WO2007110905A1 - Method of nitriding of iron group base alloy substrate - Google Patents

Method of nitriding of iron group base alloy substrate Download PDF

Info

Publication number
WO2007110905A1
WO2007110905A1 PCT/JP2006/306034 JP2006306034W WO2007110905A1 WO 2007110905 A1 WO2007110905 A1 WO 2007110905A1 JP 2006306034 W JP2006306034 W JP 2006306034W WO 2007110905 A1 WO2007110905 A1 WO 2007110905A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitriding
temperature
iron group
passive film
hydrogen gas
Prior art date
Application number
PCT/JP2006/306034
Other languages
French (fr)
Japanese (ja)
Inventor
Tadao Baba
Masahiro Akaishizawa
Masanori Kosugi
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to CNA2006800539701A priority Critical patent/CN101405425A/en
Priority to PCT/JP2006/306034 priority patent/WO2007110905A1/en
Publication of WO2007110905A1 publication Critical patent/WO2007110905A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Definitions

  • the present invention relates to a method for nitriding an iron group alloy base material having a hydrogen gas sputtering step and a plasma nitriding step.
  • a nitriding treatment applied to an iron-based alloy base material such as stainless steel that is, an alloy base material mainly containing a metal element belonging to Group 8 of the periodic table
  • This is a treatment performed to increase the hardness of the surface by forming nitride on the surface of the alloy substrate and to improve the wear resistance and the like.
  • Examples of the removal treatment method include a wet method of immersing in a chemical solution such as cyan.
  • a process for treating the chemical solution is necessary to avoid environmental pollution, which is complicated and has a problem that the nitriding treatment cost increases due to the treatment cost of the chemical solution.
  • Non-Patent Document 1 and Patent Document 1 introduce nitrogen gas and hydrogen gas, or ammonia gas and hydrogen gas into a processing furnace containing an iron group alloy base material, and Glow discharge is generated in the treatment furnace, and the passive film on the substrate surface is generated by H + and NH + generated by this.
  • Non-Patent Document 1 describes both the reduction reaction mechanism of the passive film and the nitride diffusion mechanism.
  • Patent Document 2 proposes that only hydrogen gas is introduced into the processing furnace from less than 350 ° C, preferably less than 150 ° C, and hydrogen gas sputtering is started at a relatively low temperature. . According to Patent Document 2, the temperature after diffusion and penetration of H + into the iron group alloy base material is increased. It is said that the passive film can be reduced from the inside by raising the temperature above the reduction temperature of the passive film and thereby moving H + to the surface side of the substrate.
  • Patent Document 1 Japanese Patent Publication No. 2-2945
  • Patent Document 2 Pamphlet of International Publication No. WO01Z34867
  • Non-Patent Document 1 Takao Takao “Appearance of Rival Ion Nitriding Method in Soft Nitriding Method”, “KINZOK U”, March 1996, pp. 48-54
  • Removal of the kinetic membrane may be insufficient.
  • the thickness of the nitride layer formed by the nitriding process becomes nonuniform, and a defect that the nitride layer is not partially formed is caused.
  • a general object of the present invention is to provide a method for nitriding an iron group alloy base material capable of making the formed nitride layer substantially uniform in thickness.
  • a main object of the present invention is to provide a method for nitriding an iron group alloy substrate that can avoid the brittleness of the iron group alloy substrate after nitriding.
  • the first step of removing the passive film present on the surface of the iron group alloy substrate by hydrogen gas sputtering Applying a plasma nitriding treatment to the iron group alloy substrate from which the passive film has been removed, and nitriding the iron group alloy substrate;
  • the first step is performed by circulating hydrogen gas in the processing furnace.
  • a nitriding method is provided.
  • the iron group-based alloy refers to an alloy whose main component is a metal element belonging to Group 8 of the periodic table.
  • the first step it is preferable to perform the first step with ⁇ exceeding 40 CTC and 580 or less.
  • the discharge rate of hydrogen ions inside the iron group alloy substrate is high. large.
  • the passive J reaction is remarkably active. Therefore, it is possible to easily remove the passive film without setting the sputtering conditions with high accuracy.
  • the temperature range exceeding 580 since the release rate of hydrogen ions becomes small, it is not easy to avoid the remaining hydrogen ions.
  • the structure of the iron group alloy base material starts to change, and the tendency of the physical properties to change with this changes becomes remarkable.
  • a suitable temperature at which the first step is performed is a force approximately 450 to 52 depending on the main component of the iron group alloy base material and its content.
  • the iron group alloy base material can be nitrided well in a short time, and as a result, a nitride layer with good quality can be efficiently formed.
  • the holding time can be shortened, the time required for the nitriding process can be shortened.
  • FIG. 1 is an overall schematic side view of an engine valve that is an iron group alloy base material to which hydrogen gas sputtering treatment and plasma nitridation treatment are applied in the present embodiment.
  • FIG. 2 is a graph showing a temperature pattern when performing a hydrogen gas sputtering process and a plasma nitriding process.
  • FIG. 3 is a graph showing the relationship between temperature and the amount of hydrogen ions released from various iron group alloy substrates.
  • FIG. 4 is a chart showing the thickness of a nitride layer formed by plasma nitriding and the Hv before and after the plasma nitriding (NCF 600, SUH 11 M5 0 0) 20 minutes later, hold for 50 minutes at 5 2 O t: others start nitriding from 5 20 ° C, hold for 60 minutes at 5 20 ° C).
  • the iron group alloy base material to which the nitriding treatment is applied is the engine valve 10 shown in FIG.
  • the engine valve 10 has a wide head portion 12, a long rod portion 14, and an end portion 16.
  • the rod portion 14 is also divided at a portion where the central portion force is slightly closer to the head portion 12. Has been. That is, the rod portion 14 includes a first rod 18 and a second rod 20 that is slightly longer than the first rod 18.
  • the head 12 and the first rod 18 are made of NCF600, and the second rod 20 and the end portion 16 are made of SU H11M.
  • the engine valve 10 On the surface of the engine valve 10, there is a passive film formed by spontaneous oxidation of NCF600 and SUH11M.
  • the engine valve 10 configured as described above is first degreased with an organic solvent or the like and then accommodated in a processing furnace. Then, the engine valve 10 and the furnace wall of the processing furnace are electrically connected to the power source, and energization is started. If the current and voltage are about 25A and 220-250V, respectively!
  • the temperature raising rate may be, for example, 3 to 5 ° CZ.
  • FIG. 3 shows the relationship between the temperature at which hydrogen gas sputtering is performed and the release rate of hydrogen ions stored in advance in SUH11M, which is an iron group alloy substrate, from SUH11M. From Fig. 3, it can be seen that hydrogen ions are released at a large rate when the temperature exceeds 400 ° C, in other words, the amount of released hydrogen ions increases and reaches a maximum at around 580 ° C. It is understood. Fig. 3 shows the data of three measurements. Hydrogen ions are stored in SUH11M by occlusion.
  • a reduction reaction of the passive film also occurs.
  • hydrogen gas sputtering is performed in a temperature range in which hydrogen ions are actively released from the iron group alloy base material and a reduction reaction of the passive film occurs.
  • Hydrogen gas generates a plasma state, and H + in the plasma collides with the surface of the engine valve 10 under the action of an electric field. This H + enters the passive film on the surface of the engine valve 10 as diffuse hydrogen ions.
  • the diffusible hydrogen ion is a temperature at which the reduction reaction of the passive film occurs, it quickly reacts with the passive film. That is, the passive film is attacked by diffusible hydrogen ions, and as a result, the passive film is reduced and removed.
  • the diffusion penetration state such as the depth, penetration amount, and distribution of hydrogen ions varies greatly depending on the sputtering conditions. For example, when the voltage is excessively high, the diffusion penetration amount of hydrogen ions is excessively increased, or the diffusion penetration depth of hydrogen ions is excessively increased. Therefore, it is necessary to control the sputtering conditions with high precision in order to bring hydrogen ions into the desired diffusion and penetration state in a temperature range of 400 ° C or lower.
  • Hydrogen gas sputtering is preferably performed at 450 ° C or higher. In this temperature range, hydrogen ions are released from the engine valve 10 at a high speed, while the reductive reaction of the passive membrane becomes extremely active. For this reason, the passive film can be reduced and removed without controlling the sputtering conditions with high accuracy.
  • the introduction of nitrogen gas is started while the amount of hydrogen gas is reduced.
  • the first step is completed and the second step in which the plasma nitriding treatment is performed is started.
  • Nitrogen gas collides with the surface of the engine valve 10 from which the passive film has been reduced and removed while being ionized into nitrogen ions. As a result, the surface of the engine valve 10 is nitrided, and a nitrided layer is formed on the surface.
  • hydrogen gas is also supplied during the plasma nitriding process. For this reason, hydrogen gas sputtering also proceeds in conjunction with the plasma nitriding treatment, which can suppress the formation of a passive film on the surface of the engine valve 10.
  • the temperature is further increased while plasma nitriding is performed, and reaches 520 ° C after about 20 minutes. At this point, both gases are supplied with a stable mixing ratio of nitrogen gas and hydrogen gas. Therefore, by maintaining this temperature for about 40 minutes, the engine valve 10 can be uniformly nitrided, and as a result, a nitride layer with good quality can be efficiently formed. Can do.
  • the supply of nitrogen gas is started when a predetermined temperature to be maintained is reached, and then maintained at a constant temperature for about 60 minutes.
  • Retention time can be as low as 40 minutes.
  • the plasma nitriding treatment holding time in the processing method according to the present embodiment is significantly shorter than the holding time in a general plasma nitriding method.
  • the holding time can be shortened by starting the plasma nitriding process in the middle of the temperature rise.
  • the processing time including the sputtering process and the nitriding process time can be shortened, and as a result, the nitride layer can be efficiently formed on the engine valve 10.
  • the temperature is lowered to about 200 ° C, the processing furnace is opened, and the engine valve 10 is taken out.
  • a nitrided layer is formed on the surface of the engine valve 10 that has been subjected to plasma nitriding.
  • the thickness of the nitride layer formed on the surface of the second rod 20 and the end 16 that also has SUH11M force is approximately 81.1 ⁇ m.
  • the presence of the nitride layer makes the surface of the engine valve 10 hard. Specifically, after the plasma nitriding treatment, the Vickers hardness (Hv) on the surface of the second rod 20 and the end portion 16 (SUH11M) shows a remarkably large value of 771.
  • the start temperature of the second step is not particularly limited, but the reduction and removal of the passive film by hydrogen gas sputtering has progressed so much that the introduction of nitrogen gas starts at that time.
  • the thickness of the nitride layer tends to be non-uniform. That is, it becomes difficult to obtain a nitride layer with excellent quality.
  • the start temperature of the second step that is, the temperature at which the introduction of nitrogen gas is started is close to the holding temperature.
  • the second step may start when the holding temperature is reached.
  • the holding temperature is not limited to 520 ° C, but if it is excessively high, the re-forming rate of the passive film becomes larger than the reduction-removing rate, and the generated nitride is iron. Since it starts to diffuse in the group-base alloy base material (engine valve 10), it becomes difficult to form a nitride layer.
  • 520 to 540 ° C It is most preferable to be within the range.
  • the material of the head 12 and the first rod 18 is not limited to NCF600, but may be NCF3015 or NCF440! / !.
  • the material of the second rod 20 and the terminal 16 is not limited to SUH11M, but may be SKH51, for example.
  • FIG. 4 shows the thickness and Hv of the nitrided layer when NCF3015, NCF440, and SKH51 are subjected to the above hydrogen gas sputtering treatment and plasma nitriding treatment. In this case, when the temperature of the processing furnace reached 520 ° C, nitrogen gas was introduced to start the plasma nitriding treatment, and the temperature was maintained for 60 minutes.
  • the workpiece subjected to the plasma nitriding treatment is not limited to the engine valve 10, but may be a member that also has an alloy metal force mainly composed of a metal element belonging to Group 8 of the periodic table, such as Cr and Ni. Good. What is necessary is just to set suitably the holding

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Engine valve (10) is placed in a treatment oven. Thereafter, while vacuuming, a temperature raising is effected, and at a temperature higher than 400°C, preferably 450°C or higher, the supply of hydrogen gas is initiated to thereby initiate hydrogen gas sputtering (first step). Thus, any passive film existing on the surface of the engine valve (10) is reduced and removed. Vacuuming and temperature raising are carried on while conducting the hydrogen gas sputtering, and upon arrival at preferably 500°C, nitrogen gas together with hydrogen gas is introduced to thereby initiate the second step. By virtue of this nitrogen gas, the surface of the engine valve (10) devoid of the passive film is nitrided to result in formation of a nitride layer.

Description

明 細 書  Specification
鉄族系合金基材の窒化処理方法  Method for nitriding iron group alloy base material
技術分野  Technical field
[0001] 本発明は、水素ガススパッタリング工程とプラズマ窒化処理工程とを有する鉄族系 合金基材の窒化処理方法に関する。  The present invention relates to a method for nitriding an iron group alloy base material having a hydrogen gas sputtering step and a plasma nitriding step.
背景技術  Background art
[0002] 例えばステンレス鋼等の鉄族系合金基材、すなわち、周期表の第 8族に属する金 属元素を主成分とする合金基材に対して施される窒化処理は、該鉄族系合金基材 の表面に窒化物を形成することによって該表面の硬度を上昇させ、耐摩耗性等を向 上させるべく行われる処理である。  [0002] For example, a nitriding treatment applied to an iron-based alloy base material such as stainless steel, that is, an alloy base material mainly containing a metal element belonging to Group 8 of the periodic table, This is a treatment performed to increase the hardness of the surface by forming nitride on the surface of the alloy substrate and to improve the wear resistance and the like.
[0003] ここで、鉄族系合金基材の表面には、通常、自発的に形成された酸化物からなる 不動態膜が存在し、この不動態膜は窒化反応を阻害する。このため、窒化処理に先 立ち、不動態膜を除去する除去処理が行われる。  [0003] Here, there is usually a passive film made of an oxide formed spontaneously on the surface of the iron group alloy substrate, and this passive film inhibits the nitriding reaction. For this reason, prior to the nitriding process, a removing process for removing the passive film is performed.
[0004] 除去処理方法としては、シアン等の薬液に浸漬する湿式法が例示される。しかしな がら、この場合、環境汚染を回避するために薬液を処理する工程が必要であり、煩雑 であるとともに、薬液の処理コストによって窒化処理コストが高騰するという問題がある  [0004] Examples of the removal treatment method include a wet method of immersing in a chemical solution such as cyan. However, in this case, a process for treating the chemical solution is necessary to avoid environmental pollution, which is complicated and has a problem that the nitriding treatment cost increases due to the treatment cost of the chemical solution.
[0005] これに対し、非特許文献 1及び特許文献 1には、鉄族系合金基材を収容した処理 炉の中に窒素ガスと水素ガス、又はアンモニアガスと水素ガスとを導入し、前記処理 炉内でグロ一放電を生じさせ、これにより生成した H+や NH +で基材表面の不動態膜 [0005] In contrast, Non-Patent Document 1 and Patent Document 1 introduce nitrogen gas and hydrogen gas, or ammonia gas and hydrogen gas into a processing furnace containing an iron group alloy base material, and Glow discharge is generated in the treatment furnace, and the passive film on the substrate surface is generated by H + and NH + generated by this.
4  Four
(酸化物)を還元することが記載されている。この場合、薬液を処理する必要がなぐ し力も、除去処理と窒化処理とを同一の処理炉内で実施することができるので、作業 が簡便となるとともに、装置構成が簡素となるという利点がある。なお、非特許文献 1 には、不動態膜の還元反応機構と窒化物拡散機構が併せて説明されている。  It describes that (oxide) is reduced. In this case, since it is not necessary to process the chemical solution, the removal process and the nitriding process can be performed in the same processing furnace. Therefore, there is an advantage that the operation is simple and the apparatus configuration is simplified. . Non-Patent Document 1 describes both the reduction reaction mechanism of the passive film and the nitride diffusion mechanism.
[0006] さらに、特許文献 2では、水素ガスのみを 350°C未満、好ましくは 150°C未満から処 理炉内に導入し、比較的低温で水素ガススパッタリングを開始することが提案されて いる。特許文献 2によれば、鉄族系合金基材の内部に H+を拡散浸透させた後に温度 を不動態膜の還元温度以上に上昇させ、これにより H+を基材の表面側に移動させれ ば、不動態膜を内部から還元することができるとのことである。 [0006] Further, Patent Document 2 proposes that only hydrogen gas is introduced into the processing furnace from less than 350 ° C, preferably less than 150 ° C, and hydrogen gas sputtering is started at a relatively low temperature. . According to Patent Document 2, the temperature after diffusion and penetration of H + into the iron group alloy base material is increased. It is said that the passive film can be reduced from the inside by raising the temperature above the reduction temperature of the passive film and thereby moving H + to the surface side of the substrate.
[0007] 特許文献 1 :特公平 2— 2945号公報 [0007] Patent Document 1: Japanese Patent Publication No. 2-2945
特許文献 2:国際公開第 WO01Z34867号パンフレット  Patent Document 2: Pamphlet of International Publication No. WO01Z34867
非特許文献 1 :高瀬孝夫「軟窒化法にライバル イオン窒化法の登場」、「KINZOK U」昭和 48年 3月号別刷、第 48頁〜第 54頁  Non-Patent Document 1: Takao Takao “Appearance of Rival Ion Nitriding Method in Soft Nitriding Method”, “KINZOK U”, March 1996, pp. 48-54
発明の開示  Disclosure of the invention
[0008] 特許文献 1に記載された方法では、 Crや Niの含有量が比較的高 、鋼力 不動態 膜を還元除去しょうとする場合、 H+や NH +の拡散深さが十分ではなぐこのために不  [0008] According to the method described in Patent Document 1, when the content of Cr and Ni is relatively high and the steel-passive film is to be reduced and removed, the diffusion depth of H + and NH + is not sufficient. Not good for
4  Four
動態膜の除去が不十分となることがある。このような事態が生じると、窒化処理によつ て形成される窒化層の厚みが不均一となったり、窒化層が部分的に形成されなくなる という不具合を招く。  Removal of the kinetic membrane may be insufficient. When such a situation occurs, the thickness of the nitride layer formed by the nitriding process becomes nonuniform, and a defect that the nitride layer is not partially formed is caused.
[0009] 一方、特許文献 2に記載された方法では、不動態膜の還元反応が起こらず、水素 イオンの鉄族系合金基材への拡散浸透のみが起こる。この水素イオンの深さ、浸透 量、分布等の拡散浸透状態は、スパッタリング条件に依存して大きく変化する。そし て、水素イオンが過度に深く拡散浸透していたり、水素イオンの浸透量が過剰である 場合、水素脆ィ匕の原因となる。特に、内燃機関の構成部品等の形状が複雑なもので は、この傾向が顕著となる。  On the other hand, in the method described in Patent Document 2, the reduction reaction of the passive film does not occur, and only the diffusion and penetration of hydrogen ions into the iron group alloy base material occurs. The diffusion penetration state such as the depth, penetration amount, and distribution of hydrogen ions varies greatly depending on the sputtering conditions. And, if hydrogen ions are diffused and penetrated too deeply, or if the amount of hydrogen ions penetrated is excessive, hydrogen embrittlement will occur. In particular, this tendency becomes prominent when the shape of the components of the internal combustion engine is complicated.
[0010] 従って、例えば、水素イオンが残留して鉄族系合金基材がいわゆる水素脆性を示 すことを回避するべく水素イオンを所望の拡散浸透状態とするためには、スパッタリン グ条件を高精度に制御する必要がある。し力しながら、このような高精度の制御を行 うためには、数多くの試験を繰り返してデータを採取しなければならず、煩雑である。  [0010] Therefore, for example, in order to bring the hydrogen ions into a desired diffusion and penetration state in order to avoid that the hydrogen ions remain and the iron group alloy base material exhibits so-called hydrogen embrittlement, the sputtering conditions are set. It is necessary to control with high accuracy. However, in order to perform such high-precision control, data must be collected by repeating many tests, which is complicated.
[0011] 本発明の一般的な目的は、形成される窒化層の厚みを略均一とすることが可能な 鉄族系合金基材の窒化処理方法を提供することにある。  [0011] A general object of the present invention is to provide a method for nitriding an iron group alloy base material capable of making the formed nitride layer substantially uniform in thickness.
[0012] 本発明の主たる目的は、窒化処理後の鉄族系合金基材が脆性を示すことを回避 可能な鉄族系合金基材の窒化処理方法を提供することにある。  [0012] A main object of the present invention is to provide a method for nitriding an iron group alloy substrate that can avoid the brittleness of the iron group alloy substrate after nitriding.
[0013] 本発明の一実施形態によれば、鉄族系合金基材の表面に存在する不動態膜を水 素ガススパッタリングにより除去する第 1工程と、 不動態膜が除去された前記鉄族系合金基材に対してプラズマ窒化処理を施し、該 鉄族系合金基材を窒化する第 2工程と、 [0013] According to one embodiment of the present invention, the first step of removing the passive film present on the surface of the iron group alloy substrate by hydrogen gas sputtering; Applying a plasma nitriding treatment to the iron group alloy substrate from which the passive film has been removed, and nitriding the iron group alloy substrate; and
を有し、  Have
前記第 1工程を、前記第 2工程を開始するまでの昇温中に処理炉の温度が 400°C を超えた際、前記処理炉内に水素ガスを流通させて行なう鉄族系合金基材の窒化 処理方法が提供される。ここで、鉄族系合金とは、周期表の第 8族に属する金属元素 を主成分とする合金のことを指称する。  When the temperature of the processing furnace exceeds 400 ° C. during the temperature rise until the start of the second process, the first step is performed by circulating hydrogen gas in the processing furnace. A nitriding method is provided. Here, the iron group-based alloy refers to an alloy whose main component is a metal element belonging to Group 8 of the periodic table.
[0014] 350°C以下で水素ガススパッタリングを行った場合、不動態膜の還元反応が起こら ず、スパッタリングによる水素イオンの鉄族系合金基材への拡散浸透のみが起こる。 また、 350°C〜400°Cでは、不動態膜が還元されはするものの、その反応速度は、水 素イオンの放出速度に比して遅い。このため、 400°C以下の温度域では、水素ィォ ンの深さ、浸透量、分布等の拡散浸透状態は、スパッタリング条件に依存して大きく 変化する。例えば、電圧が過度に高い場合、水素イオンの拡散浸透量が過度に多く なったり、又は、水素イオンの拡散浸透深さが過度に大きくなつたりする等の不具合 が生じる。従って、 400°C以下の温度域において、水素イオンを所望の拡散浸透状 態とするためには、スパッタリング条件を高精度に制御する必要がある。  [0014] When hydrogen gas sputtering is performed at 350 ° C or lower, the reduction reaction of the passive film does not occur, and only the diffusion and penetration of hydrogen ions by sputtering into the iron group alloy substrate occurs. Also, at 350 ° C to 400 ° C, the passive membrane is reduced, but the reaction rate is slower than the release rate of hydrogen ions. For this reason, in the temperature range below 400 ° C, the diffusion penetration state such as the hydrogen depth, penetration amount, and distribution changes greatly depending on the sputtering conditions. For example, when the voltage is excessively high, problems such as excessive diffusion of hydrogen ions or excessive diffusion depth of hydrogen ions occur. Therefore, it is necessary to control the sputtering conditions with high accuracy in order to bring hydrogen ions into the desired diffusion and penetration state in a temperature range of 400 ° C or lower.
[0015] これに対し、本発明においては、鉄族系合金基材の内部に吸蔵される等して予め 保持された水素イオンが、該鉄族系合金基材カゝら極めて活発に放出される 400°Cよ りも高温となった後に水素ガスの供給が開始される。このような高温域では、鉄族系 合金基材からの水素イオンの放出と、不動態膜の還元反応とが競合して起こる。従つ て、例えば、電圧が多少高ぐこのために水素イオンが鉄族系合金基材に深く浸透し たとしても、この水素イオンは、上記のようにして放出されたり、不動態膜を還元したり することによって迅速に消費される。このため、水素イオンの拡散浸透量が過度に多 くなつたり、拡散浸透深さが過度に大きくなつたりすることを回避することができる。換 言すれば、上記のような高温域、すなわち、鉄族系合金基材内部力 水素イオンが 活発に排出される温度域で水素ガススパッタリングを開始することにより、不動態膜の 還元除去を制御することが容易となる。  [0015] On the other hand, in the present invention, hydrogen ions stored in advance by being occluded in the iron group alloy base material are released very actively from the iron group alloy base material. The supply of hydrogen gas begins after the temperature rises above 400 ° C. In such a high temperature range, the release of hydrogen ions from the iron group alloy substrate and the reduction reaction of the passive film occur in competition. Therefore, for example, even if hydrogen ions permeate deeply into the iron group alloy substrate due to the slightly higher voltage, the hydrogen ions are released as described above, or the passive film is reduced. Or quickly consumed. For this reason, it is possible to avoid excessive diffusion of hydrogen ions and excessive diffusion depth. In other words, the reduction and removal of the passive film is controlled by starting hydrogen gas sputtering in the high temperature range as described above, that is, the temperature range in which the internal force of the iron group alloy base material is actively discharged. Easy to do.
[0016] し力も、この場合、打ち込まれた水素イオンが迅速に還元反応を起こすので、水素 イオンが鉄族系合金基材に残留することを回避することができ、これにより鉄族系合 金基材がいわゆる水素脆性を示すことを回避することもできる。 [0016] In this case, since the implanted hydrogen ions cause a reduction reaction quickly, It is possible to avoid ions remaining on the iron group alloy base material, and thus it is possible to avoid the iron group alloy base material from exhibiting so-called hydrogen embrittlement.
[0017] ここで、 第 1工程を、 40 CTCを超えて 580 以下の^^で行うこと力 ましレ 580 °C以下の温度域では、 鉄族系合金基材内部の水素イオンの排出速度が大きい。 そ の一方で、 不動態 J の 反応が著しく活発となる。 従って、 スパッタリング条件を高 精度に設定することなぐ 不動態膜の ϋ¾除去を容易に行うことができる。 なお、 580 でを超える温度域では、 水素イオンの放出速度が小さくなるので、水素イオンが残留 することを回避することが容易ではなくなる。 また、 鉄族系合金基材の組織が変化を 起こすようになり、 これに伴って物性が変化する傾向が顕著となる。  [0017] Here, it is preferable to perform the first step with ^^ exceeding 40 CTC and 580 or less. In the temperature range of 580 ° C or less, the discharge rate of hydrogen ions inside the iron group alloy substrate is high. large. On the other hand, the passive J reaction is remarkably active. Therefore, it is possible to easily remove the passive film without setting the sputtering conditions with high accuracy. In the temperature range exceeding 580, since the release rate of hydrogen ions becomes small, it is not easy to avoid the remaining hydrogen ions. In addition, the structure of the iron group alloy base material starts to change, and the tendency of the physical properties to change with this changes becomes remarkable.
[0018] 第 1工程を行う好適な温度は、 鉄族系合金基材の主成分及びその含有量にも依存 する力^ 概ね 450 〜 52 である。  [0018] A suitable temperature at which the first step is performed is a force approximately 450 to 52 depending on the main component of the iron group alloy base material and its content.
[0019] また、 昇温の最中に窒素ガスを導入して第 2工程を開始することが好ましい。 これに より、 窒素ガスと水素ガスとの混合比が安定した状態でブラズマ窒化を行う保持温度 に到達させることができる。 従って、 鉄族系合金基材を短時間で良好に窒化すること ができ、 その結果、 品質が良好な窒化層を効率よく形成することができる。 しかも、 保 持時間を短縮することができるので、 窒化処理に要する時間を短縮することができる  [0019] Further, it is preferable to start the second step by introducing nitrogen gas during the temperature rise. As a result, it is possible to reach the holding temperature at which plasma nitriding is performed in a state where the mixing ratio of nitrogen gas and hydrogen gas is stable. Accordingly, the iron group alloy base material can be nitrided well in a short time, and as a result, a nitride layer with good quality can be efficiently formed. Moreover, since the holding time can be shortened, the time required for the nitriding process can be shortened.
[0020] なお、 水素ガスと窒素ガスとの双方が流通された場合、 水素ガスによる鉄族系合金 基材のスパッタリングと、 窒素ガスによる窒化処理とが同時に営まれる。 [0020] When both hydrogen gas and nitrogen gas are circulated, sputtering of the iron group alloy base material with hydrogen gas and nitriding with nitrogen gas are performed simultaneously.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1 ]図 1は、 本実施の形態において、 水素ガススパッタリング処理及びプラズマ窒化 処理が施される鉄族系合金基材であるェンジンバルブの全体概略側面図である。  FIG. 1 is an overall schematic side view of an engine valve that is an iron group alloy base material to which hydrogen gas sputtering treatment and plasma nitridation treatment are applied in the present embodiment.
[図 2]図 2は、水素ガススパッ夕リング処理及びプラズマ窒化処理を行う際の温度パ夕 ーンを示すグラフである。  [FIG. 2] FIG. 2 is a graph showing a temperature pattern when performing a hydrogen gas sputtering process and a plasma nitriding process.
[図 3]図 3は、 温度と、 各種鉄族系合金基材からの水素イオンの放出量との関係を示 すグラフである。  FIG. 3 is a graph showing the relationship between temperature and the amount of hydrogen ions released from various iron group alloy substrates.
[図 4]図 4は、 プラズマ窒化処理によって形成された窒化層の厚みと、 プラズマ窒化 処理前後の H vを示す図表である (N C F 6 0 0、 S UH 1 1 M 5 0 0 より窒化処 理開始、 2 0分後 5 2 O t:で 4 0分保持。 その他は 5 2 0 °Cより窒化処理開始、 5 2 0 °Cで 6 0分保持)。  [FIG. 4] FIG. 4 is a chart showing the thickness of a nitride layer formed by plasma nitriding and the Hv before and after the plasma nitriding (NCF 600, SUH 11 M5 0 0) 20 minutes later, hold for 50 minutes at 5 2 O t: others start nitriding from 5 20 ° C, hold for 60 minutes at 5 20 ° C).
差替え用弒(規則 26) 発明を実施するための最良の形態 Replacement bowl (Rule 26) BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明に係る鉄族系合金基材の窒化処理方法につき好適な実施の形態を 挙げ、添付の図面を参照して詳細に説明する。なお、本実施の形態において、窒化 処理が施される鉄族系合金基材は、図 1に示すエンジンバルブ 10である。  [0022] Preferred embodiments of the nitriding treatment method for an iron group alloy substrate according to the present invention will be described below in detail with reference to the accompanying drawings. In the present embodiment, the iron group alloy base material to which the nitriding treatment is applied is the engine valve 10 shown in FIG.
[0023] このエンジンバルブ 10は、幅広な頭部 12と、長尺な棒部 14と、端部 16とを有し、 棒部 14は、その中央部力も若干頭部 12寄りの部位で分割されている。すなわち、棒 部 14は、第 1棒 18と、該第 1棒 18に比してやや長尺な第 2棒 20とからなる。  [0023] The engine valve 10 has a wide head portion 12, a long rod portion 14, and an end portion 16. The rod portion 14 is also divided at a portion where the central portion force is slightly closer to the head portion 12. Has been. That is, the rod portion 14 includes a first rod 18 and a second rod 20 that is slightly longer than the first rod 18.
[0024] このうち、頭部 12及び第 1棒 18は NCF600からなり、第 2棒 20及び端部 16は SU H11Mからなる。このエンジンバルブ 10の表面には、 NCF600及び SUH11Mが自 発的に酸化することによって形成された不動態膜が存在する。  Of these, the head 12 and the first rod 18 are made of NCF600, and the second rod 20 and the end portion 16 are made of SU H11M. On the surface of the engine valve 10, there is a passive film formed by spontaneous oxidation of NCF600 and SUH11M.
[0025] このように構成されたエンジンバルブ 10に対し、先ず、有機溶剤等によって脱脂処 理を施した後、処理炉内に収容する。そして、エンジンバルブ 10及び処理炉の炉壁 と電源とを電気的に接続し、通電を開始する。電流及び電圧は、それぞれ、およそ 2 5A、 220〜250Vとすれば、よ!/、。  [0025] The engine valve 10 configured as described above is first degreased with an organic solvent or the like and then accommodated in a processing furnace. Then, the engine valve 10 and the furnace wall of the processing furnace are electrically connected to the power source, and energization is started. If the current and voltage are about 25A and 220-250V, respectively!
[0026] 次に、該処理炉を封止して内部を真空引きしながら、図 2に温度パターンとして示 すように、該処理炉の昇温を開始する。昇温速度は、例えば、 3〜5°CZ分とすれば よい。  Next, while the process furnace is sealed and the inside is evacuated, the temperature of the process furnace is started as shown in FIG. 2 as a temperature pattern. The temperature raising rate may be, for example, 3 to 5 ° CZ.
[0027] ここで、水素ガススパッタリングを行う温度と、鉄族系合金基材である SUH11Mに 予め貯蔵された水素イオンの該 SUH11Mからの放出速度との関係を図 3に示す。こ の図 3から、水素イオンが、 400°Cを超えると大きな速度で放出されるようになり、換 言すれば、水素イオンの放出量が多くなり、 580°C付近で最大となることが諒解され る。なお、図 3は、 3回の測定データを併せて示したものである。また、水素イオンは、 吸蔵等によって SUH11Mに貯蔵される。  [0027] FIG. 3 shows the relationship between the temperature at which hydrogen gas sputtering is performed and the release rate of hydrogen ions stored in advance in SUH11M, which is an iron group alloy substrate, from SUH11M. From Fig. 3, it can be seen that hydrogen ions are released at a large rate when the temperature exceeds 400 ° C, in other words, the amount of released hydrogen ions increases and reaches a maximum at around 580 ° C. It is understood. Fig. 3 shows the data of three measurements. Hydrogen ions are stored in SUH11M by occlusion.
[0028] そして、 400°C超〜 580°Cの温度域では、不動態膜の還元反応も起こる。本実施 の形態においては、このように、水素イオンが鉄族系合金基材の内部力 活発に放 出され、且つ不動態膜の還元反応が起こる温度域で水素ガススパッタリングを行う。  [0028] In the temperature range of more than 400 ° C to 580 ° C, a reduction reaction of the passive film also occurs. In the present embodiment, hydrogen gas sputtering is performed in a temperature range in which hydrogen ions are actively released from the iron group alloy base material and a reduction reaction of the passive film occurs.
[0029] すなわち、昇温を続行しながら、 400°Cを超えた時点(図 2における A点)で水素ガ スの導入を開始して、水素ガススパッタリングによる不動態膜の還元除去 (第 1工程) を行う。真空引きを行いながら水素ガスを導入するため、処理炉内の圧力は大気圧 よりも低くなる。処理炉内の具体的な圧力は、例えば、およそ 0. 7〜1. 5Torrに設定 すればよい。 [0029] That is, while continuing the temperature rise, the introduction of hydrogen gas was started when the temperature exceeded 400 ° C (point A in Fig. 2), and the passive film was reduced and removed by hydrogen gas sputtering (No. 1 Process) I do. Since hydrogen gas is introduced while evacuating, the pressure in the processing furnace becomes lower than atmospheric pressure. The specific pressure in the processing furnace may be set to approximately 0.7 to 1.5 Torr, for example.
[0030] 水素ガスはプラズマ状態を生起し、該プラズマ中の H+が電界の作用下にエンジン バルブ 10の表面に衝突する。この H+は、エンジンバルブ 10の表面の不動態膜に拡 散性水素イオンとして進入する。  Hydrogen gas generates a plasma state, and H + in the plasma collides with the surface of the engine valve 10 under the action of an electric field. This H + enters the passive film on the surface of the engine valve 10 as diffuse hydrogen ions.
[0031] 拡散性水素イオンは、不動態膜の還元反応が起こる温度であるので、迅速に不動 態膜と反応を起こす。すなわち、不動態膜が拡散性水素イオンによって攻撃され、そ の結果、該不動態膜が還元除去される。  [0031] Since the diffusible hydrogen ion is a temperature at which the reduction reaction of the passive film occurs, it quickly reacts with the passive film. That is, the passive film is attacked by diffusible hydrogen ions, and as a result, the passive film is reduced and removed.
[0032] このように、本実施の形態においては、 400°Cよりも高温で水素ガススパッタリング を開始するようにしているので、エンジンバルブ 10に衝突して不動態膜に入り込んだ 拡散性水素イオンは、該不動態膜と迅速に還元反応を起こし、これにより消費される 。このため、不動態膜を効率よく還元除去することができ、且つエンジンノ レブ 10の 内部に拡散性水素が残留することを回避することができる。なお、不動態膜が還元さ れることに伴って H Oが発生する力 この H Oは、系外へと速やかに排出される。  Thus, in this embodiment, since hydrogen gas sputtering is started at a temperature higher than 400 ° C., diffusible hydrogen ions colliding with the engine valve 10 and entering the passive film. Undergoes a rapid reduction reaction with the passive membrane and is thereby consumed. For this reason, the passive film can be reduced and removed efficiently, and diffusible hydrogen can be prevented from remaining inside the engine nozzle 10. The force that generates H 2 O as the passive membrane is reduced This H 2 O is quickly discharged out of the system.
2 2  twenty two
[0033] ここで、水素ガススパッタリングを 350°C以下で開始すると、不動態膜の還元反応が 起こらないので、水素イオンのエンジンバルブ 10への拡散浸透のみが起こる。また、 350°C超〜 400°C以下では、水素イオンの拡散浸透速度が不動態膜の還元反応に 比して大きくなる。  Here, if hydrogen gas sputtering is started at 350 ° C. or lower, the reduction reaction of the passive film does not occur, so that only the diffusion and penetration of hydrogen ions into the engine valve 10 occurs. In addition, above 350 ° C and below 400 ° C, the diffusion permeation rate of hydrogen ions becomes larger than the reduction reaction of the passive membrane.
[0034] このような場合、水素イオンの深さ、浸透量、分布等の拡散浸透状態は、スパッタリ ング条件に依存して大きく変化する。例えば、電圧が過度に高い場合、水素イオンの 拡散浸透量が過度に多くなつたり、又は、水素イオンの拡散浸透深さが過度に大きく なったりする。従って、 400°C以下の温度域で水素イオンを所望の拡散浸透状態と するためには、スパッタリング条件を高精度に制御する必要がある。  In such a case, the diffusion penetration state such as the depth, penetration amount, and distribution of hydrogen ions varies greatly depending on the sputtering conditions. For example, when the voltage is excessively high, the diffusion penetration amount of hydrogen ions is excessively increased, or the diffusion penetration depth of hydrogen ions is excessively increased. Therefore, it is necessary to control the sputtering conditions with high precision in order to bring hydrogen ions into the desired diffusion and penetration state in a temperature range of 400 ° C or lower.
[0035] これに対し、 400°Cを超える温度で水素ガススパッタリングを行う本実施の形態にお いては、水素イオンが不動態膜を還元することによって迅速に消費される一方、ェン ジンバルブ 10の内部から水素ガスの放出が起こるので、例えば、電圧が多少高い場 合であっても、水素イオンの拡散浸透量が過度に多くなつたり、拡散浸透深さが過度 に大きくなつたりすることを回避することができる。従って、不動態膜の還元除去を制 御することが容易となる。 In contrast, in the present embodiment in which hydrogen gas sputtering is performed at a temperature exceeding 400 ° C., hydrogen ions are rapidly consumed by reducing the passive film, while engine valves 10 Since hydrogen gas is released from the inside of the gas, for example, even when the voltage is somewhat high, the diffusion penetration amount of hydrogen ions is excessively increased or the diffusion penetration depth is excessive. Can be avoided. Therefore, it becomes easy to control the reduction and removal of the passive film.
[0036] なお、水素ガススパッタリングは、 450°C以上で行うことが好まし 、。この温度域では 、エンジンバルブ 10から水素イオンが高速度で放出される一方、不動態膜の還元反 応が著しく活発となる。このため、スパッタリング条件を高精度に制御することなく不動 態膜を還元除去することができる。  [0036] Hydrogen gas sputtering is preferably performed at 450 ° C or higher. In this temperature range, hydrogen ions are released from the engine valve 10 at a high speed, while the reductive reaction of the passive membrane becomes extremely active. For this reason, the passive film can be reduced and removed without controlling the sputtering conditions with high accuracy.
[0037] 水素ガススパッタリングを行いながらさらに所定の時間にわたって昇温を続行すると 、不動態膜の大部分が除去される。さらに昇温が続行されて温度が 550°Cを超え、 特に 580°C付近になると、内部力 の水素イオンの放出速度が低下する(図 3参照) 。すなわち、水素イオンをエンジンバルブ 10の内部力も排出することが容易でなくな り、水素イオンがエンジンバルブ 10の内部に残留することを回避することが容易では なくなる。  [0037] When the temperature rise is continued for a predetermined time while performing hydrogen gas sputtering, most of the passive film is removed. When the temperature is further increased and the temperature exceeds 550 ° C, especially around 580 ° C, the release rate of internal force hydrogen ions decreases (see Fig. 3). That is, it is not easy to discharge hydrogen ions from the internal force of the engine valve 10, and it is not easy to avoid hydrogen ions remaining inside the engine valve 10.
[0038] そこで、本実施の形態にぉ 、ては、 550°C以下、好ましくは 500°Cに到達した時点  Therefore, according to the present embodiment, when the temperature reaches 550 ° C. or lower, preferably 500 ° C.
(図 2における B点)で、水素ガスの導入量を減じる一方、窒素ガスの導入を開始する 。この窒素ガスが導入されることに伴って第 1工程が終了されるとともに、プラズマ窒 化処理が施される第 2工程が開始される。窒素ガスは、電離して窒素イオンとなった 状態で、不動態膜が還元除去されたエンジンバルブ 10の表面に衝突する。これによ りエンジンバルブ 10の表面が窒化され、該表面に窒化層が形成される。  At point B in Fig. 2, the introduction of nitrogen gas is started while the amount of hydrogen gas is reduced. As the nitrogen gas is introduced, the first step is completed and the second step in which the plasma nitriding treatment is performed is started. Nitrogen gas collides with the surface of the engine valve 10 from which the passive film has been reduced and removed while being ionized into nitrogen ions. As a result, the surface of the engine valve 10 is nitrided, and a nitrided layer is formed on the surface.
[0039] 真空引きも併せて続行し、処理炉内の圧力をおよそ 0. 7〜1. 5Torrに保持する。  [0039] The vacuuming is continued and the pressure in the processing furnace is maintained at about 0.7 to 1.5 Torr.
窒素ガスと水素ガスとの体積比は、例えば、 N: H =2: 1とすればよい。  The volume ratio of nitrogen gas and hydrogen gas may be, for example, N: H = 2: 1.
2 2  twenty two
[0040] このことから諒解されるように、プラズマ窒化処理が施される間、水素ガスも供給さ れる。このため、プラズマ窒化処理に併せて水素ガススパッタリングも進行し、これに よりエンジンバルブ 10の表面に不動態膜が再形成されることを抑制することができる  [0040] As can be seen from this, hydrogen gas is also supplied during the plasma nitriding process. For this reason, hydrogen gas sputtering also proceeds in conjunction with the plasma nitriding treatment, which can suppress the formation of a passive film on the surface of the engine valve 10.
[0041] プラズマ窒化処理を行いながらさらに昇温を続行し、およそ 20分後に 520°Cに到 達させる。この時点では、窒素ガスと水素ガスとの混合比が安定した状態で両ガスが 供給される。従って、この温度を 40分程度保持することにより、エンジンバルブ 10を 均質に窒化することができ、その結果、品質が良好な窒化層を効率よく形成すること ができる。 [0041] The temperature is further increased while plasma nitriding is performed, and reaches 520 ° C after about 20 minutes. At this point, both gases are supplied with a stable mixing ratio of nitrogen gas and hydrogen gas. Therefore, by maintaining this temperature for about 40 minutes, the engine valve 10 can be uniformly nitrided, and as a result, a nitride layer with good quality can be efficiently formed. Can do.
[0042] し力も、一般的なプラズマ窒化処理では保持すべき所定の温度に到達した時点で 窒素ガスの供給を開始し、その後、一定温度で 60分程度保持するのに対し、この場 合、保持時間を 40分程度とすることができる。このことから諒解されるように、本実施 の形態に係る処理方法におけるプラズマ窒化処理保持時間は、一般的なプラズマ 窒化処理法における保持時間に比して著しく短い。このように、昇温途中からプラズ マ窒化処理を開始することにより、保持時間を短縮することができる。換言すれば、ス パッタリング処理及び窒化処理時間を含めた処理時間を短縮することができ、その結 果、エンジンバルブ 10に対して窒化層を効率よく形成することができる。  [0042] In a general plasma nitriding process, the supply of nitrogen gas is started when a predetermined temperature to be maintained is reached, and then maintained at a constant temperature for about 60 minutes. In this case, Retention time can be as low as 40 minutes. As can be understood from this, the plasma nitriding treatment holding time in the processing method according to the present embodiment is significantly shorter than the holding time in a general plasma nitriding method. Thus, the holding time can be shortened by starting the plasma nitriding process in the middle of the temperature rise. In other words, the processing time including the sputtering process and the nitriding process time can be shortened, and as a result, the nitride layer can be efficiently formed on the engine valve 10.
[0043] 保持が終了した後は、約 200°Cまで降温して処理炉を開放し、エンジンバルブ 10 を取り出すようにすればよい。  [0043] After the holding is completed, the temperature is lowered to about 200 ° C, the processing furnace is opened, and the engine valve 10 is taken out.
[0044] プラズマ窒化処理が施されたエンジンバルブ 10の表面には、窒化層が形成されて いる。例えば、 SUH11M力もなる第 2棒 20及び端部 16の表面に形成された窒化層 の厚みは、およそ 81. 1 μ mである。  A nitrided layer is formed on the surface of the engine valve 10 that has been subjected to plasma nitriding. For example, the thickness of the nitride layer formed on the surface of the second rod 20 and the end 16 that also has SUH11M force is approximately 81.1 μm.
[0045] この窒化層が存在することにより、エンジンバルブ 10の表面の表面が硬質なものと なる。具体的には、プラズマ窒化処理後、第 2棒 20及び端部 16 (SUH11M)の表面 におけるビッカース硬度 (Hv)は、 771と著しく大きな値を示す。  [0045] The presence of the nitride layer makes the surface of the engine valve 10 hard. Specifically, after the plasma nitriding treatment, the Vickers hardness (Hv) on the surface of the second rod 20 and the end portion 16 (SUH11M) shows a remarkably large value of 771.
[0046] なお、第 2工程の開始温度は特に限定されるものではないが、水素ガススパッタリン グによる不動態膜の還元除去がさほど進行して 、な 、時点で窒素ガスの導入を開始 すると、窒化層の厚みが不均一となり易くなる。すなわち、品質に優れた窒化層を得 ることが困難となる。このため、第 2工程の開始温度、すなわち、窒素ガスの導入を開 始する温度は、保持温度付近とすることが好ましい。第 2工程は、保持温度に到達し てから開始するようにしてもょ 、。  [0046] The start temperature of the second step is not particularly limited, but the reduction and removal of the passive film by hydrogen gas sputtering has progressed so much that the introduction of nitrogen gas starts at that time. The thickness of the nitride layer tends to be non-uniform. That is, it becomes difficult to obtain a nitride layer with excellent quality. For this reason, it is preferable that the start temperature of the second step, that is, the temperature at which the introduction of nitrogen gas is started is close to the holding temperature. The second step may start when the holding temperature is reached.
[0047] 保持温度も 520°Cに限定されるものではないが、過度に高温であると、不動態膜の 再形成速度が還元除去速度に比して大きくなるとともに、生成した窒化物が鉄族系 合金基材 (エンジンバルブ 10)内を拡散し始めるようになるので、窒化層が形成され 難くなる。不動態膜が再形成することや窒化物が拡散することを回避するためには、 590°C以下とすることが好ましぐ 550°C以下とすることがより好ましぐ 520〜540°C の範囲内とすることが最も好ましい。 [0047] The holding temperature is not limited to 520 ° C, but if it is excessively high, the re-forming rate of the passive film becomes larger than the reduction-removing rate, and the generated nitride is iron. Since it starts to diffuse in the group-base alloy base material (engine valve 10), it becomes difficult to form a nitride layer. In order to avoid the formation of a passive film and the diffusion of nitrides, it is preferable to set the temperature to 590 ° C or lower, and more preferable to set the temperature to 550 ° C or lower. 520 to 540 ° C It is most preferable to be within the range.
[0048] また、頭部 12及び第 1棒 18の材質は NCF600に限定されるものではなぐ例えば 、 NCF3015や NCF440であってもよ!/ヽ。同様【こ、第 2棒 20及び端咅 16の材質 ίま S UH11Mに限定されるものではなぐ例えば、 SKH51であってもよい。 NCF3015、 NCF440、 SKH51に対して上記の水素ガススパッタリング処理、プラズマ窒化処理 を行った場合の窒化層の厚みと Hvとを図 4に併せて示す。なお、この場合、処理炉 温度が 520°Cに到達した時点で窒素ガスを導入してプラズマ窒化処理を開始すると ともに、当該温度を 60分間保持した。  [0048] The material of the head 12 and the first rod 18 is not limited to NCF600, but may be NCF3015 or NCF440! / !. Similarly, the material of the second rod 20 and the terminal 16 is not limited to SUH11M, but may be SKH51, for example. FIG. 4 shows the thickness and Hv of the nitrided layer when NCF3015, NCF440, and SKH51 are subjected to the above hydrogen gas sputtering treatment and plasma nitriding treatment. In this case, when the temperature of the processing furnace reached 520 ° C, nitrogen gas was introduced to start the plasma nitriding treatment, and the temperature was maintained for 60 minutes.
[0049] さらに、プラズマ窒化処理を施すワークはエンジンバルブ 10に限定されるものでは なぐ Cr、 Ni等、周期表の第 8族に属する金属元素を主成分とする合金金属力もなる 部材であればよい。プラズマ窒化処理の保持温度や時間等は、ワークの材質に応じ て適宜設定すればよい。  [0049] Furthermore, the workpiece subjected to the plasma nitriding treatment is not limited to the engine valve 10, but may be a member that also has an alloy metal force mainly composed of a metal element belonging to Group 8 of the periodic table, such as Cr and Ni. Good. What is necessary is just to set suitably the holding | maintenance temperature, time, etc. of a plasma nitriding process according to the material of a workpiece | work.

Claims

請求の範囲 The scope of the claims
[1] 鉄族系合金基材(10)の表面に存在する不動態膜を水素ガススパッタリングにより 除去する第 1工程と、  [1] a first step of removing the passive film present on the surface of the iron group alloy substrate (10) by hydrogen gas sputtering;
不動態膜が除去された前記鉄族系合金基材(10)に対してプラズマ窒化処理を施 し、該鉄族系合金基材(10)を窒化する第 2工程と、  A second step of performing a plasma nitriding treatment on the iron group alloy substrate (10) from which the passive film has been removed, and nitriding the iron group alloy substrate (10);
を有し、  Have
前記第 1工程を、前記第 2工程を開始するまでの昇温中に処理炉の温度が 400°C を超えた際、前記処理炉内に水素ガスを流通させて行なうことを特徴とする鉄族系合 金基材(10)の窒化処理方法。  The first step is performed by flowing hydrogen gas through the processing furnace when the temperature of the processing furnace exceeds 400 ° C. during the temperature rise until the start of the second step. A method for nitriding a group alloy base material (10).
[2] 請求項 1記載の窒化処理方法において、前記第 1工程を、 580°C以下で行うことを 特徴とする鉄族系合金基材(10)の窒化処理方法。 [2] The nitriding method according to claim 1, wherein the first step is performed at 580 ° C. or lower.
[3] 請求項 2記載の窒化処理方法において、前記第 1工程を、 450°C〜520°Cで行うこ とを特徴とする鉄族系合金基材(10)の窒化処理方法。 [3] The nitriding method according to claim 2, wherein the first step is performed at 450 ° C. to 520 ° C.
[4] 請求項 1〜3のいずれか 1項に記載の窒化処理方法において、昇温の最中に窒素 ガスを導入して前記第 2工程を開始することを特徴とする鉄族系合金基材(10)の窒 化処理方法。 [4] The nitriding method according to any one of claims 1 to 3, wherein the second step is started by introducing nitrogen gas during the temperature rise. Nitriding treatment method for wood (10).
PCT/JP2006/306034 2006-03-24 2006-03-24 Method of nitriding of iron group base alloy substrate WO2007110905A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNA2006800539701A CN101405425A (en) 2006-03-24 2006-03-24 Nitrogen treatment method for iron group alloy base material
PCT/JP2006/306034 WO2007110905A1 (en) 2006-03-24 2006-03-24 Method of nitriding of iron group base alloy substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306034 WO2007110905A1 (en) 2006-03-24 2006-03-24 Method of nitriding of iron group base alloy substrate

Publications (1)

Publication Number Publication Date
WO2007110905A1 true WO2007110905A1 (en) 2007-10-04

Family

ID=38540845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306034 WO2007110905A1 (en) 2006-03-24 2006-03-24 Method of nitriding of iron group base alloy substrate

Country Status (2)

Country Link
CN (1) CN101405425A (en)
WO (1) WO2007110905A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US9617632B2 (en) 2012-01-20 2017-04-11 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104846170A (en) * 2015-06-04 2015-08-19 马钢(集团)控股有限公司 Hydrogen ion generation device for annealing and reduction of electrical steel and annealing and reduction method of hydrogen ion generation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022945B2 (en) * 1982-08-24 1990-01-19 Nippon Denshi Kogyo Kk
WO2004020878A1 (en) * 2002-08-27 2004-03-11 Kabushiki Kaisha Riken Side rail for combination oil ring and method of nitriding the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022945B2 (en) * 1982-08-24 1990-01-19 Nippon Denshi Kogyo Kk
WO2004020878A1 (en) * 2002-08-27 2004-03-11 Kabushiki Kaisha Riken Side rail for combination oil ring and method of nitriding the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10156006B2 (en) 2009-08-07 2018-12-18 Swagelok Company Low temperature carburization under soft vacuum
US10934611B2 (en) 2009-08-07 2021-03-02 Swagelok Company Low temperature carburization under soft vacuum
US9617632B2 (en) 2012-01-20 2017-04-11 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US11035032B2 (en) 2012-01-20 2021-06-15 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Also Published As

Publication number Publication date
CN101405425A (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP2011235318A (en) Method for surface treatment of die-casting die
US6878575B2 (en) Method of forming gate oxide layer in semiconductor devices
EP1712658B1 (en) Method for surface treatment of metal material
US5679411A (en) Method for producing a corrosion and wear resistant coating on iron materials
WO2007110905A1 (en) Method of nitriding of iron group base alloy substrate
WO2016129333A1 (en) Method and device for producing metal springs
JP4575450B2 (en) Ion nitriding method
US7108756B2 (en) Method for heat-treating work pieces made of temperature-resistant steels
KR101742685B1 (en) Low-Temperature Vacuum Carburizing Method
CN109923219B (en) Method for heat treating workpieces made of high-alloy steel
JP5295813B2 (en) Method for nitriding iron group alloys
JP2006213997A (en) Nitriding method of ferrous alloy base material
JP2007162136A (en) Process of gas-nitriding surface of workpiece without forming bond layer, and corresponding workpiece
JP6812494B2 (en) Metal spring manufacturing method and manufacturing equipment
JP2008260994A (en) Method for producing carburized product
JP6171910B2 (en) Manufacturing method of ferrous metal parts
KR100594998B1 (en) Method for nitriding of Ti and Ti alloy
KR100317730B1 (en) Oxidation film of fomation method
US20050279426A1 (en) Method of plasma nitriding of metals via nitrogen charging
JP3995178B2 (en) Gas nitriding treatment method for maraging steel
JPH11229114A (en) Surface hardening method for austenitic stainless steel
JP2000054108A (en) Die for forging
JP2004052023A (en) Nitriding method
JP2003064466A (en) Gear cutting tool and surface modifying method
CN106591771A (en) Ion nitriding method for efficiently controlling formation of vein-like nitride on surface layer of 38CrMoAl mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06729982

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200680053970.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06729982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP