crystal 12 in contact with the mirror 1 1 or close to it.
  • the cavity bottom mirror 1 1 is flat, and that the crystal 12 is devoid of thermal lens effect.
  • the cavity is designed in such a way that it satisfies the criteria described above with reference to FIGS. 1 and 2 (collimation of the beam in the arm of the Pockcls cell and a large mode on the crystal).
  • the radius of curvature of the mirror is adjusted to set the desired stability range compatible with the thermal focal length of the crystal.
  • the crystal 12 is then placed in front of the plane mirror 11, then the mirror 11 is considered to be convex, and adapts its radius of curvature to impose the position of the stability range.
  • the propagation diagram of the laser beam in the cavity then becomes that represented in FIG. 12.
  • FIG. 13 This diagram shows the evolution of the stability zone No. 1 (as defined with reference to FIG. 8) for different radii of FIG. curvature. These radii of curvature R are respectively equal to 5, 10, 30 and infinity.
  • the stability zone can be adjusted without altering the minimum mode radius W 0 (equal to 150 ⁇ m in the example shown) and the width ⁇ from zone 1.
  • the sensitivity to a misalignment of the cavity can be determined, and for this purpose, reference will be made to the diagram of FIG.
  • the sensitivity curve can be divided into two parts: the first corresponds to a zone (marked "Zone 1" in the figure) where the sensitivity remains low and the second to a sensitivity that increases very rapidly.
  • the first part of the sensitivity curve which has a low sensitivity, matches 90% of the stability zone of the laser (as shown in Figure 13). The invention therefore allows the regenerative cavity to be adjusted without much difficulty.
  • the diameter of the fundamental mode that can be envisaged in conventional cavities is generally less than 200 ⁇ m, whereas in the example described here, there is a diameter of 300 ⁇ m (the radius W 0 is 150 ⁇ m).
  • the maximum M 2 of the pump laser will therefore be 50% higher.
  • FIG. 15 shows the diagram of a regenerative cavity architecture variant in "Z" according to the invention. This cavity is similar to that of FIG. 2, the difference residing mainly in the fact that the plane mirror (9) of the configuration of FIG.
  • FIG. 16 illustrates an exemplary embodiment of a "V" regenerative cavity, to highlight the advantages of the invention.
  • the cavity of FIG. 16 has the same configuration as that of FIG. 10, and the same elements are assigned the same reference numerals.
  • the pumping frequency of the crystal 12 is here 5 kHz. ⁇ 5 kl Iz, the thermal focal length of the crystal is about 20 cm.
  • Crystal 12 has a length of 1, 5 cm.
  • the mode diameter of this cavity is 450 ⁇ m.
  • the power extracted from this cavity is 4 W for a pump power of 24 W.
  • the minimum parameter M 2 required to pump this cavity is 40, which corresponds to a Rayleigh area equal to half the length of the crystal. .
  • the invention makes it possible, without using cryogenic processes, to envisage regenerative cavities of much higher power than at present, while allowing a greater flexibility on the parameter M 2 of the pump lasers used. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

The invention concerns a laser cavity which is a laser cavity of the type of high-frequency pumping femtosecond regenerative cavity, comprising a gain medium, such as a Ti:Sa crystal, and at least two cavity base mirrors. The invention is characterized in that its gain medium (12) is designed to be contacting or proximate one of its cavity base mirrors (11), which is a convex mirror of which the radius of curvature is a function of the desired stability range compatible with the thermal focus of the crystal.

Description

DISPOSITIF DE COMPENSATION DE LA LENTILLE THERMIQUE DANS UNE CAVITE REGENERATIVE FEMTOSECONDE HAUTE CADENCE DEVICE FOR COMPENSATING THE THERMAL LENS IN A REGENERATIVE HIGH-CADENCE FEMTOSECOND CAVITY
La présente invention se rapporte à un dispositif de compensation de la lentille thermique dans une cavité régénérative femtoseconde à haute cadence.The present invention relates to a device for compensating the thermal lens in a femtosecond regenerative cavity at high speed.
La réalisation de sources laser de type femtoseconde amplifiées à haute cadence (plusieurs kHz) et par exemple en technologie Ti :Sa, se heurte à l'aggravation du phénomène de la focale thermique lorsque le taux de répétition du laser augmente. Ceci est le cas en particulier dans les amplificateurs régénératifs qui constituent généralement le premier étage d'amplification de telles sources.The production of laser sources of the femtosecond type amplified at a high rate (several kHz) and for example in Ti: Sa technology, faces a worsening of the phenomenon of the thermal focal point when the rate of repetition of the laser increases. This is particularly the case in regenerative amplifiers which generally constitute the first amplification stage of such sources.
L'une des techniques employées pour s'affranchir de ce problème est de refroidir le cristal de saphir-titane à très basse température. Ceci permet d'augmenter la conductivité thermique du cristal et de diminuer la variation d'indice avec la température, ces deux phénomènes ayant pour effet de diminuer l'effet de focale thermique. Cependant, cette technique est relativement coûteuse (utilisation de techniques cryogéniques) et elle augmente considérablement l'encombrement et la complexité du laser. Elle pose par ailleurs des problèmes d'isolation et de maintien du cristal.One of the techniques used to overcome this problem is to cool the sapphire-titanium crystal at very low temperatures. This makes it possible to increase the thermal conductivity of the crystal and to reduce the index variation with the temperature, these two phenomena having the effect of reducing the thermal focal effect. However, this technique is relatively expensive (use of cryogenic techniques) and greatly increases the size and complexity of the laser. It also poses problems of insulation and maintenance of the crystal.
On va se référer aux schémas des exemples des figures 1 et 2 pour exposer les caractéristiques de cavités laser régénératives sur lesquelles porte la présente invention. Ces cavités sont généralement du type en « V » (Figure 1) ou en « Z »Reference will be made to the diagrams of the examples of FIGS. 1 and 2 to expose the characteristics of regenerative laser cavities to which the present invention relates. These cavities are generally of type "V" (Figure 1) or "Z"
(figure 2). Les éléments similaires de ces deux figures sont affectés des mêmes références numériques.(Figure 2). The similar elements of these two figures are assigned the same numerical references.
La cavité de la figure 1 comporte essentiellement un miroir plan 1 , deux miroirs concaves 2 et 3, un milieu à gain 4, un système électro-optique 5 (une cellule de Pockels, par exemple) et un polariseur 6. Les miroirs 1 à 3 sont disposés de façon que l'axe 7 joignant les centres des miroirs 1 et 2 fasse un angle aigu avec l'axe 8 joignant les centres des miroirs 2 et 3. Les miroirs 1 et 3 sont dits « miroirs de fond de cavité ». Lc système 5 et le dispositif 6 sont disposés sur l'axe 7, tandis que le cristal 4 est disposé sur l'axe 8, à proximité du col (« waist » en anglais) du faisceau se propageant entre les deux miroirs concaves 2 et 3. Le cristal 4 est pompé longitudinalcmcnt à travers le miroir 3, de telle manière que le recouvrement entre la pompe et Ic mode de la cavité soit le meilleur possible. Le cristal est généralement taillé à l'angle de Brewster.The cavity of FIG. 1 essentially comprises a plane mirror 1, two concave mirrors 2 and 3, a gain medium 4, an electro-optical system 5 (a Pockels cell, for example) and a polarizer 6. The mirrors 1 to 3 are arranged so that the axis 7 joining the centers of the mirrors 1 and 2 make an acute angle with the axis 8 joining the centers of the mirrors 2 and 3. The mirrors 1 and 3 are called "cavity bottom mirrors" . The system 5 and the device 6 are arranged on the axis 7, while the crystal 4 is disposed on the axis 8, near the neck ("waist" in English) of the beam propagating between the two concave mirrors 2 and 3. The crystal 4 is pumped longitudinally through the mirror 3, so that the overlap between the pump and the mode of the cavity is the best possible. The crystal is usually cut at the angle of Brewster.
La cavité de la ligure 2 comporte essentiellement, outre le premier miroir plan 1 et deux miroirs concaves 2 et 3, un deuxième miroir plan 9, un milieu à gain 4, un système électro-optique 5 et un polariseur 6. Comme dans le cas de la figure 1 , les miroirs 1 à 3 sont disposés de façon que l'axe 7 joignant les centres des miroirs 1 et 2 fasse un angle aigu avec l'axe 8 joignant les centres des miroirs 2 et 3. En outre, le miroir 9 est disposé de façon que l'axe 10 joignant son centre au centre du miroir 2 fasse un angle aigu avec l'axe 8. Dans cette configuration, le miroir 9 est le miroir de fond de cavité. Ainsi, les axes 7, 8 et 10 forment un « Z ». Les éléments 4, 5 et 6 sont disposés de la même façon qu'en figure 1. Le cristal 4 est également pompé longitudinalement à travers le miroir 3.The cavity of FIG. 2 essentially comprises, in addition to the first plane mirror 1 and two concave mirrors 2 and 3, a second plane mirror 9, a gain medium 4, an electro-optical system 5 and a polarizer 6. As in the case 1, the mirrors 1 to 3 are arranged so that the axis 7 joining the centers of the mirrors 1 and 2 makes an acute angle with the axis 8 joining the centers of the mirrors 2 and 3. In addition, the mirror 9 is arranged so that the axis 10 joining its center to the center of the mirror 2 makes an acute angle with the axis 8. In this configuration, the mirror 9 is the cavity bottom mirror. Thus, the axes 7, 8 and 10 form a "Z". The elements 4, 5 and 6 are arranged in the same way as in FIG. 1. The crystal 4 is also pumped longitudinally through the mirror 3.
Plusieurs critères gouvernent le fonctionnement d'une cavité régénérative : o Dans l'un des bras de la cavité, le faisceau est collimaté (axe 7) et d'assez grand diamètre. On y insère le ou les dispositifs électro-optiques (6) nécessaires à l'injection et à l'éjection de l'impulsion à amplifier dans la cavité. Le faisceau dans le bras de la cellule de Pockels (5) doit être faiblement divergent et assez large pour garantir sa bonne fonctionnalité. o L'énergie extraite de la cavité est directement reliée au volume de la zone de gain dans le cristal (4). Il importe donc que le mode sur le cristal soit aussi gros que possible. o II doit y avoir le meilleur recouvrement possible entre le laser de pompe et le mode de la cavité à l'intérieur du cristal. Cette condition impose des contraintes fortes sur le choix du laser de pompe et en particulier de son facteur M2.Several criteria govern the operation of a regenerative cavity: o In one of the arms of the cavity, the beam is collimated (axis 7) and of fairly large diameter. The electro-optical device or devices (6) necessary for injecting and ejecting the pulse to be amplified into the cavity are inserted therein. The beam in the arm of the Pockels cell (5) must be slightly divergent and wide enough to guarantee its good functionality. o The energy extracted from the cavity is directly connected to the volume of the gain zone in the crystal (4). It is important that the mode on the crystal is as big as possible. o There must be the best possible overlap between the pump laser and the cavity mode inside the crystal. This condition imposes strong constraints on the choice of the pump laser and in particular its M 2 factor.
Dans de telles cavités, il peut exister un phénomène parasite, c'est l'effet de lentille thermique. Lorsqu'il est pompé, le cristal s'échauffe de manière inhomogène et se comporte comme une lentille. En première approximation, la focale de la lentille thermique est donnée par la formule suivante [Thermal Lensing in Nd : YAG Rod, Koechner, Applied Optics, Nov 1970, Vol 9, N0I l ] :
Figure imgf000005_0001
dans cette formule, r est le rayon de pompe, P , la puissance thermique dissipée dans
In such cavities, there may be a parasitic phenomenon, it is the effect of thermal lens. When pumped, the crystal heats inhomogeneously and behaves like a lens. In a first approximation, the focal length of the thermal lens is given by the following formula [Thermal Lensing in Nd: Rod YAG, Koechner, Applied Optics, Nov 1970, Vol 9, N 0 I l]:
Figure imgf000005_0001
in this formula, r is the pump radius, P, the thermal power dissipated in
le cristal, — la variation d'indice en fonction de la température. La lentille dt thermique est d'autant plus forte (c'est-à-dire que sa focale est d'autant plus courte) que la puissance de pompage est forte ou que le rayon de pompage est faible.the crystal, - the index variation as a function of the temperature. The thermal lens is all the stronger (that is to say, its focal length is even shorter) than the pumping power is strong or the pumping radius is low.
Ce phénomène est sensible à l'augmentation du taux de répétition du laser de pompe. Il est possible de reformuler l'expression précédente en introduisant la densité d'énergie de pompage Jp :This phenomenon is sensitive to the increase of the repetition rate of the pump laser. It is possible to reformulate the previous expression by introducing the pumping energy density Jp:
Figure imgf000005_0002
dans cette formule, τ est le taux de répétition du laser de pompe, Pp est l'énergie d'une impulsion de pompe, et η est le rendement entre l'énergie de pompe et l'énergie disponible pour l'amplification. La formule (1) devient alors :
Figure imgf000005_0002
in this formula, τ is the repetition rate of the pump laser, Pp is the power of a pump pulse, and η is the efficiency between the pump energy and the energy available for amplification. The formula (1) then becomes:
/Λ =7FT <3) / Λ = 7FT <3)
II apparaît ainsi qu'à densité d'énergie de pompe constante, c'est à dire à gain constant, la focale thermique est inversement proportionnelle au taux de répétition du laser.It thus appears that at constant pump energy density, that is to say at constant gain, the thermal focal length is inversely proportional to the laser repetition rate.
Par exemple, pour avoir le même gain à 10 kHz qu'à 1 kHz, il faut soit multiplier la puissance moyenne par 10, soit réduire d'un facteur 10 la surface de pompage. Dans les deux cas, la focale thermique est réduite d'un facteur 10. A 10 kHz, cette dernière a une valeur inférieure à 10 cm dans les conditions de pompage optimales.For example, to have the same gain at 10 kHz as at 1 kHz, either multiply the average power by 10 or reduce the pumping area by a factor of 10. In both cases, the thermal focal length is reduced by a factor of 10. At 10 kHz, the latter has a value less than 10 cm in optimal pumping conditions.
De façon classique, on positionne toujours le cristal au « waist » de la cavité, mais il est possible dans certains cas de le déplacer pour obtenir un mode plus gros sur celui-ci. A l'aide d'un logiciel de calcul optique, il est possible de tracer la propagation du faisceau dans une cavité rcgcncrativc en V classique (telle que celle de la figure 1 ) composée d'un cristal soumis à un effet de lentille thermique. Ceci est illustré par les exemples des figures 3 à 7. Les cavités dont on a tracé le diagramme de propagation en figures 3 et 4 sont identiques, à la seule différence de la position du cristal par rapport au « waist ». Ces deux cavités identiques sont conçues pour être stables pour de longues focales thermiques. Le bras de gauche (à gauche du miroir M2) est prévu pour accueillir la cellule de Pockels. Dans le but de grossir le mode sur le cristal, on peut déplacer le cristal de quelques centimètres en dehors du waist de la cavité sans altérer la propagation du faisceau intra-cavité comme le montre la figure 4.Conventionally, we always position the crystal in the "waist" of the cavity, but it is possible in some cases to move it to get a bigger mode on it. With the aid of optical calculation software, it is possible to trace the propagation of the beam in a conventional V-shaped recess (such as that of FIG. 1) composed of a crystal subjected to a thermal lens effect. This is illustrated by the examples of FIGS. 3 to 7. The cavities for which the propagation diagram has been drawn in FIGS. 3 and 4 are identical, the only difference being the position of the crystal with respect to the "waist". These two identical cavities are designed to be stable for long thermal focal lengths. The left arm (to the left of the M2 mirror) is intended to accommodate the Pockels cell. In order to magnify the mode on the crystal, one can move the crystal a few centimeters outside the waist of the cavity without altering the propagation of the intracavity beam as shown in Figure 4.
Les cavités dont on a tracé le diagramme de propagation en figures 5 à 7 sont également identiques entre elles, à la seule différence de la position du cristal par rapport au « waist » et se rapportent au schéma de la figure 1. Elles sont conçues pour de courtes focales thermiques. En figure 5, le waist est seulement de 87μm. Si on effectue la même opération que dans la cavité de la figure 4, on augmente la taille du waist, mais la propagation du faisceau se dégrade très vite : on focalise soit sur le miroir de fond de cavité (figure 6), soit dans le bras qui contient la cellule de Pockels (figure 7). Les cavités régénératives classiques offrent donc très peu de souplesse.The cavities of which the propagation diagram has been drawn in FIGS. 5 to 7 are also identical with each other, with the sole difference of the position of the crystal with respect to the "waist" and refer to the diagram of FIG. 1. They are designed to short thermal focal lengths. In Figure 5, the waist is only 87μm. If one performs the same operation as in the cavity of FIG. 4, one increases the size of the waist, but the propagation of the beam is degraded very quickly: one focuses either on the cavity bottom mirror (figure 6), or in the arm that contains the Pockels cell (Figure 7). Conventional regenerative cavities therefore offer very little flexibility.
Pour des focales thermiques courtes, on ne peut pas augmenter la taille de mode sur le cristal sans altérer la propagation du faisceau à l'intérieur de la cavité. L'énergie que l'on peut extraire de ces cavités est donc limitée.For short thermal focal lengths, one can not increase the mode size on the crystal without altering the propagation of the beam inside the cavity. The energy that can be extracted from these cavities is therefore limited.
Un autre paramètre important de ces cavités est leur stabilité. Dans la référence [V. Magni « Resonators for solid-state lasers with large-aperture fundamental mode and high alignment stability ». Applied Optics, 25: 107-117,1986], il est montré qu'une cavité à deux miroirs contenant un barreau soumis à un effet de lentille thermique, possède deux zones de stabilité de même largeur et, que le volume du mode (au niveau du cristal) présente un point stationnaire insensible aux fluctuations de la focale thermique. A partir de ce calcul, il est possible d'étendre la démonstration à une cavité en V ou en Z. La courbe de la figure 8 représente l'évolution de la taille du mode fondamental sur le cristal (rayon du mode au niveau du cristal) en fonction de l'inverse de la focale thermique.Another important parameter of these cavities is their stability. In the reference [V. Magni "Resonators for solid-state lasers with wide-aperture fundamental mode and high alignment stability". Applied Optics, 25: 107-117, 1986], it is shown that a two-mirror cavity containing a bar subjected to a thermal lens effect, has two zones of stability of the same width and that the volume of the mode (at crystal level) has a stationary point insensitive to fluctuations in the thermal focal length. From this calculation, it is possible to extend the demonstration to a cavity in V or Z. The curve of FIG. 8 represents the evolution of the fundamental mode size on the crystal (mode radius at the crystal level) as a function of the inverse of the thermal focal length.
Sur cette figure 8, on observe deux zones de stabilité symétriques de largeur Δ appelées respectivement « Zone 1 » et « Zone 2 » ; w0 est le point où la cavité est la moins sensible aux fluctuations de la focale thermique. En dehors des zones de stabilité de largeur Δ, l'effet laser en mode TEMoo ne peut pas exister (effet laser inexistant ou dégradé).In this Figure 8, there are two symmetrical stability zones of width Δ respectively called "Zone 1" and "Zone 2"; w 0 is the point where the cavity is the least sensitive to the fluctuations of the thermal focal length. Outside stability zones of width Δ, the laser effect in TEMoo mode can not exist (non-existent or degraded laser effect).
De ces calculs, on peut également extraire une relation essentielle: la largeur de la zone de stabilité Δ est inversement proportionnelle à H> 0 ~ :From these calculations, one can also extract an essential relation: the width of the stability zone Δ is inversely proportional to H > 0 ~ :
Figure imgf000007_0001
Figure imgf000007_0001
Plus W0 est grand, plus le volume d'amplification est important, mais plus restreinte est la plage de stabilité. Il faut donc rechercher un compromis.The larger W 0 is, the greater the amplification volume, but the smaller the stability range. We must therefore seek a compromise.
Les cavités standard fonctionnent toutes dans la zone 1 et elles sont construites de telle manière que la cavité peut être stable même sans focale thermique. La relation (4) implique alors une taille maximum du mode pour une focale thermique donnée.The standard cavities all work in Zone 1 and are constructed in such a way that the cavity can be stable even without thermal focus. The relation (4) then implies a maximum mode size for a given thermal focal length.
Dans la zone 2, la cavité n'est stable qu'en présence de la lentille thermique. Ceci permettrait en théorie d'envisager un mode plus gros, mais jusqu'à présent, aucune réalisation n'a été présentée et aucune description d'une telle possibilité n'a été publiée.In zone 2, the cavity is stable only in the presence of the thermal lens. This would theoretically allow for a larger mode, but so far no achievements have been made and no description of such a possibility has been published.
Un autre paramètre à prendre en compte pour des cavités du type précité est leur sensibilité à un désalignement. La sensibilité à un désalignement de la cavité est définie dans la référence sus-eilee comme l'inverse de l'angle maximum applicable sur l'orientation d'un miroir sans qu'il y ait décalage du mode en dehors de la zone de pompage. Elle se mesure en rad~'.Another parameter to take into account for cavities of the aforementioned type is their sensitivity to misalignment. The sensitivity to misalignment of the cavity is defined in the above-reference Eilee as the inverse of the maximum angle applicable to the orientation of a mirror without shift mode outside the pumping area . It is measured in rad ~ '.
On a représenté en figure 9 une courbe typique de la sensibilité d'un miroir de fond de cavité en fonction de l'inverse de la focale thermique. En zone 1 , la sensibilité à un désalignement reste faible, tandis qu'en zone 2 la sensibilité tend rapidement vers l'infini. En pratique, il est donc difficile de travailler en zone 2.FIG. 9 shows a typical curve of the sensitivity of a cavity bottom mirror as a function of the inverse of the thermal focal length. In zone 1, the sensitivity to misalignment remains low, while that in zone 2 the sensitivity tends rapidly towards infinity. In practice, it is therefore difficult to work in zone 2.
La présente invention a pour objet une cavité laser dans laquelle on puisse augmenter l'énergie extraite de façon conséquente d'un amplificateur regénératif de façon simple et peu onéreuse. La cavité laser conforme à l'invention est une cavité du type régénérative femtoseconde à haute cadence de pompage, comprenant un cristal laser et deux miroirs de fond de cavité, et elle est caractérisée en ce que son milieu à gain (12) est disposé au contact ou à proximité d'un de ses miroirs de fond de cavité (1 1), qui est un miroir convexe dont le rayon de courbure est fonction de la plage de stabilité désirée compatible avec la focale thermique du cristal. De préférence, elle est à architecture en « V » ou en « Z ».The present invention relates to a laser cavity in which one can increase the energy extracted consistently a regenerative amplifier in a simple and inexpensive way. The laser cavity according to the invention is a cavity of the femtosecond regenerative type with a high pumping rate, comprising a laser crystal and two cavity bottom mirrors, and is characterized in that its gain medium (12) is disposed at contact or near one of its cavity bottom mirrors (1 1), which is a convex mirror whose radius of curvature is a function of the desired stability range compatible with the thermal focal length of the crystal. Preferably, it is architecture "V" or "Z".
La cavité laser de l'invention permet d'obtenir un volume d'amplification important quelle que soit la valeur de la focale thermique mise en jeu, tout en conservant un faisceau TEMoo- Comme corollaire, cette technique permet de relâcher la contrainte sur le paramètre M2 du laser de pompe. Cette invention est applicable à des cavités munies de cristaux de divers types, en particulier, mais de façon non limitative Ti :Saphir ou Ytterbium.The laser cavity of the invention makes it possible to obtain a large amplification volume irrespective of the value of the thermal focal length involved, while maintaining a TEM 0 0 beam. As a corollary, this technique makes it possible to release the constraint on the parameter M 2 of the pump laser. This invention is applicable to cavities provided with crystals of various types, in particular, but not limited to Ti: sapphire or ytterbium.
La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple non limitatif et illustré par le dessin annexé, sur lequel : les figures 1 et 2, décrites ci-dessus, sont des schémas simplifiés de cavités laser de l'art antérieur, à architecture en « V » et en « Z », respectivement, les figures 3 à 7, également décrites ci-dessus, sont des diagrammes de propagation de faisceaux laser dans des cavités de l'art antérieur, la figure 8, également décrite ci-dessus, est une courbe typique illustrant la stabilité d'une cavité régénérative et représente l'évolution du rayon du mode fondamental sur son cristal en fonction de l'inverse de la focale thermique, la figure 9. également décrite ci-dessus, est une courbe typique illustrant la sensibilité au désalignement d'un miroir de fond de cavité, la figure 10 est un schéma d'un exemple de cavité laser conforme à l'invention, les figures 1 1 et 12 sont des diagrammes de propagation de faisceaux laser dans une cavité conforme à l'invention, la figure 13 est une courbe typique illustrant l'évolution de la plage de stabilité pour différents rayons de courbure du miroir convexe d'une cavité conforme à l'invention et donnant le rayon du modeThe present invention will be better understood on reading the detailed description of an embodiment, taken by way of nonlimiting example and illustrated by the appended drawing, in which: FIGS. 1 and 2, described above, are simplified schematics of laser cavities of the prior art, with "V" and "Z" architecture, respectively, FIGS. 3 to 7, also described above, are laser beam propagation diagrams in cavities of FIG. the prior art, FIG. 8, also described above, is a typical curve illustrating the stability of a regenerative cavity and represents the evolution of the fundamental mode radius on its crystal as a function of the inverse of the thermal focal length. , FIG. 9, also described above, is a typical curve illustrating the sensitivity to misalignment of a cavity bottom mirror, FIG. 10 is a diagram of an example of a laser cavity according to the invention, FIGS. 1 and 12 are laser beam propagation diagrams in a cavity according to the invention, FIG. 13 is a typical curve illustrating the evolution of the stability range for different radii of curvature of the convex mirror of a cavity according to the invention. the invention and giving the mode radius
TEMoo au niveau du cristal en fonction de l'inverse de la focale thermique, la figure 14 est une courbe relative à une cavité laser conforme à l'invention et donnant à la fois sa sensibilité à un désalignement de la cavité et le diamètre du mode TEMOO au niveau du cristal laser en fonction de l'inverse de sa focale thermique, et les figures 15 et 16 sont des schémas simplifiés d'exemples de cavités laser conformes à l'invention avec une architecture en « Z » et en « V », respectivement. Le principe de l'invention est de positionner le cristal en fond de cavité, juste devant un miroir plan ou convexe. Le choix du rayon de courbure de ce miroir permet d'accorder la cavité en fonction de la focale thermique.TEMoo at the crystal according to the inverse of the thermal focal length, Figure 14 is a curve relating to a laser cavity according to the invention and giving both sensitivity to a misalignment of the cavity and the diameter of the mode TEMOO at the level of the laser crystal as a function of the inverse of its thermal focal length, and FIGS. 15 and 16 are simplified diagrams of examples of laser cavities according to the invention with a "Z" and "V" architecture , respectively. The principle of the invention is to position the crystal in the cavity bottom, just in front of a plane or convex mirror. The choice of the radius of curvature of this mirror makes it possible to tune the cavity according to the thermal focal length.
Ce principe permet d'obtenir n'importe quelle taille de mode, quelle que soit la focale thermique, tout en conservant un mode large et collimaté dans le bras de la cellule de Pockels. En outre, le cristal est, par construction, toujours situé dans une zone de Rayleigh du mode, c'est-à-dire une zone dans laquelle le faisceau est collimaté. Enfin, la possibilité d'obtenir une cavité à large mode permet de relâcher la contrainte sur le paramètre M2 du laser de pompe et facilite sa réalisation.This principle makes it possible to obtain any size of mode, whatever the thermal focal length, while maintaining a wide mode and collimated in the arm of the Pockels cell. In addition, the crystal is, by construction, always located in a Rayleigh zone of the mode, i.e., an area in which the beam is collimated. Finally, the possibility of obtaining a cavity with a large mode makes it possible to release the stress on the parameter M 2 of the pump laser and facilitates its realization.
On a schématisé en figure 10 une cavité en « V », conforme à l'invention. La cavité de la figure 10 est similaire à celle de la figure 1 , la différence étant que le miroir concave 3 est remplacé par un miroir convexe 1 1 et que le cristal 4 est remplacé par un cristal 12 en contact avec le miroir 1 1 ou proche de celui-ci.FIG. 10 diagrammatically shows a cavity in "V" according to the invention. The cavity of FIG. 10 is similar to that of FIG. being that the concave mirror 3 is replaced by a convex mirror 1 1 and that the crystal 4 is replaced by a crystal 12 in contact with the mirror 1 1 or close to it.
Pour exposer la conception de la cavité de l'invention, supposons tout d'abord que le miroir de fond de cavité 1 1 est plan, et que le cristal 12 est dépourvu d'effet de lentille thermique. On conçoit la cavité de telle manière qu'elle vérifie les critères décrits ci-dessus en référence aux figures 1 et 2 (collimation du faisceau dans le bras de la cellule de la Pockcls et un gros mode sur le cristal). Puis on ajuste le rayon de courbure du miroir pour fixer la plage de stabilité voulue compatible avec la focale thermique du cristal. La valeur optimale du rayon de courbure est égale à la focale thermique du cristal : R optimum = J f Ih cπslaiTo expose the design of the cavity of the invention, let us first assume that the cavity bottom mirror 1 1 is flat, and that the crystal 12 is devoid of thermal lens effect. The cavity is designed in such a way that it satisfies the criteria described above with reference to FIGS. 1 and 2 (collimation of the beam in the arm of the Pockcls cell and a large mode on the crystal). Then the radius of curvature of the mirror is adjusted to set the desired stability range compatible with the thermal focal length of the crystal. The optimum value of the radius of curvature is equal to the thermal focal length of the crystal: R optimum = J f Ih cπslai
En premier, on impose le diamètre du mode fondamental au niveau du cristal à 300μm. Sachant que les deux miroirs de fond de la cavité en « V » sont plans par hypothèse (le miroir 1 est plan par construction, et le miroir 1 1 est d'abord supposé plan), les paramètres connus sont suffisants pour déterminer les distances ainsi que le rayon de courbure adapté du miroir concave 2. On a représenté en figure 1 1 le diagramme de propagation du faisceau laser dans la cavité de la figure 10.First, we impose the diameter of the fundamental mode at the crystal at 300 .mu.m. Knowing that the two bottom mirrors of the cavity in "V" are planes by hypothesis (the mirror 1 is plane by construction, and the mirror 1 1 is first assumed to be plane), the known parameters are sufficient to determine the distances as well. that the adapted radius of curvature of the concave mirror 2. There is shown in Figure 1 1 the pattern of propagation of the laser beam in the cavity of Figure 10.
On dispose ensuite le cristal 12 devant le miroir plan 1 1 , puis on considère que le miroir 1 1 est convexe, et adapte son rayon de courbure pour imposer la position de la plage de stabilité. Le diagramme de propagation du faisceau laser dans la cavité devient alors celui représenté en figure 12.The crystal 12 is then placed in front of the plane mirror 11, then the mirror 11 is considered to be convex, and adapts its radius of curvature to impose the position of the stability range. The propagation diagram of the laser beam in the cavity then becomes that represented in FIG. 12.
Pour étudier la stabilité de la cavité ainsi obtenue, on va se référer au diagramme de la figure 13. Cc diagramme montre l'évolution de la zone de stabilité n°l (telle que définie en référence à la figure 8) pour différents rayons de courbure. Ces rayons de courbure R sont respectivement égaux à 5, 10, 30 et infini. Ainsi, en jouant seulement sur le rayon de courbure du miroir de fond de cavité 1 1 , on peut ajuster la zone de stabilité sans altérer le rayon de mode minimal W0 (égal à 150 μm dans l'exemple représenté) et la largeur Δ de la zone 1. Dc la même manière, on peut déterminer la sensibilité à un désalignement de la cavité, et à cet effet, on va se référer au diagramme de la figure 14.To study the stability of the cavity thus obtained, reference will be made to the diagram of FIG. 13. This diagram shows the evolution of the stability zone No. 1 (as defined with reference to FIG. 8) for different radii of FIG. curvature. These radii of curvature R are respectively equal to 5, 10, 30 and infinity. Thus, by only playing on the radius of curvature of the cavity bottom mirror 1 1, the stability zone can be adjusted without altering the minimum mode radius W 0 (equal to 150 μm in the example shown) and the width Δ from zone 1. In the same way, the sensitivity to a misalignment of the cavity can be determined, and for this purpose, reference will be made to the diagram of FIG.
On peut diviser la courbe de sensibilité en deux parties : la première correspond à une zone (marquée « Zone 1 » sur la figure) où la sensibilité reste peu élevée et la seconde à une sensibilité qui augmente très rapidement. La première partie de la courbe de sensibilité, qui présente une sensibilité peu élevée, épouse à 90% la zone de stabilité du laser (telle que représentée en figure 13). L'invention permet donc à la cavité régénérative d'être réglée sans trop de difficultés.The sensitivity curve can be divided into two parts: the first corresponds to a zone (marked "Zone 1" in the figure) where the sensitivity remains low and the second to a sensitivity that increases very rapidly. The first part of the sensitivity curve, which has a low sensitivity, matches 90% of the stability zone of the laser (as shown in Figure 13). The invention therefore allows the regenerative cavity to be adjusted without much difficulty.
Dans le cadre des courtes focales thermiques, le diamètre du mode fondamental envisageable dans les cavités classiques est généralement inférieur à 200μm, alors que dans l'exemple décrit ici, on a un diamètre de 300μm (le rayon W0 est de 150μm ). Le M2 maximum du laser de pompe sera donc 50% supérieur. Dans ce cas, on peut envisager d'utiliser un laser de pompe avec un M2 de 20 (au lieu de 13 dans le cas d'un pompage d'une cavité classique). On a représenté en figure 15 le schéma d'une variante d'architecture de cavité régénérative en « Z » conforme à l'invention. Cette cavité est semblable à celle de la figure 2, la différence résidant principalement dans le fait que le miroir plan (9) de la configuration de la figure 2 a été remplacé par un miroir convexe 13 et que le cristal (4) a été remplacé par un cristal 14, disposé entre les miroirs 3 et 13 et avantageusement plus grand que le cristal 4. En outre, le pompage est fait à travers le miroir 13. Cette configuration permet une plus grande souplesse dans le choix de la taille du mode sur le cristal en fonction des rayons de courbure des deux miroirs concaves 2 et 3.In the context of short thermal focal lengths, the diameter of the fundamental mode that can be envisaged in conventional cavities is generally less than 200 μm, whereas in the example described here, there is a diameter of 300 μm (the radius W 0 is 150 μm). The maximum M 2 of the pump laser will therefore be 50% higher. In this case, it is possible to envisage using a pump laser with an M 2 of 20 (instead of 13 in the case of pumping a conventional cavity). FIG. 15 shows the diagram of a regenerative cavity architecture variant in "Z" according to the invention. This cavity is similar to that of FIG. 2, the difference residing mainly in the fact that the plane mirror (9) of the configuration of FIG. 2 has been replaced by a convex mirror 13 and that the crystal (4) has been replaced by a crystal 14, disposed between the mirrors 3 and 13 and advantageously larger than the crystal 4. In addition, the pumping is done through the mirror 13. This configuration allows greater flexibility in the choice of the mode size on the crystal as a function of the radii of curvature of the two concave mirrors 2 and 3.
On a illustré en figure 16 un exemple de réalisation d'une cavité régénérative en « V », pour faire ressortir les avantages de l'invention. La cavité de la figure 16 a la même configuration que celle de la figure 10, et les mêmes éléments sont affectés des mêmes références numériques. La fréquence de pompage du cristal 12 est ici de 5 kHz. Λ 5 kl Iz, la focale thermique du cristal est d'environ 20 cm. Le miroir concave 2 a un rayon de courbure de -100 cm, et d'un miroir de fond de cavité M3 convexe de rayon de courbure de 20 cm. Les distances sont les suivantes : miroir 1 -miroir 2 = 80 cm, miroir 2- miroir 1 1 = 55 cm. Le cristal 12 a une longueur de 1 ,5 cm. Lc diamètre de mode de cette cavité est de 450μm. La puissance extraite de cette cavité est de 4 W pour une puissance de pompe de 24 W. Le paramètre M2 minimum requis pour pomper cette cavité est de 40, ce qui correspond à une zone de Rayleigh égale à la moitié de la longueur du cristal.FIG. 16 illustrates an exemplary embodiment of a "V" regenerative cavity, to highlight the advantages of the invention. The cavity of FIG. 16 has the same configuration as that of FIG. 10, and the same elements are assigned the same reference numerals. The pumping frequency of the crystal 12 is here 5 kHz. Λ 5 kl Iz, the thermal focal length of the crystal is about 20 cm. The concave mirror 2 has a radius of curvature of -100 cm, and a convex M3 cavity bottom mirror with a radius of curvature of 20 cm. The distances are as follows: mirror 1-mirror 2 = 80 cm, mirror 2-mirror 1 1 = 55 cm. Crystal 12 has a length of 1, 5 cm. The mode diameter of this cavity is 450 μm. The power extracted from this cavity is 4 W for a pump power of 24 W. The minimum parameter M 2 required to pump this cavity is 40, which corresponds to a Rayleigh area equal to half the length of the crystal. .
En conclusion, l'invention permet, sans utiliser de procédés cryogéniques, d'envisager des cavités régénératives de beaucoup plus fortes puissances qu'à l'heure actuelle, tout en permettant une plus grande flexibilité sur le paramètre M2 des lasers de pompe utilisés. In conclusion, the invention makes it possible, without using cryogenic processes, to envisage regenerative cavities of much higher power than at present, while allowing a greater flexibility on the parameter M 2 of the pump lasers used. .

Claims

REVENDICATIONS
1. Cavité laser du type régénérative femtoseconde à haute cadence de pompage, comprenant un milieu à gain et deux miroirs de fond de cavité, caractérisée en ce que son milieu à gain (12) est disposé au contact ou à proximité d'un de ses miroirs de fond de cavité (1 1 ), qui est un miroir convexe dont le rayon de courbure est fonction de la plage de stabilité désirée compatible avec la focale thermique du cristal. A laser cavity of the femtosecond regenerative type with a high pumping rate, comprising a gain medium and two cavity bottom mirrors, characterized in that its gain medium (12) is disposed in contact with or near one of its cavity bottom mirrors (1 1), which is a convex mirror whose radius of curvature is a function of the desired stability range compatible with the thermal focal length of the crystal.
2. Cavité laser selon la revendication 1 , caractérisé en ce qu'elle a une architecture en « V » ou en « Z ».2. Laser cavity according to claim 1, characterized in that it has a "V" or "Z" architecture.
3. Cavité laser selon la revendication 1 ou 2, caractérisé en ce que le milieu à gain est du Ti :8a. 3. Laser cavity according to claim 1 or 2, characterized in that the gain medium is Ti: 8a.
PCT/EP2007/053150 2006-03-31 2007-04-02 Compensation device for thermal lens in a high-frequency femtosecond regenerating cavity WO2007113274A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR06/02822 2006-03-31
FR0602822A FR2899390B1 (en) 2006-03-31 2006-03-31 DEVICE FOR COMPENSATING THE THERMAL LENS IN A REGENERATIVE HIGH-CADENCE FEMTOSECOND CAVITY

Publications (1)

Publication Number Publication Date
WO2007113274A1 true WO2007113274A1 (en) 2007-10-11

Family

ID=37596159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/053150 WO2007113274A1 (en) 2006-03-31 2007-04-02 Compensation device for thermal lens in a high-frequency femtosecond regenerating cavity

Country Status (2)

Country Link
FR (1) FR2899390B1 (en)
WO (1) WO2007113274A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904155A (en) * 2012-09-24 2013-01-30 中国科学院物理研究所 Full solid state picosecond laser regenerative amplifier
US20180175580A1 (en) * 2015-04-24 2018-06-21 Handong Global University Foundation Laser amplification device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786938A1 (en) * 1998-12-04 2000-06-09 Thomson Csf High quality, high power laser includes deformable mirror providing compensation for thermal lens effect within laser amplifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786938A1 (en) * 1998-12-04 2000-06-09 Thomson Csf High quality, high power laser includes deformable mirror providing compensation for thermal lens effect within laser amplifier

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HODGSON N ET AL: "INFLUENCE OF SPHERICAL ABERRATION OF THE ACTIVE MEDIUM ON THE PERFORMANCE OF ND:YAG LASERS", IEEE JOURNAL OF QUANTUM ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 29, no. 9, 1 September 1993 (1993-09-01), pages 2497 - 2507, XP000417982, ISSN: 0018-9197 *
ITO S ET AL: "Seven Terawatt Ti:sapphire laser system operating at 50Hz with high beam quality for laser Compton femtosecond X-ray generation", APPLIED PHYSICS B (LASERS AND OPTICS) SPRINGER-VERLAG GERMANY, vol. B76, no. 5, 5 May 2003 (2003-05-05), germany, pages 497 - 503, XP002414454, ISSN: 0946-2171 *
PAVEL N ET AL: "Variable reflectivity mirror unstable resonator with deformable mirror thermal compensation", OPTICS COMMUNICATIONS, NORTH-HOLLAND PUBLISHING CO. AMSTERDAM, NL, vol. 123, no. 1, 15 January 1996 (1996-01-15), pages 115 - 120, XP004006456, ISSN: 0030-4018 *
ZHAVORONKOV N ET AL: "Regenerative amplification of femtosecond laser pulses in Ti sapphire at multikilohertz", OPTICS LETTERS OPT. SOC. AMERICA USA, vol. 29, no. 2, 15 January 2004 (2004-01-15), pages 1 pp., XP002414455, ISSN: 0146-9592 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904155A (en) * 2012-09-24 2013-01-30 中国科学院物理研究所 Full solid state picosecond laser regenerative amplifier
US20180175580A1 (en) * 2015-04-24 2018-06-21 Handong Global University Foundation Laser amplification device

Also Published As

Publication number Publication date
FR2899390B1 (en) 2008-05-30
FR2899390A1 (en) 2007-10-05

Similar Documents

Publication Publication Date Title
FR2825463A1 (en) LASER GYROMETER STATE SOLID COMPRISING A RESONATOR BLOCK
EP2795411B1 (en) Method for manufacturing a resonator
FR2986916A1 (en) OPTICAL AMPLIFIER AND PULSE LASER SYSTEM WITH IMPULSE ENERGY LIMITS.
WO2007113274A1 (en) Compensation device for thermal lens in a high-frequency femtosecond regenerating cavity
EP2147487A2 (en) Pulsed microchip laser
FR2901424A1 (en) IMPULSIVE LASER DEVICE WITH HIGH POWER OPTICAL FIBER
FR3019388A1 (en) UNSTABLE LASER CAVITY WITH PASSIVE TRIGGER WITH SATURABLE ABSORPTION GRADIENT ABSORBENT
EP2497165B1 (en) Optical source implementing a doped fibre, fibre for such an optical source and method for manufacturing such a fibre
EP2466703B1 (en) Device for emitting a laser beam with anti-transverse lasing and with longitudinal cooling
EP2041848B1 (en) Fiber optic power laser device
CH705945A2 (en) Method for manufacturing resonator e.g. hairspring resonator, for watch, involves modifying structure of zone of substrate to make zone more selective, and engraving zone to selectively manufacture resonator whose arm is formed with recess
WO2002103861A1 (en) Frequency-stabilized laser source
EP1966856B1 (en) Device with optical guide for producing an optical signal by optical pumping and uses of the device
EP3140888B1 (en) Low-noise solid-state laser
FR2919123A1 (en) CALORIFIC CAPACITY LASER AND ASSOCIATED LASER MEDIUM
EP2596555B1 (en) Device for amplifying a laser beam with supression of transverse lasing
WO2020217033A2 (en) Adjustable pressure system for cooling a laser amplifier medium
FR2860928A1 (en) MONOLITHIC LASER PUMP DEVICE WITH LASER DIODE, AND METHOD USED IN SUCH A DEVICE
WO2016134993A1 (en) Device for absorbing interfering transverse beams in a solid-state optical amplifier, and corresponding optical amplification device
EP3752823B1 (en) Phonon parametric oscillator
WO2007028783A1 (en) Method for producing a power laser beam and device therefor
WO2020094416A1 (en) High-power laser amplifier head
FR3000849A1 (en) SOLID OPTICAL AMPLIFIER OF HIGH POWER PULSING LASER
CN102570251B (en) Longitudinally cooling is utilized to suppress the device launching laser beam of horizontal lasing
FR2880736A1 (en) Positive spherical aberration correction method for e.g. laser cavity, involves compensating positive spherical aberration utilizing negative spherical aberration optical device within laser cavity, where device is constituted of lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07727622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07727622

Country of ref document: EP

Kind code of ref document: A1