WO2007112629A1 - Procédé de détermination d'un code d'usage d'intervalle en liaison descendante et d'un code d'usage d'intervalle en liaison montante dans un système wimax - Google Patents

Procédé de détermination d'un code d'usage d'intervalle en liaison descendante et d'un code d'usage d'intervalle en liaison montante dans un système wimax Download PDF

Info

Publication number
WO2007112629A1
WO2007112629A1 PCT/CN2006/003808 CN2006003808W WO2007112629A1 WO 2007112629 A1 WO2007112629 A1 WO 2007112629A1 CN 2006003808 W CN2006003808 W CN 2006003808W WO 2007112629 A1 WO2007112629 A1 WO 2007112629A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
error correction
downlink
correction code
uplink
Prior art date
Application number
PCT/CN2006/003808
Other languages
English (en)
French (fr)
Inventor
Shaogui Lu
Gang Qiu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Publication of WO2007112629A1 publication Critical patent/WO2007112629A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring

Definitions

  • the present invention relates to a method for determining a downlink interval use code and an uplink interval use code in a Wimax system. Background technique
  • the CDMA (code division multiple access) system specifies nine fixed modulation coding modes, RC1 ⁇ RC9. For a certain RCx, its channel coding rate, error correction code, modulation mode and coding rate are specified. This fixed configuration process is relatively simple, but can not make full use of different error correction code characteristics and channel conditions to make flexible choices, which have a certain impact on system performance.
  • Wimax Worldwide Interoperability Microwave Access Forum
  • Wimax is a specialized syndication organization that certifies the compatibility of broadband wireless access products and technologies to facilitate the development of this technology.
  • the organization was launched primarily by Nokia, Ensemble Communications ⁇ OFDM Forum, and provided a Wimax technology that claims to have a transmission range of up to 31 miles, a shared data rate of 70 Mbps, and support speeds of up to 120 kilometers per hour.
  • the technology uses OFDM (orthogonal frequency division multiplexing) and has high frequency utilization. This technology also provides wireless extension for cable and DSL for home use.
  • the technology also uses a variety of error correction codes, high-order modulation methods, etc., due to the error correction capability (coding gain), coding efficiency, coding and decoding overhead (complexity or achievability) of different error correction codes.
  • the encoding and decoding delays are not the same.
  • the Wimax system uses one byte (8 bits) to represent the downlink burst profile encodings table and the uplink burst profile encodings table. Name value
  • the downlink burst attribute coding table is shown in Table 1 and Table 2. Each item in the table corresponds to an error correction code, a modulation mode, and a coding rate.
  • the role of Table 1 is to define the coding index relationship of the uplink burst attribute. Each value of 0 ⁇ 255 represents an error correction code type, modulation mode and coding rate. For example, an index number of 0 indicates an error correction code.
  • the modulation method is QPSK, 1/2 encoding rate.
  • the role of Table 2 is to define the coding index relationship of the downlink burst attribute. Each value of 0 255 represents an error correction code type, modulation mode, and coding rate. For example, an entry with index number 2 indicates that the error correction code is CC.
  • the modulation method is 16QAM, 1/2 coding rate. Since the downlink burst profile encodings or the uplink burst profile encodings are used to indicate the modulation and coding mode of each data packet, one byte of the air interface resource is occupied, so there are 256 selectable error correcting codes and corresponding codes with sequence numbers 0 to 255. Mode and coding rate, but this is a waste of resources. Therefore, in order to save air interface resources, the Wimax protocol defines a DIUC (downlink interval usage code) and a UIUC (uplink interval usage code), which are represented by nibbles (4 bits), for example, DIUC.
  • DIUC downlink interval usage code
  • UIUC uplink interval usage code
  • the base station transmits the index relationship to the mobile station through a DCD (downlink channel descriptor) and a UCD (uplink channel descriptor) broadcast message. Once the two parties establish synchronization, the 4-bit DIUC and UIUC can be used to represent a certain data packet. Error correction code, modulation method and coding rate.
  • the system can also change the DIUC and UIUC index tables as needed, as long as the base station and the mobile station synchronize the index table again.
  • error correction codes are defined in the Wima system: such as CC (convolutional code), CTC (convolution turbo code), BTC (block turbo code), ZT CC (zero tail convolutional code, LDPC (low density parity-check code), etc.
  • CC convolutional code
  • CTC convolution turbo code
  • BTC block turbo code
  • ZT CC zero tail convolutional code
  • LDPC low density parity-check code
  • an object of the present invention is to provide a Wimax system.
  • the method for determining the downlink interval use code and the uplink interval use code can automatically select the most suitable DIUC and UI according to the error correction code characteristics and the channel condition.
  • UC in order to improve the throughput of the system, reduce the interference level of the system, and improve the user satisfaction.
  • the present invention provides a method for determining the downlink interval use code and the uplink interval use code in the Wimax system, including:
  • each UIUC item corresponds to an item in the uplink burst attribute coding table, where the same type of error correction code corresponds All the items are consecutively arranged, and all items in the error correction code of the same category are sorted according to the modulation order, and if the modulation orders are the same, they are sorted according to the coding rate thereof;
  • the minimum entry threshold and the forced exit threshold are respectively configured for each of the uplink sequence table and the downlink sequence table, and the forced exit threshold is not higher than the minimum entry threshold;
  • the base station selects an uplink error correction code and a downlink error correction code for the mobile station according to the current service type, the signal to noise ratio, the amount of transmitted data, and the capability negotiation result;
  • the method uses CC, CTC, and LDPC as alternative error correcting codes for the base station.
  • the step (4) is specifically: when the mobile station communicates with the base station, in order to determine an appropriate error correction code, the following operations are performed:
  • step (A) First, determine the type of communication service. If it is UGS service type or real-time service, select CC error correction code, otherwise enter step (B);
  • step (B) If the current signal-to-noise ratio is less than or equal to the low SNR threshold, select CC error correction code, go to step (5), otherwise go to step (C);
  • step (C) determining an error correction code according to the amount of data currently needed to be transmitted. If the amount of data to be transmitted is 1 to 4 slots, the CC error correction code is selected and the process proceeds to step (5); if the amount of data to be transmitted is 6 to 9 slots, Go to step (E), otherwise go to step (D);
  • step (E) Determine whether the mobile station and base station capability negotiation result supports the LDPC error correction code, and if so, select the LDPC error correction code, otherwise proceed to step (D).
  • step (5) is specifically:
  • step (a) determining whether the uplink error correction code selected in step (4) is the same as the error correction code being used, and if yes, proceeding to step (b), otherwise proceeding to step (c); determining the downlink selected in step (4) Whether the error correcting code is the same as the error correcting code being used, if it is the same, then proceeds to step (d), otherwise proceeds to step (e);
  • step (5) Read the current signal-to-noise ratio.
  • step (5) first determine whether the current signal-to-noise ratio still applies to the UIUC being used. If applicable, step (5) ends. Otherwise, find all error correction codes and The same item that is being used, and the item with the lowest entry threshold corresponding to the mobile station connection service type and the current signal-to-noise ratio closest to the current signal-to-noise ratio as the UIUC;
  • step (5) read The current signal-to-noise ratio, in the uplink sequence table, finds all the error correcting codes and the same items as the error correcting code selected in step (4), and sets the lowest entry threshold and current signal noise of the service type corresponding to the mobile station connection among these items. One of the closest to and less than the current signal-to-noise ratio as UIUC, step (5) ends;
  • step (5) Read the current signal-to-noise ratio.
  • step (5) ends, otherwise find all error correction codes and The same error correcting code is used, and the item with the lowest entry threshold of the service type corresponding to the mobile station connection and the current signal to noise ratio being the closest to the current signal to noise ratio is used as the DIUC;
  • step (5) (e) reading the current signal-to-noise ratio, in the downlink sequence table, finding all the error correcting codes and the same items as the error correcting code selected in step (4), and entering the corresponding service type of the mobile station connection in these items
  • the threshold is the closest to the current signal-to-noise ratio and less than the current signal-to-noise ratio as DIUC, and step (5) ends.
  • the method further includes:
  • the invention discloses a method for determining a downlink interval use code and an uplink interval use code in a Wimax system.
  • the coding rate, error correction code, modulation mode, and uplink channel of the uplink channel and the lower channel The coding rate is determined, so that although it is easy to manage, it can not make full use of different error correction code characteristics and channel conditions to make flexible choices, which has a certain impact on system performance.
  • the present invention dynamically selects an error correction code, a modulation mode, and a coding rate by establishing an uplink sequence table and a downlink sequence table, and combining the characteristics of the transmission packet size, the wireless channel condition, and the error correction code to fully improve the system. Throughput, reduce the packet error rate, improve user satisfaction, and reduce the interference level of the entire system.
  • FIG. 1 is a flow chart of error correcting code selection in the method proposed by the present invention
  • FIG. 2 is a flow chart showing the processing steps of determining whether to support 64QAM in the method proposed by the present invention.
  • the invention provides a method for determining a downlink interval use code and an uplink interval use code in a Wimax system.
  • the type determines an alternative error correcting code of the base station, and generates an uplink burst attribute coding table and a downlink burst attribute coding table.
  • Wimax system supports a variety of error correction codes, such as CC, ZT CC, CTC, BTC, LDPC, etc., except for CC is mandatory support, other error correction codes are optional, after simulation, compare various error correction Code, and due to the limitation of DIUC and UIUC, because the CTC and LDPC coding gains are not obvious compared to CC gain when the signal-to-noise ratio is low, considering that CC is a mandatory code, and is limited by the number of DIUC and UIUC, The QPSK modulation order of CTC and LDPC is selected, so CC, CTC and LDPC are finally determined as the error correcting codes of the system. 2.
  • error correction codes such as CC, ZT CC, CTC, BTC, LDPC, etc.
  • each UIUC item corresponds to an item in the uplink burst attribute coding table, wherein all items corresponding to the same type of error correction code are consecutively arranged, and the error correction code in the same category is Sorting according to the order of modulation order, if the modulation orders are the same - sorted according to their coding rate; here the order 4# column, preferably in ascending order, of course, may also be a descending order.
  • each DIUC item corresponds to one item in the downlink burst attribute coding table, wherein all items corresponding to the same type of error correction code are consecutively arranged, and the error correction code in the same category is All items are ordered according to the order of modulation order. If the modulation orders are the same, they are sorted according to their coding rate; here, the order is arranged, preferably in ascending order, and of course, in descending order.
  • Table 4 Downstream Sequence Listing 4.
  • the minimum entry threshold and the forced exit threshold are respectively configured for each of the uplink sequence table and the downlink sequence table.
  • the modulation order is smaller.
  • the smaller the minimum entry threshold and the forced exit threshold of the item the smaller the coding rate is, the smaller the minimum entry threshold and the forced exit threshold are. If the modulation order is the same, and the coding is the same.
  • the rates are the same, and different services correspond to different forced exit thresholds and minimum entry thresholds. Specifically, for different services, if the BER requirement of the service requirement is high, the corresponding forced exit threshold and the minimum entry threshold are respectively higher than the service BER requirement.
  • the base station selects an uplink error correction code and a downlink error correction code for the mobile station according to the current service type, signal to noise ratio, transmission data amount, and codec capability negotiation result, and the process is as shown in FIG. For:
  • step (A) first determine the type of communication service, if it is UGS (unsolicited grant service) service type or real-time service, select CC error correction code, otherwise enter step (B);
  • step (B) If the current SNR is less than or equal to the low SNR threshold, select CC error correction code, go to step 7, otherwise go to step (C); (C) Determine the error correction code according to the current amount of data to be transmitted. Specifically: If the amount of data to be transmitted is small (for example, a value in l ⁇ 4slots), select CC error correction code and enter step (7); if the amount of data to be transmitted is large (more than a certain value (for example, 6 ⁇ ) a value in 9slot), then enter step (E), otherwise enter step (D);
  • step (E) judging whether the mobile station and the base station capability negotiation result supports the LDPC error correction code, if yes, the LDPC error correction code is selected, otherwise, the process proceeds to step (D);
  • step (a) judging whether the uplink error correction code selected in step (6) is the same as the error correction code being used, and if yes, proceeding to step (b), otherwise proceeding to step (c); determining the downlink selected in step (6) Whether the error correcting code is the same as the error correcting code being used, if it is the same, then proceeds to step (d), otherwise proceeds to step (e); (b) Read the current signal-to-noise ratio. In the uplink sequence table, first determine whether the current signal-to-noise ratio is still applicable to the UIUC being used. If applicable, otherwise proceed to step 8 to find all error correction codes and currents. The same error correcting code is used, and the item with the lowest entry threshold of the service type corresponding to the mobile station connection and the current signal to noise ratio is the UIUC, and the process proceeds to step 8;
  • step (6) reading the current signal-to-noise ratio, in the uplink sequence table, finding all the error correcting codes and the same items as the error correcting code selected in step (6), and entering the corresponding service type of the mobile station connection in these items
  • the threshold is the closest to the current signal-to-noise ratio and less than the current signal-to-noise ratio as UIUC or DIUC, and proceeds to step 8;
  • step 8 reads the current signal-to-noise ratio.
  • step (7) first determines whether the current signal-to-noise ratio is Still applicable to the DIUC being used, if applicable, step (7) ends, otherwise find all error correction codes the same as the error correction code being used, and the lowest entry threshold of these items is closest to the current signal-to-noise ratio And one less than the current signal to noise ratio as DIUC, proceeds to step 8;
  • the present invention can fully utilize the properties of various error correcting codes, fully consider the Qos and bit error rate requirements of the service, and can arrange as many different as possible in the limited DIUC index (13 items).
  • the modulation and coding method of the error correction code Preferably, three sets of pointer variables and three flag bits are defined for each of the uplink channel and the downlink channel.
  • m_ptDLCCStart m_ptDLCCEnd
  • m_ucDLCCEnabled m_ptDLCTCStart
  • m_ptDLCTCEnd m_ucDLCTCEnabled
  • m_ptDLLDPCStart mjtDLLDPCEnd
  • m_ucDLLDPCEnabled m_ptCurDIUC 0, taking the downlink burst attribute coding table of Table 2 as an example, according to the FEC Type code continuity characteristics of each error correction code (such as CC from 0 to 6) , from Table 2, in turn, CC, CTC, LDPC determine the start and end points:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

Wima 系统中下行区间使用码和上行区间使用码的确定方法 技术领域 本发明涉及一种 Wimax系统中下行区间使用码和上行区间使用码的确定 方法。 背景技术
CDMA ( code division multiple access ) 系统, 规定了 RC1~RC9这九种固 定的调制编码方式, 对于某一 RCx, 规定了其信道编码速率、 纠错码、 调制方 式和编码率。 这种固定配置处理比较简单, 但是不能充分利用不同纠错码特性 和信道状况做出灵活的选择, 对系统性能有一定的影响。 Wimax(Worldwide Interoperability Microwave Access Forum) 是一个专门 的企业联合组织, 目的是认证宽带无线接入产品和技术的兼容性, 以促进该技 术的发展。 该组织主要由 Nokia、 Ensemble Communications ^ OFDM论坛发 起, 并提供了一种 Wimax技术, 宣称该技术的传输距离可达 31英里, 共享数 据速率达 70Mbps , 并能支持最高 120公里每小时的移动速度。 该技术釆用了 OFDM(orthogonal frequency division multiplexing), 频昝利用率高, 这项技术还 为家庭使用的电缆和 DSL提供无线扩展。 为了提高系统性能, 该技术还采用了 多种纠错码, 高阶调制方式等, 由于不同纠错码的纠错能力(编码增益)、 编码 效率、 编译码开销 (复杂度或者可实现性)、 编译码延时 (实时性) 都不尽相 同。 Wimax系统中用一个字节(8 bits)来表示下行突发属性编码( downlink burst profile encodings ) 表和上行突发属性编码 ( uplink burst profile encodings ) 表。 名称 值
FEC Code 0 = QPSK (CC) 1/2 1 = QPSK (CC) 3/4 2 = 16-QAM (CC)l/2 type and 3 = 16-QAM (CC) 3/4 4 = 64-QAM (CC) 1/2 5 = 64- QAM (CC) 2/3 modulation 6 = 64-QAM (CC) 3/4 7 = QPSK (BTC) 1/2 8 = QPSK (BTC) 3/4 type 9 = 16-QAM (BTC) 3/5 10 = 16-QAM (BTC) 4/5
1 = 64-QAM (BTC) 5/8 12 - 64-QAM (BTC) 4/5
13 = QPSK (CTC) 1/2 14 = reserved
41 = 16-QAM (LDPC) 3/4 B code 42 = 64-QAM (LDPC) 2/3 B code 43 = 64-QAM (LDPC) 3/4 B code 44 255 = Reserved
: 上行突发属性编码表
Figure imgf000004_0001
: 下行突发属性编码表 如表一和表二所示, 表中的每一项对应一种糾错码, 调制方式和编码率。 表一的作用是定义了上行突发属性的编码索引关系, 用 0 ~ 255 的每一个值代 表一种纠错码类型、 调制方式和编码率, 例如索引号为 0的一项表示纠错码为 CC, 调制方式为 QPSK, 1/2编码率。 表二的作用是定义了下行突发属性的编 码索引关系, 用 0 255的每一个值代表一种纠错码类型、 调制方式和编码率, 例如索引号为 2的项表示纠错码为 CC, 调制方式为 16QAM, 1/2编码率。 由 于用 downlink burst profile encodings或 uplink burst profile encodings来指示每 一个数据包的调制编码方式, 将占用一个字节的空口资源, 因此有序号为 0 ~ 255的 256种可选择的纠错码及对应编码方式和编码率, 但是这样比较浪费资 源。 因此为了节约空口资源, Wimax 协议定义了占半字节(4 bits)的 DIUC (downlink interval usage code, 下行区间使用码)和 UIUC (uplink interval usage code , 上行区间使用码)来表示, 例如 , DIUC可以为序号 0 ~ 12, 其中的每一 项都对应表一中的一个下行突发属性编码表 FEC Code type and modulation type 值, UIUC 可以为序号 1 ~ 10, 其中每一项也对应表一中的一个上行突发属性 编码表 FEC Code type and modulation type值。 基站通过 DCD(downlink channel descriptor)和 UCD(uplink channel descriptor)广播消息将这种索引关系发送给移动台,一旦双方建立同步后,就可 以用 4 bits的 DIUC和 UIUC来表示某个数据包用的纠错码, 调制方式和编码 率。 同时, 系统还可以根据需要, 变更 DIUC和 UIUC索引表, 只要使基站和 移动台再次同步索引表就可以了。 Wima 系统中定义了 多种纠错码: 如 CC(convolutional code)、 CTC(convolution turbo code)、 BTC(block turbo code)、 ZT CC(zero tail convolutional code、 LDPC(low density parity-check code)等, 每一种纟11错码又可 有多种调制方式, 同一种调制方式还可以有不同的编码率。 因此如何从 40 多 种 downlink burst profile encodings中选择 13种 DIUC和 10种 UIUC是比较难 以权衡的。 并且不同的业务类型, 信道状况, 传输数据量的不同, 最优的调制 编码方式也不同。 由于 Wimax提供了多种纠错码和多种调制方式, 如果能够充分利用纠错 码特点, 根据实际情况, 选择最适宜的纠错码, 对 Wimax 系统性能将有很大 提升。 发明内容 针对上述现有技术中所存在的问题和不足, 本发明的目的是提供一种 Wimax系统中下行区间使用码和上行区间使用码的确定方法, 能够根据糾错码 特性和信道状况, 自动选择最合适的 DIUC和 UIUC , 以提高系统的吞吐量, 降低系统的干扰水平, 提升用户满意度。 为了达到上述目的, 本发明提出一种 Wimax系统中下行区间使用码和上 行区间使用码的确定方法, 包括:
( 1 )根据上行突发属性编码表生成 UIUC与上行突发属性编码表之间的 上行序列表, 其中每一 UIUC项对应上行突发属性编码表中的一项, 其中同一 类型纠错码对应的所有项连续排列, 且同一类别纠错码中所有项根据调制阶数 排序, 如果调制阶数相同则根据其编码率排序;
( 2 ) 根据下行突发属性编码表生成 DIUC与下行突发属性编码表之间的 下行序列表, 其中每一 DIIJC项对应下行突发属性编码表中的一项, 其中同一 类型纠错码对应的所有项连续排列, 且同一类别纠错码中所有项根据调制阶数 排序, 如果调制阶数相同则根据其编码率排序;
( 3 )根据不同业务对于误码率的要求, 分别为上行序列表和下行序列表 业中的每一项配置最低进入门限和强制退出门限, 强制退出门限不高于最低进 入门限; (4) 基站根据当前的业务类型、 信噪比、 传输数据量、 能力协商结果, 为移动台选择上行糾错码和下行纠错码;
( 5 )根据步骤( 4 ) 中选择的上行纠错码和下行糾错码, 并根据上行或下 行当前的信噪比和移动台当前业务所对应 DIUC、 UIUC 的最低进入门限和强 制退出门限, 查找上行序列表和下行序列表, 确定适合的 DIUC和 UIUC。 其中, 所述方法中使用 CC、 CTC和 LDPC作为基站的备选糾错码。 其中, 所述步骤( 1 )和( 2 )中, 同一类型纠错码对应的所有项连续排列, 其中同一类型纠错码对应的所有项根据调制阶数的递增连续排列, 如果调制阶 数相同则根据编码率的递增连续排列; 如果调制阶数相同, 且编码率相同, 不 同业务分别对应不同的强制退出门限和最低进入门限。 其中, 所述步骤 (3) 中, 同一类型的纠错码中, 调制阶数越小则该项对 应的最低进入门限和强行退出门限越小, 如果调制阶数相同则编码率越小则该 项对应的最低进入门限和强行退出门限越小; 如果调制阶数相同, 且编码率相 同, 不同业务分别对应不同的强制退出门限和最低进入门限。 其中, 所述步骤 (4) 具体为: 当移动台与基站通信时, 为了确定恰当的 纠错码, 需执行以下操作:
(A) 首先判断通信的业务类型, 如果是 UGS业务类型或实时业务, 则 选用 CC纠错码, 否则进入步骤 (B );
(B) 如果当前信噪比小于等于低信噪比门限, 选用 CC糾错码, 进入步 骤 (5), 否则进入步骤 (C);
(C)根据当前需要传输的数据量大小, 确定纠错码, 如果待传数据量为 l〜4slots, 选用 CC纠错码并进入步骤 (5 ); 如果待传数据量为 6〜9slots, 则进 入步骤 (E), 否则进入步骤 (D);
(D) 判断移动台与基站能力协商结果是否支持 CTC 纠错码, 如果是, 则选用 CTC纠错码, 否则选用 CC糾错码并进入步骤 (5);
(E) 判断移动台与基站能力协商结果是否支持 LDPC纠错码, 如果是, 则选用 LDPC纠错码, 否则进入步骤 ( D )。 其中, 所述步骤 (5 ) 具体为:
( a ) 判断步骤 (4 ) 中选择的上行纠错码与正在使用的纠错码是否相同, 如果相同则进入步骤 ( b ), 否则进入步骤 ( c ); 判断步骤 ( 4 ) 中选择的下行 纠错码与正在使用的纠错码是否相同, 如果相同则进入步驟(d ), 否则进入步 骤 ( e );
( b ) 读取当前的信噪比, 在上行序列表中, 首先判断当前信噪比是否仍 然适用于正在使用的 UIUC, 如果适用, 则步骤(5 ) 结束, 否则, 查找所有纠 错码与正在使用的糾 昏码相同的项, 并将这些项中与移动台连接业务类型对应 的最低进入门限与当前信噪比最接近且小于当前信噪比的一项作为 UIUC; ( c ) 读取当前的信噪比, 在上行序列表中, 查找所有糾错码与步骤 (4 ) 中选择的纠错码相同的项, 并将这些项中移动台连接所对应业务类型最低进入 门限与当前信噪比最接近且小于当前信噪比的一项作为 UIUC , 步骤( 5 )结束;
( d ) 读取当前的信噪比, 在下行序列表中, 首先判断当前信噪比是否仍 然适用于正在使用的 DIUC, 如果适用, 则步骤(5 )结束, 否则查找所有糾错 码与正在使用的纠错码相同的项, 并将这些项中移动台连接所对应业务类型最 低进入门限与当前信噪比最接近且小于当前信噪比的一项作为 DIUC;
( e ) 读取当前的信噪比, 在下行序列表中, 查找所有糾错码与步骤 (4 ) 中选择的纠错码相同的项, 并将这些项中移动台连接所对应业务类型最低进入 门限与当前信噪比最接近且小于当前信噪比的一项作为 DIUC, 步骤( 5 )结束。 其中, 所述方法还包括:
( 6 ) 判断当前 DIUC和 UIUC项的编码方式是否为 64QAM高阶调制方 式, 如果是则进入步骤 ( 7 ), 否则使用当前 DIUC和 UIUC项;
( 7 ) 判断当前移动台与基站编解码能力协商结果是否支持 64QAM , 如 果是则使用当前 DIUC和 UIUC项, 否则, 根据步骤 (4)所选的纠错码序, 选择 低于 64QAM且最靠近 64QAM的项作为该移动台适用的 DIUC和 UIUC,处理 结束。 本发明公开了一种 Wimax系统中下行区间使用码和上行区间使用码的确 定方法。 现有技术中, 上行通道和下^ "通道的编码速率、 纠错码、 调制方式和 编码率都是确定的, 这样虽然便于管理, 但是不能充分利用不同纠错码特性和 信道状况做出灵活的选择,对系统性能有一定的影响。本发明于现有技术相比, 通过建立上行序列表和下行序列表, 结合传输包大小、 无线信道状况、 纠错码 的特性, 动态选择纠错码、 调制方式和编码率, 以充分提高系统的吞吐量, 降 低误包率, 提升用户满意度, 降低整个系统的干扰水平。 采用本发明所述的方 法, 可以充分利用各种纠错码的特点, 并且结合了业务类型、 不同业务对误码 率的要求不同、 信道状况, 传输数据包大小, 确定不同的纠错码、 调制阶数和 编码率, 可以提高 Wimax 系统的数据吞吐量、 保证业务的 Qos要求。 并且能 够在有限的 DIUC和 UIUC中, 尽可能多的安排不同纠错码的调制编码方式。 附图说明 图 1是本发明提出的方法中纠错码选择的流程图; 图 2是本发明提出的方法中判断是否支持 64QAM的处理步骤流程图。 具体实施方式 下面结合附图对本发明作进一步的详细描述。 本发明提出一种 Wimax系统中下行区间使用码和上行区间使用码的确定 方法, 在此之前, 参照现有技术的方法, 才艮据 DIUC和 UIUC的索引数量限制、 纠错码的特性以及业务类型确定基站的备选糾错码, 并生成上行突发属性编码 表和下行突发属性编码表。 然后本发明的具体步骤为:
1、 Wimax系统支持多种糾错码, 如 CC、 ZT CC、 CTC、 BTC、 LDPC等, 除 CC是强制支持的外, 其他纠错码都是可选的, 经过仿真, 比较各种纠错码, 同时由于 DIUC和 UIUC索 I数量限制, 由于当信噪比很低时, CTC和 LDPC 编码增益较 CC增益不明显, 考虑到 CC是强制支持的编码, 同时受 DIUC和 UIUC数量限制, 不选 CTC和 LDPC的 QPSK调制阶数, 因此最终确定 CC , CTC和 LDPC为系统的纠错码。 2、 生成如表三所示的上行序列表, 其中每一 UIUC项对应上行突发属性 编码表中的一项, 其中同一类型纠错码对应的所有项连续排列, 且同一类别纠 错码中根据调制阶数顺序排序, 如果调制阶数相同则 -据其编码率排序; 这里 的顺序 4#列, 优选递增顺序, 当然也可以是递减的顺序。 UIUC FEC
业务 1 (BER 10-。) 业务 2(BER 10一
编号
强制退出 最低进入 强制退出 最低进入
门限 (db) 门限 (db) 门限 (db) 门限 (db)
1 0 2 3.5 3 4.75
2 1 4 .5 6.5 5.5 7
3 2 7.5 9 8 9.75
4 3 10.5 11 11 12.5
5 15 8 9.5 8.5 10.5
6 16 10.5 11.5 11.25 13
7 18 14.5 16 15.5 18
8 29 8 9.5 8.75 10.5
9 31 10.5 11.5 10 12
10 34 15 16 16 18 表三: 上行序列表
3、 生成如表四所示的下行序列表, 其中每一 DIUC项对应下行突发属性 编码表中的一项, 其中同一类型纠错码对应的所有项连续排列, 且同一类别纠 错码中所有项根据调制阶数顺序排序, 如果调制阶数相同则根据其编码率排 序; 这里的顺序排列, 优选递增顺序, 当然也可以是递减的顺序。
Figure imgf000009_0001
表四: 下行序列表 4、 根据不同业务对于误码率的要求, 分别为上行序列表和下行序列表业 中的每一项配置最低进入门限和强制退出门限, 同一类型的纠错码中, 调制阶 数越小则该项对应的最低进入门限和强制退出门限越小, 如果调制阶数相同则 编码率越小则该项对应的最 ^氐进入门限和强制退出门限越小;; 如果调制阶数 相同,且编码率相同, 不同业务分别对应不同的强制退出门限和最低进入门限。 具体的, 对于不同业务, 如杲业务要求的 BER要求高, 则对应的强制退出门限 和最低进入门限都分别比业务 BER要求低的要高。
5、 基站根据当前的业务类型、 信噪比、 传输数据量、 编解码能力协商结 果, 从步骤 ( 1 ) 为移动台选择上行纠错码和下行糾错码, 流程如图 1 所示, 具体为:
( A )首先判断通信的业务类型 ,如果是 UGS (unsolicited grant service) 业务类型或实时业务, 则选用 CC纠错码, 否则进入步骤 (B);
(B) 如果当前信噪比小于等于低信噪比门限, 选用 CC纠错码, 进入步 骤 7, 否则进入步骤 (C); (C)根据当前需要传输的数据量大小, 确定纠错码, 具体为: 如果待传 数据量较小, (比如, l〜4slots中一个值), 选用 CC纠错码并进入步骤(7); 如 果待传数据量较大(大于一定数值(比如, 6〜9slot中一个值), 则进入步骤 (E), 否则进入步骤 (D);
( D ) 判断移动台与基站能力协商结果是否支持 CTC纠错码, 如果是则 选用 CTC纠错码, 否则选用 CC纠错码并进入步骤 7;
(E)判断移动台与基站能力协商结果是否支持 LDPC纠错码, 如果是则 选用 LDPC纠错码, 否则进入步骤 (D);
7、 根据步骤(6) 中选择的上行纠错码和下行纠错码, 并根据当前的信噪 比及移动台当前业务所对应的最低进入门限和强制退出门限, 查找上行序列表 和下行序列表, 确定适合的 DIUC和 UIUC, 具体为:
( a ) 判断步骤 ( 6 ) 中选择的上行纠错码与正在使用的纠错码是否相同, 如果相同则进入步驟 ( b ), 否则进入步骤 ( c ); 判断步驟 ( 6 ) 中选择的下行 纠错码与正在使用的纠错码是否相同, 如果相同则进入步骤(d), 否则进入步 骤 (e); ( b ) 读取当前的信噪比, 在上行序列表中, 首先判断当前信噪比是否仍 然适用于正在使用的 UIUC, 如果适用, 则, 否则进入步骤 8 , 查找所有纠错 码与正在 4吏用的纠错码相同的项, 并将这些项中移动台连接所对应业务类型最 低进入门限与当前信噪比最接近且小于当前信噪比的一项作为 UIUC , 进入步 骤 8;
( c ) 读取当前的信噪比, 在上行序列表中, 查找所有纠错码与步骤 (6 ) 中选择的纠错码相同的项, 并将这些项中移动台连接所对应业务类型最低进入 门限与当前信噪比最接近且小于当前信噪比的一项作为 UIUC或 DIUC, 进入 步骤 8; ( d ) 读取当前的信噪比, 在下行序列表中, 首先判断当前信噪比是否仍 然适用于正在使用的 DIUC, 如果适用, 则步骤 (7)结束, 否则查找所有纠错码 与正在使用的纠错码相同的项, 并将这些项中最低进入门限与当前信噪比最接 近且小于当前信噪比的一项作为 DIUC, 进入步骤 8;
( e ) 读取当前的信噪比, 在下行序列表中, 查找所有纠错码与步骤 (6 ) 中选择的纠错码相同的项, 并将这些项中移动台连接所对应业务类型最低进入 门限与当前信噪比最接近且小于当前信噪比的一项作为 DIUC, 进入步骤 8;
8、 判断当前 DIUC或 UIUC项编码方式是否为 64QAM, 具体流程如图 2 所示, 包括:
( i )判断当前 DIUC或 UIUC项的调制方式是否为 64QAM , 如果是则进 入步骤 ( 9 ), 否则使用当前 DIUC或 UIUC项;
( ii ) 判断当前移动台与基站能力协商结果是否支持 64QAM, 否则, 在 步骤 (6)所选的糾错码序列表中, 选择氐于 64QAM且最靠近 64QAM的项作为 该移动台适用的 DIUC和 UIUC , 处理结束。 由上述实施例可以看出, 本发明能够充分利用各种纠错码的性质, 充分考 虑业务的 Qos和误码率要求, 并且能够在有限的 DIUC索引中(13项), 尽可能 多安排不同纠错码的调制编码方式。 作为优选, 可以为上行通道和下行通道各定义三组指针变量和三个标志 位 , 以 下 行 通 道 为 例 , 建 立 : m_ptDLCCStart, m_ptDLCCEnd; m— ucDLCCEnabled, m_ptDLCTCStart, m_ptDLCTCEnd, m_ucDLCTCEnabled, m_ptDLLDPCStart, mjtDLLDPCEnd, m_ucDLLDPCEnabled , 同时定义当前 正在使用的 DIUC指针 m_ptCurDIUC0 以表二的下行突发属性编码表为例, 根据每种糾错码的 FEC Type code连 续性特点 (如 CC从 0到 6), 从表二中依次为 CC, CTC, LDPC确定起始和结 束点: 如
Figure imgf000012_0001
4处; m_ptDLCTCStart指向 DIUC = 5处, m_ptDLCTCEnd 指向 DIUC = 8 处; m_ptDLLDPCStart 指向 DIUC = 9处, m_ptDLLDPCEnd 指向 DIUC = 12 处, 同时标志位都为 1。 对于 UIUC也采用相同的方法, 这里从略。

Claims

权 利 要 求 书 一种 Wimax 系统中下^"区间吏用码和上行区间 4吏用码的确定方法, 包 括:
( 1 ) 根据上行突发属性编码表生成 UIUC与上行突发属性编码表 之间的上行序列表, 其中每一 UIUC项对应上行突发属性编码表中的一 项, 其中同一类型纠错码对应的所有项连续排列, 且同一类别糾错码中 所有项根据调制阶数排序, 如果调制阶数相同则根据其编码率排序;
( 2 ) 根据下行突发属性编码表生成 DIUC与下行突发属性编码表 之间的下行序列表, 其中每一 DIUC项对应下行突发属性编码表中的一 项, 其中同一类型糾错码对应的所有项连续排列, 且同一类别纠错码中 所有项根据调制阶数排序, 如果调制阶数相同则根据其编码率排序;
( 3 ) 根据不同业务对于误码率的要求, 分别为上行序列表和下行 序列表业中的每一项配置最低进入门限和强制退出门限, 强制退出门限 不高于最低进入门限;
( 4 ) 基站根椐当前的业务类型、 信噪比、 传输数据量、 能力协商 结果, 为移动台选择上行纠错码和下行纠错码;
( 5 )根据步驟(4 ) 中选择的上行纠错码和下行纠错码, 并根据上 行或下行当前的信噪比和移动台当前业务所对应 DIUC、 UIUC的最低进 入门限和强制退出门限, 查找上行序列表和下行序列表, 确定适合的 DIUC和 UIUC。 根据权利要求 1所述的 Wimax系统中下行区间使用码和上行区间使用码 的确定方法, 其特征在于, 所述方法中使用 CC、 CTC和 LDPC作为基 站的备选纠错码。 根据权利要求 1或 2所述的 Wimax系统中下行区间使用码和上行区间使 用码的确定方法, 其特征在于, 所述步聚 ( 1 ) 中和所述步骤 (2 ) 中, 同一类型纠错码对应的所有项根据调制阶数的递增连续排列, 如果调制 阶数相同则^^据编码率的递增连续排列; 如果调制阶数相同, 且编码率 相同, 不同业务分别对应不同的强制退出门限和最低进入门限。
π 根据权利要求 3所述的 Wimax系统中下行区间使用码和上行区间使用码 的确定方法, 其特征在于, 所述步骤(3) 中, 同一类型的纠错码中, 调 制阶数越小则该项对应的最低进入门限和强行退出门限越小, 如果调制 阶数相同则编码率越小则该项对应的最低进入门限和强行退出门限越 小; 如果调制阶数相同, 且编码率相同, 不同业务分别对应不同的强制 退出门限和最 ^氐进入门限。 根据权利要求 4所述的 Wimax系统中下行区间使用码和上行区间使用码 的确定方法, 其特征在于, 所述步骤(4)具体为: 当移动台与基站通信 时, 为了确定恰当的纠错码, 需执行以下操作:
(A) 首先判断通信的业务类型, 如果是 UGS 业务类型或实时业 务, 则选用 CC纠错码, 否则进入步骤 (B);
(B) 如果当前信噪比小于等于低信噪比门限, 选用 CC纠错码, 进入步聚 (5), 否则进入步骤 (C);
( C ) 根据当前需要传输的数据量大小, 确定纠错码, 如果待传数 据量为 l〜4slots, 选用 CC 糾错码并进入步 (5 ); 如果待传数据量为 6~9slots, 则进入步骤 (E), 否则进入步聚 (D);
(D)判断移动台与基站能力协商结果是否支持 CTC糾错码, 如果 是, 则选用 CTC纠错码, 否则选用 CC纠 4皆码并进入步骤 (5);
(E) 判断移动台与基站能力协商结果是否支持 LDPC糾错码, 如 果是, 则选用 LDPC纠错码, 否则进入步骤 (D)。 根据权利要求 5所述的 Wimax系统中下行区间使用码和上行区间使用码 的确定方法, 其特征在于, 所述步骤 (5) 具体为:
( a )判断步骤( 4 ) 中选择的上行纠错码与正在使用的纠错码是否 相同, 如果相同则进入步骤(b), 否则进入步骤(c); 判断步骤(4) 中 选择的下行纠错码与正在使用的糾错码是否相同, 如果相同则进入步骤 (d), 否则进入步骤 (e);
(b) 读取当前的信噪比, 在上行序列表中, 判断当前信噪比是否 仍然适用于正在使用的 UIUC, 如果适用, 则步骤 ( 5 ) 结束, 否则, 查 找所有糾错码与正在使用的纠错码相同的项, 并将这些项中与移动台连 接业务类型对应的最低进入门限与当前信噪比最接近且小于当前信噪比 的一项作为 UIUC;
( c ) 读取当前的信噪比, 在上行序列表中, 查找所有糾错码与步 骤(4 )中选择的纠错码相同的项, 并将这些项中移动台连接所对应业务 类型最低进入门限与当前信噪比最接近且小于当前信噪比的一项作为 UIUC , 步骤 (5 ) 结束;
( d ) 读取当前的信噪比, 在下行序列表中, 判断当前信噪比是否 仍然适用于正在吏用的 DIUC , 如果适用, 则步骤 (5 ) 结束, 否则查找 所有纠错码与正在使用的纠错码相同的项, 并将这些项中移动台连接所 对应业务类型最低进入门限与当前信噪比最接近且小于当前信噪比的一 项作为 DIUC;
( e ) 读取当前的信噪比, 在下行序列表中, 查找所有纠错码与步 骤( 4 ) 中选择的纠错码相同的项, 并将这些项中移动台连接所对应业务 类型最低进入门限与当前信噪比最接近且小于当前信噪比的一项作为 DIUC, 步驟 (5 ) 结束。 根据权利要求 6所述的 Wimax系统中下行区间使用码和上行区间使用码 的确定方法, 其特征在于, 还包括:
( 6 ) 判断当前 DIUC和 UIUC项的编码方式是否为 64QAM 高阶 调制方式, 如果是则进入步骤 ( 7 ), 否则吏用当前 DIUC和 UIUC项;
( 7 ) 判断当前移动台与基站编解码能力协商结果是否支持 64QAM, 如果是则使用当前 DIUC和 UIUC项, 否则, 根据步骤 (4)所选 的糾错码序, 选择低于 64QAM且最靠近 64QAM的项作为该移动台适 用的 DIUC和 UIUC , 处理结束。
PCT/CN2006/003808 2006-03-31 2006-12-31 Procédé de détermination d'un code d'usage d'intervalle en liaison descendante et d'un code d'usage d'intervalle en liaison montante dans un système wimax WO2007112629A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006100664671A CN101047466B (zh) 2006-03-31 2006-03-31 Wimax系统中下行区间使用码和上行区间使用码的确定方法
CN200610066467.1 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007112629A1 true WO2007112629A1 (fr) 2007-10-11

Family

ID=38563079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003808 WO2007112629A1 (fr) 2006-03-31 2006-12-31 Procédé de détermination d'un code d'usage d'intervalle en liaison descendante et d'un code d'usage d'intervalle en liaison montante dans un système wimax

Country Status (2)

Country Link
CN (1) CN101047466B (zh)
WO (1) WO2007112629A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130343217A1 (en) * 2010-12-02 2013-12-26 Xueming Pan Method, system, and device for confirming uplink-downlink configuration

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409613B (zh) * 2007-10-12 2010-12-08 华为技术有限公司 半频分双工下的数据传送方法及装置
CN101494515B (zh) * 2008-01-22 2011-12-28 中兴通讯股份有限公司 正交频分复用系统中的下行自适应调制编码方法及基站
CN101677252B (zh) * 2008-09-17 2012-12-12 普天信息技术研究院有限公司 获取下行突发数据的方法和装置
CN106332186B (zh) * 2015-06-23 2021-11-02 中兴通讯股份有限公司 通话方法和装置
CN105337697B (zh) * 2015-10-12 2019-04-26 国网信息通信产业集团有限公司 一种适用于配网自动化的电力无线通信方法、装置及系统
KR102598035B1 (ko) 2016-04-12 2023-11-02 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 서비스 통신의 코덱 모드 세트를 결정하기 위한 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050041643A (ko) * 2003-10-31 2005-05-04 삼성전자주식회사 광 대역 무선 접속 통신 시스템의 제어 메시지 전송프레임 및 그 방법
CN1627844A (zh) * 2003-12-11 2005-06-15 北京三星通信技术研究有限公司 移动通信系统中上行专用信道增强的基站控制的调度方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050041643A (ko) * 2003-10-31 2005-05-04 삼성전자주식회사 광 대역 무선 접속 통신 시스템의 제어 메시지 전송프레임 및 그 방법
CN1627844A (zh) * 2003-12-11 2005-06-15 北京三星通信技术研究有限公司 移动通信系统中上行专用信道增强的基站控制的调度方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130343217A1 (en) * 2010-12-02 2013-12-26 Xueming Pan Method, system, and device for confirming uplink-downlink configuration
US9794945B2 (en) * 2010-12-02 2017-10-17 Datang Mobile Communications Equipment Co., Ltd Method, system, and device for confirming uplink-downlink configuration

Also Published As

Publication number Publication date
CN101047466A (zh) 2007-10-03
CN101047466B (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
CN1968274B (zh) 在调制解调器中调度数据的设备和方法
US20190116062A1 (en) Packet extension for wireless communication
TWI660639B (zh) 高效率wlan前序信號結構
WO2007112629A1 (fr) Procédé de détermination d'un code d'usage d'intervalle en liaison descendante et d'un code d'usage d'intervalle en liaison montante dans un système wimax
JP5410509B2 (ja) 通信システムにおけるスペクトル利用効率を向上させるための方法、装置及び通信システム
US7366195B2 (en) Apparatus and method for efficiently transmitting and receiving multicast data
US6654410B2 (en) Fast initialization using seamless rate adaptation
TWI420924B (zh) 用於傳達控制資訊之方法與裝置
TWI414155B (zh) 用於彈性報告控制資訊之方法及裝置
KR101848813B1 (ko) Sdma를 위한 레이트 적응
JP5313331B2 (ja) 複数ステージによるフーリエ変換装置、処理、および製造物品
KR101582508B1 (ko) 1 ghz 미만의 네트워크들에서의 변조 및 코딩 방식들
US8948309B2 (en) Method and system for redundancy-based decoding of video content in a wireless system
WO2007040874A1 (en) System and method for selecting transmission format using effective snr
WO2010115336A1 (zh) 组资源分配的处理方法
KR20150003241A (ko) 1 ghz 미만의 네트워크들에서의 프레임 포맷들 및 타이밍 파라미터들
WO2009142951A1 (en) Methods and systems for adaptive effective cinr reporting in a wireless communication system
TW201014421A (en) Methods and systems for overhead reduction in a wireless communication network
TWI405487B (zh) 用於dl-map 處理的方法和系統
US9288715B2 (en) Method and system for improving the efficiency of packet transmission in a multi-user wireless communication system
WO2018231386A1 (en) Adaptation of the mcs used for the he-sig-b signaling field for multi-user transmission
WO2021008318A1 (zh) 数据发送和接收方法及装置
US9179496B2 (en) Tone scaling parameters in Sub-1 GHz networks
Parry cdma2000 1/spl times/EV-DO [for 3G communications]
CN101686218B (zh) 一种ofdm通信系统处理帧前缀的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06840838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06840838

Country of ref document: EP

Kind code of ref document: A1