WO2007109280A2 - Devices, systems, and methods for material fixation - Google Patents

Devices, systems, and methods for material fixation Download PDF

Info

Publication number
WO2007109280A2
WO2007109280A2 PCT/US2007/006928 US2007006928W WO2007109280A2 WO 2007109280 A2 WO2007109280 A2 WO 2007109280A2 US 2007006928 W US2007006928 W US 2007006928W WO 2007109280 A2 WO2007109280 A2 WO 2007109280A2
Authority
WO
WIPO (PCT)
Prior art keywords
sheath
recited
screw
fixation system
material fixation
Prior art date
Application number
PCT/US2007/006928
Other languages
French (fr)
Other versions
WO2007109280A3 (en
Inventor
Kenneth D. Montgomery
Derek J. Harper
Kevin Baird
Joe P. Kovalski
David G. Spilka
Original Assignee
Cayenne Medical, Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cayenne Medical, Inc filed Critical Cayenne Medical, Inc
Priority to AU2007227318A priority Critical patent/AU2007227318B2/en
Priority to JP2009501518A priority patent/JP5204755B2/en
Priority to EP07753548.2A priority patent/EP2001405B1/en
Publication of WO2007109280A2 publication Critical patent/WO2007109280A2/en
Publication of WO2007109280A3 publication Critical patent/WO2007109280A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8605Heads, i.e. proximal ends projecting from bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8625Shanks, i.e. parts contacting bone tissue
    • A61B17/8635Tips of screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0817Structure of the anchor
    • A61F2002/0823Modular anchors comprising a plurality of separate parts
    • A61F2002/0835Modular anchors comprising a plurality of separate parts with deformation of anchor parts, e.g. expansion of dowel by set screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0847Mode of fixation of anchor to tendon or ligament
    • A61F2002/0858Fixation of tendon or ligament between anchor and bone, e.g. interference screws, wedges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0876Position of anchor in respect to the bone
    • A61F2002/0882Anchor in or on top of a bone tunnel, i.e. a hole running through the entire bone

Definitions

  • the present invention relates generally to devices, systems and methods for material fixation. More specifically, the present invention relates to a soft tissue or bone-to-bone fixation system that permits a practitioner to repair many soft tissue injuries, such as an Anterior Cruciate Ligament (ACL) injury.
  • ACL Anterior Cruciate Ligament
  • tenodesis The fixation of diseased tendons into a modified position is called tenodesis and is commonly required in patients with injury to the long head of the biceps tendon in the shoulder.
  • tendons which are torn from their insertion site into bone also frequently require repair. This includes distal biceps tendon tears, rotator cuff tears, and torn flexor tendons in the hand.
  • Tendons are also frequently used in the reconstruction of unstable joints. Common examples include anterior cruciate ligament and collateral ligament reconstructions of the knee, medial and lateral elbow collateral ligament reconstructions, ankle collateral ligament reconstruction, finger and hand collateral ligament reconstructions and the like.
  • tendon fixation is the use of the "pull-out stitch.” With this technique, sutures attached to the tendon end are passed through bone tunnels and tied over a post or button on the opposite side of the joint. This technique has lost favor in recent years due to a host of associated complications, which include wound problems, weak fixation strength, and potential injury to adjacent structures.
  • ENDOBUTTON allows the fixation of tendon into a bone tunnel by creating an internally deployed post against a bony wall. While this technique eliminates the need for secondary incisions to place the post, the fixation strength is limited to suture strength alone. This technique does not provide direct tendon to bone compression; as such this technique may slow healing and lead to graft tunnel widening due to the "bungee effect" and "windshield wiper effect”. As a result, this technique has limited clinical applications and is used primarily for salvage when bone tunnels break or backup fixation is important.
  • the use of the interference screw is the most notable advance in the fixation of tendon to bone.
  • the screw is inserted adjacent to a tendon in a bone tunnel, providing axial compression between the screw threads and the bony wall.
  • Advantages include acceptable pull-out strength and relative ease of use.
  • Aperture fixation the ability to fix the tendon to bone at its entrance site, is a valuable adjunct to this technique as it minimizes graft motion and subsequent tunnel widening.
  • Some disadvantages related to soft tissue interference screws are that they can be difficult to use, and can also cut or compromise the tendon during implantation.
  • the newest generation interference screw allows the ability to provide tendon to bone fixation with limited exposure.
  • BIO-TENODESIS SCREW (Arthrex, Inc.) allows the tensioning and insertion of tendon into bone, followed by insertion of an adjacent soft tissue interference screw. While this screw system provides advantages in the insertion of tendon into bone in cases when a pull through stitch is not available, it is still limited by the potential for tendon rotation or disruption as the screw compresses the tendon. The surgical technique is also complicated, typically requiring two or more hands for insertion, making it difficult to use the system without assistance during arthroscopic or open procedures. Finally, the use of the screw requires preparation of the tendon end, which can be difficult, time consuming, and can also require conversion of an arthroscopic procedure to open.
  • the new graft When the new tissue comes from the patient's own body, the new graft is referred to as an "autograft", and when cadaveric tissue is used, the new graft is referred to as an "allograft".
  • the most common autograft ACL reconstruction performed currently is the bone-patellar-tendon-bone (BTB) graft.
  • BTB bone-patellar-tendon-bone
  • the BTB graft with an interference screw is used more often because it more accurately replicates the native ACL due to its aperture compression at the tibial tunnel aperture.
  • BTB reconstructions result in an increased rate of anterior knee pain post- surgically for periods of up to three years after the reconstruction.
  • the harvest procedure for the BTB autograft is invasive and can be difficult to perform.
  • the hamstring tendon autograft ACL reconstruction technique does not result in any significant postsurgical pain, and the harvest procedure is not minimally invasive.
  • the reason that the hamstring tendon autograft procedure is not more frequently used in ACL reconstructions is that the fixation of the hamstring tendons to the femur an tibia, using prior art techniques, is not as strong as the fixation of the BTB autografts.
  • TriTis ⁇ system available from Scandius attempts to more accurately replicate the native ACL by adding material to take up space in the tibial tunnel, resulting in more intimate contact between the tendon and the bone.
  • the cross sectional area must be less than the cross sectional area of the hole. There is no real compression of tendon to bone.
  • the TriTis system also requires additional drill holes, accessories, and people to perform the procedure.
  • the IntraFix ® system available from Mitek attempts to more accurately replicate the native ACL by using a screw to spread apart an integral four quadrant sheath. This acts to compress the four tendon strands against the bone.
  • the system is easier to use than other alternatives, and does not need additional drill holes. However, it does require additional accessories, additional people to perform the procedure, and the four quadrant design does not accommodate certain allografts with two tendon strands, such as the tibialis.
  • the WasherLocTM system available from Arthrotek, gives increased strength, compared to other prior art systems, but does not accurately replicate the native ACL.
  • the tendons are sized to the hole, but not compressed to the walls. There is also a greater distance between fixation points with this system, which can decrease the stiffness of the repair.
  • Interference screws such as the RCITM Screw available from Smith & Nephew are easy to use and provide compression of tendon to bone at the tibial tunnel aperture. However, the pull out strength and stiffness of the repair are significantly lower than is the case for other prior art systems.
  • the present invention is a system which is particularly adapted to improve the tendon-to-bone fixation of hamstring autografts, as well as other soft tissue ACL reconstruction techniques.
  • the system is easy to use, requires no additional accessories, uses only a single drill hole, and can be implanted by one person. Additionally, it replicates the native ACL by compressing the tendons against the aperture of the tibial tunnel, which leads to a shorter graft and increased graft stiffness. It is adapted to accommodate single or double tendon bundle autografts or allografts. It also provides pull out strength measured to be greater than 1000 N, which is equivalent to or substantially higher than any of the high strength implants currently available on the market.
  • a material fixation system which comprises two sheath portions defining a space therebetween, and a hinge for attaching the sheath portions together along one side thereof.
  • An insertion member preferably a tapered screw, is insertable into the space for expanding the sheath portions laterally outwardly in order to urge a soft tissue graft against an adjacent bone surface.
  • the hinge comprises a hinge protrusion disposed on a first of the sheath portions and a hinge slot disposed on a second of the sheath portions, wherein the hinge protrusion and the hinge slot engage one another.
  • a second hinge protrusion is disposed on the second sheath portion and a second hinge slot is disposed on the first sheath portion, wherein the second hinge protrusion and the second hinge slot also engage one another.
  • a driver is utilized for engaging and moving the insertion member.
  • a hex opening is provided in the proximal end of the insertion member for engaging a distal end of the driver.
  • the screw has a bullnose screw head, and the two sheath portions are mirror images of one another.
  • the invention is particularly advantageous, in that the system is adapted for use whether the soft tissue graft comprises an autograft, or an allograft.
  • a distal end of the screw comprises a cut-out portion which permits the distal end of the screw to easily fit between the two sheath portions, thus permitting an operator to easily start rotation of the screw.
  • the screw comprises external threads and the sheath portions comprise complementary internal threads.
  • the screw further comprises a thread start to enable easier engagement of the screw threads and the sheath threads.
  • At least one retaining rib is preferably disposed on at least one of the sheath portions.
  • the rib protrudes outwardly to provide a small area of higher force between the sheath portion and the soft tissue graft.
  • the sheath portions and the insertion member are preferably adapted for insertion into a bone tunnel in a patient's tibia, and the soft tissue graft comprises a tendon graft for making an ACL repair.
  • a cortical hook is preferably disposed on one of the sheath portions for engaging hard cortical bone at the procedural site.
  • One of the sheath halves preferably comprises a snap post and the other one of the sheath halves preferably comprises a complementary snap hole, wherein the snap post and the snap hole are engageable with one another to keep the two sheath halves from opening prematurely.
  • a ramp is formed on one of the sheath portions for allowing a tip of the sheath portion to provide compression between the soft tissue graft and the bone at the aperture of bone tunnel in which the system is disposed.
  • Flex grooves are disposed on one of the sheath portions, for permitting the sheath portion to flex and form around a tip of the insertion member.
  • a bullnose sheath tip is provided on one of the sheath portions.
  • it is advantageous for the sheath portions to further comprise a loop for retaining a soft tissue graft along a laterally outer surface of the sheath portion.
  • an implant system for promoting soft tissue to bone contact in order to promote good fixation of soft tissue to bone when making an orthopedic repair of a joint
  • the implant system comprises a first implant adapted for receiving a tissue graft thereon and then being disposed in a first bone tunnel location, wherein ends of the tissue graft extend through a bone tunnel and out of a proximal end of the tunnel.
  • a second implant is adapted for disposition in a second bone tunnel location, proximal to the first bone tunnel location, wherein the second implant comprises a plurality of sheaths having laterally outer surfaces and being adapted for advancing to the first bone tunnel location by sliding over the ends of the tissue graft, so that when the second implant is in the second bone tunnel location, the tissue grafts are disposed between the laterally outer surfaces of the plurality of sheaths and the bone defining the bone tunnel.
  • An insertion member is insertable between the plurality of sheath members to laterally expand the sheath members toward the soft tissue grafts, thereby urging the soft tissue grafts into contact with the bone defining the bone tunnel.
  • a material fixation system which comprises a plurality of sheath portions defining a space therebetween, wherein the sheath portions are initially engaged with one another in an undeployed orientation.
  • An insertion member is insertable into the space for expanding the sheath portions laterally outwardly to a fully deployed orientation in order to urge a soft tissue graft against an adjacent bone surface.
  • the sheath portions expand outwardly to the aforementioned fully deployed orientation, they become detached from one another.
  • Fig.1 is a view of the femur and tibia of a patient's leg
  • Fig.2 is a view similarto Fig. 1 , showing the use of a drill bit to make an access tunnel in the femur; and a corresponding blind hole in the tibia;
  • Fig.3 is a view similar to Figs. 1 and 2 showing the femur and tibia after the drilling step has been completed;
  • Fig. 4 is a view similar to Figs. 1-3, after a femoral anchor has been installed into the femur access hole, illustrating graft tendon bundles extend from the femoral anchor through the tibia access tunnel;
  • Fig. 5 is a view showing a soft tissue graft pre-loaded onto a femoral implant for use in a graft procedure performed in accordance with the principles of the present invention
  • Fig. 6 is a view showing the femoral implant being inserted into the femoral socket and deployed;
  • Fig.7 is a view showing the femoral implant inserted being disengaged from the deployed femoral implant
  • Fig. 8 is an isometric view of an embodiment of a tibial implant constructed in accordance with the principles of the present invention
  • Fig. 9 is a perspective view of a screw portion of the tibial implant of Fig. 8.
  • Fig. 10 is a cross-sectional view of the screw portion of Fig. 9;
  • Fig. 11 is a driver used to deploy the tibial implant of the present invention.
  • Fig. 12 is a perspective view of an assembled tibial implant according to the present invention.
  • Fig. 13 is a perspective view of a disassembled tibial implant according to the present invention.
  • Fig. 14 is a perspective view of an exterior surface of one tibial sheath which forms a part of the tibial implant of the present invention
  • Fig. 15 is a perspective view of an interior surface of the sheath of Fig. 14;
  • Fig. 16 is a perspective view of an assembled tibial sheath according to the present invention, shown from a first side thereof;
  • Fig. 17 is a perspective view of the sheath of Fig. 16 shown from a second side thereof;
  • Fig. 18 is a top view of the sheath of the present invention
  • Figs. 19-21 show the undeployed tibial implant in the tibia
  • Fig. 22 shows the undeployed tibial implant
  • Fig. 23 shows the undeployed screw and sheath combination
  • Fig. 24 shows the tibial implant as it is in the process of being deployed
  • Fig. 25 shows the screw rotated to cause the sheaths to start to deploy and rotate on their hinges as shown in Fig. 24;
  • Fig. 26 shows the fully deployed tibial implant
  • Fig. 27 shows the fully inserted screw, with the sheaths separated and fully deployed, as shown in Fig. 26;
  • Fig. 28 is a view showing the fully deployed implant in the tibia
  • Fig. 29 is a table showing measured pull out forces for an implant of the present invention, compared with the much lower pull out forces measured in a state of the art prior art tibial implant;
  • Fig. 30 is a perspective view showing a modified embodiment of a sheath which forms a part of a tibial anchor device constructed in accordance with another embodiment of the present invention.
  • Fig. 31 is a perspective view of an anchor portion of the tibial anchor device of Fig. 30;
  • Fig. 32 is a perspective view of a screw of the tibial anchor device of Figs. 30 and 31 ;
  • Fig. 33 is a perspective view of the opposing side of the sheath shown in Fig. 30;
  • Fig. 34 is a perspective view of an opposing side of the anchor portion of Fig. 31;
  • Fig. 35 is view similar to Figs. 1 -4, with portions of the bone removed in order to show the tibial anchor device of Figs. 30-34, wherein the tendon bundles have been pulled through the sheaths of the anchor device;
  • Fig. 36 is a view similar to Fig.35 wherein the sheaths and anchor have been slid up along the tendons into the hole until the anchor bottoms out against an angular surface within the hole;
  • Fig. 37 is a view similar to Fig. 36, wherein tension has been applied to the tendons and the screw of Fig. 32 has been inserted into the anchor;
  • Fig. 38 is a view similar to Fig. 37, wherein the screw has been tightened until it bottoms out against the anchor;
  • Fig. 39 is a view similar to Fig. 38 wherein the tendon bundles have been trimmed flush with the face of the anchor;
  • Fig. 40 is a view similar to Fig. 39, except that the removed portions of the bone have been restored in order to shown the patient's knee after the inventive repair procedure has been completed;
  • Fig. 41 is a perspective view showing a right anchor portion of another embodiment of a tibial anchor device constructed in accordance with the principles of the present invention;
  • Fig. 42 is a perspective view similar to Fig. 41 showing a left anchor portion of the embodiment of the tibial anchor device of Fig. 41 ;
  • Fig. 43 is a view of a screw retention cup of the tibial anchor device of Fig. 41;
  • Fig. 44 is a perspective view of a screw for use with the tibial anchor device of Fig. 41 ;
  • Fig. 45 is a perspective view similar to Fig. 41 of the opposing side of the right anchor portion;
  • Fig. 46 is a perspective view similar to Fig. 42 of the opposing side of the left anchor portion;
  • Fig. 47 is a view similar to Fig. 43 of the opposing side of the screw retention cup
  • Fig. 48 is a view of a patient's femur and tibia, with portions of the bone removed for ready visualization, showing the tibial anchor of Figs.41-47 being installed, by pulling tendon bundles through the left and right anchors;
  • Fig.49 is a view similar to Fig.48, wherein the anchor portions are slid up the tendons into the bone hole until the anchor bottoms out against an angular surface in the hole;
  • Fig. 50 is a view similar to Fig. 49, wherein the tendons have been tensioned, and the screw and retainer cup tightened;
  • Fig. 51 is a view similar to Fig. 50, wherein the tendon bundles have been trimmed flush with the face of the anchor;
  • Fig. 52 is a view similar to Fig. 51 , except that the removed portions of the bone have been restored in order to shown the patient's knee after the inventive repair procedure has been completed;
  • Fig. 53 is a perspective view of a tibial anchor device similar to that shown in Figs. 41-47, in an assembled configuration;
  • Fig. 54 is another view of the anchor device of Fig. 53;
  • Fig. 55 is still another view of the anchor device of Figs. 53 and 54;
  • Fig. 56 is yet another view of the anchor device of Figs. 53-55;
  • Fig. 57 is a view of the anchor device of Fig. 54-56, wherein some of the anchor portions have been removed for visibility;
  • Fig. 58 is a perspective view of yet another tibial anchor embodiment in accordance with the principles of the present invention.
  • Fig. 59 is another view of the embodiment of Fig. 58; and
  • Fig. 60 is still another view of the embodiment of Figs. 58-59.
  • Fig. 1 a view of a femur 10 and a tibia 12 of a patient's knee.
  • Fig. 2 illustrates the same knee structure, wherein a drill bit 14 is utilized to drill a tunnel in the tibia 12, and a blind hole corresponding to the tunnel in the femur 10.
  • the tibial tunnel 16 and femur blind hole 18 are shown in Fig. 3.
  • a tendon bundle 20 is pre-loaded onto a femoral implant 22.
  • the tendon bundle 20 is comprised of a soft tissue graft comprising a portion of a hamstring (such as pre- harvested semitendinosus and gracilis grafts), but any soft tissue may be used. Details of a presently preferred femoral implant are disclosed in co- pending provisional patent application Serial No. 60/854,178, which has already been expressly incorporated herein by reference. However, the invention may be utilized with any suitable femoral implant.
  • a femoral implant inserter 24 is utilized to insert the femoral implant into the femoral socket, wherein it is deployed. Following this, as shown in Fig. 7, the femoral implant inserter 24 is disengaged from the deployed implant 22, and withdrawn. .
  • the femoral anchor (not shown) has already been inserted into the femur blind hole 18 for securing the tendon bundle 20 therein, as shown.
  • the tendon bundles 20 extend from the femoral anchor in the femur hole 18 down through the tibial tunnel 16.
  • a tibial implant 26 constructed in accordance with the principles of the present invention.
  • the implant 26 comprises a tapered screw 28 and two sheath portions, or halves 30.
  • the two sheath halves 30 are preferably mirror images of one another.
  • the tapered screw 28 shown particularly in Figs. 9 and 10, has several key features.
  • the tapered design tapering from a relative wide proximal end 32 to a relatively narrow distal end 34, distributes the pressure between the tendon and the sheath halves 30 throughout the length of the screw 28, increasing the pull out force of the system.
  • the screw has an easy start feature 36, which comprises a cut-out that allows the tip of the screw to fit between the sheath halves 30. With the tip between the sheaths, a thread start 38 (Fig. 10) easily engages thread 40 on the screw with an internal thread 41 of the sheath (Fig. 15) as the screw is rotated clockwise.
  • a tapered hex 42 engages with a driver 44 (Fig. 11) in order to transmit the torque required in order to deploy the screw.
  • a bullnose screw head 46 at the proximal end 32 of the screw 28 leaves a smooth completed repair.
  • the sheath halves 30 have many key features as well. It is first noted that having two sheath halves 30 allows for the use of either a double or a single tendon bundle loop 20. There is no need to separate four separate ends of a double tendon bundle loop into four separate quadrants. With a double bundle loop, the implant has two free ends on either side of the sheath assembly. With a single bundle loop, one free end is in place on either side of the sheath assembly.
  • the internal thread 41 (Fig. 15) on each sheath half 30 prevents the screw from backing out of the sheath assembly during and after deployment.
  • the interlocking threads 40, 41 between the screw and the sheaths allow the screw to be pulled between the sheath halves 30, thus providing easier deployment. Retaining ribs 48 provide small areas of higher force between the implant and the tendon, thereby increasing the pull out force of the system.
  • a cortical hook 50 functions to grab the hard cortical bone of the tibia, which assists in keeping the implant in place during loading and also increases the pull out force of the system.
  • Each sheath half 30 comprises a hinge 52 and a hinge slot 54. The hinge 52 on one sheath half 30 is placed in the hinge slot 54 of the opposing sheath half 3d. This feature permits the sheath to consistently open up in one direction, as shown in Figs. 22, 24, and 26, thus providing a repeatable deployment mode.
  • One sheath half 30 has two snap posts 56, and the opposing sheath half 30 has a snap hole 58. These features keep the sheath halves 30 from opening prematurely.
  • a screw ramp 60 (Fig.
  • a bullnose sheath tip 62 provides for a smooth transition between the implant system and the exit of the tibial tunnel. This reduces any stress concentrations that could sever the tendon bundle 20.
  • flex grooves 64 Another feature that reduces stress concentrations at the tip of the sheath halves 30 are flex grooves 64. These grooves 64 allow the sheath halves 30 to flex and form around the tip of the screw 28.
  • the sheath halves 30 of the tibial implant 26 are disposed between the tendon bundles 20 in the tibial tunnel 16, which extend proximally through the tibial tunnel 16 from the femoral implant.
  • the sheath halves 30 are advanced distally through the tunnel 16 until the cortical hook 50 is flush with the cortical surface of the tibia.
  • the hook is aligned to the top of the tibial tunnel.
  • the graft is then tensioned by pulling the tendons 20 taut, using manual traction, tensioning pulleys, or other suitable means.
  • the primary objective with respect to the tibial anchoring solution is to ensure that good aperture fixation is achieved, and to ensure that cancellous bone fixation is not entirely relied upon.
  • Some type of cortical fixation or backup is required to ensure a good and permanent result.
  • the screw 28 is then placed on a distal end 66 of the hex driver 44 until it is fully seated.
  • the screw 28 is placed with the flat of the easy start feature 36 parallel with the midplane of the sheath halves 30. With a force applied in a direction axial to the tibial tunnel, the screw is pushed distally between the sheaths.
  • the implant 26, in its undeployed state, is shown in Figs. 22 and 23.
  • the screw While the axial force is being applied, and the easy start feature 36 is placed between the sheaths, the screw is rotated in a clockwise direction. This further separates the sheath halves 30 and presses the tendons 20 to the wall of the tibial tunnel 16.
  • the hinges 52, 54 along the same edge as the cortical hook are used to encourage the sheath halves to open in one direction, as shown in Figs. 24 and 25.
  • the screw 28 is rotated until it is fully seated when the bullnose screw head 46 is flush with the cortical surface of the tibia.
  • Figs. 26 and 27 show the screw in a fully inserted state, with the sheath halves 30 separated and fully deployed. In this state, the sheath halves 30 push the tendons 20 outwardly, into contact with the tibial tunnel walls. The fully deployed implant in the tibia is shown in Fig. 28.
  • FIGs. 30-34 various components of another embodiment of a tibial sheath anchor are illustrated.
  • Figs. 30 and 33 there is shown a sheath half 30 from two opposing sides thereof.
  • An anchor 68 is shown in Figs. 31 and 34, and comprises a pair of legs 70 and a disk 72.
  • a screw 28 is provided for actuating the anchor from an undeployed to a deployed configuration for securing the anchor and associated tendon bundle in place with respect to adjacent bone.
  • a sheath anchor 74 is assembled and disposed for insertion into the tibial tunnel 16.
  • the tendon bundles 20 are pulled through the sheath halves 30, as shown, with portions of each sheath half serving to retain the tendon bundles in place adjacent to the and along the sheaths.
  • tendon loops 76 on each sheath half 30 are formed so that the tendon bundles slide lengthwise along the sheath half 30 beneath the loops 76 so that the loops perform a retention function.
  • the anchor 74 and its legs 70 are placed between the sheath halves 30 so that square tabs 78 on the anchor legs 70 (Fig. 31) are aligned with receptacle notches 36 on the rear of the sheath half 30 (Fig. 33).
  • the screw taper on the rear of the sheath half 30 is oriented toward the joint 82, between the femur and the tibia.
  • Fig. 36 the sheath halves 30 and anchor 68 have been slid up along the tendon bundles 20 until the anchor bottoms out against an angular surface in the hole 16. Then, as shown in Fig. 37, tension is applied to the tendon bundles 20, and the screw 28 is inserted and tightened within the anchor body, using a suitable tool, such as a hex driver. As shown in Fig. 38, the screw 28 should be tightened until it bottoms out against the anchor 68, approximately flush with or slightly recessed relative to the entrance to the tibial tunnel 16. This is important in order to ensure that there are no protrusions from the tunnels 16 which could cause discomfort to the patient or possible later complications and wear.
  • An important advantage of the present invention is that the distal end 84 of the sheath anchor 30, as shown, for example, in Fig. 38, is disposed, once the anchor is fully inserted and deployed, so that it is in close proximity to the distal end (aperture) 86 (Fig. 49) of the tibial tunnel 16, at the joint 82.
  • This provides excellent aperture fixation for the tendon bundles 20, in order to minimize wear on the tendon bundles over time due to the "windshield wiper" or "bungee" effects noted above in the Background of the Invention portion of the specification.
  • Deployment of the anchor 68 occurs when the screw 28 is inserted into the anchor body. This insertion action causes the anchor legs 70 to splay laterally outwardly, thus forcing the sheath halves 30 and tendon bundles 20 against the bony wall forming the tibial tunnel 16. As a result of this action, the tendon bundles 20 are clamped against the tibial bone 12 by the sheath halves 30.
  • Figs. 39 and 40 illustrate the patient's knee joint once the inventive procedure has been completed.
  • Fig. 39 shows the joint with portions of the bone being removed or transparent so that the entire sheath anchor 30 is visible, while Fig. 40 shows the same joint as it would appear naturally with all bone in place.
  • the final step of the procedure is to trim the protruding ends 88 (Fig. 38) of the tendon bundles 20 so that they are flush with the face of the sheath anchor 30.
  • Figs. 41-47 illustrate components of a second inventive tibial anchor embodiment, which may be identified as a "cone anchor”.
  • Figs. 41 and 45 illustrate opposing sides of a right anchor portion 90 and
  • Figs. 42 and 46 illustrate opposing sides of a left anchor portion 92.
  • a cone anchor 96 of Figs. 41-47 (Fig. 48) to repair a patient's joint 82 is initiated in the same manner as for the sheath anchor 30.
  • a femur hole 18 and tibial tunnel 16 are drilled, and a femoral anchor is inserted and deployed to anchor tendon bundles 20 in place within the femoral hole 18, so that the tendon bundles 20 extend downwardly through the tibial tunnel 16, as shown in Fig. 4.
  • the reader is referred to the description above for further detail regarding this part of the procedure.
  • the tendon bundles 20 are pulled through the cone anchor 96 in order to insert the tibial anchor into the tibial tunnel 16.
  • the tendon bundles are secured against the anchor portions 90 or 92 because they are pulled through tendon loops 76, which are formed in the proximal end of each anchor half 90, 92, respectively.
  • the anchor 96 is slid upwardly along the tendon bundles 20 until the anchor 96 bottoms out against the angular surface in the tibial hole 16, as with the first embodiment.
  • this positioning will cause the distal end 98 of the anchor 96 to be located in close proximity to the distal end 86 of the tibial tunnel 16 so that good aperture fixation will result.
  • the tendons are appropriately tensioned and the screw 28 is inserted and tightened, together with the retainer cup 94, until seated.
  • This action of inserting and tightening the screw 28 and screw retainer cup 94 will cause the anchor portions 90, 92 to move laterally outwardly in order to engage the tendon bundles 20 between the anchor portions 90, 92and adjacent tibial bone, as in the sheath anchor embodiment.
  • Figs. 51 and 52 illustrate the anchor 96 in its fully installed condition, after the tendon ends 88 are trimmed flush and the procedure is otherwise completed.
  • Figs. 53-57 illustrate, in somewhat greater detail and in an assembled configuration, a cone anchor 96 of a type very similar to that illustrated in the embodiment of Figs. 41-52. Like elements are denoted by like reference numbers.
  • a modified tibial anchor embodiment 100 is illustrated in Figs. 58-60. This embodiment is similar to prior disclosed embodiments to the extent that there are provided two opposing sheaths having tendon loops 76 disposed thereon. A screw 28 and associated screw retention disk or cup 94 are also provided. Thus, the basic procedural steps for utilizing this anchor 100 are similar to those already described in connection with the previous disclosed embodiments. What is different about this embodiment, in particular, is the provision of a distal wedge 101 which functions to provide positive aperture fixation by ensuring that the anchor will be stopped within the tibial tunnel at an appropriate point during the insertion step. Pivotable arms 102 connect the anchor body to the wedge 101 , wherein the arms 102 are pivotable outwardly about hinges 104.
  • insertion and tightening of the screw 28 within the anchor body actuates the arms 102 to pivot outwardly laterally about the hinges 104, thereby functioning to expand the wedge and cause positive engagement of the wedge and arms 102 with the tendon bundles and adjacent tibial bone.
  • positive fixation is enhanced by the provision of spikes 106 or other suitable means for penetrating the tendon bundles and the bone to lock the tendon bundles and anchor in place.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rehabilitation Therapy (AREA)
  • Rheumatology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)

Abstract

A material fixation system is particularly adapted to improve the tendon- to-bone fixation of hamstring autografts, as well as other soft tissue ACL reconstruction techniques. The system is easy to use, requires no additional accessories, uses only a single drill hole, and can be implanted by one person. Additionally, it replicates the native ACL by compressing the tendons against the aperture of the tibial tunnel, which leads to a shorter graft and increased graft stiffness. It is adapted to accommodate single or double tendon bundle autografts or allografts. It also provides pull out strength measured to be greater than 1000 N.

Description

DEVICES, SYSTEMS, AND METHODS FOR MATERIAL FIXATION
This application claims the benefit under 35 U.S.C. 119(e) of the filing date of Provisional U.S. Application Serial No. 60/784,422, entitled Method and Apparatus for Attaching Soft Tissues to Bone, filed on March 20, 2006, and of the filing date of Provisional U.S. Application Serial No. 60/854,178, entitled Methods and Systems for Material Fixation, filed on October 24, 2006, and of the filing date of Provisional U.S. Application Serial No. 60/898,946, entitled Devices, Systems and Methods for Material Fixation, filed on January 31 , 2007. All of these prior provisional applications are expressly incorporated herein by reference.
Background of the Invention
The present invention relates generally to devices, systems and methods for material fixation. More specifically, the present invention relates to a soft tissue or bone-to-bone fixation system that permits a practitioner to repair many soft tissue injuries, such as an Anterior Cruciate Ligament (ACL) injury.
One of the most common needs in orthopedic surgery is the fixation of tendon to bone. The fixation of diseased tendons into a modified position is called tenodesis and is commonly required in patients with injury to the long head of the biceps tendon in the shoulder. In addition, tendons which are torn from their insertion site into bone also frequently require repair. This includes distal biceps tendon tears, rotator cuff tears, and torn flexor tendons in the hand. Tendons are also frequently used in the reconstruction of unstable joints. Common examples include anterior cruciate ligament and collateral ligament reconstructions of the knee, medial and lateral elbow collateral ligament reconstructions, ankle collateral ligament reconstruction, finger and hand collateral ligament reconstructions and the like.
Traditional techniques that are used to fix tendon to bone suffer from a number of limitations as a result of the methodology used, including the use of a "keyhole" tenodesis, pull-out sutures, bone tunnels, and interference screw fixation. The "keyhole" tenodesis requires the creation of a bone tunnel in the shape of a keyhole, which allows a knotted tendon to be inserted into the upper portion, and subsequently wedged into the lower narrower portion of the tunnel where inherent traction on the tendon holds it in place. This technique is challenging as it is often difficult to sculpt the keyhole site and insert the tendon into the tunnel. In addition, if the tendon knot unravels in the postoperative period, the tendon will slide out of the keyhole, losing fixation.
Another traditional form of tendon fixation is the use of the "pull-out stitch." With this technique, sutures attached to the tendon end are passed through bone tunnels and tied over a post or button on the opposite side of the joint. This technique has lost favor in recent years due to a host of associated complications, which include wound problems, weak fixation strength, and potential injury to adjacent structures.
The most common method of fixation of tendon to bone is the use of bone tunnels with either suture fixation, or interference screw fixation. The creation of bone tunnels is relatively complicated, often requiring an extensive exposure to identify the margins of the tunnels. Drill holes placed at right angles are connected using small curettes. This tedious process is time-consuming and fraught with complications, which include poor tunnel placement and fracture of the overlying bone bridge. Graft isometry, which is easy to determine with single point fixation, is difficult to achieve because the tendon exits the bone from two points. After creation of tunnels, sutures must be passed through the tunnels to facilitate the passage of the tendon graft. Tunnels should be small enough to allow good tendon-bone contact, yet large enough to allow for graft passage without compromising the tendon. This portion of the procedure is often time-consuming and frustrating to a surgeon. Finally, the procedure can be compromised if the bone bridge above the tunnel breaks, resulting in loss of fixation. The technique restricts fixation to the strength of the sutures, and does not provide any direct tendon to bone compression.
More recent advances in the field of tendon fixation involve the use of an internally deployed toggle button, for example, the ENDOBUTTON, and the use of interference screws to provide fixation. The ENDOBUTTON allows the fixation of tendon into a bone tunnel by creating an internally deployed post against a bony wall. While this technique eliminates the need for secondary incisions to place the post, the fixation strength is limited to suture strength alone. This technique does not provide direct tendon to bone compression; as such this technique may slow healing and lead to graft tunnel widening due to the "bungee effect" and "windshield wiper effect". As a result, this technique has limited clinical applications and is used primarily for salvage when bone tunnels break or backup fixation is important.
The use of the interference screw is the most notable advance in the fixation of tendon to bone. The screw is inserted adjacent to a tendon in a bone tunnel, providing axial compression between the screw threads and the bony wall. Advantages include acceptable pull-out strength and relative ease of use. Aperture fixation, the ability to fix the tendon to bone at its entrance site, is a valuable adjunct to this technique as it minimizes graft motion and subsequent tunnel widening. Some disadvantages related to soft tissue interference screws are that they can be difficult to use, and can also cut or compromise the tendon during implantation. The newest generation interference screw allows the ability to provide tendon to bone fixation with limited exposure. For example, the BIO-TENODESIS SCREW (Arthrex, Inc.) allows the tensioning and insertion of tendon into bone, followed by insertion of an adjacent soft tissue interference screw. While this screw system provides advantages in the insertion of tendon into bone in cases when a pull through stitch is not available, it is still limited by the potential for tendon rotation or disruption as the screw compresses the tendon. The surgical technique is also complicated, typically requiring two or more hands for insertion, making it difficult to use the system without assistance during arthroscopic or open procedures. Finally, the use of the screw requires preparation of the tendon end, which can be difficult, time consuming, and can also require conversion of an arthroscopic procedure to open.
Focusing particularly on the ACL, current ACL repairs utilizing soft tissue for the replacement graft are either difficult to perform or they result in less than favorable outcomes due to their relatively low tendon-to-bone fixation. Existing ACL reconstruction techniques that have acceptable outcomes (high tendon-to-bone fixation) involve extra operating room time and surgeon effort due to the requirement of multiple drill holes, external guides and fixtures for the drill holes, and multiple assistants. Moreover, these approaches to not closely replicate the native ACL in its anatomy or physiology.
Two important factors in replicating the native ACL are aperture compression and tendon length. Compressing the tendons at the aperture of the femoral tunnel will improve the healing process by increasing the intimate contact between the tendon and the bone. A study shows that without intimate contact between the tendon and the bone, the result is a graft having less well organized fibrous tissue and lower pull-out strength. The stiffness of the repair is also important to replicate the native ACL. Graft stiffness is decreased by the length of tendon between the fixation points.
Currently, two different sources are utilized for the tissue that replaces the injured native ACL. When the new tissue comes from the patient's own body, the new graft is referred to as an "autograft", and when cadaveric tissue is used, the new graft is referred to as an "allograft". The most common autograft ACL reconstruction performed currently is the bone-patellar-tendon-bone (BTB) graft. The BTB graft with an interference screw is used more often because it more accurately replicates the native ACL due to its aperture compression at the tibial tunnel aperture. However, BTB reconstructions result in an increased rate of anterior knee pain post- surgically for periods of up to three years after the reconstruction. Additionally, the harvest procedure for the BTB autograft is invasive and can be difficult to perform. Alternatively, the hamstring tendon autograft ACL reconstruction technique does not result in any significant postsurgical pain, and the harvest procedure is not minimally invasive. The reason that the hamstring tendon autograft procedure is not more frequently used in ACL reconstructions is that the fixation of the hamstring tendons to the femur an tibia, using prior art techniques, is not as strong as the fixation of the BTB autografts.
Many systems have addressed some of the problems associated with ACL reconstruction using hamstring tendons, but there is not any system which addresses them all. The TriTisΘ system available from Scandius attempts to more accurately replicate the native ACL by adding material to take up space in the tibial tunnel, resulting in more intimate contact between the tendon and the bone. However, to insert the device into the femoral tunnel, the cross sectional area must be less than the cross sectional area of the hole. There is no real compression of tendon to bone. The TriTis system also requires additional drill holes, accessories, and people to perform the procedure.
The IntraFix® system available from Mitek attempts to more accurately replicate the native ACL by using a screw to spread apart an integral four quadrant sheath. This acts to compress the four tendon strands against the bone. The system is easier to use than other alternatives, and does not need additional drill holes. However, it does require additional accessories, additional people to perform the procedure, and the four quadrant design does not accommodate certain allografts with two tendon strands, such as the tibialis.
The WasherLoc™ system, available from Arthrotek, gives increased strength, compared to other prior art systems, but does not accurately replicate the native ACL. The tendons are sized to the hole, but not compressed to the walls. There is also a greater distance between fixation points with this system, which can decrease the stiffness of the repair.
Interference screws such as the RCI™ Screw available from Smith & Nephew are easy to use and provide compression of tendon to bone at the tibial tunnel aperture. However, the pull out strength and stiffness of the repair are significantly lower than is the case for other prior art systems.
Thus, although there are many conventional techniques used for the fixation of tendon to bone, each having some advantages, the disadvantages of each such technique presents a need in the art for a simple and universal technique to fixate tendon to bone such that the device is easy to use, the process is simple to follow, and the result is a firm and secure tendon to bone fixation with minimal negative effect on the tendon. Further, such device should be easy to manufacture, universally applied to different tendon to bone sites, and require minimal effort to understand and use in practice. Summary of the Invention
The present invention is a system which is particularly adapted to improve the tendon-to-bone fixation of hamstring autografts, as well as other soft tissue ACL reconstruction techniques. The system is easy to use, requires no additional accessories, uses only a single drill hole, and can be implanted by one person. Additionally, it replicates the native ACL by compressing the tendons against the aperture of the tibial tunnel, which leads to a shorter graft and increased graft stiffness. It is adapted to accommodate single or double tendon bundle autografts or allografts. It also provides pull out strength measured to be greater than 1000 N, which is equivalent to or substantially higher than any of the high strength implants currently available on the market.
More particularly, a material fixation system is provided, which comprises two sheath portions defining a space therebetween, and a hinge for attaching the sheath portions together along one side thereof. An insertion member, preferably a tapered screw, is insertable into the space for expanding the sheath portions laterally outwardly in order to urge a soft tissue graft against an adjacent bone surface. In a preferred embodiment, the hinge comprises a hinge protrusion disposed on a first of the sheath portions and a hinge slot disposed on a second of the sheath portions, wherein the hinge protrusion and the hinge slot engage one another. A second hinge protrusion is disposed on the second sheath portion and a second hinge slot is disposed on the first sheath portion, wherein the second hinge protrusion and the second hinge slot also engage one another.
A driver is utilized for engaging and moving the insertion member. A hex opening is provided in the proximal end of the insertion member for engaging a distal end of the driver. Preferably, the screw has a bullnose screw head, and the two sheath portions are mirror images of one another.
The invention is particularly advantageous, in that the system is adapted for use whether the soft tissue graft comprises an autograft, or an allograft. A distal end of the screw comprises a cut-out portion which permits the distal end of the screw to easily fit between the two sheath portions, thus permitting an operator to easily start rotation of the screw. The screw comprises external threads and the sheath portions comprise complementary internal threads. The screw further comprises a thread start to enable easier engagement of the screw threads and the sheath threads.
At least one retaining rib is preferably disposed on at least one of the sheath portions. The rib protrudes outwardly to provide a small area of higher force between the sheath portion and the soft tissue graft. The sheath portions and the insertion member are preferably adapted for insertion into a bone tunnel in a patient's tibia, and the soft tissue graft comprises a tendon graft for making an ACL repair. A cortical hook is preferably disposed on one of the sheath portions for engaging hard cortical bone at the procedural site.
One of the sheath halves preferably comprises a snap post and the other one of the sheath halves preferably comprises a complementary snap hole, wherein the snap post and the snap hole are engageable with one another to keep the two sheath halves from opening prematurely. In the preferred embodiment, a ramp is formed on one of the sheath portions for allowing a tip of the sheath portion to provide compression between the soft tissue graft and the bone at the aperture of bone tunnel in which the system is disposed. Flex grooves are disposed on one of the sheath portions, for permitting the sheath portion to flex and form around a tip of the insertion member. A bullnose sheath tip is provided on one of the sheath portions. In some embodiments, it is advantageous for the sheath portions to further comprise a loop for retaining a soft tissue graft along a laterally outer surface of the sheath portion.
In another aspect of the invention, there is provided an implant system for promoting soft tissue to bone contact in order to promote good fixation of soft tissue to bone when making an orthopedic repair of a joint, wherein the implant system comprises a first implant adapted for receiving a tissue graft thereon and then being disposed in a first bone tunnel location, wherein ends of the tissue graft extend through a bone tunnel and out of a proximal end of the tunnel. A second implant is adapted for disposition in a second bone tunnel location, proximal to the first bone tunnel location, wherein the second implant comprises a plurality of sheaths having laterally outer surfaces and being adapted for advancing to the first bone tunnel location by sliding over the ends of the tissue graft, so that when the second implant is in the second bone tunnel location, the tissue grafts are disposed between the laterally outer surfaces of the plurality of sheaths and the bone defining the bone tunnel. An insertion member is insertable between the plurality of sheath members to laterally expand the sheath members toward the soft tissue grafts, thereby urging the soft tissue grafts into contact with the bone defining the bone tunnel.
In still another aspect of the invention, there is provided a material fixation system, which comprises a plurality of sheath portions defining a space therebetween, wherein the sheath portions are initially engaged with one another in an undeployed orientation. An insertion member is insertable into the space for expanding the sheath portions laterally outwardly to a fully deployed orientation in order to urge a soft tissue graft against an adjacent bone surface. As the sheath portions expand outwardly to the aforementioned fully deployed orientation, they become detached from one another. The invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying illustrative drawing.
Brief Description of the Drawings
Fig.1 is a view of the femur and tibia of a patient's leg;
Fig.2 is a view similarto Fig. 1 , showing the use of a drill bit to make an access tunnel in the femur; and a corresponding blind hole in the tibia;
Fig.3 is a view similar to Figs. 1 and 2 showing the femur and tibia after the drilling step has been completed;
Fig. 4 is a view similar to Figs. 1-3, after a femoral anchor has been installed into the femur access hole, illustrating graft tendon bundles extend from the femoral anchor through the tibia access tunnel;
Fig. 5 is a view showing a soft tissue graft pre-loaded onto a femoral implant for use in a graft procedure performed in accordance with the principles of the present invention;
Fig. 6 is a view showing the femoral implant being inserted into the femoral socket and deployed;
Fig.7 is a view showing the femoral implant inserted being disengaged from the deployed femoral implant; Fig. 8 is an isometric view of an embodiment of a tibial implant constructed in accordance with the principles of the present invention;
Fig. 9 is a perspective view of a screw portion of the tibial implant of Fig. 8;
Fig. 10 is a cross-sectional view of the screw portion of Fig. 9;
Fig. 11 is a driver used to deploy the tibial implant of the present invention;
Fig. 12 is a perspective view of an assembled tibial implant according to the present invention;
Fig. 13 is a perspective view of a disassembled tibial implant according to the present invention;
Fig. 14 is a perspective view of an exterior surface of one tibial sheath which forms a part of the tibial implant of the present invention;
Fig. 15 is a perspective view of an interior surface of the sheath of Fig. 14;
Fig. 16 is a perspective view of an assembled tibial sheath according to the present invention, shown from a first side thereof;
Fig. 17 is a perspective view of the sheath of Fig. 16 shown from a second side thereof;
Fig. 18 is a top view of the sheath of the present invention; Figs. 19-21 show the undeployed tibial implant in the tibia;
Fig. 22 shows the undeployed tibial implant;
Fig. 23 shows the undeployed screw and sheath combination;
Fig. 24 shows the tibial implant as it is in the process of being deployed;
Fig. 25 shows the screw rotated to cause the sheaths to start to deploy and rotate on their hinges as shown in Fig. 24;
Fig. 26 shows the fully deployed tibial implant;
Fig. 27 shows the fully inserted screw, with the sheaths separated and fully deployed, as shown in Fig. 26;
Fig. 28 is a view showing the fully deployed implant in the tibia;
Fig. 29 is a table showing measured pull out forces for an implant of the present invention, compared with the much lower pull out forces measured in a state of the art prior art tibial implant;
Fig. 30 is a perspective view showing a modified embodiment of a sheath which forms a part of a tibial anchor device constructed in accordance with another embodiment of the present invention;
Fig. 31 is a perspective view of an anchor portion of the tibial anchor device of Fig. 30; Fig. 32 is a perspective view of a screw of the tibial anchor device of Figs. 30 and 31 ;
Fig. 33 is a perspective view of the opposing side of the sheath shown in Fig. 30;
Fig. 34 is a perspective view of an opposing side of the anchor portion of Fig. 31;
Fig. 35 is view similar to Figs. 1 -4, with portions of the bone removed in order to show the tibial anchor device of Figs. 30-34, wherein the tendon bundles have been pulled through the sheaths of the anchor device;
Fig. 36 is a view similar to Fig.35 wherein the sheaths and anchor have been slid up along the tendons into the hole until the anchor bottoms out against an angular surface within the hole;
Fig. 37 is a view similar to Fig. 36, wherein tension has been applied to the tendons and the screw of Fig. 32 has been inserted into the anchor;
Fig. 38 is a view similar to Fig. 37, wherein the screw has been tightened until it bottoms out against the anchor;
Fig. 39 is a view similar to Fig. 38 wherein the tendon bundles have been trimmed flush with the face of the anchor;
Fig. 40 is a view similar to Fig. 39, except that the removed portions of the bone have been restored in order to shown the patient's knee after the inventive repair procedure has been completed; Fig. 41 is a perspective view showing a right anchor portion of another embodiment of a tibial anchor device constructed in accordance with the principles of the present invention;
Fig. 42 is a perspective view similar to Fig. 41 showing a left anchor portion of the embodiment of the tibial anchor device of Fig. 41 ;
Fig. 43 is a view of a screw retention cup of the tibial anchor device of Fig. 41;
Fig. 44 is a perspective view of a screw for use with the tibial anchor device of Fig. 41 ;
Fig. 45 is a perspective view similar to Fig. 41 of the opposing side of the right anchor portion;
Fig. 46 is a perspective view similar to Fig. 42 of the opposing side of the left anchor portion;
Fig. 47 is a view similar to Fig. 43 of the opposing side of the screw retention cup;
Fig. 48 is a view of a patient's femur and tibia, with portions of the bone removed for ready visualization, showing the tibial anchor of Figs.41-47 being installed, by pulling tendon bundles through the left and right anchors; Fig.49 is a view similar to Fig.48, wherein the anchor portions are slid up the tendons into the bone hole until the anchor bottoms out against an angular surface in the hole;
Fig. 50 is a view similar to Fig. 49, wherein the tendons have been tensioned, and the screw and retainer cup tightened;
Fig. 51 is a view similar to Fig. 50, wherein the tendon bundles have been trimmed flush with the face of the anchor;
Fig. 52 is a view similar to Fig. 51 , except that the removed portions of the bone have been restored in order to shown the patient's knee after the inventive repair procedure has been completed;
Fig. 53 is a perspective view of a tibial anchor device similar to that shown in Figs. 41-47, in an assembled configuration;
Fig. 54 is another view of the anchor device of Fig. 53;
Fig. 55 is still another view of the anchor device of Figs. 53 and 54;
Fig. 56 is yet another view of the anchor device of Figs. 53-55;
Fig. 57 is a view of the anchor device of Fig. 54-56, wherein some of the anchor portions have been removed for visibility;
Fig. 58 is a perspective view of yet another tibial anchor embodiment in accordance with the principles of the present invention; Fig. 59 is another view of the embodiment of Fig. 58; and
Fig. 60 is still another view of the embodiment of Figs. 58-59.
/ Description of the Preferred Embodiment
Referring now more particularly to the drawings, procedures and anchoring devices for repairing a patient's knee, by securing a graft of soft tissue therein, connected between the patient's femur and tibia, are illustrated. There is shown in Fig. 1 a view of a femur 10 and a tibia 12 of a patient's knee. Fig. 2 illustrates the same knee structure, wherein a drill bit 14 is utilized to drill a tunnel in the tibia 12, and a blind hole corresponding to the tunnel in the femur 10. The tibial tunnel 16 and femur blind hole 18 are shown in Fig. 3.
As shown in Fig. 5, a tendon bundle 20 is pre-loaded onto a femoral implant 22. In a preferred embodiment, the tendon bundle 20 is comprised of a soft tissue graft comprising a portion of a hamstring (such as pre- harvested semitendinosus and gracilis grafts), but any soft tissue may be used. Details of a presently preferred femoral implant are disclosed in co- pending provisional patent application Serial No. 60/854,178, which has already been expressly incorporated herein by reference. However, the invention may be utilized with any suitable femoral implant.
In Fig. 6, a femoral implant inserter 24 is utilized to insert the femoral implant into the femoral socket, wherein it is deployed. Following this, as shown in Fig. 7, the femoral implant inserter 24 is disengaged from the deployed implant 22, and withdrawn..
In Fig. 4, the femoral anchor (not shown) has already been inserted into the femur blind hole 18 for securing the tendon bundle 20 therein, as shown. As is illustrated, the tendon bundles 20 extend from the femoral anchor in the femur hole 18 down through the tibial tunnel 16.
Referring now to Figs. 8-10 and 12-18, there is shown a first, and presently preferred, embodiment of a tibial implant 26 constructed in accordance with the principles of the present invention. As shown in Fig. 8, the implant 26 comprises a tapered screw 28 and two sheath portions, or halves 30. The two sheath halves 30 are preferably mirror images of one another.
The tapered screw 28, shown particularly in Figs. 9 and 10, has several key features. The tapered design, tapering from a relative wide proximal end 32 to a relatively narrow distal end 34, distributes the pressure between the tendon and the sheath halves 30 throughout the length of the screw 28, increasing the pull out force of the system. The screw has an easy start feature 36, which comprises a cut-out that allows the tip of the screw to fit between the sheath halves 30. With the tip between the sheaths, a thread start 38 (Fig. 10) easily engages thread 40 on the screw with an internal thread 41 of the sheath (Fig. 15) as the screw is rotated clockwise. This minimizes the force required to start the screw by reducing the distance the sheath halves 30 must be spread apart in order to start the screw. This feature also prevents the user from needing to dilate the hole between the tendon bundles. A tapered hex 42 (Fig. 10) engages with a driver 44 (Fig. 11) in order to transmit the torque required in order to deploy the screw. A bullnose screw head 46 at the proximal end 32 of the screw 28 leaves a smooth completed repair.
The sheath halves 30 have many key features as well. It is first noted that having two sheath halves 30 allows for the use of either a double or a single tendon bundle loop 20. There is no need to separate four separate ends of a double tendon bundle loop into four separate quadrants. With a double bundle loop, the implant has two free ends on either side of the sheath assembly. With a single bundle loop, one free end is in place on either side of the sheath assembly. The internal thread 41 (Fig. 15) on each sheath half 30 prevents the screw from backing out of the sheath assembly during and after deployment. The interlocking threads 40, 41 between the screw and the sheaths allow the screw to be pulled between the sheath halves 30, thus providing easier deployment. Retaining ribs 48 provide small areas of higher force between the implant and the tendon, thereby increasing the pull out force of the system.
A cortical hook 50 functions to grab the hard cortical bone of the tibia, which assists in keeping the implant in place during loading and also increases the pull out force of the system. Each sheath half 30 comprises a hinge 52 and a hinge slot 54. The hinge 52 on one sheath half 30 is placed in the hinge slot 54 of the opposing sheath half 3d. This feature permits the sheath to consistently open up in one direction, as shown in Figs. 22, 24, and 26, thus providing a repeatable deployment mode. One sheath half 30 has two snap posts 56, and the opposing sheath half 30 has a snap hole 58. These features keep the sheath halves 30 from opening prematurely. A screw ramp 60 (Fig. 18) allows for the tip of the sheath to provide compression between the tendon and the bone at the aperture of the tibial tunnel. A bullnose sheath tip 62 provides for a smooth transition between the implant system and the exit of the tibial tunnel. This reduces any stress concentrations that could sever the tendon bundle 20.
Another feature that reduces stress concentrations at the tip of the sheath halves 30 are flex grooves 64. These grooves 64 allow the sheath halves 30 to flex and form around the tip of the screw 28.
Now with reference to Figs. 19-28, the deployment of the implant 26 will be described. The sheath halves 30 of the tibial implant 26 are disposed between the tendon bundles 20 in the tibial tunnel 16, which extend proximally through the tibial tunnel 16 from the femoral implant. The sheath halves 30 are advanced distally through the tunnel 16 until the cortical hook 50 is flush with the cortical surface of the tibia. The hook is aligned to the top of the tibial tunnel. The graft is then tensioned by pulling the tendons 20 taut, using manual traction, tensioning pulleys, or other suitable means. Again, it is noted that the primary objective with respect to the tibial anchoring solution is to ensure that good aperture fixation is achieved, and to ensure that cancellous bone fixation is not entirely relied upon. Some type of cortical fixation or backup is required to ensure a good and permanent result.
The screw 28 is then placed on a distal end 66 of the hex driver 44 until it is fully seated. Next, the screw 28 is placed with the flat of the easy start feature 36 parallel with the midplane of the sheath halves 30. With a force applied in a direction axial to the tibial tunnel, the screw is pushed distally between the sheaths. The implant 26, in its undeployed state, is shown in Figs. 22 and 23.
While the axial force is being applied, and the easy start feature 36 is placed between the sheaths, the screw is rotated in a clockwise direction. This further separates the sheath halves 30 and presses the tendons 20 to the wall of the tibial tunnel 16. The hinges 52, 54 along the same edge as the cortical hook are used to encourage the sheath halves to open in one direction, as shown in Figs. 24 and 25. The screw 28 is rotated until it is fully seated when the bullnose screw head 46 is flush with the cortical surface of the tibia.
Figs. 26 and 27 show the screw in a fully inserted state, with the sheath halves 30 separated and fully deployed. In this state, the sheath halves 30 push the tendons 20 outwardly, into contact with the tibial tunnel walls. The fully deployed implant in the tibia is shown in Fig. 28.
As shown in Fig. 29, verification testing of the embodiment shown in Figs. 28 was completed by the inventors, relative to a prior art device which is presently considered to be state of the art. As can be seen from the table, the pull out forces for the inventive implant were significantly higher than those for the prior art device. The average pull out force for the inventive device for bovine bone was 1165.2 N, as opposed to 532.7 N for the prior art device.
Now with reference to Figs. 30-34, various components of another embodiment of a tibial sheath anchor are illustrated. In Figs. 30 and 33, there is shown a sheath half 30 from two opposing sides thereof. An anchor 68 is shown in Figs. 31 and 34, and comprises a pair of legs 70 and a disk 72. A screw 28 is provided for actuating the anchor from an undeployed to a deployed configuration for securing the anchor and associated tendon bundle in place with respect to adjacent bone.
Referring now to Fig. 35, the patient's femur 10 and tibia 12 are shown wherein a sheath anchor 74 is assembled and disposed for insertion into the tibial tunnel 16. In accordance with the inventive procedure, the tendon bundles 20 are pulled through the sheath halves 30, as shown, with portions of each sheath half serving to retain the tendon bundles in place adjacent to the and along the sheaths. In particular, in the illustrated embodiment, tendon loops 76 on each sheath half 30 are formed so that the tendon bundles slide lengthwise along the sheath half 30 beneath the loops 76 so that the loops perform a retention function. The anchor 74 and its legs 70 are placed between the sheath halves 30 so that square tabs 78 on the anchor legs 70 (Fig. 31) are aligned with receptacle notches 36 on the rear of the sheath half 30 (Fig. 33). The screw taper on the rear of the sheath half 30 is oriented toward the joint 82, between the femur and the tibia.
In Fig. 36, the sheath halves 30 and anchor 68 have been slid up along the tendon bundles 20 until the anchor bottoms out against an angular surface in the hole 16. Then, as shown in Fig. 37, tension is applied to the tendon bundles 20, and the screw 28 is inserted and tightened within the anchor body, using a suitable tool, such as a hex driver. As shown in Fig. 38, the screw 28 should be tightened until it bottoms out against the anchor 68, approximately flush with or slightly recessed relative to the entrance to the tibial tunnel 16. This is important in order to ensure that there are no protrusions from the tunnels 16 which could cause discomfort to the patient or possible later complications and wear. An important advantage of the present invention is that the distal end 84 of the sheath anchor 30, as shown, for example, in Fig. 38, is disposed, once the anchor is fully inserted and deployed, so that it is in close proximity to the distal end (aperture) 86 (Fig. 49) of the tibial tunnel 16, at the joint 82. This provides excellent aperture fixation for the tendon bundles 20, in order to minimize wear on the tendon bundles over time due to the "windshield wiper" or "bungee" effects noted above in the Background of the Invention portion of the specification.
Deployment of the anchor 68 occurs when the screw 28 is inserted into the anchor body. This insertion action causes the anchor legs 70 to splay laterally outwardly, thus forcing the sheath halves 30 and tendon bundles 20 against the bony wall forming the tibial tunnel 16. As a result of this action, the tendon bundles 20 are clamped against the tibial bone 12 by the sheath halves 30.
Figs. 39 and 40 illustrate the patient's knee joint once the inventive procedure has been completed. Fig. 39 shows the joint with portions of the bone being removed or transparent so that the entire sheath anchor 30 is visible, while Fig. 40 shows the same joint as it would appear naturally with all bone in place. The final step of the procedure is to trim the protruding ends 88 (Fig. 38) of the tendon bundles 20 so that they are flush with the face of the sheath anchor 30. Figs. 41-47 illustrate components of a second inventive tibial anchor embodiment, which may be identified as a "cone anchor". Figs. 41 and 45 illustrate opposing sides of a right anchor portion 90 and Figs. 42 and 46 illustrate opposing sides of a left anchor portion 92. Opposing sides of a generally conical screw retention cup 94 are shown in Figs. 43 and 47. A screw 28 is shown in Fig. 44. It is noted that, in this embodiment, all like elements to those shown in previous embodiments will bear identical reference numerals.
The procedure for utilizing a cone anchor 96 of Figs. 41-47 (Fig. 48) to repair a patient's joint 82 is initiated in the same manner as for the sheath anchor 30. Thus, as shown in Figs. 1-4, a femur hole 18 and tibial tunnel 16 are drilled, and a femoral anchor is inserted and deployed to anchor tendon bundles 20 in place within the femoral hole 18, so that the tendon bundles 20 extend downwardly through the tibial tunnel 16, as shown in Fig. 4. The reader is referred to the description above for further detail regarding this part of the procedure.
Now, as shown in Fig. 48, the tendon bundles 20 are pulled through the cone anchor 96 in order to insert the tibial anchor into the tibial tunnel 16. In this embodiment, the tendon bundles are secured against the anchor portions 90 or 92 because they are pulled through tendon loops 76, which are formed in the proximal end of each anchor half 90, 92, respectively. Then, as shown in Fig. 49, the anchor 96 is slid upwardly along the tendon bundles 20 until the anchor 96 bottoms out against the angular surface in the tibial hole 16, as with the first embodiment. Again, as in the first embodiment, this positioning will cause the distal end 98 of the anchor 96 to be located in close proximity to the distal end 86 of the tibial tunnel 16 so that good aperture fixation will result. Then, as illustrated in Fig. 50, the tendons are appropriately tensioned and the screw 28 is inserted and tightened, together with the retainer cup 94, until seated. This action of inserting and tightening the screw 28 and screw retainer cup 94 will cause the anchor portions 90, 92 to move laterally outwardly in order to engage the tendon bundles 20 between the anchor portions 90, 92and adjacent tibial bone, as in the sheath anchor embodiment. Figs. 51 and 52 illustrate the anchor 96 in its fully installed condition, after the tendon ends 88 are trimmed flush and the procedure is otherwise completed.
Figs. 53-57 illustrate, in somewhat greater detail and in an assembled configuration, a cone anchor 96 of a type very similar to that illustrated in the embodiment of Figs. 41-52. Like elements are denoted by like reference numbers.
A modified tibial anchor embodiment 100 is illustrated in Figs. 58-60. This embodiment is similar to prior disclosed embodiments to the extent that there are provided two opposing sheaths having tendon loops 76 disposed thereon. A screw 28 and associated screw retention disk or cup 94 are also provided. Thus, the basic procedural steps for utilizing this anchor 100 are similar to those already described in connection with the previous disclosed embodiments. What is different about this embodiment, in particular, is the provision of a distal wedge 101 which functions to provide positive aperture fixation by ensuring that the anchor will be stopped within the tibial tunnel at an appropriate point during the insertion step. Pivotable arms 102 connect the anchor body to the wedge 101 , wherein the arms 102 are pivotable outwardly about hinges 104. Thus, when it is desired to lock the tibial anchor 100 in place within the tibial tunnel, insertion and tightening of the screw 28 within the anchor body actuates the arms 102 to pivot outwardly laterally about the hinges 104, thereby functioning to expand the wedge and cause positive engagement of the wedge and arms 102 with the tendon bundles and adjacent tibial bone. As in prior embodiments, positive fixation is enhanced by the provision of spikes 106 or other suitable means for penetrating the tendon bundles and the bone to lock the tendon bundles and anchor in place.
Accordingly, although an exemplary embodiment of the invention has been shown and described, it is to be understood that all the terms used herein are descriptive rather than limiting, and that many changes, modifications, and substitutions may be made by one having ordinary skill in the art without departing from the spirit and scope of the invention.

Claims

What is claimed is:
1. A material fixation system, comprising: two sheath portions defining a space therebetween; a hinge for attaching said sheath portions together along one side thereof; and an insertion member insertable into said space for expanding said sheath portions laterally outwardly in order to urge a soft tissue graft against an adjacent bone surface.
2. The material fixation system as recited in Claim 1 , wherein said insertion member comprises a tapered screw.
3. The material fixation system as recited in Claim 1 , wherein said hinge comprises a hinge protrusion disposed on a first of said sheath portions and a hinge slot disposed on a second of said sheath portions, wherein said hinge protrusion and said hinge slot engage one another.
4. The material fixation system as recited in Claim 3, and further comprising a second hinge protrusion disposed on said second sheath portion and a second hinge slot disposed on said first sheath portion, wherein said second hinge protrusion and said second hinge slot engage one another.
5. The material fixation system as recited in Claim 1 , and further comprising a driver for engaging and moving said insertion member.
6. The material fixation system as recited in Claim 2, wherein said screw has a bullnose screw head.
7. The material fixation system as recited in Claim 1 , wherein said two sheath portions are mirror images of one another.
8. The material fixation system as recited in Claim 1 , wherein said soft tissue graft comprises an autograft.
9. The material fixation system as recited in Claim 1 , wherein said soft tissue graft comprises an allograft.
10. The material fixation system as recited in Claim 2, wherein a distal end of said screw comprises a cut-out portion which permits the distal end of the screw to easily fit between said two sheath portions, thus permitting an operator to easily start rotation of the screw.
11. The material fixation system as recited in Claim 2, wherein said screw comprises external threads and said sheath portions comprise complementary internal threads, said screw further comprising a thread start to enable easier engagement of the screw threads and the sheath threads.
12. The material fixation system as recited in Claim 1, and further comprising at least one retaining rib on at least one sheath portion for providing small areas of higher force between the sheath portion and the soft tissue graft.
13. The material fixation system as recited in Claim 1 , wherein said sheath portions and said insertion member are adapted for insertion into a bone tunnel in a patient's tibia, and said soft tissue graft comprises a tendon graft for making an ACL repair.
14. The material fixation system as recited in Claim 1 , and further comprising a cortical hook on one of said sheath portions for engaging hard cortical bone at the procedural site.
15. The material fixation system as recited in Claim 1 , wherein one of said sheath halves comprises a snap post and the other one of said sheath halves comprises a complementary snap hole, said snap post and said snap hole being engageable with one another to keep the two sheath halves from opening prematurely.
16. The material fixation system as recited in Claim 1 , and further comprising a ramp formed on one of said sheath portions for allowing a tip of the sheath portion to provide compression between the soft tissue graft and the bone at the aperture of bone tunnel in which said system is disposed.
17. The material fixation system as recited in Claim 1 , and further comprising flex grooves disposed on one of said sheath portions, for permitting the sheath portion to flex and form around a tip of the insertion member.
18. The material fixation system as recited in Claim 1 , and further comprising a bullnose sheath tip on one of said sheath portions.
19. The material fixation system as recited in Claim 1 , wherein each of said sheath portions further comprise a loop for retaining a soft tissue graft along a laterally outer surface of the sheath portion.
20. An Implant system for promoting soft tissue to bone contact in order to promote good fixation of soft tissue to bone when making an orthopedic repair of a joint, said implant system comprising: a first implant adapted for receiving a tissue graft thereon and then being disposed in a first bone tunnel location, wherein ends of the tissue graft extend through a bone tunnel and out of a proximal end of the tunnel; a second implant adapted for disposition in a second bone tunnel location, proximal to said first bone tunnel location, said second implant comprising a plurality of sheaths having laterally outer surfaces and being adapted for advancing to the first bone tunnel location by sliding over the ends of the tissue graft, so that when the second implant is in said second bone tunnel location, the tissue grafts are disposed between the laterally outer surfaces of said plurality of sheaths and the bone defining said bone tunnel; and an insertion member insertable between said plurality of sheath members to laterally expand said sheath members toward said soft tissue grafts, thereby urging said soft tissue grafts into contact with the bone defining said bone tunnel.
21. The implant system as recited in Claim 20, wherein said second implant further comprises a hinge for attaching said sheath portions together along one side thereof.
22. The implant system as recited in Claim 20, wherein said insertion member comprises a tapered screw.
23. The implant system as recited in Claim 21 , wherein said hinge comprises a hinge protrusion disposed on a first of said sheath portions and a hinge slot disposed on a second of said sheath portions, wherein said hinge protrusion and said hinge slot engage one another.
24. The implant system as recited in Claim 23, and further comprising a second hinge protrusion disposed on said second sheath portion and a second hinge slot disposed on said first sheath portion, wherein said second hinge protrusion and said second hinge slot engage one another.
25. The implant system as recited in Claim 21 , wherein said plurality of sheath portions are mirror images of one another.
26. The implant system as recited in Claim 21 , wherein said soft tissue graft comprises an autograft.
27. The implant system as recited in Claim 21 , wherein said soft tissue graft comprises an allograft.
28. The implant system as recited in Claim 22, wherein a distal end of said screw comprises a cut-out portion which permits the distal end of the screw to easily fit between said two sheath portions, thus permitting an operator to easily start rotation of the screw.
29. The implant system as recited in Claim 22, wherein said screw comprises external threads and said sheath portions comprise complementary internal threads, said screw further comprising a thread start to enable easier engagement of the screw threads and the sheath threads.
30. The implant system as recited in Claim 21 , and further comprising at least one retaining rib on at least one sheath portion for providing small areas of higher force between the sheath portion and the soft tissue graft.
31. The implant system as recited in Claim 21 , and further comprising a cortical hook on one of said sheath portions for engaging hard cortical bone at the procedural site.
32. The implant system as recited in Claim 21 , wherein one of said sheath halves comprises a snap post and the other one of said sheath halves comprises a complementary snap hole, said snap post and said snap hole being engageable with one another to keep the two sheath halves from opening prematurely.
33. The implant system as recited in Claim 21 , and further comprising a ramp formed on one of said sheath portions for allowing a tip of the sheath portion to provide compression between the soft tissue graft and the bone at the aperture of bone tunnel in which said system is disposed.
34. The implant system as recited in Claim 21 , and further comprising flex grooves disposed on one of said sheath portions, for permitting the sheath portion to flex and form around a tip of the insertion member.
35. The implant system as recited in Claim 21 , wherein each of said sheath portions further comprise a loop for retaining a soft tissue graft along a laterally outer surface of the sheath portion.
36. A material fixation system, comprising: a plurality of sheath portions defining a space therebetween, said sheath portions being initially engaged with one another in an undeployed orientation; and an insertion member insertable into said space for expanding said sheath portions laterally outwardly to a fully deployed orientation in order to urge a soft tissue graft against an adjacent bone surface; wherein as said sheath portions expand outwardly to said fully deployed orientation, they become detached from one another.
37. The material fixation system as recited in Claim 36, and further comprising a hinge for initially engaging said sheath portions to one another when in said undeployed orientation.
38. The material fixation system as recited in Claim 36, wherein said insertion member comprises a tapered screw.
39. The material fixation system as recited in Claim 37, wherein said hinge comprises a hinge protrusion disposed on a first of said sheath portions and a hinge slot disposed on a second of said sheath portions, wherein said hinge protrusion and said hinge slot engage one another.
40. The material fixation system as recited in Claim 39, and further comprising a second hinge protrusion disposed on said second sheath portion and a second hinge slot disposed on said first sheath portion, wherein said second hinge protrusion and said second hinge slot engage one another.
41. The material fixation system as recited in Claim 36, and further comprising a driver for engaging and moving said insertion member.
42. The material fixation system as recited in Claim 37, wherein said screw has a bullnose screw head.
43. The material fixation system as recited in Claim 36, wherein said two sheath portions are mirror images of one another.
44. The material fixation system as recited in Ctaim 36, wherein said soft tissue graft comprises an autograft.
45. The material fixation system as recited in Claim 36, wherein said soft tissue graft comprises an allograft.
46. The material fixation system as recited in Claim 37, wherein a distal end of said screw comprises a cut-out portion which permits the distal end of the screw to easily fit between said two sheath portions, thus permitting an operator to easily start rotation of the screw.
47. The material fixation system as recited in Claim 37, wherein said screw comprises external threads and said sheath portions comprise complementary internal threads, said screw further comprising a thread start to enable easier engagement of the screw threads and the sheath threads.
48. The material fixation system as recited in Claim 36, and further comprising at least one retaining rib on at least one sheath portion for providing small areas of higher force between the sheath portion and the soft tissue graft.
49. The material fixation system as recited in Claim 36, wherein said sheath portions and said insertion member are adapted for insertion into a bone tunnel in a patient's tibia, and said soft tissue graft comprises a tendon graft for making an ACL repair.
50. The material fixation system as recited in Claim 36, and further comprising a cortical hook on one of said sheath portions for engaging hard cortical bone at the procedural site.
51. The material fixation system as recited in Claim 36, wherein one of said sheath halves comprises a snap post and the other one of said sheath halves comprises a complementary snap hole, said snap post and said snap hole being engageable with one another to keep the two sheath halves from opening prematurely.
52. The material fixation system as recited in Claim 36, and further comprising a ramp formed on one of said sheath portions for allowing a tip of the sheath portion to provide compression between the soft tissue graft and the bone at the aperture of bone tunnel in which said system is disposed.
53. The material fixation system as recited in Claim 36, and further comprising flex grooves disposed on one of said sheath portions, for permitting the sheath portion to flex and form around a tip of the insertion member.
54. The material fixation system as recited in Claim 36, and further comprising a bullnose sheath tip on one of said sheath portions.
55. The material fixation system as recited in Claim 36, wherein each of said sheath portions further comprise a loop for retaining a soft tissue graft along a laterally outer surface of the sheath portion.
PCT/US2007/006928 2006-03-20 2007-03-20 Devices, systems, and methods for material fixation WO2007109280A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2007227318A AU2007227318B2 (en) 2006-03-20 2007-03-20 Devices, systems, and methods for material fixation
JP2009501518A JP5204755B2 (en) 2006-03-20 2007-03-20 Apparatus, system, and method for material fixation
EP07753548.2A EP2001405B1 (en) 2006-03-20 2007-03-20 Systems for tendon fixation

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US78442206P 2006-03-20 2006-03-20
US60/784,422 2006-03-20
US85417806P 2006-10-24 2006-10-24
US60/854,178 2006-10-24
US89894607P 2007-01-31 2007-01-31
US60/898,946 2007-01-31

Publications (2)

Publication Number Publication Date
WO2007109280A2 true WO2007109280A2 (en) 2007-09-27
WO2007109280A3 WO2007109280A3 (en) 2008-05-02

Family

ID=38523059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/006928 WO2007109280A2 (en) 2006-03-20 2007-03-20 Devices, systems, and methods for material fixation

Country Status (5)

Country Link
US (2) US7967861B2 (en)
EP (1) EP2001405B1 (en)
JP (1) JP5204755B2 (en)
AU (1) AU2007227318B2 (en)
WO (1) WO2007109280A2 (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551140B2 (en) 2004-11-05 2013-10-08 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8608777B2 (en) 2006-02-03 2013-12-17 Biomet Sports Medicine Method and apparatus for coupling soft tissue to a bone
US8632569B2 (en) 2006-02-03 2014-01-21 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US8663325B2 (en) 2009-07-09 2014-03-04 Smith & Nephew, Inc. Tissue graft anchor assembly and instrumentation for use therewith
US8672968B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8777956B2 (en) 2006-08-16 2014-07-15 Biomet Sports Medicine, Llc Chondral defect repair
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8900314B2 (en) 2009-05-28 2014-12-02 Biomet Manufacturing, Llc Method of implanting a prosthetic knee joint assembly
US8932331B2 (en) 2006-02-03 2015-01-13 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9173651B2 (en) 2006-02-03 2015-11-03 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
WO2015200918A2 (en) 2014-06-27 2015-12-30 Anatomacl, Llc Apparatus and method for anatomic acl reconstruction
US9314241B2 (en) 2011-11-10 2016-04-19 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9333020B2 (en) 2009-07-09 2016-05-10 Smith & Nephew, Inc. Tissue graft anchor assembly and instrumentation for use therewith
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9402621B2 (en) 2006-02-03 2016-08-02 Biomet Sports Medicine, LLC. Method for tissue fixation
US9414833B2 (en) 2006-02-03 2016-08-16 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US9414925B2 (en) 2006-09-29 2016-08-16 Biomet Manufacturing, Llc Method of implanting a knee prosthesis assembly with a ligament link
US9445827B2 (en) 2011-10-25 2016-09-20 Biomet Sports Medicine, Llc Method and apparatus for intraosseous membrane reconstruction
WO2016168045A1 (en) * 2015-04-16 2016-10-20 Smith & Nephew, Inc. Fixation device and tissue fixation method for acl reconstruction
US9492158B2 (en) 2006-02-03 2016-11-15 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9504460B2 (en) 2004-11-05 2016-11-29 Biomet Sports Medicine, LLC. Soft tissue repair device and method
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US9572655B2 (en) 2004-11-05 2017-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9788876B2 (en) 2006-09-29 2017-10-17 Biomet Sports Medicine, Llc Fracture fixation device
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US10004588B2 (en) 2006-02-03 2018-06-26 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US10022215B2 (en) 2011-06-20 2018-07-17 Anatomacl, Llc Apparatus and method for ligament reconstruction
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US10117739B2 (en) 2006-10-24 2018-11-06 Cayenne Medical, Inc. Methods and systems for material fixation
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US10349931B2 (en) 2006-09-29 2019-07-16 Biomet Sports Medicine, Llc Fracture fixation device
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10912551B2 (en) 2015-03-31 2021-02-09 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
US10939992B2 (en) 2011-06-20 2021-03-09 Anatomacl, Llc Apparatus and method for ligament reconstruction
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US12096928B2 (en) 2009-05-29 2024-09-24 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713305B2 (en) * 2000-05-01 2010-05-11 Arthrosurface, Inc. Articular surface implant
US8177841B2 (en) 2000-05-01 2012-05-15 Arthrosurface Inc. System and method for joint resurface repair
US6520964B2 (en) 2000-05-01 2003-02-18 Std Manufacturing, Inc. System and method for joint resurface repair
US7163541B2 (en) 2002-12-03 2007-01-16 Arthrosurface Incorporated Tibial resurfacing system
US6610067B2 (en) 2000-05-01 2003-08-26 Arthrosurface, Incorporated System and method for joint resurface repair
US7678151B2 (en) * 2000-05-01 2010-03-16 Ek Steven W System and method for joint resurface repair
US7195642B2 (en) 2001-03-13 2007-03-27 Mckernan Daniel J Method and apparatus for fixing a graft in a bone tunnel
US7901408B2 (en) 2002-12-03 2011-03-08 Arthrosurface, Inc. System and method for retrograde procedure
US8388624B2 (en) 2003-02-24 2013-03-05 Arthrosurface Incorporated Trochlear resurfacing system and method
US7951163B2 (en) * 2003-11-20 2011-05-31 Arthrosurface, Inc. Retrograde excision system and apparatus
WO2005051231A2 (en) 2003-11-20 2005-06-09 Arthrosurface, Inc. Retrograde delivery of resurfacing devices
WO2006074321A2 (en) 2003-11-20 2006-07-13 Arthrosurface, Inc. System and method for retrograde procedure
EP1765201A4 (en) 2004-06-28 2013-01-23 Arthrosurface Inc System for articular surface replacement
US7828853B2 (en) 2004-11-22 2010-11-09 Arthrosurface, Inc. Articular surface implant and delivery system
CA2617217A1 (en) * 2005-07-29 2007-02-08 Arthrosurface, Inc. System and method for articular surface repair
AU2007332787A1 (en) 2006-12-11 2008-06-19 Arthrosurface Incorporated Retrograde resection apparatus and method
EP2109423A2 (en) * 2007-02-14 2009-10-21 Arthrosurface Incorporated Bone cement delivery device
GB0710023D0 (en) * 2007-05-25 2007-07-04 Facilities Council Graft fixation device
WO2009111481A1 (en) 2008-03-03 2009-09-11 Arthrosurface Incorporated Bone resurfacing system and method
US20110106177A1 (en) * 2008-04-28 2011-05-05 Lewis Stephen J Anchor for use with orthopedic screw
US20090281581A1 (en) 2008-05-06 2009-11-12 Berg Jeffery H Method and device for securing sutures to bones
ATE536563T1 (en) * 2008-08-18 2011-12-15 Qioptiq Photonics Gmbh & Co Kg METHOD FOR PRODUCING A LENS
WO2010088561A2 (en) 2009-01-30 2010-08-05 Kfx Medical Corporation System and method for attaching soft tissue to bone
EP2413841A4 (en) * 2009-03-31 2018-06-20 Imds Llc Double bundle acl repair
WO2010121250A1 (en) 2009-04-17 2010-10-21 Arthrosurface Incorporated Glenoid resurfacing system and method
US10945743B2 (en) 2009-04-17 2021-03-16 Arthrosurface Incorporated Glenoid repair system and methods of use thereof
EP2429433A4 (en) 2009-04-17 2015-04-08 Shane Barwood Tenodesis system
US9283076B2 (en) 2009-04-17 2016-03-15 Arthrosurface Incorporated Glenoid resurfacing system and method
WO2010124088A1 (en) 2009-04-22 2010-10-28 The Cleveland Clinic Foundation Apparatus and method for sequentially anchoring multiple graft ligaments in a bone tunnel
US9339370B2 (en) 2009-04-22 2016-05-17 The Cleveland Clinic Foundation Apparatus and method for sequentially anchoring multiple graft ligaments in a bone tunnel
EP2488118B1 (en) * 2009-10-13 2022-01-05 ConMed Corporation System for securing tissue to bone
BR112012022482A2 (en) 2010-03-05 2016-07-19 Arthrosurface Inc tibial surface recomposition system and method.
US9044313B2 (en) 2010-10-08 2015-06-02 Kfx Medical Corporation System and method for securing tissue to bone
JP6256833B2 (en) * 2011-01-05 2018-01-10 インプランティカ・パテント・リミテッド Knee joint device and method
US9066716B2 (en) 2011-03-30 2015-06-30 Arthrosurface Incorporated Suture coil and suture sheath for tissue repair
ES2688248T3 (en) 2011-04-13 2018-10-31 Conmed Corporation System to secure a tissue to a bone
US8998925B2 (en) 2011-06-20 2015-04-07 Rdc Holdings, Llc Fixation system for orthopedic devices
WO2012177759A1 (en) 2011-06-20 2012-12-27 Rdc Holdings, Llc System and method for repairing joints
US8535350B2 (en) 2011-09-28 2013-09-17 Depuy Mitek, Llc Knotless suture anchor
CA2850812A1 (en) 2011-10-04 2013-04-11 Kfx Medical Corporation Dual expansion anchor
US8968402B2 (en) 2011-10-18 2015-03-03 Arthrocare Corporation ACL implants, instruments, and methods
EP2804565B1 (en) 2011-12-22 2018-03-07 Arthrosurface Incorporated System for bone fixation
DE112013003358T5 (en) 2012-07-03 2015-03-19 Arthrosurface, Inc. System and procedure for joint surface replacement and repair
WO2014066116A1 (en) 2012-10-23 2014-05-01 Cayenne Medical, Inc. Methods and systems for material fixation
US20160270902A1 (en) * 2012-11-13 2016-09-22 Universitat Zurich Device for fixation of a flexible element, particularly a natural or synthetical ligament or tendon, to a bone
US9265600B2 (en) * 2013-02-27 2016-02-23 Orthopediatrics Corp. Graft fixation
KR102391275B1 (en) 2013-03-14 2022-04-27 케이에프엑스 메디컬, 엘엘씨 Tissue capturing bone anchor
MX359382B (en) * 2013-03-15 2018-09-25 Conmed Corp SYSTEM and METHOD FOR SECURING TISSUE to BONE.
US9492200B2 (en) 2013-04-16 2016-11-15 Arthrosurface Incorporated Suture system and method
US9301832B2 (en) 2013-08-01 2016-04-05 Christopher Sterling Pallia Tendon anchor and method of using same
US10624748B2 (en) 2014-03-07 2020-04-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US9931219B2 (en) 2014-03-07 2018-04-03 Arthrosurface Incorporated Implant and anchor assembly
US11607319B2 (en) 2014-03-07 2023-03-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US10034742B2 (en) 2014-10-23 2018-07-31 Medos International Sarl Biceps tenodesis implants and delivery tools
US10751161B2 (en) 2014-10-23 2020-08-25 Medos International Sárl Biceps tenodesis anchor implants
US10729419B2 (en) * 2014-10-23 2020-08-04 Medos International Sarl Biceps tenodesis implants and delivery tools
US10856966B2 (en) 2014-10-23 2020-12-08 Medos International Sarl Biceps tenodesis implants and delivery tools
US10076374B2 (en) 2014-10-23 2018-09-18 Medos International Sárl Biceps tenodesis delivery tools
US9693856B2 (en) 2015-04-22 2017-07-04 DePuy Synthes Products, LLC Biceps repair device
US10231823B2 (en) 2016-04-08 2019-03-19 Medos International Sarl Tenodesis implants and tools
US10231824B2 (en) 2016-04-08 2019-03-19 Medos International Sárl Tenodesis anchoring systems and tools
US10828146B2 (en) 2016-08-04 2020-11-10 Stryker Corporation Instrumentation for soft tissue reconstruction
CA3108761A1 (en) 2017-08-04 2019-02-07 Arthrosurface Incorporated Multicomponent articular surface implant
WO2020183592A1 (en) * 2019-03-11 2020-09-17 オリンパス株式会社 Ligament fixation instrument, ligament fixation system, and ligament fixation method
US11478358B2 (en) 2019-03-12 2022-10-25 Arthrosurface Incorporated Humeral and glenoid articular surface implant systems and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491162A2 (en) 2003-06-27 2004-12-29 DePuy Mitek, Inc. A graft fixation device

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1422048A (en) * 1921-12-06 1922-07-04 Bryant Electric Co Hinge joint
US3708883A (en) * 1971-01-04 1973-01-09 S Flander Dental implant and method for using the same
FR2165159A5 (en) * 1971-12-21 1973-08-03 Talan Maryan
JPS6021537Y2 (en) * 1979-06-12 1985-06-27 日産自動車株式会社 Connector
GB2084468B (en) * 1980-09-25 1984-06-06 South African Inventions Surgical implant
CN1006954B (en) * 1985-03-11 1990-02-28 阿图尔·费希尔 Fastening elements for osteosynthesis
US4711232A (en) * 1985-07-12 1987-12-08 Artur Fischer Bone fastener and method of installing same
US4744793A (en) * 1985-09-06 1988-05-17 Zimmer, Inc. Prosthetic ligament connection assembly
US4708132A (en) 1986-01-24 1987-11-24 Pfizer-Hospital Products Group, Inc. Fixation device for a ligament or tendon prosthesis
US4738255A (en) * 1986-04-07 1988-04-19 Biotron Labs, Inc. Suture anchor system
GB8622563D0 (en) * 1986-09-19 1986-10-22 Amis A A Artificial ligaments
US4772286A (en) * 1987-02-17 1988-09-20 E. Marlowe Goble Ligament attachment method and apparatus
JPH01154740A (en) * 1987-12-11 1989-06-16 Shin Etsu Chem Co Ltd Adhesive structure
US4828562A (en) * 1988-02-04 1989-05-09 Pfizer Hospital Products Group, Inc. Anterior cruciate ligament prosthesis
US4870957A (en) * 1988-12-27 1989-10-03 Marlowe Goble E Ligament anchor system
US5108443A (en) * 1989-04-25 1992-04-28 Medevelop Ab Anchoring element for supporting a joint mechanism of a finger or other reconstructed joint
US4955910A (en) * 1989-07-17 1990-09-11 Boehringer Mannheim Corporation Fixation system for an elongated prosthesis
US5004474A (en) * 1989-11-28 1991-04-02 Baxter International Inc. Prosthetic anterior cruciate ligament design
US5139520A (en) * 1990-01-31 1992-08-18 American Cyanamid Company Method for acl reconstruction
US5360431A (en) * 1990-04-26 1994-11-01 Cross Medical Products Transpedicular screw system and method of use
US5236445A (en) * 1990-07-02 1993-08-17 American Cyanamid Company Expandable bone anchor and method of anchoring a suture to a bone
US5037422A (en) 1990-07-02 1991-08-06 Acufex Microsurgical, Inc. Bone anchor and method of anchoring a suture to a bone
US5258016A (en) * 1990-07-13 1993-11-02 American Cyanamid Company Suture anchor and driver assembly
US5383878A (en) * 1990-09-04 1995-01-24 Hip Developments Pty Ltd. Surgical screw
US5725529A (en) 1990-09-25 1998-03-10 Innovasive Devices, Inc. Bone fastener
ATE174777T1 (en) * 1990-09-25 1999-01-15 Innovasive Devices Inc BONE FIXATION DEVICE
DE4106823C1 (en) * 1991-03-04 1992-06-25 Liebscher Kunststofftechnik, 8032 Graefelfing, De
GB9105957D0 (en) 1991-03-21 1991-05-08 Seedhom Bahaa B Implantable fixing device
US5480403A (en) * 1991-03-22 1996-01-02 United States Surgical Corporation Suture anchoring device and method
US5354298A (en) * 1991-03-22 1994-10-11 United States Surgical Corporation Suture anchor installation system
CA2063159C (en) * 1991-03-22 1999-06-15 Thomas W. Sander Orthopedic fastener
FR2676356A1 (en) * 1991-05-13 1992-11-20 Cendis Medical Fixation element for ligaments
EP0528573A1 (en) 1991-08-08 1993-02-24 Howmedica International Inc. Fastener for securing an orthopaedic device to a bone
US5234430A (en) * 1991-12-18 1993-08-10 Huebner Randall J Orthopedic fixation screw and method
US5320626A (en) * 1992-02-19 1994-06-14 Arthrex Inc. Endoscopic drill guide
US5211647A (en) * 1992-02-19 1993-05-18 Arthrex Inc. Interference screw and cannulated sheath for endosteal fixation of ligaments
US5350383A (en) * 1992-02-20 1994-09-27 Arthrex, Inc. Adjustable drill guide with interchangeable marking hooks
FR2696925B3 (en) 1992-10-19 1994-12-23 Sanouiller Jean Louis Orthopedic surgery kit for anchoring the bone part of a ligament in a bone tunnel.
US5814073A (en) * 1996-12-13 1998-09-29 Bonutti; Peter M. Method and apparatus for positioning a suture anchor
US5431651A (en) * 1993-02-08 1995-07-11 Goble; E. Marlowe Cross pin and set screw femoral and tibial fixation method
US5934291A (en) * 1993-02-22 1999-08-10 Andrews; Edward A. Mini-shaving device for grooming facial hair
US5372599A (en) 1993-03-12 1994-12-13 Mitek Surgical Products, Inc. Surgical anchor and method for deploying the same
US5845645A (en) * 1993-05-14 1998-12-08 Bonutti; Peter M. Method of anchoring a suture
ES2185651T3 (en) * 1993-06-04 2003-05-01 Smith & Nephew Inc SURGICAL SCREW AND WASHER.
US5505735A (en) * 1993-06-10 1996-04-09 Mitek Surgical Products, Inc. Surgical anchor and method for using the same
US5632748A (en) * 1993-06-14 1997-05-27 Linvatec Corporation Endosteal anchoring device for urging a ligament against a bone surface
US5456885A (en) * 1993-07-12 1995-10-10 Coleman; Charles M. Fluid collection, separation and dispensing tube
US5466237A (en) * 1993-11-19 1995-11-14 Cross Medical Products, Inc. Variable locking stabilizer anchor seat and screw
US5618314A (en) * 1993-12-13 1997-04-08 Harwin; Steven F. Suture anchor device
USRE36289E (en) 1993-12-13 1999-08-31 Ethicon, Inc. Umbrella shaped suture anchor device with actuating ring member
US5545180A (en) 1993-12-13 1996-08-13 Ethicon, Inc. Umbrella-shaped suture anchor device with actuating ring member
ATE277557T1 (en) 1994-01-13 2004-10-15 David A Mcguire ALLOGENE OR SYNTHETIC BONE COMPOSITE IMPLANT
US5456685A (en) * 1994-02-14 1995-10-10 Smith & Nephew Dyonics, Inc. Interference screw having a tapered back root
US5411523A (en) * 1994-04-11 1995-05-02 Mitek Surgical Products, Inc. Suture anchor and driver combination
US5645589A (en) * 1994-08-22 1997-07-08 Li Medical Technologies, Inc. Anchor and method for securement into a bore
CA2199637C (en) 1994-09-15 2007-05-01 Paul W. Pavlov Conically-shaped anterior fusion cage and method of implantation
US5464427A (en) * 1994-10-04 1995-11-07 Synthes (U.S.A.) Expanding suture anchor
US6802862B1 (en) 1995-01-24 2004-10-12 Smith & Nephew, Inc. Method for soft tissue reconstruction
US5601562A (en) * 1995-02-14 1997-02-11 Arthrex, Inc. Forked insertion tool and metnod of arthroscopic surgery using the same
US5603716A (en) * 1995-02-16 1997-02-18 Arthrex Inc. Method of ligament reconstruction using double socket graft placement and fixation
US5702215A (en) * 1995-06-05 1997-12-30 Li Medical Technologies, Inc. Retractable fixation device
US5569306A (en) * 1995-06-06 1996-10-29 Thal; Raymond Knotless suture anchor assembly
US6086608A (en) * 1996-02-22 2000-07-11 Smith & Nephew, Inc. Suture collet
US5571184A (en) * 1995-06-07 1996-11-05 Wright Medical Technology, Inc. Graft fixation device and method of using
FR2737968B1 (en) * 1995-08-23 1997-12-05 Biomat IMPLANT FOR OSTEOSYNTHESIS OF SUPERIOR FEMALE EPIPHYSIS
EP0955894A4 (en) * 1995-08-25 2001-02-28 R Thomas Grotz Stabilizer for human joints
DE19545612C2 (en) * 1995-12-07 2001-08-30 Aesculap Ag & Co Kg Orthopedic retention system
US5725541A (en) * 1996-01-22 1998-03-10 The Anspach Effort, Inc. Soft tissue fastener device
US5957953A (en) * 1996-02-16 1999-09-28 Smith & Nephew, Inc. Expandable suture anchor
US5702397A (en) * 1996-02-20 1997-12-30 Medicinelodge, Inc. Ligament bone anchor and method for its use
NL1005394C1 (en) 1996-04-01 1997-10-02 Kokbing Lo Fixing element and strap fixed with fixing element.
US5741300A (en) * 1996-09-10 1998-04-21 Li Medical Technologies, Inc. Surgical anchor and package and cartridge for surgical anchor
GB9620046D0 (en) 1996-09-26 1996-11-13 Neoligaments Attachment device for use in the implantation of prosthetic ligament
CA2217406C (en) * 1996-10-04 2006-05-30 United States Surgical Corporation Suture anchor installation system with disposable loading unit
US6648890B2 (en) 1996-11-12 2003-11-18 Triage Medical, Inc. Bone fixation system with radially extendable anchor
ES2252800T3 (en) 1996-11-21 2006-05-16 Ethicon, Inc. APPARATUS FOR ANCHORING GRAPHICS OF AUTOGENOUS OR ARTIFICIALS IN BONE.
US6554862B2 (en) * 1996-11-27 2003-04-29 Ethicon, Inc. Graft ligament anchor and method for attaching a graft ligament to a bone
US6533816B2 (en) * 1999-02-09 2003-03-18 Joseph H. Sklar Graft ligament anchor and method for attaching a graft ligament to a bone
US5899938A (en) 1996-11-27 1999-05-04 Joseph H. Sklar Graft ligament anchor and method for attaching a graft ligament to a bone
JPH10155820A (en) 1996-12-02 1998-06-16 Ryohei Takeuchi Plug for fixing reconstructive ligament into bone hole
US5707395A (en) * 1997-01-16 1998-01-13 Li Medical Technologies, Inc. Surgical fastener and method and apparatus for ligament repair
DE19702201C1 (en) * 1997-01-23 1998-08-06 Aesculap Ag & Co Kg Pin-shaped holding component for orthopaedic retention system
US5769894A (en) * 1997-02-05 1998-06-23 Smith & Nephew, Inc. Graft attachment device and method of attachment
IT1299591B1 (en) 1997-02-07 2000-03-24 Fabio Conteduca DEVICE FOR FIXING THE TENDONS USED TO REBUILD THE ANTERIOR CRUCIAL LIGAMENT OF THE FEMORAL HOLE
US5918604A (en) * 1997-02-12 1999-07-06 Arthrex, Inc. Method of loading tendons into the knee
AUPO530997A0 (en) 1997-02-25 1997-03-20 Esnouf, Philip Stuart Surgical aid for connective tissue grafting and method for employing same
US5935129A (en) * 1997-03-07 1999-08-10 Innovasive Devices, Inc. Methods and apparatus for anchoring objects to bone
US6017346A (en) * 1997-07-18 2000-01-25 Ultraortho, Inc. Wedge for fastening tissue to bone
US5931869A (en) * 1997-07-23 1999-08-03 Arthrotek, Inc. Apparatus and method for tibial fixation of soft tissue
CA2303853C (en) 1997-09-24 2007-01-30 Depuy Orthopaedics, Inc. Acl fixation pin and method
US5906632A (en) * 1997-10-03 1999-05-25 Innovasive Devices, Inc. Intratunnel attachment device and system for a flexible load-bearing structure and method of use
US5871504A (en) * 1997-10-21 1999-02-16 Eaton; Katulle Koco Anchor assembly and method for securing ligaments to bone
US6146406A (en) * 1998-02-12 2000-11-14 Smith & Nephew, Inc. Bone anchor
US6387129B2 (en) 1998-03-18 2002-05-14 Arthrex, Inc. Bicortical tibial fixation of ACL grafts
US5964764A (en) * 1998-03-24 1999-10-12 Hugh S. West, Jr. Apparatus and methods for mounting a ligament graft to a bone
US6099530A (en) 1998-04-09 2000-08-08 Smith & Nephew, Inc. Soft-tissue intra-tunnel fixation device
US5941901A (en) * 1998-04-16 1999-08-24 Axya Medical, Inc. Bondable expansion plug for soft tissue fixation
FR2777442B1 (en) 1998-04-21 2000-07-28 Tornier Sa REVERSIBLE EXPANSION SUTURE ANCHOR
US6113609A (en) * 1998-05-26 2000-09-05 Scimed Life Systems, Inc. Implantable tissue fastener and system for treating gastroesophageal reflux disease
US6221107B1 (en) * 1998-08-03 2001-04-24 Mark E. Steiner Ligament fixation device and method
US6355066B1 (en) * 1998-08-19 2002-03-12 Andrew C. Kim Anterior cruciate ligament reconstruction hamstring tendon fixation system
DE29815290U1 (en) * 1998-08-26 2000-01-05 Howmedica GmbH, 24232 Schönkirchen Device for anchoring a cruciate ligament graft in the knee joint parts
US6482210B1 (en) 1998-11-12 2002-11-19 Orthopaedic Biosystems, Ltd., Inc. Soft tissue/ligament to bone fixation device with inserter
US20020165611A1 (en) 1998-12-22 2002-11-07 Robert-Jan Enzerink Graft material convenience package
US6283973B1 (en) * 1998-12-30 2001-09-04 Depuy Orthopaedics, Inc. Strength fixation device
US6152928A (en) * 1999-03-02 2000-11-28 Ethicon, Inc. Ligament fixation device and method
US6214007B1 (en) 1999-06-01 2001-04-10 David G. Anderson Surgical fastener for fixation of a soft tissue graft to a bone tunnel
US6187008B1 (en) * 1999-07-07 2001-02-13 Bristol-Myers Squibb Device for temporarily fixing bones
US6179840B1 (en) * 1999-07-23 2001-01-30 Ethicon, Inc. Graft fixation device and method
US6319252B1 (en) 1999-07-23 2001-11-20 Mcdevitt Dennis System and method for attaching soft tissue to bone
AUPQ366099A0 (en) 1999-10-26 1999-11-18 Queensland University Of Technology Ortho paedic screw
US6736829B1 (en) 1999-11-11 2004-05-18 Linvatec Corporation Toggle anchor and tool for insertion thereof
US6635073B2 (en) 2000-05-03 2003-10-21 Peter M. Bonutti Method of securing body tissue
US7279008B2 (en) * 2000-03-16 2007-10-09 Smith & Nephew, Inc. Sheaths for implantable fixation devices
US6461373B2 (en) 2000-05-26 2002-10-08 Arthrex, Inc. Biointerference screw fixation technique
US6623524B2 (en) 2000-06-09 2003-09-23 Arthrex, Inc. Method for anterior cruciate ligament reconstruction using cross-pin implant with eyelet
AU6760501A (en) * 2000-06-14 2001-12-24 Teppo Jarvinen Fixation anchor
US6325804B1 (en) 2000-06-28 2001-12-04 Ethicon, Inc. Method for fixing a graft in a bone tunnel
US6517579B1 (en) 2000-09-06 2003-02-11 Lonnie E. Paulos Method and apparatus for securing a soft tissue graft to bone during an ACL reconstruction
BR0017331A (en) 2000-09-07 2003-06-03 Synthes Ag Device for treating bone fractures and / or for fixing surgical implants
US7037324B2 (en) 2000-09-15 2006-05-02 United States Surgical Corporation Knotless tissue anchor
US6692516B2 (en) 2000-11-28 2004-02-17 Linvatec Corporation Knotless suture anchor and method for knotlessly securing tissue
US6752831B2 (en) 2000-12-08 2004-06-22 Osteotech, Inc. Biocompatible osteogenic band for repair of spinal disorders
US6833005B1 (en) 2001-02-02 2004-12-21 John P. Mantas Ligament graft system and method
US7083638B2 (en) 2001-02-12 2006-08-01 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US6770076B2 (en) 2001-02-12 2004-08-03 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US6511481B2 (en) 2001-03-30 2003-01-28 Triage Medical, Inc. Method and apparatus for fixation of proximal femoral fractures
US7144413B2 (en) 2001-04-20 2006-12-05 Synthes (U.S.A.) Graft fixation system and method
US20040153153A1 (en) 2001-05-31 2004-08-05 Elson Robert J. Anterior cruciate ligament reconstruction system and method of implementing same
GB0116605D0 (en) * 2001-07-07 2001-08-29 Atlantech Medical Devices Ltd Expandable bone anchor
US6716234B2 (en) 2001-09-13 2004-04-06 Arthrex, Inc. High strength suture material
US6796977B2 (en) 2001-09-28 2004-09-28 Depuy Mitek, Inc. Variable graft tensioner
US6887271B2 (en) * 2001-09-28 2005-05-03 Ethicon, Inc. Expanding ligament graft fixation system and method
US6712849B2 (en) 2001-10-01 2004-03-30 Scandius Biomedical, Inc. Apparatus and method for reconstructing a ligament
US7488320B2 (en) 2001-11-01 2009-02-10 Renova Orthopedics, Llc Orthopaedic implant fixation using an in-situ formed anchor
US6986781B2 (en) * 2001-11-08 2006-01-17 Smith & Nephew, Inc. Tissue repair system
US6685706B2 (en) 2001-11-19 2004-02-03 Triage Medical, Inc. Proximal anchors for bone fixation system
US7201754B2 (en) 2002-02-08 2007-04-10 Kenneth Stewart Device for installing an anchor in a bone
US6890354B2 (en) 2002-03-08 2005-05-10 Musculoskeletal Transplant Foundation Bone-tendon-bone assembly with allograft bone block and method for inserting same
TWI290055B (en) * 2002-03-14 2007-11-21 Tissuetech Inc Amniotic membrane covering for a tissue surface and devices facilitating fastening of membranes
US6942666B2 (en) * 2002-03-29 2005-09-13 Ethicon, Inc. Expandable cable anchor
US20040230194A1 (en) 2002-06-12 2004-11-18 Urbanski Mark G. Device and method for attaching soft tissue to bone
WO2004016217A2 (en) * 2002-08-15 2004-02-26 David Gerber Controlled artificial intervertebral disc implant
US20040111934A1 (en) 2002-12-17 2004-06-17 O'connell Mark Packaging system for and method of marketing and labeling alcoholic consumables
ATE347329T1 (en) * 2003-02-05 2006-12-15 Straumann Holding Ag EXTENSION PIECE FOR A DENTAL IMPLANT, TRANSFER AID AND METHOD FOR CREATING A BASE FOR A RETENTION ELEMENT
US6951561B2 (en) 2003-05-06 2005-10-04 Triage Medical, Inc. Spinal stabilization device
US8226715B2 (en) 2003-06-30 2012-07-24 Depuy Mitek, Inc. Scaffold for connective tissue repair
US7326247B2 (en) 2003-10-30 2008-02-05 Arthrex, Inc. Method for creating a double bundle ligament orientation in a single bone tunnel during knee ligament reconstruction
US7651528B2 (en) 2004-11-18 2010-01-26 Cayenne Medical, Inc. Devices, systems and methods for material fixation
US20060149258A1 (en) * 2004-12-14 2006-07-06 Sousa Joaquim P G Surgical tool and method for fixation of ligaments

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491162A2 (en) 2003-06-27 2004-12-29 DePuy Mitek, Inc. A graft fixation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2001405A4

Cited By (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10265064B2 (en) 2004-11-05 2019-04-23 Biomet Sports Medicine, Llc Soft tissue repair device and method
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9572655B2 (en) 2004-11-05 2017-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9504460B2 (en) 2004-11-05 2016-11-29 Biomet Sports Medicine, LLC. Soft tissue repair device and method
US11109857B2 (en) 2004-11-05 2021-09-07 Biomet Sports Medicine, Llc Soft tissue repair device and method
US8551140B2 (en) 2004-11-05 2013-10-08 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US11039826B2 (en) 2006-02-03 2021-06-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10398428B2 (en) 2006-02-03 2019-09-03 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11896210B2 (en) 2006-02-03 2024-02-13 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8721684B2 (en) 2006-02-03 2014-05-13 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11819205B2 (en) 2006-02-03 2023-11-21 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9510821B2 (en) 2006-02-03 2016-12-06 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US10154837B2 (en) 2006-02-03 2018-12-18 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11786236B2 (en) 2006-02-03 2023-10-17 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US11730464B2 (en) 2006-02-03 2023-08-22 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8932331B2 (en) 2006-02-03 2015-01-13 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US9005287B2 (en) 2006-02-03 2015-04-14 Biomet Sports Medicine, Llc Method for bone reattachment
US11723648B2 (en) 2006-02-03 2023-08-15 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9173651B2 (en) 2006-02-03 2015-11-03 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US11617572B2 (en) 2006-02-03 2023-04-04 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US11589859B2 (en) 2006-02-03 2023-02-28 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US11471147B2 (en) 2006-02-03 2022-10-18 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11446019B2 (en) 2006-02-03 2022-09-20 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11317907B2 (en) 2006-02-03 2022-05-03 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US11284884B2 (en) 2006-02-03 2022-03-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11116495B2 (en) 2006-02-03 2021-09-14 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US9402621B2 (en) 2006-02-03 2016-08-02 Biomet Sports Medicine, LLC. Method for tissue fixation
US9414833B2 (en) 2006-02-03 2016-08-16 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8632569B2 (en) 2006-02-03 2014-01-21 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8608777B2 (en) 2006-02-03 2013-12-17 Biomet Sports Medicine Method and apparatus for coupling soft tissue to a bone
US9468433B2 (en) 2006-02-03 2016-10-18 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US11065103B2 (en) 2006-02-03 2021-07-20 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US10251637B2 (en) 2006-02-03 2019-04-09 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9492158B2 (en) 2006-02-03 2016-11-15 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9498204B2 (en) 2006-02-03 2016-11-22 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8771316B2 (en) 2006-02-03 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11998185B2 (en) 2006-02-03 2024-06-04 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9561025B2 (en) 2006-02-03 2017-02-07 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US10987099B2 (en) 2006-02-03 2021-04-27 Biomet Sports Medicine, Llc Method for tissue fixation
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US9532777B2 (en) 2006-02-03 2017-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US9603591B2 (en) 2006-02-03 2017-03-28 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US10973507B2 (en) 2006-02-03 2021-04-13 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9622736B2 (en) 2006-02-03 2017-04-18 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9642661B2 (en) 2006-02-03 2017-05-09 Biomet Sports Medicine, Llc Method and Apparatus for Sternal Closure
US10932770B2 (en) 2006-02-03 2021-03-02 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US10729421B2 (en) 2006-02-03 2020-08-04 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US10729430B2 (en) 2006-02-03 2020-08-04 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10716557B2 (en) 2006-02-03 2020-07-21 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US9763656B2 (en) 2006-02-03 2017-09-19 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US10702259B2 (en) 2006-02-03 2020-07-07 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US9801620B2 (en) 2006-02-03 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US12064101B2 (en) 2006-02-03 2024-08-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10695052B2 (en) 2006-02-03 2020-06-30 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10687803B2 (en) 2006-02-03 2020-06-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10675073B2 (en) 2006-02-03 2020-06-09 Biomet Sports Medicine, Llc Method and apparatus for sternal closure
US10603029B2 (en) 2006-02-03 2020-03-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US9993241B2 (en) 2006-02-03 2018-06-12 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10004489B2 (en) 2006-02-03 2018-06-26 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10004588B2 (en) 2006-02-03 2018-06-26 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US10595851B2 (en) 2006-02-03 2020-03-24 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10542967B2 (en) 2006-02-03 2020-01-28 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10022118B2 (en) 2006-02-03 2018-07-17 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10441264B2 (en) 2006-02-03 2019-10-15 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US10092288B2 (en) 2006-02-03 2018-10-09 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10098629B2 (en) 2006-02-03 2018-10-16 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9510819B2 (en) 2006-02-03 2016-12-06 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US10321906B2 (en) 2006-02-03 2019-06-18 Biomet Sports Medicine, Llc Method for tissue fixation
US12096931B2 (en) 2006-02-03 2024-09-24 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8777956B2 (en) 2006-08-16 2014-07-15 Biomet Sports Medicine, Llc Chondral defect repair
US9414925B2 (en) 2006-09-29 2016-08-16 Biomet Manufacturing, Llc Method of implanting a knee prosthesis assembly with a ligament link
US9724090B2 (en) 2006-09-29 2017-08-08 Biomet Manufacturing, Llc Method and apparatus for attaching soft tissue to bone
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10349931B2 (en) 2006-09-29 2019-07-16 Biomet Sports Medicine, Llc Fracture fixation device
US8672968B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US11672527B2 (en) 2006-09-29 2023-06-13 Biomet Sports Medicine, Llc Method for implanting soft tissue
US10398430B2 (en) 2006-09-29 2019-09-03 Biomet Sports Medicine, Llc Method for implanting soft tissue
US11376115B2 (en) 2006-09-29 2022-07-05 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US10517714B2 (en) 2006-09-29 2019-12-31 Biomet Sports Medicine, Llc Ligament system for knee joint
US11096684B2 (en) 2006-09-29 2021-08-24 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10004493B2 (en) 2006-09-29 2018-06-26 Biomet Sports Medicine, Llc Method for implanting soft tissue
US9486211B2 (en) 2006-09-29 2016-11-08 Biomet Sports Medicine, Llc Method for implanting soft tissue
US10610217B2 (en) 2006-09-29 2020-04-07 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9539003B2 (en) 2006-09-29 2017-01-10 Biomet Sports Medicine, LLC. Method and apparatus for forming a self-locking adjustable loop
US9681940B2 (en) 2006-09-29 2017-06-20 Biomet Sports Medicine, Llc Ligament system for knee joint
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US10695045B2 (en) 2006-09-29 2020-06-30 Biomet Sports Medicine, Llc Method and apparatus for attaching soft tissue to bone
US10835232B2 (en) 2006-09-29 2020-11-17 Biomet Sports Medicine, Llc Fracture fixation device
US9788876B2 (en) 2006-09-29 2017-10-17 Biomet Sports Medicine, Llc Fracture fixation device
US10743925B2 (en) 2006-09-29 2020-08-18 Biomet Sports Medicine, Llc Fracture fixation device
US10959832B2 (en) 2006-10-24 2021-03-30 Cayenne Medical, Inc. Methods and systems for material fixation
US10117739B2 (en) 2006-10-24 2018-11-06 Cayenne Medical, Inc. Methods and systems for material fixation
US11612391B2 (en) 2007-01-16 2023-03-28 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9861351B2 (en) 2007-04-10 2018-01-09 Biomet Sports Medicine, Llc Adjustable knotless loops
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US11185320B2 (en) 2007-04-10 2021-11-30 Biomet Sports Medicine, Llc Adjustable knotless loops
US10729423B2 (en) 2007-04-10 2020-08-04 Biomet Sports Medicine, Llc Adjustable knotless loops
US11534159B2 (en) 2008-08-22 2022-12-27 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8900314B2 (en) 2009-05-28 2014-12-02 Biomet Manufacturing, Llc Method of implanting a prosthetic knee joint assembly
US10149767B2 (en) 2009-05-28 2018-12-11 Biomet Manufacturing, Llc Method of implanting knee prosthesis assembly with ligament link
US12096928B2 (en) 2009-05-29 2024-09-24 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8663325B2 (en) 2009-07-09 2014-03-04 Smith & Nephew, Inc. Tissue graft anchor assembly and instrumentation for use therewith
US9333020B2 (en) 2009-07-09 2016-05-10 Smith & Nephew, Inc. Tissue graft anchor assembly and instrumentation for use therewith
US9364276B2 (en) 2009-07-09 2016-06-14 Smith & Nephew, Inc Tissue graft anchor assembly and instrumentation for use therewith
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US9216078B2 (en) 2011-05-17 2015-12-22 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US10022215B2 (en) 2011-06-20 2018-07-17 Anatomacl, Llc Apparatus and method for ligament reconstruction
US11786358B2 (en) 2011-06-20 2023-10-17 Anatomacl, Llc Apparatus and method for anatomic ACL reconstruction
US10939992B2 (en) 2011-06-20 2021-03-09 Anatomacl, Llc Apparatus and method for ligament reconstruction
US9445827B2 (en) 2011-10-25 2016-09-20 Biomet Sports Medicine, Llc Method and apparatus for intraosseous membrane reconstruction
US10265159B2 (en) 2011-11-03 2019-04-23 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US11241305B2 (en) 2011-11-03 2022-02-08 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9357992B2 (en) 2011-11-10 2016-06-07 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US10363028B2 (en) 2011-11-10 2019-07-30 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US11534157B2 (en) 2011-11-10 2022-12-27 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US10368856B2 (en) 2011-11-10 2019-08-06 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9314241B2 (en) 2011-11-10 2016-04-19 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US10758221B2 (en) 2013-03-14 2020-09-01 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US11648004B2 (en) 2013-12-20 2023-05-16 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US10806443B2 (en) 2013-12-20 2020-10-20 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
WO2015200918A2 (en) 2014-06-27 2015-12-30 Anatomacl, Llc Apparatus and method for anatomic acl reconstruction
EP3160392A4 (en) * 2014-06-27 2018-07-11 Anatomacl, LLC Apparatus and method for anatomic acl reconstruction
US10743856B2 (en) 2014-08-22 2020-08-18 Biomet Sports Medicine, Llc Non-sliding soft anchor
US11219443B2 (en) 2014-08-22 2022-01-11 Biomet Sports Medicine, Llc Non-sliding soft anchor
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US10912551B2 (en) 2015-03-31 2021-02-09 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
WO2016168045A1 (en) * 2015-04-16 2016-10-20 Smith & Nephew, Inc. Fixation device and tissue fixation method for acl reconstruction
US10675142B2 (en) 2015-04-16 2020-06-09 Mv N8Tive, Llc Fixation device and tissue fixation method for ACL reconstruction

Also Published As

Publication number Publication date
JP5204755B2 (en) 2013-06-05
AU2007227318B2 (en) 2013-02-14
JP2009530033A (en) 2009-08-27
US20080027430A1 (en) 2008-01-31
AU2007227318A1 (en) 2007-09-27
WO2007109280A3 (en) 2008-05-02
EP2001405B1 (en) 2015-11-18
US7967861B2 (en) 2011-06-28
EP2001405A2 (en) 2008-12-17
US20110282449A1 (en) 2011-11-17
EP2001405A4 (en) 2012-03-21
US8465545B2 (en) 2013-06-18

Similar Documents

Publication Publication Date Title
EP2001405B1 (en) Systems for tendon fixation
US10959832B2 (en) Methods and systems for material fixation
US10441409B2 (en) Femoral fixation
JP4083813B2 (en) Device for securing self or artificial tendon grafts to bone
US7588586B2 (en) Tissue fixation device
AU2013201310B2 (en) Methods and systems for material fixation
AU2013200756B2 (en) Devices, systems, and methods for material fixation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07753548

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009501518

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007227318

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007753548

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5635/CHENP/2008

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2007227318

Country of ref document: AU

Date of ref document: 20070320

Kind code of ref document: A