WO2007108427A1 - Voltage regulator - Google Patents

Voltage regulator Download PDF

Info

Publication number
WO2007108427A1
WO2007108427A1 PCT/JP2007/055453 JP2007055453W WO2007108427A1 WO 2007108427 A1 WO2007108427 A1 WO 2007108427A1 JP 2007055453 W JP2007055453 W JP 2007055453W WO 2007108427 A1 WO2007108427 A1 WO 2007108427A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
phase
transformer
output voltage
output
Prior art date
Application number
PCT/JP2007/055453
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuji Shinohara
Kichiro Yamamoto
Kenichi Iimori
Original Assignee
Kagoshima University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University filed Critical Kagoshima University
Priority to JP2008506286A priority Critical patent/JP4872090B2/en
Publication of WO2007108427A1 publication Critical patent/WO2007108427A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/12Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion of voltage or current amplitude only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0093Converters characterised by their input or output configuration wherein the output is created by adding a regulated voltage to or subtracting it from an unregulated input

Definitions

  • the present invention relates to a voltage regulator, and is particularly suitable for use in regulating the output voltage of a transformer.
  • a tap-switching voltage regulator and a static voltage regulator are connected in series to the distribution line, and the tap-switching voltage regulator and the static voltage regulator are used to connect the distribution line.
  • the tap switching type voltage regulator includes a tapping adjustment transformer that inputs and transforms the voltage of the distribution line, and a tap control unit that switches and controls the tapping of the tapping adjustment transformer. Yes.
  • the static voltage regulator is a power converter that converts the voltage obtained from the distribution line into a regulated voltage using an inverter, and a voltage that is converted by the power converter is transformed into a tap-switchable voltage regulator.
  • a series transformer that is superimposed on the output voltage of the transformer and applied to the load side.
  • the tapping regulator Is switched when the output voltage of power fluctuation exceeds a threshold value.
  • Patent Document 1 has a problem that the configuration of the apparatus becomes complicated because the transformer itself needs to be modified.
  • the output terminal of the voltage adjusting AC power source including the converter and the inverter is connected in series to the input side of the transformer, and the voltage adjusting AC power source has the same frequency as the AC power source for the transformer.
  • the technology that adjusts the output voltage of a transformer by supplying the above voltage to the input side of the transformer see Patent Document 3).
  • Patent Document 1 Japanese Patent Laid-Open No. 11 136945
  • Patent Document 2 Japanese Patent Laid-Open No. 11-289666
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-148267
  • the present invention has been made in view of such problems, and an object thereof is to provide a high voltage regulator with low loss and high reliability.
  • the voltage regulator of the present invention has a voltage conversion circuit connected in series to the feeder side wire of the transformer, and a control circuit for controlling the voltage conversion circuit, the voltage conversion circuit, A plurality of switch elements, and the output voltage of the transformer is converted into an AC voltage corresponding to the switch operation of the plurality of switch elements, and the control circuit outputs the AC voltage of the plurality of switch elements.
  • the switch operation is controlled, and a voltage obtained by superimposing the output voltage of the voltage conversion circuit on the output voltage of the transformer is supplied to the load side.
  • FIG. 1 is a diagram showing an example of the configuration of a voltage regulator according to an embodiment of the present invention.
  • FIG. 2 is a view showing an embodiment of the present invention and showing an example of the configuration of a switch element.
  • FIG. 3 is a diagram showing an embodiment of the present invention and showing an example of a detailed configuration of a control circuit.
  • FIG. 4A shows an embodiment of the present invention, and shows an example of the relationship between the output voltage of the single-phase transformer and the compensation voltage when the amplitude of the output voltage of the single-phase transformer is smaller than the target voltage.
  • FIG. 4B shows an embodiment of the present invention, and shows an example of the relationship between the output voltage of the single-phase transformer and the compensation voltage when the amplitude of the output voltage of the single-phase transformer is larger than the target voltage.
  • FIG. 5A is a diagram showing an embodiment of the present invention and showing an example of “waveform of output voltage of single-phase transformer” used for simulating the voltage regulator shown in FIG. It is.
  • FIG. 5B shows an embodiment of the present invention, and shows a waveform (simulation voltage) of a compensation voltage (an output voltage of a matrix converter) for compensating the “output voltage of the single-phase transformer” shown in FIG. 5A. It is the figure which showed an example of a (result of Chillon).
  • FIG. 5C shows an embodiment of the present invention, in which the “output voltage of the single-phase transformer” shown in FIG. 5A is compensated with the compensation voltage (output voltage of the matrix converter) shown in FIG. 5B.
  • FIG. 6 is a diagram showing an example of a waveform (simulation result) of a “load-side voltage” obtained as described above.
  • FIG. 6 shows an embodiment of the present invention and is a diagram showing another example of the configuration of the switch element.
  • FIG. 7 shows an embodiment of the present invention and is a diagram showing an example of the configuration of a voltage regulator for adjusting the output voltage of a three-phase transformer.
  • FIG. 1 is a diagram illustrating an example of the configuration of the voltage regulator according to the present embodiment.
  • the voltage regulator includes a matrix converter 20, a single-phase insulating transformer 30, and a control circuit 40.
  • the matrix converter 20 includes switch elements 21a to 21d, a capacitor 22, and a reactor 23.
  • the matrix converter 20 is connected in series with the output side of the single-phase transformer 10 through the single-phase isolation transformer 30. ing.
  • one end of the switch element 21a is mutually connected to one end of the winding on the output side of the single-phase transformer 10, and the other end of the switch element 21a is connected to the single-phase isolation transformer 30. Connected to one end 31a on the input side.
  • One end of the switch element 21b is connected to one end of the switch element 21d, and the other end of the switch element 21b is connected to the other end of the switch element 21a (one end of the input side of the single-phase isolation transformer 30 3 la ) And connected to each other.
  • One end of the switch element 21c is connected to one end of the switch element 21a, and the other end of the switch element 21c is connected to the other end 31b on the input side of the single-phase insulating transformer 30. ing.
  • one end of the switch element 21d is connected to one end of the switch element 21b, and the other end of the switch element 21d is connected to the other end of the switch element 21c (single-phase insulation transformer 30). Is connected to the other end (3 lb) on the input side.
  • One end of the capacitor 22 is mutually connected to one end of the winding on the output side of the single-phase transformer 10 (one end of the switch element 21a), and the other end of the capacitor 22 is connected to the switch elements 21b and 21d. Connected to the connection point.
  • One end of the reactor 23 is connected to the other end of the capacitor 22 (the connection point of the switch elements 21b and 21d).
  • the other end of the reactor 23 is connected to the other side of the output side of the single-phase transformer 10 Connected to the ends.
  • One end 32a on the output side of the single-phase isolation transformer 30 is connected to one end of the feeder line on the output side of the single-phase transformer 10, and the other end 32b on the output side of the single-phase isolation transformer 30 is Connected to the terminal 50a on the load side.
  • FIG. 2 is a diagram showing an example of the configuration of the switch element 21.
  • the switch element 21 of the present embodiment includes two RBIGBTs (reverse blocking IGB T; Reverse
  • Blocking Insulated-Gate Bipolar Transistor 21 la, 2 ib are connected in reverse parallel.
  • the switch element 21 is configured using a reverse blocking device that performs a switching operation while maintaining a reverse breakdown voltage.
  • the matrix converter 20 (switch elements 21a to 21d) outputs a compensation voltage Vc so that the voltage Vo (phase and amplitude) on the side becomes the same as the target voltage Va (phase and amplitude).
  • the matrix converter 20 applies the compensation voltage Vc between the load-side terminal 50a and one end of the output-side winding of the single-phase transformer 10 in accordance with the switch operation of the switch elements 21a to 21d.
  • the compensation voltage Vc is superimposed on the output voltage Vt of the single-phase transformer 10, and the control is realized such that the voltage Vo (phase and amplitude) on the load side becomes the target voltage Va (phase and amplitude).
  • FIG. 3 is a diagram illustrating an example of a detailed configuration of the control circuit 40.
  • the voltage detection circuit 41 is the output voltage Vt (amplitude and phase) of the single-phase transformer 10. It is a circuit for detecting.
  • the voltage detection circuit 42 is a circuit for detecting the compensation voltage Vc (the amplitude and phase thereof) that is the output voltage of the single-phase isolation transformer 30.
  • the subtraction circuit 43 calculates a difference between the “target voltage Va of the load-side voltage Vo” input from the outside and the “output voltage Vt of the single-phase transformer 10” detected by the voltage detection circuit 41. This is a circuit for calculation.
  • the difference between the target voltage Va and the output voltage Vt of the single-phase transformer 10 is referred to as a compensation command voltage VcT as necessary.
  • the subtraction circuit 44 is a circuit for calculating a difference between the “compensation command voltage V” obtained by the subtraction circuit 43 and the “compensation voltage Vc” obtained by the voltage detection circuit 42.
  • the difference between the compensation command voltage VcT and the compensation voltage Vc is referred to as a compensation differential voltage AVc as necessary.
  • the proportional control circuit 45 multiplies the “compensation differential voltage AVc” obtained by the subtraction circuit 44 by the proportional gain K to perform a proportional operation, and the compensation differential voltage obtained by performing this proportional operation.
  • AVc is output to the square wave generation circuit 46.
  • the triangular wave generation circuit 47 generates a carrier triangular wave Vd having an amplitude corresponding to the magnitude of the “output voltage Vt of the single-phase transformer 10” detected by the voltage detection circuit 41 and outputs it to the square wave generation circuit 46. To do. That is, the triangular wave generation circuit 47 generates the carrier triangular wave Vd by modulating the triangular wave with the output voltage Vt of the single-phase transformer 10 and outputs it to the square wave generation circuit 46.
  • the square wave generating circuit 46 has a comparator (comparator) that compares the compensation differential voltage AVc output from the proportional control circuit 45 with the carrier triangular wave Vd output from the triangular wave generating circuit 47. By the comparison operation by the comparator (comparator), pulse width modulation (PWM) is performed and a PWM signal (square wave) is obtained. This PWM signal becomes the gate signal Vg of the switch elements 21a to 21d.
  • PWM pulse width modulation
  • the square wave generating circuit 46 is a switch that operates (turns on) based on the gate signal Vg according to the value of the output voltage Vt of the single-phase transformer 10 and the value of the compensation command voltage V.
  • a selection circuit for selecting the elements 21a to 21d is provided.
  • the selection circuit selects the switch element 21b based on the gate signal Vg. Turn on 21c. In addition, the selection circuit switches the switching element based on the gate signal Vg even when the output voltage Vt of the single-phase transformer 10 and the compensation command voltage VcT are both negative values (Vt 0, VcT 0). Turn on 21b and 21c.
  • the selection circuit when the output voltage Vt of the single-phase transformer 10 is a positive value and the compensation command voltage V is a negative value (Vt> 0, VcT ⁇ 0), the selection circuit has a gate signal Vg Based on the above, the switch elements 21a and 21d are turned on. The selection circuit also has a gate signal Vg when the output voltage Vt of the single-phase transformer 10 is negative and the compensation command voltage VcT is positive (Vt ⁇ 0, VcT> 0). Based on the switch elements 21a and 21d.
  • the control circuit 40 performs feedback control using proportional control so that the compensation command voltage V and the actual compensation voltage Vc match! The As a result, the voltage Vo on the load side can be stabilized (same as the target voltage Va).
  • the capacitor 22 and the reactor 23 are low-pass filters for preventing harmonic components based on the switch operation of the switch elements 21a to 21d from flowing to the power supply side.
  • the single-phase isolation transformer 30 is inserted in order to prevent a short circuit between the input side and the output side of the matrix converter 20!
  • FIG. 4 is a diagram conceptually showing an example of the relationship among the voltage Vo on the load side, the output voltage Vt of the single-phase transformer 10, and the compensation voltage (output voltage of the matrix converter 20) Vc. is there.
  • FIG. 4A conceptually shows an example of the relationship between the output voltage Vt of the single-phase transformer 10 and the compensation voltage Vc when the amplitude of the output voltage Vt of the single-phase transformer 10 is smaller than the target voltage Va.
  • 4B shows the relationship between the output voltage Vt of the single-phase transformer 10 and the compensation voltage Vc when the amplitude of the output voltage Vt of the single-phase transformer 10 is larger than the target voltage Va.
  • FIG. 3 is a diagram conceptually showing an example.
  • the amplitude of the compensation voltage (output voltage of the matrix converter 20) Vc is It is the value obtained by subtracting the amplitude of the output voltage Vt of the single-phase transformer 10 from the target voltage Va.
  • the phase is in phase with the output voltage Vt of the single-phase transformer 10.
  • the amplitude of the compensation voltage (output voltage of the matrix converter 20) Vc is The target voltage Va is subtracted from the amplitude of the output voltage Vt of the single-phase transformer 10, and the phase deviates from the output voltage Vt of the single-phase transformer 10 by 180 °.
  • the amplitude of load-side voltage Vo becomes (approaches) target voltage Va.
  • FIG. 5 is a diagram showing an example of the waveform of the output voltage Vt of the single-phase transformer 10, the waveform of the compensation voltage (output voltage of the matrix converter 20) Vc, and the waveform of the voltage Vo on the load side. is there.
  • FIG. 5A is a diagram showing an example of “waveform of output voltage Vt of single-phase transformer 10” used when simulating the voltage regulator shown in FIG. In the example shown in FIG. 5A, the simulation was performed with the amplitude of the output voltage Vt of the single-phase transformer 10 being 112.8 (141 X 0.8) [V].
  • FIG. 5B shows an example of a waveform (simulation result) of compensation voltage (output voltage of matrix converter 20) Vc for compensating “output voltage Vt of single-phase transformer 10” shown in FIG. 5A.
  • FIG. 5C is obtained by compensating the ⁇ output voltage Vt of the single-phase transformer 10 '' shown in FIG. 5A with the compensation voltage (output voltage of the matrix converter 20) Vc shown in FIG.
  • FIG. 6 is a diagram showing an example of a waveform (simulation result) of “load-side voltage Vo”.
  • the switching operation of the switch elements 21a to 21d provided in the matrix converter 20 is controlled to generate and generate the compensation voltage (the output voltage of the matrix converter 20) Vc.
  • the compensation voltage Vc is superimposed on the output voltage Vt of the single-phase transformer 10 so that the phase and amplitude of the voltage Vo on the load side are the same as (closer to) the phase and amplitude of the target voltage Va I did it. That is, the output voltage Vt of the single phase transformer 10 is compensated by the compensation voltage (output voltage of the matrix converter 20) Vc.
  • the compensation voltage (the output voltage of the matrix converter 20) Vc is output following the sudden fluctuation of the voltage Vo on the load side by the switch operation of the switch elements 21a to 21d provided in the matrix converter 20. Can do. Further, unlike the inverter, the matrix converter 20 does not convert alternating current into direct current. This eliminates the need for short-life electrolytic capacitors. As a result, it is possible to provide a voltage regulator that has a lower loss, a smaller size, and a longer life than conventional ones.
  • the matrix converter is a device that can directly vary the frequency and amplitude of an AC power source with a fixed frequency and a fixed voltage without providing a power storage element inside.
  • the output voltage of the single-phase matrix converter must be 0 (zero) in the vicinity of the phase where the input voltage of the single-phase matrix converter is 0 (zero). For this reason, in the embodiment using a single-phase matrix converter alone, it is difficult to control the output voltage.
  • the single-phase matrix converter 20 is used to set the load-side voltage Vo to an ideal power supply voltage.
  • the frequency of the output voltage Vc is the same as the frequency on the input side, and in the phase where the input voltage of the single-phase matrix converter 20 is 0 (zero), the output voltage Vc of the single-phase matrix converter 20 is also 0 (zero) is acceptable. For this reason, in the voltage regulator of this embodiment, the capability of the single phase matrix converter 20 can be used effectively.
  • the switch element 21 is arranged in a matrix shape.
  • the single-phase transformer follows the fluctuation of the voltage Vo on the load side. If the output voltage Vt of 10 can be adjusted, the type and arrangement of the switch element 21 are not limited to this.
  • the switch element 21 may be configured as shown in FIG. FIG. 6 is a diagram showing another example of the configuration of the switch element 21.
  • the switch element 21 is configured using two IGBTs 212a and 212b and two diodes 213a and 213b in order to have the same function as the example shown in FIG. .
  • diodes 213a and 213b are connected between the emitters and collectors of IGBTs 212a and 212b with the emitter side as the anode side.
  • the power swords of the diodes 213a and 213b (the collectors of the IGBTs 212a and 212b) are connected to each other.
  • the compensation command voltage Vc indicating the difference between the output voltage Vt (phase and amplitude) of the single-phase transformer 10 and the target voltage Va (phase and amplitude)
  • Vc which is the output voltage of the isolation transformer 30
  • the compensation voltage Vc which is the output voltage of the isolation transformer 30
  • the phase or the amplitude of the output voltage Vt of the single-phase transformer 10 may be set to the target value.
  • the phase and amplitude of the output voltage Vt of the single-phase transformer 10 may be within an allowable range.
  • the phase of the voltage Vo on the load side and the amplitude force target value may be used.
  • FIG. 7 is a diagram showing an example of the configuration of a voltage regulator for regulating the output voltage of the three-phase transformer.
  • the voltage regulator includes a three-phase matrix converter 200, a three-phase isolation transformer 300, and a control circuit 400.
  • the three-phase matrix converter 200 includes three matrix converters 20a to 20c having the same configuration as the matrix converter 20 shown in FIG.
  • the three-phase isolation transformer 300 includes three single-phase isolation transformers 30a to 30c having the same configuration as the single-phase isolation transformer 30 shown in FIG.
  • the control circuit 400 determines whether or not the phase and amplitude of the voltage on the load side in each phase of the three-phase transformer 100 are target values, and the load in each phase of the three-phase transformer 100 (between each phase). And a circuit for controlling the switch operation of the switch elements 21a to 211 according to the voltage on the side.
  • the three-phase transformer 100 is connected to the output terminals 100a, 100b, and 100c in series through the matrix converters 20a, 20b, and 20c through the three-phase isolation transformer 300, respectively.
  • the control circuit 400 controls the switch operations of the switch elements 21a to 211 by performing the operation described in the first embodiment for each phase.
  • three-phase Voltage between output terminals 100a and 100b of transformer 100, voltage between output terminals 100b and 100c, voltage and force between output terminals 100c and 100a respectively Output voltage (compensation voltage) of matrix converters 20a, 20b and 2 Oc Compensated by Vc.
  • the output voltage of the multiphase transformer can be adjusted accurately and with low loss.
  • the output voltage of the transformer is converted into an AC voltage corresponding to the switching operation of the plurality of switch elements, and the converted AC voltage is superimposed on the output voltage of the transformer to be on the load side. It was made to be supplied.
  • the output voltage of a transformer can be adjusted using the alternating voltage according to the switch operation

Abstract

An output voltage (Vc) of a matrix converter (20) is generated by controlling switch operation of switch elements (21a-21d) arranged in the matrix converter (20). The phase and the amplitude of a voltage (Vo) on a load side are permitted to be target values by superimposing the generated output voltage (Vc) on an output voltage (Vt) of a single-phase transformer (10). An output voltage (Vt) of the single-phase transformer (10) is compensated by the output voltage (Vc) of the matrix converter (20).

Description

明 細 書  Specification
電圧調整装置  Voltage regulator
技術分野  Technical field
[0001] 本発明は、電圧調整装置に関し、特に、変圧器の出力電圧を調整するために用い て好適なものである。  The present invention relates to a voltage regulator, and is particularly suitable for use in regulating the output voltage of a transformer.
背景技術  Background art
[0002] 近年、エネルギー問題や環境問題を考慮して、風力、太陽光、燃料電池、及びコジ エネレーシヨン等を利用した発電システムの実用化が進められている。これらの発電 システムは一般に、電力系統の末端部分 (変圧器の出力端子)に接続される。従って 、これらの発電システムを適切に稼動させるために、電力系統の末端部分に設けら れた変圧器の出力電圧を一定にする必要がある。し力しながら、電力系統の末端部 分に設けられた変圧器の出力電圧は、その変圧器の出力端子に接続された負荷の 変動に応じて変化する。特に、前述した発電システムでは、電力系統の末端部分に 種々の発電機が接続されるので、逆潮流が生じ、電力系統の末端部分に設けられた 変圧器の出力電圧が上昇してしまうという特有の問題が生じる。  [0002] In recent years, power generation systems using wind power, sunlight, fuel cells, cogeneration, and the like have been put into practical use in consideration of energy problems and environmental problems. These power generation systems are generally connected to the terminal part of the power system (transformer output terminal). Therefore, in order to properly operate these power generation systems, it is necessary to make the output voltage of the transformer provided at the end of the power system constant. However, the output voltage of the transformer provided at the end of the power system changes according to the fluctuation of the load connected to the output terminal of the transformer. In particular, in the power generation system described above, since various generators are connected to the end portion of the power system, a reverse power flow occurs, and the output voltage of the transformer provided at the end portion of the power system increases. Problem arises.
[0003] このような問題に対し、変圧器の入力側にコンデンサを直列に接続し、このコンデン サの端子電圧を、インバータを備えた電源装置により変化させることにより、変圧器の 出力電圧を調整する技術がある (特許文献 1を参照)。  [0003] To deal with such problems, a capacitor is connected in series on the input side of the transformer, and the output voltage of the transformer is adjusted by changing the terminal voltage of this capacitor using a power supply device equipped with an inverter. There is a technique (see Patent Document 1).
[0004] また、タップ切替式電圧調整器と、静止形電圧調整器とを配電線路に直列に接続 し、これらタップ切替式電圧調整器と、静止形電圧調整器とを用いて、配電線路の電 源側から入力した電圧を調整して、配電線路の負荷側に供給する技術もある (特許 文献 2を参照)。ここで、タップ切替式電圧調整器は、配電線路の電圧を入力して変 成するタップ付きの調整変圧器と、そのタップ付きの調整変圧器のタップを切り替え 制御するタップ制御部とを備えている。また、静止形電圧調整器は、配電線路から得 た電圧を、インバータを用いて調整電圧に変換する電力変換器と、その電力変換器 で変換された調整電圧を変成してタップ切替式電圧調整器の出力電圧に重畳して 負荷側に与える直列変圧器とを備えている。ここで、タップ付きの調整変圧器のタツ プは、電力変 の出力電圧が閾値を超えたときに切替制御される。 [0004] Further, a tap-switching voltage regulator and a static voltage regulator are connected in series to the distribution line, and the tap-switching voltage regulator and the static voltage regulator are used to connect the distribution line. There is also a technique for adjusting the voltage input from the power supply side and supplying it to the load side of the distribution line (see Patent Document 2). Here, the tap switching type voltage regulator includes a tapping adjustment transformer that inputs and transforms the voltage of the distribution line, and a tap control unit that switches and controls the tapping of the tapping adjustment transformer. Yes. In addition, the static voltage regulator is a power converter that converts the voltage obtained from the distribution line into a regulated voltage using an inverter, and a voltage that is converted by the power converter is transformed into a tap-switchable voltage regulator. A series transformer that is superimposed on the output voltage of the transformer and applied to the load side. Here, the tapping regulator Is switched when the output voltage of power fluctuation exceeds a threshold value.
[0005] し力しながら、前述した風力発電システムや、太陽光発電システムでは、風量や、 日射量により出力が激しく変動するので、電力系統の末端部分に設けられた変圧器 の負荷 (即ち出力電圧)が短い時間で不規則に変動する。したがって、特許文献 1に 記載の技術のようにコンデンサを用いたり、特許文献 2に記載の技術のように変圧器 のタップを切り替えたりする技術では、このような変動に追従して電圧を調整すること が困難であるという問題点があった。  [0005] However, in the wind power generation system and the solar power generation system described above, the output fluctuates greatly depending on the air volume and the amount of solar radiation, so the load of the transformer provided at the end of the power system (that is, the output) Voltage) fluctuates irregularly in a short time. Therefore, in the technique of using a capacitor as in the technique described in Patent Document 1 or switching the tap of the transformer as in the technique described in Patent Document 2, the voltage is adjusted following such fluctuations. There was a problem that it was difficult.
[0006] この他、特許文献 1に記載の技術では、変圧器そのものを改造する必要があるので 、装置の構成が複雑になるという問題点があった。  [0006] In addition, the technique described in Patent Document 1 has a problem that the configuration of the apparatus becomes complicated because the transformer itself needs to be modified.
また、特許文献 2に記載の技術では、タップ付きの調整変圧器のタップが、電力変 換器からの指令に基づいて切り替わるので、タップ切替式電圧調整器と、静止形電 圧調整器とを協調させる必要があり、装置の構成が複雑になるという問題点があった  In the technique described in Patent Document 2, the tap of the adjustment transformer with a tap is switched based on a command from the power converter, so that a tap-switching voltage regulator and a static voltage regulator are connected. There was a problem that the configuration of the device was complicated because it was necessary to coordinate
[0007] そこで、コンバータとインバータとを備えた電圧調整用交流電源の出力端子を、変 圧器の入力側に直列に接続し、電圧調整用交流電源が、変圧器のための交流電源 と同じ周波数の電圧を変圧器の入力側に供給することにより、変圧器の出力電圧を 調整する技術がある (特許文献 3を参照)。 [0007] Therefore, the output terminal of the voltage adjusting AC power source including the converter and the inverter is connected in series to the input side of the transformer, and the voltage adjusting AC power source has the same frequency as the AC power source for the transformer. There is a technology that adjusts the output voltage of a transformer by supplying the above voltage to the input side of the transformer (see Patent Document 3).
[0008] し力しながら、前述した従来の技術では、インバータを用いているため、交流電力を 直流電力に変換し、直流電力を電解コンデンサで平滑してから再度交流電力に変 換する必要がある。従って、電圧を調整するための回路における損失が大きくなると いう問題点があった。また、電解コンデンサは、体積が大きぐ且つ寿命が短い。従つ て、電圧を調整するための回路が大きくなると共に、寿命が短くなるという問題点があ つた o  However, since the conventional technique described above uses an inverter, it is necessary to convert AC power to DC power, smooth the DC power with an electrolytic capacitor, and then convert it again to AC power. is there. Therefore, there is a problem that the loss in the circuit for adjusting the voltage becomes large. Moreover, the electrolytic capacitor has a large volume and a short life. Therefore, there is a problem that the circuit for adjusting the voltage becomes larger and the service life is shortened.
[0009] また、特許文献 3に記載の技術では、コンバータとインバータとを通過して得られた 電圧を変圧器の入力側に供給するので、電圧を調整するための回路の損失が特に 大きくなると共に、インバータが常時動作するので、電圧を調整するための回路の寿 命が特に短くなる。  [0009] Further, in the technique described in Patent Document 3, the voltage obtained through the converter and the inverter is supplied to the input side of the transformer, so that the loss of the circuit for adjusting the voltage is particularly large. At the same time, since the inverter always operates, the life of the circuit for adjusting the voltage is particularly shortened.
[0010] 特許文献 1 :特開平 11 136945号公報 特許文献 2:特開平 11― 289666号公報 Patent Document 1: Japanese Patent Laid-Open No. 11 136945 Patent Document 2: Japanese Patent Laid-Open No. 11-289666
特許文献 3 :特開 2000— 148267号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2000-148267
発明の開示  Disclosure of the invention
[0011] 本発明は、このような問題点に鑑みてなされたものであり、損失が低く且つ信頼性 の高 ヽ電圧調整装置を提供することを目的とする。  The present invention has been made in view of such problems, and an object thereof is to provide a high voltage regulator with low loss and high reliability.
[0012] 本発明の電圧調整装置は、変圧器の出力側の卷線に直列に接続された電圧変換 回路と、前記電圧変換回路を制御する制御回路とを有し、前記電圧変換回路は、複 数のスィッチ素子を有し、前記変圧器の出力電圧を、前記複数のスィッチ素子のスィ ツチ動作に応じた交流電圧に変換して出力し、前記制御回路は、前記複数のスイツ チ素子のスィッチ動作を制御し、前記変圧器の出力電圧に、前記電圧変換回路の 出力電圧が重畳された電圧が、負荷側に供給されるようにしたことを特徴とする。 図面の簡単な説明  [0012] The voltage regulator of the present invention has a voltage conversion circuit connected in series to the feeder side wire of the transformer, and a control circuit for controlling the voltage conversion circuit, the voltage conversion circuit, A plurality of switch elements, and the output voltage of the transformer is converted into an AC voltage corresponding to the switch operation of the plurality of switch elements, and the control circuit outputs the AC voltage of the plurality of switch elements. The switch operation is controlled, and a voltage obtained by superimposing the output voltage of the voltage conversion circuit on the output voltage of the transformer is supplied to the load side. Brief Description of Drawings
[0013] [図 1]図 1は、本発明の実施形態を示し、電圧調整装置の構成の一例を示した図であ る。  FIG. 1 is a diagram showing an example of the configuration of a voltage regulator according to an embodiment of the present invention.
[図 2]図 2は、本発明の実施形態を示し、スィッチ素子の構成の一例を示した図であ る。  FIG. 2 is a view showing an embodiment of the present invention and showing an example of the configuration of a switch element.
[図 3]図 3は、本発明の実施形態を示し、制御回路の詳細な構成の一例を示した図で ある。  FIG. 3 is a diagram showing an embodiment of the present invention and showing an example of a detailed configuration of a control circuit.
[図 4A]図 4Aは、本発明の実施形態を示し、単相変圧器の出力電圧の振幅が、目標 電圧よりも小さい場合の、単相変圧器の出力電圧と補償電圧との関係の一例を概念 的に示した図である。  [FIG. 4A] FIG. 4A shows an embodiment of the present invention, and shows an example of the relationship between the output voltage of the single-phase transformer and the compensation voltage when the amplitude of the output voltage of the single-phase transformer is smaller than the target voltage. FIG.
[図 4B]図 4Bは、本発明の実施形態を示し、単相変圧器の出力電圧の振幅が、目標 電圧よりも大きい場合の、単相変圧器の出力電圧と補償電圧との関係の一例を概念 的に示した図である。  FIG. 4B shows an embodiment of the present invention, and shows an example of the relationship between the output voltage of the single-phase transformer and the compensation voltage when the amplitude of the output voltage of the single-phase transformer is larger than the target voltage. FIG.
[図 5A]図 5Aは、本発明の実施形態を示し、図 1に示した電圧調整装置をシミュレ一 シヨンする際に使用した「単相変圧器の出力電圧の波形」の一例を示した図である。  [FIG. 5A] FIG. 5A is a diagram showing an embodiment of the present invention and showing an example of “waveform of output voltage of single-phase transformer” used for simulating the voltage regulator shown in FIG. It is.
[図 5B]図 5Bは、本発明の実施形態を示し、図 5Aに示した「単相変圧器の出力電圧 」を補償するための補償電圧 (マトリックスコンバータの出力電圧)の波形 (シミュレ一 シヨン結果)の一例を示した図である。 [FIG. 5B] FIG. 5B shows an embodiment of the present invention, and shows a waveform (simulation voltage) of a compensation voltage (an output voltage of a matrix converter) for compensating the “output voltage of the single-phase transformer” shown in FIG. 5A. It is the figure which showed an example of a (result of Chillon).
[図 5C]図 5Cは、本発明の実施形態を示し、図 5Aに示した「単相変圧器の出力電圧 」を、図 5Bに示した補償電圧 (マトリックスコンバータの出力電圧)で補償することによ り得られた「負荷側の電圧」の波形 (シミュレーション結果)の一例を示した図である。  [FIG. 5C] FIG. 5C shows an embodiment of the present invention, in which the “output voltage of the single-phase transformer” shown in FIG. 5A is compensated with the compensation voltage (output voltage of the matrix converter) shown in FIG. 5B. FIG. 6 is a diagram showing an example of a waveform (simulation result) of a “load-side voltage” obtained as described above.
[図 6]図 6は、本発明の実施形態を示し、スィッチ素子の構成の他の例を示した図で ある。  FIG. 6 shows an embodiment of the present invention and is a diagram showing another example of the configuration of the switch element.
[図 7]図 7は、本発明の実施形態を示し、三相変圧器の出力電圧を調整するための 電圧調整装置の構成の一例を示した図である。  FIG. 7 shows an embodiment of the present invention and is a diagram showing an example of the configuration of a voltage regulator for adjusting the output voltage of a three-phase transformer.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下に、本発明の一実施形態を説明する。 [0014] Hereinafter, an embodiment of the present invention will be described.
図 1は、本実施形態の電圧調整装置の構成の一例を示した図である。 図 1において、電圧調整装置は、マトリックスコンバータ 20と、単相絶縁変圧器 30と 、制御回路 40とを有している。  FIG. 1 is a diagram illustrating an example of the configuration of the voltage regulator according to the present embodiment. In FIG. 1, the voltage regulator includes a matrix converter 20, a single-phase insulating transformer 30, and a control circuit 40.
マトリックスコンバータ 20は、スィッチ素子 21a〜21dと、コンデンサ 22と、リアクタ 2 3とを有しており、単相絶縁変圧器 30を通して単相変圧器 10の出力側の卷線に直 列に接続されている。  The matrix converter 20 includes switch elements 21a to 21d, a capacitor 22, and a reactor 23. The matrix converter 20 is connected in series with the output side of the single-phase transformer 10 through the single-phase isolation transformer 30. ing.
[0015] まず、マトリックスコンバータ 20の結線について詳細に説明する。 First, the connection of the matrix converter 20 will be described in detail.
図 1に示すように、スィッチ素子 21aの一端は、単相変圧器 10の出力側の卷線の 一端と相互に接続されており、スィッチ素子 21aの他端は、単相絶縁変圧器 30の入 力側の一端 31aと相互に接続されている。  As shown in FIG. 1, one end of the switch element 21a is mutually connected to one end of the winding on the output side of the single-phase transformer 10, and the other end of the switch element 21a is connected to the single-phase isolation transformer 30. Connected to one end 31a on the input side.
スィッチ素子 21bの一端は、スィッチ素子 21dの一端と相互に接続されており、スィ ツチ素子 21bの他端は、スィッチ素子 21aの他端 (単相絶縁変圧器 30の入力側の一 端 3 la)と相互に接続されている。  One end of the switch element 21b is connected to one end of the switch element 21d, and the other end of the switch element 21b is connected to the other end of the switch element 21a (one end of the input side of the single-phase isolation transformer 30 3 la ) And connected to each other.
[0016] スィッチ素子 21cの一端は、スィッチ素子 21aの一端と相互に接続されており、スィ ツチ素子 21cの他端は、単相絶縁変圧器 30の入力側の他端 31bと相互に接続され ている。 [0016] One end of the switch element 21c is connected to one end of the switch element 21a, and the other end of the switch element 21c is connected to the other end 31b on the input side of the single-phase insulating transformer 30. ing.
スィッチ素子 21dの一端は、前述したようにスィッチ素子 21bの一端と相互に接続さ れており、スィッチ素子 21dの他端は、スィッチ素子 21cの他端 (単相絶縁変圧器 30 の入力側の他端 3 lb)と相互に接続されている。 As described above, one end of the switch element 21d is connected to one end of the switch element 21b, and the other end of the switch element 21d is connected to the other end of the switch element 21c (single-phase insulation transformer 30). Is connected to the other end (3 lb) on the input side.
[0017] コンデンサ 22の一端は、単相変圧器 10の出力側の卷線の一端 (スィッチ素子 21a の一端)と相互に接続されており、コンデンサ 22の他端は、スィッチ素子 21b、 21dの 接続点と相互に接続されている。 [0017] One end of the capacitor 22 is mutually connected to one end of the winding on the output side of the single-phase transformer 10 (one end of the switch element 21a), and the other end of the capacitor 22 is connected to the switch elements 21b and 21d. Connected to the connection point.
リアクタ 23の一端は、コンデンサ 22の他端 (スィッチ素子 21b、 21dの接続点)と相 互に接続されており、リアクタ 23の他端は、単相変圧器 10の出力側の卷線の他端と 相互に接続されている。  One end of the reactor 23 is connected to the other end of the capacitor 22 (the connection point of the switch elements 21b and 21d). The other end of the reactor 23 is connected to the other side of the output side of the single-phase transformer 10 Connected to the ends.
単相絶縁変圧器 30の出力側の一端 32aは、単相変圧器 10の出力側の卷線の一 端と相互に接続されており、単相絶縁変圧器 30の出力側の他端 32bは、負荷側の 端子 50aと相互に接続されて 、る。  One end 32a on the output side of the single-phase isolation transformer 30 is connected to one end of the feeder line on the output side of the single-phase transformer 10, and the other end 32b on the output side of the single-phase isolation transformer 30 is Connected to the terminal 50a on the load side.
[0018] 次に、スィッチ素子 21の構成について説明する。図 2は、スィッチ素子 21の構成の 一例を示した図である。 [0018] Next, the configuration of the switch element 21 will be described. FIG. 2 is a diagram showing an example of the configuration of the switch element 21.
図 2に示すように、本実施形態のスィッチ素子 21は、 2つの RBIGBT (逆阻止 IGB T; Reverse  As shown in FIG. 2, the switch element 21 of the present embodiment includes two RBIGBTs (reverse blocking IGB T; Reverse
Blocking Insulated-Gate Bipolar Transistor) 21 la、 2 l ibを逆並列に接続して構成 される。このように、本実施形態では、逆耐圧を維持しながらスイッチング動作を行う 逆阻止デバイスを用いてスィッチ素子 21を構成するようにして ヽる。  Blocking Insulated-Gate Bipolar Transistor) 21 la, 2 ib are connected in reverse parallel. Thus, in the present embodiment, the switch element 21 is configured using a reverse blocking device that performs a switching operation while maintaining a reverse breakdown voltage.
[0019] 図 1に説明を戻し、制御回路 40は、単相変圧器 10の出力電圧 Vt (の位相と振幅) と、目標電圧 Va (の位相と振幅)とに差がある場合に、負荷側の電圧 Vo (の位相と振 幅)が目標電圧 Va (の位相と振幅)と同じになるような補償電圧 Vcを、マトリックスコン バータ 20 (スィッチ素子 21a〜21d)が出力するように、スィッチ素子 21a〜21dのス イッチ動作を制御する。これにより、マトリックスコンバータ 20は、スィッチ素子 21a〜 21dのスィッチ動作に応じて、負荷側の端子 50aと、単相変圧器 10の出力側の卷線 の一端との間に、補償電圧 Vcを印加する。こうして、単相変圧器 10の出力電圧 Vtに 、補償電圧 Vcが重畳され、負荷側の電圧 Vo (の位相と振幅)が目標電圧 Va (の位相 と振幅)になるような制御が実現される。  [0019] Returning to FIG. 1, when the control circuit 40 has a difference between the output voltage Vt (phase and amplitude) of the single-phase transformer 10 and the target voltage Va (phase and amplitude), So that the matrix converter 20 (switch elements 21a to 21d) outputs a compensation voltage Vc so that the voltage Vo (phase and amplitude) on the side becomes the same as the target voltage Va (phase and amplitude). Controls the switch operation of elements 21a to 21d. Thereby, the matrix converter 20 applies the compensation voltage Vc between the load-side terminal 50a and one end of the output-side winding of the single-phase transformer 10 in accordance with the switch operation of the switch elements 21a to 21d. To do. Thus, the compensation voltage Vc is superimposed on the output voltage Vt of the single-phase transformer 10, and the control is realized such that the voltage Vo (phase and amplitude) on the load side becomes the target voltage Va (phase and amplitude). .
[0020] 図 3は、制御回路 40の詳細な構成の一例を示した図である。  FIG. 3 is a diagram illustrating an example of a detailed configuration of the control circuit 40.
図 3において、電圧検出回路 41は、単相変圧器 10の出力電圧 Vt (の振幅と位相) を検出するための回路である。また、電圧検出回路 42は、単相絶縁変圧器 30の出 力電圧である補償電圧 Vc (の振幅と位相)を検出するための回路である。 In FIG. 3, the voltage detection circuit 41 is the output voltage Vt (amplitude and phase) of the single-phase transformer 10. It is a circuit for detecting. The voltage detection circuit 42 is a circuit for detecting the compensation voltage Vc (the amplitude and phase thereof) that is the output voltage of the single-phase isolation transformer 30.
[0021] 減算回路 43は、外部から入力された「負荷側の電圧 Voの目標電圧 Va」と、電圧検 出回路 41により検出された「単相変圧器 10の出力電圧 Vt」との差を演算するための 回路である。なお、以下の説明では、目標電圧 Vaと、単相変圧器 10の出力電圧 Vt との差を、必要に応じて補償指令電圧 VcTと称する。 [0021] The subtraction circuit 43 calculates a difference between the “target voltage Va of the load-side voltage Vo” input from the outside and the “output voltage Vt of the single-phase transformer 10” detected by the voltage detection circuit 41. This is a circuit for calculation. In the following description, the difference between the target voltage Va and the output voltage Vt of the single-phase transformer 10 is referred to as a compensation command voltage VcT as necessary.
減算回路 44は、減算回路 43により得られた「補償指令電圧 V 」と、電圧検出回 路 42により得られた「補償電圧 Vc」との差を演算するための回路である。なお、以下 の説明では、補償指令電圧 VcTと、補償電圧 Vcとの差を、必要に応じて補償差分電 圧 AVcと称する。  The subtraction circuit 44 is a circuit for calculating a difference between the “compensation command voltage V” obtained by the subtraction circuit 43 and the “compensation voltage Vc” obtained by the voltage detection circuit 42. In the following description, the difference between the compensation command voltage VcT and the compensation voltage Vc is referred to as a compensation differential voltage AVc as necessary.
[0022] 比例制御回路 45は、減算回路 44で得られた「補償差分電圧 AVc」に、比例ゲイン Kを乗算して比例動作を行 ヽ、この比例動作を行うことにより得られた補償差分電圧 AVcを、方形波発生回路 46に出力する。  The proportional control circuit 45 multiplies the “compensation differential voltage AVc” obtained by the subtraction circuit 44 by the proportional gain K to perform a proportional operation, and the compensation differential voltage obtained by performing this proportional operation. AVc is output to the square wave generation circuit 46.
三角波発生回路 47は、電圧検出回路 41により検出された「単相変圧器 10の出力 電圧 Vt」の大きさに応じた振幅を有する搬送三角波 Vdを生成して、方形波発生回 路 46に出力する。すなわち、三角波発生回路 47は、単相変圧器 10の出力電圧 Vt で三角波を変調することにより搬送三角波 Vdを生成して、方形波発生回路 46に出 力する。  The triangular wave generation circuit 47 generates a carrier triangular wave Vd having an amplitude corresponding to the magnitude of the “output voltage Vt of the single-phase transformer 10” detected by the voltage detection circuit 41 and outputs it to the square wave generation circuit 46. To do. That is, the triangular wave generation circuit 47 generates the carrier triangular wave Vd by modulating the triangular wave with the output voltage Vt of the single-phase transformer 10 and outputs it to the square wave generation circuit 46.
[0023] 方形波発生回路 46は、比例制御回路 45から出力された補償差分電圧 AVcと、三 角波発生回路 47から出力された搬送三角波 Vdとを比較する比較器 (コンパレータ) を有する。比較器 (コンパレータ)による比較動作により、パルス幅変調(PWM ; Pulse Width Modulation)が行われ、 PWM信号(方形波)が得られる。この PWM信号が、 スィッチ素子 21a〜21dのゲート信号 Vgとなる。  The square wave generating circuit 46 has a comparator (comparator) that compares the compensation differential voltage AVc output from the proportional control circuit 45 with the carrier triangular wave Vd output from the triangular wave generating circuit 47. By the comparison operation by the comparator (comparator), pulse width modulation (PWM) is performed and a PWM signal (square wave) is obtained. This PWM signal becomes the gate signal Vg of the switch elements 21a to 21d.
[0024] ここで、方形波発生回路 46は、単相変圧器 10の出力電圧 Vtの値と、補償指令電 圧 V の値とに応じて、ゲート信号 Vgに基づいて動作 (オン)させるスィッチ素子 21a 〜 21 dを選択する選択回路を有して 、る。  Here, the square wave generating circuit 46 is a switch that operates (turns on) based on the gate signal Vg according to the value of the output voltage Vt of the single-phase transformer 10 and the value of the compensation command voltage V. A selection circuit for selecting the elements 21a to 21d is provided.
具体的に選択回路は、単相変圧器 10の出力電圧 Vtと補償指令電圧 V とが共に 正の値 (Vt>0、 VcT >0)のときには、ゲート信号 Vgに基づいて、スィッチ素子 21b 、 21cをオンする。また、選択回路は、単相変圧器 10の出力電圧 Vtと補償指令電圧 VcTとが共に負の値 (Vtく 0、 VcTく 0)のときにも、ゲート信号 Vgに基づいて、スイツ チ素子 21b、 21cをオンする。 Specifically, when the output voltage Vt of the single-phase transformer 10 and the compensation command voltage V are both positive values (Vt> 0, VcT> 0), the selection circuit selects the switch element 21b based on the gate signal Vg. Turn on 21c. In addition, the selection circuit switches the switching element based on the gate signal Vg even when the output voltage Vt of the single-phase transformer 10 and the compensation command voltage VcT are both negative values (Vt 0, VcT 0). Turn on 21b and 21c.
[0025] また、選択回路は、単相変圧器 10の出力電圧 Vtが正の値であり、補償指令電圧 V の値が負の値 (Vt>0、 VcT < 0)のときには、ゲート信号 Vgに基づいて、スィッチ 素子 21a、 21dをオンする。また、選択回路は、単相変圧器 10の出力電圧 Vtが負の 値であり、補償指令電圧 VcTの値が正の値 (Vtく 0、 VcT >0)のときにも、ゲート信 号 Vgに基づいて、スィッチ素子 21a、 21dにオンする。 [0025] In addition, when the output voltage Vt of the single-phase transformer 10 is a positive value and the compensation command voltage V is a negative value (Vt> 0, VcT <0), the selection circuit has a gate signal Vg Based on the above, the switch elements 21a and 21d are turned on. The selection circuit also has a gate signal Vg when the output voltage Vt of the single-phase transformer 10 is negative and the compensation command voltage VcT is positive (Vt <0, VcT> 0). Based on the switch elements 21a and 21d.
なお、補償指令電圧 Vc'の値が 0 (ゼロ)の場合には、マトリックスコンバータ 20を動 作させない。  When the value of compensation command voltage Vc 'is 0 (zero), matrix converter 20 is not operated.
[0026] 以上のように本実施形態では、制御回路 40は、補償指令電圧 V と、実際の補償 電圧 Vcとが一致するように、比例制御を用いたフィードバック制御を行うようにして!/ヽ る。これにより、負荷側の電圧 Voを安定させる(目標電圧 Vaと同じにする)ことが可能 になる。  As described above, in the present embodiment, the control circuit 40 performs feedback control using proportional control so that the compensation command voltage V and the actual compensation voltage Vc match! The As a result, the voltage Vo on the load side can be stabilized (same as the target voltage Va).
[0027] 図 1に説明を戻し、コンデンサ 22とリアクタ 23は、スィッチ素子 21a〜21dのスイツ チ動作に基づく高調波成分が電源側に流れるのを防ぐためのローパスフィルタであ る。また、単相絶縁変圧器 30は、マトリックスコンバータ 20の入力側と出力側とが短 絡してしまうことを防ぐために挿入されて!、る。  [0027] Returning to FIG. 1, the capacitor 22 and the reactor 23 are low-pass filters for preventing harmonic components based on the switch operation of the switch elements 21a to 21d from flowing to the power supply side. In addition, the single-phase isolation transformer 30 is inserted in order to prevent a short circuit between the input side and the output side of the matrix converter 20!
[0028] 図 4は、負荷側の電圧 Voと、単相変圧器 10の出力電圧 Vtと、補償電圧 (マトリック スコンバータ 20の出力電圧) Vcとの関係の一例を概念的に示した図である。具体的 に図 4Aは、単相変圧器 10の出力電圧 Vtの振幅が、目標電圧 Vaよりも小さい場合 の、単相変圧器 10の出力電圧 Vtと補償電圧 Vcとの関係の一例を概念的に示した 図であり、図 4Bは、単相変圧器 10の出力電圧 Vtの振幅が、目標電圧 Vaよりも大き い場合の、単相変圧器 10の出力電圧 Vtと補償電圧 Vcとの関係の一例を概念的〖こ 示した図である。  [0028] Fig. 4 is a diagram conceptually showing an example of the relationship among the voltage Vo on the load side, the output voltage Vt of the single-phase transformer 10, and the compensation voltage (output voltage of the matrix converter 20) Vc. is there. Specifically, FIG. 4A conceptually shows an example of the relationship between the output voltage Vt of the single-phase transformer 10 and the compensation voltage Vc when the amplitude of the output voltage Vt of the single-phase transformer 10 is smaller than the target voltage Va. 4B shows the relationship between the output voltage Vt of the single-phase transformer 10 and the compensation voltage Vc when the amplitude of the output voltage Vt of the single-phase transformer 10 is larger than the target voltage Va. FIG. 3 is a diagram conceptually showing an example.
[0029] 例えば、図 4Aに示すように、単相変圧器 10の出力電圧 Vtの振幅力 破線で示す 目標電圧 Vaよりも小さい場合、補償電圧 (マトリックスコンバータ 20の出力電圧) Vc の振幅は、目標電圧 Vaカゝら単相変圧器 10の出力電圧 Vtの振幅を引いた値となり、 位相は、単相変圧器 10の出力電圧 Vtと同相となる。このような補償電圧 (マトリックス コンバータ 20の出力電圧) Vc力 単相変圧器 10の出力電圧 Vtに重畳されることに より、負荷側の電圧 Voの振幅は目標電圧 Vaになる(近づく)。 For example, as shown in FIG. 4A, when the amplitude force of the output voltage Vt of the single-phase transformer 10 is smaller than the target voltage Va shown by the broken line, the amplitude of the compensation voltage (output voltage of the matrix converter 20) Vc is It is the value obtained by subtracting the amplitude of the output voltage Vt of the single-phase transformer 10 from the target voltage Va. The phase is in phase with the output voltage Vt of the single-phase transformer 10. By superimposing such compensation voltage (output voltage of matrix converter 20) Vc force output voltage Vt of single-phase transformer 10, the amplitude of load-side voltage Vo becomes (approaches) target voltage Va.
[0030] また、図 4Bに示すように、単相変圧器 10の出力電圧 Vtの振幅力 破線で示す目 標電圧 Vaよりも大きい場合、補償電圧 (マトリックスコンバータ 20の出力電圧) Vcの 振幅は、単相変圧器 10の出力電圧 Vtの振幅から目標電圧 Vaを引いた値となり、位 相は、単相変圧器 10の出力電圧 Vtと 180° ずれる。このような補償電圧 (マトリックス コンバータ 20の出力電圧) Vc力 単相変圧器 10の出力電圧 Vtに重畳されることに より、負荷側の電圧 Voの振幅は目標電圧 Vaになる(近づく)。  In addition, as shown in FIG. 4B, when the amplitude force of the output voltage Vt of the single-phase transformer 10 is larger than the target voltage Va shown by the broken line, the amplitude of the compensation voltage (output voltage of the matrix converter 20) Vc is The target voltage Va is subtracted from the amplitude of the output voltage Vt of the single-phase transformer 10, and the phase deviates from the output voltage Vt of the single-phase transformer 10 by 180 °. By superimposing such compensation voltage (output voltage of matrix converter 20) Vc force output voltage Vt of single-phase transformer 10, the amplitude of load-side voltage Vo becomes (approaches) target voltage Va.
[0031] 尚、図 4では、単相変圧器 10の出力電圧 Vtの振幅を調整 (補償)する場合を例に 挙げて示した力 スィッチ素子 21a〜21dのスィッチ動作を制御することにより、単相 変圧器 10の出力電圧 Vtの位相を調整 (補償)することも可能である。  [0031] In FIG. 4, by controlling the switch operation of the force switch elements 21a to 21d shown as an example of adjusting (compensating) the amplitude of the output voltage Vt of the single-phase transformer 10, It is also possible to adjust (compensate) the phase of the output voltage Vt of the phase transformer 10.
[0032] 図 5は、単相変圧器 10の出力電圧 Vtの波形と、補償電圧 (マトリックスコンバータ 2 0の出力電圧) Vcの波形と、負荷側の電圧 Voの波形の一例を示した図である。 具体的に、図 5Aは、図 1に示した電圧調整装置をシミュレーションする際に使用し た「単相変圧器 10の出力電圧 Vtの波形」の一例を示した図である。図 5Aに示した 例では、単相変圧器 10の出力電圧 Vtの振幅を、 112. 8 (141 X 0. 8) [V]として、 シミュレーションを行つた。  FIG. 5 is a diagram showing an example of the waveform of the output voltage Vt of the single-phase transformer 10, the waveform of the compensation voltage (output voltage of the matrix converter 20) Vc, and the waveform of the voltage Vo on the load side. is there. Specifically, FIG. 5A is a diagram showing an example of “waveform of output voltage Vt of single-phase transformer 10” used when simulating the voltage regulator shown in FIG. In the example shown in FIG. 5A, the simulation was performed with the amplitude of the output voltage Vt of the single-phase transformer 10 being 112.8 (141 X 0.8) [V].
[0033] 図 5Bは、図 5Aに示した「単相変圧器 10の出力電圧 Vt」を補償するための補償電 圧(マトリックスコンバータ 20の出力電圧) Vcの波形(シミュレーション結果)の一例を 示した図である。また、図 5Cは、図 5Aに示した「単相変圧器 10の出力電圧 Vt」を、 図 5Bに示した補償電圧 (マトリックスコンバータ 20の出力電圧) Vcで補償することに より得られた「負荷側の電圧 Vo」の波形 (シミュレーション結果)の一例を示した図で ある。  FIG. 5B shows an example of a waveform (simulation result) of compensation voltage (output voltage of matrix converter 20) Vc for compensating “output voltage Vt of single-phase transformer 10” shown in FIG. 5A. It is a figure. 5C is obtained by compensating the `` output voltage Vt of the single-phase transformer 10 '' shown in FIG. 5A with the compensation voltage (output voltage of the matrix converter 20) Vc shown in FIG. FIG. 6 is a diagram showing an example of a waveform (simulation result) of “load-side voltage Vo”.
[0034] 以上のように本実施形態では、マトリックスコンバータ 20に設けられたスィッチ素子 21a〜21dのスィッチ動作を制御して、補償電圧(マトリックスコンバータ 20の出力電 圧) Vcを生成し、生成した補償電圧 Vcを単相変圧器 10の出力電圧 Vtに重畳させて 負荷側の電圧 Voの位相と振幅とが目標電圧 Vaの位相と振幅と同じになる (近づく) ようにした。即ち、補償電圧 (マトリックスコンバータ 20の出力電圧) Vcにより、単相変 圧器 10の出力電圧 Vtを補償する。従って、マトリックスコンバータ 20に設けられたス イッチ素子 21a〜21dのスィッチ動作により、補償電圧(マトリックスコンバータ 20の出 力電圧) Vcを、負荷側の電圧 Voの急激な変動に追従させて出力することができる。 また、マトリックスコンバータ 20は、インバータとは違い、交流を直流に変換しない。こ のため、寿命の短い電解コンデンサを用いる必要がなくなる。これにより、従来よりも 低損失化、小型化、及び長寿命化された電圧調整装置とすることができる。 [0034] As described above, in the present embodiment, the switching operation of the switch elements 21a to 21d provided in the matrix converter 20 is controlled to generate and generate the compensation voltage (the output voltage of the matrix converter 20) Vc. The compensation voltage Vc is superimposed on the output voltage Vt of the single-phase transformer 10 so that the phase and amplitude of the voltage Vo on the load side are the same as (closer to) the phase and amplitude of the target voltage Va I did it. That is, the output voltage Vt of the single phase transformer 10 is compensated by the compensation voltage (output voltage of the matrix converter 20) Vc. Therefore, the compensation voltage (the output voltage of the matrix converter 20) Vc is output following the sudden fluctuation of the voltage Vo on the load side by the switch operation of the switch elements 21a to 21d provided in the matrix converter 20. Can do. Further, unlike the inverter, the matrix converter 20 does not convert alternating current into direct current. This eliminates the need for short-life electrolytic capacitors. As a result, it is possible to provide a voltage regulator that has a lower loss, a smaller size, and a longer life than conventional ones.
[0035] マトリックスコンバータは、周波数が固定され、且つ電圧が固定された交流電源の 周波数と振幅とを、電力蓄積要素を内部に設けることなぐ直接的に可変させること ができる装置である。しかしながら、単相マトリックスコンバータでは、単相マトリックス コンバータの入力電圧が 0 (ゼロ)になる位相の付近では、単相マトリックスコンバータ の出力電圧も 0 (ゼロ)にならざるを得ない。このため、単相マトリックスコンバータ単体 での実施形態では、その出力電圧の制御が難し力つた。 [0035] The matrix converter is a device that can directly vary the frequency and amplitude of an AC power source with a fixed frequency and a fixed voltage without providing a power storage element inside. However, in the single-phase matrix converter, the output voltage of the single-phase matrix converter must be 0 (zero) in the vicinity of the phase where the input voltage of the single-phase matrix converter is 0 (zero). For this reason, in the embodiment using a single-phase matrix converter alone, it is difficult to control the output voltage.
[0036] しカゝしながら、本実施形態の電圧調整装置では、負荷側の電圧 Voを理想的な電 源電圧にするために単相マトリックスコンバータ 20を用いるので、単相マトリックスコン バータ 20の出力電圧 Vcの周波数は、入力側の周波数と同じであり、し力も、単相マ トリックスコンバータ 20の入力電圧が 0 (ゼロ)になる位相では、単相マトリックスコンパ ータ 20の出力電圧 Vcも 0 (ゼロ)でよい。このため、本実施形態の電圧調整装置では 、単相マトリックスコンバータ 20の能力を有効に利用できる。  However, in the voltage regulator of this embodiment, the single-phase matrix converter 20 is used to set the load-side voltage Vo to an ideal power supply voltage. The frequency of the output voltage Vc is the same as the frequency on the input side, and in the phase where the input voltage of the single-phase matrix converter 20 is 0 (zero), the output voltage Vc of the single-phase matrix converter 20 is also 0 (zero) is acceptable. For this reason, in the voltage regulator of this embodiment, the capability of the single phase matrix converter 20 can be used effectively.
[0037] なお、本実施形態では、 2つの RBIGBTを逆並列に接続してスィッチ素子 21をマト リックス状に配置するようにしたが、負荷側の電圧 Voの変動に追従して単相変圧器 1 0の出力電圧 Vtを調整することができれば、スィッチ素子 21の種類と配置は、このよ うなものに限定されない。例えば、図 6に示すようにして、スィッチ素子 21を構成する ようにしてもよい。図 6は、スィッチ素子 21の構成の他の例を示した図である。  [0037] In the present embodiment, two RBIGBTs are connected in antiparallel and the switch element 21 is arranged in a matrix shape. However, the single-phase transformer follows the fluctuation of the voltage Vo on the load side. If the output voltage Vt of 10 can be adjusted, the type and arrangement of the switch element 21 are not limited to this. For example, the switch element 21 may be configured as shown in FIG. FIG. 6 is a diagram showing another example of the configuration of the switch element 21.
[0038] 図 6に示す例でも、図 2に示した例と同じ機能を持たせるため、 2つの IGBT212a、 212bと、 2つのダイオード 213a、 213bを用いてスィッチ素子 21を構成するようにし ている。ただし、図 6に示す例では、 IGBT212a、 212bのェミッタとコレクタとの間に 、ェミッタ側をアノード側にしてダイオード 213a、 213bが接続されるようにすると共に 、ダイオード 213a、 213bの力ソード同士(IGBT212a、 212bのコレクタ同士)が相互 に接続されるようにしている。 In the example shown in FIG. 6, the switch element 21 is configured using two IGBTs 212a and 212b and two diodes 213a and 213b in order to have the same function as the example shown in FIG. . However, in the example shown in FIG. 6, diodes 213a and 213b are connected between the emitters and collectors of IGBTs 212a and 212b with the emitter side as the anode side. The power swords of the diodes 213a and 213b (the collectors of the IGBTs 212a and 212b) are connected to each other.
[0039] また、本実施形態では、単相変圧器 10の出力電圧 Vt (の位相と振幅)と、目標電 圧 Va (の位相と振幅)との差を示す補償指令電圧 Vc こ、単相絶縁変圧器 30の出 力電圧である補償電圧 Vcを合わせるようにすることにより、負荷側の電圧 Vo (の位相 と振幅)が目標電圧 Va (の位相と振幅)になるような制御を実現するようにした。しかし ながら、必ずしもこのようにする必要なない。例えば、単相変圧器 10の出力電圧 Vt の位相と振幅の何れか一方が目標値になるようにしてもよい。また、単相変圧器 10の 出力電圧 Vtの位相と振幅が、許容範囲になるようにしてもよい。さらに、負荷側の電 圧 Voの位相と振幅力 目標値 (又は許容範囲内)となるようにしてもよい。  In the present embodiment, the compensation command voltage Vc indicating the difference between the output voltage Vt (phase and amplitude) of the single-phase transformer 10 and the target voltage Va (phase and amplitude) By adjusting the compensation voltage Vc, which is the output voltage of the isolation transformer 30, to achieve control so that the voltage Vo (phase and amplitude) on the load side becomes the target voltage Va (phase and amplitude) I did it. However, this is not always necessary. For example, either the phase or the amplitude of the output voltage Vt of the single-phase transformer 10 may be set to the target value. Further, the phase and amplitude of the output voltage Vt of the single-phase transformer 10 may be within an allowable range. Furthermore, the phase of the voltage Vo on the load side and the amplitude force target value (or within an allowable range) may be used.
[0040] さらに、本実施形態では、単相変圧器 10の出力電圧 Vtを調整する場合を例に挙 げて示したが、 n (nは自然数)相変圧器の各相の出力電圧を調整するようにしてもよ い。例えば、図 7に示すようにしてもよい。図 7は、三相変圧器の出力電圧を調整する ための電圧調整装置の構成の一例を示した図である。  Furthermore, in the present embodiment, the case where the output voltage Vt of the single-phase transformer 10 is adjusted is shown as an example, but the output voltage of each phase of the n-phase transformer is adjusted (n is a natural number). You may do it. For example, it may be as shown in FIG. FIG. 7 is a diagram showing an example of the configuration of a voltage regulator for regulating the output voltage of the three-phase transformer.
[0041] 図 7において、電圧調整装置は、三相マトリックスコンバータ 200と、三相絶縁変圧 器 300と、制御回路 400とを有している。  In FIG. 7, the voltage regulator includes a three-phase matrix converter 200, a three-phase isolation transformer 300, and a control circuit 400.
三相マトリックスコンバータ 200は、図 1に示したマトリックスコンバータ 20と同じ構成 を有する 3個のマトリックスコンバータ 20a〜20cを備えて!/、る。三相絶縁変圧器 300 は、図 1に示した単相絶縁変圧器 30と同じ構成を有する 3個の単相絶縁変圧器 30a 〜30cを備えている。  The three-phase matrix converter 200 includes three matrix converters 20a to 20c having the same configuration as the matrix converter 20 shown in FIG. The three-phase isolation transformer 300 includes three single-phase isolation transformers 30a to 30c having the same configuration as the single-phase isolation transformer 30 shown in FIG.
制御回路 400は、三相変圧器 100の各相における負荷側の電圧の位相と振幅が 目標値であるか否かを判定する回路と、三相変圧器 100の各相(各相間)における 負荷側の電圧に応じて、スィッチ素子 21a〜211のスィッチ動作を制御する回路とを 有する。  The control circuit 400 determines whether or not the phase and amplitude of the voltage on the load side in each phase of the three-phase transformer 100 are target values, and the load in each phase of the three-phase transformer 100 (between each phase). And a circuit for controlling the switch operation of the switch elements 21a to 211 according to the voltage on the side.
[0042] 即ち、三相変圧器 100の出力端子 100a、 100b, 100cに対して直列に、マトリック スコンバータ 20a、 20b、 20c力 三相絶縁変圧器 300を通してそれぞれ接続される ようにする。そして、制御回路 400が、第 1の実施形態で説明した動作を各相に対し て行うことにより、スィッチ素子 21a〜211のスィッチ動作を制御する。これにより、三相 変圧器 100の出力端子 100a、 100b間の電圧と、出力端子 100b、 100c間の電圧と 、出力端子 100c、 100a間の電圧と力 それぞれマトリックスコンバータ 20a、 20b、 2 Ocの出力電圧 (補償電圧) Vcで補償される。 That is, the three-phase transformer 100 is connected to the output terminals 100a, 100b, and 100c in series through the matrix converters 20a, 20b, and 20c through the three-phase isolation transformer 300, respectively. Then, the control circuit 400 controls the switch operations of the switch elements 21a to 211 by performing the operation described in the first embodiment for each phase. As a result, three-phase Voltage between output terminals 100a and 100b of transformer 100, voltage between output terminals 100b and 100c, voltage and force between output terminals 100c and 100a, respectively Output voltage (compensation voltage) of matrix converters 20a, 20b and 2 Oc Compensated by Vc.
以上のように、マトリックスコンバータ 20の数を増やすことにより、多相変圧器の出力 電圧を正確に且つ低損失で調整することができる。  As described above, by increasing the number of matrix converters 20, the output voltage of the multiphase transformer can be adjusted accurately and with low loss.
[0043] また、電圧調整装置に 9個のスィッチ素子を有する三相マトリックスコンバータを用 いた場合、単相絶縁変圧器に電圧を注入する部分を、星形結線で配線する必要が ある。そうすると、各相の補償電圧 Vcの干渉が起こる。このため、三相変圧器 100の 各相の出力電圧の調整能力が低下する恐れがある。これに対して、図 7に示したよう に、 12個のスィッチ素子 21a〜211を用いた場合、各相の単相絶縁変圧器 30a〜30 cに独立して、補償電圧 Vcを印加できる。このため、三相変圧器 100の各相の出力 電圧を高精度で調整することが可能になる。  [0043] When a three-phase matrix converter having nine switch elements is used in the voltage regulator, it is necessary to wire the portion for injecting voltage into the single-phase isolation transformer with a star connection. Then, interference of compensation voltage Vc of each phase occurs. For this reason, the adjustment capability of the output voltage of each phase of the three-phase transformer 100 may be reduced. On the other hand, as shown in FIG. 7, when twelve switch elements 21a to 211 are used, the compensation voltage Vc can be applied independently to the single-phase isolation transformers 30a to 30c of each phase. For this reason, the output voltage of each phase of the three-phase transformer 100 can be adjusted with high accuracy.
[0044] なお、前述した実施形態は、何れも本発明を実施するにあたっての具体ィ匕の例を 示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されては ならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から 逸脱することなぐ様々な形で実施することができる。  It should be noted that the above-described embodiments are merely examples of specific examples for carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. Is. In other words, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.
産業上の利用可能性  Industrial applicability
[0045] 本発明によれば、変圧器の出力電圧を、複数のスィッチ素子のスィッチ動作に応じ た交流電圧に変換し、変換した交流電圧が変圧器の出力電圧に重畳されて、負荷 側に供給されるようにした。これにより、複数のスィッチ素子のスィッチ動作に応じた 交流電圧を用いて、変圧器の出力電圧を調整することができる。従って、変圧器の出 力電圧を直流に変換する必要がなくなり電解コンデンサが不要になると共に、複数 のスィッチ素子のスィッチ動作により、高速に且つ確実に変圧器の出力電圧を調整 することができる。よって、損失が低く且つ信頼性の高い電圧調整装置を提供するこ とがでさる。 [0045] According to the present invention, the output voltage of the transformer is converted into an AC voltage corresponding to the switching operation of the plurality of switch elements, and the converted AC voltage is superimposed on the output voltage of the transformer to be on the load side. It was made to be supplied. Thereby, the output voltage of a transformer can be adjusted using the alternating voltage according to the switch operation | movement of several switch elements. Therefore, it is not necessary to convert the output voltage of the transformer to direct current, so that an electrolytic capacitor is not necessary, and the output voltage of the transformer can be adjusted at high speed and reliably by the switching operation of a plurality of switch elements. Therefore, it is possible to provide a voltage regulator with low loss and high reliability.

Claims

請求の範囲 The scope of the claims
[1] 変圧器の出力側の卷線に直列に接続された電圧変換回路と、  [1] a voltage conversion circuit connected in series with the feeder wire on the output side of the transformer;
前記電圧変換回路を制御する制御回路とを有し、  A control circuit for controlling the voltage conversion circuit,
前記電圧変換回路は、複数のスィッチ素子を有し、前記変圧器の出力電圧を、前 記複数のスィッチ素子のスィッチ動作に応じた交流電圧に変換して出力し、 前記制御回路は、前記複数のスィッチ素子のスィッチ動作を制御し、  The voltage conversion circuit includes a plurality of switch elements, converts the output voltage of the transformer into an AC voltage corresponding to the switch operation of the plurality of switch elements, and outputs the AC voltage. Controls the switch operation of the switch element,
前記変圧器の出力電圧に、前記電圧変換回路の出力電圧が重畳された電圧が、 負荷側に供給されるようにしたことを特徴とする電圧調整装置。  A voltage regulator in which a voltage obtained by superimposing an output voltage of the voltage conversion circuit on an output voltage of the transformer is supplied to a load side.
[2] 前記複数のスィッチ素子は、マトリックス状に配置されていることを特徴とする請求 項 1に記載の電圧調整装置。  2. The voltage regulator according to claim 1, wherein the plurality of switch elements are arranged in a matrix.
[3] 前記スィッチ素子は、逆阻止デバイスを含むことを特徴とする請求項 1又は 2に記 載の電圧調整装置。 [3] The voltage regulator according to [1] or [2], wherein the switch element includes a reverse blocking device.
[4] 前記電圧変換回路を n (nは自然数)個有し、 [4] n (n is a natural number) of the voltage conversion circuits,
前記電圧変換回路は、 n相変圧器の出力側の卷線に 1つずつ直列に接続されてい ることを特徴とする請求項 1〜3の何れか 1項に記載の電圧調整装置。  4. The voltage regulator according to claim 1, wherein the voltage conversion circuit is connected in series to one side of the output side of the n-phase transformer. 5.
PCT/JP2007/055453 2006-03-23 2007-03-16 Voltage regulator WO2007108427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008506286A JP4872090B2 (en) 2006-03-23 2007-03-16 Voltage regulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006081282 2006-03-23
JP2006-081282 2006-03-23

Publications (1)

Publication Number Publication Date
WO2007108427A1 true WO2007108427A1 (en) 2007-09-27

Family

ID=38522456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055453 WO2007108427A1 (en) 2006-03-23 2007-03-16 Voltage regulator

Country Status (2)

Country Link
JP (1) JP4872090B2 (en)
WO (1) WO2007108427A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468411C1 (en) * 2011-07-13 2012-11-27 Государственное образовательное учреждение высшего профессионального образования "Российская таможенная академия" Stabiliser of single-phase voltage in network
WO2018146567A1 (en) * 2017-02-07 2018-08-16 Volex Power Ltd. Controlling voltage in electrical power distribution grid
US10461539B2 (en) 2017-02-07 2019-10-29 Vollspark Ltd. Controlling voltage in electrical power distribution grid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890932B2 (en) 2018-08-20 2021-01-12 Eaton Intelligent Power Limited Electrical network configured to magnetically couple to a winding and to control magnetic saturation in a magnetic core
US11735923B2 (en) 2020-07-28 2023-08-22 Eaton Intelligent Power Limited Voltage regulation device that includes a converter for harmonic current compensation and reactive power management

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223911A (en) * 1990-01-29 1991-10-02 Tokyo Rikoushiya:Kk Automatic ac voltage controller
JPH11113257A (en) * 1997-10-01 1999-04-23 Fuji Electric Co Ltd Series power system compensation device using ac bidirectional switching circuit
JP2000148267A (en) * 1998-11-17 2000-05-26 Toshiba Corp Alternating-current power unit
JP2002165454A (en) * 2000-11-27 2002-06-07 Kawamura Electric Inc Ac voltage regulator
JP2003230227A (en) * 2002-01-31 2003-08-15 Matsushita Ecology Systems Co Ltd Power saving device
JP2003348842A (en) * 2002-05-29 2003-12-05 Ntt Data Corp Ac voltage controller
JP2006014549A (en) * 2004-06-29 2006-01-12 Fuji Electric Holdings Co Ltd Driving power supply circuit for bidirectional switch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223911A (en) * 1990-01-29 1991-10-02 Tokyo Rikoushiya:Kk Automatic ac voltage controller
JPH11113257A (en) * 1997-10-01 1999-04-23 Fuji Electric Co Ltd Series power system compensation device using ac bidirectional switching circuit
JP2000148267A (en) * 1998-11-17 2000-05-26 Toshiba Corp Alternating-current power unit
JP2002165454A (en) * 2000-11-27 2002-06-07 Kawamura Electric Inc Ac voltage regulator
JP2003230227A (en) * 2002-01-31 2003-08-15 Matsushita Ecology Systems Co Ltd Power saving device
JP2003348842A (en) * 2002-05-29 2003-12-05 Ntt Data Corp Ac voltage controller
JP2006014549A (en) * 2004-06-29 2006-01-12 Fuji Electric Holdings Co Ltd Driving power supply circuit for bidirectional switch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468411C1 (en) * 2011-07-13 2012-11-27 Государственное образовательное учреждение высшего профессионального образования "Российская таможенная академия" Stabiliser of single-phase voltage in network
WO2018146567A1 (en) * 2017-02-07 2018-08-16 Volex Power Ltd. Controlling voltage in electrical power distribution grid
US10461539B2 (en) 2017-02-07 2019-10-29 Vollspark Ltd. Controlling voltage in electrical power distribution grid
GB2559413B (en) * 2017-02-07 2020-01-01 Vollspark Ltd Controlling voltage in electrical power distribution grid

Also Published As

Publication number Publication date
JPWO2007108427A1 (en) 2009-08-06
JP4872090B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
US7577007B2 (en) Power converting apparatus
US10998830B2 (en) Power conversion device and three-phase power conversion device
WO2015178376A1 (en) Direct-current power transmission power conversion device and direct-current power transmission power conversion method
US20150029764A1 (en) Transformer-less unified power flow controller
US20120069612A1 (en) Arrangement for exchanging power
US11005268B2 (en) Optimizer, control method and parallel arrangement for photovoltaic system
Iman-Eini et al. Analysis and design of power electronic transformer for medium voltage levels
US8503206B2 (en) Single-phase voltage source DC-AC power converter and three-phase voltage source DC-AC power converter
JP2012531878A (en) Power converter with multi-level voltage output and harmonic compensator
JPWO2019215842A1 (en) Power converter
JP4872090B2 (en) Voltage regulator
JP2009118685A (en) Method for controlling ac voltage
US5946205A (en) Power conversion system with series connected self-commutated converters
US20230074022A1 (en) Power converter topologies with power factor correction circuits controlled using adjustable deadtime
Iman-Eini et al. A power electronic based transformer for feeding sensitive loads
EP1511166B1 (en) Power converter
WO2020256690A1 (en) Voltage balance systems and methods for multilevel converters
US5537307A (en) Control device for system interconnection inverter
US20230076369A1 (en) Unidirectional power converters with power factor correction circuits controlled using adjustable deadtime
US20230071003A1 (en) Power factor correction circuits controlled using adjustable deadtime
Sharma et al. Solar photovoltaic supply system integrated with solid state transformer
Lin et al. Novel single-phase switching mode multilevel rectifier with a high power factor
Sha et al. A DAB-Based DC Transformer for Multiterminal HVdc Dynamic Simulation Platform with Short Circuit Tolerance
Hernández et al. A different AC voltage regulator based on tapped transformer
Sousa et al. Unified architecture of single-phase active power filter with battery interface for UPS operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738898

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008506286

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738898

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)