WO2007108324A1 - Glass melting method and glass melting furnace - Google Patents

Glass melting method and glass melting furnace Download PDF

Info

Publication number
WO2007108324A1
WO2007108324A1 PCT/JP2007/054424 JP2007054424W WO2007108324A1 WO 2007108324 A1 WO2007108324 A1 WO 2007108324A1 JP 2007054424 W JP2007054424 W JP 2007054424W WO 2007108324 A1 WO2007108324 A1 WO 2007108324A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
melting
tank
molten glass
adjustment tank
Prior art date
Application number
PCT/JP2007/054424
Other languages
French (fr)
Japanese (ja)
Inventor
Kimio Iino
Shinji Murakami
Original Assignee
Taiyo Nippon Sanso Corporation
Ohara Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corporation, Ohara Inc. filed Critical Taiyo Nippon Sanso Corporation
Priority to JP2008506229A priority Critical patent/JP5231211B2/en
Priority to CN2007800090167A priority patent/CN101400612B/en
Publication of WO2007108324A1 publication Critical patent/WO2007108324A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the present invention relates to a glass melting method and a glass melting furnace for efficiently manufacturing a glass product in the manufacture of a glass product using oxyfuel combustion.
  • Patent Documents 1 to 3 In recent years, in a glass melting furnace for industrially producing glass, oxygen combustion has been increasingly used for glass of a type that requires high-temperature melting (Patent Documents 1 to 3). .
  • oxyfuel combustion is often employed because air combustion has low thermal efficiency.
  • Patent Document 4 discloses a method of adjusting the moisture concentration in a gas in a glass melting furnace. The purpose of this method is to install a humidifier outside the secondary air so that the air supplied to the melting furnace is humidified and maintained at a constant humidity to prevent temperature fluctuations in the melting furnace. This method increases the water vapor concentration in air combustion. On the other hand, in oxygen combustion, water is generated more than three times as much as in air combustion, so the method described in Patent Document 4 adjusts the moisture concentration in glass by adjusting the moisture concentration in the gas as described above. Can not do.
  • Patent Document 1 JP-A-6-24752
  • Patent Document 2 JP-A-10-316434
  • Patent Document 3 Japanese Patent Laid-Open No. 11_11954
  • Patent Document 4 JP-A-8_268724
  • An object of the present invention is to provide a glass melting method and a glass melting furnace capable of adjusting the moisture concentration in the glass even when the oxygen combustion method is used as a glass melting heat source in the glass melting furnace. There is to do.
  • the present invention is a glass melting method using a glass melting furnace provided with a melting tank, wherein an adjusting tank is disposed downstream of the molten glass flow in the melting tank, and the adjusting tank Glass melting method that adjusts the moisture concentration in the molten glass by controlling the equilibrium state of the moisture concentration at the interface between the atmospheric gas and the molten glass surface by adjusting the temperature of the gas and the amount of gas introduced into the adjustment tank I will provide a.
  • the present invention since the effect is particularly great when the raw glass is melted using an oxygen burner, the present invention is applied when the raw glass is melted using an oxygen burner in the melting tank. Is preferred. Further, in order to appropriately adjust the water concentration in the molten glass, it is preferable to keep the pressure in the adjustment tank at a positive pressure.
  • the present invention is a glass melting furnace for melting a raw glass as a glass melting furnace for carrying out the glass melting method, the melting tank and the moisture of the glass melted in the melting tank
  • An adjustment tank for adjusting the concentration, a throat part for flowing molten glass to the melting tank force adjustment tank, and a partition wall for isolating the upper space of the melting tank and the upper space of the adjustment tank
  • the adjustment tank provides a glass melting furnace provided with a partition weir provided downstream of the molten glass flow from the partition wall, a molten glass heating means for adjusting the molten glass temperature, and an atmospheric gas inlet. .
  • the present invention is particularly effective in a melting furnace equipped with an oxygen burner. Therefore, it is preferable to apply the present invention in a melting furnace in which the melting tank includes an oxygen burner.
  • the molten glass heating means is preferably a submerged electrode and / or an electric heater.
  • the adjustment tank is provided with an atmospheric gas heating means for adjusting the temperature of the atmospheric gas.
  • the atmospheric gas heating means is preferably an electric heater.
  • the adjustment tank is provided downstream of the molten glass flow in the melting tank to adjust the water concentration in the molten glass. Therefore, the oxygen combustion method is used as the glass melting heat source. In addition, the water concentration in the molten glass can be properly managed.
  • FIG. 1 is a cross-sectional view of a glass melting furnace for carrying out the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a melting furnace suitable for carrying out the present invention.
  • the melting furnace 1 has a melting tank 2 and a regulating tank 3.
  • the upper space of the melting tank 2 and the adjustment tank 3 is isolated by a partition wall 4.
  • the raw material glass 22 in the raw material hopper 20 is put into the melting tank 2 by the raw material feeder 21.
  • the raw glass 22 is melted by a plurality of oxygen analyzers 8, 8... Installed in the melting tank 2, and sequentially becomes a molten glass 23.
  • the molten glass 23 is introduced into the adjustment tank 3 through the slot portion 5 below the partition wall 4.
  • the adjustment tank 3 is provided with a partition weir 6, and the molten glass 23 overflows the partition weir 6 and is stored in the adjustment bath 7. original The charge is supplied until the amount of accumulated glass in the adjustment bath 7 reaches a predetermined level.
  • an atmospheric gas inlet 10 for adjusting the moisture concentration in the gas phase is provided in the upper space of the adjustment tank 3.
  • the atmosphere gas is introduced into the glass at the surface of the molten glass 23 surface.
  • the diffusion of moisture into the atmospheric gas is developed, and the moisture concentration in the glass is lowered.
  • a melting tank exhaust gas port 9 and an adjustment tank exhaust gas port 24 for leading out excess exhaust gas are provided, respectively.
  • adjustment tank 3 in order to perform heat compensation of molten glass 23, it is preferable to provide a molten glass heating means. Specifically, heat compensation is performed by installing an electric heater 11 in the upper space of the adjustment tank 3, or by providing an immersion electrode 12 in the molten glass 23 and performing Joule heating.
  • the electrode 12 is preferably made of platinum so as not to be eroded by the molten glass 23, but it is also possible to use molybdenum depending on the glass component.
  • the adjustment tank 3 is preferably provided with an atmospheric gas heating means for adjusting the temperature of the atmospheric gas. Specifically, the electric heater 11 is mentioned.
  • Forcible stirring of the molten glass also enhances the moisture concentration adjustment effect.
  • a gas stirrer (not shown) is provided in the molten glass 23, or gas bubbling is performed by introducing a gas publishing gas from the gas publishing port 13.
  • the moisture concentration of the gas bubbling gas is lower than the moisture concentration in the molten glass 23, similarly to the atmospheric gas.
  • the atmosphere gas and gas publishing gas introduced into the adjustment tank 3 should be preheated by heat exchange with the combustion exhaust gas discharged from the melting tank 2. Heat exchange can reduce energy consumption.
  • the residence time of the molten glass 23 in the adjustment bath 7 varies depending on the type of glass and the amount of melting. Therefore, the volume of the adjustment bath 7 should be determined so as to ensure an appropriate residence time.
  • the molten glass 23 in the adjustment bath 7 is allowed to flow out from the glass outlet 14 installed at the bottom or bottom of the adjustment bath 7 until the predetermined level is reached. Send to the next process. After the molten glass 23 flows out, the glass outlet 14 is closed again, and the raw glass 22 is put into the melting tank 2 again to start melting the glass. By repeating this operation, it is possible to produce a glass whose moisture concentration is properly controlled.
  • a melting test of soda-lime glass was performed.
  • the raw glass 22 started to melt from the state where 50% of the molten glass 23 was stored in the adjustment bath 7, and the molten glass 23 was stored until a predetermined amount was obtained over 24 hours. During this time, for the purpose of heat compensation, the atmospheric gas temperature was adjusted by the electric heater 11 in the upper space and Joule heating was performed by the immersion type platinum electrode.
  • a dry nitrogen gas preheated by heat exchange with the combustion exhaust gas from the melting tank 2 was used.
  • the preheating temperature was about 300 ° C.
  • a restriction was provided at the exhaust gas port 24 for the adjustment tank so that the inside of the adjustment tank 3 was always kept at a positive pressure to prevent air from entering through the exhaust gas port 9 for the melting tank.
  • the amount of molten glass 23 in the adjustment bath 7 was reduced to 50 from the glass outlet 14. It was allowed to flow out until it reached%, and the glass was molded.
  • the water concentration of the sample obtained in the first step was 400 to 500 ppm.
  • the first process was excluded from the evaluation because it may be affected by the unsteady state up to 50% accumulation in adjustment tank 3.
  • Table 1 shows the results of moisture measurements for the second sample 2 (a) to 2 (c) and the sample 3 (a) to 3 (c) obtained in the third step.
  • the moisture content of the samples all decreased to around 200 ppm, that is, below 220 ppm, indicating that there was no need to adjust the moisture after the melting process.
  • the water concentration in the molten glass 23 can be properly managed, so that it is not necessary to adjust the moisture at the latter stage of the melting process. Therefore, it is industrially useful.

Abstract

In a glass melting method, a glass melting furnace having a melting tank is used, an adjusting tank is arranged in the downstream of a melting glass flow in the melting tank, equilibrium state of water concentration on an interface between an ambient gas and a melting glass surface is controlled by adjusting the temperature of the adjusting tank and a quality of a gas to be introduced into the adjusting tank.

Description

明 細 書  Specification
ガラス溶融方法およびガラス溶融炉  Glass melting method and glass melting furnace
技術分野  Technical field
[0001] 本発明は、酸素燃焼を利用したガラス製品の製造において、ガラス製品を効率良く 製造するためのガラス溶融方法およびガラス溶融炉に関する。  TECHNICAL FIELD [0001] The present invention relates to a glass melting method and a glass melting furnace for efficiently manufacturing a glass product in the manufacture of a glass product using oxyfuel combustion.
本願は、 2006年 3月 16曰に曰本国に出願された特願 2006— 72235号に基づく 優先権を主張し、その内容をここに援用する。  This application claims priority based on Japanese Patent Application No. 2006-72235 filed in Japan on March 16, 2006, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 近年、工業的にガラスを製造するガラス溶融炉において、高温溶融を必要とする種 類のガラスに対して、酸素燃焼を利用することが多くなつてきている(特許文献 1〜3) 。特にディタンク炉等のバッチ式溶融炉における高温溶融が必要なガラスの溶融に おいては、空気燃焼では熱効率が低いため、酸素燃焼を採用することが多い。  [0002] In recent years, in a glass melting furnace for industrially producing glass, oxygen combustion has been increasingly used for glass of a type that requires high-temperature melting (Patent Documents 1 to 3). . In particular, when melting glass that requires high-temperature melting in a batch-type melting furnace such as a detank furnace, oxyfuel combustion is often employed because air combustion has low thermal efficiency.
[0003] ところで、ガラスの高温溶融に酸素燃焼を用いると、その燃焼ガスに二酸化炭素や 水が多く含まれることから、ガラス中の水分濃度が高くなることが懸念される。水は、ガ ラス中に〇H基として取り込まれる力 高純度のシリカガラスや、無アルカリガラスなど 、ガラスの種類よつては、この高い〇H基含有率がガラス構造に影響して後段プロセ スに悪影響を及ぼす可能性があり、製品収率の低下が懸念される。なお、この水分 濃度は季節によって変動することもあり、水分濃度調整をガラス溶融の後段プロセス で最適化することは煩雑である。  [0003] By the way, if oxygen combustion is used for high-temperature melting of glass, the combustion gas contains a large amount of carbon dioxide and water, and there is a concern that the moisture concentration in the glass will increase. Water is incorporated into glass as OH groups Depending on the type of glass, such as high-purity silica glass and non-alkali glass, this high OH group content affects the glass structure, and the subsequent process. The product yield may be adversely affected, and there is a concern that the product yield may be reduced. This moisture concentration may vary depending on the season, and it is complicated to optimize the moisture concentration adjustment in the latter stage of glass melting.
[0004] ガラス溶融炉において、気体中の水分濃度を調節する方法が特許文献 4に開示さ れている。この方法は、二次空気ダ外に加湿器を設置し、溶融炉に供給する空気を 加湿して一定の湿度に保ち、溶融炉の温度変動を防止することを目的としたもので ある。この方法は、空気燃焼における水蒸気濃度を増加させるものである。一方、酸 素燃焼においては、空気燃焼の 3倍以上の水分を発生させるため、特許文献 4に記 載の方法では、上記のような気体中の水分濃度の調節によるガラス中の水分濃度調 整を行うことはできない。  [0004] Patent Document 4 discloses a method of adjusting the moisture concentration in a gas in a glass melting furnace. The purpose of this method is to install a humidifier outside the secondary air so that the air supplied to the melting furnace is humidified and maintained at a constant humidity to prevent temperature fluctuations in the melting furnace. This method increases the water vapor concentration in air combustion. On the other hand, in oxygen combustion, water is generated more than three times as much as in air combustion, so the method described in Patent Document 4 adjusts the moisture concentration in glass by adjusting the moisture concentration in the gas as described above. Can not do.
[0005] ガラス溶融炉での熱源として酸素燃焼を採用した場合に、溶融ガラス中の水分濃 度を適正管理できるような溶融法および溶融炉が求められている。 [0005] When oxygen combustion is employed as a heat source in a glass melting furnace, There is a need for a melting method and a furnace that can properly control the degree.
特許文献 1 :特開平 6— 24752  Patent Document 1: JP-A-6-24752
特許文献 2 :特開平 10— 316434  Patent Document 2: JP-A-10-316434
特許文献 3:特開平 11 _ 11954  Patent Document 3: Japanese Patent Laid-Open No. 11_11954
特許文献 4:特開平 8_ 268724  Patent Document 4: JP-A-8_268724
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明の課題は、ガラス溶融炉でのガラス溶融熱源として酸素燃焼方式を利用す る場合であっても、ガラス中水分濃度の調整が可能なガラス溶融方法およびガラス溶 融炉を提供することにある。 [0006] An object of the present invention is to provide a glass melting method and a glass melting furnace capable of adjusting the moisture concentration in the glass even when the oxygen combustion method is used as a glass melting heat source in the glass melting furnace. There is to do.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するため、本発明は、溶融槽を備えるガラス溶融炉を用いたガラス 溶融方法であって、調整槽をこの溶融槽における溶融ガラス流の下流に配置し、調 整槽の温度と調整槽への導入ガス量を調整することによって、雰囲気ガスと溶融ガラ ス表面との界面での水分濃度の平衡状態を制御し、溶融ガラス中の水分濃度を調整 するガラスの溶融方法を提供する。  [0007] In order to solve the above problems, the present invention is a glass melting method using a glass melting furnace provided with a melting tank, wherein an adjusting tank is disposed downstream of the molten glass flow in the melting tank, and the adjusting tank Glass melting method that adjusts the moisture concentration in the molten glass by controlling the equilibrium state of the moisture concentration at the interface between the atmospheric gas and the molten glass surface by adjusting the temperature of the gas and the amount of gas introduced into the adjustment tank I will provide a.
[0008] 本発明においては、酸素バーナーを用いて原料ガラスを溶融する場合において特 に効果が大きいため、前記溶融槽において酸素バーナーを用いて原料ガラスを溶 融する場合に本発明を適用することが好ましい。また、溶融ガラス中の水分濃度を適 切に調整するために、調整槽の圧力を正圧に保つことが好ましい。  [0008] In the present invention, since the effect is particularly great when the raw glass is melted using an oxygen burner, the present invention is applied when the raw glass is melted using an oxygen burner in the melting tank. Is preferred. Further, in order to appropriately adjust the water concentration in the molten glass, it is preferable to keep the pressure in the adjustment tank at a positive pressure.
[0009] また、本発明は、前記ガラスの溶融方法を実施するためのガラス溶融炉として、原 料ガラスを溶融するガラス溶融炉であって、溶融槽と、溶融槽で溶融させたガラスの 水分濃度を調整するための調整槽と、溶融槽力 調整槽へ溶融ガラスを流すための スロート部と、溶融槽の上部空間と調整槽の上部空間とを隔絶するための仕切り壁と を有し、調整槽は、仕切り壁より溶融ガラス流の下流に設けられた仕切り堰、溶融ガ ラス温度を調整するための溶融ガラス加熱手段、及び雰囲気ガス導入口を備えてレ、 るガラス溶融炉を提供する。  [0009] Further, the present invention is a glass melting furnace for melting a raw glass as a glass melting furnace for carrying out the glass melting method, the melting tank and the moisture of the glass melted in the melting tank An adjustment tank for adjusting the concentration, a throat part for flowing molten glass to the melting tank force adjustment tank, and a partition wall for isolating the upper space of the melting tank and the upper space of the adjustment tank, The adjustment tank provides a glass melting furnace provided with a partition weir provided downstream of the molten glass flow from the partition wall, a molten glass heating means for adjusting the molten glass temperature, and an atmospheric gas inlet. .
[0010] 本発明においては、酸素バーナーを具備した溶融炉において特に効果が大きいた め、前記溶融槽が酸素バーナーを具備している溶融炉において本発明を適用する ことが好ましい。 [0010] The present invention is particularly effective in a melting furnace equipped with an oxygen burner. Therefore, it is preferable to apply the present invention in a melting furnace in which the melting tank includes an oxygen burner.
また、前記溶融ガラス加熱手段は、浸漬型電極および/もしくは電気ヒーターであ ることが好ましい。  The molten glass heating means is preferably a submerged electrode and / or an electric heater.
さらに、前記調整槽には、雰囲気ガスの温度を調整するための雰囲気ガス加熱手 段が設けてあることが好ましい。また、雰囲気ガス加熱手段は電気ヒーターであること が好ましい。  Furthermore, it is preferable that the adjustment tank is provided with an atmospheric gas heating means for adjusting the temperature of the atmospheric gas. The atmospheric gas heating means is preferably an electric heater.
発明の効果  The invention's effect
[0011] 本発明によれば、ガラス溶融炉において、溶融槽における溶融ガラス流の下流に 調整槽を設けて溶融ガラス中の水分濃度の調整を行なうので、ガラス溶融熱源として 酸素燃焼方式を用いても、溶融ガラス中の水分濃度を適正管理できる。  [0011] According to the present invention, in the glass melting furnace, the adjustment tank is provided downstream of the molten glass flow in the melting tank to adjust the water concentration in the molten glass. Therefore, the oxygen combustion method is used as the glass melting heat source. In addition, the water concentration in the molten glass can be properly managed.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明を実施するためのガラス溶融炉の断面図である。  FIG. 1 is a cross-sectional view of a glass melting furnace for carrying out the present invention.
符号の説明  Explanation of symbols
[0013] 1··ガラス溶融炉、 2··溶融槽、 3··調整槽、 4··仕切り壁、 5···スロート部、 6··仕 切り堰、 7··調整浴、 8··酸素バーナー、 10··雰囲気ガス導入口、 11··電気ヒータ 一、 12··浸漬型電極、 14··ガラス取出口、 22···原料ガラス、 23···溶融ガラス 発明を実施するための最良の形態  [0013] 1 Glass melting furnace, 2 Melting tank, 3 Adjustment tank, 4 Partition wall, 5 Throat section, 6 Cutting weir, 7 Adjusting bath, 8 · Oxygen burner · · · Atmospheric gas inlet, ··· Electric heater, ··· Immersion type electrode, ··· Glass outlet, ··· 22 ··· Raw glass · ··· Molten glass Best form for
[0014] 本発明の実施の形態を、図 1に基づいて説明する。図 1は本発明を実施するのに 好適な溶融炉を模式的に表した断面図である。同図に示すように、溶融炉 1は、溶融 槽 2と調整槽 3を有する。溶融槽 2と調整槽 3とは、その上部空間が仕切り壁 4によつ て隔絶されている。 [0014] An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view schematically showing a melting furnace suitable for carrying out the present invention. As shown in the figure, the melting furnace 1 has a melting tank 2 and a regulating tank 3. The upper space of the melting tank 2 and the adjustment tank 3 is isolated by a partition wall 4.
[0015] 溶融槽 2には、原料フィーダ一 21によって、原料ホッパー 20中の原料ガラス 22が 投入される。原料ガラス 22は、溶融槽 2に設置された複数本の酸素パーナ 8, 8· · · によって溶融され、順次、溶融ガラス 23となる。溶融ガラス 23は、仕切り壁 4下部のス ロート部 5を通って、調整槽 3へ導入される。調整槽 3には仕切り堰 6が設けられてお り、溶融ガラス 23は、この仕切り堰 6をオーバーフローして調整浴 7に溜められる。原 料供給は、調整浴 7での蓄積ガラス量が所定のレベルになるまで行われる。 The raw material glass 22 in the raw material hopper 20 is put into the melting tank 2 by the raw material feeder 21. The raw glass 22 is melted by a plurality of oxygen analyzers 8, 8... Installed in the melting tank 2, and sequentially becomes a molten glass 23. The molten glass 23 is introduced into the adjustment tank 3 through the slot portion 5 below the partition wall 4. The adjustment tank 3 is provided with a partition weir 6, and the molten glass 23 overflows the partition weir 6 and is stored in the adjustment bath 7. original The charge is supplied until the amount of accumulated glass in the adjustment bath 7 reaches a predetermined level.
[0016] 調整槽 3の上部空間には、気相中の水分濃度を調整するための雰囲気ガス投入 口 10が設けられている。この雰囲気ガス投入口 10から乾燥窒素ガス等を導入し、雰 囲気ガス中の水分濃度を溶融ガラス 23中の水分濃度よりも低くすることによって、雰 囲気ガスと溶融ガラス 23表面の界面においてガラス中水分の雰囲気ガス中への拡 散を発現させ、ガラス中の水分濃度を低下させる。なお、溶融槽 2及び調整槽 3の上 部空間には、余分な排ガスを導出する溶融槽用排ガス口 9及び調整槽用排ガス口 2 4がそれぞれ設けられている。  [0016] In the upper space of the adjustment tank 3, an atmospheric gas inlet 10 for adjusting the moisture concentration in the gas phase is provided. By introducing dry nitrogen gas or the like from the atmosphere gas inlet 10 and lowering the moisture concentration in the atmosphere gas to be lower than the moisture concentration in the molten glass 23, the atmosphere gas is introduced into the glass at the surface of the molten glass 23 surface. The diffusion of moisture into the atmospheric gas is developed, and the moisture concentration in the glass is lowered. In addition, in the upper space of the melting tank 2 and the adjustment tank 3, a melting tank exhaust gas port 9 and an adjustment tank exhaust gas port 24 for leading out excess exhaust gas are provided, respectively.
[0017] 調整槽 3では、溶融ガラス 23の熱補償を行うため、溶融ガラス加熱手段を設けるこ とが好ましい。具体的には、調整槽 3の上部空間に電気ヒーター 11を設置したり、溶 融ガラス 23中に浸漬型電極 12を設けてジュール加熱を行うことで熱補償を行う。電 極 12の材質は溶融ガラス 23に侵食されないように白金が好ましいが、ガラス成分に よってはモリブデンを用いることも可能である。また、調整槽 3には、雰囲気ガスの温 度を調整するため、雰囲気ガス加熱手段を設けることが好ましい。具体的には、上記 電気ヒーター 11が挙げられる。  [0017] In adjustment tank 3, in order to perform heat compensation of molten glass 23, it is preferable to provide a molten glass heating means. Specifically, heat compensation is performed by installing an electric heater 11 in the upper space of the adjustment tank 3, or by providing an immersion electrode 12 in the molten glass 23 and performing Joule heating. The electrode 12 is preferably made of platinum so as not to be eroded by the molten glass 23, but it is also possible to use molybdenum depending on the glass component. The adjustment tank 3 is preferably provided with an atmospheric gas heating means for adjusting the temperature of the atmospheric gas. Specifically, the electric heater 11 is mentioned.
[0018] 仕切り堰 6は、その側壁が、スロート部 5側および調整浴 7側ともに傾斜しており、溶 融ガラス 23が仕切り堰 6をオーバーフローする際、滑らかに流れるような形状とするこ とが好ましい。このような形状の仕切り堰 6を設けることで、溶融ガラス 23が調整浴 7 側の側壁を流れ落ちる際に、雰囲気ガスとの接触面積が増える。このため、より水分 濃度が調整しやすくなり、調整浴 7での滞留時間を短くできるという効果がある。  [0018] Side walls of the partition weir 6 are inclined on both the throat portion 5 side and the adjustment bath 7 side, and the partition weir 6 has a shape that smoothly flows when the molten glass 23 overflows the partition weir 6. Is preferred. By providing the partition weir 6 having such a shape, the contact area with the atmospheric gas increases when the molten glass 23 flows down the side wall on the adjustment bath 7 side. For this reason, it becomes easier to adjust the water concentration, and the residence time in the adjustment bath 7 can be shortened.
[0019] また、溶融ガラスの強制的な攪拌も水分濃度調整効果を高める。そのため、溶融ガ ラス 23中に攪拌機(図示せず)を備えたり、ガスパブリング用ガスをガスパブリング口 13から導入してガスバブリングを行うと良レ、。このとき、ガスバブリング用ガスの水分 濃度は、雰囲気ガスと同様に、溶融ガラス 23中の水分濃度よりも低くすることが好ま しい。調整槽 3に導入する雰囲気ガスやガスパブリング用ガスは、溶融槽 2から排出 される燃焼排ガスとの熱交換によって予熱されたものを使用すると良レ、。熱交換によ つて、エネルギー使用量を減少させることが可能となる。  [0019] Forcible stirring of the molten glass also enhances the moisture concentration adjustment effect. For this reason, a gas stirrer (not shown) is provided in the molten glass 23, or gas bubbling is performed by introducing a gas publishing gas from the gas publishing port 13. At this time, it is preferable that the moisture concentration of the gas bubbling gas is lower than the moisture concentration in the molten glass 23, similarly to the atmospheric gas. The atmosphere gas and gas publishing gas introduced into the adjustment tank 3 should be preheated by heat exchange with the combustion exhaust gas discharged from the melting tank 2. Heat exchange can reduce energy consumption.
[0020] 調整浴 7での溶融ガラス 23の滞留時間は、ガラスの種類や溶融量によって異なる。 よって、調整浴 7の容積は、適切な滞留時間を確保できるように決定することが望まし レ、。 [0020] The residence time of the molten glass 23 in the adjustment bath 7 varies depending on the type of glass and the amount of melting. Therefore, the volume of the adjustment bath 7 should be determined so as to ensure an appropriate residence time.
[0021] 溶融ガラス 23が所望の水分濃度に調整されたら、調整浴 7の底部もしくは下部に 設置したガラス取出口 14から、調整浴 7中の溶融ガラス 23が所定のレベルになるま で流出させ、次プロセスに送る。溶融ガラス 23の流出後、再びガラス取出口 14を閉 止し、再び溶融槽 2に原料ガラス 22を投入し、ガラスの溶融を開始する。この作業を 繰り返すことによって、水分濃度を適正に管理したガラスを製造することができる。  [0021] Once the molten glass 23 has been adjusted to the desired moisture concentration, the molten glass 23 in the adjustment bath 7 is allowed to flow out from the glass outlet 14 installed at the bottom or bottom of the adjustment bath 7 until the predetermined level is reached. Send to the next process. After the molten glass 23 flows out, the glass outlet 14 is closed again, and the raw glass 22 is put into the melting tank 2 again to start melting the glass. By repeating this operation, it is possible to produce a glass whose moisture concentration is properly controlled.
[0022] 調整浴 7を大きくし溶融ガラス 23の流出量を管理することで、水分濃度を適切に調 整する滞留時間を確保できる場合には連続製造も可能である。溶融炉 1が大きくなり すぎる場合には、バッチ式の方がエネルギー効率が良い場合もある。  [0022] Continuous production is also possible when the adjustment bath 7 is enlarged and the outflow amount of the molten glass 23 is controlled to ensure a residence time for appropriately adjusting the moisture concentration. If the melting furnace 1 becomes too large, the batch type may be more energy efficient.
実施例  Example
[0023] (実施例 1)  [0023] (Example 1)
[0024] ソーダライム系ガラスの溶融試験を行った。溶融量は 2トン/日、調整浴 7の容積は 4 トンである溶融炉 1を用いた。  [0024] A melting test of soda-lime glass was performed. A melting furnace 1 having a melting amount of 2 tons / day and a volume of the adjusting bath 7 of 4 tons was used.
[0025] 調整浴 7内に溶融ガラス 23が 50%貯留されている状態から原料ガラス 22を溶融し 始め、 24時間かけて所定量になるまで溶融ガラス 23を貯留した。この間、熱補償の ため、上部空間の電気ヒーター 11による雰囲気ガス温度の調整と浸漬型の白金電 極によるジュール加熱を行った。  [0025] The raw glass 22 started to melt from the state where 50% of the molten glass 23 was stored in the adjustment bath 7, and the molten glass 23 was stored until a predetermined amount was obtained over 24 hours. During this time, for the purpose of heat compensation, the atmospheric gas temperature was adjusted by the electric heater 11 in the upper space and Joule heating was performed by the immersion type platinum electrode.
[0026] 雰囲気ガスには溶融槽 2からの燃焼排ガスとの熱交換によって予熱された乾燥窒 素ガスを使用した。予熱温度は 300°C程度であった。調整槽用排ガス口 24には絞り を設け、調整槽 3内を常に正圧に保つようにし、溶融槽用排ガス口 9からの大気侵入 を防いだ。原料ガラス 22の投入を停止し、調整浴 7内で 24時間滞留させ、窒素ガス を導入しながら水分濃度を調整した後、ガラス取出口 14から調整浴 7内の溶融ガラ ス 23の量が 50%になるまで流出させて、ガラスの成型をおこなった。  [0026] As the atmospheric gas, a dry nitrogen gas preheated by heat exchange with the combustion exhaust gas from the melting tank 2 was used. The preheating temperature was about 300 ° C. A restriction was provided at the exhaust gas port 24 for the adjustment tank so that the inside of the adjustment tank 3 was always kept at a positive pressure to prevent air from entering through the exhaust gas port 9 for the melting tank. After the introduction of the glass material 22 was stopped and the water concentration was adjusted while introducing nitrogen gas into the adjustment bath 7 for 24 hours, the amount of molten glass 23 in the adjustment bath 7 was reduced to 50 from the glass outlet 14. It was allowed to flow out until it reached%, and the glass was molded.
[0027] 原料ガラス 22の投入から溶融ガラス 23の流出までの工程を 3回繰り返し、各回ェ 程で得られた成型ガラスから板状サンプル (a)〜(c)を 3枚ずつ切り出して、それぞれ 水分濃度の測定を行った。ガラス中の水分濃度の測定は、赤外線吸収試験により行 レヽ、 OH基の赤外線吸収バンド (2· 8 μ ΐη, 3. 6 μ m)でランバート'ビアの法則を利 用して、標準サンプルとの比較から同定した。 [0027] The process from the introduction of the raw material glass 22 to the outflow of the molten glass 23 is repeated three times, and three plate samples (a) to (c) are cut out from the molded glass obtained in each process, The moisture concentration was measured. The moisture concentration in the glass is measured by an infrared absorption test, using Lambert's law in the OH group infrared absorption band (2.8 μ · η, 3.6 μm). And identified from comparison with a standard sample.
[0028] 1回目の工程で得られたサンプルの水分濃度は、 400〜500ppmであった。 1回目 の工程は調整槽 3内に 50%蓄積させるまでの非定常状態の影響を受けている可能 性があるので評価から外した。表 1に 2回目のサンプル 2 (a)〜2 (c)と 3回目の工程 で得られたサンプル 3 (a)〜3 (c)の水分測定結果を示す。サンプルの水分濃度は、 いずれも 200ppm前後まで、すなわち 220ppm以下まで低減しており、溶融工程の 後段での水分調整が不要であることが示された。  [0028] The water concentration of the sample obtained in the first step was 400 to 500 ppm. The first process was excluded from the evaluation because it may be affected by the unsteady state up to 50% accumulation in adjustment tank 3. Table 1 shows the results of moisture measurements for the second sample 2 (a) to 2 (c) and the sample 3 (a) to 3 (c) obtained in the third step. The moisture content of the samples all decreased to around 200 ppm, that is, below 220 ppm, indicating that there was no need to adjust the moisture after the melting process.
[0029] (比較例 1)  [0029] (Comparative Example 1)
調整槽 3の上部空間に、電気ヒーター 1 1に替えて酸素パーナ 8, 8 · · ·を設置し、そ の他は実施例と同じ条件で溶融ガラス 23のバッチ処理を行った。得られた成型ガラ スから、板状サンプル 3枚 (C (a)〜C (c) )を切り出し、実施例と同様に水分濃度を測 定した。その結果を表 1に示す。サンプル C (a)〜C (c)は、 700ppm前後の水分濃 度であった。  In the upper space of the adjustment tank 3, oxygen burners 8, 8,... Were installed in place of the electric heater 11 and the batch processing of the molten glass 23 was performed under the same conditions as in the examples. Three plate samples (C (a) to C (c)) were cut out from the obtained molded glass, and the water concentration was measured in the same manner as in the examples. The results are shown in Table 1. Samples C (a) to C (c) had a moisture concentration of around 700 ppm.
[0030] [表 1] [0030] [Table 1]
Figure imgf000008_0001
Figure imgf000008_0001
産業上の利用可能性  Industrial applicability
本発明は、ガラス溶融熱源として酸素燃焼方式を用いても、溶融ガラス 23中の水 分濃度を適正管理できるので、溶融工程の後段での水分調整が不要となる。よって 、産業上有用である。  In the present invention, even if an oxyfuel combustion system is used as a glass melting heat source, the water concentration in the molten glass 23 can be properly managed, so that it is not necessary to adjust the moisture at the latter stage of the melting process. Therefore, it is industrially useful.

Claims

請求の範囲 The scope of the claims
[1] 溶融槽を備えるガラス溶融炉を用いたガラス溶融方法であって、  [1] A glass melting method using a glass melting furnace provided with a melting tank,
調整槽をこの溶融槽における溶融ガラス流の下流に配置し、調整槽の温度と調整 槽への導入ガス量を調整することによって、雰囲気ガスと溶融ガラス表面との界面で の水分濃度の平衡状態を制御し、溶融ガラス中の水分濃度を調整する工程を有する ガラス溶融方法。  An adjustment tank is placed downstream of the molten glass flow in this melting tank, and the equilibrium state of the moisture concentration at the interface between the atmospheric gas and the molten glass surface is adjusted by adjusting the temperature of the adjustment tank and the amount of gas introduced into the adjustment tank. A glass melting method having a step of controlling the water concentration in the molten glass.
[2] 前記溶融槽におレ、て酸素バーナーを用いて原料ガラスを溶融する請求項 1記載の ガラス溶融方法。  [2] The glass melting method according to [1], wherein the raw glass is melted using an oxygen burner in the melting tank.
[3] 前記調整槽を正圧に維持する請求項 1記載のガラス溶融方法。  3. The glass melting method according to claim 1, wherein the adjustment tank is maintained at a positive pressure.
[4] 原料ガラスを溶融するガラス溶融炉であって、 [4] A glass melting furnace for melting raw glass,
溶融槽と、  A melting tank;
該溶融槽で溶融させたガラスの水分濃度を調整するための調整槽と、  An adjustment tank for adjusting the moisture concentration of the glass melted in the melting tank;
該調整槽へ前記溶融槽力 溶融ガラスを流すためのスロート部と、  A throat section for flowing molten glass power molten glass to the adjustment tank;
前記溶融槽の上部空間と前記調整槽の上部空間とを隔絶するための仕切り壁とを 有し、  A partition wall for isolating the upper space of the melting tank and the upper space of the adjustment tank,
前記調整槽は、前記仕切り壁より溶融ガラス流の下流に設けられた仕切り堰、溶融 ガラス温度を調整するための溶融ガラス加熱手段、及び雰囲気ガス導入口を備えて レ、るガラス溶融炉。  The said adjustment tank is equipped with the partition weir provided in the downstream of the molten glass flow from the said partition wall, the molten glass heating means for adjusting a molten glass temperature, and an atmospheric gas inlet.
[5] 前記溶融槽が酸素バーナーを具備してレ、る請求項 4記載のガラス溶融炉。  5. The glass melting furnace according to claim 4, wherein the melting tank comprises an oxygen burner.
[6] 前記溶融ガラス加熱手段が浸漬型電極および/もしくは電気ヒーターである請求 項 4記載のガラス溶融炉。  6. The glass melting furnace according to claim 4, wherein the molten glass heating means is an immersion electrode and / or an electric heater.
[7] 前記調整槽が、雰囲気ガス加熱手段をさらに備えている請求項 4記載のガラス溶 融炉。 7. The glass melting furnace according to claim 4, wherein the adjustment tank further includes an atmospheric gas heating means.
[8] 前記雰囲気ガス加熱手段が電気ヒーターである請求項 7記載のガラス溶融炉。  8. The glass melting furnace according to claim 7, wherein the atmospheric gas heating means is an electric heater.
PCT/JP2007/054424 2006-03-16 2007-03-07 Glass melting method and glass melting furnace WO2007108324A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008506229A JP5231211B2 (en) 2006-03-16 2007-03-07 Glass melting method and glass melting furnace
CN2007800090167A CN101400612B (en) 2006-03-16 2007-03-07 Glass melting method and glass melting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006072235 2006-03-16
JP2006-072235 2006-03-16

Publications (1)

Publication Number Publication Date
WO2007108324A1 true WO2007108324A1 (en) 2007-09-27

Family

ID=38522357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054424 WO2007108324A1 (en) 2006-03-16 2007-03-07 Glass melting method and glass melting furnace

Country Status (4)

Country Link
JP (1) JP5231211B2 (en)
CN (1) CN101400612B (en)
MY (1) MY177056A (en)
WO (1) WO2007108324A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011837A1 (en) * 2011-07-15 2013-01-24 日東紡績株式会社 Glass melting device, device for producing fiberglass, and method for producing fiberglass
WO2019124006A1 (en) * 2017-12-22 2019-06-27 日本電気硝子株式会社 Method for producing glass article and glass-melting furnace

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013023880A2 (en) * 2011-03-23 2016-12-13 Asahi Glass Co Ltd flat glass and process to produce the same
JP6675588B2 (en) * 2016-11-15 2020-04-01 日本電気硝子株式会社 Apparatus and method for manufacturing glass article
CN107487983B (en) * 2017-09-08 2023-07-25 深圳凯盛科技工程有限公司 Bubbling device for electronic display glass melting furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515453A (en) * 1998-01-09 2001-09-18 サン−ゴバン ビトラージュ Method for melting and refining vitrizable substances
JP2004091307A (en) * 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd Method for producing glass
WO2004092086A2 (en) * 2003-04-15 2004-10-28 Praxair Technology, Inc. Fining glassmelts using helium bubbles
JP2005154259A (en) * 2003-10-27 2005-06-16 Nippon Electric Glass Co Ltd Glass composition and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2711981B1 (en) * 1993-11-02 1996-01-05 Saint Gobain Vitrage Glass melting device.
CN1636907A (en) * 2004-12-02 2005-07-13 中国科学院上海光学精密机械研究所 Tellurate glass and its prepn process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515453A (en) * 1998-01-09 2001-09-18 サン−ゴバン ビトラージュ Method for melting and refining vitrizable substances
JP2004091307A (en) * 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd Method for producing glass
WO2004092086A2 (en) * 2003-04-15 2004-10-28 Praxair Technology, Inc. Fining glassmelts using helium bubbles
JP2005154259A (en) * 2003-10-27 2005-06-16 Nippon Electric Glass Co Ltd Glass composition and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011837A1 (en) * 2011-07-15 2013-01-24 日東紡績株式会社 Glass melting device, device for producing fiberglass, and method for producing fiberglass
JPWO2013011837A1 (en) * 2011-07-15 2015-02-23 日東紡績株式会社 Glass melting apparatus, glass fiber manufacturing apparatus, and glass fiber manufacturing method
WO2019124006A1 (en) * 2017-12-22 2019-06-27 日本電気硝子株式会社 Method for producing glass article and glass-melting furnace
US20200331789A1 (en) * 2017-12-22 2020-10-22 Nippon Electric Glass Co., Ltd. Method for producing glass article and glass-melting furnace

Also Published As

Publication number Publication date
JP5231211B2 (en) 2013-07-10
CN101400612A (en) 2009-04-01
MY177056A (en) 2020-09-03
CN101400612B (en) 2013-06-26
JPWO2007108324A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
CN100338236C (en) Heating furnace with regenerative burners and method of operating heating furnace
WO2007108324A1 (en) Glass melting method and glass melting furnace
TWI551558B (en) A method for manufacturing a glass substrate, and a manufacturing apparatus for a glass substrate
JP7171600B2 (en) Method for reducing the lifetime of bubbles on the surface of a glass melt
TWI787409B (en) Method for manufacturing glass objects
RU2011102520A (en) METHOD FOR PRODUCING GLASS PRODUCTS AND DEVICE FOR ITS PRODUCTION
KR102412300B1 (en) Method and apparatus for managing glass ribbon cooling
TWI490175B (en) Glass substrate manufacturing method and manufacturing device
TW201522255A (en) Manufacturing method of glass substrate, glass substrate manufacturing device, and molten glass processing device
CN102112404A (en) Apparatus and process for producing float glass
TWI567037B (en) Method for manufacturing glass substrates
CN113480150A (en) Flexible glass preparation system and method
TW201536697A (en) Glass substrate production method and glass substrate production device
CN100345782C (en) Manufacture of optical fiber prefabrication body and fusing apparatus
TWI761524B (en) Methods for reconditioning glass manufacturing systems
CN1684914A (en) Apparatus and method for producing float glass having reduced defect density
WO2013145922A1 (en) Method for producing glass plate
JP2007284347A (en) Molten glass supplying device
TWI796471B (en) Apparatus and method for controlling an oxygen containing atmosphere in a glass manufacturing process
JP6630217B2 (en) Manufacturing method of glass plate
EP3173385B1 (en) Float glass production process and installation
CN1693756A (en) Heating furnace with regenerative burners and method of operating heating furnace
CN109890767B (en) Glass article manufacturing apparatus and manufacturing method thereof
WO2023021831A1 (en) Heating furnace and method for producing glass product
CN101328605A (en) Method for producing solar energy polycrystal ribbon silicon by purifying impurity precipitated by float metallurgy melting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506229

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780009016.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737938

Country of ref document: EP

Kind code of ref document: A1