JP2000054108A - Die for forging - Google Patents

Die for forging

Info

Publication number
JP2000054108A
JP2000054108A JP23348198A JP23348198A JP2000054108A JP 2000054108 A JP2000054108 A JP 2000054108A JP 23348198 A JP23348198 A JP 23348198A JP 23348198 A JP23348198 A JP 23348198A JP 2000054108 A JP2000054108 A JP 2000054108A
Authority
JP
Japan
Prior art keywords
die
hardness
forging
gas
engraved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23348198A
Other languages
Japanese (ja)
Inventor
Kazunori Fukada
一徳 深田
Tetsuo Takagi
徹郎 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohan Kogyo Co Ltd
Original Assignee
Kohan Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohan Kogyo Co Ltd filed Critical Kohan Kogyo Co Ltd
Priority to JP23348198A priority Critical patent/JP2000054108A/en
Publication of JP2000054108A publication Critical patent/JP2000054108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a die high in hardness, excellent in wear resistance, impact resistance and thermal impact resistance and having a long service life, by heating the engraved face of a die to a specified temp. in an atmosphere of a gaseous mixture having a specified compsn. composed of hydrogen and ammonia, applying a specified d.c. voltage on the space between it and an anode provided in a vacuum chamber and forming a nitriding layer on the engraved face by using a bright nitrogen diffusing method. SOLUTION: The compsn. of a gaseous mixture is composed of 50 to 95% hydrogen and 5 to 50% ammonia, the heating temp. is 450 to 580 deg.C the d.c. voltage to be applied is 300 to 500 V. The nitriding layer on the outermost surface preferably has 800 to 1200 hardness by Vicker's hardness (loads: 100 gf). An upper die and a lower die are placed on a cathode in a vacuum chamber, which is exhausted, thereafter, heating is executed to a prescribed temp. in an atmosphere of a gaseous mixture, d.c. voltage is applied to the space between it and an anode to ionize the gas by glow discharge, nitrogen is diffused onto the surface of the die, and, after the treatment, natural cooling is executed. A radical nitriding layer 3C of about 30 to 300 μm is formed on the outermost surface of the engraved face 3B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、金属材料を冷間
鍛造または熱間鍛造する際に使用される鍛造用金型に関
する。より詳細には、光輝窒素拡散法を用いて、表面に
細密な彫刻模様を有する金型の彫刻面に従来よりも高い
高度を有する軟窒化層を形成させた、耐摩耗性、耐衝撃
性および耐熱衝撃性に優れた鍛造用金型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forging die used for cold forging or hot forging a metal material. More specifically, by using a bright nitrogen diffusion method, a nitrocarburized layer having a higher altitude than before is formed on the engraved surface of a mold having a fine engraved pattern on the surface, abrasion resistance, impact resistance and The present invention relates to a forging die having excellent thermal shock resistance.

【0002】[0002]

【従来の技術】金属材料を冷間鍛造または熱間鍛造する
際に使用されるダイス鋼や高速度鋼などからなる鍛造用
金型において、金型の金属材料を成形加工する彫刻面
は、度重なる過酷な鍛造作業を受けるために摩耗や損傷
などの欠陥を生じやすい。従来の金型においては、これ
らの欠陥の発生を防止するために、金型の焼入れ焼戻し
処理や、金型の彫刻面の窒化処理や軟窒化処理が行われ
ていた。しかし、これらの処理では金型の彫刻面の硬度
が不十分であったり、また窒化処理層を構成する窒素化
合物が剥離しやすいために、金型の使用寿命は極めて短
かく、生産性に乏しいものであった。また、上記のダイ
ス鋼や高速度鋼など以外に超硬合金からなる金型も使用
されているが、金型素材としての価格が高く、またダイ
ス鋼や高速度鋼に比べて脆いために、薄い形状や複雑な
形状を有する製品の鍛造用金型に適用できないなどの不
便さがあり、改善が求められている。
2. Description of the Related Art In a forging die made of die steel or high-speed steel used for cold forging or hot forging a metal material, the engraved surface on which the metal material of the metal die is formed has a high degree. Defects such as wear and damage are liable to occur due to repeated severe forging operations. In conventional dies, quenching and tempering of the dies, nitriding and nitrocarburizing of the engraved surfaces of the dies have been performed to prevent the occurrence of these defects. However, in these treatments, the hardness of the engraved surface of the mold is insufficient, and the nitrogen compound constituting the nitrided layer is easily peeled off, so that the service life of the mold is extremely short and the productivity is poor. Was something. In addition, dies made of cemented carbide other than the above-mentioned die steel and high-speed steel are also used, but the price as a die material is high, and because it is brittle compared to die steel and high-speed steel, There are inconveniences such as inapplicability to a die for forging a product having a thin shape or a complicated shape, and improvement is required.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
状況に鑑みて、彫刻面が従来よりも高い高度を有する、
耐摩耗性、耐衝撃性および耐熱衝撃性に優れた長寿命の
鍛造用金型を提供することを課題とする。
SUMMARY OF THE INVENTION In view of such circumstances, the present invention provides a sculptured surface having a higher altitude than before.
An object of the present invention is to provide a long-life forging die excellent in wear resistance, impact resistance and thermal shock resistance.

【0004】[0004]

【課題を解決するための手段】請求項1の鍛造用金型
は、金型の彫刻面を、50〜95%の水素と5〜50%
のアンモニアからなる混合ガス雰囲気中で450〜58
0℃に加熱し、真空チャンバー内に設けた陽極との間に
直流電圧300〜500Vを印加し、光輝窒素拡散法を
用いて彫刻面に窒化層を形成させたことを特徴とする。
請求項2の鍛造用金型は、彫刻面の最表面の窒化層が、
ビッカース硬度(荷重:100gf)800〜1200
の硬さを有していることを特徴とする。
According to a first aspect of the present invention, there is provided a forging die, wherein the engraved surface of the die is formed of 50-95% hydrogen and 5-50% hydrogen.
450-58 in a mixed gas atmosphere comprising ammonia
It is characterized by heating to 0 ° C., applying a DC voltage of 300 to 500 V between itself and an anode provided in a vacuum chamber, and forming a nitride layer on the engraved surface by using a bright nitrogen diffusion method.
In the forging die according to claim 2, the nitrided layer on the outermost surface of the engraved surface includes:
Vickers hardness (load: 100 gf) 800 to 1200
Characterized by having a hardness of

【0005】[0005]

【発明の実施の形態】本発明においては、減圧下で高温
の水素ガスおよびアンモニアガス雰囲気中でグロー放電
させる光輝窒素拡散(以下ラジカル窒化という)法を用
いて金型の彫刻面(鍛造品と接する面)をイオン窒化
し、従来よりも高い高度を有し、かつ鋼母層との密着性
に優れた窒化層(以下ラジカル窒化層という)を形成さ
せることにより、耐摩耗性、耐衝撃性および耐熱衝撃性
に優れた長寿命の鍛造用金型得られることが判明した。
以下、実施の形態を示し、本発明を詳細に説明する。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, the engraved surface of a mold (forged product and die) is produced using a bright nitrogen diffusion (hereinafter referred to as radical nitridation) method in which glow discharge is performed in a high-pressure hydrogen gas and ammonia gas atmosphere under reduced pressure. Abrasion resistance and impact resistance by forming a nitrided layer (hereinafter referred to as a radical nitrided layer) that has a higher altitude than conventional and has excellent adhesion to the steel base layer It was also found that a long life forging die excellent in thermal shock resistance was obtained.
Hereinafter, an embodiment is shown and the present invention is explained in detail.

【0006】図1および図2に、本発明の鍛造用金型の
一例を示す。図1において、鍛造用金型は上型2と下型
3とからなり、上型2と下型3は上型2の下面2Aと上
型3の上面3Aを当接すると、上型2の彫刻面2Bと下
型3の彫刻面3Bで囲まれた鍛造空間4が形成される。
当然ながら、鍛造空間4の形状は鍛造品の形状と同一で
ある。鍛造作業時には鍛造空間4に成形加工される金属
素材が装填され、上型2および下型3には上下から高圧
が負荷され、彫刻面2Bおよび3Bに高圧が作用して金
属素材は鍛造空間4の形状に塑性加工される。このよう
に、彫刻面2Bおよび3Bには成形加工される金属素材
との高い接触圧力が作用する。また、金属素材を熱間鍛
造する場合は、彫刻面2Bおよび3Bには高温の金属素
材が接触する。このため、金型の彫刻面は高い接触圧力
による摩耗、損傷に加えて、熱衝撃や熱疲労による割れ
や微細な亀裂が発生する。
FIGS. 1 and 2 show an example of a forging die according to the present invention. In FIG. 1, the forging die includes an upper die 2 and a lower die 3. When the upper die 2 and the lower die 3 contact the lower surface 2A of the upper die 2 and the upper surface 3A of the upper die 3, A forging space 4 surrounded by the engraving surface 2B and the engraving surface 3B of the lower mold 3 is formed.
Naturally, the shape of the forging space 4 is the same as the shape of the forged product. During the forging operation, a metal material to be formed is loaded into the forging space 4, high pressure is applied to the upper mold 2 and the lower mold 3 from above and below, and high pressure acts on the engraved surfaces 2B and 3B, so that the metal material is It is plastically worked into the shape of Thus, a high contact pressure with the metal material to be formed acts on the engraved surfaces 2B and 3B. When hot forging a metal material, a high-temperature metal material contacts the engraved surfaces 2B and 3B. For this reason, the engraved surface of the mold is subject to wear and damage due to high contact pressure, as well as cracks and fine cracks due to thermal shock and thermal fatigue.

【0007】上記の種々の欠陥の発生を防止するため
に、従来の鋼製の金型においては焼入れ焼戻し処理を施
したり、金型の彫刻面に窒化処理や軟窒化処理を施して
鋼よりも硬い窒化層を形成させていたが、硬度が不十分
なために短時間で摩耗したり、窒化層と鋼母層との密着
力が不十分なために窒化層が容易に剥離するために、鍛
造用金型としての使用寿命は極めて短いものであった。
本発明は、光輝窒素拡散法を用いて金型の彫刻面に従来
よりも高い高度および靱性を有するラジカル窒化層を形
成させることにより、長寿命の鍛造用金型を得るもので
ある。
In order to prevent the occurrence of the above-mentioned various defects, a conventional steel mold is subjected to a quenching and tempering treatment, or a nitriding treatment or a soft nitriding treatment is performed on the engraved surface of the mold. Although a hard nitrided layer was formed, it was worn in a short time due to insufficient hardness, or because the nitrided layer easily peeled off due to insufficient adhesion between the nitrided layer and the steel base layer, The service life as a forging die was extremely short.
The present invention is to obtain a long-life forging die by forming a radical nitride layer having higher altitude and toughness on the engraved surface of the die by using the bright nitrogen diffusion method.

【0008】図2は図1に示した下型3の詳細断面図で
ある。成形加工される金属素材と接触する彫刻面3Bの
最表面には、30〜300μm程度の厚さのラジカル窒
化層3Cが形成されている。なお、図示しないが上型2
の彫刻面2Bの最表面にもラジカル窒化層が形成されて
いる。
FIG. 2 is a detailed sectional view of the lower mold 3 shown in FIG. A radical nitride layer 3C having a thickness of about 30 to 300 μm is formed on the outermost surface of the engraved surface 3B that comes into contact with the metal material to be formed. Although not shown, the upper mold 2
A radical nitride layer is also formed on the outermost surface of the engraved surface 2B.

【0009】本発明の上型2および下型3は鍛造用金型
であるので、焼入れ焼戻し処理を施したダイス鋼にラジ
カル窒化処理を施すことが好ましいが、ダイス鋼の使用
を限定するものではなく、用途に応じて構造用鋼、肌焼
鋼、バネ鋼、高速度鋼、ステンレス鋼などを用いてもよ
く、場合によってはラジカル窒化処理前に焼入れ焼戻し
処理などの熱処理を施さなくてもよい。
Since the upper mold 2 and the lower mold 3 of the present invention are forging dies, it is preferable to subject the quenched and tempered die steel to a radical nitriding treatment, but the use of the die steel is not limited. Depending on the application, structural steel, case hardening steel, spring steel, high speed steel, stainless steel, etc. may be used, and in some cases, heat treatment such as quenching and tempering may not be performed before radical nitriding. .

【0010】次に、本発明の上型2および下型3の各彫
刻面2Bおよび3Bの最表面に、ラジカル窒化層を形成
させる方法について説明する。有機溶剤などで脱脂洗浄
したSKD61鋼からなる上型2および下型3を真空チ
ャンバー内に設けた陰極上に載せ、真空チャンバー内を
10-3torr程度まで排気した後、50〜95%の水素と
5〜50%のアンモニアからなる混合ガス雰囲気中で4
50〜580℃に加熱し、真空チャンバー内に設けた陽
極との間に直流電圧300〜500Vを印加し、グロー
放電によりガスをイオン化し、金型の表面に窒素を拡散
させる。処理時間は1〜30時間程度であり、その後窒
素雰囲気中または減圧化で自然放冷する。このようにし
て金型表面にビッカース硬度(荷重:100gf)10
00以上の硬さを有する30〜300μmの厚さの窒化
層が得られる。
Next, a method for forming a radical nitrided layer on the outermost surfaces of the engraved surfaces 2B and 3B of the upper mold 2 and the lower mold 3 of the present invention will be described. An upper mold 2 and a lower mold 3 made of SKD61 steel degreased and washed with an organic solvent or the like are placed on a cathode provided in a vacuum chamber, and the inside of the vacuum chamber is evacuated to about 10 -3 torr. In a mixed gas atmosphere consisting of
Heating is performed at 50 to 580 ° C., a DC voltage of 300 to 500 V is applied between the anode and the anode provided in the vacuum chamber, the gas is ionized by glow discharge, and nitrogen is diffused on the surface of the mold. The treatment time is about 1 to 30 hours, and then the mixture is naturally cooled in a nitrogen atmosphere or under reduced pressure. The Vickers hardness (load: 100 gf) 10
A nitrided layer having a hardness of not less than 00 and a thickness of 30 to 300 μm is obtained.

【0011】本発明において、金型の温度を450〜5
80℃に加熱する必要がある。450℃未満ではラジカ
ル窒化反応が極めて遅く、580℃を超えると一旦形成
された窒化物が分解し、ラジカル窒化が起こらなくな
る。加熱手段としては電気加熱、ガス加熱などを用いる
ことができる。加熱源はイオン窒化処理を行う真空チャ
ンバー内に配置するか、その外側に配置するなど出来る
が、自動制御システムと組合わせて用いると、プログラ
ムされた昇温や温度維持が自動制御できる。
In the present invention, the temperature of the mold is set to 450 to 5
It needs to be heated to 80 ° C. If the temperature is lower than 450 ° C., the radical nitridation reaction is extremely slow. If the temperature exceeds 580 ° C., the nitride once formed is decomposed and radical nitriding does not occur. Electric heating, gas heating, or the like can be used as the heating means. The heating source can be placed inside or outside the vacuum chamber for performing the ion nitriding process, but when used in combination with an automatic control system, the programmed temperature rise and temperature maintenance can be automatically controlled.

【0012】ラジカル窒化のためのガスとしてはアンモ
ニアガスと水素ガスの混合ガスを用いる。アンモニアガ
スはNとHに分解し、N2とH2に直ちになるためラジカ
ル窒化反応がおこりにくいが、アンモニアガスはプラズ
マ化電流密度が低い範囲においてアンモニアラジカルと
して作用する。そして、水素ガスはアンモニアガスのラ
ジカル化を安定に行うための補助ガスとして作用する。
As a gas for radical nitriding, a mixed gas of ammonia gas and hydrogen gas is used. Ammonia gas is decomposed into N and H and immediately becomes N 2 and H 2 , so that a radical nitridation reaction does not easily occur. However, the ammonia gas acts as an ammonia radical in a range where the plasma current density is low. The hydrogen gas acts as an auxiliary gas for stably performing the radicalization of the ammonia gas.

【0013】NH3/H2体積比は、1:100〜1:0
にし、好ましくは1:10〜2:1である。1:100
未満であるとラジカル窒化反応が充分でない。水素ガス
を供給しないと補助ガスのH2がNH3の分解で発生する
ので、アンモニアラジカルとして作用しにくい。また、
Arガス等の不活性ガスをプラズマを安定させるために
添加することもできる。
The NH 3 / H 2 volume ratio is from 1: 100 to 1: 0.
And preferably 1:10 to 2: 1. 1: 100
If it is less than 3, the radical nitriding reaction is not sufficient. If hydrogen gas is not supplied, H 2 as an auxiliary gas is generated by decomposition of NH 3 , so that it does not easily act as ammonia radicals. Also,
An inert gas such as Ar gas can be added to stabilize the plasma.

【0014】彫刻面に対して、直流電圧300〜500
Vを印加するのは、この電圧の範囲においてグロー放電
はアンモニアガス及び水素ガスのプラズマ化に効率的だ
からである。電圧が300V未満ではプラズマ化を充分
起こすことができず、500Vを超えると、金属部材の
表面で局部的な過熱状態を生じたり、彫刻部の細部に有
効なラジカル窒化処理が行われないのでよくない。
The DC voltage is 300 to 500 with respect to the engraved surface.
The reason why V is applied is that glow discharge is effective for turning ammonia gas and hydrogen gas into plasma in this voltage range. If the voltage is less than 300 V, plasma cannot be sufficiently generated, and if it exceeds 500 V, a local overheating state occurs on the surface of the metal member, or effective radical nitriding treatment on the details of the engraved portion is not performed. Absent.

【0015】ラジカル窒化に用いる真空チャンバーは、
グロー放電用電極やプラズマ化ガス用配管を備えてお
り、真空ポンプと接続した排気管を備えたものが必要で
ある。図3に本発明の実施に用いた光輝窒素拡散法の窒
化装置の概略図を示す。真空チャンバー10には外壁内
に加熱ヒーター20が配置されている。真空チャンバー
10の内部には直流電源50に接続された直流電極30
が配置されている。真空チャンバー10の下部には排気
管60が接続され圧力調整用のバルブ80を介して真空
ポンプ70に接続されている。真空チャンバー10の上
部から原料ガス供給用のノズル90が挿入されている。
2ガス、NH3ガス、Arガスの供給源からそれぞれマ
スフローコントローラー120、バルブ110、導入管
100を介してノズル90に接続されている。直流電極
30の上に材質がSKD61鋼である直方体状の金型
2,3を配置した。
The vacuum chamber used for radical nitriding is
It is necessary to provide an electrode for glow discharge and a pipe for plasma gas, and an exhaust pipe connected to a vacuum pump. FIG. 3 shows a schematic diagram of a bright nitrogen diffusion method nitriding apparatus used for carrying out the present invention. The heater 20 is arranged in the outer wall of the vacuum chamber 10. A DC electrode 30 connected to a DC power supply 50 is provided inside the vacuum chamber 10.
Is arranged. An exhaust pipe 60 is connected to a lower portion of the vacuum chamber 10 and is connected to a vacuum pump 70 via a pressure adjusting valve 80. A nozzle 90 for supplying a source gas is inserted from above the vacuum chamber 10.
H 2 gas, NH 3 gas, and Ar gas supply sources are connected to the nozzle 90 via a mass flow controller 120, a valve 110, and an introduction pipe 100, respectively. The rectangular molds 2 and 3 made of SKD61 steel were placed on the DC electrode 30.

【0016】[0016]

【実施例】本発明の一例においては、図4に示す加熱サ
イクルで加熱し、約1時間かけて480℃まで昇温させ
た後6時間程度一定温度で保持し、次いで約4時間かけ
て室温まで冷却する。真空チャンバー内は図5に示すよ
うに1〜4期の期間に分けてガス組成を変化させる。第
1期は昇温過程であり、排気したのみでガスは供給しな
い。第2期は清浄過程であり、水素100%からなるガ
スを供給する。第3期は窒素拡散過程であり、80%の
水素と20%のアンモニアからなる混合ガスが供給され
る。
EXAMPLE In one example of the present invention, heating was performed by the heating cycle shown in FIG. 4, the temperature was raised to 480 ° C. over about 1 hour, kept at a constant temperature for about 6 hours, and then kept at room temperature for about 4 hours. Cool down to As shown in FIG. 5, the gas composition in the vacuum chamber is changed in one to four periods. The first stage is a heating process, in which only gas is exhausted and no gas is supplied. The second stage is a cleaning process in which a gas composed of 100% hydrogen is supplied. The third stage is a nitrogen diffusion process in which a mixed gas consisting of 80% hydrogen and 20% ammonia is supplied.

【0017】この第3期において真空チャンバー内に設
けた陽極と陰極である上型2および下型3の間に410
Vの直流を印加し、グロー放電によりガスをイオン化
し、金型の表面に窒素を拡散させる。第4期は冷却過程
であり、窒素100%の雰囲気中、または減圧下で室温
まで自然放冷する。
In this third stage, 410 is provided between the upper mold 2 and the lower mold 3 which are the anode and the cathode provided in the vacuum chamber.
A direct current of V is applied, the gas is ionized by glow discharge, and nitrogen is diffused on the surface of the mold. The fourth stage is a cooling process, which is naturally cooled to room temperature in an atmosphere of 100% nitrogen or under reduced pressure.

【0018】このようにして、図6に示すように、金型
の最表面がビッカース硬度(荷重:100gf)110
0であり、金型最表面から 0.14mmの深さまでの窒
化層が得られる。窒化層の硬度はは金型最表面から 0.
14mmの深さまで連続的に減少し、また 0.09mm
の深さまで700以上のビッカース硬度(荷重:100
gf)が得られる。このように、従来よりも窒化層が硬
くて厚く、かつ窒化層の硬度が連続的に減少するので鋼
母層との密着性に優れた窒化層が得られる。
Thus, as shown in FIG. 6, the outermost surface of the mold has a Vickers hardness (load: 100 gf) of 110.
0, and a nitrided layer from the outermost surface of the mold to a depth of 0.14 mm can be obtained. The hardness of the nitrided layer is 0.
Continuously reduced to a depth of 14mm and 0.09mm
Vickers hardness of 700 or more (load: 100
gf) is obtained. As described above, since the nitrided layer is harder and thicker than the conventional one and the hardness of the nitrided layer is continuously reduced, a nitrided layer having excellent adhesion to the steel base layer can be obtained.

【0019】[0019]

【発明の効果】本発明は、光輝窒素拡散法を用いて金型
の彫刻面の最表面に、ビッカース硬度(荷重:100g
f)800〜1200の硬さを有する窒化層を形成させ
た鍛造用金型であり、従来の金型におけるよりも窒化層
が硬くて厚く、かつ窒化層の硬度が連続的に減少するの
で鋼母層との密着性に優れている。そのため、従来の金
型では2000〜3000回の鍛造回数がであったが、
本発明の金型を用いた場合は4000回以上の鍛造が可
能となり、従来の約2倍金型寿命が得られる。
According to the present invention, the Vickers hardness (load: 100 g) is applied to the outermost surface of the engraved surface of the mold by using the bright nitrogen diffusion method.
f) A forging die on which a nitrided layer having a hardness of 800 to 1200 is formed. Since the nitrided layer is harder and thicker than in a conventional die, and the hardness of the nitrided layer is continuously reduced, steel Excellent adhesion to mother layer. Therefore, in the conventional mold, the number of times of forging was 2000 to 3000 times,
In the case of using the mold of the present invention, forging can be performed 4000 times or more, and the mold life can be obtained about twice as long as the conventional one.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鍛造用金型の一例を示す断面図であ
る。
FIG. 1 is a sectional view showing an example of a forging die according to the present invention.

【図2】本発明の鍛造用金型の一例の下型の詳細断面図
である。
FIG. 2 is a detailed sectional view of a lower die of an example of a forging die according to the present invention.

【図3】本発明の実施に用いた光輝窒素拡散法の窒化装
置の概略図である。
FIG. 3 is a schematic diagram of a bright nitrogen diffusion method nitriding apparatus used for carrying out the present invention.

【図4】本発明の鍛造用金型をラジカル窒化する加熱サ
イクルの一例を示すダイヤグラムである。
FIG. 4 is a diagram showing an example of a heating cycle for radically nitriding a forging die according to the present invention.

【図5】本発明の鍛造用金型をラジカル窒化するガス組
成の一例を示すダイヤグラムである。
FIG. 5 is a diagram showing an example of a gas composition for radical nitriding a forging die according to the present invention.

【図6】本発明の鍛造用金型の一例の窒化層の硬度と窒
化層の厚さの関係を示すダダイヤグラムである。
FIG. 6 is a diagram showing the relationship between the hardness of the nitrided layer and the thickness of the nitrided layer in one example of the forging die of the present invention.

【符号の説明】[Explanation of symbols]

2:上型 2A:下面 2B:彫刻面 3:下型 3A:上面 3B:彫刻面 3C:ラジカル窒化層 4:鍛造空間 2: Upper die 2A: Lower surface 2B: Engraved surface 3: Lower die 3A: Upper surface 3B: Engraved surface 3C: Radical nitride layer 4: Forging space

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金型の彫刻面を、50〜95%の水素と5
〜50%のアンモニアからなる混合ガス雰囲気中で45
0〜580℃に加熱し、真空チャンバー内に設けた陽極
との間に直流電圧300〜500Vを印加し、光輝窒素
拡散法を用いて彫刻面に窒化層を形成させた鍛造用金
型。
1. The engraved surface of a mold is made of 50-95% hydrogen and 5%
45% in a mixed gas atmosphere consisting of ~ 50% ammonia
A forging die which is heated to 0 to 580 ° C., applies a DC voltage of 300 to 500 V between itself and an anode provided in a vacuum chamber, and forms a nitrided layer on an engraved surface using a bright nitrogen diffusion method.
【請求項2】 前記彫刻面の最表面の窒化層が、ビッカ
ース硬度(荷重:100gf)800〜1200の硬さ
を有していることを特徴とする請求項1に記載の鍛造用
金型。
2. The forging die according to claim 1, wherein the nitrided layer on the outermost surface of the engraved surface has a Vickers hardness (load: 100 gf) of 800 to 1200.
JP23348198A 1998-08-06 1998-08-06 Die for forging Pending JP2000054108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23348198A JP2000054108A (en) 1998-08-06 1998-08-06 Die for forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23348198A JP2000054108A (en) 1998-08-06 1998-08-06 Die for forging

Publications (1)

Publication Number Publication Date
JP2000054108A true JP2000054108A (en) 2000-02-22

Family

ID=16955693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23348198A Pending JP2000054108A (en) 1998-08-06 1998-08-06 Die for forging

Country Status (1)

Country Link
JP (1) JP2000054108A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292442A (en) * 2001-03-30 2002-10-08 Hitachi Metals Ltd Covering tool for warm and hot working excellent in lubricant adhesive property and abrasion resistance
JP2002307129A (en) * 2001-04-10 2002-10-22 Hitachi Metals Ltd Coating tool for warm and hot working having excellent lubricant adhesion and wear resistance
KR20030081993A (en) * 2002-04-15 2003-10-22 대한민국(전북대학교 총장) High pressure nitrocarburizing treatment method of cold press die for automobile parts
JP4601017B1 (en) * 2010-03-03 2010-12-22 株式会社ユニオン精密 Heading tool
CN113617989A (en) * 2021-08-06 2021-11-09 江苏倍嘉力机械科技有限公司 Forging die cooling device for automobile accessory production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292442A (en) * 2001-03-30 2002-10-08 Hitachi Metals Ltd Covering tool for warm and hot working excellent in lubricant adhesive property and abrasion resistance
JP4547656B2 (en) * 2001-03-30 2010-09-22 日立金属株式会社 Coated tool for hot working with excellent lubricant adhesion and wear resistance
JP2002307129A (en) * 2001-04-10 2002-10-22 Hitachi Metals Ltd Coating tool for warm and hot working having excellent lubricant adhesion and wear resistance
JP4656473B2 (en) * 2001-04-10 2011-03-23 日立金属株式会社 Coated tool for hot working with excellent lubricant adhesion and wear resistance
KR20030081993A (en) * 2002-04-15 2003-10-22 대한민국(전북대학교 총장) High pressure nitrocarburizing treatment method of cold press die for automobile parts
JP4601017B1 (en) * 2010-03-03 2010-12-22 株式会社ユニオン精密 Heading tool
JP2011177767A (en) * 2010-03-03 2011-09-15 Union Seimitsu:Kk Pressing tool
CN113617989A (en) * 2021-08-06 2021-11-09 江苏倍嘉力机械科技有限公司 Forging die cooling device for automobile accessory production

Similar Documents

Publication Publication Date Title
CN101851736A (en) Environment-friendly nitrogen-enriched layer rapid nitriding treatment method
US7108756B2 (en) Method for heat-treating work pieces made of temperature-resistant steels
JP2000054108A (en) Die for forging
JP2000343151A (en) Punch press die and manufacture thereof
Jacobs et al. Plasma Carburiiing: Theory; Industrial Benefits and Practices
RU2291227C1 (en) Construction-steel parts surface hardening method
JP2001150098A (en) Alloy casting die
KR100594998B1 (en) Method for nitriding of Ti and Ti alloy
CN114182196A (en) Titanium alloy vacuum gas step nitriding method
EP1491643B1 (en) Heat treatment for workpieces
JP2000140996A (en) Alloy casting mold
RU2324001C1 (en) Method of thearmal treatment and chemical-thearmal method of steel products processing in vacuum
KR100864700B1 (en) Surface hardening method for large molding steel
JP2890422B2 (en) Plasma carburizing method
KR100602879B1 (en) Member of air motor
JPH0657400A (en) Method for nitriding steel parts
JP2004052023A (en) Nitriding method
JP3314812B2 (en) Ion nitriding method of metal surface using glow discharge
JP2001150500A (en) Component for injection molding machine
JP2001113342A (en) Pin for hole as cast having long service life
KR890001031B1 (en) Metal surface treatment method by glow discharge
KR100317731B1 (en) High density plasma ion nitriding method and apparatus
JP2001153063A (en) Pump part for molten metal
JPS62202071A (en) Ionic nitriding method for aluminum material
KR100240043B1 (en) Heat treatment of die material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Effective date: 20060928

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070214