WO2007108579A1 - Panneau de guidage de lumière destiné à un écran à cristaux liquides et unité de rétroéclairage faisant appel à ce panneau - Google Patents

Panneau de guidage de lumière destiné à un écran à cristaux liquides et unité de rétroéclairage faisant appel à ce panneau Download PDF

Info

Publication number
WO2007108579A1
WO2007108579A1 PCT/KR2006/002762 KR2006002762W WO2007108579A1 WO 2007108579 A1 WO2007108579 A1 WO 2007108579A1 KR 2006002762 W KR2006002762 W KR 2006002762W WO 2007108579 A1 WO2007108579 A1 WO 2007108579A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
prisms
light guide
light
stripe
Prior art date
Application number
PCT/KR2006/002762
Other languages
English (en)
Inventor
Jae-Han Kim
Chul-Goo Chi
Man Suk Kim
O-Yong Jung
Original Assignee
Cheil Industries Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheil Industries Inc. filed Critical Cheil Industries Inc.
Publication of WO2007108579A1 publication Critical patent/WO2007108579A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • the present invention relates to a light guide plate for a backlight unit of a liquid crystal display device, which comprises a stripe pattern, and, more particularly, to a light guide plate for a liquid crystal display device, which is formed on a rear surface of the light guide panel with stripe-prisms, providing remarkable improvement in visibility and brightness, and to a backlight unit comprising the same.
  • a liquid crystal display device refers to a device which displays numerals or images through application of an electric field to liquid crystals disposed between two glass substrates, in which the liquid crystals are made of a material having an intermediate phase between a liquid and a solid.
  • the liquid crystal display device Since the liquid crystal display device is not an emissive device, it must be provided with a backlight unit as a light source to generate light such that an image is displayed on a liquid crystal panel by adjusting a transmittance amount of light generated from the backlight unit.
  • Fig. 1 is an exploded perspective view illustrating a backlight unit of a conventional liquid crystal display device.
  • backlight units of the liquid crystal display device can be classified to a direct type backlight unit in which the light source is located directly at rear side of a liquid crystal panel 100 of the liquid crystal display device, and an edge type backlight unit in which the light source is located at a side of the panel 100 thereof.
  • a direct type backlight unit in which the light source is located directly at rear side of a liquid crystal panel 100 of the liquid crystal display device
  • an edge type backlight unit in which the light source is located at a side of the panel 100 thereof.
  • an edge type backlight unit 10 is shown.
  • a conventional LCD backlight unit comprises a light source 105, a light guide plate 110, a reflection plate 115, a diffusion sheet 120, prism sheets 125, and a protective sheet 130.
  • the light source 105 serves to emanate light initially in the liquid crystal display device.
  • the liquid crystal display device generally employs a cold cathode fluorescence lamp (CCFL) which is characterized by very low power consumption and emission of very bright white light.
  • CCFL cold cathode fluorescence lamp
  • the light guide plate 110 is positioned at the rear side of the LCD panel 100 and at one side of the light source 105, and serves to convert spot light generated from the light source 105 to plane light, and then project the plane light in front of the light guide plate.
  • the reflection plate 115 is positioned at the rear of the light guide plate 110, and serves to reflect light emitted from the light source 105 towards the LCD panel 100 in front of the reflection plate.
  • the diffusion sheet 120 is positioned at the front side of the light guide plate 110, and serves to uniformize light passing through the light guide plate 110. While the light passes through the diffusion sheet 120, diffusion of light occurs in horizontal and vertical directions so that brightness is rapidly deteriorated.
  • the prism sheets 125 are used to reflect and focus the light, thereby providing enhanced brightness.
  • the protective sheet 130 is positioned above the prism sheets 125, and serves to prevent scratches on the prism sheet 125, and to prevent Moire effect from occurring when using the prism sheets 125 in the horizontal and vertical directions.
  • the backlight unit 10 further comprises a mold frame to secure respective components, and a lamp cover to protect the backlight unit 10 while serving to maintain strength of the backlight unit and to support the backlight unit.
  • Figs. 2 and 3 are enlarged cross-sectional views illustrating a path of light after being generated from the light source 105 in the light guide plate 110.
  • the light source 105 is generally located at one edge of the backlight unit 10 (for an LCD TV, the light source is often located directly at the rear side of a panel). As a result, light is not uniformly transmitted through the overall surface of the unit, so that the edge of the backlight unit 10 can be brighter than any other portions of the backlight unit 10.
  • the light guide plate 110 is used.
  • the light guide plate is generally made of a transparent acrylic resin, which is not easily breakable due to its high strength, and has deformation resistance, light weight and high transmittance of visible light.
  • the light guide plate 110 serves to allow light emitted from the light source 105 to be uniformly projected to the overall surface of the light guide plate 110.
  • the light is not uniformly projected to the overall surface of the light guide plate 110, but concentrated on both ends of the light guide plate 110. This is because the light guide plate 110 guides the light from the light source 105 to the ends of the light guide plate.
  • the rear surface of the light guide plate 110 is subjected to a specific treatment to cause scattered reflection of light in the light guide plate 110 such that light can be transmitted through the overall surface of the light guide plate 110.
  • the rear surface of the light guide plate 110 is formed with a roughness pattern 113 which has a predetermined shape designed in consideration of a distance from the light source 105 and the like.
  • the roughness pattern 113 is formed on the rear surface of the light guide plate 110, plane light having higher brightness and uniformity is emitted through the overall surface of the light guide panel of the liquid crystal display device.
  • a portion of the panel with the roughness pattern 113 formed therebelow looks bright, and other portions of the panel without having the roughness pattern therebelow looks dark, so that there occurs a spot phenomenon on the panel, thereby deteriorating the visibility of the liquid crystal display device.
  • a region separated a far distance from the light source 105 lacks in absolute amount of light reaching there, and looks dark.
  • the diffusion sheet 120 and the prism sheets 125 are used for improvement of light uniformity, and cause an increase in manufacturing costs of the backlight unit.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a light guide plate for a backlight unit of a liquid crystal display device, which comprises stripe- prisms. It is another object of the present invention to provide a backlight unit for a liquid crystal display device, which comprises the light guide plate according to the present invention.
  • a light guide plate for a liquid crystal display device comprising side surfaces on which light is incident, a front surface from which the light is emitted, and a rear surface on which the light is reflected, wherein the front surface is formed with front prisms, each having a predetermined cross-section, and the rear surface is formed with stripe-prisms, each increasing in width along with an increase in distance between each stripe- prism and the side surfaces on which the light is incident.
  • a backlight unit for a liquid crystal display device comprising a light source, and a light guide plate of the present invention.
  • Fig. 4 is a perspective view illustrating a light guide plate for a backlight unit of a liquid crystal display device according to one embodiment of the present invention.
  • a light guide plate 30 for a backlight unit of a liquid crystal display device is generally made of a transparent acrylic resin, which has high strength, deformation resistance, light weight, and high transmittance of visible light.
  • the light guide plate 30 has a body 300, which comprises side surfaces
  • the side surfaces 301 are defined as surfaces on which light is incident. Thus, in Fig. 4, the side surfaces 301 refer to two surfaces adjacent light sources 306, respectively.
  • the front surface 303 and the rear surface 305 are surfaces to which light is emitted after being generated from the light sources and incident on the side surfaces 306, and are connected to the side surfaces 301.
  • the front surface 303 is formed with front-prisms 310, each of which has a predetermined cross-section, and serves to uniformly diffract, refract and diffuse light emitted through the body 300 of the light guide plate.
  • the front-prisms 310 may be formed over the entire surface of the front surface 303, and alternatively, may be spaced at a predetermined distance from each other with a separation plane disposed between the front-prisms 310.
  • the front-prisms 310 are disposed in perpendicular to stripe-prisms on the rear surface of the light guide plate as shown in Fig. 4. However, it should be noted that the present invention is not limited to this perpendicular structure, and thus, an angle between the front-prism and the prisms of the stripes can be changed.
  • each of the front prisms is shown as having a triangular cross- section in a longitudinal direction in Fig. 4, the present invention is not limited this structure, and the front prisms may have various cross-sections.
  • Figs. 5 to 7 are perspective views illustrating various embodiments of the cross-section of the front-prism 310.
  • the front-prisms 310 may be spaced a predetermined distance from each other with a separation plane disposed between the front- prisms 310.
  • the reason of disposing the front-prisms 310 to be spaced the predetermined distance "d" from each other instead of densely disposing the front- prisms 310 is to enhance uniformity and visibility of light.
  • Each of the front-prisms 310 may have a trapezoidal cross-section in the longitudinal direction as shown in Fig. 6, or may have a reverse groove-shaped cross-section in the longitudinal direction, in which each side surface of the reverse groove-shaped cross-section has a predetermined curvature, as shown in Fig. 7.
  • each of the front-prisms 310 has the trapezoidal cross- section in the longitudinal direction as shown in Fig. 6, the body 300 of the light guide plate may be adapted such that light is directed in perpendicular to the panel (not shown) of the liquid crystal display device through a plane A defined as an upper surface of each trapezoidal front-prism 310.
  • each of the front-prisms 310 has the reverse groove-shaped cross-section in the longitudinal direction with side surfaces of the reverse groove-shaped cross-section having the curvature as shown in Fig. 7, the curvature of the side surface thereof is preferably in the range of 0.01 ⁇ 1.0 mm.
  • a ratio of a total area of the front-prisms 310 to a total area of the separation planes between the front-prisms 310 on the front surface 303 of the body 300 is preferable in the range of 1 :0.5 - 1 :10.
  • each of the front-prisms 310 preferably has a ratio of height h 2 to width W 2 in the range of 0.3-0.6:1. With this range, it is possible to maintain a proper horizontal viewing angle and to prevent reduction in brightness.
  • Each of the front-prisms has an interior angle of 90 degrees or more, and preferably 90 ⁇ 120 degrees. With this range of angle, it is possible to maintain a proper brightness at the central region of the panel, and the proper horizontal viewing angle.
  • the rear surface 305 of the body 300 is formed with stripes spaced a predetermined distance from each other side by side, which will be referred to as stripe-prisms 320.
  • Fig. 8 is an enlarged cross-sectional view of each stripe-prism 320 shown in Fig. 4.
  • the stripe-prisms 320 may be formed on the rear surface of the light guide plate via embossed carving or depressed engraving.
  • Each of the stripe-prisms 320 comprises rear-prisms 322 formed on a surface of the stripe-prism 320.
  • the rear-prisms 322 are formed such that each rear-prism 322 has a longitudinal direction perpendicular to a direction (Q direction) of light emitted from the light sources. The reason is that, when each of the rear-prisms 322 is formed perpendicular to the direction (Q direction) of light emitted from the light sources 306, diffraction, refraction and diffusion of light can be efficiently performed.
  • each stripe-prism 320 is disposed perpendicular to the longitudinal direction (Q direction) of the front-prisms 310, since such orthogonal arrangement is advantageous in uniform refraction and diffusion of the light via the overall surface of the light guide plate.
  • each of the rear-prisms 322 formed on the stripe-prisms 320 has a triangular cross-section in the longitudinal direction as shown in Fig. 8, it preferably has a vertex angle ⁇ i of 60 ⁇ 100 degrees.
  • each stripe-prism 320 has a ratio of width to length in the range of 1:1,000 ⁇ 1:50,000, and each rear-prism 322 has a ratio of height Ji 1 to width W 1 In the range of 0.3 ⁇ 0.9:1.
  • An angle defined between the longitudinal direction of the stripe-prism and the longitudinal direction of the front-prism is in the range of 30 ⁇ 90 degrees.
  • the stripe-prisms 320 formed on the rear surface of the light guide plate, and the rear-prisms 322 formed on the surface of each stripe-prism will be described in detail hereinafter.
  • the body 300 of the light guide plate has a plurality of stripe-prisms 320 form on the rear surface 305 such that each stripe-prism 320 increases in width as it is further from any of the side surfaces on which light is incident.
  • each stripe-prism 320 gradually increases in width from each side surface to the center of the stripe-prism 320, and in the case where the light is incident on a single side surface, each stripe- prism 320 gradually increases in width from the side to the opposite side (see Figs. 9 and 6b).
  • the stripe-prism 320 is not formed immediately adjacent the side surface on which the light is incident. The reason is that, when the stripe-prism 320 is formed immediately adjacent the side surface on which the light is incident, light is scattered near the stripe-prism 320, and generates a bright line.
  • each stripe- prism 320 is formed on the surface of each stripe- prism 320 so as to be perpendicular to the direction of light incident through the side surfaces.
  • the rear-prisms 322 can be formed on the surface of each stripe-prism after forming stripe-prisms in a predetermined pattern. In practice, however, several arrays of the rear-prisms 322 having different widths may be formed to produce the stripe-prism type light guide plate of the present invention.
  • Figs. 9 and 10 are schematic rear views of the body 300 (see Fig. 4) of the light guide plate, showing embodiments of arrangement of the stripe-prisms 320.
  • Fig. 9 is a plan view illustrating arrangement of the stripe-prisms 320 in the case where light generated from the light sources 305 (see Fig. 4) is incident on the opposite sides of the body 300 of the light guide plate.
  • Fig. 10 is a plan view illustrating arrangement of the stripe-prisms 320 in the case where the light source 306 (see Fig. 4) is disposed only at one side of the light guide plate.
  • the rear surface of the body is adapted to have the stripe- prisms 320, each of which is gradually increased in width from the one side to the opposite side via the central region of the stripe.
  • the stripe-prisms 320 be not formed immediately adjacent the side surfaces on which the light is incident.
  • Fig. 11 is a plan view illustrating an example of the rear surface of the light guide plate according to one embodiment of the present invention.
  • the rear surface 305 of the light guide plate may further comprise dot-prisms 325 in each space between the stripe-prisms 320.
  • the reason of forming the dot-prisms 325 is to improve a refractive index and a reflection rate of light in the space between the stripe-prisms 320.
  • a distal end of the light guide plate i.e., a distal end of the CCFL
  • an edge of the backlight unit becomes dark.
  • the dot-prisms 325 are inserted.
  • each of the dot-prisms 325 is shown as having a circular shape in Fig. 11, the present invention is not limited to this shape, and the dot-prism 325 may have various shapes including a triangular shape, a rectangular shape, a pentagonal shape, a hexagonal shape, an elliptical shape, a diamond shape, etc. Furthermore, each of the dot-prisms 325 may be formed as a second shapeless rear- prism without having a particular shape.
  • Figs. 12 and 13 are plan views illustrating the light guide plates according to other embodiments of the present invention. Referring to Fig.
  • a body 300 of a light guide plate has stripe-prisms 320 formed on a rear surface 305 thereof, and each stripe gradually increases in width along with an increase in distance from side surfaces 301 on which light is incident.
  • rear-prisms 322 on the stripe-prisms 320 are formed such that the rear-prisms 322 have widths increased near four edges of the rear surface 305 of the light guide plate, thereby preventing the visibility or the brightness from being reduced near the edges of the rear surface 305 of the light guide plate.
  • Such a design of stripe pattern prevents generation of a dark area near the edges of the rear surface of the light guide plate.
  • the rear-prisms 322 be formed at predetermined intervals without a large separation therebetween on the surface of each stripe-prism 320, it is possible to adjust a separation between the rear-prisms 322 on the stripe- prisms, as shown in Fig. 13, in order to allow precise adjustment of the brightness and the visibility.
  • the subject matter of the present invention is in that the rear surface of the light guide plate body is formed with the stripe-prisms 320, each of which increases in width according to an increase in distance from one or more side surfaces on which light is incident, and comprises prisms formed on the surface thereof.
  • the stripe-prisms 320 each of which increases in width according to an increase in distance from one or more side surfaces on which light is incident, and comprises prisms formed on the surface thereof.
  • Fig. 14 is a graph comparing brightness of a stripe-prism type light guide plate according to the present invention with that of a conventional dot-prism type light guide plate.
  • a light guide plate for a 21.2-inch type backlight unit was equally divided into 5 parts in the transverse direction and the longitudinal direction to form 25 areas, followed by measuring a brightness of each area in units of cd/m ⁇ From results obtained by comparing the two light guide plates, each of which has an aperture ratio (that is, a ratio of pattern per unit area) as shown in Fig. 14, it can be understood that the light guide plate comprising the stripe-prisms according to the present invention has an average brightness 10 % or more than that of the conventional light guide plate comprising the dot-prisms.
  • the liquid crystal display device of the present invention it is possible for the liquid crystal display device of the present invention to obtain substantially the same effects as that of the conventional liquid crystal display device without employing a diffusion sheet and a prism sheet which are used in the backlight unit of the conventional liquid crystal display device.
  • the light guide plate according to the present invention makes it possible to obtain plane light having excellent brightness, uniformity and visibility with only a light source and the light guide plate.
  • the light guide plate for the liquid crystal display device enables an uniform increase in amount of light reaching an overall surface of a panel of the liquid crystal display device, and an increase in amount of light directed in the perpendicular direction, thereby ensuring excellent brightness, uniformity and visibility of light in comparison to the conventional light guide plate.
  • the brightness of the light guide plate according to the invention is improved in comparison to the dot-prism light guide plate.
  • the backlight unit can be realized without one or both of a diffusion sheet and a prism sheet, it is possible to reduce manufacturing costs thereof.
  • Fig. 1 is an exploded perspective view illustrating a backlight unit of a conventional liquid crystal display device
  • Figs. 2 and 3 are enlarged cross-sectional views illustrating a path of light in a light guide plate after being generated from a light source;
  • Fig. 4 is a perspective view illustrating a light guide plate for a backlight unit of a liquid crystal display device according to one embodiment of the present invention
  • Figs. 5 to 7 are perspective views illustrating various embodiments of the cross-section of the front prism
  • Fig. 8 is an enlarged cross-sectional view of a stripe-prism on the rear surface of the light guide plate
  • Figs. 9 and 10 are schematic plan views illustrating the rear surface of the light guide plate having the stripe-prisms disposed thereon;
  • Fig. 11 is a plan view illustrating the rear surface of the light guide plate having dot-prisms additionally disposed thereon;
  • Figs. 12 and 13 are plan views illustrating the rear surface of the light guide plate having modified stripe-prisms disposed thereon to prevent dark portion due to reduction in brightness at an edge of the rear surface; and Fig. 14 is a graph comparing brightness of a stripe-prism type light guide plate according to the present invention with that of a conventional dot-prism type light guide plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

L'invention concerne une plaque de guidage de lumière destinée à une unité de rétroéclairage d'un dispositif d'affichage à cristaux liquides. Cette plaque présente une excellente luminosité, et permet d'obtenir une excellente uniformité et visibilité de la lumière. Cette plaque de guidage de lumière comprend des surfaces latérales sur lesquelles la lumière est incidente, une surface avant à partir de laquelle la lumière est émise et une surface arrière sur laquelle la lumière est réfléchie. La surface avant est formée de prismes avant, chaque prisme présentant une coupe transversale prédéterminée, la surface arrière est formée de prismes formant bandes, chaque prisme augmentant en largeur avec l'augmentation de la distance entre le prisme-bande et les surfaces latérales sur lesquelles la lumière est incidente.
PCT/KR2006/002762 2006-03-17 2006-07-13 Panneau de guidage de lumière destiné à un écran à cristaux liquides et unité de rétroéclairage faisant appel à ce panneau WO2007108579A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060025038A KR100662540B1 (ko) 2006-03-17 2006-03-17 스트라이프 패턴을 포함하는 액정표시 장치용 도광판, 액정표시장치 백라이트 유닛
KR10-2006-0025038 2006-03-17

Publications (1)

Publication Number Publication Date
WO2007108579A1 true WO2007108579A1 (fr) 2007-09-27

Family

ID=37815830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2006/002762 WO2007108579A1 (fr) 2006-03-17 2006-07-13 Panneau de guidage de lumière destiné à un écran à cristaux liquides et unité de rétroéclairage faisant appel à ce panneau

Country Status (4)

Country Link
KR (1) KR100662540B1 (fr)
CN (1) CN100561309C (fr)
TW (1) TWI324277B (fr)
WO (1) WO2007108579A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955195A (zh) * 2011-08-23 2013-03-06 松下电器产业株式会社 导光板、模具及模具的加工方法
US9182530B2 (en) 2010-05-31 2015-11-10 Dai Nippon Printing Co., Ltd. Light guide plate with tapering unit optical elements
EP3348900B1 (fr) * 2017-01-13 2022-08-17 Samsung Display Co., Ltd. Plaque de guidage de lumière d'unité de rétroéclairage et afficheur à cristaux liquides associé

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100903028B1 (ko) 2007-01-15 2009-06-18 제일모직주식회사 쐐기형 배면프리즘을 포함하는 액정표시장치 백라이트 유닛용 도광판
KR100864320B1 (ko) * 2007-01-17 2008-10-20 제일모직주식회사 배면에 계단구조를 갖는 액정표시장치용 도광판
TWI370273B (en) 2008-10-17 2012-08-11 Coretronic Corp Light guide plate
CN102313195B (zh) 2010-07-06 2014-06-18 乐金显示有限公司 用于制造导光板的装置和具有该导光板的背光单元
CN102081186A (zh) * 2010-11-30 2011-06-01 深圳市华星光电技术有限公司 背光模块及其导光板
KR20140039357A (ko) * 2012-09-19 2014-04-02 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 표시장치
KR102324866B1 (ko) * 2015-05-26 2021-11-12 엘지디스플레이 주식회사 백라이트유닛과 액정표시장치 및 이의 구동방법
CN109920327A (zh) * 2017-12-13 2019-06-21 南京机器人研究院有限公司 一种穿戴式智能设备
CN109917636A (zh) * 2017-12-13 2019-06-21 南京机器人研究院有限公司 一种调节透光率的智能手表

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152377A (ja) * 1997-07-31 1999-02-26 Nitto Denko Corp 光路制御板、面光源装置、偏光光源装置及び液晶表示装置
JP2003109417A (ja) * 2000-12-12 2003-04-11 International Manufacturing & Engineering Services Co Ltd 面光源装置
KR20040067780A (ko) * 2003-01-23 2004-07-30 삼성전자주식회사 도광판, 이의 제조 방법, 이를 이용한 백라이트 어셈블리및 이를 이용한 액정표시장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152377A (ja) * 1997-07-31 1999-02-26 Nitto Denko Corp 光路制御板、面光源装置、偏光光源装置及び液晶表示装置
JP2003109417A (ja) * 2000-12-12 2003-04-11 International Manufacturing & Engineering Services Co Ltd 面光源装置
KR20040067780A (ko) * 2003-01-23 2004-07-30 삼성전자주식회사 도광판, 이의 제조 방법, 이를 이용한 백라이트 어셈블리및 이를 이용한 액정표시장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9182530B2 (en) 2010-05-31 2015-11-10 Dai Nippon Printing Co., Ltd. Light guide plate with tapering unit optical elements
CN102955195A (zh) * 2011-08-23 2013-03-06 松下电器产业株式会社 导光板、模具及模具的加工方法
EP3348900B1 (fr) * 2017-01-13 2022-08-17 Samsung Display Co., Ltd. Plaque de guidage de lumière d'unité de rétroéclairage et afficheur à cristaux liquides associé

Also Published As

Publication number Publication date
CN101038392A (zh) 2007-09-19
TW200736756A (en) 2007-10-01
CN100561309C (zh) 2009-11-18
KR100662540B1 (ko) 2006-12-28
TWI324277B (en) 2010-05-01

Similar Documents

Publication Publication Date Title
WO2007108579A1 (fr) Panneau de guidage de lumière destiné à un écran à cristaux liquides et unité de rétroéclairage faisant appel à ce panneau
KR100903028B1 (ko) 쐐기형 배면프리즘을 포함하는 액정표시장치 백라이트 유닛용 도광판
KR100661147B1 (ko) 액정표시장치 백라이트 유닛용 도광판 및 이를 이용한액정표시장치용 백라이트 유닛
JP4512137B2 (ja) 液晶表示装置バックライトユニット用導光板及びこれを用いた液晶表示装置用バックライトユニット
KR100932304B1 (ko) 배면에 비대칭 프리즘을 구비하는 백라이트 유닛용 도광판및 이를 이용한 액정표시장치
US8605233B2 (en) Light guide panel for LCD back light unit and LCD back light unit thereby
KR100978078B1 (ko) 프리즘 시트와 이를 구비한 액정표시장치
KR100781328B1 (ko) 액정표시장치 백라이트 유닛용 도광판 및 이를 이용한액정표시장치용 백라이트 유닛
KR20030096509A (ko) 프리즘 시트 및 이를 갖는 액정표시기
JP2002050219A (ja) 面状光源装置、導光板、表示装置
JP2012164583A (ja) 導光板、面光源装置、透過型表示装置
US20090021668A1 (en) Backlight Module and Liquid Crystal Display Comprising the Same
KR100838322B1 (ko) 비대칭전면프리즘을 구비하는 액정표시장치 백라이트유닛용 도광판
US8823632B2 (en) Light guide panel comprising symmetric front prism and asymmetric front prism for back light unit of LCD
JP2009140905A (ja) 導光板及びバックライト
WO2008156236A1 (fr) Panneau de guide de lumière ayant un élément de mélange de lumière pour une unité de rétro-éclairage de dispositif d'affichage à cristaux liquides et unité de rétro-éclairage de dispositif d'affichage à cristaux liquides
KR100605617B1 (ko) 디스플레이 장치
KR20130073004A (ko) 광학 필름, 이를 포함하는 백라이트 유닛 및 이를 포함하는 액정표시장치
JP4400867B2 (ja) 光偏向素子及び光源装置
KR20100050632A (ko) 프리즘시트, 이를 포함하는 백라이트 유닛 및 액정표시장치
JP5779930B2 (ja) 光学シート、及びそれを用いたバックライトユニット、画像表示装置
KR101086366B1 (ko) 취급성을 개선한 프리즘 시트 및 이를 이용한 액정표시장치
KR101086255B1 (ko) 통합형 광학시트를 구비한 백라이트유닛용 도광판 및 이를 포함하는 백라이트유닛
JP2009158467A (ja) 導光板及びバックライト
KR100790422B1 (ko) 스트라이프 패턴을 포함하는 액정표시 장치용 도광판,액정표시장치 백라이트 유닛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06783300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06783300

Country of ref document: EP

Kind code of ref document: A1