WO2007108406A1 - Error tolerant method and semiconductor integrated circuit capable of realizing the method - Google Patents

Error tolerant method and semiconductor integrated circuit capable of realizing the method Download PDF

Info

Publication number
WO2007108406A1
WO2007108406A1 PCT/JP2007/055342 JP2007055342W WO2007108406A1 WO 2007108406 A1 WO2007108406 A1 WO 2007108406A1 JP 2007055342 W JP2007055342 W JP 2007055342W WO 2007108406 A1 WO2007108406 A1 WO 2007108406A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
schmitt trigger
semiconductor integrated
circuit unit
pass transistor
Prior art date
Application number
PCT/JP2007/055342
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuteru Nanba
Hideo Ito
Yoichi Sasaki
Original Assignee
National University Corporation Chiba University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Chiba University filed Critical National University Corporation Chiba University
Priority to JP2007513560A priority Critical patent/JP4555971B2/en
Publication of WO2007108406A1 publication Critical patent/WO2007108406A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00315Modifications for increasing the reliability for protection in field-effect transistor circuits

Definitions

  • the present invention relates to an error tolerant method and a semiconductor integrated circuit capable of executing the method.
  • Errors that occur in a semiconductor integrated circuit can be classified into soft errors and hard errors.
  • a hard error is an error caused by the structure of the semiconductor integrated circuit itself, and once it occurs, the signal value continues to be indefinitely incorrect.
  • a soft error is an error that temporarily occurs during the operation of the semiconductor integrated circuit although the configuration of the semiconductor integrated circuit is normal. To recover. Soft errors occur when, for example, a semiconductor integrated circuit collides with the VLSI radiation power such as a-line or neutron beam that is generated by power such as a package enclosing space space or VLSI. It tends to occur on memory.
  • Non-Patent Document 1 discloses a semiconductor integrated circuit including a logic circuit unit and a latch circuit unit connected to the logic circuit unit. In the circuit, a technology has been disclosed in which the latch circuit portion has a double latch structure.
  • Non-Patent Document 2 the logic circuit unit and the output of the logic circuit unit are delayed by a delay time ⁇ (where ⁇ is the maximum value of the time affected by the soft error).
  • a delay circuit having a delay time of 2 ⁇ a majority circuit that makes a majority decision based on the output of the logic circuit unit, the output of the first delay circuit and the output of the second delay circuit, and
  • a technology relating to a semiconductor integrated circuit having a latch circuit portion for storing the output of the majority circuit is disclosed.
  • Non-Patent Document 3 shown below has a logic circuit section, a plurality of nos transistors connected to the logic circuit part, and a latch circuit part connected via these pass transistors. Thus, a technique for attenuating soft errors that occur in the logic circuit section is described.
  • Non-Patent Document 1 M. Omana, D. Rossi, C. Metra, “Novel Transient Fault Hardened Static Latch, ..., ITC, pp886-892, 2003
  • Non-Patent Document 2 Nico idis, Time Redundancy ⁇ Based Soft— Error Tolorance to Rescue Nanometer Technologies ”, Proc. IEEE VLSI Test Symp., Pp86—94, 1999
  • Non-Patent Document 3 J. Kumar, Mehdi B. Tahoori, 'Use of pass transistor logic to minimize the impact of soft errors in combinational circuits, Workshop on System Effects of Logic Soft Errors ⁇ 2005 Disclosure of Invention
  • Non-Patent Document 1 can prevent a soft error occurring in the latch unit, but cannot prevent a soft error occurring in the logic circuit unit. .
  • Non-Patent Document 2 it is necessary to increase the clock cycle by 2 ⁇ , which may reduce the operation speed of the circuit.
  • this technology uses a majority circuit, but there is a problem that the circuit becomes complicated and has a large area.
  • Non-Patent Document 3 has a limit in the ability to be attenuated by the pass transistor, and a problem remains in the ability when a large soft error pulse is generated.
  • the present invention provides a soft error tolerant method useful for a logic circuit unit and a semiconductor integrated circuit that realizes the soft error tolerant method, and further increases the soft error attenuation capability while suppressing a decrease in the operation speed of the circuit. With the goal.
  • an error tolerant method as a means for solving the above-described problem is characterized in that a signal including a soft error generated by a logic circuit unit is attenuated by a pass transistor and further masked by a Schmitt trigger circuit.
  • the Schmitt trigger circuit in this means is It is also desirable to use a barter type Schmitt trigger circuit.
  • a semiconductor integrated circuit as another means for solving the above-described problem includes a logic circuit portion, a pass transistor electrically connected to the logic circuit portion, and an electrically connected to the pass transistor. And a Schmitt trigger circuit.
  • the present invention is a soft error tolerant method useful for a logic circuit unit and a semiconductor integrated circuit that realizes the soft error tolerant method, and further increases the soft error attenuation capability while suppressing a decrease in the operation speed of the circuit. be able to.
  • FIG. 1 shows a functional block diagram of the semiconductor integrated circuit according to the present embodiment.
  • the semiconductor integrated circuit 1 includes a logic circuit unit 2, a soft error tolerant circuit unit 3 connected to the logic circuit unit, and a latch connected to the soft error tolerant circuit unit 3. And a circuit unit 4.
  • the logic circuit unit 2 is a circuit unit for performing calculation based on input data and outputting the result, and is not limited to, for example, an AND gate, an OR gate, a NOT gate, Force logic circuit unit 2 configured by combining NAND gates etc. Of course, it has a latch circuit.
  • the soft error tolerant circuit unit 3 is a circuit unit 3 for correcting a soft error that occurs in the logic circuit unit 2.
  • the nose transistor 31 is a transistor that connects the logic circuit section 2 and the Schmitt trigger circuit 32 via the source Z drain region of the transistor, and is not limited to the transistor, but as shown in FIG.
  • the pass transistor 31 according to the present embodiment includes an NMOS transistor 311 and a PMOS transistor 312, and the source Z drain region in each transistor is electrically connected to the source Z drain region in the other transistor. .
  • the gate of the NMOS transistor 311 is grounded to the external power supply Vcc, and the gate of the PMOS transistor 312 is grounded, so that the gates of both transistors are on.
  • the pass transistor 31 in the present embodiment is not limited as long as it has the above-described function, and is a combination of the NMOS transistor 311 and the PMOS transistor 312.
  • the NMOS transistor only, the PMOS transistor only The present embodiment is not limited to this embodiment.
  • the Schmitt trigger circuit 32 is a circuit mainly used to remove noise at the rise and fall of a signal, and although not limited thereto, the source Z drain region is common as shown in FIG. And a common source / drain region 325 between the NMOS transistor 321 and PM transistor connected in series, and an inverter 327 electrically connected to the 326, and the output of the inverter 327 Are connected to the gates of NMOS transistor 323 and PMOS transistor 324. Note that the common source Z drain of the NMOS transistors 321 and 323 is grounded, and the non-common source Z drain of the PMOS transistors 322 and 324 is connected to Vcc. In the present embodiment, the output of the inverter 327 is also the output of the Schmitt transistor circuit.
  • the force shown in FIG. 2 as an example of the Schmitt trigger circuit 32 of the present embodiment for example, a configuration as shown in FIG. 3 can be adopted and is limited to the configuration described in the present embodiment. This is not the case.
  • the Schmitt trigger circuit 32 shown in FIG. 3 includes a plurality of PMOS transistors 3211 and 3212 and a plurality of N MOS transistors 3213 and 3214 that are connected in series in a common manner with a common source Z drain region, and a plurality of PMOS transistors. 3211, 3212 common source Z drain region PMOS transistor 3216 connected to 3215 and multiple NMO And an NMOS transistor 3218 connected to a common source / drain region 3217 of the S transistors 3213 and 3214.
  • the Schmitt trigger circuit 32 has an output of the source / drain region 3219 between the PMOS transistor 3212 and the NMOS transistor 3213, and is connected to the gates of the PMOS transistor 3216 and the NMOS transistor 3218 described above. ing.
  • a digital circuit determines whether an input signal is “1” or “0” (in some expressions, “High”, “Low”, “high potential”, or “low potential”). Specifically, “1” is judged for an input having a predetermined voltage or higher, and “0” is judged for an input signal lower than a predetermined voltage (this predetermined voltage is called “threshold voltage”). o
  • this predetermined voltage is called “threshold voltage”.
  • noise is usually added to these input signals, and this becomes a significant problem at voltages near the threshold voltage. In other words, depending on the magnitude of the noise, the input signal that should be originally “1” becomes “0” due to noise, or the input signal that should originally be “0” becomes “1”.
  • the Schmitt trigger circuit has two threshold voltages to give directionality to the input signal. According to this circuit, if the input signal exceeds Vth + and is determined to be “1”, it remains “1” even if the input signal falls below Vth +, and it is not determined to be “0” unless it falls below Vth ⁇ . This prevents noise near the threshold voltage (see Fig. 4 (B)).
  • the latch circuit unit 4 is a circuit unit for holding the output from the soft error tolerant circuit unit 3 based on the logic circuit unit 2, and is not limited as long as the output can be stored. However, an example of this circuit configuration is shown in FIG.
  • the latch circuit 4 preferably stores the output temporarily for data processing, but may be omitted if the latch circuit 4 has a configuration that does not require a latch such as direct input to another logic circuit unit.
  • the non-transistor 31 can attenuate the soft error voltage until noise masking is possible, and keep it within the range that can be masked by the Schmitt trigger circuit. By doing so, it becomes a soft error tolerant method useful for the logic circuit unit according to the present embodiment, and it is possible to further increase the soft error attenuation capability while suppressing a decrease in the operation speed of the circuit.
  • this circuit since there is no need to provide a delay circuit as in the prior art, it is possible to reduce the operating speed.
  • the majority circuit is unnecessary and the semiconductor integrated circuit does not increase in area. Needless to say, if a soft error does not occur in the logic circuit unit 2, the output signal from the logic circuit unit 2 can be output to the latch circuit unit 4 as it is.
  • the present embodiment is substantially the same as the first embodiment, except that the soft error tolerant circuit unit 3 has a function as a latch.
  • FIG. 7 shows a functional block diagram of the semiconductor integrated circuit 1 according to the present embodiment
  • FIG. 8 shows an example of an equivalent circuit of the soft error tolerant circuit unit 3 according to the present embodiment.
  • the soft error tolerant circuit unit 3 of the semiconductor integrated circuit according to the present embodiment has a latch function, and is configured integrally with the latch circuit unit 4 in the first embodiment. Is different.
  • the soft error tolerant circuit unit 3 includes a force pass transistor 31 and a Schmitt trigger circuit 32 that are substantially the same as the example of the first embodiment shown in FIG. And a pass transistor 33 connected in parallel with the Schmitt trigger circuit 32.
  • the pass transistor 31 is a force NMOS transistor having substantially the same configuration as that of the first embodiment. The difference is that the gate of 321 is connected to the clock signal elk, and the gate of the PMOS transistor 322 is connected to the inverted clock signal inverted from the clock signal elk. That is, the pass transistor 31 can control the input to the Schmitt trigger circuit 32 or the pass transistor 33 arranged in parallel with the Schmitt trigger circuit 32 in this way.
  • the pass transistor 33 connected in parallel to the Schmitt trigger circuit 32 in the present embodiment is different in the signal input to the force gate having the same configuration as the pass transistor 31 in the previous stage. Specifically, the inverted clock signal is input to the gate of the NMOS transistor 331, and the clock signal elk is input to the gate of the PMOS transistor 332. As a result, when the gate of the previous pass transistor 31 is in the on state, it is turned off, and when it is in the off state, it is turned on.
  • the Schmitt trigger circuit 33 is of course not limited to the example of FIG. 8 as in the above-described embodiment, and may be configured as shown in FIG. 9, for example.
  • the Schmitt trigger circuit 32 shown in Fig. 9 is connected to the output side of the Schmitt trigger circuit shown in Fig. 4 in series with a common source Z drain region. The difference is that the PMOS transistor 3220 and the NMOS transistor 3221 are arranged. Note that the source Z drain region on the non-common side of the PMOS transistor 3220 is provided at Vcc, and the source Z drain region on the non-common side of the NMOS transistor 3221 is provided.
  • the common source Z drain region 3222 is the output of the Schmitt trigger circuit 33.
  • the pass transistor 33 is provided between the pass transistor 31 and the Schmitt trigger circuit 32 which only have the same effect as in the first embodiment. Are provided in parallel and a loop is formed, so that an error mask function is provided and a latch circuit can be configured to function as a latch. This makes it possible to further reduce the area.
  • FIG. 1 is a diagram showing functional blocks of a semiconductor integrated circuit according to an embodiment.
  • FIG. 2 is a diagram showing detailed circuits of a pass transistor and a Schmitt trigger circuit according to the embodiment.
  • FIG. 3 is a diagram for explaining the operation of the Schmitt trigger circuit according to the embodiment.
  • FIG. 4 is a diagram showing an example of another configuration of the Schmitt trigger circuit according to the embodiment.
  • FIG. 5 is a diagram showing a detailed circuit of the latch circuit according to the embodiment.
  • FIG. 6 is a diagram for explaining operations of a pass transistor and a Schmitt trigger circuit.
  • FIG. 7 is a functional block diagram of a semiconductor integrated circuit according to a second embodiment.
  • FIG. 8 is a diagram showing a detailed circuit of a pass transistor and a Schmitt trigger circuit.
  • FIG. 9 is a diagram showing another example of a Schmitt trigger circuit.

Abstract

A software error tolerant method that is useful for a logic circuit unit and a semiconductor integrated circuit that carries out the method are provided to enhance capability in attenuating a software error while to suppress decrease in a circuit operation speed. In an error tolerance method, a pass transistor attenuates a signal including a software error generated by a logic circuit unit and a Schmidt trigger circuit masks the attenuated signal. A semiconductor integrated circuit is comprised of a logic circuit unit, a pass transistor electrically connected with the logic circuit unit and a Schmidt trigger circuit electrically connected with the pass transistor.

Description

明 細 書  Specification
エラートレラント方法及びその方法を実現可能な半導体集積回路 技術分野  Error tolerant method and semiconductor integrated circuit capable of realizing the method
[0001] 本発明はエラートレラント方法及びその方法を実行可能な半導体集積回路に関す る。  The present invention relates to an error tolerant method and a semiconductor integrated circuit capable of executing the method.
背景技術  Background art
[0002] 半導体集積回路において生ずるエラーとして、ソフトエラーとハードエラーとに分類 することができる。ハードエラーとは、半導体集積回路の構成そのものに起因するェ ラーをいい、一度生じてしまうと半永久的に信号値を誤り続けてしまうものである。一 方、ソフトエラーとは、半導体集積回路の構成は正常であるものの半導体集積回路 の動作中に一時的に発生してしまうエラーのことをいい、時間が経過すればもとの正 常な状態に回復するものである。ソフトエラーは、例えば半導体集積回路が宇宙空 間や VLSIを封入するパッケージなど力 発せられる a線や中性子線などの放射線 力 VLSIと衝突すること等で発生し、特に記憶電荷量の小さい DRAM等のメモリ上 で生じやすい。  [0002] Errors that occur in a semiconductor integrated circuit can be classified into soft errors and hard errors. A hard error is an error caused by the structure of the semiconductor integrated circuit itself, and once it occurs, the signal value continues to be indefinitely incorrect. On the other hand, a soft error is an error that temporarily occurs during the operation of the semiconductor integrated circuit although the configuration of the semiconductor integrated circuit is normal. To recover. Soft errors occur when, for example, a semiconductor integrated circuit collides with the VLSI radiation power such as a-line or neutron beam that is generated by power such as a package enclosing space space or VLSI. It tends to occur on memory.
[0003] ソフトエラー対策(以下「ソフトエラートレラント」 t 、う。)に関する技術として、例えば 下記非特許文献 1には、論理回路部とこの論理回路部に接続されたラッチ回路部を 有する半導体集積回路において、ラッチ回路部を二重化されたラッチ構造とする技 術が開示されている。  [0003] As a technique relating to soft error countermeasures (hereinafter referred to as "soft error tolerant" t), for example, Non-Patent Document 1 below discloses a semiconductor integrated circuit including a logic circuit unit and a latch circuit unit connected to the logic circuit unit. In the circuit, a technology has been disclosed in which the latch circuit portion has a double latch structure.
[0004] また、下記非特許文献 2には、論理回路部と、この論理回路部の出力を遅延時間 δ (ここで δは、ソフトエラーの影響を受ける時間の最大値)で遅延させる第一の遅延 回路並びに遅延時間 2 δで遅延させる第二の遅延回路と、論理回路部の出力、第 一の遅延回路の出力並びに第二の遅延回路の出力に基づき多数決を行う多数決回 路、及び、この多数決回路の出力を格納するラッチ回路部と、を有する半導体集積 回路に関する技術が開示されている。  [0004] Further, in Non-Patent Document 2 below, the logic circuit unit and the output of the logic circuit unit are delayed by a delay time δ (where δ is the maximum value of the time affected by the soft error). A delay circuit having a delay time of 2 δ, a majority circuit that makes a majority decision based on the output of the logic circuit unit, the output of the first delay circuit and the output of the second delay circuit, and A technology relating to a semiconductor integrated circuit having a latch circuit portion for storing the output of the majority circuit is disclosed.
[0005] また、下記非特許文献 3には、論理回路部と、この論理回路部に接続される複数の ノ ストランジスタと、これらパストランジスタを介して接続されるラッチ回路部と、を有す ることで、論理回路部において発生したソフトエラーを減衰させる技術が記載されて いる。 [0005] Further, Non-Patent Document 3 shown below has a logic circuit section, a plurality of nos transistors connected to the logic circuit part, and a latch circuit part connected via these pass transistors. Thus, a technique for attenuating soft errors that occur in the logic circuit section is described.
[0006] 非特許文献 1 : M. Omana, D. Rossi, C. Metra、 "Novel Transient Fault H ardened Static Latch,,、 ITC、 pp886— 892、 2003  [0006] Non-Patent Document 1: M. Omana, D. Rossi, C. Metra, "Novel Transient Fault Hardened Static Latch, ..., ITC, pp886-892, 2003
非特許文献 2 : Nico idis, Time Redundancy― Based Soft— Error Tolora nce to Rescue Nanometer Technologies"、 Proc. IEEE VLSI Test Sy mp.、 pp86— 94、 1999  Non-Patent Document 2: Nico idis, Time Redundancy― Based Soft— Error Tolorance to Rescue Nanometer Technologies ”, Proc. IEEE VLSI Test Symp., Pp86—94, 1999
非特許文献 3 :J. Kumar, Mehdi B. Tahoori、 'Use of pass transistor lo gic to minimize the impact of soft errors in combinational circuits 、 Workshop on System Effects of Logic Soft Errors ^ 2005 発明の開示  Non-Patent Document 3: J. Kumar, Mehdi B. Tahoori, 'Use of pass transistor logic to minimize the impact of soft errors in combinational circuits, Workshop on System Effects of Logic Soft Errors ^ 2005 Disclosure of Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、上記非特許文献 1に記載の技術では、ラッチ部に発生したソフトエラ 一を防ぐことはできても、論理回路部に発生したソフトエラーについては防ぐことがで きない。 However, the technique described in Non-Patent Document 1 can prevent a soft error occurring in the latch unit, but cannot prevent a soft error occurring in the logic circuit unit. .
[0008] また、上記非特許文献 2に記載の技術では、クロックの周期を 2 δ増加させる必要 があるため、回路の動作速度を低下させてしまう虞がある。またこの技術では多数決 回路を用いているが、回路が複雑で大面積となってしまうといった課題もある。  [0008] In addition, in the technique described in Non-Patent Document 2, it is necessary to increase the clock cycle by 2 δ, which may reduce the operation speed of the circuit. In addition, this technology uses a majority circuit, but there is a problem that the circuit becomes complicated and has a large area.
[0009] また、上記非特許文献 3に記載の技術では、パストランジスタで減衰できる能力に 限界があり、大きなソフトエラーパルスが発生した場合にその能力に課題が残る。  [0009] In addition, the technique described in Non-Patent Document 3 has a limit in the ability to be attenuated by the pass transistor, and a problem remains in the ability when a large soft error pulse is generated.
[0010] そこで、本発明は、論理回路部に有用なソフトエラートレラント方法及びそれを実現 する半導体集積回路であって、回路の動作速度低下を抑制しつつ、よりソフトエラー 減衰能を高くすることを目的とする。  Therefore, the present invention provides a soft error tolerant method useful for a logic circuit unit and a semiconductor integrated circuit that realizes the soft error tolerant method, and further increases the soft error attenuation capability while suppressing a decrease in the operation speed of the circuit. With the goal.
課題を解決するための手段  Means for solving the problem
[0011] 即ち、上記課題を解決する一手段としてのエラートレラント方法は、論理回路部が 発生させるソフトエラーを含む信号をパストランジスタによって減衰させ、更にこれを シュミットトリガ回路によってマスクすることを特徴の一つとする。 That is, an error tolerant method as a means for solving the above-described problem is characterized in that a signal including a soft error generated by a logic circuit unit is attenuated by a pass transistor and further masked by a Schmitt trigger circuit. One.
[0012] また、限定されるわけではないが、この手段におけるシュミットトリガ回路として、イン バータ型のシュミットトリガ回路を用いることも望まし 、。 [0012] Although not limited, the Schmitt trigger circuit in this means is It is also desirable to use a barter type Schmitt trigger circuit.
[0013] また、上記課題を解決する他の一手段としての半導体集積回路は、論理回路部と 、論理回路部と電気的に接続されるパストランジスタと、パストランジスタと電気的に接 続されるシュミットトリガ回路と、を有することを特徴の一つとする。  [0013] In addition, a semiconductor integrated circuit as another means for solving the above-described problem includes a logic circuit portion, a pass transistor electrically connected to the logic circuit portion, and an electrically connected to the pass transistor. And a Schmitt trigger circuit.
[0014] また、限定されるわけではないが、この手段におけるシュミットトリガ回路に電気的に 接続されるラッチ回路部と、を有することも望ましぐまた、シュミットトリガ回路と並列に 配置されるパストランジスタと、を有することも望ましい。  [0014] Although not limited thereto, it is desirable to have a latch circuit unit electrically connected to the Schmitt trigger circuit in this means, and the path arranged in parallel with the Schmitt trigger circuit It is also desirable to have a transistor.
発明の効果  The invention's effect
[0015] 以上により、本発明は、論理回路部に有用なソフトエラートレラント方法及びそれを 実現する半導体集積回路であって、回路の動作速度低下を抑制しつつ、よりソフトェ ラー減衰能を高くすることができる。  As described above, the present invention is a soft error tolerant method useful for a logic circuit unit and a semiconductor integrated circuit that realizes the soft error tolerant method, and further increases the soft error attenuation capability while suppressing a decrease in the operation speed of the circuit. be able to.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の実施の形態について、図面を用いて詳細に説明する。但し、本発 明は多くの異なる形態による実施が可能であり、以下に示す実施形態及び実施例に 狭く限定されることはない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different forms and is not limited to the embodiments and examples shown below.
[0017] (実施形態 1) [0017] (Embodiment 1)
図 1に、本実施形態に係る半導体集積回路の機能ブロック図を示す。  FIG. 1 shows a functional block diagram of the semiconductor integrated circuit according to the present embodiment.
図 1が示すとおり、本実施形態に係る半導体集積回路 1は、論理回路部 2と、論理 回路部に接続されたソフトエラートレラント回路部 3と、このソフトエラートレラント回路 部 3に接続されたラッチ回路部 4と、を有して構成されている。  As shown in FIG. 1, the semiconductor integrated circuit 1 according to the present embodiment includes a logic circuit unit 2, a soft error tolerant circuit unit 3 connected to the logic circuit unit, and a latch connected to the soft error tolerant circuit unit 3. And a circuit unit 4.
[0018] 論理回路部 2は、入力されるデータに基づき計算を行いこの結果を出力するための 回路部であって、限定されるわけではないが例えば ANDゲート、 ORゲート、 NOTゲ ート、 NANDゲート等を組み合わせることによって構成される力 論理回路部 2内に はもちろんラッチ回路を有して 、てもよ 、。 [0018] The logic circuit unit 2 is a circuit unit for performing calculation based on input data and outputting the result, and is not limited to, for example, an AND gate, an OR gate, a NOT gate, Force logic circuit unit 2 configured by combining NAND gates etc. Of course, it has a latch circuit.
[0019] ソフトエラートレラント回路部 3は、論理回路部 2において生じるソフトエラーを訂正 するための回路部 3であって、具体的には例えば図 2で示すようにパストランジスタ 31 と、このパストランジスタ 31に接続されるシュミットトリガ回路 32と、を有して構成されて いる。 [0020] ノ ストランジスタ 31は、トランジスタにおけるソース Zドレイン領域を介して論理回路 部 2とシュミットトリガ回路 32とを接続するトランジスタであって、限定されるわけではな いが、図 2で示すとおり本実施形態に係るパストランジスタ 31は、 NMOSトランジスタ 311と PMOSトランジスタ 312とを有しており、各々のトランジスタにおけるソース Zド レイン領域は他方のトランジスタにおけるソース Zドレイン領域と電気的に接続されて いる。なお NMOSトランジスタ 311のゲートは外部電源 Vccに、 PMOSトランジスタ 3 12のゲートはグランドに接地されており、双方のトランジスタのゲートはオン状態とな つている。なお、本実施形態におけるパストランジスタ 31は、 NMOSトランジスタ 311 と PMOSトランジスタ 312とが組み合わされたものとなっている力 上記した機能を奏 する限りにおいて限定されず、例えば NMOSトランジスタのみ、 PMOSトランジスタ のみであってもよぐ本実施形態に限定されるものではない。 The soft error tolerant circuit unit 3 is a circuit unit 3 for correcting a soft error that occurs in the logic circuit unit 2. Specifically, for example, as shown in FIG. 2, the pass transistor 31 and the pass transistor And a Schmitt trigger circuit 32 connected to 31. The nose transistor 31 is a transistor that connects the logic circuit section 2 and the Schmitt trigger circuit 32 via the source Z drain region of the transistor, and is not limited to the transistor, but as shown in FIG. The pass transistor 31 according to the present embodiment includes an NMOS transistor 311 and a PMOS transistor 312, and the source Z drain region in each transistor is electrically connected to the source Z drain region in the other transistor. . Note that the gate of the NMOS transistor 311 is grounded to the external power supply Vcc, and the gate of the PMOS transistor 312 is grounded, so that the gates of both transistors are on. Note that the pass transistor 31 in the present embodiment is not limited as long as it has the above-described function, and is a combination of the NMOS transistor 311 and the PMOS transistor 312. For example, the NMOS transistor only, the PMOS transistor only The present embodiment is not limited to this embodiment.
[0021] シュミットトリガ回路 32は、主として信号の立ち上がり、立下りにおけるノイズを除去 するために用いられる回路であって、限定されるわけではないが図 2で示すとおりソ ース Zドレイン領域が共通する形で直列に接続される NMOSトランジスタ 321と PM ランジスタの間で共通するソース/ドレイン領域 325、 326に電気的に接続されるィ ンノ ータ 327と、を有しており、インバータ 327の出力は NMOSトランジスタ 323、 P MOSトランジスタ 324のゲートに接続されている。なお、 NMOSトランジスタ 321、 3 23の共通して 、な 、側のソース Zドレインはそれぞれ接地され、 PMOSトランジスタ 322、 324の共通していない側のソース Zドレインは Vccに接続されている。なお本 実施形態ではインバータ 327の出力がシュミットトランジスタ回路の出力ともなつてい る。 [0021] The Schmitt trigger circuit 32 is a circuit mainly used to remove noise at the rise and fall of a signal, and although not limited thereto, the source Z drain region is common as shown in FIG. And a common source / drain region 325 between the NMOS transistor 321 and PM transistor connected in series, and an inverter 327 electrically connected to the 326, and the output of the inverter 327 Are connected to the gates of NMOS transistor 323 and PMOS transistor 324. Note that the common source Z drain of the NMOS transistors 321 and 323 is grounded, and the non-common source Z drain of the PMOS transistors 322 and 324 is connected to Vcc. In the present embodiment, the output of the inverter 327 is also the output of the Schmitt transistor circuit.
[0022] 本実施形態のシュミットトリガ回路 32の例を図 2に示している力 例えば図 3で示す ような構成を採用することも可能であって、本実施形態に記載の構成に限定されるこ とはない。なお、図 3に示すシュミットトリガ回路 32は、ソース Zドレイン領域が共通す る形で順に直列に接続される複数の PMOSトランジスタ 3211、 3212及び複数の N MOSトランジスタ 3213、 3214と、複数の PMOSトランジスタ 3211、 3212の共通す るソース Zドレイン領域 3215に接続される PMOSトランジスタ 3216と、複数の NMO Sトランジスタ 3213、 3214の共通するソースドレイン領域 3217に接続される NMOS トランジスタ 3218と、を有して構成されている。なお、本図におけるシュミットトリガ回 路 32は、 PMOSトランジスタ 3212と NMOSトランジスタ 3213の間のソース/ドレイ ン領域 3219が出力となっており、上記の PMOSトランジスタ 3216、 NMOSトランジ スタ 3218のゲートに接続されている。 The force shown in FIG. 2 as an example of the Schmitt trigger circuit 32 of the present embodiment, for example, a configuration as shown in FIG. 3 can be adopted and is limited to the configuration described in the present embodiment. This is not the case. The Schmitt trigger circuit 32 shown in FIG. 3 includes a plurality of PMOS transistors 3211 and 3212 and a plurality of N MOS transistors 3213 and 3214 that are connected in series in a common manner with a common source Z drain region, and a plurality of PMOS transistors. 3211, 3212 common source Z drain region PMOS transistor 3216 connected to 3215 and multiple NMO And an NMOS transistor 3218 connected to a common source / drain region 3217 of the S transistors 3213 and 3214. In this figure, the Schmitt trigger circuit 32 has an output of the source / drain region 3219 between the PMOS transistor 3212 and the NMOS transistor 3213, and is connected to the gates of the PMOS transistor 3216 and the NMOS transistor 3218 described above. ing.
[0023] ここで、シュミットトリガ回路 32によるノイズ除去の原理について、図 4を用いて説明 する。一般にデジタル回路は、入力信号が" 1"か" 0" (表現によっては" High"か" Lo w"又は"高電位"か"低電位")の何れかであるかを判断して取り扱う。具体的には所 定の電圧以上の入力に対しては" 1"と、所定の電圧より低い入力信号に対しては" 0 "を判断する (この所定の電圧を「閾値電圧」という。 ) oしかしながら、これら入力信号 には通常ノイズが加わっており、閾値電圧近傍の電圧においてはこれが顕著な問題 となる。即ちノイズの大きさ如何によつては本来 "1 "であるはずの入力信号がノイズに より" 0"となってしまう、又は本来" 0"であるはずの入力信号が" 1"となってしまう(図 4 (A)参照)。これに対しシュミットトリガ回路は閾値電圧を二つ有することで入力信号 に対する判断に方向性を持たせている。この回路によると、入力信号が Vth+以上と なり" 1"と判断されると、入力信号が Vth+を下回っても" 1"を維持し、 Vth—以下に ならないと" 0"とは判断されない。これにより閾値電圧付近におけるノイズを防止する ことができる(図 4 (B)参照)。  Here, the principle of noise removal by the Schmitt trigger circuit 32 will be described with reference to FIG. Generally, a digital circuit determines whether an input signal is “1” or “0” (in some expressions, “High”, “Low”, “high potential”, or “low potential”). Specifically, “1” is judged for an input having a predetermined voltage or higher, and “0” is judged for an input signal lower than a predetermined voltage (this predetermined voltage is called “threshold voltage”). o However, noise is usually added to these input signals, and this becomes a significant problem at voltages near the threshold voltage. In other words, depending on the magnitude of the noise, the input signal that should be originally “1” becomes “0” due to noise, or the input signal that should originally be “0” becomes “1”. (See Fig. 4 (A)). On the other hand, the Schmitt trigger circuit has two threshold voltages to give directionality to the input signal. According to this circuit, if the input signal exceeds Vth + and is determined to be “1”, it remains “1” even if the input signal falls below Vth +, and it is not determined to be “0” unless it falls below Vth−. This prevents noise near the threshold voltage (see Fig. 4 (B)).
[0024] ラッチ回路部 4は、論理回路部 2に基づくソフトエラートレラント回路部 3からの出力 を保持するための回路部であって、出力を格納することができる限りにおいて限定さ れるわけではないが、この回路構成の例について例えば図 5に示しておく。なお、ラ ツチ回路 4は、出力を一時格納しておくことがデータの処理上望ましいが、他の論理 回路部等に直接入力させる等ラッチを不要とする構成の場合には省略も可能ではあ る。  [0024] The latch circuit unit 4 is a circuit unit for holding the output from the soft error tolerant circuit unit 3 based on the logic circuit unit 2, and is not limited as long as the output can be stored. However, an example of this circuit configuration is shown in FIG. The latch circuit 4 preferably stores the output temporarily for data processing, but may be omitted if the latch circuit 4 has a configuration that does not require a latch such as direct input to another logic circuit unit. The
[0025] 次に、本実施形態に係る半導体集積回路を用いたエラートレラント方法について説 明する。まず、論理回路部 2においてソフトエラーが生じたと仮定する。すると、このソ フトエラーを含む信号 (以下「ソフトエラー信号」という。)は、ノ ストランジスタ 31に入 力され、電圧が減衰させられる。ノストランジスタ 31は、通常、論理回路部 2からの信 号をそのままシュミットトリガ回路 32に出力する力 一時的なソフトエラーが入力され た場合、その入力されたソフトエラーの大きさを減衰させ、シュミットトリガ回路 32がマ スクできるノイズの大きさの範囲に収めることができる(パストランジスタの減衰率として は概ね 10%程度である)。そしてシュミットトリガ回路 32は、ソフトエラーが減衰させら れた入力信号に基づきソフトエラーをマスクすることができるようになる。より具体的に 説明すると、パストランジスタ 31は、例えば図 6で示すように、論理回路部 2で生じた ソフトエラーの初期の大きさが閾値電圧 (Vth+)を超えてしまうような場合があつたと しても、ノ ストランジスタ 31により、ノイズマスクできるまでソフトエラーの電圧を減衰さ せ、シュミットトリガ回路でマスク可能な範囲に抑えることができる。このようにすること で、本実施形態に係る論理回路部に有用なソフトエラートレラント方法となり、回路の 動作速度低下を抑制しつつ、よりソフトエラー減衰能を高くすることができる。特に本 回路によると、従来のように遅延回路を設ける必要がないため動作速度を落とすこと 力 Sなぐまた多数決回路も不必要となり面積増加を起こすことのない半導体集積回路 となる。なお、論理回路部 2においてソフトエラーが生じない場合は、論理回路部 2か らの出力信号をそのままラッチ回路部 4に出力することができることはいうまでもない。 Next, an error tolerant method using the semiconductor integrated circuit according to the present embodiment will be described. First, it is assumed that a soft error has occurred in the logic circuit unit 2. Then, a signal including this soft error (hereinafter referred to as “soft error signal”) is input to the non-transistor 31 and the voltage is attenuated. The nos transistor 31 normally receives the signal from the logic circuit section 2. When a temporary soft error is input, the magnitude of the input soft error is attenuated so that the Schmitt trigger circuit 32 can mask it. (The attenuation factor of the pass transistor is approximately 10%). Then, the Schmitt trigger circuit 32 can mask the soft error based on the input signal in which the soft error is attenuated. More specifically, in the pass transistor 31, for example, as shown in FIG. 6, there is a case where the initial magnitude of the soft error generated in the logic circuit section 2 exceeds the threshold voltage (Vth +). Even so, the non-transistor 31 can attenuate the soft error voltage until noise masking is possible, and keep it within the range that can be masked by the Schmitt trigger circuit. By doing so, it becomes a soft error tolerant method useful for the logic circuit unit according to the present embodiment, and it is possible to further increase the soft error attenuation capability while suppressing a decrease in the operation speed of the circuit. In particular, according to this circuit, since there is no need to provide a delay circuit as in the prior art, it is possible to reduce the operating speed. In addition, the majority circuit is unnecessary and the semiconductor integrated circuit does not increase in area. Needless to say, if a soft error does not occur in the logic circuit unit 2, the output signal from the logic circuit unit 2 can be output to the latch circuit unit 4 as it is.
[0026] (実施形態 2)  (Embodiment 2)
本実施形態は、ほぼ実施形態 1と同様であるが、ソフトエラートレラント回路部 3が、 ラッチとしての機能を有している点が主に異なる。図 7に本実施形態に係る半導体集 積回路 1の機能ブロック図を示し、図 8に、本実施形態に係るソフトエラートレラント回 路部 3の等価回路の一例を示す。  The present embodiment is substantially the same as the first embodiment, except that the soft error tolerant circuit unit 3 has a function as a latch. FIG. 7 shows a functional block diagram of the semiconductor integrated circuit 1 according to the present embodiment, and FIG. 8 shows an example of an equivalent circuit of the soft error tolerant circuit unit 3 according to the present embodiment.
[0027] 図 7で示すように、本実施形態に係る半導体集積回路のソフトエラートレラント回路 部 3は、ラッチ機能を有しており、実施形態 1におけるラッチ回路部 4と一体の構成と なっている点が異なる。  As shown in FIG. 7, the soft error tolerant circuit unit 3 of the semiconductor integrated circuit according to the present embodiment has a latch function, and is configured integrally with the latch circuit unit 4 in the first embodiment. Is different.
[0028] また、図 8で示すように、本実施形態に係るソフトエラートレラント回路部 3は、図 2に 示す実施形態 1の例とほぼ同様である力 パストランジスタ 31とシュミットトリガ回路 32 と、シュミットトリガ回路 32と並列に接続されたパストランジスタ 33と、を有していること を特徴とする。  Further, as shown in FIG. 8, the soft error tolerant circuit unit 3 according to the present embodiment includes a force pass transistor 31 and a Schmitt trigger circuit 32 that are substantially the same as the example of the first embodiment shown in FIG. And a pass transistor 33 connected in parallel with the Schmitt trigger circuit 32.
[0029] パストランジスタ 31は、実施形態 1とほぼ同様の構成である力 NMOSトランジスタ 321のゲートがクロック信号 elkに接続され、 PMOSトランジスタ 322のゲートがクロッ ク信号 elkに対し反転した反転クロック信号に接続されて 、る点が異なる。即ちパスト ランジスタ 31は、このようにすることでシュミットトリガ回路 32又はこれと並列に配置さ れるパストランジスタ 33への入力を制御することができる。 [0029] The pass transistor 31 is a force NMOS transistor having substantially the same configuration as that of the first embodiment. The difference is that the gate of 321 is connected to the clock signal elk, and the gate of the PMOS transistor 322 is connected to the inverted clock signal inverted from the clock signal elk. That is, the pass transistor 31 can control the input to the Schmitt trigger circuit 32 or the pass transistor 33 arranged in parallel with the Schmitt trigger circuit 32 in this way.
[0030] また本実施形態におけるシュミットトリガ回路 32に並列に接続されたパストランジス タ 33は、ほぼ前段のパストランジスタ 31と同様の構成である力 ゲートに入力される 信号が異なる。具体的には、 NMOSトランジスタ 331のゲートには反転クロック信号 が入力され、 PMOSトランジスタ 332のゲートにはクロック信号 elkが入力される。これ により、前段のパストランジスタ 31のゲートがオン状態のときはオフ状態となり、オフ状 態のときはオン状態となる。  The pass transistor 33 connected in parallel to the Schmitt trigger circuit 32 in the present embodiment is different in the signal input to the force gate having the same configuration as the pass transistor 31 in the previous stage. Specifically, the inverted clock signal is input to the gate of the NMOS transistor 331, and the clock signal elk is input to the gate of the PMOS transistor 332. As a result, when the gate of the previous pass transistor 31 is in the on state, it is turned off, and when it is in the off state, it is turned on.
[0031] なお、シュミットトリガ回路 33については、もちろん上記実施形態と同様、図 8の例 に限定されるわけではなぐ例えば図 9で示すような構成も可能である。図 9で示すシ ュミットトリガ回路 32は、図 4で示しているシュミットトリガ回路とほぼ同様である力 図 4 で示すシュミットトリガ回路の出力側に更にソース Zドレイン領域が共通する形で直 列に接続される PMOSトランジスタ 3220と NMOSトランジスタ 3221が配置されてい る点が異なる。なお PMOSトランジスタ 3220の共通していない側のソース Zドレイン 領域は Vccに、 NMOSトランジスタ 3221の共通していない側のソース Zドレイン領 域は設置されて 、る。なお共通するソース Zドレイン領域 3222がシュミットトリガ回路 33の出力となっている。  It is to be noted that the Schmitt trigger circuit 33 is of course not limited to the example of FIG. 8 as in the above-described embodiment, and may be configured as shown in FIG. 9, for example. The Schmitt trigger circuit 32 shown in Fig. 9 is connected to the output side of the Schmitt trigger circuit shown in Fig. 4 in series with a common source Z drain region. The difference is that the PMOS transistor 3220 and the NMOS transistor 3221 are arranged. Note that the source Z drain region on the non-common side of the PMOS transistor 3220 is provided at Vcc, and the source Z drain region on the non-common side of the NMOS transistor 3221 is provided. The common source Z drain region 3222 is the output of the Schmitt trigger circuit 33.
[0032] 以上のとおり、本実施形態に係る半導体集積回路によると、上記実施形態 1と同様 の効果を有しているだけでなぐパストランジスタ 31とシュミットトリガ回路 32との間に 別途パストランジスタ 33を並列に設け、ループを形成させることでエラーマスク機能を 有するとともにラッチ回路を構成することでラッチ機能をもかねさせることができる。こ れにより、更に小面積ィ匕を図ることが可能となる。 As described above, according to the semiconductor integrated circuit according to the present embodiment, the pass transistor 33 is provided between the pass transistor 31 and the Schmitt trigger circuit 32 which only have the same effect as in the first embodiment. Are provided in parallel and a loop is formed, so that an error mask function is provided and a latch circuit can be configured to function as a latch. This makes it possible to further reduce the area.
図面の簡単な説明  Brief Description of Drawings
[0033] [図 1]実施形態に係る半導体集積回路の機能ブロックを示す図である。 [0033] FIG. 1 is a diagram showing functional blocks of a semiconductor integrated circuit according to an embodiment.
[図 2]実施形態に係るパストランジスタとシュミットトリガ回路の詳細な回路を示す図で ある。 [図 3]実施形態に係るシュミットトリガ回路の動作を説明する図である。 FIG. 2 is a diagram showing detailed circuits of a pass transistor and a Schmitt trigger circuit according to the embodiment. FIG. 3 is a diagram for explaining the operation of the Schmitt trigger circuit according to the embodiment.
[図 4]実施形態に係るシュミットトリガ回路の他の構成の例を示す図である。 FIG. 4 is a diagram showing an example of another configuration of the Schmitt trigger circuit according to the embodiment.
[図 5]実施形態に係るラッチ回路の詳細な回路を示す図である。 FIG. 5 is a diagram showing a detailed circuit of the latch circuit according to the embodiment.
[図 6]パストランジスタ及びシュミットトリガ回路の動作を説明する図である。 FIG. 6 is a diagram for explaining operations of a pass transistor and a Schmitt trigger circuit.
[図 7]実施形態 2に係る半導体集積回路の機能ブロックを示す図である。 FIG. 7 is a functional block diagram of a semiconductor integrated circuit according to a second embodiment.
[図 8]パストランジスタとシュミットトリガ回路の詳細な回路を示す図である。 FIG. 8 is a diagram showing a detailed circuit of a pass transistor and a Schmitt trigger circuit.
[図 9]シュミットトリガ回路の他の例を示す図である。 FIG. 9 is a diagram showing another example of a Schmitt trigger circuit.
符号の説明 Explanation of symbols
1…半導体集積回路、 2…論理回路部、 3· ··エラートレラント回路部、 4· ··ラッチ回路 31· ··ノ ス卜ランジス夕、 32· ··シュミツ卜卜リガ回 、 33· ··ノ ス卜ランジス夕、 311、 32 1、 323- NMOSトランジスタ、 312、 322、 324· "PMOSトランジスタ 1 ... Semiconductor integrated circuit, 2 ... Logic circuit part, 3 ... Error tolerant circuit part, 4 ... Latch circuit 31 ... Non-range run, 32 ... Schmidts-Riga times, 33 ... · Nos Rungis evening, 311, 32 1, 323-NMOS transistor, 312, 322, 324 · "PMOS transistor

Claims

請求の範囲 The scope of the claims
[1] 論理回路部が発生させるソフトエラーを含む信号をパストランジスタによって減衰さ せ、更にこれをシュミットトリガ回路によってマスクするエラートレラント方法。  [1] An error tolerant method in which a signal containing a soft error generated by a logic circuit section is attenuated by a pass transistor and then masked by a Schmitt trigger circuit.
[2] 前記シュミットトリガ回路として、インバータ型のシュミットトリガ回路を用いることを特 徴とする請求項 1記載のエラートレラント方法。  2. The error tolerant method according to claim 1, wherein an inverter type Schmitt trigger circuit is used as the Schmitt trigger circuit.
[3] 論理回路部と、 [3] Logic circuit part,
該論理回路部と電気的に接続されるパストランジスタと、  A pass transistor electrically connected to the logic circuit unit;
該ノストランジスタと電気的に接続されるシュミットトリガ回路と、を有する半導体集 積回路。  And a Schmitt trigger circuit electrically connected to the nos transistor.
[4] 前記シュミットトリガ回路に電気的に接続されるラッチ回路部と、を有することを特徴 とする請求項 3記載の半導体集積回路。  4. The semiconductor integrated circuit according to claim 3, further comprising a latch circuit portion electrically connected to the Schmitt trigger circuit.
[5] 前記シュミットトリガ回路と並列に配置されるパストランジスタと、を有する請求項 3記 載の半導体集積回路。 5. The semiconductor integrated circuit according to claim 3, further comprising a pass transistor arranged in parallel with the Schmitt trigger circuit.
PCT/JP2007/055342 2006-03-23 2007-03-16 Error tolerant method and semiconductor integrated circuit capable of realizing the method WO2007108406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007513560A JP4555971B2 (en) 2006-03-23 2007-03-16 Error tolerant method and semiconductor integrated circuit capable of realizing the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-081749 2006-03-23
JP2006081749 2006-03-23

Publications (1)

Publication Number Publication Date
WO2007108406A1 true WO2007108406A1 (en) 2007-09-27

Family

ID=38522436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055342 WO2007108406A1 (en) 2006-03-23 2007-03-16 Error tolerant method and semiconductor integrated circuit capable of realizing the method

Country Status (2)

Country Link
JP (1) JP4555971B2 (en)
WO (1) WO2007108406A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052383A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US8471256B2 (en) 2009-11-27 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168724A (en) * 1988-09-19 1990-06-28 Hitachi Ltd Semiconductor logical circuit
JPH0321113A (en) * 1989-06-19 1991-01-29 Nec Corp Input circuit for cmos semiconductor integrated circuit
JP2004304475A (en) * 2003-03-31 2004-10-28 Kawasaki Microelectronics Kk Tolerant input circuit
JP2006060847A (en) * 2005-09-12 2006-03-02 Handotai Rikougaku Kenkyu Center:Kk Data holding circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195673A (en) * 1995-01-19 1996-07-30 Nippon Telegr & Teleph Corp <Ntt> Cmos multi-valued lateral circuit, sequential circuit for multi-valued logic, synchronous sequential circuit for multi-valued logic, and static type d-type latched circuit for multi-valued logic
JPH08237080A (en) * 1995-03-01 1996-09-13 Kawasaki Steel Corp Schmitt trigger circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168724A (en) * 1988-09-19 1990-06-28 Hitachi Ltd Semiconductor logical circuit
JPH0321113A (en) * 1989-06-19 1991-01-29 Nec Corp Input circuit for cmos semiconductor integrated circuit
JP2004304475A (en) * 2003-03-31 2004-10-28 Kawasaki Microelectronics Kk Tolerant input circuit
JP2006060847A (en) * 2005-09-12 2006-03-02 Handotai Rikougaku Kenkyu Center:Kk Data holding circuit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052383A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US8207756B2 (en) 2009-10-30 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US8570070B2 (en) 2009-10-30 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US9722086B2 (en) 2009-10-30 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
JP2017175137A (en) * 2009-10-30 2017-09-28 株式会社半導体エネルギー研究所 Semiconductor device
US8471256B2 (en) 2009-11-27 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9748436B2 (en) 2009-11-27 2017-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20190109259A1 (en) 2009-11-27 2019-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10396236B2 (en) 2009-11-27 2019-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US11894486B2 (en) 2009-11-27 2024-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPWO2007108406A1 (en) 2009-08-06
JP4555971B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
Mitra et al. Combinational logic soft error correction
JP5182840B2 (en) ESD protection circuit
US7523371B2 (en) System and shadow bistable circuits coupled to output joining circuit
JP4224094B2 (en) Semiconductor integrated circuit device
JP5173216B2 (en) Semiconductor integrated circuit system, semiconductor integrated circuit, operating system, and control method of semiconductor integrated circuit
US7193451B2 (en) Method and system for reducing glitch effects within combinational logic
Naseer et al. The DF-dice storage element for immunity to soft errors
US11429478B2 (en) Robust soft error tolerant multi-bit D flip-flop circuit
US8441294B2 (en) Data holding circuit
Sayil A survey of circuit-level soft error mitigation methodologies
JP2006129477A (en) Soft-error rate improvement in latch
WO2007108406A1 (en) Error tolerant method and semiconductor integrated circuit capable of realizing the method
Lin et al. A low-cost radiation hardened flip-flop
JP2007129689A (en) Dual path redundancy with stacked transistor voting
Bouajila et al. Organic computing at the system on chip level
Alghareb et al. Soft error effect tolerant temporal self-voting checkers: Energy vs. resilience tradeoffs
US9997210B2 (en) Data register for radiation hard applications
US7590961B2 (en) Integrated circuit with signal skew adjusting cell selected from cell library
Nicolaidis Double-sampling architectures
Imhof et al. Soft error correction in embedded storage elements
JP5044778B2 (en) Semiconductor integrated circuit
JP4910141B2 (en) Error-tolerant semiconductor integrated circuit
JP5464228B2 (en) Data holding circuit
US7719337B2 (en) Semiconductor device
US20200228105A1 (en) Clocking circuit arrangement and method of forming the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007513560

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738787

Country of ref document: EP

Kind code of ref document: A1